National Library of Energy BETA

Sample records for umbilicals polymer nanotube

  1. Carbon nanotube-polymer composite actuators

    DOE Patents [OSTI]

    Gennett, Thomas (Denver, CO); Raffaelle, Ryne P. (Honeoye Falls, NY); Landi, Brian J. (Rochester, NY); Heben, Michael J. (Denver, CO)

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  2. Carbon Nanotube Polymer Composites While there are limitless

    E-Print Network [OSTI]

    Harmon, Julie P.

    Carbon Nanotube Polymer Composites Figure1 Figure2 While there are limitless applications industry. Initially, we focused on optically transparent single wall nanotoube (SWNT) polymer composites (2 of the composites in fig. 1 contain 0.26 wt% carbon nanotubes. The dark sample on the bottom right was made by melt

  3. CHAPTER 4: VISCOELASTIC BEHAVIOR OF CARBON NANOTUBE-REINFORCED POLYMERS

    E-Print Network [OSTI]

    Fisher, Frank

    123 CHAPTER 4: VISCOELASTIC BEHAVIOR OF CARBON NANOTUBE-REINFORCED POLYMERS Recent experimental results demonstrate that substantial improvements in the elastic properties of a polymer can be attained by using small volume fractions of carbon nanotubes as a reinforcing phase. While these preliminary results

  4. Finite Element Modelling and Molecular Dynamic Simulations of Carbon nanotubes/ Polymer Composites 

    E-Print Network [OSTI]

    Gaddamanugu, Dhatri

    2010-07-14

    Modeling of single-walled carbon nanotubes, multi-walled nanotubes and nanotube reinforced polymer composites using both the Finite Element method and the Molecular Dynamic simulation technique is presented. Nanotubes subjected to mechanical loading...

  5. Computational Analysis of Carbon Nanotube Networks in Multifunctional Polymer Nanocomposites 

    E-Print Network [OSTI]

    Maxwell, Kevin S

    2013-09-16

    Carbon nanotubes (CNTs) have attracted much attention as reinforcements in polymer composite materials because of their unique mechanical, electrical, and thermal properties. The high electrical conductivity of CNTs is especially promising for use...

  6. Elastic and Viscoelastic Properties of Non-bulk Polymer Interphases in Nanotube-reinforced Polymers

    E-Print Network [OSTI]

    Fisher, Frank

    Elastic and Viscoelastic Properties of Non-bulk Polymer Interphases in Nanotube-reinforced Polymers polymer composite materials with outstanding mechanical, electrical, and thermal properties. A hurdle to nanoscale interactions between the embedded NTs and adjacent polymer chains. This interphase region

  7. Polymer Nanofibers and Nanotubes: Charge Transport and Device Applications

    E-Print Network [OSTI]

    Andrey N. Aleshin

    2007-01-31

    A critical analysis of recent advances in synthesis and electrical characterization of nanofibers and nanotubes made of different conjugated polymers is presented. The applicability of various theoretical models is considered in order to explain results on transport in conducting polymer nanofibers and nanotubes. The relationship between these results and the one-dimensional (1D) nature of the conjugated polymers is discussed in light of theories for tunneling in 1D conductors (e.g. Luttinger liquid, Wigner crystal). The prospects for nanoelectronic applications of polymer fibers and tubes as wires, nanoscale field-effect transistors (nanoFETs), and in other applications are analyzed.

  8. Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices

    E-Print Network [OSTI]

    Hong, Soon Hyung

    Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices Gwang photovoltaic device are fabricated using homogeneously dispersed carbon nanotubes (CNTs) in a polymer. All rights reserved. 1. Introduction Organic photovoltaic (OPV) materials promise the production

  9. Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow

    E-Print Network [OSTI]

    Garmestani, Hamid

    Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow Erin flow on the alignment of dispersed single-walled carbon nanotubes in polymer solutions. Two different-walled carbon nanotubes dispersed using an anionic surfactant and a weakly binding polymer. It was determined

  10. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing

    E-Print Network [OSTI]

    Garmestani, Hamid

    Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic and electrical properties of single wall carbon nanotube CNT -polymer composites are significantly enhanced. INTRODUCTION The addition of small quantities of carbon nanotubes CNTs to polymer composites is known to cause

  11. Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube the use of microcapsules containing suspensions of polymer-stabilized carbon nanotubes and/or graphene. Simultaneous release of carbon nanotubes and/or graphene suspensions from capsule cores restored conductivity

  12. Interfacial Load Transfer in Polymer/Carbon Nanotube Nanocomposites with a Nanohybrid Shish Kebab Modification

    E-Print Network [OSTI]

    Fisher, Frank

    Interfacial Load Transfer in Polymer/Carbon Nanotube Nanocomposites with a Nanohybrid Shish Kebab kebab (NHSK), NHSK growth mechanism, carbon nanotubes, semicrystalline polymers, nylon-11 1 material system. Here, the interfacial load transfer in a carbon nanotube (CNT)/nylon-11 composite

  13. Adhesion and reinforcement in carbon nanotube polymer composite Chenyu Weia

    E-Print Network [OSTI]

    Wei, Chenyu

    Adhesion and reinforcement in carbon nanotube polymer composite Chenyu Weia NASA Ames Research; published online 28 February 2006 Temperature dependent adhesion behavior and reinforcement in carbon investigated as multifunctional materials for electric and thermal applications.6­8 The adhesion behavior

  14. Stimuli-responsive polymer nanotube arrays

    E-Print Network [OSTI]

    Chia, Khek-Khiang

    2011-01-01

    Nanotube arrays, composed of materials such as carbon, titania, and zinc oxide, have shown potential as conductors, energy conversion devices, actuators, and adhesives. Such nanoscale constructs are particularly novel for ...

  15. Structure-Property Relationships in Carbon Nanotube-Polymer Systems: Influence of Noncovalent Stabilization Techniques 

    E-Print Network [OSTI]

    Liu, Lei

    2010-01-20

    A variety of experiments were carried out to study the dispersion and microstructure of carbon nanotubes in aqueous suspensions and polymer composites with the goal to improve the electrical conductivity of the composites containing nanotubes. Epoxy...

  16. Modifying the Electronic Character of Single-Walled Carbon Nanotubes Through Anisotropic Polymer Interaction

    E-Print Network [OSTI]

    Harmon, Julie P.

    Modifying the Electronic Character of Single-Walled Carbon Nanotubes Through Anisotropic Polymer, single-walled carbon nanotube (SWNT)±polymer composites have received much attention due to their im- proved performances compared to the corresponding parent- polymer devices in telecommunications,[1] field

  17. Plasma deposition of Ultrathin polymer films on carbon nanotubes Donglu Shia)

    E-Print Network [OSTI]

    Liu, Yijun

    Plasma deposition of Ultrathin polymer films on carbon nanotubes Donglu Shia) Department and cross-linked polymer thin films on the carbon nanotubes. The plasma deposition mechanism is discussed by coating carbon nano- tube ropes with a structural polymer electrolyte to improve ion exchange

  18. Computational modeling of thermal conductivity of single walled carbon nanotube polymer composites

    E-Print Network [OSTI]

    Maruyama, Shigeo

    was developed to study the thermal conductivity of single walled carbon nanotube (SWNT)-polymer composites1 Computational modeling of thermal conductivity of single walled carbon nanotube polymer resistance on effective conductivity of composites were quantified. The present model is a useful tool

  19. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites

    E-Print Network [OSTI]

    Elliott, James

    Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites Yue of polymer/CNT composites was initially reported by Ajayan et al. [3]. In their research, multi-wall carbon 20 June 2006 Abstract Carbon nanotubes (CNTs) are promising additives to polymeric materials due

  20. Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels Chenyu Wei* and Deepak Srivastava

    E-Print Network [OSTI]

    Wei, Chenyu

    Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels Chenyu Wei May 2003; published 5 December 2003) A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using the Fokker-Planck equation and direct molecular

  1. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; Lin, Xiao-Min; Trasobares, Susana; Cook, Russell E.

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20?nm pore membranes. The synthesized carbonmore »nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  2. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate

    E-Print Network [OSTI]

    Resasco, Daniel

    Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-mail: wtford@okstate.edu Abstract: Polymer brushes with single-walled carbon nanotubes (SWNT) as backbones were-walled carbon nanotubes (SWNT) are leading to the development of new nanotechnologies because of their out

  3. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect (OSTI)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  4. Synthesis of Thermal Interface Materials Made of Metal Decorated Carbon Nanotubes and Polymers 

    E-Print Network [OSTI]

    Okoth, Marion Odul

    2011-10-21

    -Methly-2-Pyrrolidone (NMP). The metals used for this experiment were copper (Cu), tin (Sn), and nickel (Ni). The metal nanoparticles were seeded using functionalized MWCNTs as templates. Once seeded, the nanotubes and polymer composites were made...

  5. Damping in Carbon Nanotube Nanocomposites by Interfacial Slippage and Thermally Augmented Polymer Relaxation 

    E-Print Network [OSTI]

    Gardea, Frank

    2015-08-11

    The present work investigates the damping potential of carbon nanotube (CNT) reinforced polymer matrix composites through integrated experiments and continuum modeling techniques. Both “passive" and “active” damping are studied. The passive damping...

  6. 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography

    E-Print Network [OSTI]

    Natelson, Douglas

    3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization online 16 March 2013 A B S T R A C T We present a method to develop single-wall carbon nanotube (SWCNT)/polymer-photon polymerization lithography, allows one to fabricate three-dimensional SWCNT/polymer composites with a minimum

  7. N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites 

    E-Print Network [OSTI]

    Freeman, Dallas

    2012-07-16

    -TYPE THERMOELECTRIC PERFORMANCE OF FUNCTIONALIZED CARBON NANOTUBE-FILLED POLYMER COMPOSITES A Thesis by DALLAS D. FREEMAN II Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 2012 Major Subject: Mechanical Engineering N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites Copyright 2012 Dallas D. Freeman II...

  8. Polymer-assisted deposition of films and preparation of carbon nanotube arrays using the films

    DOE Patents [OSTI]

    Luo, Hongmei; Li, Qingwen; Bauer, Eve; Burrell, Anthony Keiran; McCleskey, Thomas Mark; Jia, Quanxi

    2013-07-16

    Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer, a metal precursor having a first metal selected from iron, nickel, cobalt, and molybdenum, and optionally a second metal selected from aluminum and magnesium, and also a binding agent that forms a complex with the first metal and a complex with the second metal. The coated substrate was exposed to a reducing atmosphere at elevated temperature, and then to a hydrocarbon in the reducing atmosphere. The result was decomposition of the polymer and formation of carbon nanotubes on the substrate. The carbon nanotubes were often in the form of an array on the substrate.

  9. Wafer-Level Patterned and Aligned Polymer Nanowire/ Micro-and Nanotube Arrays on any Substrate

    E-Print Network [OSTI]

    Wang, Zhong L.

    with silicon technology. Fabrication of PNW arrays of functional polymers has important applications rangingWafer-Level Patterned and Aligned Polymer Nanowire/ Micro- and Nanotube Arrays on any Substrate, and energy science.[1­7] A key requirement for these applications is the cost-effective growth of high

  10. Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces

    E-Print Network [OSTI]

    Brenner, Donald W.

    Composites of carbon nanotubes in polymer matrices have potential as lightweight high-strength fiberMolecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces S. J. V. Frankland,*,, A. Caglar,§ D. W. Brenner, and M. Griebel§ Department

  11. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01

    and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon NanotubePolymer Photovoltaics 6.1 Polymer-Nanotube

  12. Percolation in a nanotube-polymer system and its lumped-circuit modeling

    SciTech Connect (OSTI)

    Tuncer, Enis [ORNL; Vaia, Richard A [ORNL; Arlen, Michael Jeffrey [ORNL

    2010-01-01

    Electrical properties of composites composed of polyurethane polymer and multi-walled nanotubes are reported. Samples with different nanotube volume fractions are prepared, and an impedance spectroscopy technique in the frequency range from 10 mHz to 10 MHz is used to characterize the properties of the samples. It is observed that the resistivity of the mixture can be varied widely, from {approx}10 M{Omega}m to {approx}1 {Omega}m, just by slightly altering the volume fraction of nanotubes. A lumped-circuit model illustrated that the micro-scale morphology between nanotube-clusters influences the resistive relaxation in the composite system. The investigations show that the presented binary mixture has a potential to be utilized in conductive electrical components (flexible electrodes), electromagnetic shielding, and electrostatic and field grading materials for electronic and high voltage insulation technologies.

  13. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites

    E-Print Network [OSTI]

    Kim, Jun Young

    This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects ...

  14. Mechanics of deformation of carbon nanotube-polymer nanocomposites

    E-Print Network [OSTI]

    Akiskalos, Theodoros, 1978-

    2004-01-01

    The goal is to develop finite element techniques to evaluate the mechanical behavior of carbon nanotube enabled composites and gain a thorough understanding of the parameters that affect the properties of the composite, ...

  15. CARBON NANOTUBE POLYMER NANOCOMPOSITES FOR ELECTROMECHANICAL SYSTEM APPLICATIONS 

    E-Print Network [OSTI]

    Chakrabarty, Arnab

    2010-10-12

    Polymer nanocomposites refer to a broad range of composite materials with polymer acting as the matrix and any material which has at least one dimension in the order of 1 ~ 100 nanometer acting as the filler. Due to unprecedented improvement...

  16. Novel Actuating System Based on a Composite of Single-Walled Carbon Nanotubes and an Ionomeric Polymer

    E-Print Network [OSTI]

    Euler, William B.

    /NEMS technology [1]. Electrochemical and electromechanical properties of ionomeric polymer-metal composites (IPMCs, and relatively fast response time compared to ionic gels and conductive polymers . The most studied IPMC materialNovel Actuating System Based on a Composite of Single-Walled Carbon Nanotubes and an Ionomeric

  17. Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics 

    E-Print Network [OSTI]

    Kim, Dasaroyong

    2010-10-12

    Polymers are intrinsically poor thermal conductors, which are ideal for thermoelectrics, but low electrical conductivity and thermopower have excluded them as feasible candidates as thermoelectric materials in the past. However, recent progress...

  18. Single wall carbon nanotube/polymer composites Hai M Duong, haiduong@photon.t.u-tokyo.ac.jp, Erik Einarsson, erik@photon.t.u-tokyo.ac.jp, and Shigeo Maruyama,

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Single wall carbon nanotube/polymer composites PRES 63 Hai M Duong, haiduong, Japan Polymer and single wall carbon nanotube (SWNT) composites have been inspiring the development - Single wall carbon nanotube/polymer composites 2007/02/24http://oasys2.confex.com/acs/232nm

  19. Synthesis and Characterization of Polymer Composites Containing Aligned Conducting Polymers and Carbon Nanotubes 

    E-Print Network [OSTI]

    Manda, Swathi

    2014-04-21

    in effective net direction within domains, and the monomers were electro-polymerized to obtain aligned polymer chains. This aligned structure renders better anisotropic electrical conductivity along the polymer chain direction. A non percolated dispersion...

  20. Strain rate effects in the mechanical response of polymer anchored carbon nanotube foams

    E-Print Network [OSTI]

    A. Misra; J. R. Greer; C. Daraio

    2008-04-05

    Super-compressible foam-like carbon nanotube films have been reported to exhibit highly nonlinear viscoelastic behaviour in compression similar to soft tissue. Their unique combination of light weight and exceptional electrical, thermal and mechanical properties have helped identify them as viable building blocks for more complex nanosystems and as stand-alone structures for a variety of different applications. In the as-grown state, their mechanical performance is limited by the weak adhesion between the tubes, controlled by the van der Waals forces, and the substrate allowing the forests to split easily and to have low resistance in shear. Under axial compression loading carbon nanotubes have demonstrated bending, buckling8 and fracture9 (or a combination of the above) depending on the loading conditions and on the number of loading cycles. In this work, we partially anchor dense vertically aligned foam-like forests of carbon nanotubes on a thin, flexible polymer layer to provide structural stability, and report the mechanical response of such systems as a function of the strain rate. We test the sample under quasi-static indentation loading and under impact loading and report a variable nonlinear response and different elastic recovery with varying strain rates. A Bauschinger-like effect is observed at very low strain rates while buckling and the formation of permanent defects in the tube structure is reported at very high strain rates. Using high-resolution transmission microscopy

  1. Transparent Conductors from Carbon Nanotubes LBL-Assembled with Polymer Dopant with ?-? Electron Transfer

    SciTech Connect (OSTI)

    Zhu, Jian; Shim, Bong Sup; Di Prima, Matthew; Kotov, Nicholas A.

    2011-01-01

    Single-walled carbon nanotube (SWNT) and other carbon-based coatings are being considered as replacements for indium tin oxide (ITO). The problems of transparent conductors (TCs) coatings from SWNT and similar materials include poor mechanical properties, high roughness, low temperature resilience, and fast loss of conductivity. The simultaneous realization of these desirable characteristics can be achieved using high structural control of layer-by-layer (LBL) deposition, which is demonstrated by the assembly of hydroethyl cellulose (HOCS) and sulfonated polyetheretherketone (SPEEK)-SWNTs. A new type of SWNT doping based on electron transfer from valence bands of nanotubes to unoccupied levels of SPEEK through ?-? interactions was identified for this system. It leads to a conductivity of 1.1 × 10? S/m at 66 wt % loadings of SWNT. This is better than other polymer/SWNT composites and translates into surface conductivity of 920 ?/? and transmittance of 86.7% at 550 nm. The prepared LBL films also revealed unusually high temperature resilience up to 500 °C, and low roughness of 3.5 nm (ITO glass -2.4 nm). Tensile modulus, ultimate strength, and toughness of such coatings are 13 ± 2 GPa, 366 ± 35 MPa, and 8 ± 3 kJ/m³, respectively, and exceed corresponding parameters of all similar TCs. The cumulative figure of merit, ?TC, which included the critical failure strain relevant for flexible electronics, was ?TC = 0.022 and should be compared to ?TC = 0.006 for commercial ITO. Further optimization is possible using stratified nanoscale coatings and improved doping from the macromolecular LBL components.

  2. Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density

    E-Print Network [OSTI]

    Marconnet, Amy M.

    Nanostructured composites containing aligned carbon nanotubes (CNTs) are very promising as interface materials for electronic systems and thermoelectric power generators. We report the first data for the thermal conductivity ...

  3. Stimuli-Tailored Dispersion State of Aqueous Carbon Nanotube Suspensions and Solid Polymer Nanocomposites 

    E-Print Network [OSTI]

    Etika, Krishna

    2012-02-14

    -TEM, viscosity measurements, uv-vis spectroscopy, zeta potential measurements and settling behavior). Furthermore, nanotube dispersion state in aqueous suspensions is preserved to a large extent in the composites formed by drying these suspensions as evidenced...

  4. Polymer and carbon nanotube materials for chemical sensors and organic electronics

    E-Print Network [OSTI]

    Wang, Fei, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

  5. Processing, Characterization and Modeling Carbon Nanotube Modified Interfaces in Hybrid Polymer Matrix Composites 

    E-Print Network [OSTI]

    Truong, Hieu 1990-

    2012-12-04

    Multifunctional hybrid composites are proposed as novel solutions to meet the demands in various industrial applications ranging from aerospace to biomedicine. The combination of carbon fibers and/or fabric, metal foil and carbon nanotubes...

  6. Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites 

    E-Print Network [OSTI]

    Seidel, Gary Don

    2009-06-02

    The present work provides a micromechanics approach based on the generalized self-consistent composite cylinders method as a non-Eshelby approach towards for assessing the impact of carbon nanotubes on the multi-functional nature of nanocom...

  7. Oligomer functionalized nanotubes and composites formed therewith

    DOE Patents [OSTI]

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  8. The effects of temperature and carbon nanotubes on conducting polymer actuator performance

    E-Print Network [OSTI]

    Keng, Yenmei

    2010-01-01

    Conducting polymers serve as electrically conductive actuators via ion diffusion in and out of the polymer when voltages are applied. Their actuation performance can be largely affected by deposition setup, post-deposition ...

  9. Electric field induced transformation of carbon nanotube to graphene nanoribbons using Nafion as a solid polymer electrolyte

    SciTech Connect (OSTI)

    Jaison, M. J.; Vikram, K.; Narayanan, Tharangattu N., E-mail: tn-narayanan@yahoo.com, E-mail: vk.pillai@ncl.res.in; Pillai, Vijayamohanan K., E-mail: tn-narayanan@yahoo.com, E-mail: vk.pillai@ncl.res.in [CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi-630006 (India)

    2014-04-14

    We report a remarkable transformation of multiwalled carbon nanotubes (MWCNTs, average diameter 40?nm) to graphene nanoribbons (GNRs) in response to a field gradient of ?25?V/cm, in a sandwich configuration using a solid state proton conducting polymer electrolyte like a thin perfluorosulphonated membrane, Nafion. In response to the application of a constant voltage for a sustained period of about 24 h at both room temperature and elevated temperatures, an interesting transformation of MWCNTs to GNRs has been observed with reasonable yield. GNRs prepared by this way are believed to be better for energy storage applications due to their enhanced surface area with more active smooth edge planes. Moreover, possible morphological changes in CNTs under electric field can impact on the performance and long term stability of devices that use CNTs in their electronic circuitry.

  10. Development of novel graphene and carbon nanotubes based multifunctional polymer matrix composites

    SciTech Connect (OSTI)

    Leung, S. N. Khan, M. O. Naguib, H. E.

    2014-05-15

    This paper investigates strategies to alter the nano-and-microstructures of carbon-based filler-reinforced polymer matrix composites (PMCs). The matrix materials being studied in this work include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP). A set of experiments were performed to investigate various strategies (i) to fabricate a morphological structure within the polymer matrix; (ii) to develop a thermally and electrically conductive network of nano-scaled fillers; and (iii) to produce a thermally conductive but electrically insulative network of hybrid fillers of nano-and-micro scales. The PMCs' structure-to-property relationships, including electrical and thermal properties, were revealed. In particular, the composites' effective thermal conductivities could be increased by as much as 10-folded over the neat polymers. By structuring the embedded electrically conductive pathways in the PMCs, their electrical conductivities could be tailored to levels that ranged from those of electrical insulators to those of semi-conductors. These multifunctional carbon-based filler-reinforced PMCs are envisioned to be potential solutions of various engineering problems. For example, light-weight thermally conductive PMCs with tailored electrical conductivities can serve as a new family of materials for electronic packaging or heat management applications.

  11. Carbon nanotube composites P. J. F. Harris*

    E-Print Network [OSTI]

    Harris, Peter J F

    of matrix. A wide range of polymer matrices have been employed, and there is growing interest in nanotube/ceramic, these composites have employed polymer matrices, but there is also interest in other matrix materialsCarbon nanotube composites P. J. F. Harris* Carbon nanotubes are molecular-scale tubes of graphitic

  12. Polymer-assisted deposition of films and preparation of carbon...

    Office of Scientific and Technical Information (OSTI)

    of carbon nanotube arrays using the films Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer,...

  13. Load Transfer Analysis in Short Carbon Fibers with Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix

    E-Print Network [OSTI]

    Ray, M. C.

    A novel shortfiber composite in which the microscopic advanced fiber reinforcements are coated with radially aligned carbon nanotubes (CNTs) is analyzed in this study. A shear-lag model is developed to analyze the load ...

  14. High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes

    E-Print Network [OSTI]

    Liu, Sheng

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic ...

  15. Polymer Exposure and Testing Facilities at the Savannah River...

    Office of Environmental Management (EM)

    - PEEK - Vespel (polyimide) * Next generation polymer development - Nanotube and graphene filled EPDM * Polymer sensor materials - PANi - PEDOT-PSS 9 EPDM * Examined filled...

  16. Nanotube Optoelectronic Memory Alexander Star,*, Yu Lu, Keith Bradley, and George Gru1ner

    E-Print Network [OSTI]

    Gruner, George

    ABSTRACT We have combined carbon nanotube field effect transistor devices with a photosensitive polymer light sensitive polymers with carbon nanotubes on silicon wafers. The polymer layer converts photons of poly{(m-phenylene- vinylene)-co-[(2,5-dioctyloxy-p-phenylene)vinylene]} (PmPV) polymer and carbon

  17. Nanostructured polymer composites for electronics and sensor applications

    E-Print Network [OSTI]

    Fisher, Frank

    Michigan University, Kalamazoo, MI Nanostructured composites based on polymer matrix and carbon nanotubesNanostructured polymer composites for electronics and sensor applications Wednesday November 10 (CNT), metallic nanoparticles and polymer core-shell latex systems will play a critical role

  18. Conducting polymer functionalized single-walled carbon nanotube based chemiresistive biosensor for the detection of human cardiac myoglobin

    SciTech Connect (OSTI)

    Puri, Nidhi [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025 (India); Niazi, Asad [Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025 (India); Biradar, Ashok M.; Rajesh, E-mail: rajesh-csir@yahoo.com, E-mail: adani@engr.ucr.edu [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Mulchandani, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: adani@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)

    2014-10-13

    We report the fabrication of a single-walled carbon nanotube (SWNT) based ultrasensitive label-free chemiresistive biosensor for the detection of human cardiac biomarker, myoglobin (Ag-cMb). Poly(pyrrole-co-pyrrolepropylic acid) with pendant carboxyl groups was electrochemically deposited on electrophoretically aligned SWNT channel, as a conducting linker, for biomolecular immobilization of highly specific cardiac myoglobin antibody. The device was characterized by scanning electron microscopy, source-drain current-voltage (I-V), and charge-transfer characteristic studies. The device exhibited a linear response with a change in conductance in SWNT channel towards the target, Ag-cMb, over the concentration range of 1.0 to 1000?ng?ml{sup ?1} with a sensitivity of ?118% per decade with high specificity.

  19. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  20. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  1. Using Theory to Model Polymer Properties There are two general themes to this research: (1) polymer degradation that occurs when

    E-Print Network [OSTI]

    the polymer with nanoinclusions of carbon nanotubes and graphene sheets and other structures. PolymerUsing Theory to Model Polymer Properties There are two general themes to this research: (1) polymer degradation that occurs when polymers are exposed to low earth orbit conditions, and (2) polymer mechanical

  2. Department of Polymer Science

    E-Print Network [OSTI]

    Dhinojwala, Ali

    Department of Polymer Science The University of Akron, OH 330-972-6246 ali4@uakron.edu www2.uakron to develop synthetic adhesives and coatings. He has patents in carbon nanotube- based adhesives and coatings of molecules at the interface. The Dhinojwala laboratory has developed SFG technique to study polymer

  3. Towards a carbon nanotube antibody sensor

    E-Print Network [OSTI]

    Bojö, Peter

    2012-01-01

    This work investigated single-walled carbon nanotube (SWNT)/polymer-protein A complexes for optically reporting antibody concentration via a change in near infrared fluorescent emission after antibody binding. SWNT have ...

  4. Constitutive modeling of nanotubereinforced polymer composites G.M. Odegarda,

    E-Print Network [OSTI]

    Odegard, Gregory M.

    constitutive models for polymer composite systems reinforced with single- walled carbon nanotubes (SWNT as compared to stan- dard structural materials. In particular, carbon nanotube/ polymer composites may provide order-of-magnitude increases in strength and stiffness when compared to typi- cal carbon fiber/polymer

  5. Carbon nanotube fiber spun from wetted ribbon

    DOE Patents [OSTI]

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  6. Synthesis and characterization of next-generation multifunctional material architectures : aligned carbon nanotube carbon matrix nanocomposites

    E-Print Network [OSTI]

    Stein, Itai Y

    2013-01-01

    Materials comprising carbon nanotube (CNT) aligned nanowire (NW) polymer nanocomposites (A-PNCs) have emerged as promising architectures for next-generation multifunctional applications. Enhanced operating regimes, such ...

  7. Nanotube junctions

    DOE Patents [OSTI]

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  8. Nanotube junctions

    DOE Patents [OSTI]

    Crespi, Vincent Henry (Darien, IL); Cohen, Marvin Lou (Berkeley, CA); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  9. CX-008497: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra-High Conductivity Umbilicals: Polymer Nanotube Umbilicals (PNUs) CX(s) Applied: A9, A11, B3.6 Date: 07/18/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  10. CX-008498: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra-High Conductivity Umbilicals: Polymer Nanotube Umbilicals (PNUs) CX(s) Applied: A9, B3.6 Date: 07/18/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  11. Simulation models of subsea umbilicals, flowlines and fire pump systems

    SciTech Connect (OSTI)

    Bratland, O.

    1995-12-01

    This paper discusses mathematical models suited for simulating transient and stationary flow in umbilicals, flowlines and fire pump systems. Most emphasis is put on subsea systems. Measurements are compared with simulations and good agreement has been achieved. The results show that the dynamics and response time in a hydraulic subsea control system can be influenced by parameters like umbilical elastic properties, umbilical visco-elastic properties, transition between laminar and turbulent flow, and some frequency-dependant propagation mechanisms. The paper discusses typical problems in different flow systems. It is also shown how the relevant umbilical properties can be determined by simple measurements on a short test section of the umbilical. In fire pump systems, cavitation is typically the main transient problem. In long oil and gas pipelines, the friction dominates and an accurate representation of the friction is the best contribution to relevant simulation results.

  12. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Wen, Jian (Newton, MA); Chen, Jinghua (Chestnut Hill, MA); Huang, Zhongping (Belmont, MA); Wang, Dezhi (Wellesley, MA)

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  13. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  14. Characterization of Solution-Processed Double-Walled Carbon Nanotube/

    E-Print Network [OSTI]

    Ounaies, Zoubeida

    it is conductive, was calculated to be 1.0 wt.-% for the MWNTs. Ounaies Full Paper Dispersion of CNTs in polymers) Nanocomposites Atheer Almasri, Zoubeida Ounaies,* Yeon Seok Kim, Jaime Grunlan Introduction Carbon nanotube (CNT)/polymer composites are of great interest due to the unusual combination of CNT properties with apparently paradoxical

  15. Organic Light-Emitting Diodes Having Carbon Nanotube Anodes

    E-Print Network [OSTI]

    Gruner, George

    , flexible anodes for organic light-emitting diodes (OLEDs). For polymer-based OLEDs having the structure applications. Polymer and small molecule-based organic light-emitting diodes (OLEDs) are rapidly approachingOrganic Light-Emitting Diodes Having Carbon Nanotube Anodes Jianfeng Li, Liangbing Hu, Lian Wang

  16. Nanotube phonon waveguide

    DOE Patents [OSTI]

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  17. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  18. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  19. Radiation Detection: Resistivity Responses in Functional Poly(Olefin Sulfone)/Carbon Nanotube Composites

    E-Print Network [OSTI]

    Swager, Timothy Manning

    Detection of gamma rays is shown using a non-scintillating organic-based sensor composed of poly(olefin sulfone)/carbon nanotube blends. Functionalization of the polymers can be performed after polymerization to tailor ...

  20. An Atomistic Study of the Mechanical Behavior of Carbon Nanotubes and Nanocomposite Interfaces 

    E-Print Network [OSTI]

    Awasthi, Amnaya P.

    2011-02-22

    The research presented in this dissertation pertains to the evaluation of stiffness of carbon nanotubes (CNTs) in a multiscale framework and modeling of the interfacial mechanical behavior in CNT-polymer nanocomposites. ...

  1. Silica Supported Single-Walled Carbon Nanotubes as a Modifier in Polyethylene Composites

    E-Print Network [OSTI]

    Resasco, Daniel

    Silica Supported Single-Walled Carbon Nanotubes as a Modifier in Polyethylene Composites Neal D. Mc.interscience.wiley.com). ABSTRACT: Composites have been made from single- wall carbon nanotubes in a polyethylene (PE) matrix: additives; composites; conducting polymers; nanocomposites; polyethylene INTRODUCTION Polyethylene (PE

  2. Transparent Poly(methyl methacrylate)/Single-Walled Carbon Nanotube (PMMA/SWNT) Composite Films with Increased

    E-Print Network [OSTI]

    Harmon, Julie P.

    to conventional polymer composites due to the stronger interac- tions between polymer and filler phases. CarbonTransparent Poly(methyl methacrylate)/Single-Walled Carbon Nanotube (PMMA/SWNT) Composite Films Meyyappan, Timofey G. Gerasimov, and Julie P. Harmon* 1. Introduction Polymer nanocomposites are a novel

  3. Carbon nanotube nanoelectrode arrays

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  4. Polymer films

    DOE Patents [OSTI]

    Granick, Steve (Champaign, IL); Sukhishvili, Svetlana A. (Maplewood, NJ)

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  5. POLYMER PROGRAM SEMINAR (Co-sponsored with the MSE Dept.)

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR (Co-sponsored with the MSE Dept.) "Graphene-Enabled Bio-Nano Hybrids the biomolecule (DNA or protein) provides chemical recognition and a carbon nanotube (NT) or graphene transistor information, please contact YH Chudy at ychudy@ims.uconn.edu Polymer Program, Institute of Materials Science

  6. SWNT/POLYMER COMPOSITES Hai M DUONG, Erik Einarsson, Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    SWNT/POLYMER COMPOSITES Hai M DUONG, Erik Einarsson, Shigeo Maruyama Department of Mechanical Engineering, The University of Tokyo Contact e-mail: haiduong@photon.t.u-tokyo.ac.jp Polymer and single wall. The critical challenge of polymer/SWNT composites is how to control nanotube dispersion and alignment

  7. Carbon nanotube composites for photovoltaic devices White Paper

    E-Print Network [OSTI]

    Gruner, George

    in recent years. In particular interest are so called third generation devices, that involve polymersCarbon nanotube composites for photovoltaic devices White Paper Summary In a collaborative effort into charge separated sates. Preamble Novel photovoltaic and solar cell devices have gained prominence

  8. Modifying Nanotubes Chemistry and Electronics of Carbon Nanotubes

    E-Print Network [OSTI]

    Joselevich, Ernesto

    Modifying Nanotubes Chemistry and Electronics of Carbon Nanotubes Go Together Ernesto Joselevich* Keywords: chemical reactivity · electronic structure · molecular electronics · nanotechnology · nanotubes) in nanoelectronics is the control of their electronic properties, which can be either metallic or semi- conducting

  9. High frequency nanotube oscillator

    DOE Patents [OSTI]

    Peng, Haibing (Houston, TX); Zettl, Alexander K. (Kensington, TX)

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  10. Polymer Matrix Composites: A Perspective for a Special Issue of Polymer Reviews

    SciTech Connect (OSTI)

    Kessler, Michael R.

    2012-09-04

    Polymer matrix composites, with their high specific strength and stiffness, are used in a wide range of applications from large wind turbine blades to microelectronics. This perspective article provides a brief primer on polymer matrix composites, discusses some of their advantages and limitations, and describes a number of emerging trends in the field. In addition, it introduces four review articles on the topics of recent developments in carbon fibers, natural fiber reinforced composites, evaluation of the interface between the fiber reinforcement and polymer matrix, and carbon nanotube reinforced polymers.

  11. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    of well-aligned carbon nanotubes on nickel by hot-filamenton the growth of carbon nanotubes from nickel clusters—ancarbon nanotubes using monodisperse nickel nanoparticles

  12. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect (OSTI)

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  13. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng

    2009-03-24

    This chapter summarizes the recent development of carbon nanotube based electrochemical biosensors work at PNNL.

  14. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng; J. A. Schwarz, C. Contescu, K. Putyera

    2004-04-01

    This invited review article summarizes recent work on biosensor development based on carbon nanotubes

  15. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  16. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (El Cerrito, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  17. Nanotube resonator devices

    DOE Patents [OSTI]

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  18. Tunable multiwalled nanotube resonator

    DOE Patents [OSTI]

    Zettl, Alex K. (Kensington, CA); Jensen, Kenneth J. (Berkeley, CA); Girit, Caglar (Albany, CA); Mickelson, William E. (San Francisco, CA); Grossman, Jeffrey C. (Berkeley, CA)

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  19. Tunable multiwalled nanotube resonator

    DOE Patents [OSTI]

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  20. Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development

    SciTech Connect (OSTI)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2007-03-08

    In this chapter, the reviews on biosensor development based on 1-D nanomaterials, CNTs, semiconducting nanowires, and some cantilevers will be introduced. The emphasis of this review will be placed on CNTs and electrochemical/electronic biosensor developments. Section 2 of this chapter gives a detailed description of carbon nanotubes-based biosensor development, from fabrication of carbon nanotubes, the strategies for construction of carbon nanotube based biosensors to their bioapplications. In the section of the applications of CNTs based biosensors, various detection principles, e. g. electrochemical, electronic, and optical method, and their applications are reviewed in detail. Section 3 introduces the method for synthesis of semiconducting nanowires, e.g. silicon nanowires, conducting polymer nanowires and metal oxide nanowires and their applications in DNA and proteins sensing. Section 4 simply describes the development for nanocantilevers based biosensors and their application in DNA and protein diagnosis. Each section starts from a brief introduction and then goes into details. Finally in the Conclusion section, the development of 1-D nanomaterials based biosensor development is summarized.

  1. Boron nitride nanotubes

    DOE Patents [OSTI]

    Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA); Park, Cheol (Yorktown, VA)

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  2. Sensor applications of carbon nanotubes

    E-Print Network [OSTI]

    Rushfeldt, Scott I

    2005-01-01

    A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

  3. Lipid nanotube or nanowire sensor

    DOE Patents [OSTI]

    Noy, Aleksandr (Belmont, CA); Bakajin, Olgica (San Leandro, CA); Letant, Sonia (Livermore, CA); Stadermann, Michael (Dublin, CA); Artyukhin, Alexander B. (Menlo Park, CA)

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  4. Composites of Single-Walled Carbon Nanotubes and Polystyrene: Preparation and Electrical Conductivity

    E-Print Network [OSTI]

    Resasco, Daniel

    and nitric acid oxidized SWNT. From measurements of the electrical conductivities of the composites over of SWNT, composites made with HiPco tubes had the highest conductivity. Introduction Carbon nanotubes conductivi- ties of CNT-polymer composites have percolation thresholds ranging from 0.0025%5 to several

  5. INTER-CARBON NANOTUBE CONTACT IN THERMAL TRANSPORT OF CONTROLLED-MORPHOLOGY

    E-Print Network [OSTI]

    Maruyama, Shigeo

    conductivities of aligned carbon nanotube (CNT) polymer nano-composites were calculated using a random walk-isotropic heat conduction in aligned-CNT polymeric composites, because this geometry is an ideal thermal layer-CNT contact, volume fraction and thermal boundary resistance on the effective conductivities of CNT-composites

  6. Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene

    E-Print Network [OSTI]

    Elliott, James

    dynamics study of heat conduction in carbon nanotube (CNT)/polyethylene (PE) composites. Particular thermal conductivity of a macroscopic CNT/PE composite is quantified based on an effective medium approximation model. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction Polymer composites are employed

  7. Electronic properties of carbon nanotube/fabric composites David S. Hecht, Liangbing Hu, George Gruner *

    E-Print Network [OSTI]

    Gruner, George

    the mechanical and electronic properties of the polymer matrix. Two dimen- sional networks of conducting by a non- conducting fabric. This composite material has ­ aside from the interest as a model systemElectronic properties of carbon nanotube/fabric composites David S. Hecht, Liangbing Hu, George Gru

  8. Elongational-flow-induced scission of DNA nanotubes in laminar flow Rizal F. Hariadi*

    E-Print Network [OSTI]

    Winfree, Erik

    -induced scission are pro- foundly affected by the fluid flow and the polymer bond strengths. In this paper, laminarElongational-flow-induced scission of DNA nanotubes in laminar flow Rizal F. Hariadi* Department libraries in shotgun ge- nome sequencing 2­4 . The fluid-flow-induced mechanical shearing of prion fibrils

  9. Organic solar cells with carbon nanotube network electrodes Michael W. Rowell,a

    E-Print Network [OSTI]

    McGehee, Michael

    Organic solar cells with carbon nanotube network electrodes Michael W. Rowell,a Mark A. Topinka for Organic Solar Cells (LIOS), Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria, flexible polymer-fullerene bulk-heterojunction solar cells. The printing method produces relatively smooth

  10. Composites of Single-Walled Carbon Nanotubes and Styrene-Isoprene

    E-Print Network [OSTI]

    Resasco, Daniel

    Composites of Single-Walled Carbon Nanotubes and Styrene-Isoprene Copolymer Latices Mai L. P. Ha are an excellent material to incorporate with polymers. There have been an Full Paper Composites of a styrene, as well as by mixing dispersed SWNTs with a styrene-isoprene copolymer latex after polymerization

  11. Strong and ductile nanostructured Cu-carbon nanotube composite Hongqi Li,1,a

    E-Print Network [OSTI]

    Zhu, Yuntian T.

    . Past research effort mainly focused on the polymer/ceramic-based CNT composites5­8 and studies on metal in the CNT-metallic matrix composites has been growing rapidly for the past five years.9­21 GenerallyStrong and ductile nanostructured Cu-carbon nanotube composite Hongqi Li,1,a Amit Misra,1 Zenji

  12. Center for Applications of Single-Walled Carbon Nanotubes

    SciTech Connect (OSTI)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  13. The Evaluation of an Expert System for the Analysis of Umbilical Cord Blood

    E-Print Network [OSTI]

    Garibaldi, Jon

    H, partial pressure of carbon dioxide (pCO2) and partial pressure of oxygen (pO2). A parameter termed base. Such assessment of the acid-base status of umbilical cord blood has recently been recommended by the British Royal the fact that the sampling took place within a research study which featured regular staff training

  14. Electrical Transport in Carbon Nanotubes and Graphene

    E-Print Network [OSTI]

    Liu, Gang

    2010-01-01

    Introduction to Carbon Nanotubes and Graphene Single wallCarbon nanotubes and graphene are the most popular Carbonin the Normal Metal – Graphene – Superconductor Junctions

  15. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

  16. CVD Growth of Carbon Nanotubes Directly on Nickel Substrate

    E-Print Network [OSTI]

    Du, Chunsheng; Pan, Ning

    2005-01-01

    growth, carbon nanotubes, nickel substrates 1. Introductionto directly grow carbon nanotubes on nickel substrate underof the carbon nanotubes The nickel substrates were directly

  17. Branched Polymers

    E-Print Network [OSTI]

    Richard Kenyon; Peter Winkler

    2007-09-14

    Building on and from the work of Brydges and Imbrie, we give an elementary calculation of the volume of the space of branched polymers of order $n$ in the plane and in 3-space. Our development reveals some more general identities, and allows exact random sampling. In particular we show that a random 3-dimensional branched polymer of order $n$ has diameter of order $\\sqrt{n}$.

  18. Electrochemical implications of defects in carbon nanotubes

    E-Print Network [OSTI]

    Hoefer, Mark

    2012-01-01

    Electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .on Electrochemistry . . . . . . . . . . . . . . . . . 4.3.1P. H. L. Notten. The electrochemistry of carbon nanotubes.

  19. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    carbon nanotube ceramic matrix composites. Acta Materialia,ceramic matrix material. These fiber reinforced composites

  20. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2013-09-10

    Solid anion exchange polymer electrolytes include chemical compounds comprising a polymer backbone with side chains that include guanidinium cations.

  1. Polymer inflation

    E-Print Network [OSTI]

    Syed Moeez Hassan; Viqar Husain; Sanjeev S. Seahra

    2015-03-05

    We consider the semi-classical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a gaussian coherent state. For quadratic potentials, the semi-classical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by a epoch of slow-roll inflation. We compute polymer corrections to the slow roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckain initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  2. Polymer solutions

    SciTech Connect (OSTI)

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  3. Thermodynamics of the adsorption of flexible polymers on nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, Thomas; Gross, Jonathan; Bachmann, Michael

    2015-03-09

    Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached tomore »or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. In conclusion, the classification of the transitions is performed by microcanonical inflection-point analysis.« less

  4. Polymers Pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore

    E-Print Network [OSTI]

    Podgornik, Rudolf

    Polymers Pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore R. Podgornik, 1000 Ljubljana, Slovenia Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States ABSTRACT: We investigate polymer partitioning from polymer

  5. Functionalized boron nitride nanotubes

    DOE Patents [OSTI]

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  6. POLYMER PROGRAM SEMINAR "Nanomanufacturing with Polymers"

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR "Nanomanufacturing with Polymers" Prof. Joey Mead University Lowell has developed a suite of processes to enable the nanomanufacturing of polymer based products of properties (e.g. biocompatibility, polarity, and modulus). Polymer materials can be used as substrates

  7. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect (OSTI)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  8. UW -Center for Intelligent Materials and Systems Electro-active Polymers and Their Applications

    E-Print Network [OSTI]

    Taya, Minoru

    for EAP Actuators ·Future works Conducting polymer: polyaniline(PANI) fiber, polypyrrole(PPy) film and carbon nanotube actuator #12;UW - Center for Intelligent Materials and Systems Polyvinyl alcohol (PVA film Au sheet Glass substrate Plastic filmGel Au sheets (a) Schematic diagram (b) Top view of coated

  9. Increasing carbon nanotube forest density

    E-Print Network [OSTI]

    McCarthy, Alexander P

    2014-01-01

    The outstanding mechanical, electrical, thermal, and morphological properties of individual carbon nanotubes (CNTs) open up exciting potential applications in a wide range of fields. One such application is replacing the ...

  10. Method for producing carbon nanotubes

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Perry, William L. (Jemez Springs, NM); Chen, Chun-Ku (Albuquerque, NM)

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  11. Emerging Applications of Carbon Nanotubes

    E-Print Network [OSTI]

    Schnorr, Jan Markus

    On the basis of their unique electrical and mechanical properties, carbon nanotubes (CNTs) have attracted great attention in recent years. A diverse array of methods has been developed to modify CNTs and to assemble them ...

  12. Carbon nanotubes: synthesis and functionalization 

    E-Print Network [OSTI]

    Andrews, Robert

    2007-01-01

    conditions were then used as the basis of several comparative CVD experiments showing that the quality of nanotubes and the yield of carbon depended on the availability of carbon to react. The availability could be controlled by the varying concentration...

  13. Rigid versus Flexible Ligands on Carbon Nanotubes for the Enhanced Sensitivity of Cobalt Ions

    SciTech Connect (OSTI)

    Gou, Pingping; Kraut, Nadine D.; Feigel, Ian Matthew; Star, Alexander

    2013-02-26

    Carbon nanotubes have shown great promise in the fabrication of ultra-compact and highly sensitive chemical and biological sensors. Additional chemical functionalization schemes can controllably improve selectivity of the carbon nanotube-based sensors; however the exact transduction mechanism is still under debate. In this article we detail the synthesis and selective response of single-walled carbon nanotubes (SWNTs) functionalized with polyazomethine (PAM) polymer towards the application of a specific trace metal ion detector. The response of the polymer system was compared to shape persistent macrocycle (MAC) comprised of identical ion coordination ligands. While ion detection with rigid MAC/SWNT chemiresistor was comparable to bare SWNT, flexible PAM offers significant SWNT signal amplification, allowing for picomolar detection of Co{sup 2+} ions with both selectivity and a fast response. We hypothesized that rearrangement of the flexible PAM on the SWNT network is a sensing mechanism which allows for ultrasensitive detection of metal ions. The electron transfer and polymer rearrangement on the SWNT was studied by a combination of optical spectroscopy and electrical measurements ? ultimately allowing for a better understanding of fundamental mechanisms that prompt device response.

  14. Preparation of Carbon Nanotube-Composite 

    E-Print Network [OSTI]

    Sharma, Sundeep

    2011-08-08

    properties, i.e., high tensile moduli, and strength of carbon nanotube, we chose carbon nanotube as a reinforcement fiber to enhance the mechanical properties of resulting composite. The main issue encountered while preparing composite was to fully disperse...

  15. Mechanical energy storage in carbon nanotube springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2011-01-01

    Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

  16. Carbon nanotubes as near infrared laser susceptors

    E-Print Network [OSTI]

    Bahrami, Amir

    2011-01-11

    The coupling efficiency of carbon nanotubes with near infrared laser radiation at 940nm wavelength was investigated. Nanotubes treated with different post processing methods were irradiated at different laser power intensities as dry samples...

  17. Carbon Nanotubes: Bearing Stress Like Never Before

    E-Print Network [OSTI]

    Limaye, Aditya

    2013-01-01

    of the mechanical properties of carbon nanotube– polymercomposites. Carbon, 44. 1624 – 1652 doi: 10.1016/j.R.H. , & Hart, A.J. (2013). Carbon Nanotubes: Present and

  18. Dielectric Actuation of Polymers

    E-Print Network [OSTI]

    Niu, Xiaofan

    2013-01-01

    strain in dielectric elastomers, Journal of Polymer SciencePart B: Polymer Physics. 49 (2011) 504–515. [25] X. Zhao, Z.Electroactive nanostructured polymers as tunable actuators,

  19. Polymer Physics Research Profile

    E-Print Network [OSTI]

    Giger, Christine

    Polymer Physics Research Profile Our main interests are the theory of simplification and some behavior on different autonomous levels of description. Our favorite applications range from polymer + Nonequilibrium Thermodynamics + Coarse Graining + Soft Matter + Polymer Physics + Rheology + Competences

  20. Photo-Galvano-Mechanical Phenomena in Nanotubes

    E-Print Network [OSTI]

    Tománek, David

    Photo-Galvano-Mechanical Phenomena in Nanotubes Petr KraI\\ E. J. Mele2 , David Tomanek3 and Moshe elec- trical "ballistic current". The photo-currents can be generated even in centrosym- metric be also generated in semiconductor nanotubes or in higher bands of metallic nanotubes [2]. The photo

  1. Communications CVD Growth of Boron Nitride Nanotubes

    E-Print Network [OSTI]

    in dense thickets on and about nickel boride catalyst particles at 1100 °C. The BN nanotubes resemble thoseCommunications CVD Growth of Boron Nitride Nanotubes Oleg R. Lourie, Carolyn R. Jones, Bart M Manuscript Received May 9, 2000 We describe BN-nanotube growth by chemical vapor deposition (CVD) using

  2. Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites.

    SciTech Connect (OSTI)

    Seidel, Gary D.; Hammerand, Daniel Carl; Lagoudas, Dimitris C.

    2006-01-01

    Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties are obtained from the finite element results. These effective elastic properties are compared to approximate analytical results found using micromechanics methods. The effects of an interphase layer between the high-stiffness hollow fibers and matrix to simulate imperfect load transfer and/or functionalization of the hollow fibers is also investigated and compared to a multi-layer composite cylinders approach. Finally the combined effects of clustering with fiber-matrix interphase regions are studied. The parametric studies performed herein were motivated by and used properties for single-walled carbon nanotubes embedded in an epoxy matrix, and as such are intended to serve as a guide for continuum level representations of such nanocomposites in a multi-scale modeling approach.

  3. Dielectric Actuation of Polymers

    E-Print Network [OSTI]

    Niu, Xiaofan

    2013-01-01

    AgNW) polymer composite material that is conductive enoughAgNW/polymer composite was nominated as a highly conductive,

  4. Molecular recognition using nanotube-adsorbed polymer complexes

    E-Print Network [OSTI]

    Zhang, Jingqing, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    We first reported the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT) 15 oligonucleotides, adsorbed to an array of near infrared fluorescent semiconducting single-walled ...

  5. Fabrication of flexible, aligned carbon nanotube/polymer composite

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production at a linear(Conference)membranes by in-situ polymerization

  6. Fabrication of flexible, aligned carbon nanotube/polymer composite

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production at a linear(Conference)membranes by in-situ

  7. Polymers with increased order

    DOE Patents [OSTI]

    Sawan, Samuel P. (Tyngsborough, MA); Talhi, Abdelhafid (Rochester, MI); Taylor, Craig M. (Jemez Springs, NM)

    1998-08-25

    The invention features polymers with increased order, and methods of making them featuring a dense gas.

  8. Electrical properties of single wall carbon nanotube reinforced polyimide composites

    E-Print Network [OSTI]

    Ounaies, Zoubeida

    Electrical properties of single wall carbon nanotube reinforced polyimide composites Z. Ounaiesa of single wall carbon nanotube (SWNT) reinforced polyimide composites were investigated as a function nanotube; Composites 1. Introduction Polyimides are widely used in applications ranging from

  9. Carbon Nanotubes for Thermoacoustic Contrast Enhancement Preliminary Results

    E-Print Network [OSTI]

    Patch, Sarah

    Carbon Nanotubes for Thermoacoustic Contrast Enhancement ­ Preliminary Results Darrin Byrda them good candidates for thermoacoustic contrast agents. Theoretical considerations suggest thermal expansion, nanotubes can act as a contrast agent for thermoacoustic imaging. Nanotubes have been

  10. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect (OSTI)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A. [Grupo MEMS, Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S. [Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Bahia Blanca (Argentina); Buffa, F. A. [INTEMA Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Mar del Plata (Argentina)

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  11. Molecular jet growth of carbon nanotubes and dense vertically aligned nanotube arrays

    DOE Patents [OSTI]

    Eres, Gyula (Knoxville, TN) [Knoxville, TN

    2010-10-12

    A method of growing a carbon nanotube includes the step of impinging a beam of carbon-containing molecules onto a substrate to grow at least one carbon nanotube on the catalyst surface.

  12. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  13. Alignment and Load Transfer in Carbon Nanotube and Dicyclopentadiene Composites

    E-Print Network [OSTI]

    Severino, Joseph Vincent

    2015-01-01

    nickel or cobalt with graphite, finding that cobalt produced nanotubes.nickel disk acts as a catalyst to grow carbon nanotubes.

  14. Novel PEMFC Stack Using Patterned Aligned Carbon Nanotubes as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEMFC Stack Using Patterned Aligned Carbon Nanotubes as Electrodes in MEA Novel PEMFC Stack Using Patterned Aligned Carbon Nanotubes as Electrodes in MEA This project received DOE...

  15. Terahertz detection and carbon nanotubes

    ScienceCinema (OSTI)

    Leonard, Francois

    2014-06-13

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  16. Terahertz detection and carbon nanotubes

    SciTech Connect (OSTI)

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  17. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  18. One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes

    SciTech Connect (OSTI)

    Grilli, S.; Coppola, S.; Vespini, V.; Pagliarulo, V.; Ferraro, P.; Nasti, G.; Carfagna, C.

    2014-10-13

    Here, we report on a single step approach for fabricating free-standing polymer membranes reinforced with arrayed self-assembled carbon nanotubes (CNTs). The CNTs are self-assembled spontaneously by electrode-free DC dielectrophoresis based on surface charge templates. The electrical charge template is generated through the pyroelectric effect onto periodically poled lithium niobate ferroelectric crystals. A thermal stimulus enables simultaneously the self-assembly of the CNTs and the cross-linking of the host polymer. Examples of thin polydimethylsiloxane membranes reinforced with CNT patterns are shown.

  19. Optimized fabrication and characterization of carbon nanotube spin valves

    SciTech Connect (OSTI)

    Samm, J.; Gramich, J.; Baumgartner, A. Weiss, M.; Schönenberger, C.

    2014-05-07

    We report an improved fabrication scheme for carbon based nanospintronic devices and demonstrate the necessity for a careful data analysis to investigate the fundamental physical mechanisms leading to magnetoresistance. The processing with a low-density polymer and an optimised recipe allows us to improve the electrical, magnetic, and structural quality of ferromagnetic Permalloy contacts on lateral carbon nanotube (CNT) quantum dot spin valve devices, with comparable results for thermal and sputter deposition of the material. We show that spintronic nanostructures require an extended data analysis, since the magnetization can affect all characteristic parameters of the conductance features and lead to seemingly anomalous spin transport. In addition, we report measurements on CNT quantum dot spin valves that seem not to be compatible with the orthodox theories for spin transport in such structures.

  20. Telescopic nanotube device for hot nanolithography

    DOE Patents [OSTI]

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  1. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    materials .. 310 CVD OptimizationOptimization and Characterization of Multiwalled Carbon Nanotubes”, Journal of Electronic Materials,of the material as it appears in “Synthesis Optimization and

  2. Fabrication and Characterization of Suspended Carbon Nanotube...

    Office of Scientific and Technical Information (OSTI)

    USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; AIR; CARBON; COATINGS; FABRICATION; NANOTUBES; REMOVAL; SURFACE TENSION; TRANSISTORS...

  3. Carbon Nanotube Films for Energy Storage Applications

    E-Print Network [OSTI]

    Kozinda, Alina

    2014-01-01

    Silicon Nanotubes and their Application to Energy Storage,&as an energy storage application of the amorphous-siliconof silicon nanowires hinders the energy storage capability [

  4. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    nanotube films by pyrolysis. Chemical Physics Letters, 2000.Catalysts of Hydrocarbon Pyrolysis. Chemistry and Technologynanotube arrays by Spray Pyrolysis. Applied Physics Letters,

  5. From carbon nanobells to nickel nanotubes

    SciTech Connect (OSTI)

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  6. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    H. Yang, and C. Liu, Hydrogen storage in carbon nanotubes.A. , et al. , Hydrogen storage in carbon nanostructures.M.G. , et al. , Hydrogen storage using physisorption-

  7. Towards improved spinnability of chemical vapor deposition generated multi-walled carbon nanotubes

    E-Print Network [OSTI]

    McKee, Gregg Sturdivant Burke

    2008-01-01

    3-10, bottom). Nickel generated nanotubes show a slightlyfollowed by nickel and iron grown nanotubes with comparabletemperature. Nickel and iron generated nanotubes showed

  8. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  9. Stiff Quantum Polymers

    E-Print Network [OSTI]

    H. Kleinert

    2007-05-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the moments and of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  10. Polymer Reaction & Colloidal Engineering

    E-Print Network [OSTI]

    Giger, Christine

    Polymer Reaction & Colloidal Engineering Research Profile The Morbidelli Group is carrying out research in numerous areas related to polymer and colloid science and enginee- ring. Our research activity combines a variety of experimen- tal techniques for polymers and particles characterization with advanced

  11. Superhydrophobic Carbon Nanotube Forests Kenneth K. S. Lau*1

    E-Print Network [OSTI]

    (PTFE) coating on the surface of the nanotubes. Superhydrophobicity is achieved down to the microscopic functionalization of vertically aligned carbon nanotubes with a non-wetting polytetrafluoroethylene (PTFE) coating, our PTFE-coated carbon nanotube forests aim to mimic nature's design. By growing a forest of nanotube

  12. Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation

    E-Print Network [OSTI]

    Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation S.J.V. Frankland *, D hydrogen in individual single-shell carbon nanotubes and nanotube ropes using a semiclassical model. The calculations predict that isolated hydrogen molecules inside of nanotubes have a Raman frequency that increases

  13. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOE Patents [OSTI]

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  14. Longitudinal solitons in carbon nanotubes

    SciTech Connect (OSTI)

    Astakhova, T. Yu.; Gurin, O. D.; Menon, M.; Vinogradov, G. A.

    2001-07-15

    We present results on soliton excitations in carbon nanotubes (CNT's) using Brenner's many-body potential. Our numerical simulations demonstrate high soliton stability in (10,10) CNT's. The interactions of solitons and solitary excitation with CNT defect are found to be inelastic if the excitations and defects length scales are comparable, resulting in a substantial part of soliton energy being distributed inhomogeneously over the defect bonds. In these solitary-excitation--cap collisions the local energy of a few bonds in the cap can exceed the average energy by an order of magnitude and more. This phenomenon, denoted the ''Tsunami effect,'' can contribute dynamically to the recently proposed ''kinky chemistry.'' We also present results of changes in the local density of states and variations in the atomic partial charges estimated at different time instants of the solitary-excitation Tsunami at the nanotube cap.

  15. Method for nano-pumping using carbon nanotubes

    DOE Patents [OSTI]

    Insepov, Zeke (Darien, IL); Hassanein, Ahmed (Bolingbrook, IL)

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  16. Nanoporous polymer electrolyte

    DOE Patents [OSTI]

    Elliott, Brian (Wheat Ridge, CO); Nguyen, Vinh (Wheat Ridge, CO)

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  17. Sacrificial template method of fabricating a nanotube

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (Berkeley, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yi-Ying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  18. Reassessing Fast Water Transport Through Carbon Nanotubes

    E-Print Network [OSTI]

    McGaughey, Alan

    carbon nanotubes (CNTs) with diameters ranging from 1.66 to 4.99 nm is examined using molecular dynamics rates of pressure-driven water through membranes of 1.6 and 7 nm diameter carbon nanotubes (CNTs in the molecular sieving, chemical detection, and drug delivery fields, where such high flow rates would

  19. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    SciTech Connect (OSTI)

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  20. Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion

    SciTech Connect (OSTI)

    Zhao Yong . E-mail: yongzhao@uic.edu; Mazzone, Theodore

    2005-11-01

    We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-M{phi}). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-M{phi} (CB f-M{phi}) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-M{phi} (TCB f-M{phi}) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1, Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-M{phi} differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-M{phi} and may lead to develop new therapeutic strategy for treating dominant disease.

  1. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics

    SciTech Connect (OSTI)

    Zhao Yong . E-mail: yongzhao@uic.edu; Wang Honglan; Mazzone, Theodore

    2006-08-01

    We identified stem cells from the umbilical cord blood, designated cord blood-stem cells (CB-SC). CB-SC displayed important embryonic stem (ES) cell characteristics including expression of ES-cell-specific molecular markers including transcription factors OCT-4 and Nanog, along with stage-specific embryonic antigen (SSEA)-3 and SSEA-4. CB-SC also expressed hematopoietic cell antigens including CD9, CD45 and CD117, but were negative for CD34. CB-SC displayed very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes. CB-SC could give rise to cells with endothelial-like and neuronal-like characteristics in vitro, as demonstrated by expression of lineage-associated markers. Notably, CB-SC could be stimulated to differentiate into functional insulin-producing cells in vivo and eliminated hyperglycemia after transplantation into a streptozotocin-induced diabetic mouse model. These findings may have significant potential to advance stem-cell-based therapeutics.

  2. Light Emission in Silicon from Carbon Nanotubes

    E-Print Network [OSTI]

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  3. Mechanics of amorphous polymers and polymer gels

    E-Print Network [OSTI]

    Chester, Shawn Alexander

    2011-01-01

    Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials ...

  4. Tunneling of Polymer Particles

    E-Print Network [OSTI]

    A. Martín-Ruiz; E. Chan-López; A. Carbajal-Domínguez; J. Bernal

    2014-08-28

    In this paper we study the tunneling using a background independent (polymer) quantization scheme. We show that at low energies, for the tunneling through a single potential barrier, the polymer transmission coefficient and the polymer tunneling time converge to its quantum-mechanical counterparts in a clear fashion. As the energy approaches the maximum these polymer quantities abruptly decrease to zero. We use the transfer matrix method to study the tunneling through a series of identical potential barriers. We obtain that the transmission coefficients (polymer and quantum-mechanical) behave qualitatively in a similar manner, as expected. Finally we show that the polymer tunneling time exhibits anomalous peaks compared with the standard result. Numerical results are also presented.

  5. Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes

    SciTech Connect (OSTI)

    J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

    2011-01-01

    Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

  6. Engineering Polymer Informatics

    E-Print Network [OSTI]

    Adams, Nico; Ryder, Jennifer; Jessop, David M; Corbett, Peter; Murray-Rust, Peter

    2007-12-17

    stream_source_info Engineering Polymer Informatics.pdf.txt stream_content_type text/plain stream_size 9453 Content-Encoding UTF-8 stream_name Engineering Polymer Informatics.pdf.txt Content-Type text/plain; charset=UTF-8... Engineering Polymer Informatics Nico Adams, Jen Ryder, Nicholas England, David Jessop, Peter Corbett, Peter Murray-Rust Our mission is to develop an informatics toolbox, which will take into account the special computational needs of polymers and will make...

  7. Polymer Composites for Radiation Scintillation

    E-Print Network [OSTI]

    Chen, Qi

    2012-01-01

    J. B. Peng and Y. Cao, Polymer, 2008, 49, G. Yu, S. W. Yin,and K. C. Tsou, Journal of Polymer Science Part a-Generaland K. C. Tsou, Journal of Polymer Science Part a-General

  8. Functionalization and applications of carbon nanotubes

    E-Print Network [OSTI]

    Schnorr, Jan M. (Jan Markus)

    2012-01-01

    Carbon nanotubes (CNTs) possess a unique set of electrical and mechanical properties and have been used in a variety of applications. In this thesis, we explore strategies to functionalize CNTs as well as applications which ...

  9. Carbon nanotube bearings in theory and practice

    E-Print Network [OSTI]

    Cook, Eugene Hightower

    2011-01-01

    Carbon Nanotubes (CNTs) are attractive elements for bearings in Micro-Electro-Mechanical Systems (MEMS), because their structure comprises nested shells with no bonding and sub-nanometer spacing between them, enabling ...

  10. BX CY NZ nanotubes and nanoparticles

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Piedmont, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    2001-01-01

    The invention provides crystalline nanoscale particles and tubes made from a variety of stoichiometries of B.sub.x C.sub.y N.sub.z where x, y, and z indicate a relative amount of each element compared to the others and where no more than one of x, y, or z are zero for a single stoichiometry. The nanotubes and nanoparticles are useful as miniature electronic components, such as wires, coils, schotky barriers, diodes, etc. The nanotubes and nanoparticles are also useful as coating that will protect an item from detection by electromagnetic monitoring techniques like radar. The nanotubes and nanoparticles are additionally useful for their mechanical properties, being comparable in strength and stiffness to the best graphite fibers or carbon nanotubes. The inventive nanoparticles are useful in lubricants and composites.

  11. Carbon nanotube heat-exchange systems

    DOE Patents [OSTI]

    Hendricks, Terry Joseph (Arvada, CO); Heben, Michael J. (Denver, CO)

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  12. Carbon nanotube synthesis for integrated circuit interconnects

    E-Print Network [OSTI]

    Nessim, Gilbert Daniel

    2009-01-01

    Based on their properties, carbon nanotubes (CNTs) have been identified as ideal replacements for copper interconnects in integrated circuits given their higher current density, inertness, and higher resistance to ...

  13. Carbon nanotube-based field ionization vacuum

    E-Print Network [OSTI]

    Jang, Daniel, M. Eng. Massachusetts Institute of Technology

    2012-01-01

    We report the development of a novel micropump architecture that uses arrays of isolated vertical carbon nanotubes (CNT) to field ionize gas particles. The ionized gas molecules are accelerated to and implanted into a ...

  14. Carbon nanotube interconnects for IC chips

    E-Print Network [OSTI]

    Anwar Ali, Hashina Parveen

    2006-01-01

    Carbon nanotubes (CNTs) have been investigated as candidate materials to replace or augment the existing copper-based technologies as interconnects for Integrated Circuit (IC) chips. Being ballistic conductors, CNTs are ...

  15. Nanolithographic control of carbon nanotube synthesis 

    E-Print Network [OSTI]

    Huitink, David Ryan

    2009-05-15

    A method offering precise control over the synthesis conditions to obtain carbon nanotube (CNT) samples of a single chirality (metallic or semi-conducting) is presented. Using this nanolithographic method of catalyst deposition, the location of CNT...

  16. Transplanting assembly of individual carbon nanotubes

    E-Print Network [OSTI]

    Kim, Soohyung

    2009-01-01

    Handling and assembling individual nanostructures to bigger scale systems such as MEMS have been the biggest challenge. A deterministic assembly of individual carbon nanotubes by transplanting them to MEMS structures is ...

  17. Polymers 2014, 6, 311-326; doi:10.3390/polym6020311 ISSN 2073-4360

    E-Print Network [OSTI]

    Takada, Shoji

    #12;Polymers 2014, 6, 311-326; doi:10.3390/polym6020311 polymers ISSN 2073-4360 www.mdpi.com/journal/polymers copolymers, star polymers, and concentrated polymer brushes on solid surfaces were prepared using living catalysts; block copolymers; triblock copolymers; star polymers; polymer brushes OPEN ACCESS #12;Polymers

  18. Melons are branched polymers

    E-Print Network [OSTI]

    Razvan Gurau; James P. Ryan

    2013-02-18

    Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.

  19. Stiff quantum polymers

    E-Print Network [OSTI]

    H. Kleinert

    2009-10-19

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  20. Carbon nanotube temperature and pressure sensors

    SciTech Connect (OSTI)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  1. Porous polymer media

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  2. Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes

    E-Print Network [OSTI]

    Nair, Sankar

    made from metal oxides -- work that could lead to a technique for precisely conNanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes Science their diameter and length. Based on metal oxides in combination with silicon and germanium, such single

  3. The essential role of visualization for modeling nanotubes and nanodiamond

    E-Print Network [OSTI]

    Adler, Joan

    The essential role of visualization for modeling nanotubes and nanodiamond Joan Adler, T. Mutat, A of hydrocarbons in nanotubes, and the creation of nanodiamond from amorphous carbon under pressure. Interactive

  4. Irradiation Stability of Carbon Nanotubes and Related Materials 

    E-Print Network [OSTI]

    Aitkaliyeva, Assel 1985-

    2012-09-28

    Application of carbon nanotubes (CNTs) in various fields demands a thorough investigation of their stability under irradiation. Open structure, ability to reorganize and heal defects, and large surface-to-volume ratio of carbon nanotubes affect...

  5. Length dependence of the Raman spectra of carbon nanotubes

    E-Print Network [OSTI]

    Zare, Aurea Tucay

    2009-01-01

    DNA-wrapping technology, combined with size-exclusion chromatography, have made possible the sorting of carbon nanotubes according to length. In particular, length sorted nanotube samples, with finite lengths approaching ...

  6. Analyzing manufacturing methods of carbon nanotubes for commercialization

    E-Print Network [OSTI]

    Dee, H. Devin (Herbert Devin)

    2013-01-01

    This research explores the history and structure of carbon nanotubes and the current technologies and methods available for synthesizing, purifying, and assembling carbon nanotubes. Furthermore, the current state of ...

  7. Boron-Nitride Nanotubes Show Potential in Cancer Treatment |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boron-Nitride Nanotubes Show Potential in Cancer Treatment NEWPORT NEWS, VA, April 26 - A new study has shown that adding boron-nitride nanotubes to the surface of cancer cells can...

  8. Flame synthesis of carbon nanotubes and metallic nanomaterials

    E-Print Network [OSTI]

    Height, Murray John, 1975-

    2003-01-01

    Carbon nanotubes are a remarkable material with many appealing properties. Despite the appeal of this material, there are few synthesis techniques capable of producing nanotubes in large quantities at low-cost. The broad ...

  9. A Continuum Model for Carbon Nanotube-Infused Polyimides

    E-Print Network [OSTI]

    A Continuum Model for Carbon Nanotube-Infused Polyimides Heather Wilson1 , Sumanth Banda2 , Ralph C, the materials need to withstand this process. The nanotube-infused polyimides are flexible enough to withstand

  10. Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring

    E-Print Network [OSTI]

    De Micheli, Giovanni

    Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring Cristina Boero, Sandro different presented strategies to develop biosensors, carbon nanotubes exhibit great properties, particularly suitable for biosensing. In this work nanostructured electrodes by using multi-walled carbon

  11. Energy Carrier Transport In Surface-Modified Carbon Nanotubes 

    E-Print Network [OSTI]

    Ryu, Yeontack

    2012-11-30

    of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties...

  12. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  13. POLYMER PROGRAM SEMINAR "Polymer Nanofibers: Electrospinning, Structure, and Properties"

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR "Polymer Nanofibers: Electrospinning, Structure, and Properties" Dr. Masaya been widely employed as a technique to produce sub-micron and nanometer scale polymer fibers. The technique utilizes electrical forces induced by a high voltage to draw charged polymer solution jet

  14. Nanoelectro-mechanical systems based on carbon nanotubes

    E-Print Network [OSTI]

    Adler, Joan

    are long thin tubes made from rolled up single sheets of graphene. Nanotube resonators have already reached", in preparation. #12;

  15. NASA Partners License Nanotube Technology for Commercial Use...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prnewswire.comnews-releasesnasa-partners-license-nanotube-technology-for-commercial-use-149724205.html Submitted: Monday, April 3...

  16. Biosensors Based on Functionalized Carbon Nanotubes, Nanoparticles, and Nanowires

    SciTech Connect (OSTI)

    Wang, Jun; Liu, Guodong; Wu, Hong; Lin, Yuehe

    2009-01-01

    In this book chapter, we will review recent progress in functionalization of nanotubes, nanoparticles, and nanowires for sensing applications.

  17. Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

    2008-05-01

    This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

  18. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes 

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03

    .3 Results and discussion …………………………………………….27 vi Page 3.4 Conclusions………………………………………………………..34 CHAPTER IV HIGHLY DOPED CARBON NANOTUBES WITH GOLD NANOPARTICLES AND THEIR INFLUENCE ON ELECTRICAL CONDUCTIVITY AND THERMOPOWER ………..36 4... with carbon nanotubes ………...76 7.3 Highly doped carbon nanotubes with gold nanoparticles and their influence on electric conductivity and thermopower……………………………………………………...77 7.4 N-type thermoelectric performance of functionalized carbon nanotube...

  19. Characterization of single wall carbon nanotubes by nonane preadsorption

    E-Print Network [OSTI]

    Liu, Jie

    Characterization of single wall carbon nanotubes by nonane preadsorption Oleg Byl a , Jie Liu b for nanotube porosity characterization. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Carbon nanotubes decades for sorbent characterization. A number of methods have been developed for N2 isotherm analysis

  20. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOE Patents [OSTI]

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  1. Scrolled Sheet Precursor Route to Niobium and Tantalum Oxide Nanotubes

    E-Print Network [OSTI]

    , this process remains limited in scope mainly to the formation of TiO2 nanotubes and to a single example with MnScrolled Sheet Precursor Route to Niobium and Tantalum Oxide Nanotubes Yoji Kobayashi, Hideo Hata Manuscript Received May 25, 2007 ABSTRACT The nanoscroll-to-nanotube thermal transformation was studied for H

  2. Nanotube Encoders L.X. Dong1, a

    E-Print Network [OSTI]

    Sun, Yu

    -150 nm nickel catalyst dots at precise locations on a silicon chip. Next, vertically aligned nanotubesNanotube Encoders L.X. Dong1, a , A. Subramanian 1,b , B.J. Nelson1,c, ¶ , and Y. Sun2,d 1 Swiss author Keywords: Carbon nanotube array, field emission, nano encoder, nanorobotic manipulator, scanning

  3. Controlled Multistep Purification of Single-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Wikswo, John

    Controlled Multistep Purification of Single-Walled Carbon Nanotubes Ya-Qiong Xu,,§ Haiqing Peng materials from raw single-walled carbon nanotubes (SWNTs) produced in the HiPco (high-pressure CO) process at increasing temperatures. To avoid catalytic oxidation by iron oxide of carbon nanotubes, the exposed

  4. Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

  5. Soluble porphyrin polymers

    DOE Patents [OSTI]

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  6. Rechargeable solid polymer electrolyte battery cell

    DOE Patents [OSTI]

    Skotheim, Terji (East Patchoque, NY)

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  7. Effects of ion irradiation on supported carbon nanotubes and nanotube-substrate A. V. Krasheninnikov, K. Nordlund, and J. Keinonen

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Effects of ion irradiation on supported carbon nanotubes and nanotube-substrate interfaces A. V of Helsinki, Finland ABSTRACT We employ molecular dynamics to study the effects of ion irradiation on carbon by forming nanotube-substrate bonds which appear near irradiation-induced defects. INTRODUCTION Recent

  8. Heavily fluorinated electronic polymers

    E-Print Network [OSTI]

    Lim, Jeewoo

    2011-01-01

    Building blocks, containing majority fluorine content by weight, for PPEs and PPVs have been synthesized. Some of the monomers were shown to give exclusively fluorous-phase soluble polymers, the syntheses of which were ...

  9. Sulfonated polyphenylene polymers

    DOE Patents [OSTI]

    Cornelius, Christopher J. (Albuquerque, NM); Fujimoto, Cy H. (Albuquerque, NM); Hickner, Michael A. (Albuquerque, NM)

    2007-11-27

    Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.

  10. Polymer quantization and Symmetries

    E-Print Network [OSTI]

    Ghanashyam Date; Nirmalya Kajuri

    2013-02-24

    Polymer quantization was discovered during the construction of Loop Quantum Cosmology. For the simplest quantum theory of one degree of freedom, the implications for dynamics were studied for the harmonic oscillator as well as some other potentials. For more degrees of freedom, the possibility of continuous, kinematic symmetries arises. While these are realised on the Hilbert space of polymer quantum mechanics, their infinitesimal versions are not supported. For an invariant Hamiltonian, these symmetry realizations imply infinite degeneracy suggesting that the symmetry should be spontaneously or explicitly broken. The estimation of symmetry violations in some cases have been analysed before. Here we explore the alternative of shifting the arena to the distributional states. We discuss both the polymer quantum mechanics case as well as polymer quantized scalar field.

  11. Conducting polymer nanostructures for biological applications

    E-Print Network [OSTI]

    Berdichevsky, Yevgeny

    2006-01-01

    of Electronically Conductive Polymer Nanostructures,” Acc.et al. , “Conjugated-Polymer Micro- and Milliactuators for3. Y. Berdichevsky, Y. -H. Lo, “Polymer Microvalve Based on

  12. Polymer Surface Modification for Bioengineering Applications

    E-Print Network [OSTI]

    Cheng, Qian

    2011-01-01

    Discharge. Plasmas and Polymers, vol. 1, pp. 299–326. FengS. , 2003, A Review on Polymer Nanofibers by Electrospinningeffect of hydrophilized porous polymer scaffolds in tissue-

  13. Modulating Protein Activity through Polymer Conjugation

    E-Print Network [OSTI]

    Decker, Caitlin Gayle

    2015-01-01

    D. “A Heparin-mimicking Polymer Conjugate Stabilizes BasicG. ;?  Haddleton,  D.  M.  Polymer   Chemistry  2011,  2,  ?  Nolte,  R.  J.  M.  Polymer  Chemistry  2011,  2,  333.  

  14. Polymers in disordered environments

    E-Print Network [OSTI]

    V. Blavatska; N. Fricke; W. Janke

    2014-11-18

    A brief review of our recent studies aiming at a better understanding of the scaling behaviour of polymers in disordered environments is given. The main emphasis is on a simple generic model where the polymers are represented by (interacting) self-avoiding walks and the disordered environment by critical percolation clusters. The scaling behaviour of the number of conformations and their average spatial extent as a function of the number of monomers and the associated critical exponents $\\gamma$ and $\

  15. Interfacial thermal conductance in spun-cast polymer films and polymer brushes

    E-Print Network [OSTI]

    Braun, Paul

    Interfacial thermal conductance in spun-cast polymer films and polymer brushes Mark D. Losego inorganic materials and anharmonic polymers have potentially intriguing thermal transport behavior. The low thermal conductivity of amorphous polymers limits significant interfacial effects to polymer film

  16. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect (OSTI)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  17. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect (OSTI)

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  18. Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds

    E-Print Network [OSTI]

    Kamali, Ali; Fray, Derek

    2015-09-15

    carbon nanoparticles and nanotubes, metal filled carbon nanoparticles and nanotubes, graphene or nanodiamonds. The application of metal filled carbon nanotubes as anodes in lithium ion batteries is reviewed. Surprisingly, this method of preparation...

  19. Computational design of carbon nanotube electromechanical pressure sensors Jian Wu,1,2

    E-Print Network [OSTI]

    Simons, Jack

    Computational design of carbon nanotube electromechanical pressure sensors Jian Wu,1,2 Ji Zang,2 and electrical prop- erties of carbon nanotubes has led to the exploration of nanotube-based electromechanical

  20. An extensive analysis of modified nanotube surfaces for next-generation orthopedic implants

    E-Print Network [OSTI]

    Frandsen, Christine Jeanette

    2012-01-01

    Properties of TiO2 Nanotubes. Solid State Phenomena, 2010.and A. Bandyopadhyay, TiO2 nanotubes on Ti: Influence of2075. Macak, J.M. , et al. , TiO2 nanotubes: Self-organized

  1. Danish Polymer Centre Annual Report 2002

    E-Print Network [OSTI]

    Danish Polymer Centre Annual Report 2002 #12;2 The Danish Polymer Centre, DTU and Risø Annual.1 Polymer based solar cells (photovoltaics) ................................ 5 2.2 Structuring Plastic ........................................................................ 17 2.7 Biodegradable polymer composites .......................................... 19 2

  2. Engineering carbon nanostructures : development of novel aerogel-nanotube composites and optimization techniques for nanotube growth

    E-Print Network [OSTI]

    Steiner, Stephen Alan, III

    2006-01-01

    Carbon aerogels offer several unique advantages which make them ideal for evaluating a metal's ability to catalyze nanotube growth, including in situ carbothermic reduction of oxidized nanoparticles to their catalytic ...

  3. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    E-Print Network [OSTI]

    Lee, Jeonyoon

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. ...

  4. Understanding the Nanotube Growth Mechanism: A Strategy to Control Nanotube Chirality during Chemical Vapor Deposition Synthesis 

    E-Print Network [OSTI]

    Gomez Gualdron, Diego Armando 1983-

    2012-10-26

    , hence reaction conditions that increase nanoparticle stability, but reduce carbon solubility, may be explored to achieve nanotube templated growth of desired chiralities. The effect of carbon dissolution was further demonstrated through analyses...

  5. Laser ablative synthesis of carbon nanotubes

    DOE Patents [OSTI]

    Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA); Park, Cheol (Yorktown, VA)

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  6. Electrical device fabrication from nanotube formations

    DOE Patents [OSTI]

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  7. Does water dope carbon nanotubes?

    SciTech Connect (OSTI)

    Bell, Robert A.; Payne, Michael C.; Mostofi, Arash A.

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup ?4}?e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  8. Robust Polymer Composite Membranes for Hydrogen Separation |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

  9. The Polymer Bouncer

    E-Print Network [OSTI]

    A. Martin-Ruiz; A. Frank; L. F. Urrutia

    2015-05-31

    Polymer Quantization (PQ) is a background independent quantization scheme that is deployed in Loop Quantum Gravity. This framework leads to a new short-distance (discretized) structure characterized by a fundamental length. In this paper we use PQ to analyze the problem of a particle bouncing on a perfectly reflecting surface under the influence of Earth's gravitational field, what we have called "\\textit{The Polymer Bouncer}". In this scenario, deviations from the usual quantum effects are induced by the spatial discreteness, but not by a new short-range gravitational interaction. We solve the polymer Schr\\"odinger equation in an analytical fashion, and we evaluate numerically the corresponding energy levels. We find that the polymer energy spectrum exhibits a negative shift compared to the obtained for the quantum bouncer. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the fundamental length scale, namely $\\lambda \\ll 0.6 \\buildrel _{\\circ} \\over {\\mathrm{A}}$. We find polymer corrections to the probability of transitions between levels, induced by small vibrations, together with the probability of spontaneous emission in the quadrupole approximation.

  10. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  11. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  12. Branched Polymers and Hyperplane Arrangements

    E-Print Network [OSTI]

    Postnikov, Alexander

    We generalize the construction of connected branched polymers and the notion of the volume of the space of connected branched polymers studied by Brydges and Imbrie (Ann Math, 158:1019–1039, 2003), and Kenyon and Winkler ...

  13. Polymer Composites for Radiation Scintillation

    E-Print Network [OSTI]

    Chen, Qi

    2012-01-01

    gamma-ray and fast neutron spectroscopy. Firstly, new polymergamma-ray and fast neutron spectroscopy. Firstly, new polymer

  14. Shape memory polymer medical device

    DOE Patents [OSTI]

    Maitland, Duncan (Pleasant Hill, CA); Benett, William J. (Livermore, CA); Bearinger, Jane P. (Livermore, CA); Wilson, Thomas S. (San Leandro, CA); Small, IV, Ward (Livermore, CA); Schumann, Daniel L. (Concord, CA); Jensen, Wayne A. (Livermore, CA); Ortega, Jason M. (Pacifica, CA); Marion, III, John E. (Livermore, CA); Loge, Jeffrey M. (Stockton, CA)

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  15. Antibacterial polymer coatings.

    SciTech Connect (OSTI)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  16. BRANCHED POLYMERS AND HYPERPLANE ARRANGEMENTS

    E-Print Network [OSTI]

    Postnikov, Alexander

    BRANCHED POLYMERS AND HYPERPLANE ARRANGEMENTS KAROLA M´ESZ´AROS ALEXANDER POSTNIKOV Abstract. We of connected branched polymers studied by Brydges and Imbrie [BI], and Kenyon and Winkler [KW] to any hyperplane arrangement A. The volume of the resulting configuration space of connected branched polymers

  17. Single-walled carbon nanotube, SWNT(2)

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Technology Roadmap, Journal of the Japan Society of Mechanical Engineers, Vol. 110, No. 1067 (2007). (2 1 c-e 97 % (5) *1 *1 *2 *2 *2 *2 *2 *2 Scattering Process of Transmitted Gas Molecules through process of gas molecules on vertically aligned single-walled carbon nanotube (VA-SWNT) films

  18. Hydrogen Evolution on Hydrophobic Aligned Carbon Nanotube

    E-Print Network [OSTI]

    Daraio, Chiara

    Hydrogen Evolution on Hydrophobic Aligned Carbon Nanotube Arrays Abha Misra, Jyotsnendu Giri wall CNTs11 and aligned multiwall CNTs12 have been suggested as viable systems for hydrogen storage-decomposition of water using carbon electrodes has been pro- posed as a method for electrochemical storage of hydrogen.14

  19. Electromechanical Properties of Multiwall Carbon Nanotubes

    E-Print Network [OSTI]

    Electromechanical Properties of Multiwall Carbon Nanotubes A. Zettl and John Cumings Department Laboratory, Berkeley, CA 94720 U.S.A. Abstract. We examine electrical and coupled electromechanical placed inside a high resolution transmission electron microscope (TEM) fitted with a custom-made electro-mechanical

  20. Torsional electromechanical quantum oscillations in carbon nanotubes

    E-Print Network [OSTI]

    Joselevich, Ernesto

    Torsional electromechanical quantum oscillations in carbon nanotubes TZAHI COHEN-KARNI1 *, LIOR electromechanical detection of motion could replace the microscopic detection techniques used at present. Our attracted great interest14 . Linear electromechanical responses have been observed for axial15,16, radial17

  1. Nanotube/Nanowire Based ORR Catalyst

    Broader source: Energy.gov [DOE]

    Presentation about nanotube or nanowire-based oxygen reduction reaction (ORR) catalysts, presented by Yushan Yan, University of Delaware, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  2. High Performance Electrolyte Gated Carbon Nanotube Transistors

    E-Print Network [OSTI]

    Gore, Jeff

    High Performance Electrolyte Gated Carbon Nanotube Transistors Sami Rosenblatt, Yuval Yaish, Jiwoong Park,, Jeff Gore, Vera Sazonova, and Paul L. McEuen*, Laboratory of Atomic and Solid State Physics to grow the tubes, annealing to improve the contacts, and an electrolyte as a gate, we obtain very high

  3. Polymer blend containing a modified dense star polymer or dendrimer and a matrix polymer

    DOE Patents [OSTI]

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents in forming a polymer blend.

  4. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    SciTech Connect (OSTI)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  5. High Resolution Additive Patterning of Nanoparticles and Polymers Enabled by Vapor Permeable Polymer Templates

    E-Print Network [OSTI]

    Demko, Michael Thomas

    2012-01-01

    polymers for gas separation membranes. Polymer Chemistry 1,L. M. Polymer membranes for gas separation. Current Opinionapplication as membranes in gas separations. 109–111 These

  6. Varied morphology carbon nanotubes and method for their manufacture

    SciTech Connect (OSTI)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  7. Conducting Polymers for Neutron Detection

    SciTech Connect (OSTI)

    Kimblin, Clare; Miller, Kirk; Vogel, Bob; Quam, Bill; McHugh, Harry; Anthony, Glen; Mike, Grover

    2007-12-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number.

  8. Gel polymer electrolytes for batteries

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  9. High temperature polymer concrete

    DOE Patents [OSTI]

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  10. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  11. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  12. Mesoporous carbons and polymers

    DOE Patents [OSTI]

    Bell, William (Boulder, CO); Dietz, Steven (Denver, CO)

    2001-01-01

    A mesoporous material prepared by polymerizing a resorcinol/formaldehyde system from an aqueous solution containing resorcinol, formaldehyde and a surfactant and optionally pyrolyzing the polymer to form a primarily carbonaceous solid. The material has an average pore size between 4 and 75 nm and is suitable for use in liquid-phase surface limited applications, including sorbent, catalytic, and electrical applications.

  13. POLYMER ELECTROLYTE FUEL CELLS

    E-Print Network [OSTI]

    Petta, Jason

    POLYMER ELECTROLYTE FUEL CELLS: The Gas Diffusion Layer Johannah Itescu Princeton University PRISM REU #12;PEM FUEL CELLS: A little background information I. What do fuel cells do? Generate electricity through chemical reaction #12;PEM FUEL CELLS: A little background information -+ + eHH 442 2 0244 22 He

  14. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  15. Sedimentation of Knotted Polymers

    E-Print Network [OSTI]

    Joonas Piili; Davide Marenduzzo; Kimmo Kaski; Riku Linna

    2012-12-20

    We investigate the sedimentation of knotted polymers by means of stochastic rotation dynamics, a molecular dynamics algorithm that takes hydrodynamics fully into account. We show that the sedimentation coefficient s, related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number n_c of the corresponding ideal knot. To the best of our knowledge, this provides the first direct computational confirmation of this relation, postulated on the basis of experiments in "The effect of ionic conditions on the conformations of supercoiled DNA. I. sedimentation analysis" by Rybenkov et al., for the case of sedimentation. Such a relation was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate linear dependence of s on the inverse of the radius of gyration R_g^-1, more specifically with the inverse of the R_g component that is perpendicular to the direction along which the polymer sediments. When the polymer sediments in a slab, the walls affect the results appreciably. However, R_g^-1 remains to a good precision linearly dependent on n_c. Therefore, R_g^-1 is a good measure of a knot's complexity.

  16. Primordial polymer perturbations

    E-Print Network [OSTI]

    Sanjeev S. Seahra; Iain A. Brown; Golam Mortuza Hossain; Viqar Husain

    2012-09-25

    We study the generation of primordial fluctuations in pure de Sitter inflation where the quantum scalar field dynamics are governed by polymer (not Schrodinger) quantization. This quantization scheme is related to, but distinct from, the structures employed in Loop Quantum Gravity; and it modifies standard results above a polymer energy scale $M_{\\star}$. We recover the scale invariant Harrison Zel'dovich spectrum for modes that have wavelengths bigger than $M_{\\star}^{-1}$ at the start of inflation. The primordial spectrum for modes with initial wavelengths smaller than $M_{\\star}^{-1}$ exhibits oscillations superimposed on the standard result. The amplitude of these oscillations is proportional to the ratio of the inflationary Hubble parameter $H$ to the polymer energy scale. For reasonable choices of $M_{\\star}$, we find that polymer effects are likely unobservable in CMB angular power spectra due to cosmic variance uncertainty, but future probes of baryon acoustic oscillations may be able to directly constrain the ratio $H/M_{\\star}$.

  17. The Effects of Highly Structured Low Density Carbon Nanotube...

    Office of Scientific and Technical Information (OSTI)

    Effects of Highly Structured Low Density Carbon Nanotube Networks on the Thermal Degradation Behaviour of Polysiloxanes Citation Details In-Document Search Title: The Effects of...

  18. NASA Scientist Discusses Nanotube Advances Feb. 9 at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotube Advances Feb. 9 at Jefferson Lab NEWPORT NEWS, Va., Feb. 2, 2011 - Mike Smith, a NASA Langley Research Center scientist, will present a lecture titled "20th...

  19. Towards structural health monitoring in carbon nanotube reinforced composites

    E-Print Network [OSTI]

    Wang, Wennie

    2013-01-01

    An experimental investigation was conducted to understand the non-destructive evaluation (NDE) capabilities of carbon nanotubes (CNTs) of several network architectures towards structural health monitoring (SHM). As ...

  20. Water-splitting using photocatalytic porphyrin-nanotube composite devices

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Miller, James E. (Albuquerque, NM); Wang, Zhongchun (Albuquerque, NM); Medforth, Craig J. (Winters, CA)

    2008-03-04

    A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

  1. Characterization of composites with aligned carbon nanotubes (CNTs) as reinforcement

    E-Print Network [OSTI]

    García, Enrique J

    2006-01-01

    Carbon nanotubes' (CNTs) superlative combination of electrical, thermal, and especially mechanical properties make them ideal candidates for composite reinforcement. Nanocomposites and hybrid composite architectures employing ...

  2. Synthetic nanotubes lay foundation for new technology: Artificial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthetic nanotubes lay foundation for new technology: Artificial pores mimic key features of natural pores By Tona Kunz * July 17, 2012 Tweet EmailPrint Scientists have overcome...

  3. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01

    carbon nanotubes in 1 ml of DMF) on two 12 mm × 12 mm nickelnanotubes as electrodes. An [7, 15] obtained high power density with polished nickel

  4. Novel Stack Concepts: Patterned Aligned Carbon Nanotubes as Electrodes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on new fuel cell projects. newfcliuargonne.pdf More Documents & Publications Novel PEMFC Stack Using Patterned Aligned Carbon Nanotubes as Electrodes in MEA Advanced Cathode...

  5. Alignment and Load Transfer in Carbon Nanotube and Dicyclopentadiene Composites

    E-Print Network [OSTI]

    Severino, Joseph Vincent

    2015-01-01

    from [156]. Figure 2.20: Aerogel growth. a) Schematic forproduction (right) from aerogel growth process [175] b)Yodh AG. Carbon Nanotube Aerogels. Advanced Materials. [221

  6. Trapping and aligning carbon nanotubes via substrate geometry engineering

    E-Print Network [OSTI]

    Wang, Yan Mei

    application in the reliable fabrication of nanotube-based electronic and microelectromechanical systems (MEMS for incorporation into next-generation electronic and microelectromechanical systems (MEMS) devices. Indeed, many

  7. Q1Report for CADWR Project: Desalination Using Carbon NAnotube...

    Office of Scientific and Technical Information (OSTI)

    for CADWR Project: Desalination Using Carbon NAnotube Membranes In this research and development project, LLNL will leverage the process for fabrication of the membranes...

  8. Carbon nanotube oscillator surface profiling device and method of use

    DOE Patents [OSTI]

    Popescu, Adrian (Tampa, FL); Woods, Lilia M. (Tampa, FL); Bondarev, Igor V. (Fuquay Varina, NC)

    2011-11-15

    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  9. Continuous Growth of Vertically Aligned Carbon Nanotubes Forests

    E-Print Network [OSTI]

    Guzman de Villoria, Roberto

    Vertically aligned carbon nanotubes are one of the most promising materials due their numerous applications in flexible electronic devices, biosensors and multifunctional aircraft materials, among others. However, the ...

  10. e-Polymers 2010, no. 100 http://www.e-polymers.org

    E-Print Network [OSTI]

    North Texas, University of

    resistivity. Keywords: scratch resistance, dynamic friction, effective surface area, carbon black in polymers, electric conductivity threshold, polymer reinforcement. Introduction Polymer composites containing carbon fibers, binders or solid friction modifiers, or else irradiation [17]. For carbon-containing polymer

  11. Breakdown of 2mm symmetry in electron diffraction from multiwalled carbon nanotubes

    E-Print Network [OSTI]

    Qin, Lu-Chang

    Breakdown of 2mm symmetry in electron diffraction from multiwalled carbon nanotubes Zejian Liu of single-walled carbon nanotubes always have 2mm symmetry regardless if the nanotubes them- selves have such symmetry. We here show that, for the case of multiwalled carbon nanotubes, the 2mm symmetry can break down

  12. Simulations of field emission from a semiconducting ,,10,0... carbon nanotube

    E-Print Network [OSTI]

    Mayer, Alexandre

    Simulations of field emission from a semiconducting ,,10,0... carbon nanotube A. Mayera three-dimensional simulations of field emission from an ideal open 10,0 carbon nanotube without work function around 5 eV depending on the type of nanotube. These nanotubes show interesting field-emission

  13. Adhesion energy in carbon nanotube-polyethylene composite: Effect of chirality

    E-Print Network [OSTI]

    Garmestani, Hamid

    Adhesion energy in carbon nanotube-polyethylene composite: Effect of chirality M. Al-Haik and M. Y 2005 This work presents a study of the adhesion energy between carbon nanotube-polyethylene matrix nanotube chirality on adhesion energy. It is observed that composites that utilize nanotubes with smaller

  14. Formation of single crystalline ZnO nanotubes without catalysts and templates

    E-Print Network [OSTI]

    Geohegan, David B.

    nanotubes. GaN,1 silica,2 ZnO,3,4 and TiO2 Ref. 5 nanotubes have been synthesized by using multistep#12;Formation of single crystalline ZnO nanotubes without catalysts and templates Samuel L. Mensah January 2007; published online 13 March 2007 Oxide and nitride nanotubes have gained attention

  15. Anisotropic thermal transport in highly ordered TiO2 nanotube arrays Liying Guo,1

    E-Print Network [OSTI]

    Lin, Zhiqun

    Anisotropic thermal transport in highly ordered TiO2 nanotube arrays Liying Guo,1 Jun Wang,2 Zhiqun amorphous and anatase TiO2 nanotube arrays. Strong anisotropic thermal conductivity is observed: 0.617 W K-1 for amorphous TiO2 nanotube arrays. The anatase TiO2 nanotube arrays are found to have a higher and anisotropic

  16. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing

    E-Print Network [OSTI]

    Cai, Long

    delivery technique, named nanotube spearing, based on the penetration of nickel- embedded nanotubes ferromagnetic catalyst nickel particles enclosed in their tips2. This structure makes nanotubes respondHighly efficient molecular delivery into mammalian cells using carbon nanotube spearing Dong Cai1

  17. Scanning electron microscopy study of carbon nanotubes heated at high temperatures in air

    E-Print Network [OSTI]

    . INTRODUCTION Because of their remarkable physical and electronic properties, carbon nanotubes are promising nanotubes in air,3,4 in an oxygen stream,5 or under a flow of carbon dioxide gas.6 Thinning of nanotubesScanning electron microscopy study of carbon nanotubes heated at high temperatures in air Xuekun Lu

  18. Preparation, Characterization, and Physical Properties of Multiwall Carbon Nanotube/Elastomer Composites

    E-Print Network [OSTI]

    Mark, James E.

    nanotubes (MWCNT) and styrene-butadiene rubber and nitrile- butadiene rubber. The reinforcing MWCNT fillers

  19. Appendix B: Glossary of Polymer Materials

    E-Print Network [OSTI]

    Hall, Christopher

    -334 (Wiley, New York, 1985). Acrylic ester polymers A group of amorphous carbon-chain polymers of whichAppendix B: Glossary of Polymer Materials This glossary emphasises the individuality of polymers and polymer families, historically, scientifically and technically. It complements the rest of the book

  20. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  1. Mesoporous carbons and polymers

    DOE Patents [OSTI]

    Bell, William; Dietz, Steven

    2004-05-18

    A polymer is prepared by polymerizing a polymerizable component from a mixture containing the polymerizable component and a surfactant, the surfactant and the polymerizable component being present in the mixture in a molar ratio of at least 0.2:1, having an average pore size greater than 4 nm and a density greater than 0.1 g/cc. The polymerizable component can comprise a resorcinol/formaldehyde system and the mixture can comprise an aqueous solution or the polymerizable component can comprise a divinylbenzene/styrene system and the mixture can comprise an organic solution. Alternatively, the polymerizable component can comprise vinylidene chloride or a vinylidene chloride/divinylbenzene system. The polymer may be monolithic, have a BET surface area of at least about 50 m.sup.2 /g., include a quantity of at least one metal powder, or have an electrical conductivity greater than 10 Scm.sup.-1.

  2. Density controlled carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng F. (Newton, MA); Tu, Yi (Belmont, MA)

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  3. Scratch behavior of polymers 

    E-Print Network [OSTI]

    Lim, Goy Teck

    2005-11-01

    of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, J.N. Reddy Committee Members, H.-J. Sue A. Srinvas S. Suh Paul N. Roschke Head of Department, Dennis O?Neal August 2005 Major Subject: Mechanical Engineering iii ABSTRACT... Scratch Behavior of Polymers. (August 2005) Goy Teck Lim, B.Eng., National University of Singapore; M.Eng., National University of Singapore Chair of Advisory Committee: Dr. J.N. Reddy This dissertation work is focused on the analytical...

  4. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  5. Polymer Stretching by Turbulence

    SciTech Connect (OSTI)

    Chertkov, Michael

    2000-05-15

    The stretching of a polymer chain by a large-scale chaotic flow is considered. The steady state which emerges as a balance of the turbulent stretching and anharmonic resistance of the chain is quantitatively described, i.e., the dependency on the flow parameters (Lyapunov exponent statistics) and the chain characteristics (the number of beads and the interbead elastic potential) is made explicit. (c) 2000 The American Physical Society.

  6. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  7. Polymer Crowding and Shape Distributions in Polymer-Nanoparticle Mixtures

    E-Print Network [OSTI]

    Wei Kang Lim; Alan R. Denton

    2014-10-24

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  8. Order in vertically aligned carbon nanotube arrays

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; Xu, Z [Michigan State University, East Lansing; Eres, Gyula [ORNL

    2006-01-01

    We report the direct measurements on the bulk morphology of vertically aligned multiwalled carbon nanotube (CNT) arrays using small angle neutron scattering (SANS). SANS measurements at different heights of CNT arrays corresponding to different stages of the growth reveal increasing alignment order along the thickness and two distinctly different CNT morphologies. The observations suggest that the evolution of the macroscopic CNT morphologies be driven by competing collective growth and spatial constraints.

  9. Carbon Nanotube DNA Sensor and Sensing Mechanism

    E-Print Network [OSTI]

    Le Roy, Robert J.

    nanotube (SWNT) DNA sensors and the sensing mechanism. The simple and generic protocol for label for direct label-free detection of DNA hybridization in a biocompatible buffer solution. We also carried out is a field effect device, which has a typical on-current of 3-6 µA at 10 mV source- drain bias and an on-off

  10. Nanotube array controlled carbon plasma deposition

    SciTech Connect (OSTI)

    Qian, Shi; Cao, Huiliang; Liu, Xuanyong; Ding, Chuanxian

    2013-06-17

    Finding approaches to control the elementary processes of plasma-solid interactions and direct the fluxes of matter at nano-scales becomes an important aspect in science. This letter reports that, by taking advantages of the spacing characteristics of discrete TiO{sub 2} nanotube arrays, the flying trajectories and the subsequent implantation and deposition manner of energetic carbon ions can be directed and controlled to fabricate hollow conical arrays. The study provides an alternative method for plasma nano-manufacturing.

  11. An ultrafast carbon nanotube terahertz polarisation modulator

    SciTech Connect (OSTI)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B., E-mail: m.johnston@physics.ox.ac.uk [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

    2014-05-28

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  12. Defected and Substitutionally Doped Nanotubes: Applications in Biosystems,

    E-Print Network [OSTI]

    Wang, Yan Alexander

    , University of British Columbia, Vancouver, Canada 1. Introduction Carbon nanotubes (CNTs) have been the subject of intensive research since their discovery by Iijima in the early 1990s (Iijima 1991). Single-walled carbon nanotubes (SWCNTs, Iijima & Ichihashi 1993; Bethune et al. 1993) are of particular interest

  13. Water transport through functionalized nanotubes with tunable hydrophobicity

    E-Print Network [OSTI]

    Ian Moskowitz; Mark A. Snyder; Jeetain Mittal

    2015-03-12

    Molecular dynamics simulations are used to study the occupancy and flow of water through nanotubes comprised of hydrophobic and hydrophilic atoms, which are arranged on a honeycomb lattice to mimic functionalized carbon nanotubes (CNTs). We consider single-file motion of TIP3P water through narrow channels of (6,6) CNTs with varying fractions (f) of hydrophilic atoms. Various arrangements of hydrophilic atoms are used to create heterogeneous nanotubes with separate hydrophobic/hydrophilic domains along the tube as well as random mixtures of the two types of atoms. The water occupancy inside the nanotube channel is found to vary nonlinearly as a function of f, and a small fraction of hydrophilic atoms (f ~ 0.4) are sufficient to induce spontaneous and continuous filling of the nanotube. Interestingly, the average number of water molecules inside the channel and water flux through the nanotube are less sensitive to the specific arrangement of hydrophilic atoms than to the fraction, f. Two different regimes are observed for the water flux dependence on f - an approximately linear increase in flux as a function of f for f water occupancy. We are able to define an effective interaction strength between nanotube atoms and water's oxygen, based on a linear combination of interaction strengths between hydrophobic and hydrophilic nanotube atoms and water, that can quantitatively capture the observed behavior.

  14. Water transport through functionalized nanotubes with tunable hydrophobicity

    SciTech Connect (OSTI)

    Moskowitz, Ian; Snyder, Mark A.; Mittal, Jeetain

    2014-11-14

    Molecular dynamics simulations are used to study the occupancy and flow of water through nanotubes comprised of hydrophobic and hydrophilic atoms, which are arranged on a honeycomb lattice to mimic functionalized carbon nanotubes (CNTs). We consider single-file motion of TIP3P water through narrow channels of (6,6) CNTs with varying fractions (f) of hydrophilic atoms. Various arrangements of hydrophilic atoms are used to create heterogeneous nanotubes with separate hydrophobic/hydrophilic domains along the tube as well as random mixtures of the two types of atoms. The water occupancy inside the nanotube channel is found to vary nonlinearly as a function of f, and a small fraction of hydrophilic atoms (f ? 0.4) are sufficient to induce spontaneous and continuous filling of the nanotube. Interestingly, the average number of water molecules inside the channel and water flux through the nanotube are less sensitive to the specific arrangement of hydrophilic atoms than to the fraction, f. Two different regimes are observed for the water flux dependence on f – an approximately linear increase in flux as a function of f for f < 0.4, and almost no change in flux for higher f values, similar to the change in water occupancy. We are able to define an effective interaction strength between nanotube atoms and water's oxygen, based on a linear combination of interaction strengths between hydrophobic and hydrophilic nanotube atoms and water, that can quantitatively capture the observed behavior.

  15. Ultrathin Single-Walled Carbon Nanotube Network Framed Graphene Hybrids

    E-Print Network [OSTI]

    Wikswo, John

    Ultrathin Single-Walled Carbon Nanotube Network Framed Graphene Hybrids Rui Wang, Tu Hong, and Ya ABSTRACT: Graphene and single-walled carbon nanotubes (SWNTs) have shown superior potential in electronics method is developed to synthesize ultrathin SWNT-graphene films through chemical vapor deposition

  16. Radio frequency analog electronics based on carbon nanotube transistors

    E-Print Network [OSTI]

    Rogers, John A.

    Radio frequency analog electronics based on carbon nanotube transistors Coskun Kocabas*, Hoon properties of individ- ual tubes. We have implemented solutions to some of these challenges to yield radio band with power gains as high as 14 dB. As a demon- stration, we fabricated nanotube transistor radios

  17. Apparatus for the laser ablative synthesis of carbon nanotubes

    DOE Patents [OSTI]

    Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA)

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  18. Visualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak,

    E-Print Network [OSTI]

    with Ag or TiO2 nanocrystals.21,22 Although this approach is high throughput, the deposited materialVisualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak, Sumedh Surwade carbon nanotubes (CNTs) on a silicon wafer using a conventional optical microscope. We show

  19. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene

    E-Print Network [OSTI]

    Elliott, James

    Atomistic modelling of CVD synthesis of carbon nanotubes and graphene James A. Elliott,*a Yasushi nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled

  20. Carbon Nanotube Correlation: Promising Opportunity for CNFET Circuit Yield Enhancement

    E-Print Network [OSTI]

    De Micheli, Giovanni

    Carbon Nanotube Correlation: Promising Opportunity for CNFET Circuit Yield Enhancement Jie Zhang1 Mitra1 1 Stanford University, Stanford, CA, U.S.A 2 LSI-EPFL, Lausanne, Switzerland Abstract Carbon are very difficult to control. As a result, "small-width" Carbon Nanotube Field-Effect Transistors (CNFETs

  1. Carbon nanotubes as photoacoustic molecular imaging agents in living mice

    E-Print Network [OSTI]

    Khuri-Yakub, Butrus T. "Pierre"

    Carbon nanotubes as photoacoustic molecular imaging agents in living mice ADAM DE LA ZERDA1 not shown to target a diseased site in living subjects. Here we show that single-walled carbon nanotubes were verified ex vivo using Raman microscopy. Photoacoustic imaging of targeted single-walled carbon

  2. Percolation in Transparent and Conducting Carbon Nanotube Networks

    E-Print Network [OSTI]

    Gruner, George

    and chemical sensors9 , field emission devices10,11 , and transparent conductive coatings7 . We12 , and another. Transmission measurements also indicate the usefulness of nanotube network films as a transparent, conductive coating. Avenues for improvement of the network transparency are discussed. KEYWORDS Nanotubes, Networks

  3. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    SciTech Connect (OSTI)

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  4. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  5. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  6. Simulation of Carbon Nanotube Welding through Ar bombardment

    E-Print Network [OSTI]

    Kucukkal, Mustafa U

    2014-01-01

    Single-walled carbon nanotubes show promise as nanoscale transistors, for nanocomputing applications. This use will require appropriate methods for creating electrical connections between distinct nanotubes, analogous to welding of metallic wires at larger length scales, but methods for performing nanoscale chemical welding are not yet sufficiently understood. This study examined the effect of Ar bombardment on the junction of two crossed single-walled carbon nanotubes, to understand the value and limitations of this method for generating connections between nanotubes. A geometric criterion was used to assess the quality of the junctions formed, with the goal of identifying the most productive conditions for experimental ion bombardment. In particular, the effects of nanotube chirality, Ar impact kinetic energy, impact particle flux and fluence, and annealing temperature were considered. The most productive bombardment conditions, leading to the most crosslinking of the tubes with the smallest loss of graphit...

  7. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    SciTech Connect (OSTI)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2?-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2?-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  8. Preparation of array of long carbon nanotubes and fibers therefrom

    DOE Patents [OSTI]

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  9. Rotational actuator of motor based on carbon nanotubes

    DOE Patents [OSTI]

    Zettl, Alexander K. (Kensington, CA); Fennimore, Adam M. (Berkeley, CA); Yuzvinsky, Thomas D. (Berkeley, CA)

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  10. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  11. Incorporation of additives into polymers

    DOE Patents [OSTI]

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  12. Stretched Polymers in Random Environment

    E-Print Network [OSTI]

    Dmitry Ioffe; Yvan Velenik

    2011-03-01

    We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random environments.

  13. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Arman, B.; An, Q.; Luo, S. N.; Desai, T. G.; Tonks, D. L.; C?ag??n, T.; Goddard, III, W. A.

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore »CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  14. Modulating Protein Activity through Polymer Conjugation

    E-Print Network [OSTI]

    Decker, Caitlin Gayle

    2015-01-01

    the   polymer  backbone,  but  100  mM  carbonate  /  carbonate   /   bicarbonate  (pH  10)  buffer  partially   degraded  the  polymer  polymer  2  in   either  D-­PBS  or  100  mM  carbonate  /  

  15. Computationally-guided Design of Polymer Electrolytes

    E-Print Network [OSTI]

    Stoltz, Brian M.

    carbonates. #12;Computationally-guided Design of Polymer Electrolytes Project Summary Michael Webb RigidRESEARCH HIGHLIGHTS Computationally-guided Design of Polymer Electrolytes From the Resnick of Polymer Electrolytes Global Significance While progress of sustainable energy- harvesting techniques

  16. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  17. Nitinol-reinforced shape-memory polymers

    E-Print Network [OSTI]

    Di Leo, Claudio V

    2010-01-01

    Reinforced shape-memory polymers have been developed from an acrylate based thermoset shape-memory polymer and nitinol wires. A rectangular shape-memory polymer measuring approximately 1 by 2 by 0.1 inches has a ten fold ...

  18. Nanostructure Control of Biologically Inspired Polymers

    E-Print Network [OSTI]

    Rosales, Adrianne

    2013-01-01

    E. B. ; Wagener, K. B. Polymer 2008, 49, 2985-2995. Boz,T. ; Matyjaszewski, K. Polymer 2008, 49, 1567-1578. Kim,Flory, P. J. ; Jackson, J. B. Polymer 1963, 4, (2), 221-236.

  19. Polymer Composites in Construction: An Overview

    E-Print Network [OSTI]

    Mosallam, AS; Bayraktar, A; Elmikawi, M; Pul, S; Adanur, S

    2015-01-01

    Pul S, Adanur S (2013) Polymer Composites in Construction:Pul S, Adanur S (2013) Polymer Composites in Construction:Mater Sci Eng 2(1), 25. Polymer Composites in Construction:

  20. Journal Title: Journal of polymer science. Part B, Polymer physics

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    composites. rigid rod polymer. mo- lecular modeling. poly (azomethine) · epoxy. glass/epoxy composite. Such composites would find * To whom correspondence should be addressed. Journal of Polymer Science: Part B molecular composite. Since heat conduction oc- curs more efficiently intramolecularly (through bonds) than

  1. POLYMER PROGRAM SEMINAR "Polymer Approaches to Basic Questions in Biology"

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR "Polymer Approaches to Basic Questions in Biology" Prof. Dennis E. Discher, biology is filled with remarkable polymeric structures that motivate mimicry with goals of both clarifying and exploiting biological principles. Filamentous viruses have inspired our development and computations of worm

  2. Effect of Nanotube Functionalization on the Properties of Single-Walled Carbon Nanotube/Polyurethane Composites

    E-Print Network [OSTI]

    Resasco, Daniel

    thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly almost all increases seen previously in thermoplastic poly- urethanes; however, the increase was still; polyurethanes; seg- mented polyurethanes; SAXS; single-walled carbon nanotubes INTRODUCTION Thermoplastic

  3. Compatibilization/Compounding Evaluation of Recovered Polymers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CompatibilizationCompounding Evaluation of Recovered Polymers CompatibilizationCompounding Evaluation of Recovered Polymers Presentation from the U.S. DOE Office of Vehicle...

  4. Partially fluorinated cyclic ionic polymers and membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu

    2013-04-09

    Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

  5. Performance Enhancement of Cathodes with Conductive Polymers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancement of Cathodes with Conductive Polymers Performance Enhancement of Cathodes with Conductive Polymers Presentation from the U.S. DOE Office of Vehicle Technologies "Mega"...

  6. Nanocellulose in Polymer Composites and Biomedical: Research...

    Office of Scientific and Technical Information (OSTI)

    Nanocellulose in Polymer Composites and Biomedical: Research and Applications Citation Details In-Document Search Title: Nanocellulose in Polymer Composites and Biomedical:...

  7. Solid electrolyte material manufacturable by polymer processing...

    Office of Scientific and Technical Information (OSTI)

    Patent: Solid electrolyte material manufacturable by polymer processing methods Citation Details In-Document Search Title: Solid electrolyte material manufacturable by polymer...

  8. Polymers in a vacuum

    E-Print Network [OSTI]

    J. M. Deutsch

    2007-06-13

    In a variety of situations, isolated polymer molecules are found in a vacuum and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. The time autocorrelation for monomer position oscillates with a characteristic time proportional to chain length. The oscillations and damping are analyzed in detail. Short range repulsive interactions suppress oscillations and speed up relaxation but stretched chains still show damped oscillatory time correlations.

  9. Conducting polymer ultracapacitor

    DOE Patents [OSTI]

    Shi, Steven Z. (Latham, NY); Davey, John R. (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM); Ren, Xiaoming (Los Alamos, NM)

    2002-01-01

    A sealed ultracapacitor assembly is formed with first and second electrodes of first and second conducting polymers electrodeposited on porous carbon paper substrates, where the first and second electrodes each define first and second exterior surfaces and first and second opposing surfaces. First and second current collector plates are bonded to the first and second exterior surfaces, respectively. A porous membrane separates the first and second opposing surfaces, with a liquid electrolyte impregnating the insulating membrane. A gasket formed of a thermoplastic material surrounds the first and second electrodes and seals between the first and second current collector plates for containing the liquid electrolyte.

  10. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  11. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, John D. (Kennewick, WA); Gross, Mark E. (Pasco, WA)

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  12. 3. Advanced Polymer Molecular Science

    E-Print Network [OSTI]

    Duh, Kevin

    3. Advanced Polymer Molecular Science Advanced Polymer Science 4. Photo-Functional Elements at the Center of Advanced Technology Photonic Device Science 5. Research on Functional Information Elements supporting the Next-generation Information Society Information Device Science EL 6. Energy Electronic

  13. 78 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 1, MARCH 2002 Single-Walled Carbon Nanotube Electronics

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    78 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 1, MARCH 2002 Single-Walled Carbon Nanotube--Field-effect transistors (FETs), interconnections, nanotechnology, nanotube. I. INTRODUCTION SINGLE-WALLED carbon nanotubes

  14. Fundamental studies of polymer filtration

    SciTech Connect (OSTI)

    Smith, B.F.; Lu, M.T.; Robison, T.W.; Rogers, Y.C.; Wilson, K.V.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were (1) to develop an enhanced fundamental understanding of the coordination chemistry of hazardous-metal-ion complexation with water-soluble metal-binding polymers, and (2) to exploit this knowledge to develop improved separations for analytical methods, metals processing, and waste treatment. We investigated features of water-soluble metal-binding polymers that affect their binding constants and selectivity for selected transition metal ions. We evaluated backbone polymers using light scattering and ultrafiltration techniques to determine the effect of pH and ionic strength on the molecular volume of the polymers. The backbone polymers were incrementally functionalized with a metal-binding ligand. A procedure and analytical method to determine the absolute level of functionalization was developed and the results correlated with the elemental analysis, viscosity, and molecular size.

  15. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy J. (330 Thrasher Ave., Livermore, CA 94550); Even, Jr., William R. (4254 Drake Way, Livermore, CA 94550)

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  16. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    SciTech Connect (OSTI)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A.; Gámez-Corrales, R.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ?2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage ??0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube ? OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  17. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    SciTech Connect (OSTI)

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-12-15

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO{sub 2}, ZnO and Fe{sub 2}O{sub 3} as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO{sub 2}, Fe{sub 2}O{sub 3} and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  18. Oilfield flooding polymer

    DOE Patents [OSTI]

    Martin, Fred D. (Socorro, NM); Hatch, Melvin J. (Socorro, NM); Shepitka, Joel S. (Socorro, NM); Donaruma, Lorraine G. (Syosset, NY)

    1986-01-01

    A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.

  19. Inhibition of Hotspot Formation in Polymer Bonded Explosives Using an Interface Matching Low Density Polymer Coating at the Polymer-

    E-Print Network [OSTI]

    Goddard III, William A.

    Inhibition of Hotspot Formation in Polymer Bonded Explosives Using an Interface Matching Low Density Polymer Coating at the Polymer- Explosive Interface Qi An, William A. Goddard, III,*, Sergey V/s) on a prototype polymer bonded explosive (PBX) consisting of cyclotrimethylene trinitramine (RDX) bonded

  20. Metallic Carbon Nanotubes and Ag Nanocrystals

    SciTech Connect (OSTI)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  1. Carbon nanotube formation by laser direct writing

    SciTech Connect (OSTI)

    Wu, Y.-T.; Su, H.-C.; Tsai, C.-M.; Liu, K.-L.; Chen, G.-D.; Huang, R.-H.; Yew, T.-R.

    2008-07-14

    This letter presents carbon nanotube (CNT) formation by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The CNTs were synthesized under appropriate combination of laser energy density and a-C thickness. The growth mechanism and key parameters to determine the success of CNT formation were also discussed. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures.

  2. Nanotube Composite Anode Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More LikeNanotube Composite Anode

  3. Control of multiple excited image states around segmented carbon nanotubes

    E-Print Network [OSTI]

    Knörzer, J; Sadeghpour, H R; Schmelcher, P

    2015-01-01

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  4. Carbon Nanotubes Potentialities in Directional Dark Matter Searches

    E-Print Network [OSTI]

    L. M. Capparelli; G. Cavoto; D. Mazzilli; A. D. Polosa

    2014-12-28

    We propose a new solution to the problem of dark matter directional detection based on large parallel arrays of carbon nanotubes. The phenomenon of ion channeling in single wall nanotubes is simulated to calculate the expected number of recoiling carbon ions, due to the hypothetical scattering with dark matter particles, subsequently being driven along their longitudinal extension. As shown by explicit calculation, the relative orientation of the carbon nanotube array with respect to the direction of motion of the Sun has an appreciable effect on the channeling probability of the struck ion and this provides the required detector anisotropic response.

  5. Nanotube diameter optimal for channeling of high-energy particle beam

    E-Print Network [OSTI]

    V. M. Biryukov; S. Bellucci

    2002-06-04

    Channeling of particle beam in straight and bent single-wall nanotubes has been studied in computer simulations. We have found that the nanotubes should be sufficiently narrow in order to steer efficiently the particle beams, with preferred diameter in the order of 0.5-2 nm. Wider nanotubes, e.g. 10-50 nm, appear rather useless for channeling purpose because of high sensitivity of channeling to nanotube curvature. We have compared bent nanotubes with bent crystals as elements of beam steering technique, and found that narrow nanotubes have an efficiency of beam bending similar to that of crystals.

  6. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite

    SciTech Connect (OSTI)

    Sharma, Manjula Sharma, Vimal; Pal, Hemant

    2014-04-24

    Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.

  7. Catalytic Growth of Single-Wall Carbon Nanotubes: An {ital Ab Initio} Study

    SciTech Connect (OSTI)

    Lee, Y.H.; Kim, S.G.; Tomanek, D.; Lee, Y.H.

    1997-03-01

    We propose a catalytic growth mechanism of single-wall carbon nanotubes based on density functional total energy calculations. Our results indicate nanotubes with an {open_quotes}armchair{close_quotes} edge to be energetically favored over {open_quotes}zigzag{close_quotes} nanotubes. We also suggest that highly mobile Ni catalyst atoms adsorb at the growing edge of the nanotube, where they catalyze the continuing assembly of hexagons from carbon feedstock diffusing along the nanotube wall. In a concerted exchange mechanism, Ni atoms anneal carbon pentagons that would initiate a dome closure of the nanotube. {copyright} {ital 1997} {ital The American Physical Society}

  8. Polymer adsorption near the surface of a polymer solution : a universal behaviour

    E-Print Network [OSTI]

    Boyer, Edmond

    699 Polymer adsorption near the surface of a polymer solution : a universal behaviour J. des5 , pour 0 03B5 1. Abstract.2014 A universal property of good solutions of long polymers near. Introduction. The free surface of a polymer solution may attract the polymer which forms an adsorbed layer

  9. ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics.

    E-Print Network [OSTI]

    Vajda, Sandor

    ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics. Prof. Rama Bansil Class will be assumed. The course will not emphasize synthetic polymer chemistry. Practical applications of polymers of classes TEXT BOOKS Main Text Book: Required: Polymer Chemistry, 2nd Edition, Hiemenz and Lodge, CRC Press

  10. Polymer Thermodynamics and Chain Structure Polymers display some similarities and some differences with nano-aggregates.

    E-Print Network [OSTI]

    Beaucage, Gregory

    Polymer Thermodynamics and Chain Structure Polymers display some similarities and some differences with nano-aggregates. Both materials are composed of basic units, Kuhn units for polymers which are rod an aggregate in nanomaterials and a polymer coil in Polymer Science. The mass-fractal or minimum dimension

  11. APA International Conference on Polymers : Vision & Innovations

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    the scientific community working in the field of polymer science and technology. This conference on polymersAssociation (APA) is a professional society dedicated to the science of polymers at the international level and to formulate the action plan to face the challenges ahead. The conference would be dedicated to polymer science

  12. Disentanglementand Reptation During Dissolution of Rubbery Polymers

    E-Print Network [OSTI]

    Peppas, Nicholas A.

    Disentanglementand Reptation During Dissolution of Rubbery Polymers BALAJI NARASIMHAN and NIKOLAOS-1283 SYNOPSIS The dissolution mechanism of rubbery polymers was analyzed by dividing the penetrant concentration penetration into the rubbery polymer was assumed to be Fickian. The mode of mobility of the polymer chains

  13. Kac polymers Paolo Butt`a

    E-Print Network [OSTI]

    Procacci, Aldo

    Kac polymers Paolo Butt`a Aldo Procacci Benedetto Scoppola Abstract We show how a polymer in two- sidered on the appropriate scale. Key words: Polymers, Kac potentials, phase transition. Running title: Kac polymers Dedicated to a Marzio Cassandro's birthday. 1 Introduction In the last two decades

  14. Non-strinking siloxane polymers

    DOE Patents [OSTI]

    Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM)

    2001-01-01

    Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.

  15. Thermally Activated Processes in Polymer Glasses

    E-Print Network [OSTI]

    V. Parihar; D. Drosdoff; A. Widom; Y. N. Srivastava

    2005-12-03

    A derivation is given for the Vogel-Fulcher-Tammann thermal activation law for the glassy state of a bulk polymer. Our microscopic considerations involve the entropy of closed polymer molecular chains (i.e. polymer closed strings). For thin film polymer glasses, one obtains open polymer strings in that the boundary surfaces serve as possible string endpoint locations. The Vogel-Fulcher-Tammann thermal activation law thereby holds true for a bulk polymer glass but is modified in the neighborhood of the boundaries of thin film polymers.

  16. Thermodynamics of tubelike flexible polymers

    E-Print Network [OSTI]

    Thomas Vogel; Thomas Neuhaus; Michael Bachmann; Wolfhard Janke

    2009-07-17

    In this work we present the general phase behavior of short tubelike flexible polymers. The geometric thickness constraint is implemented through the concept of the global radius of curvature. We use sophisticated Monte Carlo sampling methods to simulate small bead-stick polymer models with Lennard-Jones interaction among non-bonded monomers. We analyze energetic fluctuations and structural quantities to classify conformational pseudophases. We find that the tube thickness influences the thermodynamic behavior of simple tubelike polymers significantly, i.e., for given temperature, the formation of secondary structures strongly depends on the tube thickness.

  17. Electrical, electromagnetic and structural characteristics of carbon nanotube-polymer nanocomposites

    E-Print Network [OSTI]

    Park, Sung-Hoon

    2009-01-01

    S. Melt processing of SWCNT- polyimide nanocomposite fibers74] and SWNT/polyimide[75] type nanocomposites. In Situ

  18. Electrical, electromagnetic and structural characteristics of carbon nanotube-polymer nanocomposites

    E-Print Network [OSTI]

    Park, Sung-Hoon

    2009-01-01

    composites mechanical, electrical and optical properties.Nanocomposites: Rheology and Electrical Conductivity.Weglikowska, Roth S. Electrical and mechanical properties of

  19. Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    , their conductivity can be lost. Here, it is shown that conductivities can be recovered through melt annealing 1 S/m have been realized with loadings of just ca. 2 wt.% of MWCNTs [6,7] or 5 wt.% of CNFs [8 that a rather wide range of conductivity values have been reported, sometimes much lower than might be expected

  20. A Multiscale Study of High Performance Double-Walled Nanotube Polymer

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    - tinuous CNT yarns from CVD grown CNT aerogels.1,2,34 The stretching of the low den- sity aerogels of CNTs

  1. Synthesis and Integration of Nanostructured Carbon: Carbon Nanotube-Polymer Nanocomposites and Graphene

    E-Print Network [OSTI]

    Gulotty, Richard Stephen

    2014-01-01

    annealing, and corresponding graphene membranes fabricated from the films on Si aperture and stainless steelannealing (b), and corresponding graphene membranes fabricated from the films on Si aperture (c) and stainless steel

  2. Polymer-assisted deposition of films and preparation of carbon nanotube

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide.representationComplexsame

  3. Polymer-assisted deposition of films and preparation of carbon nanotube

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide.representationComplexsamearrays using the films

  4. Thermodynamics of Water Entry in Hydrophobic Channels of Carbon Nanotubes

    E-Print Network [OSTI]

    Hemant Kumar; Biswaroop Mukherjee; Shiang-Tai Lin Chandan Dasgupta; A. K. Sood; Prabal K. Maiti

    2011-08-19

    Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermody- namic understanding of this phenomenon, we use the recently developed Two Phase Thermodynamics (2PT) method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk wa- ter and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius.

  5. Raman Scattering in Carbon Nanotubes Christian Thomsen1

    E-Print Network [OSTI]

    Nabben, Reinhard

    , which make them a model system for one-dimensional physics, their relative ease of preparation of graphene ­ are relatively well understood. Still, nanotube research has given new impetus to the study

  6. Energy storage in carbon nanotube super-springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2008-01-01

    A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

  7. New concepts in energy and mass transport within carbon nanotubes

    E-Print Network [OSTI]

    Choi, Wonjoon, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    The unique structure of carbon nanotubes (CNTs) contributes to their distinguished properties, making them useful in nanotechnology. CNTs have been explored for energy transport in next-generation, such as light-emitting ...

  8. Chemically driven carbon-nanotube-guided thermopower waves

    E-Print Network [OSTI]

    Choi, Wonjoon

    Theoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. ...

  9. Minimum Exergy Requirements for the Manufacturing of Carbon Nanotubes

    E-Print Network [OSTI]

    Gutowski, Timothy G.

    The purpose of this paper is to address both the high values, and the large variation in reported values for the energy requirements for the production of carbon nanotubes. The paper includes an estimate of the standard ...

  10. In Silico Assembly And Nanomechanical Characterization Of Carbon Nanotube Buckypaper

    E-Print Network [OSTI]

    Cranford, Steven Wayne

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling ...

  11. Growth and deterministic assembly of single stranded carbon nanotube

    E-Print Network [OSTI]

    Doddabasanagouda, Sunil

    2006-01-01

    The ability to control the shape, position, alignment, length and assembly of carbon nanotubes over large areas has become an essential but very difficult goal in the field of nanotechnology. Current assembly efforts for ...

  12. Characterization of surfactant dispersed single wall nanotube - polystyrene matrix nanocomposite 

    E-Print Network [OSTI]

    Ayewah, Daniel Osagie, Oyinkuro

    2009-05-15

    Carbon nanotubes (CNT) are a new form of carbon with exceptional electrical and mechanical properties. This makes them attractive as inclusions in nanocomposite materials with the potential to provide improvements in electrical and mechanical...

  13. Synthesis and metrology of conducting carbon nanotube assemblies

    E-Print Network [OSTI]

    Longson, Timothy Jay

    2013-01-01

    the CNTs from the ”aerogel” state within the furnace [15].The ”aerogel” state is described as having the consistencypurity nanotubes to form an aerogel (19) in the furnace hot

  14. Design and modeling of carbon nanotube-based compliant mechanisms

    E-Print Network [OSTI]

    DiBiasio, Christopher M. (Christopher Michael)

    2007-01-01

    The objective of this research is to generate the knowledge required to adapt macro- and microscale compliant mechanism theory to design carbon nanotube-based nano-scale compliant mechanisms. Molecular simulations of a ...

  15. The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth

    E-Print Network [OSTI]

    Wirth, Christoph T.; Bayer, Bernhard C.; Gamalski, Andrew D.; Esconjauregui, Santiago; Weatherup, Robert S.; Ducati, Caterina; Baehtz, Carsten; Robertson, John; Hofmann, Stephan

    2012-11-28

    growth modes occur upon hydrocarbon exposure: For ?-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For ?-rich catalyst mixtures, Fe3C formation more...

  16. Calorimetric studies of small-molecule adsorption to carbon nanotubes

    E-Print Network [OSTI]

    Glab, Kristin Lena

    2009-01-01

    Isothermal titration calorimetry (ITC) was developed as a technique for qualitatively comparing the heat of absorption of small molecules to single-walled carbon nanotubes (SWCNTs). In agreement with other studies, it was ...

  17. Carbon Nanotubes and Nano-Structure Manufacturing at TJNAF |...

    Office of Science (SC) Website

    use tens of watts to make nanotubes at around 200 milligrams per hour. Michael W. Smith, a staff scientist at NASA Langley Research Center, and his colleagues designed a new...

  18. BCN Nanotubes as Highly Sensitive Torsional Electromechanical Transducers

    E-Print Network [OSTI]

    Joselevich, Ernesto

    BCN Nanotubes as Highly Sensitive Torsional Electromechanical Transducers Jonathan Garel, Chong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical

  19. Carbon nanotubes: in situ studies of growth and electromechanical properties 

    E-Print Network [OSTI]

    Weis, Johan Ek

    2011-11-23

    Carbon nanotubes have been found to have extraordinary properties, such as ballistic electrical conductivity, extremely high thermal conductivity and they can be metallic or semiconducting with a wide range of band ...

  20. Carbon nanotube processing and chemistry for electronic interconnect applications

    E-Print Network [OSTI]

    Wu, Tan Mau, 1979-

    2008-01-01

    Carbon nanotubes possess many properties that are ideally suited for electronic applications, such as metallic/semiconducting behavior and ballistic transport. Specifically, in light of mounting concerns over the increasing ...

  1. Computational Study of Catalyzed Growth of Single Wall Carbon Nanotubes 

    E-Print Network [OSTI]

    Zhao, Jin

    2010-01-14

    orbital (LUMO) of armchair nanotubes are studied and used to explain the change of reaction energy with tube length. Another property, the aromaticity of the rings forming a tube is also studied using Nucleus Independent Chemical Shift (NICS) as probe...

  2. Modeling Catalyzed Growth of Single-Walled Carbon Nanotubes 

    E-Print Network [OSTI]

    Beetge, Jenni Mignon

    2013-02-27

    of the nanotube. Using SIMCAT, a reactive force field code, simulations are run for pure Ni nanoparticles with two types of carbon containing C2 precursor gas, each having five different support interaction energies, for three nanoparticle sizes. The same...

  3. Enhanced Photovoltaic Properties of Potassium-Adsorbed Titania Nanotubes

    SciTech Connect (OSTI)

    Richter, C.; Jaye, C; Fischer, D; Lewis, L; Willey, R; Menon, L

    2009-01-01

    It is demonstrated that vertically-aligned titania nanotube planar arrays fabricated by electrochemical anodization using standard potassium-containing electrolytes invariably contain a significant amount of surface-adsorbed potassium ions, hitherto undetected, that affect the titania photoelectrochemical or PEC performance. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy reveals the strong ionic nature of surface potassium-titania bonds that alters the PEC performance over that of pure titania nanotubes through reduction of the external electrical bias needed to produce hydrogen at maximum efficiency. This result implies that the external electrical energy input required per liter of solar hydrogen produced with potassium-adsorbed titania nanotubes may be reduced. Tailoring the potassium content may thus be an alternative means to fine-tune the photoelectrochemical response of TiO2 nanotube-based PEC electrodes.

  4. Carbon nanotube field effect transistors for power application

    E-Print Network [OSTI]

    Pan, Tao, S.M. Massachusetts Institute of Technology

    2007-01-01

    Carbon nanotubes (CNTs) are nanometer-diameter cylinders formed from rolled-up graphene sheets which have found widespread interests due to their many excellent electrical properties. In particular, most of them are direct ...

  5. Comment on "Single Crystals of Single-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Natelson, Douglas

    Comment on "Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly" Schlittler) by the thermolysis of nano- patterned structures of alternating layers of C60 and nickel. Electron diffraction, high

  6. Previous Article: Carbon Nanotubes Coated in Bee Venom

    E-Print Network [OSTI]

    Ruina, Andy L.

    Previous Article: Carbon Nanotubes Coated in Bee Venom Can Detect Even a Single Molecule just a nickel's worth of electricity. The robot's previous record, set in July of last year, was just

  7. Template-based Ferromagnetic Nanowires and Nanotubes: Fabrication and Characterization 

    E-Print Network [OSTI]

    Wei, Zhiyuan

    2013-05-01

    This dissertation describes experimental studies of the structures and properties, and their correlations in ferromagnetic nanowires and nanotubes fabricated using porous templates. Ferromagnetic Ni and Fe nanowires with diameters 30 ~ 250 nm were...

  8. Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment

    E-Print Network [OSTI]

    Culpepper, Martin Luther

    Carbon-nanotube (CNT) -based strain sensors have the potential to overcome some of the limitations in small-scale force/displacement sensing technologies due to their small size and high sensitivity to strain. A better ...

  9. Optical studies of DNA-wrapped carbon nanotubes

    E-Print Network [OSTI]

    Chou, Shin Grace

    2006-01-01

    This thesis presents a series of detailed optical studies of phonon-assisted relaxation processes in DNA-wrapped single walled carbon nanotubes. Using resonance Raman spectroscopy (RRS) and photoluminescence spectroscopy ...

  10. Carbon Nanotube Growth Using Ni Catalyst in Different Layouts

    E-Print Network [OSTI]

    Nguyen, H. Q.

    Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates ...

  11. Diameter dependence of thermoelectric power of semiconducting carbon nanotubes

    E-Print Network [OSTI]

    Hung, Nguyen T.

    We calculate the thermoelectric power (or thermopower) of many semiconducting single wall carbon nanotubes (s-SWNTs) within a diameter range 0.5–1.5 nm by using the Boltzmann transport formalism combined with an extended ...

  12. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect (OSTI)

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  13. Ferrimagnetic Spin Wave Resonance and Superconductivity in Carbon Nanotubes

    E-Print Network [OSTI]

    Dmitri Yerchuck; Yauhen Yerchak; Vyacheslav Stelmakh; Alla Dovlatova; Andrey Alexandrov

    2013-05-14

    The phenomenon of ferrimagnetic spin wave resonance [uncompensated antiferromagnetic spin wave resonance] has been detected for the first time. It has been observed in carbon nanotubes, produced by high energy ion beam modification of diamond single crystals in $\\ $ direction. Peculiarities of spin wave resonance observed allow to insist on the formation in given nanotubes of $s^+$ superconductivity at room temperature, coexisting with uncompensated antiferromagnetic ordering.

  14. Apparatus for the production of boron nitride nanotubes

    SciTech Connect (OSTI)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  15. Synthesis of silicon nanotubes by DC arc plasma method

    SciTech Connect (OSTI)

    Tank, C. M.; Bhoraskar, S. V.; Mathe, V. L.

    2012-06-05

    Plasma synthesis is a novel technique of synthesis of nanomaterials as they provide high rate of production and promote metastable reactions. Very thin walled silicon nanotubes were synthesized in a DC direct arc thermal plasma reactor. The effect of parameters of synthesis i.e. arc current and presence of hydrogen on the morphology of Si nanoparticles is reported. Silicon nanotubes were characterized by Transmission Electron Microscopy (TEM), Local Energy Dispersive X-ray analysis (EDAX), and Scanning Tunneling Microscopy (STM).

  16. Production of single-walled carbon nanotube grids

    DOE Patents [OSTI]

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  17. Characterization of macro-length conducting polymers and the development of a conducting polymer rotary motor

    E-Print Network [OSTI]

    Schmid, Bryan D. (Bryan David), 1981-

    2005-01-01

    Conducting polymers are a subset of materials within the electroactive polymer class that exhibit active mechanical deformations. These deformations induce stresses and strains that allow for conducting polymers to be used ...

  18. Constitutive modeling of active polymers

    E-Print Network [OSTI]

    Therkelsen, Scott V. (Scott Vincent), 1980-

    2005-01-01

    This thesis develops a three-dimensional constitutive model of active polymeric materials, including changes in material volume and properties due to actuation. Active polymers reversibly change shape, volume and/or material ...

  19. Manganese uptake of imprinted polymers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  20. Conductive polymer-based material

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI); Dourado, Sunil K. (Ann Arbor, MI); Dulebohn, Joel I. (Lansing, MI); Hanchar, Robert J. (Charlotte, MI)

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  1. A conjugated polymer plastic gel

    E-Print Network [OSTI]

    Alcazar Jorba, Daniel

    2008-01-01

    We present a gel route to process highly oriented conjugated polymer films and fibers. The incorporation of hexafluoroisopropanol, a strong and stable dipolar group, to the polythiophene backbone enhances the solubility ...

  2. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  3. High elastic modulus polymer electrolytes

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  4. Polymer Bose--Einstein Condensates

    E-Print Network [OSTI]

    E. Castellanos; G. Chacon-Acosta

    2013-01-22

    In this work we analyze a non--interacting one dimensional polymer Bose--Einstein condensate in an harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose--Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for $\\lambda^{2}$ up to $ \\lesssim 10 ^{-16}$m$^2$. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.

  5. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  6. Exploring Polymer and Liposomal Carriers for Optimized Drug Delivery

    E-Print Network [OSTI]

    Ferguson, Heidi M

    2012-01-01

    1459–1467. Fox, M. E. Dendritic polymers for the delivery ofiii Chapter 1: Introduction to Polymer and Liposome Drugbioavailability. Conclusions Polymers and liposomes can be

  7. Optimizing Morphology of Bulk Heterojunction Polymer Solar Cells

    E-Print Network [OSTI]

    Gao, Jing

    2014-01-01

    Heterojunction Polymer Solar Cells A dissertation submittedBulk Heterojunction Polymer Solar Cells by Jing Gao Doctorheterojunction polymer solar cells is profoundly influenced

  8. Polymers and Coatings:Materials Science & Technology, MST-7:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polymer sample Applied Polymer Research scintillator Characterization and Forensics aerogels Fundamental Polymer Research hipjoint Surface Science and Coatings white light Target...

  9. Coordination polymers and building blocks based on ditopic heteroscorpionate ligands

    E-Print Network [OSTI]

    Santillan, Guillermo A.

    2009-01-01

    of Silver (I) Coordination Polymers formed through hydrogenBlocks for Coordination Polymers” Inorg. Chem. *One of theof Silver(I) Coordination Polymers Formed through Hydrogen

  10. Application of Atmospheric Pressure Plasma in Polymer and Composite Adhesion

    E-Print Network [OSTI]

    Yu, Hang

    2015-01-01

    oxidation of selected polymers using an atmospheric pressuremorphological modification of polymers under a helium-oxygenand dicyclopentadiene polymer, Submitted to Carbon for

  11. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    E-Print Network [OSTI]

    Warren, Clinton Gregory

    2010-01-01

    Recent Developments in Polymer MEMS. Advanced Materials,using thin silicon/polymer bimorph membranes. Sensors andof cantilever arrays reveal polymer film expansion and

  12. Gas sorption properties of zwitterion-functionalized carbon nanotubes

    SciTech Connect (OSTI)

    Surapathi, Anil; Chen, Hang-yan; Marand, Eva; Johnson, J Karl, Zdenka Sedlakova

    2013-02-15

    We have functionalized carbon nanotubes with carboxylic acid and zwitterion groups. We have evaluated the effect of functionalization by measuring the sorption of CO{sub 2}, CH{sub 4}, and N{sub 2} at 35? for pressures up to 10 bar. Zwitterion functionalized nanotubes were found to be highly hygroscopic. Thermal gravimetric analysis indicates that water can be desorbed at about 200°C. The adsorption of gases in zwitterion functionalized nanotubes is dramatically reduced compared with nanotubes functionalized with carboxylic acid groups. The presence of water on the zwitterion functionalized nanotube reduces the sorption even further. Molecular simulations show that three or more zwitterion groups per tube entrance are required to significantly reduce the flux of CO{sub 2} into the tubes. Simulations also show that gas phase water is rapidly sorbed into the zwitterion functionalized nanotubes, both increasing the free energy barrier to CO{sub 2} entering the tube and also lowering the equilibrium adsorption through competitive adsorption.

  13. Catalyst-free carbon nanotubes from coal-based material

    SciTech Connect (OSTI)

    Mathur, R.B.; Lal, C.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India)

    2007-01-01

    DC-Arc Discharge technique has been used to synthesize carbon nanotubes from super clean coal samples instead of graphite electrodes filled with metal catalysts. The adverse effect of the mineral matter present in coal may be, thus, avoided. The cathode deposits showed the presence of single walled carbon nanotubes as well, which are generally known to be formed only in presence of transition metal catalysts and lanthanides. The process also avoids the tedious purification treatments of carbon nanotubes by strong acids to get rid of metal catalysts produced as impurities along with nanotubes. Thus, coal may be refined and demineralized by an organorefining technique to obtain super clean coal, an ultra low ash coal which may be used for the production of carbon nanotubes. The residual coal obtained after the organorefining may be used as an energy source for raising steam for power generation. Thus, coal may afford its use as an inexpensive feedstock for the production of carbon nanotubes besides its conventional role as a fuel for power generation.

  14. High cation transport polymer electrolyte

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL); Klingler, Robert J. (Westmont, IL)

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  15. Motor-Driven Assembly of Dynamic Self-Healing Lipid Nanotube...

    Office of Scientific and Technical Information (OSTI)

    Motor-Driven Assembly of Dynamic Self-Healing Lipid Nanotube Networks. Citation Details In-Document Search Title: Motor-Driven Assembly of Dynamic Self-Healing Lipid Nanotube...

  16. Theoretical and simulation tools for electron transfer and chain reactions in single walled carbon nanotubes

    E-Print Network [OSTI]

    Nair, Nitish

    2009-01-01

    Single walled carbon nanotubes (SWNT) are cylindrical sheets of graphene whose electronic structures and diameters are determined by their chiralities. Current synthetic methods produce batches of nanotubes containing a ...

  17. Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed Cmos Electronics

    E-Print Network [OSTI]

    Chen, Xiangyu

    Carbon-based nanomaterials such as metallic single-walled carbon nanotubes, multiwalled carbon nanotubes (MWCNTs), and graphene have been considered as some of the most promising candidates for future interconnect technology ...

  18. Effects of doping single and double walled carbon nanotubes with nitrogen and boron

    E-Print Network [OSTI]

    Villalpando Paéz, Federico

    2006-01-01

    Controlling the diameter and chirality of carbon nanotubes to fine tune their electronic band gap will no longer be enough to satisfy the growing list of characteristics that future carbon nanotube applications are starting ...

  19. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph Collin; Stadermann, Michael

    2014-07-15

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  20. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  1. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    E-Print Network [OSTI]

    SUSHMEE BADHULIKA, FNU

    2011-01-01

    Maciver, B.A. , 1976. Hydrogen-Sensitive Palladium Gate MosPalladium nanoparticles decorated single-walled carbon nanotube hydrogenPalladium nanoparticles decorated single-walled carbon nanotube hydrogen

  2. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOE Patents [OSTI]

    Johnson, Jr., Alan T. (Philadelphia, PA); Gelperin, Alan (Princeton, NJ); Staii, Cristian (Madison, WI)

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  3. High Resolution Additive Patterning of Nanoparticles and Polymers Enabled by Vapor Permeable Polymer Templates

    E-Print Network [OSTI]

    Demko, Michael Thomas

    2012-01-01

    Stress in a Solvent-Cast Thermoplastic Coating. Journal ofcrosslinker, or a thermoplastic polymer which is raisedlidify the liquefied thermoplastic polymer (thermal NIL). 82

  4. Neonatal Umbilical Mass

    E-Print Network [OSTI]

    Alexander, Geoffrey; Walsh, Ryan; Nielsen, Adam

    2013-01-01

    Bldg 9040 Fitzsimmons Drive, Tacoma, WA 98431. Email:of Emergency Medicine, Tacoma, Washington Supervising

  5. Metal-doped single-walled carbon nanotubes and production thereof

    DOE Patents [OSTI]

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  6. Nanotubes, nanorods and nanowires having piezoelectric and/or pyroelectric properties and devices manufactured therefrom

    DOE Patents [OSTI]

    Russell, Thomas P. (Amherst, MA); Lutkenhaus, Jodie (Wethersfield, CT)

    2012-05-15

    Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or pyroelectric polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.

  7. Nanostructured polymer membranes for proton conduction

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  8. Mechanical and electrical evaluation of parylene-C encapsulated carbon nanotube networks on a flexible substrate

    E-Print Network [OSTI]

    Dokmeci, Mehmet

    Mechanical and electrical evaluation of parylene-C encapsulated carbon nanotube networks, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube SWNT.1063/1.2976633 Carbon nanotube CNT networks are excellent candi- dates for flexible electronic devices and sensors due

  9. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode

    E-Print Network [OSTI]

    Zhou, Chongwu

    Nano Res 1 Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode Titanium Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode JiepengRong,,§Xin Fang Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode Jiepeng Rong,1,§ Xin Fang,1,§ Mingyuan Ge,1

  10. Field emission and current-voltage properties of boron nitride nanotubes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Field emission and current-voltage properties of boron nitride nanotubes John Cumings*, A. Zettl microscope. Stable currents were measured in a field emission geometry, but in contact the nanotubes Published by Elsevier Ltd. PACS: 79.70. þ q Keywords: A. Boron nitride; B. Nanotubes; C. Field emission

  11. Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

    DOE Patents [OSTI]

    Hauge, Robert H. (Houston, TX); Xu, Ya-Qiong (Houston, TX); Shan, Hongwei (Houston, TX); Nicholas, Nolan Walker (South Charleston, WV); Kim, Myung Jong (Houston, TX); Schmidt, Howard K. (Cypress, TX); Kittrell, W. Carter (Houston, TX)

    2012-02-28

    A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.

  12. Huliq:Breaking News Submit News Login Linear Nanotubes Offer Path To High-Performance Electronics

    E-Print Network [OSTI]

    Rogers, John A.

    Huliq:Breaking News Submit News Login Linear Nanotubes Offer Path To High-Performance Electronics.MoSys.com Page 1 of 2Linear nanotubes offer path to high-performance electronics | Huliq: Breaking News 3/28/2007http://www.huliq.com/16423/linear-nanotubes-offer-path-to-high-performance-electronics #12;compared

  13. Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model

    E-Print Network [OSTI]

    Nordlund, Kai

    was shown to reinforce the bundles giving rise to a 30-fold increase in the bundle bending modulus [8]. One nanotube products have been made [1­6]. Nanotube mats [1­3] known also as nanotube bucky paper were]) and weak interactions between the bundles, the experimentally measured tensile modulus, strength and strain

  14. Examination of the high-frequency capability of carbon nanotube FETs David L. Pulfrey *, Li Chen

    E-Print Network [OSTI]

    Pulfrey, David L.

    Examination of the high-frequency capability of carbon nanotube FETs David L. Pulfrey *, Li Chen was arranged by Jurriaan Schmitz Keywords: Carbon nanotubes Field-effect transistors High-frequency a b s t r a c t New results are added to a recent critique of the high-frequency performance of carbon nanotube

  15. High-frequency capability of Schottky-barrier carbon nanotube FETs L.C. Castroa

    E-Print Network [OSTI]

    Pulfrey, David L.

    High-frequency capability of Schottky-barrier carbon nanotube FETs L.C. Castroa , D.L. Pulfreyb: carbon nanotube field-effect transistor, small-signal properties, high-frequency figures of merit, resonance. Abstract. The high-frequency capability of carbon nanotube field-effect transistors

  16. Exciton-like trap states limit electron mobility in TiO2 nanotubes

    E-Print Network [OSTI]

    Exciton-like trap states limit electron mobility in TiO2 nanotubes Christiaan Richter and Charles A , that low mobility in polycrystalline TiO2 nanotubes is not due to scattering from grain boundaries (electrons) be transported through an anodic TiO2 electrode, either along the length of nanotubes in the case

  17. Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization

    E-Print Network [OSTI]

    Lin, Zhiqun

    Articles Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical,5 photocatalytic,6 and solar cells.7­10 In the latter context, each individual TiO2 nanotube is perpendicular acid (HF) aqueous solution was used as electrolyte, the maximum thickness of TiO2 nanotube arrays

  18. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes

    E-Print Network [OSTI]

    Daraio, Chiara

    Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes Seunghan Oh, Chiara: Vertically aligned yet laterally spaced nanoscale TiO2 nanotubes have been grown on Ti by anodization/propagation of the osteoblast is substantially improved by the topography of the TiO2 nanotubes with the filopodia of growing

  19. Carbon monoxide annealed TiO2 nanotube array electrodes for efficient biosensor applications

    E-Print Network [OSTI]

    Cao, Guozhong

    Carbon monoxide annealed TiO2 nanotube array electrodes for efficient biosensor applications-grown and the O2-annealed TNT array electrodes. The improved biosensor properties of the TiO2 nanotube arrays were, particularly TiO2 nanotubes (TNT), which possess large surface areas, have been widely used as chemical sensors

  20. Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films

    E-Print Network [OSTI]

    Reed, Mark

    Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform nanotubes grown on patterned nickel nanodots and uniform thin films by plasma-enhanced chemical vapor on patterned nickel nanodots and uniform thin films is different. During growth of carbon nanotubes, a nickel

  1. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot

    E-Print Network [OSTI]

    Reed, Mark

    nanotube s on submicron nickel dot s on silicon has been achieved by plasma that the structures are indeed hollow nanotubes. The diameter and height depend on the nickel dot size and growth time aligned carbon nanotubes has been dem- onstrated on glass,10 on nickel,11 and on silicon.12,13 Here we

  2. Single-walled carbon nanotube growth from ion implanted Fe catalyst Yongho Choi

    E-Print Network [OSTI]

    Ural, Ant

    the growth of carbon nanotubes. Typically, transition metal nanoparticles, such as nickel Ni , iron FeSingle-walled carbon nanotube growth from ion implanted Fe catalyst Yongho Choi Department-walled carbon nanotubes can be grown by chemical vapor deposition from ion implanted iron catalyst

  3. COMMUNICATIONS Deposition of aligned bamboo-like carbon nanotubes via microwave

    E-Print Network [OSTI]

    of carbon nanotubes on nickel,11 but twist-like defects also exist along carbon nano- tubes. The abilityCOMMUNICATIONS Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced for publication 31 August 2000 Aligned multiwall carbon nanotubes have been grown on silicon substrates

  4. Journal of Power Sources 160 (2006) 14871494 Supercapacitors using carbon nanotubes films by electrophoretic deposition

    E-Print Network [OSTI]

    Pan, Ning

    2006-01-01

    with single-walled carbon nanotubes by using polished nickel foil with lower contact resistivityJournal of Power Sources 160 (2006) 1487­1494 Supercapacitors using carbon nanotubes films-walled carbon nanotube (MWNT) thin films have been fabricated by electrophoretic deposition technique

  5. Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide

    E-Print Network [OSTI]

    Kim, Bongsoo

    Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide Kwanyong properties that are determined by the chirality1 and diameter of carbon nanotubes. One way to overcome@skku.ac.kr Application of carbon nanotubes (CNTs) to various electronic devices such as field emission displays, gas

  6. Atomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via

    E-Print Network [OSTI]

    , and mechanical properties of the nanotubes. Atomic layer deposition (ALD) on single-walled carbon nanotubesAtomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via Gas-Phase Noncovalent, 2005; Revised Manuscript Received February 6, 2006 ABSTRACT Alternating exposures of nitrogen dioxide

  7. Carbon Nanotube-Containing Structures, Methods Of Making, And Processes Using Same

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA); Chin, Ya-Huei (Richland, WA); Gao, Yufei (Blue Bell, PA); Aardahl, Christopher L. (Richland, WA); Stewart, Terri L. (Richland, WA)

    2004-11-30

    Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.

  8. Carbon nanotube-containing structures, methods of making, and processes using same

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA); Chin, Ya-Huei (Richland, WA); Gao, Yufei (Blue Bell, PA); Aardahl, Christopher L. (Richland, WA); Stewart, Terri L. (Richland, WA)

    2006-03-14

    Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.

  9. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    DOE Patents [OSTI]

    Chu,Benjamin (Setauket, NY); Hsiao, Benjamin S. (Setauket, NY)

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  10. Biodegradation of polymer coatings

    SciTech Connect (OSTI)

    Jones, W.R.; Walch, M.; Jones-Meehan, J.

    1994-12-31

    Conventional paint removal methods include chemical stripping with VOCs blasting with plastic media, and delamination with high pressure water. These methods have many limitations, in that they are labor intensive, pose human health risks, are relatively expensive and pose significant waste disposal problems. However, polymeric coatings are known to contain structural components, such as ester, amide and urea linkages, that can be degraded biologically. The authors are working to develop a stable, enzyme-based, non-toxic paint stripping strategy that will be environmentally safe and cost effective. The specific objectives are to identify and characterize microbial systems capable of degrading polymeric coatings, to develop a quantitative degradation assay and to optimize activity levels for subsequent purification and concentration of the biological products required for rapid degradation of coatings. A water-dispersed colloid of an ester-based polyurethane polymer has been used in solid growth medium to screen about 100 different bacteria for microbial degradation activity. Those with demonstrable activity have been grown in the presence of epoxy-polyamide paint- and polyester polyurethane paint-coated aluminum coupons. The authors have demonstrated delamination under certain conditions and have developed a spectrophotometric method for quantitating degradation activity as a function of dye release.

  11. Polymer Parametrised Field Theory

    E-Print Network [OSTI]

    Alok Laddha; Madhavan Varadarajan

    2008-05-02

    Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as that of spacetime diffeomorphisms are represented in an anomaly free manner. Semiclassical states can be analysed at the gauge invariant level. It is shown that `physical weaves' necessarily underly such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.

  12. Method for making nanotubes and nanoparticles

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Piedmont, CA)

    2000-01-01

    The present invention is an apparatus and method for producing nano-scale tubes and particles. The apparatus comprises novel electrodes for use in arc discharge techniques. The electrodes have interior conduits for delivery and withdrawal of material from the arc region where product is formed. In one embodiment, the anode is optionally made from more than one material and is termed a compound anode. The materials used in the compound anode assist in the reaction that forms product in the arc region of the apparatus. The materials assist either by providing reaction ingredients, catalyst, or affecting the reaction kinetics. Among other uses, the inventive apparatus is used to produce nanotubes and nanoparticles having a variety of electrical and mechanical properties.

  13. A boron nitride nanotube peapod thermal rectifier

    SciTech Connect (OSTI)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  14. ROMP-based polymer composites and biorenewable rubbers

    SciTech Connect (OSTI)

    Jeong, Wonje

    2009-01-01

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  15. Test Method Extensional viscosity of a thermotropic liquid crystalline polymer

    E-Print Network [OSTI]

    Feng, James J.

    Test Method Extensional viscosity of a thermotropic liquid crystalline polymer measured by thread the extensional viscosity of thermotropic liquid crystalline polymer: disintegration of liquid crystalline polymer liquid crystalline polymer (TLCP) 1. Introduction The structure and orientation of thermotropic liquid

  16. Dynamic shear responses of polymer-polymer interfaces

    E-Print Network [OSTI]

    Yasuya Nakayama; Kiyoyasu Kataoka; Toshihisa Kajiwara

    2012-07-17

    In multi-component soft matter, interface properties often play a key role in determining the properties of the overall system. The identification of the internal dynamic structures in non-equilibrium situations requires the interface rheology to be characterized. We have developed a method to quantify the rheological contribution of soft interfaces and evaluate the dynamic modulus of the interface. This method reveals that the dynamic shear responses of interfaces in bilayer systems comprising polypropylene and three different polyethylenes can be classified as having hardening and softening effects on the overall system: a interface between linear long polymers becomes more elastic than the component polymers, while large polydispersity or long-chain-branching of one component make the interface more viscous. We find that the chain lengths and architectures of the component polymers, rather than equilibrium immiscibility, play an essential role in determining the interface rheological properties.

  17. Polymer Welding: Strength Through Entanglements

    E-Print Network [OSTI]

    Ting Ge; Flint Pierce; Dvora Perahia; Gary S. Grest; Mark O. Robbins

    2012-11-29

    Large-scale simulations of thermal welding of polymers are performed to investigate the rise of mechanical strength at the polymer-polymer interface with the welding time. The welding process is in the core of integrating polymeric elements into devices as well as in thermal induced healing of polymers; processes that require development of interfacial strength equal to that of the bulk. Our simulations show that the interfacial strength saturates at the bulk shear strength much before polymers diffuse by their radius of gyration. Along with the strength increase, the dominant failure mode changes from chain pullout at the interface to chain scission as in the bulk. Formation of sufficient entanglements across the interface, which we track using a Primitive Path Analysis is required to arrest catastrophic chain pullout at the interface. The bulk response is not fully recovered until the density of entanglements at the interface reaches the bulk value. Moreover, the increase of interfacial strength before saturation is proportional to the number of interfacial entanglements between chains from opposite sides.

  18. Chemical Engineering 3Q03 Introduction to Polymer Science

    E-Print Network [OSTI]

    Thompson, Michael

    27247 grahal5@mcmaster.ca Textbook: Polymer Science & Technology, 2nd edition by Joel R. Fried1 Chemical Engineering 3Q03 Introduction to Polymer Science Term II 2013 Instructor: Dr. Emily Objectives: -Introduce polymer science for advanced polymer courses (Polymer Processing, Polymer Reaction

  19. Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium

    DOE Patents [OSTI]

    Bakajin, Olgica (San Leandro, CA); Noy, Aleksandr (Belmont, CA)

    2007-11-06

    A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

  20. Carbon-13 Labeled Polymers: An Alternative Tracer for Depth Profiling of Polymer Films and

    E-Print Network [OSTI]

    Carbon-13 Labeled Polymers: An Alternative Tracer for Depth Profiling of Polymer Films profiling of polymer films and multilayers using secondary ion mass spectrometry (SIMS). Deuterium substitution has traditionally been used in depth profiling of polymers but can affect the phase behavior

  1. ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics.

    E-Print Network [OSTI]

    Vajda, Sandor

    ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics. Prof. Rama Bansil Class: Blackboard.bu.edu ME/MS/BE 504 PY 744 A1 POLYMERS AND SOFT MATERIALS (FALL 2012) (12FALLENGME504_A1) E with thermodynamics and statistical mechanics will be assumed. Practical applications of polymers will be discussed

  2. Confining multiple polymers between sticky walls: a directed walk model of two polymers

    E-Print Network [OSTI]

    Rechnitzer, Andrew

    Confining multiple polymers between sticky walls: a directed walk model of two polymers Thomas Wong 30, 2014 Abstract We study a model of two polymers confined to a slit with sticky walls. More on the square lattice. We compare the infinite slit limit, in which the length of the polymer (thermodynamic

  3. Some Rigorous Results on Semiflexible Polymers I. Free and confined polymers

    E-Print Network [OSTI]

    Velenik, Yvan

    Some Rigorous Results on Semiflexible Polymers I. Free and confined polymers O. Hryniva , Y 4, Switzerland Abstract We introduce a class of models of semiflexible polymers. The latter, called the persistence length, being of the same order as the polymer length. We determine

  4. Nanoimprint Lithography for Functional Polymer Patterning 

    E-Print Network [OSTI]

    Cui, Dehu

    2012-02-14

    controlling the electrical and photophysical properties of conjugated polymers by nanoimprint. Systematic investigation of polymer chain configuration by Raman spectroscopy is carried out to understand how nanoimprint process parameters, such as mold pattern...

  5. Lubrication by charged polymers , Suzanne Giasson2

    E-Print Network [OSTI]

    Klein, Jacob

    .............................................................. Lubrication by charged polymers Uri lubricants between sliding charged surfaces8 . Here we show that brushes of charged polymers (polyelectro- lytes) attached to surfaces rubbing across an aqueous medium result in superior lubrication compared

  6. Dynamics of Polymers in Flowing Colloidal Suspensions

    E-Print Network [OSTI]

    Chen, Hsieh

    Using hydrodynamic simulations we examine the behavior of single polymers in a confined colloidal suspension under flow. We study the conformations of both, collapsed and noncollapsed polymers. Our results show that the ...

  7. The challenges of organic polymer solar cells

    E-Print Network [OSTI]

    Saif Addin, Burhan K. (Burhan Khalid)

    2011-01-01

    The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

  8. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  9. Modeling and optimization of Interpenetrating polymer

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    to design new materials ­ Key characteristic : Tough & flexible · High value material Huge market industry 3 Bone implantScaffol d Automotive parts Full network Semi- network Polymer A Polymer B Fig. 1 IPN

  10. Quantitative Modeling of Polymer Scratch Behavior 

    E-Print Network [OSTI]

    Hossain, Mohammad Motaher

    2013-12-02

    and pressure dependent behavior of polymers, and the surface condition of the interacting surfaces also add to the complexity. In order to gain in-depth understanding of polymer scratch behavior; this dissertation focuses on numerical analysis and experimental...

  11. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  12. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P. (Los Alamos, NM); Apen, Paul G. (Los Alamos, NM); Mitchell, Michael A. (Los Alamos, NM)

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  13. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P. (Los Alamos, NM); Apen, Paul G. (Los Alamos, NM); Mitchell, Michael A. (Los Alamos, NM)

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  14. Configurations of polymers attached to probes

    E-Print Network [OSTI]

    Bubis, Roy

    We study polymers attached to spherical (circular) or paraboloidal (parabolic) probes in three (two) dimensions. Both self-avoiding and random walks are examined numerically. The behavior of a polymer of size R[subscript ...

  15. Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES

    SciTech Connect (OSTI)

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

    2007-09-30

    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  16. Post polymerization cure shape memory polymers

    DOE Patents [OSTI]

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  17. Intermolecular Adhesion in Conjugated Polymers

    E-Print Network [OSTI]

    Jeremy D. Schmit; Alex J. Levine

    2006-10-25

    Conjugated polymers are observed to aggregate in solution. To account for this observation we propose a inter-chain binding mechanism based on the intermolecular tunneling of the delocalized $\\pi$-electrons occurring at points where the polymers cross. This tunneling mechanism predicts specific bound structures of chain that depend on whether they are semiconducting or metallic. Semiconducting chains should form polyacene-like states exhibiting binding at every other site, while (doped) metallic chains can bind at each site. We also show that solitons co-localize with the intermolecular binding sites thereby strengthening the binding effect and investigate the conformational statistics of the resulting bimolecular aggregates.

  18. Polymer / Elastomer and Composite Material Science

    E-Print Network [OSTI]

    Polymer / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites and piping Material issues Polymers/Elastomers Composites Questions 2 #12;Main Points to Remember 1

  19. Nordic Polymer Days 2006 Copenhagen, Denmark

    E-Print Network [OSTI]

    Abstract Nordic Polymer Days 2006 Copenhagen, Denmark Polyacrylamide nanosensor embedded Scharff-Poulsen, c Hong Gu, d Wolf B. Fromme, b Iver Jakobsen, a Kristoffer Almdal a The Danish Polymer-linked polymer in nanometer scale, have several advantages over direct loading of cells with fluorescent probes

  20. Organosiloxane-grafted natural polymer coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1998-01-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation.