Sample records for umbilicals polymer nanotube

  1. Carbon nanotube-polymer composite actuators

    DOE Patents [OSTI]

    Gennett, Thomas (Denver, CO); Raffaelle, Ryne P. (Honeoye Falls, NY); Landi, Brian J. (Rochester, NY); Heben, Michael J. (Denver, CO)

    2008-04-22T23:59:59.000Z

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  2. Carbon nanotube polymer composition and devices

    DOE Patents [OSTI]

    Liu, Gao (Oakland, CA); Johnson, Stephen (Richmond, CA); Kerr, John B. (Oakland, CA); Minor, Andrew M. (El Cerrito, CA); Mao, Samuel S. (Castro Valley, CA)

    2011-06-14T23:59:59.000Z

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  3. Carbon Nanotube Polymer Composites While there are limitless

    E-Print Network [OSTI]

    Harmon, Julie P.

    Carbon Nanotube Polymer Composites Figure1 Figure2 While there are limitless applications industry. Initially, we focused on optically transparent single wall nanotoube (SWNT) polymer composites (2 to produce poly (methyl methacrylate) (PMMA) nanotube composites. When these composites are dissolved

  4. Elastic and Viscoelastic Properties of Non-bulk Polymer Interphases in Nanotube-reinforced Polymers

    E-Print Network [OSTI]

    Fisher, Frank

    Elastic and Viscoelastic Properties of Non-bulk Polymer Interphases in Nanotube-reinforced Polymers polymer composite materials with outstanding mechanical, electrical, and thermal properties. A hurdle to nanoscale interactions between the embedded NTs and adjacent polymer chains. This interphase region

  5. Polymer Nanofibers and Nanotubes: Charge Transport and Device Applications

    E-Print Network [OSTI]

    Andrey N. Aleshin

    2007-01-31T23:59:59.000Z

    A critical analysis of recent advances in synthesis and electrical characterization of nanofibers and nanotubes made of different conjugated polymers is presented. The applicability of various theoretical models is considered in order to explain results on transport in conducting polymer nanofibers and nanotubes. The relationship between these results and the one-dimensional (1D) nature of the conjugated polymers is discussed in light of theories for tunneling in 1D conductors (e.g. Luttinger liquid, Wigner crystal). The prospects for nanoelectronic applications of polymer fibers and tubes as wires, nanoscale field-effect transistors (nanoFETs), and in other applications are analyzed.

  6. Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices

    E-Print Network [OSTI]

    Hong, Soon Hyung

    Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices Gwang photovoltaic device are fabricated using homogeneously dispersed carbon nanotubes (CNTs) in a polymer. All rights reserved. 1. Introduction Organic photovoltaic (OPV) materials promise the production

  7. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing

    E-Print Network [OSTI]

    Garmestani, Hamid

    of thermal conductance in a composite material assuming a linear law of mixing, and nanotube­polymerEnhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic and electrical properties of single wall carbon nanotube CNT -polymer composites are significantly enhanced

  8. Synthesis and Characterization of Polymer Composites Containing Aligned Conducting Polymers and Carbon Nanotubes 

    E-Print Network [OSTI]

    Manda, Swathi

    2014-04-21T23:59:59.000Z

    with high power factor by modulating the morphology of the conducting polymer poly-(3,4-ethylenedioxythiophene) (PEDOT) and creating a composite with carbon nanotubes to control the mobility and hence the electrical conductivity of the thin films. Aligned...

  9. Stimuli-responsive polymer nanotube arrays

    E-Print Network [OSTI]

    Chia, Khek-Khiang

    2011-01-01T23:59:59.000Z

    Nanotube arrays, composed of materials such as carbon, titania, and zinc oxide, have shown potential as conductors, energy conversion devices, actuators, and adhesives. Such nanoscale constructs are particularly novel for ...

  10. Structure-Property Relationships in Carbon Nanotube-Polymer Systems: Influence of Noncovalent Stabilization Techniques 

    E-Print Network [OSTI]

    Liu, Lei

    2010-01-20T23:59:59.000Z

    A variety of experiments were carried out to study the dispersion and microstructure of carbon nanotubes in aqueous suspensions and polymer composites with the goal to improve the electrical conductivity of the composites containing nanotubes. Epoxy...

  11. Purification of boron nitride nanotubes via polymer wrapping

    SciTech Connect (OSTI)

    Choi, Jin-Hyuk [Department of Nano Science and Technology, Sejong University, 98 Gunja, Gwangjin, Seoul 143-747 (Korea, Republic of); Kim, Jaewoo [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353 (Korea, Republic of); WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353 (Korea, Republic of); Seo, Duckbong [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353 (Korea, Republic of); Seo, Young-Soo, E-mail: ysseo@sejong.ac.kr [Department of Nano Science and Technology, Sejong University, 98 Gunja, Gwangjin, Seoul 143-747 (Korea, Republic of)

    2013-03-15T23:59:59.000Z

    Highlights: ? Surface modification of boron nitride nanotubes using polymeric materials. ? Surface-modified BNNT was purified with a simple dilution-centrifugation step. ? Surface-modified BNNT can be directly used for polymer composite fabrication ? Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitored by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.

  12. Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes, or Carbon Black?

    E-Print Network [OSTI]

    Daraio, Chiara

    Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes, Switzerland *S Supporting Information ABSTRACT: Superhydrophobic surfaces resisting water penetration fabrication of highly electrically conductive, polymer-based superhydrophobic coatings, with impressive

  13. Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow

    E-Print Network [OSTI]

    Garmestani, Hamid

    of the carbon nanotubes on their ability to enhance the mechanical properties of the composites that they form of carbon nanotube dispersion on composite properties, their degree of alignment in the respective matrixUniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow Erin

  14. Polymer Grafted Janus Multi-Walled Carbon Nanotubes

    SciTech Connect (OSTI)

    Priftis, Dimitrios [ORNL; Sakellariou, Georgios [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK); Mays, Jimmy [ORNL; Hadjichristidis, Nikos [University of Athens, Athens, Greece

    2009-01-01T23:59:59.000Z

    We describe a novel and facile strategy to modify the surface of carbon nanotubes (CNTs) with two chemically different polymer brushes utilizing the grafting from technique. A [4 + 2] Diels Alder cycloaddition reaction was used to functionalize multi-walled carbon nanotubes (MWNTs) with two different precursor initiators, one for ring opening polymerization (ROP) and one for atom transfer radical polymerization (ATRP). The binary functionalized MWNTs were used for the simultaneous surface initiated polymerizations of different monomers resulting in polymer grafted MWNTs that can form Janus type structures under appropriate conditions. 1H NMR, FTIR and Raman spectra showed that the precursor initiators were successfully synthesized and covalently attached on the CNT surface. Thermogravimetric analysis (TGA) revealed that the grafted polymer content varies when different monomer ratios and polymerization times are used. The presence of an organic layer around the CNTs was observed through transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) proved that the glass transition (Tg) and melting (Tm) temperatures of the grafted polymers are affected by the presence of the CNTs, while circular dichroism (CD) spectra indicated that the PLLA ahelix conformation remains intact.

  15. Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer Encapsulation

    E-Print Network [OSTI]

    Javey, Ali

    Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer report hysteresis-free carbon nanotube thin-film transistors (CNT-TFTs) employing a fluorocarbon polymer (Teflon-AF) as an encapsulation layer. Such fluorocarbon encapsulation improves device uniformity

  16. Computational modeling of thermal conductivity of single walled carbon nanotube polymer composites

    E-Print Network [OSTI]

    Maruyama, Shigeo

    was developed to study the thermal conductivity of single walled carbon nanotube (SWNT)-polymer composites1 Computational modeling of thermal conductivity of single walled carbon nanotube polymer resistance on effective conductivity of composites were quantified. The present model is a useful tool

  17. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; Lin, Xiao-Min; Trasobares, Susana; Cook, Russell E.

    2009-01-01T23:59:59.000Z

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20?nm pore membranes. The synthesized carbonmore »nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  18. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect (OSTI)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2008-10-23T23:59:59.000Z

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  19. Synthesis of Thermal Interface Materials Made of Metal Decorated Carbon Nanotubes and Polymers

    E-Print Network [OSTI]

    Okoth, Marion Odul

    2011-10-21T23:59:59.000Z

    -Methly-2-Pyrrolidone (NMP). The metals used for this experiment were copper (Cu), tin (Sn), and nickel (Ni). The metal nanoparticles were seeded using functionalized MWCNTs as templates. Once seeded, the nanotubes and polymer composites were made...

  20. Conducting Polymer Nanotubes toward Supercapacitor Ran Liu and Sang Bok Lee*

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Conducting Polymer Nanotubes toward Supercapacitor Ran Liu and Sang Bok Lee* Capacitive properties density, power density values of the supercapacitors. Under the same charge- discharge current densities (5mA/cm2) and equal scan rate of cyclic voltammogram (CV, 100mV/s), nanotube supercapacitors

  1. Polymer-assisted deposition of films and preparation of carbon nanotube arrays using the films

    DOE Patents [OSTI]

    Luo, Hongmei; Li, Qingwen; Bauer, Eve; Burrell, Anthony Keiran; McCleskey, Thomas Mark; Jia, Quanxi

    2013-07-16T23:59:59.000Z

    Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer, a metal precursor having a first metal selected from iron, nickel, cobalt, and molybdenum, and optionally a second metal selected from aluminum and magnesium, and also a binding agent that forms a complex with the first metal and a complex with the second metal. The coated substrate was exposed to a reducing atmosphere at elevated temperature, and then to a hydrocarbon in the reducing atmosphere. The result was decomposition of the polymer and formation of carbon nanotubes on the substrate. The carbon nanotubes were often in the form of an array on the substrate.

  2. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites

    E-Print Network [OSTI]

    Elliott, James

    Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites Yue composite. However, improvements in properties are by no means guaranteed, and the results are often in the composite. In this paper, we present classical molecular dynamics (MD) simulations of model polymer

  3. Modifying the Electronic Character of Single-Walled Carbon Nanotubes Through Anisotropic Polymer Interaction

    E-Print Network [OSTI]

    Harmon, Julie P.

    , single-walled carbon nanotube (SWNT)±polymer composites have received much attention due to their im is at least 10±6 S m±1 . Composites of SWNTs have been proposed as a possible way to increase the conductivity of the SWNT±PMMA composite. Structural changes of both SWNTs and polymers resulting from their interactions

  4. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01T23:59:59.000Z

    and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon NanotubePolymer Photovoltaics 6.1 Polymer-Nanotube

  5. Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics 

    E-Print Network [OSTI]

    Kim, Dasaroyong

    2010-10-12T23:59:59.000Z

    in polymer technology, particularly nanomaterial-polymer composites, can bring them into degenerate semiconductor or metallic regimes by incorporating a small amount of conductive filler. I demonstrate that such polymer nanocomposites can be viable for light...

  6. CARBON NANOTUBE POLYMER NANOCOMPOSITES FOR ELECTROMECHANICAL SYSTEM APPLICATIONS

    E-Print Network [OSTI]

    Chakrabarty, Arnab

    2010-10-12T23:59:59.000Z

    ....................................................................... 43 2.4.4 Elastic Modulus of Multi-wall Nanotubes ...................................................... 45 2.4.5 Twist/Torsion Modulus of Carbon Nanotubes ................................................ 49 2.4.6 Twist Modulus of Single... Torsion ............................................................................................................ 9? Figure 6 An Uncompahgre Ute Buffalo rawhide ceremonial rattle filled with quartz crystals 18...

  7. To cite this version : Pacchini, Sbastien and Dubuc, David and Flahaut, Emmanuel and Grenier, Katia. Double-walled carbon nanotube-based polymer

    E-Print Network [OSTI]

    Mailhes, Corinne

    the mainstream broad- band market. The use of composite materials based on carbon nanotubes (CNT) appears, Katia. Double-walled carbon nanotube-based polymer composites for electromagnetic protection. (2010-walled carbon nanotube-based polymer composites for electromagnetic protection se'bastien pacchini1,2 , david

  8. Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt and CNF-based composites in polystyrene (PS). The mech- anism behind the conductivity increase­CNF nano- composites, and impressive conductivities have been reported. For example, conductivities around

  9. Reinforcement Mechanisms in Polymer Nanotube Composites: Simulated Non-Bonded and Cross-Linked Systems

    E-Print Network [OSTI]

    Bebendorf, Mario

    of magnitude larger than the non-bonded composites. INTRODUCTION Composite materials consisting of carbon of three simulations related to the issue of load transfer in carbon nanotube/polymer composites is given the conditions under which stress transfer may occur in composite materials, and therefore provide insight on how

  10. Grafting Polymer Loops onto Functionalized Nanotubes: Monitoring Grafting and Loop Formation

    SciTech Connect (OSTI)

    Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2011-01-01T23:59:59.000Z

    Polystyrene functionalized at both ends (telechelic polymer) with epoxide groups (epoxy PS epoxy) was reacted with carboxylated multiwall carbon nanotubes (COOH MWNT) in solution in order to graft polymer chains at both ends onto the MWNT surface, forming loops. FT-IR spectroscopy was employed to monitor the formation of aromatic esters and to quantify the amount of telechelic grafted to the nanotube surface as a function of reaction time. When the samples were further annealed in the melt, an increase in the aromatic ester peak was observed, indicating that the unreacted chain ends further grafted to MWNT surfaces to form loops. By reacting the grafted nanotube samples further with monocarboxy terminated poly(4-methylstyrene) (COOH P4MS), the amount of epoxy PS epoxy that had only reacted at one end was determined. Reaction rate analysis indicates that that the grafting of epoxy PS epoxy to the nanotube surface is reaction controlled, as the FT-IR spectroscopy signal grows as a function of approximately t0.3. These studies exemplify how FT-IR spectroscopy can be used as a novel technique to quantify the amount of grafted polymer, grafting rate, and percent of difunctional polymers that form loops, and provide a method to create loop covered nanoparticles.

  11. Percolation in a nanotube-polymer system and its lumped-circuit modeling

    SciTech Connect (OSTI)

    Tuncer, Enis [ORNL; Vaia, Richard A [ORNL; Arlen, Michael Jeffrey [ORNL

    2010-01-01T23:59:59.000Z

    Electrical properties of composites composed of polyurethane polymer and multi-walled nanotubes are reported. Samples with different nanotube volume fractions are prepared, and an impedance spectroscopy technique in the frequency range from 10 mHz to 10 MHz is used to characterize the properties of the samples. It is observed that the resistivity of the mixture can be varied widely, from {approx}10 M{Omega}m to {approx}1 {Omega}m, just by slightly altering the volume fraction of nanotubes. A lumped-circuit model illustrated that the micro-scale morphology between nanotube-clusters influences the resistive relaxation in the composite system. The investigations show that the presented binary mixture has a potential to be utilized in conductive electrical components (flexible electrodes), electromagnetic shielding, and electrostatic and field grading materials for electronic and high voltage insulation technologies.

  12. Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics

    E-Print Network [OSTI]

    Kim, Dasaroyong

    2010-10-12T23:59:59.000Z

    nanocomposites were measured for carbon nanotubes and the thermoelectric figure of merit, ZT, was calculated at room temperature. The influence on thermoelectric properties from filler concentration, stabilizer materials and drying condition are also discussed....

  13. Mechanics of deformation of carbon nanotube-polymer nanocomposites

    E-Print Network [OSTI]

    Akiskalos, Theodoros, 1978-

    2004-01-01T23:59:59.000Z

    The goal is to develop finite element techniques to evaluate the mechanical behavior of carbon nanotube enabled composites and gain a thorough understanding of the parameters that affect the properties of the composite, ...

  14. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites

    E-Print Network [OSTI]

    Kim, Jun Young

    This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects ...

  15. Carbon Nanotube-Polymer Composites for Solar Cell Applications Quin Adler, Santa Clara University, SURF 2011 Participant

    E-Print Network [OSTI]

    Li, Mo

    Carbon Nanotube-Polymer Composites for Solar Cell Applications Quin Adler, Santa Clara University in the photovoltaic. A nanocomposite is chiefly a polymer matrix that is doped by adding a conducting filler. Carbon conductivity of the newly-pressed composites. Results/Discussion As Figure 1 demonstrates, there is a large

  16. Novel Actuating System Based on a Composite of Single-Walled Carbon Nanotubes and an Ionomeric Polymer

    E-Print Network [OSTI]

    Euler, William B.

    /NEMS technology [1]. Electrochemical and electromechanical properties of ionomeric polymer-metal composites (IPMCs, and relatively fast response time compared to ionic gels and conductive polymers . The most studied IPMC materialNovel Actuating System Based on a Composite of Single-Walled Carbon Nanotubes and an Ionomeric

  17. Single wall carbon nanotube/polymer composites Hai M Duong, haiduong@photon.t.u-tokyo.ac.jp, Erik Einarsson, erik@photon.t.u-tokyo.ac.jp, and Shigeo Maruyama,

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Single wall carbon nanotube/polymer composites PRES 63 Hai M Duong, haiduong, Japan Polymer and single wall carbon nanotube (SWNT) composites have been inspiring the development properties and density of SWNTs. The critical challenge of polymer/SWNT composites is how to control nanotube

  18. Using Theory to Model Polymer Properties There are two general themes to this research: (1) polymer degradation that occurs when

    E-Print Network [OSTI]

    the polymer with nanoinclusions of carbon nanotubes and graphene sheets and other structures. Polymer

  19. Structure-Property Relationships in Carbon Nanotube-Polymer Systems: Influence of Noncovalent Stabilization Techniques

    E-Print Network [OSTI]

    Liu, Lei

    2010-01-20T23:59:59.000Z

    composites containing covalently and noncovalently functionalized nanotubes were compared in terms of electrical and mechanical behavior. Covalent functionalization of nanotubes is based on chemical attachments of polyethylenimine (PEI) whereas noncovalent...

  20. Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites 

    E-Print Network [OSTI]

    Seidel, Gary Don

    2009-06-02T23:59:59.000Z

    The present work provides a micromechanics approach based on the generalized self-consistent composite cylinders method as a non-Eshelby approach towards for assessing the impact of carbon nanotubes on the multi-functional nature of nanocom...

  1. N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites

    E-Print Network [OSTI]

    Freeman, Dallas

    2012-07-16T23:59:59.000Z

    Carbon nanotubes were dispersed and functionalized with polyethylene imine (PEI) before incorporation in a polyvinyl acetate matrix. The resulting samples exhibit air-stable N-type characteristics with electrical conductivities as great as 1600 S...

  2. Processing, Characterization and Modeling Carbon Nanotube Modified Interfaces in Hybrid Polymer Matrix Composites

    E-Print Network [OSTI]

    Truong, Hieu 1990-

    2012-12-04T23:59:59.000Z

    Multifunctional hybrid composites are proposed as novel solutions to meet the demands in various industrial applications ranging from aerospace to biomedicine. The combination of carbon fibers and/or fabric, metal foil and carbon nanotubes...

  3. Stimuli-Tailored Dispersion State of Aqueous Carbon Nanotube Suspensions and Solid Polymer Nanocomposites

    E-Print Network [OSTI]

    Etika, Krishna

    2012-02-14T23:59:59.000Z

    -controlled dispersion of carbon nanotubes could have a variety of applications in nanoelectronics, sensing, and drug and gene delivery systems. Furthermore, this dissertation also contains a published study focused on controlling the dispersion state of carbon black (CB...

  4. Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites

    E-Print Network [OSTI]

    Seidel, Gary Don

    2009-06-02T23:59:59.000Z

    The present work provides a micromechanics approach based on the generalized self-consistent composite cylinders method as a non-Eshelby approach towards for assessing the impact of carbon nanotubes on the multi-functional nature of nanocom...

  5. Polymer and carbon nanotube materials for chemical sensors and organic electronics

    E-Print Network [OSTI]

    Wang, Fei, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

  6. N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites 

    E-Print Network [OSTI]

    Freeman, Dallas

    2012-07-16T23:59:59.000Z

    Carbon nanotubes were dispersed and functionalized with polyethylene imine (PEI) before incorporation in a polyvinyl acetate matrix. The resulting samples exhibit air-stable N-type characteristics with electrical conductivities as great as 1600 S...

  7. Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density

    E-Print Network [OSTI]

    Marconnet, Amy M.

    Nanostructured composites containing aligned carbon nanotubes (CNTs) are very promising as interface materials for electronic systems and thermoelectric power generators. We report the first data for the thermal conductivity ...

  8. Plasma deposition of Ultrathin polymer films on carbon nanotubes Donglu Shia)

    E-Print Network [OSTI]

    Liu, Yijun

    Received 21 May 2002; accepted 18 October 2002 Ultrathin films of pyrrole were deposited on the surfaces properties.1­6 One of the important developments in nano- structures is the synthesis of carbon nanotubes

  9. The effects of temperature and carbon nanotubes on conducting polymer actuator performance

    E-Print Network [OSTI]

    Keng, Yenmei

    2010-01-01T23:59:59.000Z

    Conducting polymers serve as electrically conductive actuators via ion diffusion in and out of the polymer when voltages are applied. Their actuation performance can be largely affected by deposition setup, post-deposition ...

  10. Oligomer functionalized nanotubes and composites formed therewith

    DOE Patents [OSTI]

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18T23:59:59.000Z

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  11. Finite Element Modelling and Molecular Dynamic Simulations of Carbon nanotubes/ Polymer Composites

    E-Print Network [OSTI]

    Gaddamanugu, Dhatri

    2010-07-14T23:59:59.000Z

    the velocities of carbon atoms in the nanotube. Results show that the Young's modulus increases with tube diameter in molecular mechanics whereas decreases in molecular dynamics since the inter-atomic potential due to chemical reactions between the atoms is taken...

  12. Finite Element Modelling and Molecular Dynamic Simulations of Carbon nanotubes/ Polymer Composites 

    E-Print Network [OSTI]

    Gaddamanugu, Dhatri

    2010-07-14T23:59:59.000Z

    ? ? 4. Since nanotubes are hollow, tubular, caged molecules, they have been proposed as lightweight large surface area packing material for gas-storage and hydrocarbon fuel storage devices, and gas or liquid filtration devices, as well as nanoscale... LIST OF FIGURES?????????????????????????? viii LIST OF TABLES??????????????????????????. xi CHAPTER I INTRODUCTION????????????????????????.. 1 II LITERATURE REVIEW?????????????????????? 4 III THEORY: NANOSTRUCTURES...

  13. A Multiscale Study of High Performance Double-Walled Nanotube Polymer

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    - tinuous CNT yarns from CVD grown CNT aerogels.1,2,34 The stretching of the low den- sity aerogels of CNTs of randomly oriented bundles of DWNTs thinly coated with polymeric organic compounds. A multiscale in situ performance of yarns and isolated DWNT bundles with and without polymer coatings. DWNT polymer yarns exhibited

  14. Stimuli-Tailored Dispersion State of Aqueous Carbon Nanotube Suspensions and Solid Polymer Nanocomposites 

    E-Print Network [OSTI]

    Etika, Krishna

    2012-02-14T23:59:59.000Z

    state. The ability to tailor nanoparticle dispersion state in liquid and solid media can ultimately provide a powerful method for tailoring the properties of solution processed nanoparticle-filled polymer composites. This dissertation reports the use...

  15. Development of novel graphene and carbon nanotubes based multifunctional polymer matrix composites

    SciTech Connect (OSTI)

    Leung, S. N., E-mail: naguib@mie.utoronto.ca; Khan, M. O., E-mail: naguib@mie.utoronto.ca; Naguib, H. E., E-mail: naguib@mie.utoronto.ca [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2014-05-15T23:59:59.000Z

    This paper investigates strategies to alter the nano-and-microstructures of carbon-based filler-reinforced polymer matrix composites (PMCs). The matrix materials being studied in this work include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP). A set of experiments were performed to investigate various strategies (i) to fabricate a morphological structure within the polymer matrix; (ii) to develop a thermally and electrically conductive network of nano-scaled fillers; and (iii) to produce a thermally conductive but electrically insulative network of hybrid fillers of nano-and-micro scales. The PMCs' structure-to-property relationships, including electrical and thermal properties, were revealed. In particular, the composites' effective thermal conductivities could be increased by as much as 10-folded over the neat polymers. By structuring the embedded electrically conductive pathways in the PMCs, their electrical conductivities could be tailored to levels that ranged from those of electrical insulators to those of semi-conductors. These multifunctional carbon-based filler-reinforced PMCs are envisioned to be potential solutions of various engineering problems. For example, light-weight thermally conductive PMCs with tailored electrical conductivities can serve as a new family of materials for electronic packaging or heat management applications.

  16. Load Transfer Analysis in Short Carbon Fibers with Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix

    E-Print Network [OSTI]

    Ray, M. C.

    A novel shortfiber composite in which the microscopic advanced fiber reinforcements are coated with radially aligned carbon nanotubes (CNTs) is analyzed in this study. A shear-lag model is developed to analyze the load ...

  17. Nanostructured polymer composites for electronics and sensor applications

    E-Print Network [OSTI]

    Fisher, Frank

    Nanostructured polymer composites for electronics and sensor applications Wednesday November 10 Michigan University, Kalamazoo, MI Nanostructured composites based on polymer matrix and carbon nanotubes (CNT), metallic nanoparticles and polymer core-shell latex systems will play a critical role

  18. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

    2010-11-16T23:59:59.000Z

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  19. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20T23:59:59.000Z

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  20. Functionalized Few-Walled Carbon Nanotubes for Mechanical

    E-Print Network [OSTI]

    Liu, Jie

    Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites Ye the application of such materials as reinforcing fillers in polyvinyl alcohol (PVA)- based composites. The results-polymer composites has remained elusive. In this study, free-standing carbon nanotubes (CNTs)/polymer composite films

  1. Towards a carbon nanotube antibody sensor

    E-Print Network [OSTI]

    Bojö, Peter

    2012-01-01T23:59:59.000Z

    This work investigated single-walled carbon nanotube (SWNT)/polymer-protein A complexes for optically reporting antibody concentration via a change in near infrared fluorescent emission after antibody binding. SWNT have ...

  2. ambipolar-transporting coaxial nanotubes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Fredriksson, Tore 2014-01-01 11 Research Progress of Organic polymer Composite Materials Modified by Carbon Nanotube CiteSeer Summary: ABSTRACT: Carbon nanotube is a kind of...

  3. Carbon nanotube fiber spun from wetted ribbon

    DOE Patents [OSTI]

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29T23:59:59.000Z

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  4. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15T23:59:59.000Z

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  5. Synthesis and characterization of next-generation multifunctional material architectures : aligned carbon nanotube carbon matrix nanocomposites

    E-Print Network [OSTI]

    Stein, Itai Y

    2013-01-01T23:59:59.000Z

    Materials comprising carbon nanotube (CNT) aligned nanowire (NW) polymer nanocomposites (A-PNCs) have emerged as promising architectures for next-generation multifunctional applications. Enhanced operating regimes, such ...

  6. Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites 

    E-Print Network [OSTI]

    Moriarty, Gregory P.

    2013-05-21T23:59:59.000Z

    fabrication temperatures. These concerns have led research efforts into electrically conductive polymer composites prepared in ambient conditions from aqueous solutions. By combining polymer latex with carbon nanotubes (CNT), electrical conductivity can...

  7. Constitutive modeling of nanotubereinforced polymer composites G.M. Odegarda,

    E-Print Network [OSTI]

    Odegard, Gregory M.

    as compared to stan- dard structural materials. In particular, carbon nanotube/ polymer composites may provide of polymeric composite materials reinforced with typical reinforcement such as carbon or glass fibers constitutive models for polymer composite systems reinforced with single- walled carbon nanotubes (SWNT

  8. Carbon Nanotube Reinforced Polymer Nanocomposites

    E-Print Network [OSTI]

    Southern California, University of

    Secondary Reaction Neat Resin Epoxy with Modified MWNT Sonication + High Shear Mixing In the properties of these nanocomposites. 20 40 60 80 100 120 140 160 180 200 220 0.0 0.2 0.4 0.6 0.8 1.0 Epoxy PGE-CNT-EPOXY

  9. Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications

    E-Print Network [OSTI]

    Huang, Jianbin

    such as silica dioxide (SiO2), titanium dioxide (TiO2), carbon nanotube (CNT), graphene, microgel, and polymer.18

  10. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes 

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03T23:59:59.000Z

    There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

  11. Heteroporphyrin nanotubes and composites

    DOE Patents [OSTI]

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07T23:59:59.000Z

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  12. Heteroporphyrin nanotubes and composites

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Medforth, Craig J. (Winters, CA); Wang, Zhongchun (Albuquerque, NM)

    2007-05-29T23:59:59.000Z

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  13. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12T23:59:59.000Z

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  14. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Wen, Jian (Newton, MA); Chen, Jinghua (Chestnut Hill, MA); Huang, Zhongping (Belmont, MA); Wang, Dezhi (Wellesley, MA)

    2008-10-28T23:59:59.000Z

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  15. D. De Rossi, F. Carpi, A. Mazzoldi Electrically responsive polymers

    E-Print Network [OSTI]

    Sandini, Giulio

    actuators, conducting polymers, dielectric elastomers, artificial muscles, biomedical applications. 1 by an electrically-induced transport of ions or molecules): · polyelectrolyte gels [2] · ion polymer metal composites [3]; · conducting polymers [4] · carbon nanotubes (they are currently classified as EAP, even though

  16. Electronic Properties of Carbon Nanotubes

    E-Print Network [OSTI]

    Collins, Philip G

    2008-01-01T23:59:59.000Z

    For example, nanotube “supercapacitors” exhibit very large74). Furthermore, nanotube supercapacitors can charge and

  17. SWNT/POLYMER COMPOSITES Hai M DUONG, Erik Einarsson, Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    SWNT/POLYMER COMPOSITES Hai M DUONG, Erik Einarsson, Shigeo Maruyama Department of Mechanical carbon nanotube (SWNT)composites have been inspiring the development of new high performance materials. The critical challenge of polymer/SWNT composites is how to control nanotube dispersion and alignment

  18. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01T23:59:59.000Z

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  19. Characterization of Nanoscale Reinforced Polymer Composites as Active Materials 

    E-Print Network [OSTI]

    Deshmukh, Sujay

    2012-02-14T23:59:59.000Z

    Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

  20. Characterization of Nanoscale Reinforced Polymer Composites as Active Materials

    E-Print Network [OSTI]

    Deshmukh, Sujay

    2012-02-14T23:59:59.000Z

    Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

  1. An Atomistic Study of the Mechanical Behavior of Carbon Nanotubes and Nanocomposite Interfaces 

    E-Print Network [OSTI]

    Awasthi, Amnaya P.

    2011-02-22T23:59:59.000Z

    The research presented in this dissertation pertains to the evaluation of stiffness of carbon nanotubes (CNTs) in a multiscale framework and modeling of the interfacial mechanical behavior in CNT-polymer nanocomposites. The goal is to study...

  2. In situ curing of polymeric composites via resistive heaters comprised of aligned carbon nanotube networks

    E-Print Network [OSTI]

    Lee, Jeonyoon

    2014-01-01T23:59:59.000Z

    The widespread application of polymer matrix composites (PMCs) has encouraged the use of nanofibers, especially carbon nanotubes (CNTs), to concurrently enhance the physical properties of such composites while adding ...

  3. Radiation Detection: Resistivity Responses in Functional Poly(Olefin Sulfone)/Carbon Nanotube Composites

    E-Print Network [OSTI]

    Swager, Timothy Manning

    Detection of gamma rays is shown using a non-scintillating organic-based sensor composed of poly(olefin sulfone)/carbon nanotube blends. Functionalization of the polymers can be performed after polymerization to tailor ...

  4. Umbilical cord blood gas analysis at the time of

    E-Print Network [OSTI]

    Aickelin, Uwe

    Umbilical cord blood gas analysis at the time of delivery Maureen Harris, Sarah L. Beckley, Jonathan M. Garibaldi, Robert D. E Keith and Keith R. Greene Aims: it is now recommended that cord blood. In this paper our experience of cord blood analysis is described and the literature is reviewed to: (I) provide

  5. Polymer films

    DOE Patents [OSTI]

    Granick, Steve (Champaign, IL); Sukhishvili, Svetlana A. (Maplewood, NJ)

    2008-12-30T23:59:59.000Z

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  6. Transparent Poly(methyl methacrylate)/Single-Walled Carbon Nanotube (PMMA/SWNT) Composite Films with Increased

    E-Print Network [OSTI]

    Harmon, Julie P.

    Transparent Poly(methyl methacrylate)/Single-Walled Carbon Nanotube (PMMA/SWNT) Composite Films to conventional polymer composites due to the stronger interac- tions between polymer and filler phases. Carbon and fast-growing class of materials with nanosized filler domains finely dispersed in a polymer matrix.[1

  7. Polymer Matrix Composites: A Perspective for a Special Issue of Polymer Reviews

    SciTech Connect (OSTI)

    Kessler, Michael R.

    2012-09-04T23:59:59.000Z

    Polymer matrix composites, with their high specific strength and stiffness, are used in a wide range of applications from large wind turbine blades to microelectronics. This perspective article provides a brief primer on polymer matrix composites, discusses some of their advantages and limitations, and describes a number of emerging trends in the field. In addition, it introduces four review articles on the topics of recent developments in carbon fibers, natural fiber reinforced composites, evaluation of the interface between the fiber reinforcement and polymer matrix, and carbon nanotube reinforced polymers.

  8. Direct Observation of Polymer Sheathing in Carbon

    E-Print Network [OSTI]

    Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites W. Ding, A (MWCNT)-polycarbonate composites are presented. This sheathing was observed in images of the composite properties, increases in electrical conductivity3 and improved thermal properties4 are obtained with small

  9. Characterization of Solution-Processed Double-Walled Carbon Nanotube/

    E-Print Network [OSTI]

    Ounaies, Zoubeida

    ductility was retained.[4] Po¨tschke et al. reported a significant increase in the conductivity and the dielectric constant of a polycarbonate composite by adding multi-walled carbon nanotubes (MWNTs).[5 it is conductive, was calculated to be 1.0 wt.-% for the MWNTs. Ounaies Full Paper Dispersion of CNTs in polymers

  10. Carbon nanotube based pressure sensor for flexible electronics

    SciTech Connect (OSTI)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15T23:59:59.000Z

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  11. High frequency nanotube oscillator

    DOE Patents [OSTI]

    Peng, Haibing (Houston, TX); Zettl, Alexander K. (Kensington, TX)

    2012-02-21T23:59:59.000Z

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  12. INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS

    E-Print Network [OSTI]

    Zhou, Yaoqi

    INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS such as S. mutans treated with cigarette smoke condensate (CSC) and nicotine have on human umbilical vein and supernatants will then be used to treat HUVEC cells for 72 hours before the media is collected and analyzed

  13. INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS

    E-Print Network [OSTI]

    Zhou, Yaoqi

    INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS of S. mutans UA 159 has on binding to Human Umbilical Vein Endothelial Cells (HUVEC) when treated to treat HUVECs for 72 hours and cytotoxicity was determined by lactate dehydrogenase (LDH) assays

  14. Reinforced Carbon Nanotubes.

    DOE Patents [OSTI]

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2005-06-28T23:59:59.000Z

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  15. F.T. Fisher and L.C. Brinson SEM 2002 Annual Conference VISCOELASTICITY AND PHYSICAL AGING OF CARBON NANOTUBE-

    E-Print Network [OSTI]

    Fisher, Frank

    small volume fractions of carbon nanotubes as a reinforcing phase. While these preliminary results will be characterized by a mobility that is different from the polymer chains in the bulk material. We present a model that accounts for this mobility change in the non-bulk polymer behavior via a change in the relaxation spectra

  16. 3 Micro-mechanics based derivation of the materials constitutive 4 relations for carbon-nanotube reinforced poly-vinyl-ester-epoxy

    E-Print Network [OSTI]

    Grujicic, Mica

    , carbon nanotube-reinforced polymer-ma- 45trix composite) materials have spurred considerable 46interest relations for carbon-nanotube reinforced poly-vinyl-ester-epoxy 5 based composites 6 Mica Grujicic Y. P. Sun mechanical reinforcements for 59lightweight composite systems. However, the material 60and the processing

  17. A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes

    SciTech Connect (OSTI)

    Park, H G; In, J; Kim, S; Fornasiero, F; Holt, J K; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-14T23:59:59.000Z

    We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material, as well as high permeability attributed to embedded carbon nanotubes. These membranes have a potential for applications that may require high flux, flexibility and durability.

  18. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (El Cerrito, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2010-01-10T23:59:59.000Z

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  19. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2008-04-08T23:59:59.000Z

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  20. Electric field manipulation of polymer nanocomposites: processing and investigation of their physical characteristics

    E-Print Network [OSTI]

    Banda, Sumanth

    2009-05-15T23:59:59.000Z

    is to achieve a good homogenous dispersion of carbon nanofibers (CNFs) and single wall carbon nanotubes (SWNTs) in the polymer matrix; the second step is to manipulate the well-dispersed CNFs and SWNTs in polymers by using an AC electric field. Different...

  1. Tunable multiwalled nanotube resonator

    DOE Patents [OSTI]

    Zettl, Alex K. (Kensington, CA); Jensen, Kenneth J. (Berkeley, CA); Girit, Caglar (Albany, CA); Mickelson, William E. (San Francisco, CA); Grossman, Jeffrey C. (Berkeley, CA)

    2011-03-29T23:59:59.000Z

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  2. Tunable multiwalled nanotube resonator

    DOE Patents [OSTI]

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05T23:59:59.000Z

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  3. Nanotube resonator devices

    DOE Patents [OSTI]

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06T23:59:59.000Z

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  4. Boron nitride nanotubes

    DOE Patents [OSTI]

    Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA); Park, Cheol (Yorktown, VA)

    2012-06-06T23:59:59.000Z

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  5. Irradiation Stability of Carbon Nanotubes 

    E-Print Network [OSTI]

    Aitkaliyeva, Assel

    2010-01-14T23:59:59.000Z

    Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion ...

  6. Sensor applications of carbon nanotubes

    E-Print Network [OSTI]

    Rushfeldt, Scott I

    2005-01-01T23:59:59.000Z

    A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

  7. Lipid nanotube or nanowire sensor

    DOE Patents [OSTI]

    Noy, Aleksandr (Belmont, CA); Bakajin, Olgica (San Leandro, CA); Letant, Sonia (Livermore, CA); Stadermann, Michael (Dublin, CA); Artyukhin, Alexander B. (Menlo Park, CA)

    2009-06-09T23:59:59.000Z

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  8. Composites of Single-Walled Carbon Nanotubes and Polystyrene: Preparation and Electrical Conductivity

    E-Print Network [OSTI]

    Resasco, Daniel

    and nitric acid oxidized SWNT. From measurements of the electrical conductivities of the composites over of SWNT, composites made with HiPco tubes had the highest conductivity. Introduction Carbon nanotubes conductivi- ties of CNT-polymer composites have percolation thresholds ranging from 0.0025%5 to several

  9. INTER-CARBON NANOTUBE CONTACT IN THERMAL TRANSPORT OF CONTROLLED-MORPHOLOGY

    E-Print Network [OSTI]

    Maruyama, Shigeo

    conductivities of aligned carbon nanotube (CNT) polymer nano-composites were calculated using a random walk-isotropic heat conduction in aligned-CNT polymeric composites, because this geometry is an ideal thermal layer-CNT contact, volume fraction and thermal boundary resistance on the effective conductivities of CNT-composites

  10. Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene

    E-Print Network [OSTI]

    Elliott, James

    dynamics study of heat conduction in carbon nanotube (CNT)/polyethylene (PE) composites. Particular thermal conductivity of a macroscopic CNT/PE composite is quantified based on an effective medium approximation model. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction Polymer composites are employed

  11. Electronic properties of carbon nanotube/fabric composites David S. Hecht, Liangbing Hu, George Gruner *

    E-Print Network [OSTI]

    Gruner, George

    the mechanical and electronic properties of the polymer matrix. Two dimen- sional networks of conducting by a non- conducting fabric. This composite material has ­ aside from the interest as a model systemElectronic properties of carbon nanotube/fabric composites David S. Hecht, Liangbing Hu, George Gru

  12. Dispersion and Characterization of Nickel Nanostrands in Thermoset and Thermoplastic Polymers

    E-Print Network [OSTI]

    Whalen, Casey Allen

    2012-02-14T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE December 2011 Major Subject: Aerospace Engineering Dispersion and Characterization of Nickel Nanostrands in Thermoset and Thermoplastic Polymers Copyright... NOMENCLATURE CNF Carbon Nano-Fiber SWNT Single Wall Nano-Tube TiO2 Titanium Dioxide wt% Concentration by Weight vol% Concentration by Volume NiNS Nickel Nanostrands MWNT Multi-walled Nano-Tube PVDF Polyvinylidene Fluoride CP2 Colorless Polyimide...

  13. Center for Applications of Single-Walled Carbon Nanotubes

    SciTech Connect (OSTI)

    Resasco, Daniel E

    2008-02-21T23:59:59.000Z

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  14. Dielectric Actuation of Polymers

    E-Print Network [OSTI]

    Niu, Xiaofan

    2013-01-01T23:59:59.000Z

    S. Stanford, Interpenetrating polymer networks for high-based on interpenetrating polymer networks, Proceeding ofX. Niu, Q. Pei, Interpenetrating polymer networks based on

  15. Branched Polymers

    E-Print Network [OSTI]

    Richard Kenyon; Peter Winkler

    2007-09-14T23:59:59.000Z

    Building on and from the work of Brydges and Imbrie, we give an elementary calculation of the volume of the space of branched polymers of order $n$ in the plane and in 3-space. Our development reveals some more general identities, and allows exact random sampling. In particular we show that a random 3-dimensional branched polymer of order $n$ has diameter of order $\\sqrt{n}$.

  16. The Evaluation of an Expert System for the Analysis of Umbilical Cord Blood

    E-Print Network [OSTI]

    Garibaldi, Jon

    H, partial pressure of carbon dioxide (pCO2) and partial pressure of oxygen (pO2). A parameter termed base. Such assessment of the acid-base status of umbilical cord blood has recently been recommended by the British Royal the fact that the sampling took place within a research study which featured regular staff training

  17. Electrical Transport in Carbon Nanotubes and Graphene

    E-Print Network [OSTI]

    Liu, Gang

    2010-01-01T23:59:59.000Z

    Introduction to Carbon Nanotubes and Graphene Single wallCarbon nanotubes and graphene are the most popular Carbonin the Normal Metal – Graphene – Superconductor Junctions

  18. Functionalized carbon nanotubes and nanofibers for biosensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon nanotubes and nanofibers for biosensing applications. Functionalized carbon nanotubes and nanofibers for biosensing applications. Abstract: This review summarizes the recent...

  19. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01T23:59:59.000Z

    around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

  20. Carbon Nanotube Templated Asembly of Protein. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotube Templated Asembly of Protein. Carbon Nanotube Templated Asembly of Protein. Abstract: This paper describes a novel general strategy for fabricating protein-polyion...

  1. Carbon Nanotube Assemblies for Transparent Conducting Electrodes

    SciTech Connect (OSTI)

    Garrett, Matthew P [ORNL] [ORNL; Gerhardt, Rosario [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The goal of this chapter is to introduce readers to the fundamental and practical aspects of nanotube assemblies made into transparent conducting networks and discuss some practical aspects of their characterization. Transparent conducting coatings (TCC) are an essential part of electro-optical devices, from photovoltaics and light emitting devices to electromagnetic shielding and electrochromic widows. The market for organic materials (including nanomaterials and polymers) based TCCs is expected to show a growth rate of 56.9% to reach nearly 20.3billionin2015,whilethemarketfortraditionalinorganictransparentelectronicswillexperiencegrowthwithratesof6.7103 billion in 2015. Emerging flexible electronic applications have brought additional requirements of flexibility and low cost for TCC. However, the price of indium (the major component in indium tin oxide TCC) continues to increase. On the other hand, the price of nanomaterials has continued to decrease due to development of high volume, quality production processes. Additional benefits come from the low cost, nonvacuum deposition of nanomaterials based TCC, compared to traditional coatings requiring energy intensive vacuum deposition. Among the materials actively researched as alternative TCC are nanoparticles, nanowires, and nanotubes with high aspect ratio as well as their composites. The figure of merit (FOM) can be used to compare TCCs made from dissimilar materials and with different transmittance and conductivity values. In the first part of this manuscript, we will discuss the seven FOM parameters that have been proposed, including one specifically intended for flexible applications. The approach for how to measure TCE electrical properties, including frequency dependence, will also be discussed. We will relate the macroscale electrical characteristics of TCCs to the nanoscale parameters of conducting networks. The fundamental aspects of nanomaterial assemblies in conducting networks will also be addressed. We will review recent literature on TCCs composed of carbon nanotubes of different types in terms of the FOM.

  2. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2013-09-10T23:59:59.000Z

    Solid anion exchange polymer electrolytes include chemical compounds comprising a polymer backbone with side chains that include guanidinium cations.

  3. Antimicrobial Polymer

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2004-09-28T23:59:59.000Z

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  4. Antimocrobial Polymer

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06T23:59:59.000Z

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  5. Polymer inflation

    E-Print Network [OSTI]

    Syed Moeez Hassan; Viqar Husain; Sanjeev S. Seahra

    2015-03-05T23:59:59.000Z

    We consider the semi-classical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a gaussian coherent state. For quadratic potentials, the semi-classical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by a epoch of slow-roll inflation. We compute polymer corrections to the slow roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckain initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  6. Accelerated dynamics simulations of nanotubes.

    SciTech Connect (OSTI)

    Uberuaga, B. P. (Blas Pedro); Stuart, S. J. (Steve J.); Voter, A. F.

    2002-01-01T23:59:59.000Z

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  7. Carbon nanotube IR detectors (SV)

    SciTech Connect (OSTI)

    Leonard, F. L.

    2012-03-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  8. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01T23:59:59.000Z

    bonding in nanotubes also gives them high resistance to electro- migration, a current-assisted diffusion

  9. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01T23:59:59.000Z

    in carbon nanotube ceramic matrix composites. Actapolymeric, metallic, or ceramic matrix material. These fiber

  10. Polymers Pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore

    E-Print Network [OSTI]

    Podgornik, Rudolf

    Polymers Pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore R. Podgornik, 1000 Ljubljana, Slovenia Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States ABSTRACT: We investigate polymer partitioning from polymer

  11. POLYMER PROGRAM SEMINAR "Nanomanufacturing with Polymers"

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR "Nanomanufacturing with Polymers" Prof. Joey Mead University Lowell has developed a suite of processes to enable the nanomanufacturing of polymer based products of properties (e.g. biocompatibility, polarity, and modulus). Polymer materials can be used as substrates

  12. Thermodynamics of the Adsorption of Flexible Polymers on Nanowires

    E-Print Network [OSTI]

    Thomas Vogel; Jonathan Gross; Michael Bachmann

    2015-03-05T23:59:59.000Z

    Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached to or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. The classification of the transitions is performed by microcanonical inflection-point analysis.

  13. Conductive Polymers

    SciTech Connect (OSTI)

    Bohnert, G.W.

    2002-11-22T23:59:59.000Z

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  14. Triplet absorption in carbon nanotubes: a TD-DFT study

    E-Print Network [OSTI]

    Sergei Tretiak

    2007-02-13T23:59:59.000Z

    We predict properties of triplet excited states in single-walled carbon nanotubes (CNTs) using a time-dependent density-functional theory (TD-DFT). We show that the lowest triplet state energy in CNTs to be about 0.2-0.3 eV lower than the lowest singlet states. Like in $\\pi$-conjugated polymers, the lowest CNT triplets are spatially localized. These states show strong optical absorption at about 0.5-0.6 eV to the higher lying delocalized triplet states. These results demonstrate striking similarity of the electronic features between CNTs and $\\pi$-conjugated polymers and provide explicit guidelines for spectroscopic detection of CNT triplet states.

  15. Dielectric Actuation of Polymers

    E-Print Network [OSTI]

    Niu, Xiaofan

    2013-01-01T23:59:59.000Z

    strain in dielectric elastomers, Journal of Polymer SciencePart B: Polymer Physics. 49 (2011) 504–515. [25] X. Zhao, Z.Electroactive nanostructured polymers as tunable actuators,

  16. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect (OSTI)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang, E-mail: wolfgang.bacsa@cemes.fr [CEMES-CNRS and University of Toulouse, 29 Jeanne Marvig, 31055 Toulouse (France); Boyer, François; Olivier, Philippe [Université de Toulouse, Institut Clément Ader, I.U.T. Université Paul Sabatier - 133C Avenue de Rangueil - B.P. 67701, 31077 Toulouse CEDEX 4 (France); Sapelkin, Andrei [School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); King, Stephen; Heenan, Richard [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri [AIRBUS FRANCE (B.E. M and P Toulouse), 316 Route de Bayonne, 31060 Toulouse (France)

    2014-06-21T23:59:59.000Z

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  17. Double Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation

    E-Print Network [OSTI]

    Hasan, Tawfique; Sun, Zhipei; Tan, PingHeng; Popa, Daniel; Flahaut, Emmanuel; Kelleher, Edmund J. R.; Bonaccorso, Francesco; Wang, Fengqiu; Jiang, Zhe; Torrisi, Felice; Privitera, Giulia; Nicolosi, Valeria; Ferrari, Andrea C.

    2014-04-15T23:59:59.000Z

    Accepted Manuscript: ACS Nano, 2014, 8 (5), pp 4836–4847DOI: 10.1021/nn500767b 1 Double Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation Tawfique Hasan1,*, Zhipei Sun2, PingHeng Tan3, Daniel Popa1, Emmanuel Flahaut4,5, Edmund J. R... , Polymer Composites, Saturable Absorber, Ultrafast Laser. Accepted Manuscript: ACS Nano, 2014, 8 (5), pp 4836–4847DOI: 10.1021/nn500767b 2 ABSTRACT: We demonstrate wideband ultrafast optical pulse generation at 1, 1.5 and 2?m using a single polymer...

  18. Dielectric Actuation of Polymers

    E-Print Network [OSTI]

    Niu, Xiaofan

    2013-01-01T23:59:59.000Z

    AgNW) polymer composite material that is conductive enoughAgNW/polymer composite was nominated as a highly conductive,

  19. Borrowing Nature's Polymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Borrowing Nature's Polymers 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Borrowing Nature's Polymers Los Alamos scientists are...

  20. BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators Zong-Hong Lin,

    E-Print Network [OSTI]

    Wang, Zhong L.

    voltage and short-circuit current of the NG reached a high level of 5.5 V and 350 nA (current density) of 5.5 V and short-circuit current (Isc) exceeding 350 nA. The NG was further demonstrated to be easily was fabricated by making a composite of the nanotubes with polymer poly(dimethylsiloxane) (PDMS). The peak open-circuit

  1. Functionalized boron nitride nanotubes

    DOE Patents [OSTI]

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22T23:59:59.000Z

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  2. Modelling Heat Transfer of Carbon Nanotubes

    E-Print Network [OSTI]

    Yang, Xin-She

    2010-01-01T23:59:59.000Z

    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.

  3. Morphology and Properties of Melt-Spun Polycarbonate Fibers Containing Single- and Multi-Wall Carbon Nanotubes

    SciTech Connect (OSTI)

    Fornes,T.; Baur, J.; Sabba, Y.; Thomas, E.

    2006-01-01T23:59:59.000Z

    Polycarbonate fibers based single wall and multi-wall nanotubes (SWNT and MWNT) were prepared by first dispersing the nanotubes via solvent blending and/or melt extrusion followed by melt spinning the composites to facilitate nanotube alignment along the fiber axis. Morphological studies involving polarized Raman spectroscopy and wide angle X-ray scattering using a synchrotron radiation source show that reasonable levels of nanotube alignment are achievable. Detailed transmission electron microscopy (TEM) investigations on the polymer-extracted composite fibers reveal that MWNT more readily disperse within the PC matrix and have higher aspect ratios than do SWNT; extraction of the polymer from the composite prior to TEM imaging helps overcome the common issue of poor atomic contrast between the CNT and the organic matrix. Stress-strain analysis on the composites fibers show that MWNT, in general, provide greater stiffness and strength than those based on SWNT. Despite significant reinforcement of the polycarbonate, the level of reinforcement is far below what could be achieved if the nanotubes were completely dispersed and aligned along the fiber axis as predicted by composite theory.

  4. Rigid versus Flexible Ligands on Carbon Nanotubes for the Enhanced Sensitivity of Cobalt Ions

    SciTech Connect (OSTI)

    Gou, Pingping; Kraut, Nadine D.; Feigel, Ian Matthew; Star, Alexander

    2013-02-26T23:59:59.000Z

    Carbon nanotubes have shown great promise in the fabrication of ultra-compact and highly sensitive chemical and biological sensors. Additional chemical functionalization schemes can controllably improve selectivity of the carbon nanotube-based sensors; however the exact transduction mechanism is still under debate. In this article we detail the synthesis and selective response of single-walled carbon nanotubes (SWNTs) functionalized with polyazomethine (PAM) polymer towards the application of a specific trace metal ion detector. The response of the polymer system was compared to shape persistent macrocycle (MAC) comprised of identical ion coordination ligands. While ion detection with rigid MAC/SWNT chemiresistor was comparable to bare SWNT, flexible PAM offers significant SWNT signal amplification, allowing for picomolar detection of Co{sup 2+} ions with both selectivity and a fast response. We hypothesized that rearrangement of the flexible PAM on the SWNT network is a sensing mechanism which allows for ultrasensitive detection of metal ions. The electron transfer and polymer rearrangement on the SWNT was studied by a combination of optical spectroscopy and electrical measurements ? ultimately allowing for a better understanding of fundamental mechanisms that prompt device response.

  5. Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials and lateral lattice strain states under a tensile load in as-reacted and prebent CuNb/Nb3Sn wires using;Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials

  6. Irradiation Stability of Carbon Nanotubes

    E-Print Network [OSTI]

    Aitkaliyeva, Assel

    2010-01-14T23:59:59.000Z

    were used in experiments, and several defect characterization techniques were applied to characterize the damage. Development of dimensional changes of carbon nanotubes in microscopes operated at accelerating voltages of 30 keV revealed that binding...

  7. Method for producing carbon nanotubes

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Perry, William L. (Jemez Springs, NM); Chen, Chun-Ku (Albuquerque, NM)

    2006-02-14T23:59:59.000Z

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  8. Increasing carbon nanotube forest density

    E-Print Network [OSTI]

    McCarthy, Alexander P

    2014-01-01T23:59:59.000Z

    The outstanding mechanical, electrical, thermal, and morphological properties of individual carbon nanotubes (CNTs) open up exciting potential applications in a wide range of fields. One such application is replacing the ...

  9. Carbon nanotubes: synthesis and functionalization 

    E-Print Network [OSTI]

    Andrews, Robert

    2007-01-01T23:59:59.000Z

    conditions were then used as the basis of several comparative CVD experiments showing that the quality of nanotubes and the yield of carbon depended on the availability of carbon to react. The availability could be controlled by the varying concentration...

  10. Emerging Applications of Carbon Nanotubes

    E-Print Network [OSTI]

    Schnorr, Jan Markus

    On the basis of their unique electrical and mechanical properties, carbon nanotubes (CNTs) have attracted great attention in recent years. A diverse array of methods has been developed to modify CNTs and to assemble them ...

  11. A carbon nanotube bearing and Stodola rotor

    E-Print Network [OSTI]

    Cook, Eugene Hightower

    2008-01-01T23:59:59.000Z

    A nano-scale rotor supported on a cantilevered multi-wall carbon nanotube (MWNT) shaft (Stodola configuration) is proposed. The nanotube is also expected to function as the bearing, since individual walls of a MWNT are not ...

  12. Carbon Nanotubes: Bearing Stress Like Never Before

    E-Print Network [OSTI]

    Limaye, Aditya

    2013-01-01T23:59:59.000Z

    of the mechanical properties of carbon nanotube– polymercomposites. Carbon, 44. 1624 – 1652 doi: 10.1016/j.R.H. , & Hart, A.J. (2013). Carbon Nanotubes: Present and

  13. Mechanical energy storage in carbon nanotube springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2011-01-01T23:59:59.000Z

    Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

  14. Mechanics of deformation of carbon nanotubes

    E-Print Network [OSTI]

    Garg, Mohit, S.M. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    The deformation mechanics of multi-walled carbon nanotubes (MWCNT) and vertically aligned carbon nanotube (VACNT) arrays were studied using analytical and numerical methods. An equivalent orthotropic representation (EOR) ...

  15. Polymers with increased order

    DOE Patents [OSTI]

    Sawan, Samuel P. (Tyngsborough, MA); Talhi, Abdelhafid (Rochester, MI); Taylor, Craig M. (Jemez Springs, NM)

    1998-08-25T23:59:59.000Z

    The invention features polymers with increased order, and methods of making them featuring a dense gas.

  16. CARBON NANOTUBE POLYMER NANOCOMPOSITES FOR ELECTROMECHANICAL SYSTEM APPLICATIONS 

    E-Print Network [OSTI]

    Chakrabarty, Arnab

    2010-10-12T23:59:59.000Z

    observed in properties of the nanocomposites, research interest in this area has grown exponentially in recent years. In designing better nano-composites for advanced technological applications some of the major challenges are: understanding the structure...

  17. Computational Analysis of Carbon Nanotube Networks in Multifunctional Polymer Nanocomposites

    E-Print Network [OSTI]

    Maxwell, Kevin S

    2013-09-16T23:59:59.000Z

    of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, John Whitcomb Committee Members, Dimitris Lagoudas Mohammad Naraghi Hung-Jue Sue Head of Department, Ibrahim Karaman December 2013 Major Subject: Materials Science and Engineering Copyright..., Kevin White, for his insightful discussions related to this work. I would also like to thank Dr. Dimitris Lagoudas and Dr. Mohammad Naraghi for taking time out of their busy schedules to serve on my advisory committee. I thank my fellow graduate students...

  18. CHAPTER 4: VISCOELASTIC BEHAVIOR OF CARBON NANOTUBE-REINFORCED POLYMERS

    E-Print Network [OSTI]

    Fisher, Frank

    -reinforced polycarbonate. Samples for this study have been provided by Dr. Linda Schadler at Rensselaer Polytechnic in polycarbonate (PC), as well as pure PC samples fabricated using an identical high temperature molding process tested for both pure and NT-reinforced polycarbonate: #12;125 1. temperature sweeps to measure

  19. Molecular recognition using nanotube-adsorbed polymer complexes

    E-Print Network [OSTI]

    Zhang, Jingqing, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    We first reported the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT) 15 oligonucleotides, adsorbed to an array of near infrared fluorescent semiconducting single-walled ...

  20. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arrays: Fabrication, Evaluation and Application in Voltammetric Analysis. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation and Application in...

  1. Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites.

    SciTech Connect (OSTI)

    Seidel, Gary D.; Hammerand, Daniel Carl; Lagoudas, Dimitris C. (Texas A& M University, College Station, TX)

    2006-01-01T23:59:59.000Z

    Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties are obtained from the finite element results. These effective elastic properties are compared to approximate analytical results found using micromechanics methods. The effects of an interphase layer between the high-stiffness hollow fibers and matrix to simulate imperfect load transfer and/or functionalization of the hollow fibers is also investigated and compared to a multi-layer composite cylinders approach. Finally the combined effects of clustering with fiber-matrix interphase regions are studied. The parametric studies performed herein were motivated by and used properties for single-walled carbon nanotubes embedded in an epoxy matrix, and as such are intended to serve as a guide for continuum level representations of such nanocomposites in a multi-scale modeling approach.

  2. Carbon nanotube composites P. J. F. Harris*

    E-Print Network [OSTI]

    Harris, Peter J F

    Carbon nanotube composites P. J. F. Harris* Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. They are among the stiffest and strongest fibres known, with Young. There is currently great interest in exploiting these properties by incorporating carbon nanotubes into some form

  3. The effect of a carbon-nanotube forest-mat strike face on the ballistic-protection performance of E-glass

    E-Print Network [OSTI]

    Grujicic, Mica

    . Keywords: vinyl ester epoxy, carbon nanotubes, composite materials, armour 1 INTRODUCTION Recent efforts on the in-plane and the through-the-thickness properties of fibre-mat/polymer-matrix composite materials-weight materials development and multi-functional integration of armour. The earliest reports of composite light

  4. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  5. Electrical properties of single wall carbon nanotube reinforced polyimide composites

    E-Print Network [OSTI]

    Ounaies, Zoubeida

    Electrical properties of single wall carbon nanotube reinforced polyimide composites Z. Ounaiesa of single wall carbon nanotube (SWNT) reinforced polyimide composites were investigated as a function nanotube; Composites 1. Introduction Polyimides are widely used in applications ranging from

  6. Stiff Quantum Polymers

    E-Print Network [OSTI]

    H. Kleinert

    2007-05-01T23:59:59.000Z

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the moments and of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  7. Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL

    2011-01-01T23:59:59.000Z

    Polymer nanocomposites (PNCs) are materials based on a class of filled plastics that contain relatively small amounts of nanoparticles, which can impart improved structural, mechanical, and thermal properties relative to the neat polymer. However, the homogeneous dispersion of the nanoparticles into a polymer matrix is critical and an impeding factor for the controlled enhancement of PNC properties. In this work, we provide new insight into the importance of polymer chain connectivity and nanoparticle shape and curvature on the formation of noncovalent electron donor-acceptor (EDA) interactions between polymers and nanoparticles. This is accomplished by experimentally monitoring the dispersion of nanoparticles in copolymers containing varying amounts of functional moieties that can form noncovalent interactions with carbon nanoparticles with corroboration through density functional calculations. The results show that the presence of a minority of interacting functional groups within a polymer chain leads to an optimum interaction between the polymer and fullerene. Density functional theory calculations that identify the binding energy and geometry of the interaction between the functional monomers and fullerenes correspond very well with the experimental results. Moreover, comparison of these results to similar studies with single-walled carbon nanotubes (SWNT) indicate a distinct difference in the ability of EDA interactions to improve the dispersion of fullerenes relative to their impact on SWNT. Thus, the polymer chain connectivity, the polymer chain conformation, and size and shape of the nanoparticle modulate the formation of intermolecular interactions and directly impact the dispersion of the resultant nanocomposite.

  8. Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites

    SciTech Connect (OSTI)

    Linton, Dias [ORNL; Dadmun, Mark D [ORNL; Sumpter, Bobby G [ORNL; Teh, Say-Lee [ORNL

    2011-01-01T23:59:59.000Z

    Polymer nanocomposites (PNCs) are materials based on a class of filled plastics that contain relatively small amounts of nanoparticles, which can impart improved structural, mechanical, and thermal properties relative to the neat polymer. However, the homogeneous dispersion of the nanoparticles into a polymer matrix is critical and an impeding factor for the controlled enhancement of PNC properties. In this work, we provide new insight into the importance of polymer chain connectivity and nanoparticle shape and curvature on the formation of noncovalent electron donoracceptor (EDA) interactions between polymers and nanoparticles. This is accomplished by experimentally monitoring the dispersion of nanoparticles in copolymers containing varying amounts of functional moieties that can form noncovalent interactions with carbon nanoparticles with corroboration through density functional calculations. The results show that the presence of a minority of interacting functional groups within a polymer chain leads to an optimum interaction between the polymer and fullerene. Density functional theory calculations that identify the binding energy and geometry of the interaction between the functional monomers and fullerenes correspond very well with the experimental results. Moreover, comparison of these results to similar studies with single-walled carbon nanotubes (SWNT) indicate a distinct difference in the ability of EDA interactions to improve the dispersion of fullerenes relative to their impact on SWNT. Thus, the polymer chain connectivity, the polymer chain conformation, and size and shape of the nanoparticle modulate the formation of intermolecular interactions and directly impact the dispersion of the resultant nanocomposite.

  9. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01T23:59:59.000Z

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  10. Modifying Nanotubes Chemistry and Electronics of Carbon Nanotubes

    E-Print Network [OSTI]

    Joselevich, Ernesto

    by electric fields, based on their different dielectric constants.[2] Recently, two groups simultaneously-wall car- bon nanotubes,[3] and have a high selec- tivity for metallic versus semiconducting carbon, based on differ- ences in physical properties, such as their dielectric response to electric fields

  11. Temperature and electrical memory of polymer fibers

    SciTech Connect (OSTI)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe [Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, Avenue Schweitzer, 33600 Pessac (France)

    2014-05-15T23:59:59.000Z

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  12. Understanding the Nanotube Growth Mechanism: A Strategy to Control Nanotube Chirality during Chemical Vapor Deposition Synthesis 

    E-Print Network [OSTI]

    Gomez Gualdron, Diego Armando 1983-

    2012-10-26T23:59:59.000Z

    for the creation of novel and revolutionary electronic, medical, and energy technologies. However, a major stumbling block in the exploitation of nanotube-based technologies is the lack of control of nanotube structure (chirality) during synthesis, which...

  13. Molecular jet growth of carbon nanotubes and dense vertically aligned nanotube arrays

    DOE Patents [OSTI]

    Eres, Gyula (Knoxville, TN) [Knoxville, TN

    2010-10-12T23:59:59.000Z

    A method of growing a carbon nanotube includes the step of impinging a beam of carbon-containing molecules onto a substrate to grow at least one carbon nanotube on the catalyst surface.

  14. Synthesis of supported carbon nanotubes in mineralized silica...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supported carbon nanotubes in mineralized silica-wood composites. Synthesis of supported carbon nanotubes in mineralized silica-wood composites. Abstract: Multiwall carbon...

  15. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

  16. Cathodoluminescence from a device of carbon nanotube-field emission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cathodoluminescence from a device of carbon nanotube-field emission display with ZnO nanocluster phosphor. Cathodoluminescence from a device of carbon nanotube-field emission...

  17. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Abstract: Structure and electronic properties of...

  18. aligned carbon nanotube: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Transfer Printing of Aligned Carbon Nanotube Patterns and Characterization materials. For many promising nanomaterials, includ- ing carbon nanotubes (CNTs), major...

  19. aligned carbon nanotubes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Transfer Printing of Aligned Carbon Nanotube Patterns and Characterization materials. For many promising nanomaterials, includ- ing carbon nanotubes (CNTs), major...

  20. Carbon Nanotubes (CNTs) for the Development of Electrochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CNTs) for the Development of Electrochemical Biosensors . Carbon Nanotubes (CNTs) for the Development of Electrochemical Biosensors . Abstract: Carbon nanotube (CNT) is a very...

  1. Disposable Carbon Nanotube Modified Screen-Printed Biosensor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Disposable Carbon Nanotube Modified Screen-Printed Biosensor...

  2. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  3. Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions

    E-Print Network [OSTI]

    Yang, Peidong

    Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie loaded with R6G. Nanotube diode device fabrication Nanofluidic diode devices interfaced

  4. Improvement in the Mechanical Properties of B-Staged Carbon Nanotube/Epoxy Based Thin Film Systems

    E-Print Network [OSTI]

    White, Kevin

    2011-01-11T23:59:59.000Z

    in the amount of composite materials used in aircraft. However, the growth has been significantly slower than expected due to the development of lightweight alloys, advanced joining _______________ This thesis follows the style of Carbon. 2 techniques... materials using carbon nanotubes as a reinforcing agent within a polymer matrix. Multifunctional composite materials promise to simultaneously decrease weight, increase strength, and allow for improved performance over a range of mechanical, thermal...

  5. Optimized fabrication and characterization of carbon nanotube spin valves

    SciTech Connect (OSTI)

    Samm, J.; Gramich, J.; Baumgartner, A., E-mail: andreas.baumgartner@unibas.ch; Weiss, M.; Schönenberger, C. [Institute of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

    2014-05-07T23:59:59.000Z

    We report an improved fabrication scheme for carbon based nanospintronic devices and demonstrate the necessity for a careful data analysis to investigate the fundamental physical mechanisms leading to magnetoresistance. The processing with a low-density polymer and an optimised recipe allows us to improve the electrical, magnetic, and structural quality of ferromagnetic Permalloy contacts on lateral carbon nanotube (CNT) quantum dot spin valve devices, with comparable results for thermal and sputter deposition of the material. We show that spintronic nanostructures require an extended data analysis, since the magnetization can affect all characteristic parameters of the conductance features and lead to seemingly anomalous spin transport. In addition, we report measurements on CNT quantum dot spin valves that seem not to be compatible with the orthodox theories for spin transport in such structures.

  6. Terahertz detection and carbon nanotubes

    SciTech Connect (OSTI)

    Leonard, Francois

    2014-06-11T23:59:59.000Z

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  7. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04T23:59:59.000Z

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  8. Terahertz detection and carbon nanotubes

    ScienceCinema (OSTI)

    Leonard, Francois

    2014-06-13T23:59:59.000Z

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  9. Nanoporous polymer electrolyte

    DOE Patents [OSTI]

    Elliott, Brian (Wheat Ridge, CO); Nguyen, Vinh (Wheat Ridge, CO)

    2012-04-24T23:59:59.000Z

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  10. Telescopic nanotube device for hot nanolithography

    DOE Patents [OSTI]

    Popescu, Adrian; Woods, Lilia M

    2014-12-30T23:59:59.000Z

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  11. Synthesis and Characterization of Polymer Composites Containing Aligned Conducting Polymers and Carbon Nanotubes

    E-Print Network [OSTI]

    Manda, Swathi

    2014-04-21T23:59:59.000Z

    Field effect transistor Ge Germanium HOMO Highest occupied molecular orbital I-V Current vs. Voltage ? Total thermal conductivity ?e Electronic contribution of thermal conductivity L Length xiv LC Liquid Crystal LED Light emitting diode LUMO... feasible for applications in organic light emitting diodes, photovoltaics6 and more recently, thermoelectric devices. Traditional inorganic semi-conductor materials like Bismuth (Bi), Te and Selenium (Se) deliver high thermoelectric power and deliver...

  12. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01T23:59:59.000Z

    nanofibers in catalysis. Applied Catalysis A: General, 2003.the catalytic lifetime. Applied Catalysis A: General, 2001.properties have been applied to catalysis, where nanotube

  13. Impact of nanoparticle size and shape on selective surface segregation in polymer nanocomposites

    SciTech Connect (OSTI)

    Mutz, M [The University of Tennessee; Holley, Daniel W [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK); Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2012-01-01T23:59:59.000Z

    A study of the impact of the size and shape of a nanoparticle on the evolution of structure and surface segregation in polymer nanocomposite thin films is presented. This is realized by monitoring the evolution of structure with thermal annealing and equilibrium depth profile of a deuterated polystyrene/ protonated polystyrene bilayer in the presence and absence of various nanoparticles. For the three shapes examined, sheet-like graphene, cylindrical carbon nanotubes, and spherical soft nanoparticles, the presence of the nanoparticles slowed the inter-diffusion of the polymers in the thin film. The larger nanoparticles slowed the polymer motion the most, while the smaller spherical nanoparticles also significantly inhibited polymer chain diffusion. At equilibrium, the soft spherical nanoparticles, which are highly branched, segregate to the air surface, resulting in a decrease in the excess deuterated PS at the surface. The graphene sheets and single walled carbon nanotubes, on the other hand, enhanced the dPS segregation to the air surface. The graphene sheets were found to segregate to the silicon surface, due to their higher surface energy. Interpretation of these results indicates that entropic factors drive the structural development in the nanocomposite thin films containing the spherical nanoparticles, while a balance of the surface energies of the various components (i.e. enthalpy) controls the thin film structure formation in the polymer-carbon nanoparticle nanocomposites.

  14. Mechanics of amorphous polymers and polymer gels

    E-Print Network [OSTI]

    Chester, Shawn Alexander

    2011-01-01T23:59:59.000Z

    Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials ...

  15. Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation

    E-Print Network [OSTI]

    Brenner, Donald W.

    Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation S.J.V. Frankland *, D hydrogen in individual single-shell carbon nanotubes and nanotube ropes using a semiclassical model. The calculations predict that isolated hydrogen molecules inside of nanotubes have a Raman frequency that increases

  16. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOE Patents [OSTI]

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05T23:59:59.000Z

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  17. NASA Partners License Nanotube Technology for Commercial Use...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prnewswire.comnews-releasesnasa-partners-license-nanotube-technology-for-commercial-use-149724205.html Submitted: Tuesday, May...

  18. Tunneling of Polymer Particles

    E-Print Network [OSTI]

    A. Martín-Ruiz; E. Chan-López; A. Carbajal-Domínguez; J. Bernal

    2014-08-28T23:59:59.000Z

    In this paper we study the tunneling using a background independent (polymer) quantization scheme. We show that at low energies, for the tunneling through a single potential barrier, the polymer transmission coefficient and the polymer tunneling time converge to its quantum-mechanical counterparts in a clear fashion. As the energy approaches the maximum these polymer quantities abruptly decrease to zero. We use the transfer matrix method to study the tunneling through a series of identical potential barriers. We obtain that the transmission coefficients (polymer and quantum-mechanical) behave qualitatively in a similar manner, as expected. Finally we show that the polymer tunneling time exhibits anomalous peaks compared with the standard result. Numerical results are also presented.

  19. Method for nano-pumping using carbon nanotubes

    DOE Patents [OSTI]

    Insepov, Zeke (Darien, IL); Hassanein, Ahmed (Bolingbrook, IL)

    2009-12-15T23:59:59.000Z

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  20. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    SciTech Connect (OSTI)

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11T23:59:59.000Z

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  1. Sacrificial template method of fabricating a nanotube

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (Berkeley, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yi-Ying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2007-05-01T23:59:59.000Z

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  2. ccsd00003923, Combination of carbon nanotubes and

    E-Print Network [OSTI]

    of composite optical limiters, in which two complementary nonlinear optical materials are mixed togetherccsd­00003923, version 1 ­ 18 Jan 2005 Combination of carbon nanotubes and two-photon absorbers-linear scattering from single-wall carbon nanotubes (SWNT) and multiphoton absorption (MPA) from organic

  3. PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS

    E-Print Network [OSTI]

    Lin, Liwei

    PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS Y.Q. Jiang, Q. Zhou, and L. Lin Mechanical ABSTRACT Planar micro supercapacitors utilizing vertically aligned carbon nanotube (CNT) forests and very robust cycling stability. As such, we believe these planar MEMS supercapacitors could

  4. Inorganic Nanotubes: A Novel Platform for Nanofluidics

    E-Print Network [OSTI]

    Yang, Peidong

    Inorganic Nanotubes: A Novel Platform for Nanofluidics JOSHUA GOLDBERGER, RONG FAN, AND PEIDONG are being developed for the synthesis of inorganic nanotubes, a novel platform for nanofluidics. Single modulation of ionic conductance. These nanofluidic devices have been further dem- onstrated to be useful

  5. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    SciTech Connect (OSTI)

    Fischer, John, E.

    2009-07-24T23:59:59.000Z

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of the new materials, highly porous carbide-derived carbons (CDC), is the subject of an add-on to this grant awarded to myself and Taner Yildirim (NIST). Results from the add-on led eventually to a new 3-year award DE-FG02-08ER46522 “From Fundamental Understanding to Predicting New Nanomaterials for High Capacity Hydrogen Storage”, $1000K, (05/31/2008 - 05/01/2011) with Taner Yildirim and myself as co-PI’s.

  6. Polymers 2014, 6, 311-326; doi:10.3390/polym6020311 ISSN 2073-4360

    E-Print Network [OSTI]

    Takada, Shoji

    #12;Polymers 2014, 6, 311-326; doi:10.3390/polym6020311 polymers ISSN 2073-4360 www.mdpi.com/journal/polymers copolymers, star polymers, and concentrated polymer brushes on solid surfaces were prepared using living catalysts; block copolymers; triblock copolymers; star polymers; polymer brushes OPEN ACCESS #12;Polymers

  7. Melons are branched polymers

    E-Print Network [OSTI]

    Razvan Gurau; James P. Ryan

    2013-02-18T23:59:59.000Z

    Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.

  8. Stiff quantum polymers

    E-Print Network [OSTI]

    H. Kleinert

    2009-10-19T23:59:59.000Z

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  9. Porous polymer media

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  10. POLYMER PROGRAM SEMINAR "Polymer Nanofibers: Electrospinning, Structure, and Properties"

    E-Print Network [OSTI]

    Alpay, S. Pamir

    POLYMER PROGRAM SEMINAR "Polymer Nanofibers: Electrospinning, Structure, and Properties" Dr. Masaya been widely employed as a technique to produce sub-micron and nanometer scale polymer fibers. The technique utilizes electrical forces induced by a high voltage to draw charged polymer solution jet

  11. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  12. Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes

    SciTech Connect (OSTI)

    J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

    2011-01-01T23:59:59.000Z

    Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

  13. Methods for producing reinforced carbon nanotubes

    DOE Patents [OSTI]

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2008-10-28T23:59:59.000Z

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  14. Silvered polymer reflectors

    SciTech Connect (OSTI)

    Schissel, P.; Neidlinger, H.H.; Czanderna, A.W.

    1985-03-01T23:59:59.000Z

    One of the principal objectives of the Solar Thermal Research Program is to develop silvered polymer films for constructing durable, low-cost, lightweight concentrating collectors for high temperature solar thermal systems. The mirrors are characterized for their solar-weighted (air mass 1.5) reflectance and exposed to environmental degradation. Photodegradation of polymers has also been studied using Fourier transform infrared spectroscopy supplemented with surface analysis characterization. Results are discussed for extruded films, ultraviolet effects, metallization, and the effects of polymer additives. (LEW)

  15. Sulfonated polyphenylene polymers

    DOE Patents [OSTI]

    Cornelius, Christopher J. (Albuquerque, NM); Fujimoto, Cy H. (Albuquerque, NM); Hickner, Michael A. (Albuquerque, NM)

    2007-11-27T23:59:59.000Z

    Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.

  16. Polymer quantization and Symmetries

    E-Print Network [OSTI]

    Ghanashyam Date; Nirmalya Kajuri

    2013-02-24T23:59:59.000Z

    Polymer quantization was discovered during the construction of Loop Quantum Cosmology. For the simplest quantum theory of one degree of freedom, the implications for dynamics were studied for the harmonic oscillator as well as some other potentials. For more degrees of freedom, the possibility of continuous, kinematic symmetries arises. While these are realised on the Hilbert space of polymer quantum mechanics, their infinitesimal versions are not supported. For an invariant Hamiltonian, these symmetry realizations imply infinite degeneracy suggesting that the symmetry should be spontaneously or explicitly broken. The estimation of symmetry violations in some cases have been analysed before. Here we explore the alternative of shifting the arena to the distributional states. We discuss both the polymer quantum mechanics case as well as polymer quantized scalar field.

  17. Heavily fluorinated electronic polymers

    E-Print Network [OSTI]

    Lim, Jeewoo

    2011-01-01T23:59:59.000Z

    Building blocks, containing majority fluorine content by weight, for PPEs and PPVs have been synthesized. Some of the monomers were shown to give exclusively fluorous-phase soluble polymers, the syntheses of which were ...

  18. Conducting polymer nanostructures for biological applications

    E-Print Network [OSTI]

    Berdichevsky, Yevgeny

    2006-01-01T23:59:59.000Z

    of Electronically Conductive Polymer Nanostructures,” Acc.et al. , “Conjugated-Polymer Micro- and Milliactuators for3. Y. Berdichevsky, Y. -H. Lo, “Polymer Microvalve Based on

  19. BX CY NZ nanotubes and nanoparticles

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Piedmont, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    2001-01-01T23:59:59.000Z

    The invention provides crystalline nanoscale particles and tubes made from a variety of stoichiometries of B.sub.x C.sub.y N.sub.z where x, y, and z indicate a relative amount of each element compared to the others and where no more than one of x, y, or z are zero for a single stoichiometry. The nanotubes and nanoparticles are useful as miniature electronic components, such as wires, coils, schotky barriers, diodes, etc. The nanotubes and nanoparticles are also useful as coating that will protect an item from detection by electromagnetic monitoring techniques like radar. The nanotubes and nanoparticles are additionally useful for their mechanical properties, being comparable in strength and stiffness to the best graphite fibers or carbon nanotubes. The inventive nanoparticles are useful in lubricants and composites.

  20. Nanolithographic control of carbon nanotube synthesis

    E-Print Network [OSTI]

    Huitink, David Ryan

    2009-05-15T23:59:59.000Z

    A method offering precise control over the synthesis conditions to obtain carbon nanotube (CNT) samples of a single chirality (metallic or semi-conducting) is presented. Using this nanolithographic method of catalyst deposition, the location of CNT...

  1. Carbon nanotube-based field ionization vacuum

    E-Print Network [OSTI]

    Jang, Daniel, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    We report the development of a novel micropump architecture that uses arrays of isolated vertical carbon nanotubes (CNT) to field ionize gas particles. The ionized gas molecules are accelerated to and implanted into a ...

  2. Carbon nanotube heat-exchange systems

    DOE Patents [OSTI]

    Hendricks, Terry Joseph (Arvada, CO); Heben, Michael J. (Denver, CO)

    2008-11-11T23:59:59.000Z

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  3. Carbon nanotube interconnects for IC chips

    E-Print Network [OSTI]

    Anwar Ali, Hashina Parveen

    2006-01-01T23:59:59.000Z

    Carbon nanotubes (CNTs) have been investigated as candidate materials to replace or augment the existing copper-based technologies as interconnects for Integrated Circuit (IC) chips. Being ballistic conductors, CNTs are ...

  4. Carbon nanotube bearings in theory and practice

    E-Print Network [OSTI]

    Cook, Eugene Hightower

    2011-01-01T23:59:59.000Z

    Carbon Nanotubes (CNTs) are attractive elements for bearings in Micro-Electro-Mechanical Systems (MEMS), because their structure comprises nested shells with no bonding and sub-nanometer spacing between them, enabling ...

  5. Carbon nanotube synthesis for integrated circuit interconnects

    E-Print Network [OSTI]

    Nessim, Gilbert Daniel

    2009-01-01T23:59:59.000Z

    Based on their properties, carbon nanotubes (CNTs) have been identified as ideal replacements for copper interconnects in integrated circuits given their higher current density, inertness, and higher resistance to ...

  6. Functionalization and applications of carbon nanotubes

    E-Print Network [OSTI]

    Schnorr, Jan M. (Jan Markus)

    2012-01-01T23:59:59.000Z

    Carbon nanotubes (CNTs) possess a unique set of electrical and mechanical properties and have been used in a variety of applications. In this thesis, we explore strategies to functionalize CNTs as well as applications which ...

  7. Transplanting assembly of individual carbon nanotubes

    E-Print Network [OSTI]

    Kim, Soohyung

    2009-01-01T23:59:59.000Z

    Handling and assembling individual nanostructures to bigger scale systems such as MEMS have been the biggest challenge. A deterministic assembly of individual carbon nanotubes by transplanting them to MEMS structures is ...

  8. Polymers in disordered environments

    E-Print Network [OSTI]

    V. Blavatska; N. Fricke; W. Janke

    2014-11-18T23:59:59.000Z

    A brief review of our recent studies aiming at a better understanding of the scaling behaviour of polymers in disordered environments is given. The main emphasis is on a simple generic model where the polymers are represented by (interacting) self-avoiding walks and the disordered environment by critical percolation clusters. The scaling behaviour of the number of conformations and their average spatial extent as a function of the number of monomers and the associated critical exponents $\\gamma$ and $\

  9. Carbon nanotube temperature and pressure sensors

    DOE Patents [OSTI]

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29T23:59:59.000Z

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  10. Interfacial thermal conductance in spun-cast polymer films and polymer brushes

    E-Print Network [OSTI]

    Braun, Paul

    Interfacial thermal conductance in spun-cast polymer films and polymer brushes Mark D. Losego inorganic materials and anharmonic polymers have potentially intriguing thermal transport behavior. The low thermal conductivity of amorphous polymers limits significant interfacial effects to polymer film

  11. Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes

    E-Print Network [OSTI]

    Nair, Sankar

    made from metal oxides -- work that could lead to a technique for precisely conNanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes Science their diameter and length. Based on metal oxides in combination with silicon and germanium, such single

  12. A Continuum Model for Carbon Nanotube-Infused Polyimides

    E-Print Network [OSTI]

    A Continuum Model for Carbon Nanotube-Infused Polyimides Heather Wilson1 , Sumanth Banda2 , Ralph C, the materials need to withstand this process. The nanotube-infused polyimides are flexible enough to withstand

  13. Irradiation Stability of Carbon Nanotubes and Related Materials

    E-Print Network [OSTI]

    Aitkaliyeva, Assel 1985-

    2012-09-28T23:59:59.000Z

    Application of carbon nanotubes (CNTs) in various fields demands a thorough investigation of their stability under irradiation. Open structure, ability to reorganize and heal defects, and large surface-to-volume ratio of carbon nanotubes affect...

  14. Energy Carrier Transport In Surface-Modified Carbon Nanotubes 

    E-Print Network [OSTI]

    Ryu, Yeontack

    2012-11-30T23:59:59.000Z

    on carbon nanotubes was employed to enhance their electrical conductivity, to improve thermoelectric power factor by modulating their electrical conductance and thermopower, or to obtain n-type converted carbon nanotube. The electrical conductivity of double...

  15. Testing and characterization of carbon nanotubes as strain sensors

    E-Print Network [OSTI]

    Diaz, Juan D

    2011-01-01T23:59:59.000Z

    The potential of using carbon nanotube coated flexible cloth as strain gauges was studied. Samples were prepared by sonicating strips of cloth inside a 1mg/ml carbon nanotube in propylene carbonate solution. A dynamic ...

  16. ambipolar nanotube field: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in All-Carbon-Nanotube Field-Effect Transistors by Poly(Vinyl Alcohol) Coating Materials Science Websites Summary: Ambipolar Behavior in All-Carbon-Nanotube Field-Effect...

  17. First Principles Prediction of Nitrogen-doped Carbon Nanotubes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a...

  18. Analyzing manufacturing methods of carbon nanotubes for commercialization

    E-Print Network [OSTI]

    Dee, H. Devin (Herbert Devin)

    2013-01-01T23:59:59.000Z

    This research explores the history and structure of carbon nanotubes and the current technologies and methods available for synthesizing, purifying, and assembling carbon nanotubes. Furthermore, the current state of ...

  19. Flame synthesis of carbon nanotubes and metallic nanomaterials

    E-Print Network [OSTI]

    Height, Murray John, 1975-

    2003-01-01T23:59:59.000Z

    Carbon nanotubes are a remarkable material with many appealing properties. Despite the appeal of this material, there are few synthesis techniques capable of producing nanotubes in large quantities at low-cost. The broad ...

  20. Nanoelectro-mechanical systems based on carbon nanotubes

    E-Print Network [OSTI]

    Adler, Joan

    are long thin tubes made from rolled up single sheets of graphene. Nanotube resonators have already reached", in preparation. #12;

  1. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOE Patents [OSTI]

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19T23:59:59.000Z

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  2. Carbon nanotubes used to form fast, flexible circuitry

    E-Print Network [OSTI]

    Rogers, John A.

    Carbon nanotubes used to form fast, flexible circuitry By Yun Xie | Published: July 23, 2008 - 12 the semiconductor portion of these flexible integrated circuits. Related Stories Carbon nanotubes as molecular scales Carbon nanotubes send electrons for a spin These conventional materials are serviceable

  3. Danish Polymer Centre Annual Report 2002

    E-Print Network [OSTI]

    Danish Polymer Centre Annual Report 2002 #12;2 The Danish Polymer Centre, DTU and Risø Annual.1 Polymer based solar cells (photovoltaics) ................................ 5 2.2 Structuring Plastic ........................................................................ 17 2.7 Biodegradable polymer composites .......................................... 19 2

  4. Imaging Hydrated Microbial Extracellular Polymers: Comparative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy . Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron...

  5. The Polymer Bouncer

    E-Print Network [OSTI]

    A. Martin-Ruiz; A. Frank; L. F. Urrutia

    2015-05-31T23:59:59.000Z

    Polymer Quantization (PQ) is a background independent quantization scheme that is deployed in Loop Quantum Gravity. This framework leads to a new short-distance (discretized) structure characterized by a fundamental length. In this paper we use PQ to analyze the problem of a particle bouncing on a perfectly reflecting surface under the influence of Earth's gravitational field, what we have called "\\textit{The Polymer Bouncer}". In this scenario, deviations from the usual quantum effects are induced by the spatial discreteness, but not by a new short-range gravitational interaction. We solve the polymer Schr\\"odinger equation in an analytical fashion, and we evaluate numerically the corresponding energy levels. We find that the polymer energy spectrum exhibits a negative shift compared to the obtained for the quantum bouncer. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the fundamental length scale, namely $\\lambda \\ll 0.6 \\buildrel _{\\circ} \\over {\\mathrm{A}}$. We find polymer corrections to the probability of transitions between levels, induced by small vibrations, together with the probability of spontaneous emission in the quadrupole approximation.

  6. Branched Polymers and Hyperplane Arrangements

    E-Print Network [OSTI]

    Postnikov, Alexander

    We generalize the construction of connected branched polymers and the notion of the volume of the space of connected branched polymers studied by Brydges and Imbrie (Ann Math, 158:1019–1039, 2003), and Kenyon and Winkler ...

  7. Fluctuations of ring polymers

    E-Print Network [OSTI]

    Medalion, Shlomi; Meirovitch, Hagai; Barkai, Eli; Kessler, David A

    2015-01-01T23:59:59.000Z

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and weakly-interacting models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d greater or equal 2. A symmetry of the problem reveals that dimension d and 4 minus d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the one dimensional Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimensions 2 and 3, and are well described to a first approximation by the non-interacting excursion model in dimension 5.

  8. Antithrombogenic Polymer Coating.

    DOE Patents [OSTI]

    Huang, Zhi Heng (San Ramon, CA); McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2003-01-21T23:59:59.000Z

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  9. Shape memory polymer medical device

    DOE Patents [OSTI]

    Maitland, Duncan (Pleasant Hill, CA); Benett, William J. (Livermore, CA); Bearinger, Jane P. (Livermore, CA); Wilson, Thomas S. (San Leandro, CA); Small, IV, Ward (Livermore, CA); Schumann, Daniel L. (Concord, CA); Jensen, Wayne A. (Livermore, CA); Ortega, Jason M. (Pacifica, CA); Marion, III, John E. (Livermore, CA); Loge, Jeffrey M. (Stockton, CA)

    2010-06-29T23:59:59.000Z

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  10. BRANCHED POLYMERS AND HYPERPLANE ARRANGEMENTS

    E-Print Network [OSTI]

    Postnikov, Alexander

    BRANCHED POLYMERS AND HYPERPLANE ARRANGEMENTS KAROLA M´ESZ´AROS ALEXANDER POSTNIKOV Abstract. We of connected branched polymers studied by Brydges and Imbrie [BI], and Kenyon and Winkler [KW] to any hyperplane arrangement A. The volume of the resulting configuration space of connected branched polymers

  11. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    DOE Patents [OSTI]

    Yang, Peidong (Kensington, CA); Majumdar, Arunava (Orinda, CA); Fan, Rong (Pasadena, CA); Karnik, Rohit (Cambridge, MA)

    2011-03-01T23:59:59.000Z

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  12. Gel polymer electrolytes for batteries

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18T23:59:59.000Z

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  13. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  14. POLYMER ELECTROLYTE FUEL CELLS

    E-Print Network [OSTI]

    Petta, Jason

    POLYMER ELECTROLYTE FUEL CELLS: The Gas Diffusion Layer Johannah Itescu Princeton University PRISM REU #12;PEM FUEL CELLS: A little background information I. What do fuel cells do? Generate electricity through chemical reaction #12;PEM FUEL CELLS: A little background information -+ + eHH 442 2 0244 22 He

  15. High temperature polymer concrete

    DOE Patents [OSTI]

    Fontana, J.J.; Reams, W.

    1984-05-29T23:59:59.000Z

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  16. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01T23:59:59.000Z

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  17. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  18. Primordial polymer perturbations

    E-Print Network [OSTI]

    Sanjeev S. Seahra; Iain A. Brown; Golam Mortuza Hossain; Viqar Husain

    2012-09-25T23:59:59.000Z

    We study the generation of primordial fluctuations in pure de Sitter inflation where the quantum scalar field dynamics are governed by polymer (not Schrodinger) quantization. This quantization scheme is related to, but distinct from, the structures employed in Loop Quantum Gravity; and it modifies standard results above a polymer energy scale $M_{\\star}$. We recover the scale invariant Harrison Zel'dovich spectrum for modes that have wavelengths bigger than $M_{\\star}^{-1}$ at the start of inflation. The primordial spectrum for modes with initial wavelengths smaller than $M_{\\star}^{-1}$ exhibits oscillations superimposed on the standard result. The amplitude of these oscillations is proportional to the ratio of the inflationary Hubble parameter $H$ to the polymer energy scale. For reasonable choices of $M_{\\star}$, we find that polymer effects are likely unobservable in CMB angular power spectra due to cosmic variance uncertainty, but future probes of baryon acoustic oscillations may be able to directly constrain the ratio $H/M_{\\star}$.

  19. Carbon Nanotubes: Measuring Dispersion and Length

    SciTech Connect (OSTI)

    Fagan, Jeffrey A.; Bauer, Barry J.; Hobbie, Erik K.; Becker, Matthew L.; Hight-Walker, Angela; Simpson, Jeffrey R.; Chun, Jaehun; Obrzut, Jan; Bajpai, Vardhan; Phelan, Fred R.; Simien, Daneesh; Yeon Huh, Ji; Migler, Kalman B.

    2011-03-01T23:59:59.000Z

    Advanced technological uses of single-wall carbon nanotubes (SWCNTs) rely on the production of single length and chirality populations that are currently only available through liquid phase post processing. The foundation of all of these processing steps is the attainment of individualized nanotube dispersion in solution; an understanding of the collodial properties of the dispersed SWCNTs can then be used to designed appropriate conditions for separations. In many instances nanotube size, particularly length, is especially active in determining the achievable properties from a given population, and thus there is a critical need for measurement technologies for both length distribution and effective separation techniques. In this Progress Report, we document the current state of the art for measuring dispersion and length populations, including separations, and use examples to demonstrate the desirability of addressing these parameters.

  20. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect (OSTI)

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01T23:59:59.000Z

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  1. First principles study of structure and lithium storage in inorganic nanotubes

    E-Print Network [OSTI]

    Tibbetts, Kevin (Kevin Joseph)

    2009-01-01T23:59:59.000Z

    The exact structure of layered inorganic nanotubes is difficult to determine, but this information is vital to using atomistic calculations to predict nanotube properties. A multi-walled nanotube with a circular cross ...

  2. Engineering carbon nanostructures : development of novel aerogel-nanotube composites and optimization techniques for nanotube growth

    E-Print Network [OSTI]

    Steiner, Stephen Alan, III

    2006-01-01T23:59:59.000Z

    Carbon aerogels offer several unique advantages which make them ideal for evaluating a metal's ability to catalyze nanotube growth, including in situ carbothermic reduction of oxidized nanoparticles to their catalytic ...

  3. Understanding the Nanotube Growth Mechanism: A Strategy to Control Nanotube Chirality during Chemical Vapor Deposition Synthesis

    E-Print Network [OSTI]

    Gomez Gualdron, Diego Armando 1983-

    2012-10-26T23:59:59.000Z

    For two decades, single-wall carbon nanotubes (SWCNTs) have captured the attention of the research community, and become one of the flagships of nanotechnology. Due to their remarkable electronic and optical properties, SWCNTs are prime candidates...

  4. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    E-Print Network [OSTI]

    Lee, Jeonyoon

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. ...

  5. Laser ablative synthesis of carbon nanotubes

    DOE Patents [OSTI]

    Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA); Park, Cheol (Yorktown, VA)

    2010-03-02T23:59:59.000Z

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  6. Does water dope carbon nanotubes?

    SciTech Connect (OSTI)

    Bell, Robert A.; Payne, Michael C. [Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge (United Kingdom); Mostofi, Arash A. [Department of Materials and Department of Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-10-28T23:59:59.000Z

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup ?4}?e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  7. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOE Patents [OSTI]

    Geohegan, David B. (Knoxville, TN) [Knoxville, TN; Ivanov, Ilya N. (Knoxville, TN) [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27T23:59:59.000Z

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  8. Electrochemical implications of defects in carbon nanotubes

    E-Print Network [OSTI]

    Hoefer, Mark

    2012-01-01T23:59:59.000Z

    conducting polymer hybrid supercapacitors. Journal of Thestudies of carbon-carbon supercapacitors. Journal of TheHigh-voltage asymmetric supercapacitors operating in aqueous

  9. Surface-Initiated Titanium-Mediated Coordination Polymerization from Catalyst-Functionalized Single and Multiwalled Carbon Nanotubes

    SciTech Connect (OSTI)

    Priftis, Dimitrios [ORNL; Petzetakis, Nikolaos [University of Athens, Athens, Greece; Sakellariou, Georgios [ORNL; Pitsikalis, Marinos [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK); Mays, Jimmy [ORNL; Hadjichristidis, Nikos [University of Athens, Athens, Greece

    2009-01-01T23:59:59.000Z

    Single (SWNTs) and multiwalled (MWNTs) carbon nanotubes were functionalized with a titanium alkoxide catalyst through a Diels-Alder cycloaddition reaction. The catalyst-functionalized carbon nanotubes (CNTs) were used for the surface initiated titanium-mediated coordination polymerizations of L-lactide (L-LA), -caprolactone (-CL) and n-hexyl isocyanate (HIC) employing the grafting from technique. 1H NMR, IR and Raman spectra showed that the precursor catalyst was successfully synthesized and covalently attached on the CNTs surface. Thermogravimetric analysis (TGA) revealed that the grafted poly(L-lactide) (PLLA) content could be controlled with time. The final polymer-grafted CNTs were readily dissolved in organic solvents as compared to the insoluble pristine and catalyst-functionalized CNTs. The presence of thick layers of polymers around the CNTs was observed through transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) proved that the glass transition (Tg) and melting (Tm) temperatures of the PLLA are affected by the presence of the CNTs, while PLLA R-helix conformation remains intact, as revealed by the circular dichroism (CD) spectra.

  10. A C70-carbon nanotube complex for bulk heterojunction photovoltaic cells

    SciTech Connect (OSTI)

    Lau, Xinbo C.; Wang, Zhiqian; Mitra, Somenath, E-mail: Somenath.Mitra@njit.edu [Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)] [Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-09T23:59:59.000Z

    A C70 fullerene-multi-walled carbon nanotube (C70-CNT) complex has been used as a component of the photoactive layer in a bulk heterojunction photovoltaic cell. As compared to a control device with only C70, the addition of CNTs led to improvements in short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), and power conversion efficiency by 31.8, 17.5, and 69.5%, respectively. This device takes advantage of both the electron accepting feature of C70 and the high electron transport capability of CNTs. These results indicate that C70 decorated CNT is a promising additive for performance enhancement of polymer photovoltaic cells.

  11. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    SciTech Connect (OSTI)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15T23:59:59.000Z

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  12. Mesoporous carbons and polymers

    DOE Patents [OSTI]

    Bell, William; Dietz, Steven

    2004-05-18T23:59:59.000Z

    A polymer is prepared by polymerizing a polymerizable component from a mixture containing the polymerizable component and a surfactant, the surfactant and the polymerizable component being present in the mixture in a molar ratio of at least 0.2:1, having an average pore size greater than 4 nm and a density greater than 0.1 g/cc. The polymerizable component can comprise a resorcinol/formaldehyde system and the mixture can comprise an aqueous solution or the polymerizable component can comprise a divinylbenzene/styrene system and the mixture can comprise an organic solution. Alternatively, the polymerizable component can comprise vinylidene chloride or a vinylidene chloride/divinylbenzene system. The polymer may be monolithic, have a BET surface area of at least about 50 m.sup.2 /g., include a quantity of at least one metal powder, or have an electrical conductivity greater than 10 Scm.sup.-1.

  13. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  14. Doped Carbon Nanotubes for Hydrogen Storage

    E-Print Network [OSTI]

    · Electron Energy Loss Spectroscopy (EELS) measurements yielded an average nitrogen content of ~5 that result in a high yield of material possessing favorable characteristics · Utilize theoretical modeling or nitrogen largely due to the possibility of fabricating nanotube materials with tailored electrical

  15. Nanotube/Nanowire Based ORR Catalyst

    Broader source: Energy.gov [DOE]

    Presentation about nanotube or nanowire-based oxygen reduction reaction (ORR) catalysts, presented by Yushan Yan, University of Delaware, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  16. Nanotubes, Nanowires and Nano-electronics

    E-Print Network [OSTI]

    Pulfrey, David L.

    composites have applications in integrated circuits, photonics, solar cells, and displays. ECE professor promising light sensitivity, and which could be used for developing future solar cells. Advances in Nano industrial uses. One potential application for single-walled nanotubes is electron emitters for flat-panel

  17. Nanofluidic Diodes Based on Nanotube Heterojunctions

    E-Print Network [OSTI]

    Yang, Peidong

    Nanofluidic Diodes Based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan devices has recently been implemented into the nanofluidic field for the active control of ion transport, a signature of ionic diode behavior. Such nanofluidic diodes could find applications in ion separation

  18. Deformable Transparent All-Carbon-Nanotube Transistors

    E-Print Network [OSTI]

    Maruyama, Shigeo

    and organic materials16,17 are candidates for next-generation flexible and transparent electronic devices-carbon-nanotube field-effect transistors (CNT- FETs), making use of the flexible yet robust nature of single than those used in other flexible CNT-FETs allowed our devices to be highly deformable without

  19. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

    1995-01-01T23:59:59.000Z

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  20. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12T23:59:59.000Z

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  1. Polymer Stretching by Turbulence

    SciTech Connect (OSTI)

    Chertkov, Michael

    2000-05-15T23:59:59.000Z

    The stretching of a polymer chain by a large-scale chaotic flow is considered. The steady state which emerges as a balance of the turbulent stretching and anharmonic resistance of the chain is quantitatively described, i.e., the dependency on the flow parameters (Lyapunov exponent statistics) and the chain characteristics (the number of beads and the interbead elastic potential) is made explicit. (c) 2000 The American Physical Society.

  2. Polymer Crowding and Shape Distributions in Polymer-Nanoparticle Mixtures

    E-Print Network [OSTI]

    Wei Kang Lim; Alan R. Denton

    2014-10-24T23:59:59.000Z

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  3. Diffusion through Carbon Nanotube Semipermeable membranes

    SciTech Connect (OSTI)

    Bakajin, O

    2006-02-13T23:59:59.000Z

    The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization. Furthermore, advancement of many emerging nanotechnologies in chemistry and biology will undoubtedly be aided by an understanding confined water transport, particularly the details of hydrogen bonding and solvation that become crucial on this length scale. We can envision several practical applications for our devices, including desalination, gas separations, dialysis, and semipermeable fabrics for protection against CW agents etc. The single wall carbon nanotube membranes will be the key platform for applications because they will allow high transport rates of small molecules such as water and eliminate solvated ions or CW agents.

  4. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  5. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  6. Incorporation of additives into polymers

    DOE Patents [OSTI]

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29T23:59:59.000Z

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  7. Stretched Polymers in Random Environment

    E-Print Network [OSTI]

    Dmitry Ioffe; Yvan Velenik

    2011-03-01T23:59:59.000Z

    We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random environments.

  8. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04T23:59:59.000Z

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  9. Photopatterned conjugated polymer electrochromic nanofibers Arvind Kumara

    E-Print Network [OSTI]

    Otero, Toribio Fernández

    Photopatterned conjugated polymer electrochromic nanofibers on paper Arvind Kumara , Chris Asemotaa. Electrochromic nanofibers of conducting polymer (terthiophene) have been deposited over a conventional paper in electrochromic characters. SEM images of the conducting polymer nanofibers together with the cellulose fibers

  10. Nitinol-reinforced shape-memory polymers

    E-Print Network [OSTI]

    Di Leo, Claudio V

    2010-01-01T23:59:59.000Z

    Reinforced shape-memory polymers have been developed from an acrylate based thermoset shape-memory polymer and nitinol wires. A rectangular shape-memory polymer measuring approximately 1 by 2 by 0.1 inches has a ten fold ...

  11. Nanostructure Control of Biologically Inspired Polymers

    E-Print Network [OSTI]

    Rosales, Adrianne

    2013-01-01T23:59:59.000Z

    E. B. ; Wagener, K. B. Polymer 2008, 49, 2985-2995. Boz,T. ; Matyjaszewski, K. Polymer 2008, 49, 1567-1578. Kim,Flory, P. J. ; Jackson, J. B. Polymer 1963, 4, (2), 221-236.

  12. Water-splitting using photocatalytic porphyrin-nanotube composite devices

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Miller, James E. (Albuquerque, NM); Wang, Zhongchun (Albuquerque, NM); Medforth, Craig J. (Winters, CA)

    2008-03-04T23:59:59.000Z

    A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

  13. PtRu/Carbon Nanotube Nanocomposite Synthesized in Supercritical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesized in Supercritical Fluid: A Novel Electrocatalyst for Direct Methanol Fuel Cell. PtRuCarbon Nanotube Nanocomposite Synthesized in Supercritical Fluid: A Novel...

  14. Continuous Growth of Vertically Aligned Carbon Nanotubes Forests

    E-Print Network [OSTI]

    Guzman de Villoria, Roberto

    Vertically aligned carbon nanotubes are one of the most promising materials due their numerous applications in flexible electronic devices, biosensors and multifunctional aircraft materials, among others. However, the ...

  15. Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells. PlatinumCarbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as...

  16. Carbon nanotube oscillator surface profiling device and method of use

    DOE Patents [OSTI]

    Popescu, Adrian (Tampa, FL); Woods, Lilia M. (Tampa, FL); Bondarev, Igor V. (Fuquay Varina, NC)

    2011-11-15T23:59:59.000Z

    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  17. Carbon nanotube applications for CMOS back-end processing

    E-Print Network [OSTI]

    Wu, Tan Mau, 1979-

    2005-01-01T23:59:59.000Z

    Carbon nanotubes are a recently discovered material with excellent mechanical, thermal, and electronic properties. In particular, they are potential ballistic transporters and are theorized to have thermal conductivities ...

  18. Electrochemical Synthesis and Structural Characterization of Titania Nanotubes

    E-Print Network [OSTI]

    Nguyen, Que Anh

    2010-01-01T23:59:59.000Z

    titanium, oxygen, and fluoride in heat- treated nanotube samples. corresponding to energy-energy values are cap- tured. In this analysis, the chemical elements of interest are titanium,

  19. Carbon nanotubes decorated with Pt nanoparticles via electrostatic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly...

  20. Carbon Nanotube-Based Electrochemical Sensor for Assay of Salivary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensor for Assay of Salivary Cholinesterase Enzyme Activity: An Exposure Biomarker of Carbon Nanotube-Based Electrochemical Sensor for Assay of Salivary Cholinesterase Enzyme...

  1. Towards structural health monitoring in carbon nanotube reinforced composites

    E-Print Network [OSTI]

    Wang, Wennie

    2013-01-01T23:59:59.000Z

    An experimental investigation was conducted to understand the non-destructive evaluation (NDE) capabilities of carbon nanotubes (CNTs) of several network architectures towards structural health monitoring (SHM). As ...

  2. Characterization of composites with aligned carbon nanotubes (CNTs) as reinforcement

    E-Print Network [OSTI]

    García, Enrique J

    2006-01-01T23:59:59.000Z

    Carbon nanotubes' (CNTs) superlative combination of electrical, thermal, and especially mechanical properties make them ideal candidates for composite reinforcement. Nanocomposites and hybrid composite architectures employing ...

  3. Journal Title: Journal of polymer science. Part B, Polymer physics

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    composites. rigid rod polymer. mo- lecular modeling. poly (azomethine) · epoxy. glass/epoxy composite. Such composites would find * To whom correspondence should be addressed. Journal of Polymer Science: Part B molecular composite. Since heat conduction oc- curs more efficiently intramolecularly (through bonds) than

  4. Singular Limits in Polymer Stabilized Liquid Crystals

    E-Print Network [OSTI]

    1910-31-00T23:59:59.000Z

    We investigate equilibrium configurations for a polymer stabilized liquid crys- tal material ... eling the cross section of the liquid crystal-polymer fiber composite.

  5. Partially fluorinated cyclic ionic polymers and membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu

    2013-04-09T23:59:59.000Z

    Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

  6. Polymers in a vacuum

    E-Print Network [OSTI]

    J. M. Deutsch

    2007-06-13T23:59:59.000Z

    In a variety of situations, isolated polymer molecules are found in a vacuum and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. The time autocorrelation for monomer position oscillates with a characteristic time proportional to chain length. The oscillations and damping are analyzed in detail. Short range repulsive interactions suppress oscillations and speed up relaxation but stretched chains still show damped oscillatory time correlations.

  7. Scanning electron microscopy study of carbon nanotubes heated at high temperatures in air

    E-Print Network [OSTI]

    . INTRODUCTION Because of their remarkable physical and electronic properties, carbon nanotubes are promising nanotubes in air,3,4 in an oxygen stream,5 or under a flow of carbon dioxide gas.6 Thinning of nanotubesScanning electron microscopy study of carbon nanotubes heated at high temperatures in air Xuekun Lu

  8. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, John D. (Kennewick, WA); Gross, Mark E. (Pasco, WA)

    1997-01-01T23:59:59.000Z

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  9. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, J.D.; Gross, M.E.

    1997-10-28T23:59:59.000Z

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  10. Rheology, Morphology and Temperature Dependency of Nanotube Networks in Polycarbonate/Multiwalled Carbon Nanotube Composites

    SciTech Connect (OSTI)

    Abbasi, Samaneh; Carreau, Pierre J. [CREPEC, Department of Chemical Engineering, Ecole Polytechnique, P.O. Box 6079, Station Centre-Ville, Montreal, QC, H3C 3A7 (Canada); Derdouri, Abdessalem [CREPEC, Industrial Materials Institute, National Research Council Canada, 75, de Mortagne, Boucherville, QC, JB4 6Y4 (Canada)

    2008-07-07T23:59:59.000Z

    We present several issues related to the state of dispersion and rheological behavior of polycarbonate/multiwalled carbon nanotube (MWCNT) composites. The composites were prepared by diluting a commercial masterbatch containing 15 wt% nanotubes using optimized melt-mixing conditions. The state of dispersion was then analyzed by scanning and transmission electron microscopy (SEM, TEM). Rheological characterization was also used to assess the final morphology. Further, it was found that the rheological percolation threshold decreased significantly with increasing temperature and finally reached a constant value. This is described in terms of the Brownian motion, which increases with temperature. However, by increasing the nanotube content, the temperature effects on the complex viscosity at low frequency decreased significantly. Finally, the percolation thresholds were found to be approximately equal to 0.3 and 2 wt% for rheological and electrical conductivity measurements, respectively.

  11. Accelerated Characterization of Polymer Properties

    SciTech Connect (OSTI)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30T23:59:59.000Z

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  12. Rotational dynamics of entangled polymers

    E-Print Network [OSTI]

    Jean-Charles Walter; Michiel Laleman; Marco Baiesi; Enrico Carlon

    2014-09-01T23:59:59.000Z

    Some recent results on the rotational dynamics of polymers are reviewed and extended. We focus here on the relaxation of a polymer, either flexible or semiflexible, initially wrapped around a rigid rod. We also study the steady polymer rotation generated by a constant torque on the rod. The interplay of frictional and entropic forces leads to a complex dynamical behavior characterized by non-trivial universal exponents. The results are based on extensive simulations of polymers undergoing Rouse dynamics and on an analytical approach using force balance and scaling arguments. The analytical results are in general in good agreement with the simulations, showing how a simplified approach can correctly capture the complex dynamical behavior of rotating polymers.

  13. Oilfield flooding polymer

    DOE Patents [OSTI]

    Martin, Fred D. (Socorro, NM); Hatch, Melvin J. (Socorro, NM); Shepitka, Joel S. (Socorro, NM); Donaruma, Lorraine G. (Syosset, NY)

    1986-01-01T23:59:59.000Z

    A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.

  14. Density controlled carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng F. (Newton, MA); Tu, Yi (Belmont, MA)

    2008-12-16T23:59:59.000Z

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  15. An ultrafast carbon nanotube terahertz polarisation modulator

    SciTech Connect (OSTI)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B., E-mail: m.johnston@physics.ox.ac.uk [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

    2014-05-28T23:59:59.000Z

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  16. Carbon Nanotube DNA Sensor and Sensing Mechanism

    E-Print Network [OSTI]

    Le Roy, Robert J.

    nanotube (SWNT) DNA sensors and the sensing mechanism. The simple and generic protocol for label for direct label-free detection of DNA hybridization in a biocompatible buffer solution. We also carried out is a field effect device, which has a typical on-current of 3-6 µA at 10 mV source- drain bias and an on-off

  17. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Arman, B. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) and Texas A and M Univ., College Station, TX (United States); An, Q. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) and California Institute of Technology, Pasedena, CA (United States); Luo, S. N. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Desai, T. G. [Advanced Cooling Technologies, Inc., Lancaster, PA (United States); Tonks, D. L. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Cagin, T. [Texas A and M Univ., College Station, TX (United States); Goddard III, W. A. [California Institute of Technology, Pasedena, CA (United States)

    2011-01-01T23:59:59.000Z

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. The CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations suggest that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.

  18. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Arman, B.; An, Q.; Luo, S. N.; Desai, T. G.; Tonks, D. L.; Cagin, T.; Goddard III, W. A.

    2011-01-01T23:59:59.000Z

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore »CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations suggest that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  19. Carbon Nanotubes for Thermoacoustic Contrast Enhancement Preliminary Results

    E-Print Network [OSTI]

    Patch, Sarah

    ) and SWNTs4,5 for near-infrared illumination. It has been reported that SWNTs can enhance heating these measurements on nanotubes. 1. INTRODUCTION 1.1 Review of experimental CNT heating enhancement results nanotubes into solutions and tissues can cause an increase in the materials' heating upon EM illumination

  20. A Generic Approach to Coat Carbon Nanotubes With Nanoparticles

    E-Print Network [OSTI]

    Chen, Junhong

    A Generic Approach to Coat Carbon Nanotubes With Nanoparticles for Potential Energy Applications coated with nanoparticles of multiple materials to realize the multicomponent coating. High resolution.1115/1.2787026 Keywords: carbon nanotubes, nanoparticles, electrostatic force directed assembly, coating, size selection

  1. Percolation in Transparent and Conducting Carbon Nanotube Networks

    E-Print Network [OSTI]

    Gruner, George

    and chemical sensors9 , field emission devices10,11 , and transparent conductive coatings7 . We12 , and another. Transmission measurements also indicate the usefulness of nanotube network films as a transparent, conductive coating. Avenues for improvement of the network transparency are discussed. KEYWORDS Nanotubes, Networks

  2. Doped Carbon Nanotubes for Hydrogen Storage Ragaiy Zidan

    E-Print Network [OSTI]

    hydrogen storage system is expected to be simple to engineer and tremendously safer. Carbon nanotubesDoped Carbon Nanotubes for Hydrogen Storage Ragaiy Zidan Savannah River Technology Center Savannah-capacity hydrogen storage material. The final product should have favorable thermodynamics and kinetics

  3. Radio frequency analog electronics based on carbon nanotube transistors

    E-Print Network [OSTI]

    Rogers, John A.

    Radio frequency analog electronics based on carbon nanotube transistors Coskun Kocabas*, Hoon properties of individ- ual tubes. We have implemented solutions to some of these challenges to yield radio band with power gains as high as 14 dB. As a demon- stration, we fabricated nanotube transistor radios

  4. Water transport through functionalized nanotubes with tunable hydrophobicity

    SciTech Connect (OSTI)

    Moskowitz, Ian; Snyder, Mark A.; Mittal, Jeetain, E-mail: jeetain@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2014-11-14T23:59:59.000Z

    Molecular dynamics simulations are used to study the occupancy and flow of water through nanotubes comprised of hydrophobic and hydrophilic atoms, which are arranged on a honeycomb lattice to mimic functionalized carbon nanotubes (CNTs). We consider single-file motion of TIP3P water through narrow channels of (6,6) CNTs with varying fractions (f) of hydrophilic atoms. Various arrangements of hydrophilic atoms are used to create heterogeneous nanotubes with separate hydrophobic/hydrophilic domains along the tube as well as random mixtures of the two types of atoms. The water occupancy inside the nanotube channel is found to vary nonlinearly as a function of f, and a small fraction of hydrophilic atoms (f ? 0.4) are sufficient to induce spontaneous and continuous filling of the nanotube. Interestingly, the average number of water molecules inside the channel and water flux through the nanotube are less sensitive to the specific arrangement of hydrophilic atoms than to the fraction, f. Two different regimes are observed for the water flux dependence on f – an approximately linear increase in flux as a function of f for f < 0.4, and almost no change in flux for higher f values, similar to the change in water occupancy. We are able to define an effective interaction strength between nanotube atoms and water's oxygen, based on a linear combination of interaction strengths between hydrophobic and hydrophilic nanotube atoms and water, that can quantitatively capture the observed behavior.

  5. Water transport through functionalized nanotubes with tunable hydrophobicity

    E-Print Network [OSTI]

    Ian Moskowitz; Mark A. Snyder; Jeetain Mittal

    2015-03-12T23:59:59.000Z

    Molecular dynamics simulations are used to study the occupancy and flow of water through nanotubes comprised of hydrophobic and hydrophilic atoms, which are arranged on a honeycomb lattice to mimic functionalized carbon nanotubes (CNTs). We consider single-file motion of TIP3P water through narrow channels of (6,6) CNTs with varying fractions (f) of hydrophilic atoms. Various arrangements of hydrophilic atoms are used to create heterogeneous nanotubes with separate hydrophobic/hydrophilic domains along the tube as well as random mixtures of the two types of atoms. The water occupancy inside the nanotube channel is found to vary nonlinearly as a function of f, and a small fraction of hydrophilic atoms (f ~ 0.4) are sufficient to induce spontaneous and continuous filling of the nanotube. Interestingly, the average number of water molecules inside the channel and water flux through the nanotube are less sensitive to the specific arrangement of hydrophilic atoms than to the fraction, f. Two different regimes are observed for the water flux dependence on f - an approximately linear increase in flux as a function of f for f water occupancy. We are able to define an effective interaction strength between nanotube atoms and water's oxygen, based on a linear combination of interaction strengths between hydrophobic and hydrophilic nanotube atoms and water, that can quantitatively capture the observed behavior.

  6. Carbon nanotubes as photoacoustic molecular imaging agents in living mice

    E-Print Network [OSTI]

    Khuri-Yakub, Butrus T. "Pierre"

    Carbon nanotubes as photoacoustic molecular imaging agents in living mice ADAM DE LA ZERDA1 not shown to target a diseased site in living subjects. Here we show that single-walled carbon nanotubes were verified ex vivo using Raman microscopy. Photoacoustic imaging of targeted single-walled carbon

  7. adding carbon nanotubes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adding carbon nanotubes First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Carbon Nanotubes. Open Access...

  8. asbestos carbon nanotubes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    asbestos carbon nanotubes First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Carbon Nanotubes. Open Access...

  9. Apparatus for the laser ablative synthesis of carbon nanotubes

    DOE Patents [OSTI]

    Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA)

    2010-02-16T23:59:59.000Z

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  10. Bouncing Water Droplet on a Superhydrophobic Carbon Nanotube Array

    E-Print Network [OSTI]

    Aria, Adrianus I

    2010-01-01T23:59:59.000Z

    Over the past few decades, superhydrophobic materials have attaracted a lot of interests, due to their numerous practical applications. Among various superhydrophobic materials, carbon nanotube arrays have gained enormous attentions simply because of their outstanding properties. The impact dynamic of water droplet on a superhydrophobic carbon nanotube array is shown in this fluid dynamics video.

  11. Superhydrophobic Carbon Nanotube Forests Kenneth K. S. Lau*1

    E-Print Network [OSTI]

    Superhydrophobic Carbon Nanotube Forests Kenneth K. S. Lau*1 , José Bico2 , Kenneth B. K. Teo3 demonstrates the creation of a stable, superhydrophobic surface using the nano-scale roughness inherent (PTFE) coating on the surface of the nanotubes. Superhydrophobicity is achieved down to the microscopic

  12. Structure of Carbon Nanotubes as a Product of Processing Parameters

    E-Print Network [OSTI]

    Collins, Gary S.

    a step back and attempt to understand how processing of a carbon nanotube correlates to its structure installed a 1" diameter spiral substrate heater upon which samples can be set. The chamber is also connected go through a number of prepping steps. Currently the carbon nanotubes that we have obtained have been

  13. Polymer solutions: from hard monomers to soft polymers

    E-Print Network [OSTI]

    J. -P. Hansen; C. I. Addison; A. A. Louis

    2005-07-15T23:59:59.000Z

    A coarse-graining strategy for dilute and semi-dilute solutions of interacting polymers, and of colloid polymer mixtures is briefly described. Monomer degrees of freedom are traced out to derive an effective, state dependent pair potential between the polymer centres of mass. The cross-over between good and poor solvent conditions is discussed within a scaling analysis. The method is extended to block copolymers represented as "necklaces" of soft "blobs", and its success is illustrated here in the case of a symmetric diblock copolymer which exhibits microphase separation.

  14. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14T23:59:59.000Z

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  15. Rotational actuator of motor based on carbon nanotubes

    DOE Patents [OSTI]

    Zettl, Alexander K. (Kensington, CA); Fennimore, Adam M. (Berkeley, CA); Yuzvinsky, Thomas D. (Berkeley, CA)

    2008-11-18T23:59:59.000Z

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  16. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    SciTech Connect (OSTI)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji, E-mail: inagaki@mosk.tytlabs.co.jp [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan); Japan Science and Technology Agency (JST)/ACT-C, Nagakute, Aichi, 480-1192 (Japan); Ohsuna, Tetsu [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan)

    2014-11-01T23:59:59.000Z

    We report the synthesis of organosilica nanotubes containing 2,2?-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2?-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  17. Polymer Thermodynamics and Chain Structure Polymers display some similarities and some differences with nano-aggregates.

    E-Print Network [OSTI]

    Beaucage, Gregory

    Polymer Thermodynamics and Chain Structure Polymers display some similarities and some differences with nano-aggregates. Both materials are composed of basic units, Kuhn units for polymers which are rod an aggregate in nanomaterials and a polymer coil in Polymer Science. The mass-fractal or minimum dimension

  18. Polymer adsorption near the surface of a polymer solution : a universal behaviour

    E-Print Network [OSTI]

    Boyer, Edmond

    699 Polymer adsorption near the surface of a polymer solution : a universal behaviour J. des5 , pour 0 03B5 1. Abstract.2014 A universal property of good solutions of long polymers near. Introduction. The free surface of a polymer solution may attract the polymer which forms an adsorbed layer

  19. ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics.

    E-Print Network [OSTI]

    Vajda, Sandor

    ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics. Prof. Rama Bansil Class will be assumed. The course will not emphasize synthetic polymer chemistry. Practical applications of polymers of classes TEXT BOOKS Main Text Book: Required: Polymer Chemistry, 2nd Edition, Hiemenz and Lodge, CRC Press

  20. Kac polymers Paolo Butt`a

    E-Print Network [OSTI]

    Procacci, Aldo

    Kac polymers Paolo Butt`a Aldo Procacci Benedetto Scoppola Abstract We show how a polymer in two- sidered on the appropriate scale. Key words: Polymers, Kac potentials, phase transition. Running title: Kac polymers Dedicated to a Marzio Cassandro's birthday. 1 Introduction In the last two decades

  1. Non-strinking siloxane polymers

    DOE Patents [OSTI]

    Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.

  2. Thermodynamics of tubelike flexible polymers

    E-Print Network [OSTI]

    Thomas Vogel; Thomas Neuhaus; Michael Bachmann; Wolfhard Janke

    2009-07-17T23:59:59.000Z

    In this work we present the general phase behavior of short tubelike flexible polymers. The geometric thickness constraint is implemented through the concept of the global radius of curvature. We use sophisticated Monte Carlo sampling methods to simulate small bead-stick polymer models with Lennard-Jones interaction among non-bonded monomers. We analyze energetic fluctuations and structural quantities to classify conformational pseudophases. We find that the tube thickness influences the thermodynamic behavior of simple tubelike polymers significantly, i.e., for given temperature, the formation of secondary structures strongly depends on the tube thickness.

  3. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01T23:59:59.000Z

    materials for organic photovoltaics. We have successfully investigated polymer functionalization to produce supramolecular

  4. Self-assembling functionalized single-walled carbon nanotubes

    E-Print Network [OSTI]

    Gao, Yan

    2011-01-01T23:59:59.000Z

    The hydrophobic backbone fluorocarbon polymer is separatedare attached to the fluorocarbon matrix, while under

  5. Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes

    E-Print Network [OSTI]

    is attributed to the formation of a hydrogen-bonded nanotube network. The oxidized tubes bind readily to amine been demonstrated. They have been successfully used in nanoelectronic2 and photovoltaic3 devices and as scanning probe tips,9 chemical10a and flow10b sensors, hydrogen-storage reservoirs,11 nanocomposite

  6. Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,

    E-Print Network [OSTI]

    Rubloff, Gary W.

    High density devices for energy capture, storage, displays, ... #12;Nanofabrication by Self-aligned processes to form nanostructures Self-limiting chemical synthesis by HfO2 nanotubes Self-limiting chemical approaches to control materials, devices, and products at the nanoscale Natural phenomena (self

  7. Characterization of macro-length conducting polymers and the development of a conducting polymer rotary motor

    E-Print Network [OSTI]

    Schmid, Bryan D. (Bryan David), 1981-

    2005-01-01T23:59:59.000Z

    Conducting polymers are a subset of materials within the electroactive polymer class that exhibit active mechanical deformations. These deformations induce stresses and strains that allow for conducting polymers to be used ...

  8. Polymer electronic devices and materials.

    SciTech Connect (OSTI)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01T23:59:59.000Z

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  9. Continuous production of conducting polymer

    E-Print Network [OSTI]

    Gaige, Terry A. (Terry Alden), 1981-

    2004-01-01T23:59:59.000Z

    A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

  10. Constitutive modeling of active polymers

    E-Print Network [OSTI]

    Therkelsen, Scott V. (Scott Vincent), 1980-

    2005-01-01T23:59:59.000Z

    This thesis develops a three-dimensional constitutive model of active polymeric materials, including changes in material volume and properties due to actuation. Active polymers reversibly change shape, volume and/or material ...

  11. A conjugated polymer plastic gel

    E-Print Network [OSTI]

    Alcazar Jorba, Daniel

    2008-01-01T23:59:59.000Z

    We present a gel route to process highly oriented conjugated polymer films and fibers. The incorporation of hexafluoroisopropanol, a strong and stable dipolar group, to the polythiophene backbone enhances the solubility ...

  12. Conductive polymer-based material

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI); Dourado, Sunil K. (Ann Arbor, MI); Dulebohn, Joel I. (Lansing, MI); Hanchar, Robert J. (Charlotte, MI)

    2007-04-17T23:59:59.000Z

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  13. High elastic modulus polymer electrolytes

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22T23:59:59.000Z

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  14. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  15. Polymer Bose--Einstein Condensates

    E-Print Network [OSTI]

    E. Castellanos; G. Chacon-Acosta

    2013-01-22T23:59:59.000Z

    In this work we analyze a non--interacting one dimensional polymer Bose--Einstein condensate in an harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose--Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for $\\lambda^{2}$ up to $ \\lesssim 10 ^{-16}$m$^2$. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.

  16. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11T23:59:59.000Z

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  17. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acidic Polymers for Chemical Vapor Sensing. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Abstract: A review with 171 references. Hydrogen-bond acidic polymers for...

  18. Exploring Polymer and Liposomal Carriers for Optimized Drug Delivery

    E-Print Network [OSTI]

    Ferguson, Heidi M

    2012-01-01T23:59:59.000Z

    1459–1467. Fox, M. E. Dendritic polymers for the delivery ofiii Chapter 1: Introduction to Polymer and Liposome Drugbioavailability. Conclusions Polymers and liposomes can be

  19. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    E-Print Network [OSTI]

    Warren, Clinton Gregory

    2010-01-01T23:59:59.000Z

    Recent Developments in Polymer MEMS. Advanced Materials,using thin silicon/polymer bimorph membranes. Sensors andof cantilever arrays reveal polymer film expansion and

  20. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Abstract: Super-absorbent polymers (SAPs) have...

  1. a-1 polymer chemistry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    walk in random Sepplinen, Timo 16 Polymer-Metal Nanocomposites via Polymer Thin Film Computer Technologies and Information Sciences Websites Summary: Polymer-Metal...

  2. Coordination polymers and building blocks based on ditopic heteroscorpionate ligands

    E-Print Network [OSTI]

    Santillan, Guillermo A.

    2009-01-01T23:59:59.000Z

    of Silver (I) Coordination Polymers formed through hydrogenBlocks for Coordination Polymers” Inorg. Chem. *One of theof Silver(I) Coordination Polymers Formed through Hydrogen

  3. High cation transport polymer electrolyte

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL); Klingler, Robert J. (Westmont, IL)

    2007-06-05T23:59:59.000Z

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  4. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    SciTech Connect (OSTI)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07T23:59:59.000Z

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ?2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage ??0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube ? OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  5. Nanostructured polymer membranes for proton conduction

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18T23:59:59.000Z

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  6. Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes

    SciTech Connect (OSTI)

    Lu, Jun-Qiang [ORNL; Jiang, Hanqiang [Arizona State University

    2008-01-01T23:59:59.000Z

    Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.

  7. Carbon Nanotubes Potentialities in Directional Dark Matter Searches

    E-Print Network [OSTI]

    L. M. Capparelli; G. Cavoto; D. Mazzilli; A. D. Polosa

    2014-12-28T23:59:59.000Z

    We propose a new solution to the problem of dark matter directional detection based on large parallel arrays of carbon nanotubes. The phenomenon of ion channeling in single wall nanotubes is simulated to calculate the expected number of recoiling carbon ions, due to the hypothetical scattering with dark matter particles, subsequently being driven along their longitudinal extension. As shown by explicit calculation, the relative orientation of the carbon nanotube array with respect to the direction of motion of the Sun has an appreciable effect on the channeling probability of the struck ion and this provides the required detector anisotropic response.

  8. Fibrous composites comprising carbon nanotubes and silica

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-10-11T23:59:59.000Z

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  9. Metallic Carbon Nanotubes and Ag Nanocrystals

    SciTech Connect (OSTI)

    Brus, Louis E

    2014-03-04T23:59:59.000Z

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  10. Electron transport through single carbon nanotubes

    SciTech Connect (OSTI)

    Schenkel, Thomas; Chai, G.; Heinrich, H.; Chow, L.; Schenkel, T.

    2007-08-01T23:59:59.000Z

    We report on the transport of energetic electrons through single, well aligned multi-wall carbon nanotubes (CNT). Embedding of CNTs in a protective carbon fiber coating enables the application of focused ion beam based sample preparation techniques for the non-destructive isolation and alignment of individual tubes. Aligned tubes with lengths of 0.7 to 3 mu m allow transport of 300 keV electrons in a transmission electron microscope through their hollow cores at zero degree incident angles and for a misalignment of up to 1 degree.

  11. Nonlinear viscoelasticity of freestanding and polymer-anchored vertically aligned carbon nanotube foams

    E-Print Network [OSTI]

    Jensen, Grant J.

    . 111, 113511 (2012) Nano / composite precipitates in Alloy 718 Appl. Phys. Lett. 100, 211913 (2012, Indian Institute of Science, 560012 Bangalore, India 5 Graduate Aerospace Laboratories (GALCIT

  12. Processing, Characterization and Modeling Carbon Nanotube Modified Interfaces in Hybrid Polymer Matrix Composites 

    E-Print Network [OSTI]

    Truong, Hieu 1990-

    2012-12-04T23:59:59.000Z

    Multifunctional hybrid composites are proposed as novel solutions to meet the demands in various industrial applications ranging from aerospace to biomedicine. The combination of carbon fibers and/or fabric, metal foil ...

  13. Three-dimensional constitutive relations of aligned carbon nanotube polymer nanocomposites

    E-Print Network [OSTI]

    Handlin, Daniel A

    2013-01-01T23:59:59.000Z

    We have created a set of decision support tools to streamline the surgical case scheduling process by allowing surgical wait list cases (elective cases that cannot be assigned a slot on the operating room schedule at the ...

  14. Electrical, electromagnetic and structural characteristics of carbon nanotube-polymer nanocomposites

    E-Print Network [OSTI]

    Park, Sung-Hoon

    2009-01-01T23:59:59.000Z

    S. Melt processing of SWCNT- polyimide nanocomposite fibers74] and SWNT/polyimide[75] type nanocomposites. In Situ

  15. Synthesis of Thermal Interface Materials Made of Metal Decorated Carbon Nanotubes and Polymers 

    E-Print Network [OSTI]

    Okoth, Marion Odul

    2011-10-21T23:59:59.000Z

    . Addition of thermally-conductive fillers, such as exfoliated graphite, did not yield better k results as it sunk to the bottom during drying. The use of SDBS greatly increased the k values of the sample by reducing agglomeration. Increasing the amount...

  16. Polymer Parametrised Field Theory

    E-Print Network [OSTI]

    Alok Laddha; Madhavan Varadarajan

    2008-05-02T23:59:59.000Z

    Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as that of spacetime diffeomorphisms are represented in an anomaly free manner. Semiclassical states can be analysed at the gauge invariant level. It is shown that `physical weaves' necessarily underly such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.

  17. SUPER HARD SURFACED POLYMERS

    SciTech Connect (OSTI)

    Mansur, Louis K [ORNL] [ORNL; Bhattacharya, R [UES, Incorporated, Dayton, OH] [UES, Incorporated, Dayton, OH; Blau, Peter Julian [ORNL] [ORNL; Clemons, Art [ORNL] [ORNL; Eberle, Cliff [ORNL] [ORNL; Evans, H B [UES, Incorporated, Dayton, OH] [UES, Incorporated, Dayton, OH; Janke, Christopher James [ORNL] [ORNL; Jolly, Brian C [ORNL] [ORNL; Lee, E H [Consultant, Milpitas, CA] [Consultant, Milpitas, CA; Leonard, Keith J [ORNL] [ORNL; Trejo, Rosa M [ORNL] [ORNL; Rivard, John D [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    High energy ion beam surface treatments were applied to a selected group of polymers. Of the six materials in the present study, four were thermoplastics (polycarbonate, polyethylene, polyethylene terephthalate, and polystyrene) and two were thermosets (epoxy and polyimide). The particular epoxy evaluated in this work is one of the resins used in formulating fiber reinforced composites for military helicopter blades. Measures of mechanical properties of the near surface regions were obtained by nanoindentation hardness and pin on disk wear. Attempts were also made to measure erosion resistance by particle impact. All materials were hardness tested. Pristine materials were very soft, having values in the range of approximately 0.1 to 0.5 GPa. Ion beam treatment increased hardness by up to 50 times compared to untreated materials. For reference, all materials were hardened to values higher than those typical of stainless steels. Wear tests were carried out on three of the materials, PET, PI and epoxy. On the ion beam treated epoxy no wear could be detected, whereas the untreated material showed significant wear.

  18. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite

    SciTech Connect (OSTI)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Sharma, Vimal [Department of Physics, NIT Hamirpur - 177005, HP (India); Pal, Hemant [Department of Physics, NIT Hamirpur - 177005, HP, India and Department of Physics, Govt. College Chamba - 176310, HP (India)

    2014-04-24T23:59:59.000Z

    Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.

  19. Propagation of polymer slugs through porous media

    SciTech Connect (OSTI)

    Lecourtier, J.; Chauveteau, G.

    1984-09-01T23:59:59.000Z

    This paper describes an experimental and theoretical study of the mechanisms governing polymer slug propagation through porous media. An analytical model taking into account the macromolecule exclusion from pore walls is proposed to predict rodlike polymer velocity in porous media and thus the spreading out of polydispersed polymer slugs. Under conditions where this wall exclusion is maximum, i.e. at low shear rates and polymer concentrations, the experiments show that xanthan propagation is effectively predicted by this model. At higher flow rates and polymer concentrations, the effects of hydrodynamic dispersion and viscous fingering are analyzed. A new fractionation method for determining molecular weight distribution of polymers used in EOR is proposed.

  20. Polymer Bulletin 52, 259-266 (2004) DO1 10.1007/~00289-004-0289-6 Polymer BuIletin

    E-Print Network [OSTI]

    Harmon, Julie P.

    composite materials. #12;260 Both types of carbon nanotubes have unpurified components known as soot. Soot carbon nanotubes was provided by NASA Ames Research Center. The composites were compression molded-wall carbon nanotube composites indicate that soot composites possess lower radiation resistance. Introduction

  1. Novel Diblock Copolymer-Grafted Multiwalled Carbon Nanotubes via a combination of Living and Controlled/Living Surface Polymerizations

    SciTech Connect (OSTI)

    Priftis, Dimitrios [ORNL; Sakellariou, Georgios [ORNL; Mays, Jimmy [University of Tennessee, Knoxville (UTK); Hadjichristidis, Nikos [University of Athens, Athens, Greece

    2010-01-01T23:59:59.000Z

    Diels Alder cycloaddition reactions were used to functionalize multiwalled carbon nanotubes (MWNTs) with 1-benzocylcobutene-10-phenylethylene (BCB-PE) or 4-hydroxyethylbenzocyclobutene (BCB-EO). The covalent functionalization of the nanotubes with these initiator precursors was verified by FTIR and thermogravimetric analysis (TGA). After appropriate transformations/additions, the functionalized MWNTs were used for surface initiated anionic and ring opening polymerizations of ethylene oxide and e-caprolactone (e-CL), respectively. The OH-end groups were transformed to isopropylbromide groups by reaction with 2-bromoisobutyryl bromide, for subsequent atom transfer radical polymerization of styrene or 2-dimethylaminoethyl methacrylate to afford the final diblock copolymers. 1H NMR, differential scanning calorimetry (DSC), TGA, and transmission electron microscopy (TEM) were used for the characterization of the nanocomposite materials. TEM images showed the presence of a polymer layer around the MWNTs as well as the dissociation of MWNT bundles. Consequently, this general methodology, employing combinations of different polymerization techniques, increases the diversity of diblocks that can be grafted from MWNTs.

  2. Polymer Welding: Strength Through Entanglements

    E-Print Network [OSTI]

    Ting Ge; Flint Pierce; Dvora Perahia; Gary S. Grest; Mark O. Robbins

    2012-11-29T23:59:59.000Z

    Large-scale simulations of thermal welding of polymers are performed to investigate the rise of mechanical strength at the polymer-polymer interface with the welding time. The welding process is in the core of integrating polymeric elements into devices as well as in thermal induced healing of polymers; processes that require development of interfacial strength equal to that of the bulk. Our simulations show that the interfacial strength saturates at the bulk shear strength much before polymers diffuse by their radius of gyration. Along with the strength increase, the dominant failure mode changes from chain pullout at the interface to chain scission as in the bulk. Formation of sufficient entanglements across the interface, which we track using a Primitive Path Analysis is required to arrest catastrophic chain pullout at the interface. The bulk response is not fully recovered until the density of entanglements at the interface reaches the bulk value. Moreover, the increase of interfacial strength before saturation is proportional to the number of interfacial entanglements between chains from opposite sides.

  3. Low-dimensional carbon nanotube and graphene devices

    E-Print Network [OSTI]

    Scard, Philip

    2010-10-12T23:59:59.000Z

    -jet printing of nanotubes directly onto GaAs. Although only one atom thick, graphene is macroscopic in area and must be patterned to confine conduction; room temperature transistor behaviour requires graphene ribbons only a few nanometres wide. This work...

  4. Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators

    E-Print Network [OSTI]

    S. Courty; J. Mine; A. R. Tajbakhsh; E. M. Terentjev

    2003-09-09T23:59:59.000Z

    We demonstrate, for the first time, the large electromechanical response in nematic liquid crystalline elastomers filled with a very low (~0.01%) concentration of carbon nanotubes, aligned along the nematic director at preparation. The nanotubes create a very large effective dielectric anisotropy of the composite. Their local field-induced torque is transmitted to the rubber-elastic network and is registered as the exerted uniaxial stress of order ~1kPa in response to a constant field of order ~1MV/m. We investigate the dependence of the effect on field strength, nanotube concentration and reproducibility under multiple field-on and -off cycles. The results indicate the potential of the nanotube-nematic elastomer composites as electrically driven actuators.

  5. Raman Scattering in Carbon Nanotubes Christian Thomsen1

    E-Print Network [OSTI]

    Nabben, Reinhard

    , which make them a model system for one-dimensional physics, their relative ease of preparation of graphene ­ are relatively well understood. Still, nanotube research has given new impetus to the study

  6. Computational Study of Catalyzed Growth of Single Wall Carbon Nanotubes 

    E-Print Network [OSTI]

    Zhao, Jin

    2010-01-14T23:59:59.000Z

    A recently developed chemical vapor deposition (CVD) synthesis process called CoMoCAT yields single-wall carbon nanotubes (SWCNT)s of controlled diameter and chirality, making them extremely attractive for technological ...

  7. Characterization of double walled carbon nanotubes-polyvinylidene fluoride nanocomposites 

    E-Print Network [OSTI]

    Almasri, Atheer Mohammad

    2007-04-25T23:59:59.000Z

    One of the main objectives of this thesis is to disperse double-walled carbon nanotubes (DWNT) in a polyvinylidene fluoride (PVDF) matrix, and to characterize the resulting composite using electrical, thermal, and mechanical ...

  8. Characterization of surfactant dispersed single wall nanotube - polystyrene matrix nanocomposite 

    E-Print Network [OSTI]

    Ayewah, Daniel Osagie, Oyinkuro

    2009-05-15T23:59:59.000Z

    Carbon nanotubes (CNT) are a new form of carbon with exceptional electrical and mechanical properties. This makes them attractive as inclusions in nanocomposite materials with the potential to provide improvements in electrical and mechanical...

  9. Characterization of surfactant dispersed single wall nanotube - polystyrene matrix nanocomposite

    E-Print Network [OSTI]

    Ayewah, Daniel Osagie, Oyinkuro

    2009-05-15T23:59:59.000Z

    Carbon nanotubes (CNT) are a new form of carbon with exceptional electrical and mechanical properties. This makes them attractive as inclusions in nanocomposite materials with the potential to provide improvements in electrical and mechanical...

  10. Computational Study of Catalyzed Growth of Single Wall Carbon Nanotubes

    E-Print Network [OSTI]

    Zhao, Jin

    2010-01-14T23:59:59.000Z

    A recently developed chemical vapor deposition (CVD) synthesis process called CoMoCAT yields single-wall carbon nanotubes (SWCNT)s of controlled diameter and chirality, making them extremely attractive for technological applications...

  11. Carbide-derived carbons - From porous networks to nanotubes and...

    Office of Scientific and Technical Information (OSTI)

    Carbide-derived carbons - From porous networks to nanotubes and graphene Re-direct Destination: Carbide-derived carbons (CDCs) are a large family of carbon materials derived from...

  12. Design and modeling of carbon nanotube-based compliant mechanisms

    E-Print Network [OSTI]

    DiBiasio, Christopher M. (Christopher Michael)

    2007-01-01T23:59:59.000Z

    The objective of this research is to generate the knowledge required to adapt macro- and microscale compliant mechanism theory to design carbon nanotube-based nano-scale compliant mechanisms. Molecular simulations of a ...

  13. Carbon Nanotubes and Nano-Structure Manufacturing at TJNAF |...

    Office of Science (SC) Website

    use tens of watts to make nanotubes at around 200 milligrams per hour. Michael W. Smith, a staff scientist at NASA Langley Research Center, and his colleagues designed a new...

  14. Thermal properties of nanowires and nanotubes : modeling and experiments

    E-Print Network [OSTI]

    Dames, Christopher Eric

    2006-01-01T23:59:59.000Z

    Nanowires and nanotubes have drawn a great deal of recent attention for such potential applications as lasers, transistors, biosensors, and thermoelectric energy converters. Although the thermal properties of nanowires can ...

  15. Chemically driven carbon-nanotube-guided thermopower waves

    E-Print Network [OSTI]

    Choi, Wonjoon

    Theoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. ...

  16. Uniform Diffusion of Acetonitrile inside Carbon Nanotubes Favors

    E-Print Network [OSTI]

    materials. Nanoporous carbon exhibits excellent charge-discharge properties and a stable cyclic life. Moreover, activated composite carbon films generate high specific capacitance, laying the foundationUniform Diffusion of Acetonitrile inside Carbon Nanotubes Favors Supercapacitor Performance Oleg N

  17. Alignment and characterization of carbon nanotubes of photolithographically patterned electrodes

    E-Print Network [OSTI]

    Son, HyungBin, 1981-

    2004-01-01T23:59:59.000Z

    The goal of this work is to make an (n,m) assignment for individual suspended single wall carbon nanotubes (SWNTs) based on the measurements of their Raman Radial Breathing Modes and electron transition energies E[sub]ii ...

  18. Energy storage in carbon nanotube super-springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2008-01-01T23:59:59.000Z

    A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

  19. Carbon Nanotube Growth Using Ni Catalyst in Different Layouts

    E-Print Network [OSTI]

    Nguyen, H. Q.

    Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates ...

  20. Nanodeposition and plasmonically enhanced Raman spectroscopy on individual carbon nanotubes 

    E-Print Network [OSTI]

    Strain, Kirsten Margaret

    2014-06-28T23:59:59.000Z

    Single-walled carbon nanotubes (SWNTs) exhibit extraordinary properties: mechanical, thermal, optical and, possibly the most interesting, electrical. These all-carbon cylindrical structures can be metallic or semi-conducting ...

  1. Carbon nanotubes: in situ studies of growth and electromechanical properties 

    E-Print Network [OSTI]

    Weis, Johan Ek

    2011-11-23T23:59:59.000Z

    Carbon nanotubes have been found to have extraordinary properties, such as ballistic electrical conductivity, extremely high thermal conductivity and they can be metallic or semiconducting with a wide range of band ...

  2. Carbon nanotube field effect transistors for power application

    E-Print Network [OSTI]

    Pan, Tao, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Carbon nanotubes (CNTs) are nanometer-diameter cylinders formed from rolled-up graphene sheets which have found widespread interests due to their many excellent electrical properties. In particular, most of them are direct ...

  3. Process variables controlling consistency of carbon nanotube forest growth

    E-Print Network [OSTI]

    Vincent, Hanna Megumi

    2014-01-01T23:59:59.000Z

    Aligned arrays of carbon nanotubes (A-CNTs), called CNT forests, are the precursor for controlled-morphology macroscopic nanocomposites and nanoengineered composites due to theirscale-dependent, tunable physicall properties. ...

  4. New concepts in energy and mass transport within carbon nanotubes

    E-Print Network [OSTI]

    Choi, Wonjoon, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The unique structure of carbon nanotubes (CNTs) contributes to their distinguished properties, making them useful in nanotechnology. CNTs have been explored for energy transport in next-generation, such as light-emitting ...

  5. Mechanical response of carbon nanotubes turfs under lateral strains

    E-Print Network [OSTI]

    Collins, Gary S.

    Mechanical response of carbon nanotubes turfs under lateral strains Melinda C. Lopez, David F. Bahr in a furnace 150° C under a stress equal to that of the buckling stress of the CNT. Figure 2. An illustration

  6. Carbon nanotube processing and chemistry for electronic interconnect applications

    E-Print Network [OSTI]

    Wu, Tan Mau, 1979-

    2008-01-01T23:59:59.000Z

    Carbon nanotubes possess many properties that are ideally suited for electronic applications, such as metallic/semiconducting behavior and ballistic transport. Specifically, in light of mounting concerns over the increasing ...

  7. Growth and deterministic assembly of single stranded carbon nanotube

    E-Print Network [OSTI]

    Doddabasanagouda, Sunil

    2006-01-01T23:59:59.000Z

    The ability to control the shape, position, alignment, length and assembly of carbon nanotubes over large areas has become an essential but very difficult goal in the field of nanotechnology. Current assembly efforts for ...

  8. ROMP-based polymer composites and biorenewable rubbers

    SciTech Connect (OSTI)

    Jeong, Wonje

    2009-01-01T23:59:59.000Z

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  9. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  10. Structure, Properties and Treatments of Carbon Nanotube Fibres

    E-Print Network [OSTI]

    Vilatela García, Juan José

    2009-10-24T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Secondary Parameters Affecting Drawing of the CNT Aerogel . . 34 4.3.1 Gas Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.2 Precursors Feed Rate . . . . . . . . . . . . . . . . . . . . . 34 4.4 Summary... and their composites are discussed in Chapter 3. The nanotubes are synthesised by a floating catalyst chemical vapour depo- sition route such that nanotubes grow up to millimetres in seconds and form an aerogel of entangled tubes and bundles that can be drawn from...

  11. Apparatus for the production of boron nitride nanotubes

    SciTech Connect (OSTI)

    Smith, Michael W; Jordan, Kevin

    2014-06-17T23:59:59.000Z

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  12. Production of single-walled carbon nanotube grids

    DOE Patents [OSTI]

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03T23:59:59.000Z

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  13. ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics.

    E-Print Network [OSTI]

    Vajda, Sandor

    ENG BE/ME/MS 504: Polymers and Soft Materials GRS PY 744: Polymer Physics. Prof. Rama Bansil Class: Blackboard.bu.edu ME/MS/BE 504 PY 744 A1 POLYMERS AND SOFT MATERIALS (FALL 2012) (12FALLENGME504_A1) E with thermodynamics and statistical mechanics will be assumed. Practical applications of polymers will be discussed

  14. Some Rigorous Results on Semiflexible Polymers I. Free and confined polymers

    E-Print Network [OSTI]

    Velenik, Yvan

    Some Rigorous Results on Semiflexible Polymers I. Free and confined polymers O. Hryniva , Y 4, Switzerland Abstract We introduce a class of models of semiflexible polymers. The latter, called the persistence length, being of the same order as the polymer length. We determine

  15. Polymers: Molecular Structure [A polymer is a very large molecule comprising hundreds or thousands of atoms,

    E-Print Network [OSTI]

    Hall, Christopher

    1 Polymers: Molecular Structure [A polymer is a very large molecule comprising hundreds into chain or network structures|The concept of the polymer is one of the great ideas of twentieth century with the name of Hermann Staudinger who received the Nobel Prize in 1953. The influence of the polymer (or

  16. Confining multiple polymers between sticky walls: a directed walk model of two polymers

    E-Print Network [OSTI]

    Rechnitzer, Andrew

    Confining multiple polymers between sticky walls: a directed walk model of two polymers Thomas Wong 30, 2014 Abstract We study a model of two polymers confined to a slit with sticky walls. More on the square lattice. We compare the infinite slit limit, in which the length of the polymer (thermodynamic

  17. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01T23:59:59.000Z

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  18. The challenges of organic polymer solar cells

    E-Print Network [OSTI]

    Saif Addin, Burhan K. (Burhan Khalid)

    2011-01-01T23:59:59.000Z

    The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

  19. Modeling and Optimization of Interpenetrating Polymer

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Modeling and Optimization of Interpenetrating Polymer Network Process Weijie Lin, Lorenz T. Biegler. Crosslinking Features Complex diffusion; single component reaction Complex composite networking reaction · Initiator feeding rate · Initial polymer · Monomer concentration · Initiator concentration · Holding

  20. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, K.O.

    1998-06-30T23:59:59.000Z

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  1. Transports of Polymer Nanomedicine in the Environment

    E-Print Network [OSTI]

    Zhang, Ming

    2013-11-14T23:59:59.000Z

    With increasing production and commercial use of polymer nanomedicine and a lack of regulation to govern their disposal, polymer nanomedicine may enter into soils and ultimately into ground water system. In this dissertation, adsorption of polymeric...

  2. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P. (Los Alamos, NM); Apen, Paul G. (Los Alamos, NM); Mitchell, Michael A. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  3. Dynamics of Polymers in Flowing Colloidal Suspensions

    E-Print Network [OSTI]

    Chen, Hsieh

    Using hydrodynamic simulations we examine the behavior of single polymers in a confined colloidal suspension under flow. We study the conformations of both, collapsed and noncollapsed polymers. Our results show that the ...

  4. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P. (Los Alamos, NM); Apen, Paul G. (Los Alamos, NM); Mitchell, Michael A. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  5. Gas sorption properties of zwitterion-functionalized carbon nanotubes

    SciTech Connect (OSTI)

    Surapathi, Anil; Chen, Hang-yan; Marand, Eva; Johnson, J Karl, Zdenka Sedlakova

    2013-02-15T23:59:59.000Z

    We have functionalized carbon nanotubes with carboxylic acid and zwitterion groups. We have evaluated the effect of functionalization by measuring the sorption of CO{sub 2}, CH{sub 4}, and N{sub 2} at 35? for pressures up to 10 bar. Zwitterion functionalized nanotubes were found to be highly hygroscopic. Thermal gravimetric analysis indicates that water can be desorbed at about 200°C. The adsorption of gases in zwitterion functionalized nanotubes is dramatically reduced compared with nanotubes functionalized with carboxylic acid groups. The presence of water on the zwitterion functionalized nanotube reduces the sorption even further. Molecular simulations show that three or more zwitterion groups per tube entrance are required to significantly reduce the flux of CO{sub 2} into the tubes. Simulations also show that gas phase water is rapidly sorbed into the zwitterion functionalized nanotubes, both increasing the free energy barrier to CO{sub 2} entering the tube and also lowering the equilibrium adsorption through competitive adsorption.

  6. Catalyst-free carbon nanotubes from coal-based material

    SciTech Connect (OSTI)

    Mathur, R.B.; Lal, C.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India)

    2007-01-01T23:59:59.000Z

    DC-Arc Discharge technique has been used to synthesize carbon nanotubes from super clean coal samples instead of graphite electrodes filled with metal catalysts. The adverse effect of the mineral matter present in coal may be, thus, avoided. The cathode deposits showed the presence of single walled carbon nanotubes as well, which are generally known to be formed only in presence of transition metal catalysts and lanthanides. The process also avoids the tedious purification treatments of carbon nanotubes by strong acids to get rid of metal catalysts produced as impurities along with nanotubes. Thus, coal may be refined and demineralized by an organorefining technique to obtain super clean coal, an ultra low ash coal which may be used for the production of carbon nanotubes. The residual coal obtained after the organorefining may be used as an energy source for raising steam for power generation. Thus, coal may afford its use as an inexpensive feedstock for the production of carbon nanotubes besides its conventional role as a fuel for power generation.

  7. Adsorption characteristics of alkanes onto carbon nanotube bundles: Grand Canonical Monte Carlo simulation

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Adsorption characteristics of alkanes onto carbon nanotube bundles: Grand Canonical Monte Carlo alkane adsorption and separation. Rather than remaining isolated however, nanotubes tend to bundle together, and the adsorption properties of such bundles and subsequent potential for practical alkane

  8. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion...

  9. Theoretical and simulation tools for electron transfer and chain reactions in single walled carbon nanotubes

    E-Print Network [OSTI]

    Nair, Nitish

    2009-01-01T23:59:59.000Z

    Single walled carbon nanotubes (SWNT) are cylindrical sheets of graphene whose electronic structures and diameters are determined by their chiralities. Current synthetic methods produce batches of nanotubes containing a ...

  10. Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed Cmos Electronics

    E-Print Network [OSTI]

    Chen, Xiangyu

    Carbon-based nanomaterials such as metallic single-walled carbon nanotubes, multiwalled carbon nanotubes (MWCNTs), and graphene have been considered as some of the most promising candidates for future interconnect technology ...

  11. Effects of doping single and double walled carbon nanotubes with nitrogen and boron

    E-Print Network [OSTI]

    Villalpando Paéz, Federico

    2006-01-01T23:59:59.000Z

    Controlling the diameter and chirality of carbon nanotubes to fine tune their electronic band gap will no longer be enough to satisfy the growing list of characteristics that future carbon nanotube applications are starting ...

  12. Patternable transparent carbon nanotube films for electrochromic devices Liangbing Hu and George Grunera

    E-Print Network [OSTI]

    Gruner, George

    Patternable transparent carbon nanotube films for electrochromic devices Liangbing Hu and George nanotube films on polyethylene terephthalate as flexible electrodes in electrochromic devices using. Electrochromic devices attract much interest due to their potential use in applications such as smart windows

  13. Photochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen Species

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    in consumer and industrial products (e.g., electronics, composite materials, and sporting equipment) mayPhotochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen investigated the photochemical transformation of carboxylated multiwalled carbon nanotubes (COOH

  14. Nanomechanics of carbon nanotubes and composites Deepak Srivastava and Chenyu Wei

    E-Print Network [OSTI]

    Srivastava, Deepak

    Nanomechanics of carbon nanotubes and composites Deepak Srivastava and Chenyu Wei Computational-polyethylene composite materials are described and compared with experi- mental observations. Young's modulus nanotube composite materials with sensing and actuating ca- pacity. To realize the proposed devices

  15. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOE Patents [OSTI]

    Johnson, Jr., Alan T. (Philadelphia, PA); Gelperin, Alan (Princeton, NJ); Staii, Cristian (Madison, WI)

    2011-07-12T23:59:59.000Z

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  16. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12T23:59:59.000Z

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  17. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph Collin; Stadermann, Michael

    2014-07-15T23:59:59.000Z

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  18. Post polymerization cure shape memory polymers

    SciTech Connect (OSTI)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11T23:59:59.000Z

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  19. Adsorption of polymers at nanowires

    E-Print Network [OSTI]

    Thomas Vogel; Michael Bachmann

    2011-03-09T23:59:59.000Z

    Low-energy structures of a hybrid system consisting of a polymer and an attractive nanowire substrate as well as the thermodynamics of the adsorption transition are studied by means of Monte Carlo computer simulations. Depending on structural and energetic properties of the substrate, we find different adsorbed polymer conformations, amongst which are spherical droplets attached to the wire and monolayer tubes surrounding it. We identify adsorption temperatures and the type of the transition between adsorbed and desorbed structures depending on the substrate attraction strength.

  20. Modeling and Optimization for Interpenetrating polymer

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Modeling and Optimization for Interpenetrating polymer network process 1 Weijie Lin, Lorenz T #12;Project Overview · IPN Interpenetrating polymer network ­ A combination of two polymers in a network form Fig. 2 An IPN process example · Typical Sequential Type of Process Fig. 1 IPN network

  1. Novel polyoxazolines polymer drug delivery platform

    E-Print Network [OSTI]

    performed with 4 different polymers in multi- drug resistant (MCF7/ADR) human adenocarcinoma cells, non-resistant (MCF7) human adenocarcinoma cells and Madin-Darby canine kidney (MDCK) cells. All polymers were found lines. 2. To investigate the effect of the addition of drugs to the polymers on cell toxicity, micelles

  2. Organosiloxane-grafted natural polymer coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1998-01-01T23:59:59.000Z

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation.

  3. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    E-Print Network [OSTI]

    Teich, Malvin C.

    Polymer microcantilevers fabricated via multiphoton absorption polymerization Z. Bayindir, Y. Sun polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties orders of magnitude smaller than would be predicted from the properties of the bulk polymer.6 If correct

  4. Nordic Polymer Days 2006 Copenhagen, Denmark

    E-Print Network [OSTI]

    Abstract Nordic Polymer Days 2006 Copenhagen, Denmark Polyacrylamide nanosensor embedded Scharff-Poulsen, c Hong Gu, d Wolf B. Fromme, b Iver Jakobsen, a Kristoffer Almdal a The Danish Polymer-linked polymer in nanometer scale, have several advantages over direct loading of cells with fluorescent probes

  5. Polymers in a Vacuum J. M. Deutsch

    E-Print Network [OSTI]

    Deutsch, Josh

    Polymers in a Vacuum J. M. Deutsch Department of Physics, University of California, Santa Cruz polymer molecules are found in a vacuum, and here we examine their properties. Angular momentum The properties of polymer chains have been investigated extensively over the past 50 years [1], but the vast

  6. North Dakota State University Postoc Biobased Polymers

    E-Print Network [OSTI]

    Alpay, S. Pamir

    North Dakota State University Postoc ­ Biobased Polymers A postdoctoral position is available in the area of synthesis and characterization of novel biobased thermosetting polymer systems for coatings will include the synthesis of monomers and polymers, preparation of coatings, thermosets, etc., preparation

  7. Selfattractive random polymers Remco van der Hofstad

    E-Print Network [OSTI]

    Klenke, Achim

    Self­attractive random polymers Remco van der Hofstad Stieltjes Institute of Mathematics Delft polymer of finite length in Zd . Its law is that of a finite simple random walk path in Zd receiving that for > the attraction dominates the repulsion, i.e., with high probability the polymer is contained in a finite box

  8. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23T23:59:59.000Z

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  9. Hydrogen Sensing and Sensitivity of Palladium-Decorated Single-Walled Carbon Nanotubes with Defects

    E-Print Network [OSTI]

    Collins, Philip G

    2010-01-01T23:59:59.000Z

    pubs.acs.org/NanoLett Hydrogen Sensing and Sensitivity ofsite. KEYWORDS Carbon nanotube, hydrogen sensor, defect S

  10. Nanotubes, nanorods and nanowires having piezoelectric and/or pyroelectric properties and devices manufactured therefrom

    DOE Patents [OSTI]

    Russell, Thomas P. (Amherst, MA); Lutkenhaus, Jodie (Wethersfield, CT)

    2012-05-15T23:59:59.000Z

    Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or pyroelectric polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.

  11. Metal-doped single-walled carbon nanotubes and production thereof

    DOE Patents [OSTI]

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09T23:59:59.000Z

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  12. Mode-of-Action of Self-Extinguishing Polymer Blends Containing Organoclays

    SciTech Connect (OSTI)

    Pack, S.; Si, M; Koo, J; Sokolov, J; Koga, T; Kashiwagi, T; Rafailovich, M

    2009-01-01T23:59:59.000Z

    We have shown that the addition of nanoclays is an effective means for enhancing the flame retardant properties of polymer blends. Polymer blends are difficult to render flame retardant even with the addition of flame retardant agents due to dispersion and phase segregation during the heating process. We show that the addition of 5% functionalized Cloisite 20A clays in combination with 15% decabromodiphenyl ether and 4% antimony trioxide to a polystyrene/poly(methyl methacrylate) blend can render the compound flame resistant within the UL-94-V0 standard. Using a variety of micro-characterization methods, we show that the clays are concentrated at the interfaces between the polymers in this blend and completely suppress phase segregation. The flame retardant (FR) is absorbed onto the clay surfaces, and the exfoliation of the clays also distributes the FR agent uniformly within the matrix. TGA of the nanocomposite indicates that prior to the addition of clay, the dissociation times of the individual components varied by more than 20 C, which complicated the gas-phase kinetics. Addition of the clays causes all the components to have a single dissociation temperature, which enhanced the efficacy of the FR formula in the gas phase. Cone calorimetry also indicated that the clays decreased the heat release rate (HRR) and the mass loss rate (MLR), due to the formation of a robust char. In contrast, minimal charring occurred in blends containing just the FR. SEM examination of the chars showed that the clay platelets were curved and in some cases tightly folded into nanotube-like structures. These features were only apparent in blends, indicating that they might be associated with thermal gradients across the polymer phase interface. SEM and SAXS examinations of the nanocomposites after partial exposure to the flame indicated that the clays aggregated into ribbon-like structures, approximately microns in length, after the surfactant thermally decomposed. Thermal modeling indicated that these ribbons might partially explain the synergy due to better distribution of the heat and improve the mechanical properties of the melt at high temperatures, in a manner similar to the one reported for carbon nanotubes.

  13. Irradiation effects in carbon nanotubes A.V. Krasheninnikov *, K. Nordlund

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    successfully be used for nano-engineering, e.g. for creating molecular junctions between the nanotubes, making and further outline the most promising ways of using beams of energetic particles for nanotube-related nano nanotubes (CNTs) [1] are hollow cylindrical molecules consisting of single or many sheets of graphite

  14. Carbon nanotube-containing structures, methods of making, and processes using same

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA); Chin, Ya-Huei (Richland, WA); Gao, Yufei (Blue Bell, PA); Aardahl, Christopher L. (Richland, WA); Stewart, Terri L. (Richland, WA)

    2006-03-14T23:59:59.000Z

    Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.

  15. Carbon Nanotube-Containing Structures, Methods Of Making, And Processes Using Same

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA); Chin, Ya-Huei (Richland, WA); Gao, Yufei (Blue Bell, PA); Aardahl, Christopher L. (Richland, WA); Stewart, Terri L. (Richland, WA)

    2004-11-30T23:59:59.000Z

    Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.

  16. Integration of Single-Walled Carbon Nanotubes on to CMOS Circuitry with Parylene-C Encapsulation

    E-Print Network [OSTI]

    Dokmeci, Mehmet

    Integration of Single-Walled Carbon Nanotubes on to CMOS Circuitry with Parylene-C Encapsulation heterogeneous integration of Single-Walled Carbon Nanotubes (SWNTs) with CMOS integrated circuits using die the successful integration of carbon nanotubes with the CMOS circuitry. This paper lays the foundation

  17. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode

    E-Print Network [OSTI]

    Zhou, Chongwu

    Nano Res 1 Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode Titanium Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode JiepengRong,,§Xin Fang Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode Jiepeng Rong,1,§ Xin Fang,1,§ Mingyuan Ge,1

  18. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes

    E-Print Network [OSTI]

    Grujicic, Mica

    Growth of carbon nanotubes during transition-metal particles catalytically-assisted thermal decomposition of the transition-metal particles and onto the surface of carbon nanotubes, carbon atom attachment to the growing. Carbon nanotubes are generally processed by laser ablation of carbon rods e.g. [7], a direct current arc

  19. Mechanical and electrical evaluation of parylene-C encapsulated carbon nanotube networks on a flexible substrate

    E-Print Network [OSTI]

    Dokmeci, Mehmet

    Mechanical and electrical evaluation of parylene-C encapsulated carbon nanotube networks, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube SWNT.1063/1.2976633 Carbon nanotube CNT networks are excellent candi- dates for flexible electronic devices and sensors due

  20. Field emission and current-voltage properties of boron nitride nanotubes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Field emission and current-voltage properties of boron nitride nanotubes John Cumings*, A. Zettl microscope. Stable currents were measured in a field emission geometry, but in contact the nanotubes Published by Elsevier Ltd. PACS: 79.70. þ q Keywords: A. Boron nitride; B. Nanotubes; C. Field emission

  1. NANOTECHNOLOGY LAW & BUSINESS MARCH 2007 569 Carbon Nanotube-Based Supercapacitors

    E-Print Network [OSTI]

    Pan, Ning

    NANOTECHNOLOGY LAW & BUSINESS · MARCH 2007 569 Carbon Nanotube-Based Supercapacitors CHUNSHENG DU and NING PAN ABSTRACT Due to the need for increased power performance, supercapacitors are emerging nanotubes are a promising material for next generation supercapacitors. Specifically, the use of nanotubes

  2. Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide

    E-Print Network [OSTI]

    Kim, Bongsoo

    Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide Kwanyong properties that are determined by the chirality1 and diameter of carbon nanotubes. One way to overcome@skku.ac.kr Application of carbon nanotubes (CNTs) to various electronic devices such as field emission displays, gas

  3. Atomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via

    E-Print Network [OSTI]

    , and mechanical properties of the nanotubes. Atomic layer deposition (ALD) on single-walled carbon nanotubesAtomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via Gas-Phase Noncovalent, 2005; Revised Manuscript Received February 6, 2006 ABSTRACT Alternating exposures of nitrogen dioxide

  4. Carbon nanotubes grow in combustion flames Issued on March 31, 2014

    E-Print Network [OSTI]

    Takahashi, Ryo

    Carbon nanotubes grow in combustion flames Issued on March 31, 2014 Quantum chemical simulations reveal an unprecedented relationship between the mechanism of carbon nanotube growth and hydrocarbon of carbon nanotube (CNT) growth and hydrocarbon combustion actually share many similarities. In studies

  5. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber

    E-Print Network [OSTI]

    Das, Suman

    Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

  6. Superhydrophobic Carbon Nanotube Kenneth K. S. Lau,*, Jose Bico, Kenneth B. K. Teo, Manish Chhowalla,|

    E-Print Network [OSTI]

    Bico,José

    Superhydrophobic Carbon Nanotube Forests Kenneth K. S. Lau,*, Jose´ Bico, Kenneth B. K. Teo, superhydrophobic surface using the nanoscale roughness inherent in a vertically aligned carbon nanotube forest of the nanotubes. Superhydrophobicity is achieved down to the microscopic level where essentially spherical

  7. Electronically conductive polymer composites and microstructures

    SciTech Connect (OSTI)

    Van Dyke, L.S.

    1993-01-01T23:59:59.000Z

    Composites of electronically conductive polymers with insulating host materials are investigated. A template synthesis method was developed for the production of electronically conductive polymer microstructures. In template synthesis the pores of a porous host membrane act as templates for the polymerization of a conductive polymer. The template synthetic method can be used to form either solid microfibrils or hollow microtubules. The electrochemical properties of conductive polymers produced via the template synthesis method are superior to those of conventionally synthesized conductive polymers. Electronically conductive polymers are used to impart conductivity to non-conductive materials. Two different approaches are used. First, thin film composites of conductive polymers with fluoropolymers are made by the polymerization of conductive polymers onto fluoropolymer films. Modification of the fluoropolymer surface prior to conductive polymer polymerization is necessary to obtain good adhesion between the two materials. The difference in adhesion of the conductive polymer to the modified and unmodified fluoropolymer surfaces can be used to pattern the conductive polymer coating. Patterning of the conductive polymer coating can alternatively be done via UV laser ablation of the conductive polymer. The second method by which conductive polymers were used to impart conductivity to an insulating polymer was via the formation of a graft copolymer. In this approach, heterocyclic monomers grafted to an insulating polyphosphazene backbone were polymerized to yield semiconductive materials. Finally the measurement of electrolyte concentration in polypyrrole and the effects of hydroxide anion on the electrochemical and electrical properties of polypyrrole are described. It is shown that treatment of polypyrrole with hydroxide anion increases the potential window over which polypyrrole is a good electronic conductor.

  8. Luminescent organosilicon polymers and sol-gel synthesis of nano-structured silica

    E-Print Network [OSTI]

    Martinez, H. Paul

    2011-01-01T23:59:59.000Z

    Photoluminescent   Polymers   Containing   Metalloles.  Metallole-­? Containing  Polymers.   Journal  of  Forensic  S.   J. ;   Trogler,   W.   C. ,   Polymer   sensors   for  

  9. Method for making nanotubes and nanoparticles

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Piedmont, CA)

    2000-01-01T23:59:59.000Z

    The present invention is an apparatus and method for producing nano-scale tubes and particles. The apparatus comprises novel electrodes for use in arc discharge techniques. The electrodes have interior conduits for delivery and withdrawal of material from the arc region where product is formed. In one embodiment, the anode is optionally made from more than one material and is termed a compound anode. The materials used in the compound anode assist in the reaction that forms product in the arc region of the apparatus. The materials assist either by providing reaction ingredients, catalyst, or affecting the reaction kinetics. Among other uses, the inventive apparatus is used to produce nanotubes and nanoparticles having a variety of electrical and mechanical properties.

  10. A boron nitride nanotube peapod thermal rectifier

    SciTech Connect (OSTI)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28T23:59:59.000Z

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  11. Waveguide-integrated electroluminescent carbon nanotubes

    E-Print Network [OSTI]

    Khasminskaya, Svetlana; Flavel, Benjamin S; Pernice, Wolfram H P; Krupke, Ralph

    2013-01-01T23:59:59.000Z

    Carbon based optoelectronic devices promise to revolutionize modern integrated circuits by combining outstanding electrical and optical properties into a unified technology. By coupling nanoelectronic devices to nanophotonic structures functional components such as nanoscale light emitting diodes, narrow-band thermal emitters, cavity controlled detectors and wideband electro optic modulators can be realized for chipscale information processing. These devices not only allow the light-matter interaction of low-dimensional systems to be studied, but also provide fundamental building blocks for high bandwidth on-chip communication. Here we demonstrate how light from an electrically-driven carbon-nanotube can be coupled directly into a photonic waveguide architecture. We realize wafer scale, broadband sources integrated with nanophotonic circuits allowing for propagation of light over centimeter distances. Moreover, we show that the spectral properties of the emitter can be controlled directly on chip with passive...

  12. Method of forming a foamed thermoplastic polymer

    DOE Patents [OSTI]

    Duchane, D.V.; Cash, D.L.

    1984-11-21T23:59:59.000Z

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  13. Stretching of polymers in a turbulent environment

    E-Print Network [OSTI]

    Bruno Eckhardt; Jochen Kronjaeger; Joerg Schumacher

    2002-01-20T23:59:59.000Z

    The interaction of polymers with small-scale velocity gradients can trigger a coil-stretch transition in the polymers. We analyze this transition within a direct numerical simulation of shear turbulence with an Oldroyd-B model for the polymer. In the coiled state the lengths of polymers are distributed algebraically with an exponent alpha=2 gamma-1/De, where gamma is a characteristic stretching rate of the flow and De the Deborah number. In the stretched state we demonstrate that the length distribution of the polymers is limited by the feedback to the flow.

  14. Friction between Ring Polymer Brushes

    E-Print Network [OSTI]

    A. Erbas; J. Paturej

    2015-01-07T23:59:59.000Z

    Friction between ring-polymer brushes at melt densities sliding past each other are studied using extensive course-grained molecular dynamics simulations and scaling arguments, and the results are compared to the friction between linear-polymer brushes. We show that for a velocity range spanning over three decades, the frictional forces measured for ring-polymer brushes are half the corresponding friction in case of linear brushes. In the linear-force regime, the weak inter-digitation of two ring brushes compared to linear brushes also leads to a lower number of binary collisions between the monomers of opposing brushes. At high velocities, where the thickness of the inter-digitation layer between two opposing brushes is on the order monomer size regardless of brush topology, stretched segments of ring polymers take a double-stranded conformation. As a result, monomers of the double-stranded segments collide less with the monomers of the opposing ring brush even though a similar number of monomers occupies the inter-digitation layer for ring and linear-brush bilayers. The numerical data obtained from our simulations is consistent with the proposed scaling analysis. Conformation-dependent frictional reduction observed in ring brushes can have important consequences in non-equilibrium bulk systems.

  15. Enhanced photophysics of conjugated polymers

    DOE Patents [OSTI]

    Chen, Liaohai (Darien, IL)

    2007-06-12T23:59:59.000Z

    A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.

  16. Polymer representations and geometric quantization

    E-Print Network [OSTI]

    Miguel Campiglia

    2011-11-02T23:59:59.000Z

    Polymer representations of the Weyl algebra of linear systems provide the simplest analogues of the representation used in loop quantum gravity. The construction of these representations is algebraic, based on the Gelfand-Naimark-Segal construction. Is it possible to understand these representations from a Geometric Quantization point of view? We address this question for the case of a two dimensional phase space.

  17. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, M.

    1988-02-12T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  18. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1989-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  19. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1990-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  20. Active Polymers Confer Fast Reorganization Kinetics

    E-Print Network [OSTI]

    Douglas Swanson; Ned S. Wingreen

    2011-10-02T23:59:59.000Z

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime and mean length, MFPT ~ , by analogy to 1-d Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT ~ ^{1/2}. Since to be biologically useful, structural biopolymers must typically be many monomers long, yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify active polymers' greater energy cost. PACS numbers: 87.10.Ed, 87.16.ad, 87.16.Ln

  1. Crowding of Polymer Coils and Demixing in Nanoparticle-Polymer Mixtures

    E-Print Network [OSTI]

    Ben Lu; Alan R. Denton

    2011-06-24T23:59:59.000Z

    The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealizes nonadsorbing polymers as effective spheres that are fixed in size and impenetrable to hard particles. Real polymer coils, however, are intrinsically polydisperse in size (radius of gyration) and may be penetrated by smaller particles. Crowding by nanoparticles can affect the size distribution of polymer coils, thereby modifying effective depletion interactions and thermodynamic stability. To analyse the influence of crowding on polymer conformations and demixing phase behaviour, we adapt the AOV model to mixtures of nanoparticles and ideal, penetrable polymer coils that can vary in size. We perform Gibbs ensemble Monte Carlo simulations, including trial nanoparticle-polymer overlaps and variations in radius of gyration. Results are compared with predictions of free-volume theory. Simulation and theory consistently predict that ideal polymers are compressed by nanoparticles and that compressibility and penetrability stabilise nanoparticle-polymer mixtures.

  2. Polymer compositions, polymer films and methods and precursors for forming same

    DOE Patents [OSTI]

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24T23:59:59.000Z

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  3. Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES

    SciTech Connect (OSTI)

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

    2007-09-30T23:59:59.000Z

    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  4. Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium

    DOE Patents [OSTI]

    Bakajin, Olgica (San Leandro, CA); Noy, Aleksandr (Belmont, CA)

    2007-11-06T23:59:59.000Z

    A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

  5. Polymer/inorganic superhydrophobic surfaces.

    SciTech Connect (OSTI)

    Collord, Andrew; Kissel, David J.; Brinker, C. Jeffrey; Apblett, Christopher Alan; Branson, Eric D.

    2009-09-01T23:59:59.000Z

    We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure above the valve seat that allowed sufficient restoring forces to be applied while not enhancing actuation forces to raise the valve actuation potential. Both actuate to open and actuate to close valves have been demonstrated, and integrated into a microfluidic platform, and demonstrated fluidic control using electrostatic valves.

  6. Polymer system for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

    2000-01-01T23:59:59.000Z

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  7. Model-based experimental analysis for inter-polymer process

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    ) + Polyethylene (PE) ARCEL TOUGH FLEXIBLE Advanced packaging material Interpenetrating polymer network productModel-based experimental analysis for inter-polymer process CMU: Weijie Lin, Lorenz T. Biegler processed in a sequential way Polymer A Polymer B Project overview Inter-polymer process #12;Project

  8. Ris-PhD-18(EN) Patterning Biomolecules on Polymer

    E-Print Network [OSTI]

    Risø-PhD-18(EN) Patterning Biomolecules on Polymer Surfaces for Applications in Life Sciences Susan on Polymer Surfaces for Applications in Life Sciences. Department: Danish Polymer Centre, Risø National: Danish Polymer Centre, Risø National Laboratory. Centre for Nanostructured polymer surfaces for medical

  9. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  10. Diamond turning of thermoplastic polymers

    SciTech Connect (OSTI)

    Smith, E.; Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  11. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

    1990-01-01T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  12. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  13. Confinement of hydrogen at high pressure in carbon nanotubes

    DOE Patents [OSTI]

    Lassila, David H. (Aptos, CA); Bonner, Brian P. (Livermore, CA)

    2011-12-13T23:59:59.000Z

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  14. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A. (Clinton, TN); Montgomery, Frederick C. (Oak Ridge, TN); Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08T23:59:59.000Z

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  15. Fluorescent single walled nanotube/silica composite materials

    SciTech Connect (OSTI)

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12T23:59:59.000Z

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  16. Effect of polymer chemistry on globular protein–polymer block copolymer self-assembly

    E-Print Network [OSTI]

    Chang, Dongsook

    Bioconjugates of the model red fluorescent protein mCherry and synthetic polymer blocks with different hydrogen bonding functionalities show that the chemistry of the polymer block has a large effect on both ordering ...

  17. Solid polymer electrolytes for rechargeable batteries

    SciTech Connect (OSTI)

    Narang, S.C.; Macdonald, D.D.

    1990-11-01T23:59:59.000Z

    SRI International has synthesized novel solid polymer electrolytes for high energy density, rechargeable lithium batteries. We have systematically replaced the oxygens in PEO with sulfur to reduce the strong hard-acid hard-base interaction, while retaining the favorable helical conformation of the polymer backbone. The best polymer electrolyte produced so far is suitable for a medium power battery. In another effort, we have synthesized single ion conducting polymer electrolytes based on polyethyleneimine, polyphosphazene, and polysiloxane backbones. The single ion conducting polymer electrolytes will allow greater depth of charge and discharge by preventing dc polarization. The best conductivity so far with single ion conductors is 1.0 {times} 10{sup {minus}3} Scm{sup {minus}1} at room temperature. Further optimization of electrical and mechanical properties will allow the use of these polymer electrolytes in the fabrication of rechargeable lithium batteries. 8 tabs.

  18. Outline Directed polymers Log-gamma polymer KPZ equation Fluctuation exponents for certain 1+1 dimensional

    E-Print Network [OSTI]

    Seppäläinen, Timo

    Outline Directed polymers Log-gamma polymer KPZ equation Fluctuation exponents for certain 1+1 dimensional directed polymers Timo Sepp¨al¨ainen Department of Mathematics University of Wisconsin-Madison MSRI December 2010 Fluctuation exponents for polymers 1/36 #12;Outline Directed polymers Log

  19. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOE Patents [OSTI]

    Frechet, Jean M. J. (Oakland, CA); Svec, Frantisek (Alameda, CA); Rohr, Thomas (Leiden, NL)

    2008-10-07T23:59:59.000Z

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  20. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOE Patents [OSTI]

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31T23:59:59.000Z

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.