National Library of Energy BETA

Sample records for ultraviolet euv lithography

  1. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOE Patents [OSTI]

    Cohen, Simon J (Pleasonton, CA); Jeong, Hwan J (Los Altos, CA); Shafer, David R (Fairfield, CT)

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  2. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Livermore, CA); Kubiak, Glenn D. (Livermore, CA)

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  3. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (727 Clara St., Livermore, Alameda County, CA 94550); Kubiak, G. D. (475 Maple St., Livermore, Alameda County, CA 94550)

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  4. Extreme ultraviolet lithography machine

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Haney, Steven J. (Tracy, CA); Sweeney, Donald W. (San Ramon, CA)

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  5. Photoresist composition for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Alameda County, CA); Kubiak, G. D. (Alameda County, CA)

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  6. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror...

  7. An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm

    E-Print Network [OSTI]

    An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm Kenneth lithography design rules. The proposed microscope features an array of user-selectable Fresnel zoneplate-EUV, Fresnel zoneplate microscope, the AIT has been in the vanguard of high-resolution EUV mask imaging

  8. Carbon contamination of extreme ultraviolet (EUV) mask and its effect on imaging

    E-Print Network [OSTI]

    Fan, Yu-Jen

    2009-01-01

    induced carbon contamination of extreme ultraviolet optics."potential LWR due to the contamination topography may be anet aI. , "Accelerated contamination testing of EUV masks."

  9. High-efficiency spectral purity filter for EUV lithography

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA)

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  10. Low-cost method for producing extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA); Montcalm, Claude (Fort Collins, CO); Taylor, John S. (Livermore, CA); Spiller, Eberhard A. (Mt. Kisco, NY)

    2003-11-21

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  11. Nanofabrication of Optical Elements for SXR and EUV Applications: Ion Beam Lithography as a New Approach

    SciTech Connect (OSTI)

    Lenz, J. [Institute for X-Optics, RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Suedallee 2, 53424 Remagen (Germany); Research Group Electron Microscopy and Analytics, caesar Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn (Germany); Krupp, N.; Irsen, S. [Research Group Electron Microscopy and Analytics, caesar Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn (Germany); Wilhein, T. [Institute for X-Optics, RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Suedallee 2, 53424 Remagen (Germany)

    2011-09-09

    Diffractive optical elements are important components for applications in soft x-ray and extreme ultraviolet radiation. At present, the standard fabrication method for such optics is based on electron beam lithography followed by nanostructuring. This requires a series of complex processes including exposure, reactive ion-etching, and electro-plating. We report on experiments showing the single-step fabrication of such elements using ion beam lithography. Both transmission and reflection gratings were fabricated and successfully implemented as spectrometers at laboratory soft x-ray sources. Additionally, first steps toward zone plate fabrication are described.

  12. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M. (San Ramon, CA)

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  13. Commissioning a new EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm

    E-Print Network [OSTI]

    Goldberg, Kenneth A.

    2014-01-01

    Commissioning a new EUV Fresnel zoneplate mask-imagingimaging system relies on Fresnel zoneplate lenses, which

  14. Method for the protection of extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  15. Multidimensional Simulation and Optimization of Hybrid Laser and Discharge Plasma Devices for EUV Lithography

    E-Print Network [OSTI]

    Harilal, S. S.

    advantages and disadvantages. In order to meet the requirements of the Intel Lithography Roadmap goals

  16. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  17. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  18. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA)

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  19. Flexible CO2 laser system for fundamental research related to an extreme ultraviolet lithography source

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Flexible CO2 laser system for fundamental research related to an extreme ultraviolet lithography 2009; published online 10 December 2009 A CO2 laser system with flexible parameters was developed 1010 W/cm2 . Utilizing this CO2 MOPA laser system, high conversion efficiency from laser to in-band 2

  20. Modeling and optimization of mass-limited targets for EUV Lithography

    E-Print Network [OSTI]

    Harilal, S. S.

    as a result of droplet heating by pre-pulse laser energy, on target configuration, size, and laser beam laser. 1. INTRODUCTION The process of heating tin droplets by laser energy results in formation of vapor heated by the laser with larger spot. Dual-pulse systems can be used for increasing CE of EUV source from

  1. INTEGRATED SIMULATION OF DISCHARGE AND LASER PRODUCED PLASMAS IN EUV LITHOGRAPHY DEVICES

    E-Print Network [OSTI]

    Harilal, S. S.

    of the plasma energy that includes thermal energy of electron and ionization energy; ie - ion component to support the throughput requirements of High-Volume Manufacturing lithography exposure tools. One method not only of power sources but also plasma irradiation parameters, plasma energy deposition, target material

  2. Assessing out-of-band flare effects at the wafer level for EUV lithography

    SciTech Connect (OSTI)

    George, Simi; Naulleau, Patrick; Kemp, Charles; Denham, Paul; Rekawa, Senajith

    2010-01-25

    To accurately estimate the flare contribution from the out-of-band (OOB), the integration of a DUV source into the SEMATECH Berkeley 0.3-NA Micro-field Exposure tool is proposed, enabling precisely controlled exposures along with the EUV patterning of resists in vacuum. First measurements evaluating the impact of bandwidth selected exposures with a table-top set-up and subsequent EUV patterning show significant impact on line-edge roughness and process performance. We outline a simulation-based method for computing the effective flare from resist sensitive wavelengths as a function of mask pattern types and sizes. This simulation method is benchmarked against measured OOB flare measurements and the results obtained are in agreement.

  3. Method for the manufacture of phase shifting masks for EUV lithography

    DOE Patents [OSTI]

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton

    2006-04-04

    A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.

  4. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M. (San Ramon, CA)

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  5. Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses

    SciTech Connect (OSTI)

    Bartnik, A.; Fiedorowicz, H.; Wachulak, P. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2014-07-15

    In this paper, results of spectral investigations of low temperature photoionized plasmas, created by irradiation of gases with intense pulses of extreme ultraviolet (EUV) radiation from a laser-produced plasma (LPP) source, are presented. The LPP source was based on a double-stream KrXe/He gas-puff target irradiated with 4?ns/0.8?J/10?Hz Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region ????10–12?nm; however, spectrally integrated intensity at longer wavelengths was also significant. The EUV beam was focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the EUV range. Radiation spectra, measured for plasmas produced in various gases, are dominated by emission lines, originating from single charged ions. Significant differences in spectral intensities and distributions between plasmas created in neon and molecular gases were observed.

  6. Maskless, reticle-free, lithography

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Markle, David A. (Saratoga, CA)

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  7. Maskless, reticle-free, lithography

    DOE Patents [OSTI]

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  8. Plasma-based EUV light source

    DOE Patents [OSTI]

    Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  9. Analysis, simulation, and experimental studies of YAG and CO2 laser-produced plasma for EUV lithography sources

    E-Print Network [OSTI]

    Harilal, S. S.

    . Keywords: EUV, LPP, DPP, HEIGHTS, Debris mitigation, CO2 Laser. 1. INTRODUCTION Recent trends of analysis and continuum radiation transport with detailed library of atomic physics data for a number of candidate

  10. Mass-limited Sn target irradiated by dual laser pulses for an extreme ultraviolet lithography source

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    . However, at present, because of the high cost of the driving laser, the output power of the EUV light, and stable target supply is the key factor for lowering the critical requirements of the driving la- ser debris re- quires additional innovations for application to the practical EUV light source for HVM

  11. EUV light source with high brightness at 13.5 nm

    SciTech Connect (OSTI)

    Borisov, V M; Prokof'ev, A V; Khristoforov, O B [State Research Center of Russian Federation 'Troitsk Institute for Innovation and Fusion Research', Troitsk, Moscow Region (Russian Federation); Koshelev, K N [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Khadzhiyskiy, F Yu [EUV Labs, Ltd., Troitsk, Moscow (Russian Federation)

    2014-11-30

    The results of the studies on the development of a highbrightness radiation source in the extreme ultraviolet (EUV) range are presented. The source is intended for using in projection EUV lithography, EUV mask inspection, for the EUV metrology, etc. Novel approaches to creating a light source on the basis of Z-pinch in xenon allowed the maximal brightness [130 W(mm{sup 2} sr){sup -1}] to be achieved in the vicinity of plasma for this type of radiation sources within the 2% spectral band centred at the wavelength of 13.5 nm that corresponds to the maximal reflection of multilayer Mo/Si mirrors. In this spectral band the radiation power achieves 190 W in the solid angle of 2? at a pulse repetition rate of 1.9 kHz and an electric power of 20 kW, injected into the discharge. (laser applications and other topics in quantum electronics)

  12. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Patents [OSTI]

    Hassanein, Ahmed (Bolingbrook, IL); Konkashbaev, Isak (Bolingbrook, IL)

    2006-10-03

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  13. Interferometric at-wavelength flare characterization of EUV optical systems

    DOE Patents [OSTI]

    Naulleau, Patrick P. (Oakland, CA); Goldberg, Kenneth Alan (Berkeley, CA)

    2001-01-01

    The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

  14. Chemical Effect of Dry and Wet Cleaning of the Ru Protective Layer of the Extreme ultraviolet (EUV) Lithography Reflector

    E-Print Network [OSTI]

    Belau, Leonid

    2010-01-01

    Park, Physical Chemistry Chemical Y.B. He, et al. , JournalChemical Effect of Dry and Wet Cleaning of the Ru ProtectiveBerkeley, California 94720 Chemical Sciences Division,

  15. MoRu/Be multilayers for extreme ultraviolet applications

    DOE Patents [OSTI]

    Bajt, Sasa C. (Livermore, CA); Wall, Mark A. (Stockton, CA)

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  16. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell (218 Eastridge Dr., San Ramon, CA 94583-4905); Shafer, David (50 Drake La., Fairfield, CT 06430-2925)

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  17. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell (315 Eastridge Dr., San Ramon, CA 94583-4905)

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  18. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell (218 Eastridge Dr., San Ramon, CA 84583-4905)

    2000-01-01

    An all-refelctive optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six refelecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  19. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell (218 Eastridge Dr., San Ramon, CA 94583-4905); Shafer, David R. (56 Drake La., Fairfield, CT 06430-2925)

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receive a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  20. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOE Patents [OSTI]

    Hassanein, Ahmed (Naperville, IL); Konkashbaev, Isak (Bolingbrook, IL); Rice, Bryan (Hillsboro, OR)

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  1. Universal EUV in-band intensity detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  2. Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse

    E-Print Network [OSTI]

    Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

    2007-01-01

    FEL Seeded with an EUV Laser Pulse M. Gullans, J.S. Wurtele,seeded with an EUV laser pulse M. Gullans a , J.S. Wurtele bpower extreme ultraviolet (EUV) pulse as an input seed is

  3. Femtosecond isomerization dynamics in the ethylene cation measured in an EUV-pump NIR-probe configuration

    E-Print Network [OSTI]

    van Tilborg, Jeroen

    2009-01-01

    cation measured in an EUV-pump NIR-probe con?guration J. vanEUV (extreme ultraviolet) pump pulse to populate the excited16, 17]. Here we apply a pump pulse at extreme ultraviolet (

  4. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  5. Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application

    E-Print Network [OSTI]

    Harilal, S. S.

    Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced in DPP or with pre-pulsing in LPP provide wide area for optimization in regards to conversion efficiency and collection as well as calculating photons source location and size. We optimized several parameters of dual

  6. Critical illumination condenser for x-ray lithography

    DOE Patents [OSTI]

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  7. Critical illumination condenser for x-ray lithography

    DOE Patents [OSTI]

    Cohen, Simon J. (Pleasanton, CA); Seppala, Lynn G. (Livermore, CA)

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  8. Carbon contamination topography analysis of EUV masks

    SciTech Connect (OSTI)

    Fan, Y.-J.; Yankulin, L.; Thomas, P.; Mbanaso, C.; Antohe, A.; Garg, R.; Wang, Y.; Murray, T.; Wuest, A.; Goodwin, F.; Huh, S.; Cordes, A.; Naulleau, P.; Goldberg, K. A.; Mochi, I.; Gullikson, E.; Denbeaux, G.

    2010-03-12

    The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.

  9. Mask Roughness Induced LER in EUV Lithography

    E-Print Network [OSTI]

    McClinton, Brittany

    2011-01-01

    focus…………………………………… Alt-PSM……………………………………………………………… 5.2.122-nm……………………….. 5.2.2 Alt-PSM vs. Lines and Spaces at 22-Simplified LER, alt-psm……………………………… Simulated LER, 22nm alt-

  10. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    SciTech Connect (OSTI)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  11. Tabletop Nanometer Extreme Ultraviolet Imaging in an Extended Reflection Mode using Coherent Fresnel Ptychography

    E-Print Network [OSTI]

    Seaberg, Matthew D; Gardner, Dennis F; Shanblatt, Elisabeth R; Murnane, Margaret M; Kapteyn, Henry C; Adams, Daniel E

    2013-01-01

    We demonstrate high resolution extreme ultraviolet (EUV) coherent diffractive imaging in the most general reflection geometry by combining ptychography with tilted plane correction. This method makes it possible to image extended surfaces at any angle of incidence. Refocused light from a tabletop coherent high harmonic light source at 29 nm illuminates a nanopatterned surface at 45 degree angle of incidence. The reconstructed image contains quantitative amplitude and phase (in this case pattern height) information, comparing favorably with both scanning electron microscope and atomic force microscopy images. In the future, this approach will enable imaging of complex surfaces and nanostructures with sub-10 nm-spatial resolution and fs-temporal resolution, which will impact a broad range of nanoscience and nanotechnology including for direct application in actinic inspection in support of EUV lithography.

  12. EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    E-Print Network [OSTI]

    Sirk, M. M.; Hurwitz, M.; Marchant, W.

    2010-01-01

    density measurements in the solar corona. I. Analysis2009, New, higher resolution solar extreme ultraviolet (EUV)irradiance results for solar cycle minimum conditions on

  13. Cleaning process for EUV optical substrates

    DOE Patents [OSTI]

    Weber, Frank J. (Sunol, CA); Spiller, Eberhard A. (Mt. Kiso, NY)

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  14. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect (OSTI)

    Aquila, Andrew Lee

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.

  15. VUV lithography

    DOE Patents [OSTI]

    George, Edward V. (Livermore, CA); Oster, Yale (Danville, CA); Mundinger, David C. (Stockton, CA)

    1990-01-01

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  16. VUV lithography

    DOE Patents [OSTI]

    George, E.V.; Oster, Y.; Mundinger, D.C.

    1990-12-25

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

  17. Maskless lithography

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Stulen, Richard H. (Livermore, CA)

    1999-01-01

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  18. Maskless lithography

    DOE Patents [OSTI]

    Sweatt, W.C.; Stulen, R.H.

    1999-02-09

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides. 12 figs.

  19. Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse M. Gullans electron laser (FEL) using a low-power extreme ultraviolet (EUV) pulse as an input seed is investigated. The parameters are appropriate for 30 nm seeds produced from high-power Ti:Sapphire pulses using high harmonic

  20. IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 5, NO. 1, JANUARY 2006 3 Nanopatterning With Interferometric Lithography

    E-Print Network [OSTI]

    Rocca, Jorge J.

    IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 5, NO. 1, JANUARY 2006 3 Nanopatterning the potential of compact EUV lasers in nanotechnology applications. Index Terms--Nanotechnology, photolithography, X-ray lasers, X-ray lithography. THE increasing activity in nanotechnology and nanoscience fuels

  1. "A Novel Objective for EUV Microscopy and EUV Lithography" Inventors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXuRod Hunt (208) 386-52542 120 Federal Columbia River..--..

  2. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH...

  3. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P. FeynmanInventors in

  4. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P. FeynmanInventors inInvestigating

  5. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P. FeynmanInventors

  6. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P. FeynmanInventorsInvestigating

  7. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P.

  8. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractivePGAS and HybridBetoniCenter for

  9. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractivePGAS and HybridBetoniCenter forInvestigating

  10. Tin removal from extreme ultraviolet collector optics by inductively coupled plasma reactive ion etching

    SciTech Connect (OSTI)

    Shin, H.; Srivastava, S. N.; Ruzic, D. N. [Center for Plasma Material Interactions, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2008-05-15

    Tin (Sn) has the advantage of delivering higher conversion efficiency compared to other fuel materials (e.g., Xe or Li) in an extreme ultraviolet (EUV) source, a necessary component for the leading next generation lithography. However, the use of a condensable fuel in a lithography system leads to some additional challenges for maintaining a satisfactory lifetime of the collector optics. A critical issue leading to decreased mirror lifetime is the buildup of debris on the surface of the primary mirror that comes from the use of Sn in either gas discharge produced plasma (GDPP) or laser produced plasma (LPP). This leads to a decreased reflectivity from the added material thickness and increased surface roughness that contributes to scattering. Inductively coupled plasma reactive ion etching with halide ions is one potential solution to this problem. This article presents results for etch rate and selectivity of Sn over SiO{sub 2} and Ru. The Sn etch rate in a chlorine plasma is found to be much higher (of the order of hundreds of nm/min) than the etch rate of other materials. A thermally evaporated Sn on Ru sample was prepared and cleaned using an inductively coupled plasma etching method. Cleaning was confirmed using several material characterization techniques. Furthermore, a collector mock-up shell was then constructed and etching was performed on Sn samples prepared in a Sn EUV source using an optimized etching recipe. The sample surface before and after cleaning was analyzed by atomic force microscopy, x-ray photoelectron spectroscopy, and Auger electron spectroscopy. The results show the dependence of etch rate on the location of Sn samples placed on the collector mock-up shell.

  11. Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x-ray photoelectron spectroscopy study

    E-Print Network [OSTI]

    Harilal, S. S.

    Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x 2012) Extreme ultraviolet (EUV) radiation-induced carbon contamination and oxidation of Au surfaces modification during EUV exposure. XPS analysis showed that total carbon contamination (C 1s peak

  12. Extremely Large EUV Late Phase of Solar Flares

    E-Print Network [OSTI]

    Liu, Kai; Zhang, Jie; Cheng, Xin; Liu, Rui; Shen, Chenglong

    2015-01-01

    The second peak in the Fe XVI 33.5 nm line irradiance observed during solar flares by Extreme ultraviolet Variability Experiment (EVE) is known as Extreme UltraViolet (EUV) late phase. Our previous paper (Liu et al. 2013) found that the main emissions in the late phase are originated from large-scale loop arcades that are closely connected to but different from the post flare loops (PFLs), and we also proposed that a long cooling process without additional heating could explain the late phase. In this paper, we define the extremely large late phase because it not only has a bigger peak in the warm 33.5 irradiance profile, but also releases more EUV radiative energy than the main phase. Through detailedly inspecting the EUV images from three point-of-view, it is found that, besides the later phase loop arcades, the more contribution of the extremely large late phase is from a hot structure that fails to erupt. This hot structure is identified as a flux rope, which is quickly energized by the flare reconnection...

  13. Correction of SOHO CELIAS/SEM EUV Measurements saturated by extreme solar flare events

    E-Print Network [OSTI]

    L. V. Didkovsky; D. L. Judge; A. R. Jones; S. Wieman; B. T. Tsurutani; D. McMullin

    2006-10-04

    The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 sec cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 -- 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 -- 34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEM EUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count-rate profiles, GOES X-ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about 7.5% for large X-class events.

  14. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  15. Automation of soft lithography

    E-Print Network [OSTI]

    Kim, Hyung-Jun

    2006-01-01

    This dissertation is a final documentation of the project whose goal is demonstrating manufacturability of soft lithography. Specifically, our target is creating micron scale patterns of resists on a 3 square inch, relatively ...

  16. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Lawrence Livermore National Lab.; Grilj, Jakob; Ecole Polytechnique Federal de Lausanne; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Temple Univ. Philadelphia, PA; Dürr, Hermann A.; Parkin, Stuart S. P.; et al

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  17. Electron Beam Lithography

    E-Print Network [OSTI]

    Sandini, Giulio

    Electron Beam Lithography Marco Salerno #12;Outline · general lithographic concepts · EBL www.cnf.cornell.edu/SPIEBook/SPIE1.HTM #12;Typical Electron Beam Column Zeiss GeminiTM column Types of Electron Beam Columns · no e- cross over no Boersch-effect (additional energy spread) · beam booster

  18. The SEMATECH Berkeley MET pushing EUV development beyond 22-nm half pitch

    SciTech Connect (OSTI)

    Naulleau, P.; Anderson, C. N.; Backlea-an, L.-M.; Chan, D.; Denham, P.; George, S.; Goldberg, K. A.; Hoef, B.; Jones, G.; Koh, C.; La Fontaine, B.; McClinton, B.; Miyakawa, R.; Montgomery, W.; Rekawa, S.; Wallow, T.

    2010-03-18

    Microfield exposure tools (METs) play a crucial role in the development of extreme ultraviolet (EUV) resists and masks, One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET, Using conventional illumination this tool is limited to approximately 22-nm half pitch resolution. However, resolution enhancement techniques have been used to push the patterning capabilities of this tool to half pitches of 18 nm and below, This resolution was achieved in a new imageable hard mask which also supports contact printing down to 22 nm with conventional illumination. Along with resolution, line-edge roughness is another crucial hurdle facing EUV resists, Much of the resist LER, however, can be attributed to the mask. We have shown that intenssionally aggressive mask cleaning on an older generation mask causes correlated LER in photoresist to increase from 3.4 nm to 4,0 nm, We have also shown that new generation EUV masks (100 pm of substrate roughness) can achieve correlated LER values of 1.1 nm, a 3x improvement over the correlated LER of older generation EUV masks (230 pm of substrate roughness), Finally, a 0.5-NA MET has been proposed that will address the needs of EUV development at the 16-nm node and beyond, The tool will support an ultimate resolution of 8 nm half-pitch and generalized printing using conventional illumination down to 12 nm half pitch.

  19. Carbon contamination topography analysis of EUV masks

    E-Print Network [OSTI]

    Fan, Y.-J.

    2010-01-01

    mask surface. but also the topography of the contaminatedCarbon Contamination Topography Analysis of EUV Masks Yu-Jenpossible contamination topography. Lithographic simulations

  20. EUV mirror based absolute incident flux detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  1. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Yang, Liheng; Zhang, Jun; Li, Ting; Liu, Wei; Shen, Yuandeng E-mail: zjun@bao.ac.cn

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

  2. System integration and performance of the EUV engineering test stand

    SciTech Connect (OSTI)

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D.; Klebanoff, Leonard E.; Jefferson, Karen L.; Leung, Alvin H.; Wronosky, John B.; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Folta, James A.; Montcalm, Claude; Soufli, Regina; Spiller, Eberhard; Blaedel, Kenneth; Sommargren, Gary E.; Sweeney, Donald W.; Naulleau, Patrick; Goldberg, Kenneth A.; Gullikson, Eric M.; Bokor, Jeffrey; Batson, Phillip J.; Attwood, David T.; Jackson, Keith H.; Hector, Scott D.; Gwyn, Charles W.; Yan, Pei-Yang; Yan, P.

    2001-03-01

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.

  3. Programmable imprint lithography template

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA); Talin, Albert A. (Livermore, CA)

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  4. Neon Ion Beam Lithography (NIBL)

    E-Print Network [OSTI]

    Winston, Donald

    Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. ...

  5. Low-cost interference lithography

    E-Print Network [OSTI]

    Fucetola, Corey P.

    The authors report demonstration of a low-cost ( ? 1000 USD) interference lithography system based on a Lloyd’s mirror interferometer that is capable of ? 300?nm pitch patterning. The components include only a 405?nm GaN ...

  6. A next-generation EUV Fresnel zoneplate mask-imaging microscope

    E-Print Network [OSTI]

    Goldberg, Kenneth A.

    2012-01-01

    A next-generation EUV Fresnel zoneplate mask-imaginghigh-magnification all-EUV Fresnel zoneplate microscope, the

  7. Development of an immersion maskless lithography system

    E-Print Network [OSTI]

    Chao, David, Ph. D. Massachusetts Institute of Technology

    2005-01-01

    As lithography quickly approaches its limits with current technologies, a host of new ideas is being proposed in hopes of pushing lithography to new levels of performance. The work presented in this thesis explores the use ...

  8. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    SciTech Connect (OSTI)

    Sistrunk, Emily [SLAC National Acceleraor Laboratory, Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grilj, Jakob [SLAC National Acceleraor Laboratory, Menlo Park, CA (United States); Ecole Polytechnique Federal de Lausanne (Switzerland); Jeong, Jaewoo [IBM Almaden Research Center, San Jose, CA (United States); Samant, Mahesh G. [IBM Almaden Research Center, San Jose, CA (United States); Gray, Alexander X. [SLAC National Acceleraor Laboratory, Menlo Park, CA (United States); Temple Univ. Philadelphia, PA (United States); Dürr, Hermann A. [SLAC National Acceleraor Laboratory, Menlo Park, CA (United States); Parkin, Stuart S. P. [IBM Almaden Research Center, San Jose, CA (United States); Max Planck Inst. of Microstructure Physics, Halle (Germany); Gühr, Markus [SLAC National Acceleraor Laboratory, Menlo Park, CA (United States)

    2015-01-01

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  9. THE EXTREME-ULTRAVIOLET EMISSION FROM SUN-GRAZING COMETS

    SciTech Connect (OSTI)

    Bryans, P.; Pesnell, W. D.

    2012-11-20

    The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

  10. EUV lithography reticles fabricated without the use of a patterned absorber

    DOE Patents [OSTI]

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.

    2006-05-23

    Absorber material used in conventional EUVL reticles is eliminated by introducing a direct modulation in the complex-valued reflectance of the multilayer. A spatially localized energy source such as a focused electron or ion beam directly writes a reticle pattern onto the reflective multilayer coating. Interdiffusion is activated within the film by an energy source that causes the multilayer period to contract in the exposed regions. The contraction is accurately determined by the energy dose. A controllable variation in the phase and amplitude of the reflected field in the reticle plane is produced by the spatial modulation of the multilayer period. This method for patterning an EUVL reticle has the advantages (1) avoiding the process steps associated with depositing and patterning an absorber layer and (2) providing control of the phase and amplitude of the reflected field with high spatial resolution.

  11. Printability and inspectability of programmed pit defects on teh masks in EUV lithography

    SciTech Connect (OSTI)

    Kang, I.-Y.; Seo, H.-S.; Ahn, B.-S.; Lee, D.-G.; Kim, D.; Huh, S.; Koh, C.-W.; Cha, B.; Kim, S.-S.; Cho, H.-K.; Mochi, I.; Goldberg, K. A.

    2010-03-12

    Printability and inspectability of phase defects in ELlVL mask originated from substrate pit were investigated. For this purpose, PDMs with programmed pits on substrate were fabricated using different ML sources from several suppliers. Simulations with 32-nm HP L/S show that substrate pits with below {approx}20 nm in depth would not be printed on the wafer if they could be smoothed by ML process down to {approx}1 nm in depth on ML surface. Through the investigation of inspectability for programmed pits, minimum pit sizes detected by KLA6xx, AIT, and M7360 depend on ML smoothing performance. Furthermore, printability results for pit defects also correlate with smoothed pit sizes. AIT results for pattemed mask with 32-nm HP L/S represents that minimum printable size of pits could be {approx}28.3 nm of SEVD. In addition, printability of pits became more printable as defocus moves to (-) directions. Consequently, printability of phase defects strongly depends on their locations with respect to those of absorber patterns. This indicates that defect compensation by pattern shift could be a key technique to realize zero printable phase defects in EUVL masks.

  12. Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources

    SciTech Connect (OSTI)

    Cummins, T.; O'Gorman, C.; Dunne, P.; Sokell, E.; O'Sullivan, G. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Hayden, P., E-mail: patrick.hayden@physics.org [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2014-07-28

    Colliding plasmas produced by neodymium-doped yttrium aluminium garnet (Nd:YAG) laser illumination of tin wedge targets form stagnation layers, the physical parameters of which can be controlled to optimise coupling with a carbon dioxide (CO{sub 2}) heating laser pulse and subsequent extreme ultraviolet (EUV) production. The conversion efficiency (CE) of total laser energy into EUV emission at 13.5?nm?±?1% was 3.6%. Neglecting both the energy required to form the stagnation layer and the EUV light produced before the CO{sub 2} laser pulse is incident results in a CE of 5.1% of the CO{sub 2} laser energy into EUV light.

  13. Wafer chamber having a gas curtain for extreme-UV lithography

    DOE Patents [OSTI]

    Kanouff, Michael P. (Livermore, CA); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  14. Which solar EUV indices are best for reconstructing the solar EUV irradiance ?

    E-Print Network [OSTI]

    T. Dudok de Wit; M. Kretzschmar; J. Aboudarham; P. -O. Amblard; F. Auchere; J. Lilensten

    2007-02-02

    The solar EUV irradiance is of key importance for space weather. Most of the time, however, surrogate quantities such as EUV indices have to be used by lack of continuous and spectrally resolved measurements of the irradiance. The ability of such proxies to reproduce the irradiance from different solar atmospheric layers is usually investigated by comparing patterns of temporal correlations. We consider instead a statistical approach. The TIMED/SEE experiment, which has been continuously operating since Feb. 2002, allows for the first time to compare in a statistical manner the EUV spectral irradiance to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices, and the He I equivalent width. Using multivariate statistical methods such as multidimensional scaling, we represent in a single graph the measure of relatedness between these indices and various strong spectral lines. The ability of each index to reproduce the EUV irradiance is discussed; it is shown why so few lines can be effectively reconstructed from them. All indices exhibit comparable performance, apart from the sunspot number, which is the least appropriate. No single index can satisfactorily describe both the level of variability on time scales beyond 27 days, and relative changes of irradiance on shorter time scales.

  15. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  16. Scattering with angular limitation projection electron beam lithography for suboptical lithography

    E-Print Network [OSTI]

    Harriott, Lloyd R.

    Scattering with angular limitation projection electron beam lithography for suboptical lithography era early in the next century. The scattering with angular limitation projection electron-beam lithography SCALPEL approach combines the high resolution and wide process latitude inherent in electron beam

  17. Carbon contamination topography analysis of EUV masks

    E-Print Network [OSTI]

    Fan, Y.-J.

    2010-01-01

    induced carbon contamination of extreme ultraviolet optics,"and A. Izumi. "Carbon contamination of EL'V mask: filmEffect of Carbon Contamination on the Printing Performance

  18. Photo-lithography of xanthate precursor poly(p-phenylenevinylene...

    Office of Scientific and Technical Information (OSTI)

    Conference: Photo-lithography of xanthate precursor poly(p-phenylenevinylene) polymers. Citation Details In-Document Search Title: Photo-lithography of xanthate precursor...

  19. Mirror contamination and secondary electron effects during EUV reflectivity analysis

    E-Print Network [OSTI]

    Harilal, S. S.

    Mirror contamination and secondary electron effects during EUV reflectivity analysis M. Catalfanoa, USA; b SEMATECH Inc., Albany, NY 12203, USA ABSTRACT We investigated Ru mirror contamination film at different angles. During the contamination process, the EUV reflectivity of the Ru film

  20. Effects of the dynamics of droplet-based laser-produced plasma on angular extreme ultraviolet emission profile

    SciTech Connect (OSTI)

    Giovannini, Andrea Z.; Abhari, Reza S.

    2014-05-12

    The emission distribution of extreme ultraviolet (EUV) radiation from droplet targets is dependent on the dynamics of the laser-produced plasma. The EUV emission is measured on a 2% bandwidth centered at 13.5?nm (in-band). The targets of the laser are small (sub-50 ?m) tin droplets, and the in-band emission distribution is measured for different laser irradiances and droplet sizes at various angular positions. Larger droplets lead to a faster decay of EUV emission at larger angles with respect to the laser axis. A decrease in laser irradiance has the opposite effect. The measurements are used together with an analytical model to estimate plume dynamics. Additionally, the model is used to estimate EUV emission distribution for a desired droplet diameter and laser irradiance.

  1. AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE

    SciTech Connect (OSTI)

    Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan

    2013-02-10

    Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.

  2. Testing a Riemannian twisted solar loop model from EUV data and magnetic topology

    E-Print Network [OSTI]

    Garcia de Andrade

    2008-01-12

    Compact Riemannian solar twisted magnetic flux tube surfaces model are tested against solar extreme ultraviolet (EUV) lines observations, allowing us to compute the diameter and height of solar plasma loops. The relation between magnetic and torsion energies is found for a nonplanar solar twisted (torsioned) loop to be $10^{9}$, which shows that the contribution of torsion energy to the solar loop is extremely weaker than the magnetic energy contribution. In this case solar loops of up $5000 km$ in diameter can be reached. The height of $220.000 km$ is used to obtain an estimate for torsion based on the Riemannian flux tube surface, which yields ${\\tau}_{0}=0.9{\\times} 10^{-8} m^{-1}$ which coincides with one of the data of $(0.9{\\pm}0.4){\\times}10^{-8}m^{-1}$ obtained by Lopez-Fuentes et al (2003). This result tells us that the Riemannian flux tube model for plasma solar loops is consistent with experimental results in solar physics. These results are obtained for a homogeneous twisted solar loop. By making use of Moffatt-Ricca theorem for the bounds on torsional energy of unknotted vortex filaments, applied to magnetic topology, one places bounds on the lengths of EUV solar loops. New results as the vorticity of the plasma flow along the tube is also computed in terms of the flux tube twist.

  3. X-ray and EUV Observations of Simultaneous Short and Long Period Oscillations in Hot Coronal Arcade Loops

    E-Print Network [OSTI]

    Kumar, Pankaj; Cho, Kyung-Suk

    2015-01-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6-12 keV) and extreme ultraviolet (EUV) channels (131, 94, 1600, 304 \\AA) observed by the Fermi GBM (Gamma-ray Burst Monitor) and SDO/AIA, respectively, during a C-class flare. The estimated period of oscillation and decay time in the X-ray channel (6-12 keV) was about 202 s and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 \\AA channels. Simultaneously, AIA hot channels (94 and 131 \\AA) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 s and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km/s for about 115 Mm loop length, which is roughly consistent with the sound speed at the temperature about 10-16 MK (480-608 km/s). These EUV oscillations are consistent with the SOHO/SUMER Doppler-shift oscillations interpreted as the...

  4. Diffractive optics for maskless lithography and imaging

    E-Print Network [OSTI]

    Menon, Rajesh, 1976-

    2003-01-01

    Semiconductor industry has primarily been driven by the capability of lithography to pattern smaller and smaller features. However due to increasing mask costs and complexity, and increasing tool costs, the state-of-the-art ...

  5. EUV spectroscopy on the SSPX spheromak

    SciTech Connect (OSTI)

    Clementson, J T; Beiersdorfer, P; Gu, M F; McLean, H S; Wood, R D

    2008-03-17

    EUV plasma spectroscopy is one the diagnostics implemented at the Sustained Spheromak Physics Experiment (SSPX) at the Lawrence Livermore National Laboratory. A grating spectrometer covering the spectral region of 25-450 {angstrom} with a resolution of 0.4 {angstrom} was used as an impurity diagnostic to monitor the plasmas and to carry out atomic physics research. Several low-Z impurities have been found in the spheromak, notably B, C, N, and O. Of the heavier elements, Ti, Cu, and W were found in the plasmas. As a relatively dense and low-temperature laboratory plasma device, SSPX served as an excellent radiation source for investigation of atomic spectra in a regime not readily attained in other devices. We have injected atomic titanium and tungsten hexacarbonyl into the spheromak under different operating conditions. We also report on electron temperature and electron density measurements based on the K{alpha} lines from B IV at 60 {angstrom}.

  6. Optimized capping layers for EUV multilayers

    DOE Patents [OSTI]

    Bajt, Sasa (Livermore, CA); Folta, James A. (Livermore, CA); Spiller, Eberhard A. (Livermore, CA)

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  7. EVIDENCE FOR THE WAVE NATURE OF AN EXTREME ULTRAVIOLET WAVE OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Shen Yuandeng; Liu Yu

    2012-07-20

    Extreme-ultraviolet (EUV) waves have been found for about 15 years. However, significant controversy remains over their physical natures and origins. In this paper, we report an EUV wave that was accompanied by an X1.9 flare and a partial halo coronal mass ejection (CME). Using high temporal and spatial resolution observations taken by the Solar Dynamics Observatory and the Solar-TErrestrial RElations Observatory, we are able to investigate the detailed kinematics of the EUV wave. We find several arguments that support the fast-mode wave scenario. (1) The speed of the EUV wave (570 km s{sup -1}) is higher than the sound speed of the quiet-Sun corona. (2) Significant deceleration of the EUV wave (-130 m s{sup -2}) is found during its propagation. (3) The EUV wave resulted in the oscillations of a loop and a filament along its propagation path, and a reflected wave from the polar coronal hole is also detected. (4) Refraction or reflection effect is observed when the EUV wave was passing through two coronal bright points. (5) The dimming region behind the wavefront stopped to expand when the wavefront started to become diffuse. (6) The profiles of the wavefront exhibited a dispersive nature, and the magnetosonic Mach number of the EUV wave derived from the highest intensity jump is about 1.4. In addition, triangulation indicates that the EUV wave propagated within a height range of about 60-100 Mm above the photosphere. We propose that the EUV wave observed should be a nonlinear fast-mode magnetosonic wave that propagated freely in the corona after it was driven by the CME expanding flanks during the initial period.

  8. Film quantum yields of EUV& ultra-high PAG photoresists

    SciTech Connect (OSTI)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  9. MAGNETIC RECONNECTION: FROM 'OPEN' EXTREME-ULTRAVIOLET LOOPS TO CLOSED POST-FLARE ONES OBSERVED BY SDO

    SciTech Connect (OSTI)

    Zhang, Jun; Yang, Shuhong; Li, Ting; Zhang, Yuzong; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Jiang, Chaowei, E-mail: zjun@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: liting@nao.cas.cn, E-mail: yuzong@nao.cas.cn, E-mail: lepingli@nao.cas.cn, E-mail: cwjiang@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-10

    We employ Solar Dynamics Observatory observations and select three well-observed events including two flares and one extreme-ultraviolet (EUV) brightening. During the three events, the EUV loops clearly changed. One event was related to a major solar flare that took place on 2012 July 12 in active region NOAA AR 11520. 'Open' EUV loops rooted in a facula of the AR deflected to the post-flare loops and then merged with them while the flare ribbon approached the facula. Meanwhile, 'open' EUV loops rooted in a pore disappeared from top to bottom as the flare ribbon swept over the pore. The loop evolution was similar in the low-temperature channels (e.g., 171 Å) and the high-temperature channels (e.g., 94 Å). The coronal magnetic fields extrapolated from the photospheric vector magnetograms also show that the fields apparently 'open' prior to the flare become closed after it. The other two events were associated with a B1.1 flare on 2010 May 24 and an EUV brightening on 2013 January 03, respectively. During both of these two events, some 'open' loops either disappeared or darkened before the formation of new closed loops. We suggest that the observations reproduce the picture predicted by the standard magnetic reconnection model: 'open' magnetic fields become closed due to reconnection, manifesting as a transformation from 'open' EUV loops to closed post-flare ones.

  10. Extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Sweeney, Donald W. (San Ramon, CA); Shafer, David (Fairfield, CT); McGuire, James (Pasadena, CA)

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  11. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    E-Print Network [OSTI]

    Winston, Donald

    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article ...

  12. Sub-10-nm lithography with light-ion beams

    E-Print Network [OSTI]

    Winston, Donald, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Scanning-electron-beam lithography (SEBL) is the workhorse of nanoscale lithography in part because of the high brightness of the Schottky source of electrons, but also benefiting from decades of incremental innovation and ...

  13. ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C

    SciTech Connect (OSTI)

    Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane; Cirtain, Jonathan; Winebarger, Amy R.; Golub, Leon; Korreck, Kelly; Weber, Mark; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; DePontieu, Bart; Title, Alan; DeForest, Craig; Kuzin, Sergey

    2013-09-20

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from H? and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of 'counter-steaming' flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s{sup –1}) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

  14. The Astrophysical Journal Submitted, 2000 August 7 Modeling of Coronal EUV Loops Observed with TRACE

    E-Print Network [OSTI]

    Hudson, Hugh

    measure distribution peaks in the temperature range of 3­5 MK, an overwhelming large number of EUV loops loops and transient brightenings. Subject headings: Sun: Corona --- Sun : Active Regions --- Sun : EUV to the interpretation of EUV loops, for which physical parameters such as density n e (s) and temperature T (s) along

  15. Method and apparatus for inspecting an EUV mask blank

    DOE Patents [OSTI]

    Goldberg, Kenneth A.

    2005-11-08

    An apparatus and method for at-wavelength EUV mask-blank characterization for inspection of moderate and low spatial frequency coating uniformity using a synchrotron or other source of EUV light. The apparatus provides for rapid, non-destruction, non-contact, at-wavelength qualification of large mask areas, and can be self-calibrating or be calibrated to well-characterized reference samples. It can further check for spatial variation of mask reflectivity or for global differences among masks. The apparatus and method is particularly suited for inspection of coating uniformity and quality and can detect defects in the order of 50 .mu.m and above.

  16. 5000 groove/mm multilayer-coated blazed grating with 33percent efficiency in the 3rd order in the EUV wavelength range

    SciTech Connect (OSTI)

    Advanced Light Source; Voronov, Dmitriy L.; Anderson, Erik; Cambie, Rossana; Salmassi, Farhad; Gullikson, Eric; Yashchuk, Valeriy; Padmore, Howard; Ahn, Minseung; Chang, Chih-Hao; Heilmann, Ralf; Schattenburg, Mark

    2009-07-07

    We report on recent progress in developing diffraction gratings which can potentially provide extremely high spectral resolution of 105-106 in the EUV and soft x-ray photon energy ranges. Such a grating was fabricated by deposition of a multilayer on a substrate which consists ofa 6-degree blazed grating with a high groove density. The fabrication of the substrate gratings was based on scanning interference lithography and anisotropic wet etch of silicon single crystals. The optimized fabrication process provided precise control of the grating periodicity, and the grating groove profile, together with very short anti-blazed facets, and near atomically smooth surface blazed facets. The blazed grating coated with 20 Mo/Si bilayers demonstrated a diffraction efficiency in the third order as high as 33percent at an incidence angle of 11? and wavelength of 14.18 nm.

  17. Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO

    SciTech Connect (OSTI)

    Chen, Huadong; Ma, Suli; Zhang, Jun

    2013-11-20

    Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along with the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.

  18. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave

    SciTech Connect (OSTI)

    Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan; Ichimoto, Kiyoshi; Ishii, Takako T.; Shibata, Kazunari

    2014-05-10

    Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup –1}) and a lateral surface wave (554 km s{sup –1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments and the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup –1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ?10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.

  19. Laser direct write system for fabricating seamless roll-to-roll lithography tools

    E-Print Network [OSTI]

    Petrzelka, Joseph E.

    Implementations of roll to roll contact lithography require new approaches towards manufacturing tooling, including stamps for roll to roll nanoimprint lithography (NIL) and soft lithography. Suitable roll based tools must ...

  20. Study of instability formation and EUV emission in thin liners driven with a compact 250?kA, 150?ns linear transformer driver

    SciTech Connect (OSTI)

    Valenzuela, J. C., E-mail: jcval@ucsd.edu; Collins, G. W.; Mariscal, D.; Beg, F. N. [Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)] [Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States); Wyndham, E. S. [Facultad de Física, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Macul, Santiago (Chile)] [Facultad de Física, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Macul, Santiago (Chile)

    2014-03-15

    A compact linear transformer driver, capable of producing 250?kA in 150?ns, was used to study instability formation on the surface of thin liners. In the experiments, two different materials, Cu and Ni, were used to study the effect of the liner's resistivity on formation and evolution of the instabilities. The dimensions of the liners used were 7?mm height, 1?mm radius, and 3??m thickness. Laser probing and time resolved extreme ultraviolet (EUV) imaging were implemented to diagnose instability formation and growth. Time-integrated EUV spectroscopy was used to study plasma temperature and density. A constant expansion rate for the liners was observed, with similar values for both materials. Noticeable differences were found between the Cu and Ni instability growth rates. The most significant perturbation in Cu rapidly grows and saturates reaching a limiting wavelength of the order of the liner radius, while the most significant wavelength in Ni increases slowly before saturating, also at a wavelength close to the liner radius. Evidence suggests that the instability observed is the well-known m?=?0 MHD instability. However, upon comparing the instability evolution of Cu and Ni, the importance of the resistivity on the seeding mechanism becomes evident. A comparison of end-on and side-on EUV emission possible indicates the formation of precursor plasma, where it has been estimated using EUV spectroscopy that the precursor plasma temperature is approximately 40?eV with ion density of order 10{sup 19}?cm{sup ?3}, for both materials.

  1. Multilevel interference lithography--fabricating sub-wavelength periodic nanostructures

    E-Print Network [OSTI]

    Chang, Chih-Hao, 1980-

    2008-01-01

    Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive ...

  2. Enhancement of laser plasma extreme ultraviolet emission by shockwave-laser interaction

    SciTech Connect (OSTI)

    Bruijn, Rene de; Koshelev, Konstantin N.; Zakharov, Serguei V.; Novikov, Vladimir G.; Bijkerk, Fred [FOM Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); EPPRA SAS, 16 Avenue de Quebec, Silic 706 Courtaboeuf, 91961 Villebon-sur-Yvette (France) and TRINITI RF SRC, Troitsk (Russian Federation); KIAM RAS, Miusskaya square 4, Moscow, 125047 (Russian Federation); FOM Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2005-04-15

    A double laser pulse heating scheme has been applied to generate plasmas with enhanced emission in the extreme ultraviolet (EUV). The plasmas were produced by focusing two laser beams (prepulse and main pulse) with a small spatial separation between the foci on a xenon gas jet target. Prepulses with ps-duration were applied to obtain high shockwave densities, following indications of earlier published results obtained using ns prepulses. EUV intensities around 13.5 nm and in the range 5-20 nm were recorded, and a maximum increase in intensity exceeding 2 was measured at an optimal delay of 140 ns between prepulse and main pulse. The gain in intensity is explained by the interaction of the shockwave produced by the prepulse with the xenon in the beam waist of the main pulse. Extensive simulation was done using the radiative magnetohydrodynamic code Z{sup *}.

  3. Fluorescence Efficiency and Visible Re-emission Spectrum of Tetraphenyl Butadiene Films at Extreme Ultraviolet Wavelengths

    E-Print Network [OSTI]

    Gehman, V M; Rielage, K; Hime, A; Sun, Y; Mei, D -M; Maassen, J; Moore, D

    2011-01-01

    A large number of current and future experiments in neutrino and dark matter detection use the scintillation light from noble elements as a mechanism for measuring energy deposition. The scintillation light from these elements is produced in the extreme ultraviolet (EUV) range, from 60 - 200 nm. Currently, the most practical technique for observing light at these wavelengths is to surround the scintillation volume with a thin film of Tetraphenyl Butadiene (TPB) to act as a fluor. The TPB film absorbs EUV photons and reemits visible photons, detectable with a variety of commercial photosensors. Here we present a measurement of the re-emission spectrum of TPB films when illuminated with 128, 160, 175, and 250 nm light. We also measure the fluorescence efficiency as a function of incident wavelength from 120 to 250 nm.

  4. Fluorescence Efficiency and Visible Re-emission Spectrum of Tetraphenyl Butadiene Films at Extreme Ultraviolet Wavelengths

    E-Print Network [OSTI]

    V. M. Gehman; S. R. Seibert; K. Rielage; A. Hime; Y. Sun; D. -M. Mei; J. Maassen; D. Moore

    2011-09-22

    A large number of current and future experiments in neutrino and dark matter detection use the scintillation light from noble elements as a mechanism for measuring energy deposition. The scintillation light from these elements is produced in the extreme ultraviolet (EUV) range, from 60 - 200 nm. Currently, the most practical technique for observing light at these wavelengths is to surround the scintillation volume with a thin film of Tetraphenyl Butadiene (TPB) to act as a fluor. The TPB film absorbs EUV photons and reemits visible photons, detectable with a variety of commercial photosensors. Here we present a measurement of the re-emission spectrum of TPB films when illuminated with 128, 160, 175, and 250 nm light. We also measure the fluorescence efficiency as a function of incident wavelength from 120 to 250 nm.

  5. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect (OSTI)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Landi, Enrico

    2014-07-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  6. A nanoflare model of quiet Sun EUV emission

    E-Print Network [OSTI]

    Anuschka Pauluhn; Sami K. Solanki

    2006-12-20

    Nanoflares have been proposed as the main source of heating of the solar corona. However, detecting them directly has so far proved elusive, and extrapolating to them from the properties of larger brightenings gives unreliable estimates of the power-law exponent $\\alpha$ characterising their distribution. Here we take the approach of statistically modelling light curves representative of the quiet Sun as seen in EUV radiation. The basic assumption is that all quiet-Sun EUV emission is due to micro- and nanoflares, whose radiative energies display a power-law distribution. Radiance values in the quiet Sun follow a lognormal distribution. This is irrespective of whether the distribution is made over a spatial scan or over a time series. We show that these distributions can be reproduced by our simple model.

  7. Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use of a desktop-size extreme-ultraviolet laser

    SciTech Connect (OSTI)

    Heinbuch, Scott; Rocca, Jorge J. [Department of Electrical and Computer Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, Colorado 80523-1320 (United States); National Science Foundation, Engineering Research Center for Extreme Ultraviolet Science and Technology, Colorado State University, 1320 Campus Delivery, Fort Collins, Colorado 80523-1320 (United States); Dong Feng; Bernstein, Elliot R. [National Science Foundation, Engineering Research Center for Extreme Ultraviolet Science and Technology, Colorado State University, 1320 Campus Delivery, Fort Collins, Colorado 80523-1320 (United States); Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523-1872 (United States)

    2008-07-15

    The reactivity of prospective capping-layer extreme-ultraviolet (EUV) mirror materials with hydrocarbons is studied in the gas phase by use of mass spectroscopy of metal-oxide clusters. We report the results of chemistry studies for Si{sub m}, Ti{sub m}, Hf{sub m}, and Zr{sub m}O{sub n} metal-oxide clusters in which the reaction products were ionized with little or no fragmentation by 26.5 eV photons from a desktop-size 46.9 nm Ne-like Ar laser. Hf and Zr oxides are found to be much less reactive than Si or Ti oxides in the presence of EUV light. The results are relevant to the design of EUV mirror capping layers that are resistant to carbon contamination.

  8. Interference Assisted Lithography for Patterning of 1D Gridded Design

    E-Print Network [OSTI]

    Kahng, Andrew B.

    , USA 78750 3 University of California at San Diego, La Jolla, CA, USA 92093 4 Tela Innovations, Inc Assisted Lithography (IAL) as a promising and cost-effective solution for extending lithography. IAL for pattern splitting, as well as to address concerns of significantly increased patterning cost. Nano

  9. Analysis of Optics and Mask Contamination in SEMATECH EUV Micro-Exposure Tools

    E-Print Network [OSTI]

    Wuest, Andrea

    2008-01-01

    of Optics and Mask Contamination in SEMATECH EUV MioroTools IEUVI Optics Contamination/Lifetime TWG Sapporo,of spot inside visible contamination. sputter time (min) c

  10. Tailoring Nanostructures Using Copolymer Nanoimprint Lithography

    E-Print Network [OSTI]

    Pascal Thebault; Stefan Niedermayer; Stefan Landis; Nicolas Chaix; Patrick Guenoun; Jean Daillant; Xingkun Man; David Andelman; Henri Orland

    2012-07-12

    Finding affordable ways of generating high-density ordered nanostructures that can be transferred to a substrate is a major challenge for industrial applications like memories or optical devices with high resolution features. In this work, we report on a novel technique to direct self-assembled structures of block copolymers by NanoImprint Lithography. Surface energy of a reusable mold and nanorheology are used to organize the copolymers in defect-free structures over tens of micrometers in size. Versatile and controlled in-plane orientations of about 25 nm half-period lamellar nanostructures are achieved and, in particular, include applications to circular tracks of magnetic reading heads.

  11. Tailoring Nanostructures Using Copolymer Nanoimprint Lithography

    E-Print Network [OSTI]

    Thebault, Pascal; Landis, Stefan; Chaix, Nicolas; Guenoun, Patrick; Daillant, Jean; Man, Xingkun; Andelman, David; Orland, Henri

    2012-01-01

    Finding affordable ways of generating high-density ordered nanostructures that can be transferred to a substrate is a major challenge for industrial applications like memories or optical devices with high resolution features. In this work, we report on a novel technique to direct self-assembled structures of block copolymers by NanoImprint Lithography. Surface energy of a reusable mold and nanorheology are used to organize the copolymers in defect-free structures over tens of micrometers in size. Versatile and controlled in-plane orientations of about 25 nm half-period lamellar nanostructures are achieved and, in particular, include applications to circular tracks of magnetic reading heads.

  12. Xe capillary target for laser-plasma extreme ultraviolet source

    SciTech Connect (OSTI)

    Inoue, Takahiro; Okino, Hideyasu; Nica, Petru Edward; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-10-15

    A cryogenic Xe jet system with an annular nozzle has been developed in order to continuously fast supply a Xe capillary target for generating a laser-plasma extreme ultraviolet (EUV) source. The cooling power of the system was evaluated to be 54 W, and the temperature stability was {+-}0.5 K at a cooling temperature of about 180 K. We investigated experimentally the influence of pressure loss inside an annular nozzle on target formation by shortening the nozzle length. Spraying caused by cavitation was mostly suppressed by mitigating the pressure loss, and a focused jet was formed. Around a liquid-solid boundary, a solid-Xe capillary target (100/70 {mu}m {phi}) was formed with a velocity of {<=}0.01 m/s. Laser-plasma EUV generation was tested by focusing a Nd:YAG laser beam on the target. The results suggested that an even thinner-walled capillary target is required to realize the inertial confinement effect.

  13. Graphene defect formation by extreme ultraviolet generated photoelectrons

    SciTech Connect (OSTI)

    Gao, A., E-mail: a.gao@utwente.nl; Lee, C. J.; Bijkerk, F. [FOM-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands and XUV Optics Group, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands)

    2014-08-07

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy lower than 80?eV. After e-beam irradiation, it is found that the D peak, I(D), appears in the Raman spectrum, indicating defect formation in graphene. The evolution of I(D)/I(G) follows the amorphization trajectory with increasing irradiation dose, indicating that graphene goes through a transformation from microcrystalline to nanocrystalline and then further to amorphous carbon. Further, irradiation of graphene with increased water partial pressure does not significantly change the Raman spectra, which suggests that, in the extremely low energy range, e-beam induced chemical reactions between residual water and graphene are not the dominant mechanism driving defect formation in graphene. Single layer graphene, partially suspended over holes was irradiated with EUV radiation. By comparing with the Raman results from e-beam irradiation, it is concluded that the photoelectrons, especially those from the valence band, contribute to defect formation in graphene during irradiation.

  14. Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse

    E-Print Network [OSTI]

    Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

    2007-01-01

    X-ray Harmonic Generation FEL Seeded with an EUV Laser PulseX-ray harmonic generation FEL seeded with an EUV laser pulseof a free electron laser (FEL) using a low-power extreme

  15. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect (OSTI)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  16. Optimization of EUV laser and discharge devices for high-volume manufacturing

    E-Print Network [OSTI]

    Harilal, S. S.

    Optimization of EUV laser and discharge devices for high-volume manufacturing A. Hassanein* , V for improving source brightness is to simulate the source environment in order to optimize the EUV output necessitate investigation and optimization not only of power sources but also plasma irradiation parameters

  17. Graphene nanoribbon superlattices fabricated via He ion lithography

    SciTech Connect (OSTI)

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ?1??m length and ?5?nm width were written to form nanoribbon gratings down to 20?nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ? 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  18. EUV detection of high-frequency surface acoustic waves

    E-Print Network [OSTI]

    Siemens, Mark

    We use coherent extreme ultraviolet radiation to probe surface acoustic wave propagation in nickel-on-sapphire nanostructures. We observe no acoustic dispersion over SAW wavelengths down to 200 nm, meaning the SAW propagation ...

  19. Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas

    SciTech Connect (OSTI)

    Roy, A., E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in [HiLASE Project, Department of Diode-Pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); School of Nuclear Engineering and Center for Materials Under Extreme Environment (CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); Harilal, S. S.; Polek, M. P.; Hassan, S. M.; Hassanein, A. [School of Nuclear Engineering and Center for Materials Under Extreme Environment (CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Nuclear Engineering and Center for Materials Under Extreme Environment (CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); Endo, A. [HiLASE Project, Department of Diode-Pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)] [HiLASE Project, Department of Diode-Pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2014-03-15

    We investigated the role of laser pulse duration and intensity on extreme ultraviolet (EUV) generation and ion emission from a laser produced Sn plasma. For producing plasmas, planar slabs of pure Sn were irradiated with 1064?nm Nd:YAG laser pulses with varying pulse duration (5–20?ns) and intensity. Experimental results performed at CMUXE indicate that the conversion efficiency (CE) of the EUV radiation strongly depend on laser pulse width and intensity, with a maximum CE of ?2.0% measured for the shortest laser pulse width used (5?ns). Faraday Cup ion analysis of Sn plasma showed that the ion flux kinetic profiles are shifted to higher energy side with the reduction in laser pulse duration and narrower ion kinetic profiles are obtained for the longest pulse width used. However, our initial results showed that at a constant laser energy, the ion flux is more or less constant regardless of the excitation laser pulse width. The enhanced EUV emission obtained at shortest laser pulse duration studied is related to efficient laser-plasma reheating supported by presence of higher energy ions at these pulse durations.

  20. Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications

    E-Print Network [OSTI]

    Harilal, S. S.

    low ~about 4%!, stacked multilayers, of which the reflection adds up, are used or bent crystals which

  1. Mitigation of fast ions from laser-produced Sn plasma for an extreme ultraviolet lithography source

    E-Print Network [OSTI]

    Tillack, Mark

    of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0438 and the Center for Energy Research of the reduction of fast ion energy from laser-produced Sn plasma by introducing a low energy prepulse. The energy candidates. Because of the availability of optics, most of the efforts focus on in-band 2% bandwidth 13.5 nm

  2. Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography

    E-Print Network [OSTI]

    Harilal, S. S.

    subjected to laser beam energy with different intensities and laser wavelength to dual-beam lasers, i of vapor expansion rate, which can be produced as a result of droplet heating by pre-pulse laser energy, and the remaining part of the laser heats the plasma instead of inter- acting with the target. For obtaining

  3. Replication of photonic crystals by soft ultraviolet-nanoimprint lithography Michele Belotti, Jrmi Torres,a

    E-Print Network [OSTI]

    photopolymerization through a soft elastomer-based mold is applied to the fabrication of silicon-on-insulator slab of linear defects in the periodicity. Guiding occurs along the defect line, i.e., a missing row of holes forming the so-called W1 defect.5 In order to enhance this behavior, high dielectric contrast between core

  4. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    SciTech Connect (OSTI)

    Goryaev, F.; Slemzin, V.; Vainshtein, L. [P.N. Lebedev Physical Institute of the RAS (LPI), Moscow 119991 (Russian Federation); Williams, David R., E-mail: goryaev_farid@mail.ru [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH5 6NT (United Kingdom)

    2014-02-01

    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ?}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 R {sub ?}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ?}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ?} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ?} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ? 2 R {sub ?}.

  5. Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale

    E-Print Network [OSTI]

    Duan, Huigao

    Exploring the resolution limit of electron-beam lithography is of great interest both scientifically and technologically. However, when electron-beam lithography approaches its resolution limit, imaging and metrology of ...

  6. High resolution imaging and lithography using interference of light and surface plasmon waves

    E-Print Network [OSTI]

    Kim, Yang-Hyo

    2007-01-01

    The resolution of optical imaging and lithography is limited by the wave nature of light. Studies have been undertaken to overcome the diffraction limit for imaging and lithography. In our lab, the standing wave surface ...

  7. Design and prototype : a manufacturing system for the soft lithography technique

    E-Print Network [OSTI]

    Cao, Arthur Y. (Arthur Yao)

    2006-01-01

    Ever since 1998 when the term "soft lithography" was first created, soft lithography techniques have drawn close attention of the academia and the industry. Micro contact printing is by far the most widely used soft ...

  8. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    E-Print Network [OSTI]

    Voronov, Dmitry L.

    2010-01-01

    16. Yu. Shvyd’ko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

  9. Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental comparisons

    E-Print Network [OSTI]

    Nair, Sankar

    Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental 2013 Keywords: Nanopore Simulation Electron beam lithography Penelope Nanotechnology Monte Carlo a b be fabricated by electron beam lithography (EBL) with high density (on the order of 10 devices per cm2

  10. Lithography and Design in Partnership: A New Roadmap Andrew B. Kahng

    E-Print Network [OSTI]

    Kahng, Andrew B.

    Lithography and Design in Partnership: A New Roadmap Andrew B. Kahng UCSD Departments of CSE roadmap' between lithography and design from several perspectives. First, we examine cultural gaps and other intrinsic barriers to a shared roadmap. Second, we discuss how lithography technol- ogy can change

  11. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect (OSTI)

    Atwater, Jackson H; Spinelli, P.; Kosten, Emily D; Parsons, J.; Van Lare, C; Van de Groep, J; Garcia de Abajo, J.; Polman, Albert; Atwater, Harry A.

    2011-01-01

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 ?m high and 10 ?m in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  12. OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT

    SciTech Connect (OSTI)

    Warren, Harry P.; Doschek, George A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mariska, John T. [School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2013-06-20

    One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

  13. Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing

    Broader source: Energy.gov [DOE]

    Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

  14. Digital microfluidics using soft lithography{ John Paul Urbanski,a

    E-Print Network [OSTI]

    Amarasinghe, Saman

    Digital microfluidics using soft lithography{ John Paul Urbanski,a William Thies,b Christopher published as an Advance Article on the web 29th November 2005 DOI: 10.1039/b510127a Although microfluidic software to drive the pumps, valves, and electrodes used to manipulate fluids in microfluidic devices

  15. Ultrathin fluorinated diamondlike carbon coating for nanoimprint lithography imprinters

    E-Print Network [OSTI]

    Krchnavek, Robert R.

    Ultrathin fluorinated diamondlike carbon coating for nanoimprint lithography imprinters Ryan W-DLC is used as a NIL imprinter coating to provide this durable antiwear, antistick layer. Previous works10,11 have shown that DLC is a durable coating with a low surface energy 40 mJ/m2 . The fluorinated self

  16. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%?±?1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.×?nm sources.

  17. HST-COS OBSERVATIONS OF AGNs. I. ULTRAVIOLET COMPOSITE SPECTRA OF THE IONIZING CONTINUUM AND EMISSION LINES

    SciTech Connect (OSTI)

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles W., E-mail: michael.shull@colorado.edu, E-mail: matthew.stevans@colorado.edu, E-mail: charles.danforth@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2012-06-20

    The ionizing fluxes from quasars and other active galactic nuclei (AGNs) are critical for interpreting the emission-line spectra of AGNs and for photoionization and heating of the intergalactic medium. Using ultraviolet spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we have directly measured the rest-frame ionizing continua and emission lines for 22 AGNs. Over the redshift range 0.026 < z < 1.44, COS samples the Lyman continuum and many far-UV emission lines (Ly{alpha} {lambda}1216, C IV {lambda}1549, Si IV/O IV] {lambda}1400, N V {lambda}1240, O VI {lambda}1035). Strong EUV emission lines with 14-22 eV excitation energies (Ne VIII {lambda}{lambda}770, 780, Ne V {lambda}569, O II {lambda}834, O III {lambda}833, {lambda}702, O IV {lambda}788, 608, 554, O V {lambda}630, N III {lambda}685) suggest the presence of hot gas in the broad emission-line region. The rest-frame continuum, F{sub {nu}}{proportional_to}{nu}{sup {alpha}{sub {nu}}}, shows a break at wavelengths {lambda} < 1000 A, with spectral index {alpha}{sub {nu}} = -0.68 {+-} 0.14 in the FUV (1200-2000 A) steepening to {alpha}{sub {nu}} = -1.41 {+-} 0.21 in the EUV (500-1000 A). The COS EUV index is similar to that of radio-quiet AGNs in the 2002 HST/FOS survey ({alpha}{sub {nu}} = -1.57 {+-} 0.17). We see no Lyman edge ({tau}{sub HI} < 0.03) or He I {lambda}584 emission in the AGN composite. Our 22 AGNs exhibit a substantial range of FUV/EUV spectral indices and a correlation with AGN luminosity and redshift, likely due to observing below the 1000 A spectral break.

  18. Ultraviolet selective silicon photodiode 

    E-Print Network [OSTI]

    Chintapalli, Koteswara Rao

    1992-01-01

    (' silicon surfa&(& that n&ost of t h&) phologeneraied hole-el( & tron pairs are k&st by surface rccornbinai ion before being nolle&. trxl hy a pr). jun?i, ion. The major cause of surl'a&. e re?omhination is probably due Io lifetim(. shortening ol' Lhe...Luation degrades by &legr(es during (xposure Io high-cncrgy photo(&s such as in ultraviolet light. The second approa?h is a S&:hottky-b))rricr Iype. ol' photodiodc consisting of a iranspar()nt, thin metal film [I I]. ln I. his d(vi?e, ii, is dif%?ult to a...

  19. 714 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 38, NO. 4, APRIL 2010 Interaction of a CO2 Laser Pulse With Tin-Based

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    714 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 38, NO. 4, APRIL 2010 Interaction of a CO2 Laser--The interaction of a CO2 laser pulse with Sn-based plasma for a 13.5-nm extreme ultraviolet (EUV) lithography source was investigated. It was noted that a CO2 laser with wavelength of 10.6 m is more sensitive

  20. HST-COS observations of AGNs. II. Extended survey of ultraviolet composite spectra from 159 active galactic nuclei

    SciTech Connect (OSTI)

    Stevans, Matthew L. [Present address: Astronomy Department, University of Texas, Austin, TX 78712, USA. (United States); Shull, J. Michael [Also at Institute of Astronomy, Cambridge University, Cambridge CB3 OHA, UK. (United Kingdom); Danforth, Charles W.; Tilton, Evan M., E-mail: stevans@astro.as.utexas.edu, E-mail: michael.shull@colorado.edu, E-mail: charles.danforth@colorado.edu, E-mail: evan.tilton@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-10-10

    The ionizing fluxes from quasars and other active galactic nuclei (AGNs) are critical for interpreting their emission-line spectra and for photoionizing and heating the intergalactic medium. Using far-ultraviolet (FUV) spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we directly measure the rest-frame ionizing continua and emission lines for 159 AGNs at redshifts 0.001 < z {sub AGN} < 1.476 and construct a composite spectrum from 475 to 1875 Å. We identify the underlying AGN continuum and strong extreme ultraviolet (EUV) emission lines from ions of oxygen, neon, and nitrogen after masking out absorption lines from the H I Ly? forest, 7 Lyman-limit systems (N{sub H} {sub I}?10{sup 17.2} cm{sup –2}) and 214 partial Lyman-limit systems (14.5EUV spectral shapes, F{sub ?}??{sup ?{sub ?}}, typically with –2 ? ?{sub ?} ? 0 and no discernible continuum edges at 912 Å (H I) or 504 Å (He I). The composite rest-frame continuum shows a gradual break at ?{sub br} ? 1000 Å, with mean spectral index ?{sub ?} = –0.83 ± 0.09 in the FUV (1200-2000 Å) steepening to ?{sub ?} = –1.41 ± 0.15 in the EUV (500-1000 Å). We discuss the implications of the UV flux turnovers and lack of continuum edges for the structure of accretion disks, AGN mass inflow rates, and luminosities relative to Eddington values.

  1. The SEMATECH Berkeley MET & DCT: a quest for 14-nm half-pitch in chemically amplified resist, OOB contrast of EUV resists, and 6.x-nm lithography

    E-Print Network [OSTI]

    McClinton, Brittany

    2013-01-01

    phase-shift-mask (pseudo-PSM) imaging, providing earlypitch, using the pseudo-PSM technique. In September 2011,

  2. Numerical and experimental studies of the carbon etching in EUV-induced plasma

    E-Print Network [OSTI]

    Astakhov, D I; Lee, C J; Ivanov, V V; Krivtsun, V M; Yakushev, O; Koshelev, K N; Lopaev, D V; Bijkerk, F

    2015-01-01

    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By relating the computed ion fluxes to the experimentally observed etching rate at various pressures and ion energies, we show that at low pressure and energy, carbon etching is due to chemical sputtering, while at high pressure and energy a reactive ion etching process is likely to dominate.

  3. Ultraviolet radiation induced discharge laser

    DOE Patents [OSTI]

    Gilson, Verle A. (Livermore, CA); Schriever, Richard L. (Livermore, CA); Shearer, James W. (Livermore, CA)

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  4. Soft x ray/extreme ultraviolet images of the solar atmosphere with normal incidence multilayer optics

    SciTech Connect (OSTI)

    Lindblom, J.F.

    1990-01-01

    The first high resolution Soft X-Ray/Extreme Ultraviolet (XUV) images of the Sun with normal incidence multilayer optics were obtained by the Standford/MSFC Rocket X-Ray Spectroheliograph on 23 Oct. 1987. Numerous images at selected wavelengths from 8 to 256 A were obtained simultaneously by the diverse array of telescopes flown on-board the experiment. These telescopes included single reflection normal incidence multilayer systems (Herschelian), double reflection multilayer systems (Cassegrain), a grazing incidence mirror system (Wolter-Schwarzschild), and hybrid systems using normal incidence multilayer optics in conjunction with the grazing incidence primary (Wolter-Cassegrain). Filters comprised of approximately 1700{Angstrom} thick aluminum supported on a nickel mesh were used to transmit the soft x ray/EUV radiation while preventing the intense visible light emission of the Sun from fogging the sensitive experimental T-grain photographic emulsions. These systems yielded high resolution soft x ray/EUV images of the solar corona and transition region, which reveal magnetically confined loops of hot solar plasma, coronal plumes, polar coronal holes, supergranulation, and features associated with overlying cool prominences. The development, testing, and operation of the experiments, and the results from the flight are described. The development of a second generation experiment, the Multi-Spectral Solar Telescope Array, which is scheduled to fly in the summer of 1990, and a recently approved Space Station experiment, the Ultra-High Resolution XUV Spectroheliograph, which is scheduled to fly in 1996 are also described.

  5. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    SciTech Connect (OSTI)

    Roy, Amitava E-mail: aroy@barc.gov.in; Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed; Endo, Akira; Mocek, Tomas

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064?nm, Nd:YAG laser pulses with varying pulse duration (5–15?ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ?0.5?T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ?5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ?1.2?cm/?s and reduced to ?0.75?cm/?s with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5?T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  6. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  7. Extreme Ultraviolet Imaging of Three-dimensional Magnetic Reconnection in a Solar Eruption

    E-Print Network [OSTI]

    Sun, J Q; Ding, M D; Guo, Y; Priest, E R; Parnell, C E; Edwards, S J; Zhang, J; Chen, P F; Fang, C

    2015-01-01

    Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult to observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions (3D) using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet (EUV) images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from $\\sim$1 to $\\ge$5 MK. Shortly afterwards, warm flare loops ($\\sim$3 MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magneti...

  8. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  9. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  10. Nodal photolithography : lithography via far-field optical nodes in the resist

    E-Print Network [OSTI]

    Winston, Donald, S.M. Massachusetts Institute of Technology

    2008-01-01

    In this thesis, I investigate one approach - stimulated emission depletion - to surmounting the diffraction limitation of optical lithography. This approach uses farfield optical nodes to orchestrate reversible, saturable ...

  11. Development of a microfluidic device for patterning multiple species by scanning probe lithography 

    E-Print Network [OSTI]

    Rivas Cardona, Juan Alberto

    2009-06-02

    Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on ...

  12. Structure and Stability of EUV Loops Originating from G. Peres and S. Orlando

    E-Print Network [OSTI]

    SOHO and the relevant data interpretation. Neither hydrostatic, nor siphon flow loop plasma models hydrostatic or ­ better ­ undergoing a siphon flow. These results may be evidence of dynamic conditions in EUV as the left panel for for the siphon flow loop model of Orlando et al. (1995), in critical conditions

  13. X-ray and EUV Observations of GOES C8 Solar Flare

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    X-ray and EUV Observations of GOES C8 Solar Flare Events Kathy Reeves1, Trevor Bowen1,2, Paola;Solar Flares Tuesday, February 19, 2013 #12;Solar Flares Tuesday, February 19, 2013 #12;Solar Dynamics Veronig et al, A&A, 2002 Tuesday, February 19, 2013 #12;Flare Timing GOESflux(Wm-2) Rise Decay Tuesday

  14. Plastic masters--rigid templates for soft lithography Salil P. Desai,a

    E-Print Network [OSTI]

    Voldman, Joel

    Plastic masters--rigid templates for soft lithography Salil P. Desai,a Dennis M. Freemanab and Joel plastic master molds for soft lithography directly from (poly)dimethysiloxane devices. Plastics masters without the need for cleanroom facilities. We have successfully demonstrated the use of plastics

  15. A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b,

    E-Print Network [OSTI]

    A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b, , Zhen He c microfluidic microbial fuel cell (MFC) platform built by soft-lithography tech- niques. The MFC design includes a unique sub-5 lL polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic

  16. Multilayer resist methods for nanoimprint lithography on nonflat surfaces Xiaoyun Sun, Lei Zhuang,a)

    E-Print Network [OSTI]

    American Vacuum Society. S0734-211X 98 10106-3 I. INTRODUCTION Nanoimprint lithography NIL , a new approach of modifying the resist's chemical properties with radiation as in conventional lithography.1 NIL has issue for NIL to become a major li- thography tool is to imprint on nonflat surfaces. This article

  17. Quantum lithography with classical light: Generation of arbitrary patterns 

    E-Print Network [OSTI]

    Sun, Qingqing; Hemmer, Philip R.; Zubairy, M. Suhail

    2007-01-01

    stream_source_info PhysRevA.75.065803.pdf.txt stream_content_type text/plain stream_size 16287 Content-Encoding ISO-8859-1 stream_name PhysRevA.75.065803.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Quantum... alternative meth- ods based on classical fields ?9?11?. In Ref. ?12?, a novel approach was proposed to implement quantum lithography using the classical light. This is accom- plished by correlating wave vector and frequency in a narrow band multiphoton...

  18. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect (OSTI)

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup ?5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup ?4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  19. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect (OSTI)

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100?eV and 1000?eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  20. Ultraviolet Completion of Flavour Models

    E-Print Network [OSTI]

    Ivo de Medeiros Varzielas; Luca Merlo

    2010-11-30

    Effective Flavour Models do not address questions related to the nature of the fundamental renormalisable theory at high energies. We study the ultraviolet completion of Flavour Models, which in general has the advantage of improving the predictivity of the effective models. In order to illustrate the important features we provide minimal completions for two known A4 models. We discuss the phenomenological implications of the explicit completions, such as lepton flavour violating contributions that arise through the exchange of messenger fields.

  1. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  2. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  3. Vitreous carbon mask substrate for X-ray lithography

    DOE Patents [OSTI]

    Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  4. The development of a prototype Zone-Plate-Array Lithography (ZPAL) system

    E-Print Network [OSTI]

    Patel, Amil Ashok, 1979-

    2004-01-01

    The research presented in this paper aims to build a Zone-Plate-Array Lithography (ZPAL) prototype tool that will demonstrate the high-resolution, parallel patterning capabilities of the architecture. The experiment will ...

  5. Modeling the point-spread function in helium-ion lithography

    E-Print Network [OSTI]

    Winston, Donald

    We present here a hybrid approach to modeling helium-ion lithography that combines the power and ease-of-use of the Stopping and Range of Ions in Matter (SRIM) software with the results of recent work simulating secondary ...

  6. Resolution Limits of Electron-Beam Lithography toward the Atomic Scale

    E-Print Network [OSTI]

    Zhang, Lihua

    We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed ...

  7. Development of a simple, compact, low-cost interference lithography system

    E-Print Network [OSTI]

    Korre, Hasan

    Interference lithography (IL) has proven itself to be an enabling technology for nanofabrication. Within IL, issues of spatial phase distortion, fringe stability, and substrate development have been explored and addressed. ...

  8. Limiting factors in sub-10 nm scanning-electron-beam lithography

    E-Print Network [OSTI]

    Berggren, Karl K.

    Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications [ F. S. Bates and G. ...

  9. Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography

    E-Print Network [OSTI]

    Berggren, Karl K.

    The authors, demonstrated that 4.5-nm-half-pitch structures could be achieved using electron-beam lithography, followed by salty development. They also hypothesized a development mechanism for hydrogen silsesquioxane, ...

  10. Large area high density quantized magnetic disks fabricated using nanoimprint lithography

    E-Print Network [OSTI]

    for fabricating large area quantized magnetic disks QMDs using nanoimprint lithography NIL , electroplating or a via array. The other is that for high resolution an antireflection coating ARC layer is needed, which

  11. Contact region fidelity, sensitivity, and control in roll-based soft lithography

    E-Print Network [OSTI]

    Petrzelka, Joseph E

    2012-01-01

    Soft lithography is a printing process that uses small features on an elastomeric stamp to transfer micron and sub-micron patterns to a substrate. Translating this lab scale process to a roll-based manufacturing platform ...

  12. Nanometer-precision electron-beam lithography with applications in integrated optics

    E-Print Network [OSTI]

    Hastings, Jeffrey Todd, 1975-

    2003-01-01

    Scanning electron-beam lithography (SEBL) provides sub-10-nm resolution and arbitrary-pattern generation; however, SEBL's pattern-placement accuracy remains inadequate for future integrated-circuits and integrated-optical ...

  13. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOE Patents [OSTI]

    Brueck, Steven R.J. (Albuquerque, NM); Chen, Xiaolan (Albuquerque, NM); Zaidi, Saleem (Albuquerque, NM); Devine, Daniel J. (Los Gatos, CA)

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  14. Statistical investigation of the saturation effect in the ionospheric foF2 versus sunspot, solar radio noise, and solar EUV radiation

    E-Print Network [OSTI]

    Chen, Yuh-Ing

    Statistical investigation of the saturation effect in the ionospheric foF2 versus sunspot, solar radio noise, and solar EUV radiation J. Y. Liu Institute of Space Science and Center for Space in the ionospheric foF2 due to sunspot number R, solar radio noise (10.7 cm) flux F10.7, and solar EUV fluxes

  15. Stellar and laboratory XUV/EUV line ratios in Fe XVIII and Fe XIX

    SciTech Connect (OSTI)

    Traebert, E.; Beiersdorfer, P.; Clementson, J.

    2012-05-25

    A so-called XUV excess has been suspected with the relative fluxes of Fe XVIII and Fe XIX lines observed in the XUV and EUV ranges of the spectrum of the star Capella as observed by the Chandra spacecraft, even after correction for interstellar absorption. This excess becomes apparent in the comparison of the observations with simulations of stellar spectra obtained using collisional-radiative models that employ, for example, the Atomic Plasma Emission Code (APEC) or the Flexible Atomic Code (FAC). We have addressed this problem by laboratory studies using the Livermore electron beam ion trap (EBIT).

  16. Microgap ultra-violet detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  17. Microgap ultra-violet detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA)

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  18. EUV Non-thermal Line Broadening and High-energy particles during Solar Flares

    E-Print Network [OSTI]

    Kawate, Tomoko

    2013-01-01

    We have studied the relationship between the location of EUV nonthermal broadening and high-energy particles during the large flares by using EUV imaging spectrometer onboard {\\it Hinode}, Nobeyama Radio Polarimeter, Nobeyama Radioheliograph, and Atmospheric Imaging Assembly onboard {\\it Solar Dynamic Observatory}. We have analyzed the five large flare events which contain thermal rich, intermediate, and thermal poor flares classified by the definition discussed in the paper. We found that, in the case of thermal rich flares, the nonthermal broadening of \\ion{Fe}{24} occurred at the top of the flaring loop at the beginning of the flares. The source of the 17 GHz microwave is located at the footpoint of the flare loop. On the other hand, in the case of intermediate/thermal poor flares, the nonthermal broadening of \\ion{Fe}{24} occurred at the footpoint of the flare loop at the beginning of the flares. The source of the 17 GHz microwave is located at the top of the flaring loop. We discussed the difference betw...

  19. Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

  20. Fundamentals of embossing nanoimprint lithography in polymer substrates.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; King, William P.

    2011-02-01

    The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

  1. Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations

    SciTech Connect (OSTI)

    Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.

    2009-03-10

    MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negative photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 {mu}m thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.

  2. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  3. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, Judith Alison (Albuquerque, NM)

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  4. SECONDARY WAVES AND/OR THE 'REFLECTION' FROM AND 'TRANSMISSION' THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI

    SciTech Connect (OSTI)

    Olmedo, Oscar; Vourlidas, Angelos; Zhang Jie; Cheng Xin

    2012-09-10

    For the first time, the kinematic evolution of a coronal wave over the entire solar surface is studied. Full Sun maps can be made by combining images from the Solar Terrestrial Relations Observatory satellites, Ahead and Behind, and the Solar Dynamics Observatory, thanks to the wide angular separation between them. We study the propagation of a coronal wave, also known as the 'Extreme Ultraviolet Imaging Telescope' wave, and its interaction with a coronal hole (CH) resulting in secondary waves and/or reflection and transmission. We explore the possibility of the wave obeying the law of reflection. In a detailed example, we find that a loop arcade at the CH boundary cascades and oscillates as a result of the extreme ultraviolet (EUV) wave passage and triggers a wave directed eastward that appears to have reflected. We find that the speed of this wave decelerates to an asymptotic value, which is less than half of the primary EUV wave speed. Thanks to the full Sun coverage we are able to determine that part of the primary wave is transmitted through the CH. This is the first observation of its kind. The kinematic measurements of the reflected and transmitted wave tracks are consistent with a fast-mode magnetohydrodynamic wave interpretation. Eventually, all wave tracks decelerate and disappear at a distance. A possible scenario of the whole process is that the wave is initially driven by the expanding coronal mass ejection and subsequently decouples from the driver and then propagates at the local fast-mode speed.

  5. Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies

    E-Print Network [OSTI]

    Krchnavek, Robert R.

    Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam-dipole resonant filters by direct-write electron-beam and nanoimprint lithographies. Such structures have been-write electron electron- beam lithography DEBL . Since DEBL is based on expo- sure of the resist point by point

  6. An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About of Physics An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

  7. Using neutral metastable argon atoms and contamination lithography to form nanostructures in silicon, silicon dioxide, and gold

    E-Print Network [OSTI]

    Thywissen, Joseph

    Using neutral metastable argon atoms and contamination lithography to form nanostructures vapors present as dilute contaminants in the vacuum chamber, were used to create 80-nm features in Si, Si with similar contaminants present in a vacuum system to produce 8-nm features.1­3 This type of lithography

  8. Received 1 May 2013 | Accepted 26 Jul 2013 | Published 3 Sep 2013 Atomic layer lithography of wafer-scale

    E-Print Network [OSTI]

    Park, Namkyoo

    and high throughput. Here we introduce a new patterning technology based on atomic layer deposition lithography, combines atomic layer deposition (ALD) with `plug-and-peel' metal patterning using adhesive tapeARTICLE Received 1 May 2013 | Accepted 26 Jul 2013 | Published 3 Sep 2013 Atomic layer lithography

  9. 2496 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 11, NOVEMBER 2004 Soft Lithography Replica Molding of Critically

    E-Print Network [OSTI]

    Huang, Yanyi

    Molding of Critically Coupled Polymer Microring Resonators Joyce K. S. Poon, Student Member, IEEE, Yanyi lithography replica molding to fabricate unclad polystyrene (PS) and clad SU-8 microring resonator filters of the microring resonator filters show the practicality of soft-lithography replica molding for the fabrication

  10. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    SciTech Connect (OSTI)

    Heays, A. N.; Ajello, J. M.; Aguilar, A.; Lewis, B. R.; Gibson, S. T.

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}? {sub g} , b {sup 1}? {sub u} , and b'{sup 1}? {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}? {sub u} {sup +}, c{sub n} {sup 1}? {sub u} , and o{sub n} {sup 1}? {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  11. Soft X-ray Lithography Beamline at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Klysubun, P.; Chomnawang, N.; Songsiriritthigul, P.

    2007-01-19

    Construction of a soft x-ray lithography beamline utilizing synchrotron radiation generated by one of the bending magnets at the Siam Photon Laboratory is finished and the beamline is currently in a commissioning period. The beamline was modified from the existing monitoring beamline and is intended for soft x-ray lithographic processing and radiation biological research. The lithography exposure station with a compact one-dimensional scanning mechanism was constructed and assembled in-house. The front-end of the beamline has been modified to allow larger exposure area. The exposure station for studying radiation effects on biological samples will be set up in tandem with the lithography station, with a Mylar window for isolation. Several improvements to both the beamline and the exposure stations, such as improved scanning speed and the ability to adjust the exposure spectrum by means of low-Z filters, are planned and will be implemented in the near future.

  12. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    SciTech Connect (OSTI)

    Xu, Jia; Zhang, Ziang; Weng, Zhankun; Wang, Zuobin Wang, Dapeng

    2014-05-28

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  13. New EUV Fe IX emission line identifications from Hinode/EIS

    E-Print Network [OSTI]

    P. R. Young

    2008-10-28

    Four Fe IX transitions in the wavelength range 188--198 A are identified for the first time in spectra from the EUV Imaging Spectrometer on board the Hinode satellite. In particular the emission line at 197.86 A is unblended and close to the peak of the EIS sensitivity curve, making it a valuable diagnostic of plasma at around 800,000 K - a critical temperature for studying the interface between the corona and transition region. Theoretical ratios amongst the four lines predicted from the CHIANTI database reveal weak sensitivity to density and temperature with observed values consistent with theory. The ratio of 197.86 relative to the 171.07 resonance line of Fe IX is found to be an excellent temperature diagnostic, independent of density, and the derived temperature in the analysed data set is log T=5.95, close to the predicted temperature of maximum ionization of Fe IX.

  14. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    SciTech Connect (OSTI)

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  15. Center for X-Ray Optics, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  16. Critical dimension and pattern size enhancement using pre-strained lithography

    SciTech Connect (OSTI)

    Hong, Jian-Wei [Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Yang, Chung-Yuan [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Lo, Cheng-Yao, E-mail: chengyao@mx.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China)

    2014-10-13

    This paper proposes a non-wavelength-shortening-related critical dimension and pattern size reduction solution for the integrated circuit industry that entails generating strain on the substrate prior to lithography. Pattern size reduction of up to 49% was achieved regardless of shape, location, and size on the xy plane, and complete theoretical calculations and process steps are described in this paper. This technique can be applied to enhance pattern resolution by employing materials and process parameters already in use and, thus, to enhance the capability of outdated lithography facilities, enabling them to particularly support the manufacturing of flexible electronic devices with polymer substrates.

  17. Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-02

    Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

  18. Ultraviolet laser calibration of drift chambers

    E-Print Network [OSTI]

    Elliott, Grant (Grant Andrew)

    2006-01-01

    We demonstrate the use of a focused ultraviolet laser as a track calibration source in drift chambers, and specifically in a small time projection chamber (TPC). Drift chambers such as TPCs reconstruct the trajectories of ...

  19. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Bajt, Sasa (Livermore, CA)

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  20. Ultraviolet Behavior of N = 8 supergravity

    SciTech Connect (OSTI)

    Dixon, Lance J.

    2010-06-07

    In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.

  1. 5000 Groove/mm multilayer-coated blazed grating with 33% efficiency in the 3rd order in the EUV wavelength range

    E-Print Network [OSTI]

    Schattenburg, Mark Lee

    We report on recent progress in developing diffraction gratings which can potentially provide extremely high spectral resolution of 10[superscript 5]-10[superscript 6] in the EUV and soft x-ray photon energy ranges. Such ...

  2. Comparing Vacuum and Extreme Ultraviolet Radiation for Postionization of Laser Desorbed Neutrals from Bacterial Biofilms and Organic Fullerene

    E-Print Network [OSTI]

    Gaspera, Gerald L.

    2011-01-01

    Laboratory, USA Comparing Vacuum and Extreme Ultravioletradiation, extreme ultraviolet, vacuum ultravioletAbstract Vacuum and extreme ultraviolet radiation from 8 -

  3. Sub-5 keV electron-beam lithography in hydrogen silsesquioxane resist

    E-Print Network [OSTI]

    Manfrinato, Vitor R.

    We fabricated 9–30 nm half-pitch nested Ls and 13–15 nm half-pitch dot arrays, using 2 keV electron-beam lithography with hydrogen silsesquioxane (HSQ) as the resist. All structures with 15 nm half-pitch and above were ...

  4. Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography

    E-Print Network [OSTI]

    Parikh, Atul N.

    Pattern transfer of electron beam modified self-assembled monolayers for high-resolution electron beam lithography. Focused electron beams from 1 to 50 keV and scanning tunneling microscopy at 10 of electron beam damage on the monolayers and the subsequent etching reactions has been explored through x

  5. Microchannel molding: A soft lithography-inspired approach to micrometer-scale patterning

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Microchannel molding: A soft lithography-inspired approach to micrometer-scale patterning large amounts of shrinkage during drying, topographical distortions develop. In place of patterning the elastomeric mold, the network of capillary channels was patterned directly into the substrate surface

  6. Energy flow in light-coupling masks for lensless optical lithography

    E-Print Network [OSTI]

    Floreano, Dario

    Energy flow in light-coupling masks for lensless optical lithography Olivier J. F. Martin@zurich.ibm.com Abstract: We illustrate the propagation of light in a new type of coupling mask for lensless optical. Biebuck, B. Michel, O.J.F. Martin and N.B. Piller, "Light-coupling masks: an alternative, lensless

  7. Low-voltage spatial-phase-locked scanning-electron-beam lithography

    E-Print Network [OSTI]

    Cheong, Lin Lee

    2010-01-01

    Spatial-phase-locked electron-beam lithography (SPLEBL) is a method that tracks and corrects the position of an electron-beam in real-time by using a reference grid placed above the electron-beam resist. In this thesis, ...

  8. Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds

    E-Print Network [OSTI]

    Arnold, Craig B.

    ) The lithium ion battery, a preferred energy storage technology, is limited by its volumetric and gravimetric. INTRODUCTION The lithium ion battery has become the energy storage me- dium of choice for almost allSilicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible

  9. Optimization Criteria for SRAM Design -Lithography Contribution Daniel C. Cole,b

    E-Print Network [OSTI]

    Cole, Dan C.

    Optimization Criteria for SRAM Design - Lithography Contribution Daniel C. Cole,b Orest Bula, to predict and "optimize" the printed shapes through all critical levels in a dense SRAM design. Our key emphasis here is on "optimization criteria," namely, having achieved good predictability for printability

  10. Heidelberg DWL66 Direct Write Lithography System Biomolecular Nanotechnology Center, UC Berkeley

    E-Print Network [OSTI]

    Healy, Kevin Edward

    Heidelberg DWL66 Direct Write Lithography System Biomolecular Nanotechnology Center, UC Berkeley Standard Operating Procedure Prepared By: Frankie Myers (fbm@berkeley.edu) Updated: July 30, 2010, Peter Ledochowitz) may use this machine. Qualification must include one supervised run. SAFETY WARNING

  11. Sub-10 nm imprint lithography and applications Stephen Y. Chou,a)

    E-Print Network [OSTI]

    imprint. Moreover, imprint lithography was used to fabricate the silicon quantum dot, wire, and ring to the ultrasmall force in tapping mode, both the nano-CD and the scanning probe will not show noticeable wear after-cost nanopatterning technology, particularly a nanolithography which allows complete free- dom in designing the size

  12. A novel lithography technique for formation of large areas of uniform nanostructures

    E-Print Network [OSTI]

    Shahriar, Selim

    such as plasmonics, sensors, storage devices, solar cells, nano-filtration and artificial kidneys require applications such as surface plasmonics[1] , data storage[2] , optoelectronic devices[3] , and nanoA novel lithography technique for formation of large areas of uniform nanostructures Wei Wu

  13. Room-temperature Si single-electron memory fabricated by nanoimprint lithography

    E-Print Network [OSTI]

    , Haixiong Ge, Christopher Keimel, and Stephen Y. Chou NanoStructure Laboratory, Department of Electrical using nanoimprint lithography NIL . The devices consist of a narrow channel metal­ oxide­semiconductor field-effect transistor and a sub-10-nm storage dot, which is located between the channel and the gate

  14. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    E-Print Network [OSTI]

    Ahmed, Musahid

    2008-01-01

    Physical Chemistry Vacuum-ultraviolet (VUV) photoionizationPhysical Chemistry Vacuum-ultraviolet (VUV) photoionizationwe report on the vacuum-ultraviolet (VUV) photoionization of

  15. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    E-Print Network [OSTI]

    Kostko, Oleg

    2008-01-01

    Vacuum-ultraviolet (VUV) photoionization of small methanolwe report on the vacuum-ultraviolet (VUV) photoionization ofionization with tunable vacuum- ultraviolet synchrotron

  16. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions

    E-Print Network [OSTI]

    Konkola, Paul Thomas, 1973-

    2003-01-01

    This thesis describes the design and analysis of a system for patterning large-area gratings with nanometer level phase distortions. The novel patterning method, termed scanning beam interference lithography (SBIL), uses ...

  17. Sub-10-nm half-pitch electron-beam lithography by using poly(methyl methacrylate) as a negative resist

    E-Print Network [OSTI]

    Berggren, Karl K.

    Developing high-resolution resists and processes for electron-beam lithography is of great importance for high-density magnetic storage, integrated circuits, and nanoelectronic and nanophotonic devices. Until now, hydrogen ...

  18. Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng, Duoming Wang, Dongxia Shi,

    E-Print Network [OSTI]

    Zhang, Guangyu

    Graphene Edge Lithography Guibai Xie, Zhiwen Shi, Rong Yang, Donghua Liu, Wei Yang, Meng Cheng: Fabrication of graphene nanostructures is of importance for both investigating their intrinsic physical approach for graphene nanostructures. Compared with conventional lithographic fabrication techniques

  19. FIRST SDO AIA OBSERVATIONS OF A GLOBAL CORONAL EUV 'WAVE': MULTIPLE COMPONENTS AND 'RIPPLES'

    SciTech Connect (OSTI)

    Liu Wei; Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, Department ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2010-11-01

    We present the first Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) observations of a global coronal EUV disturbance (so-called 'EIT wave') revealed in unprecedented detail. The disturbance observed on 2010 April 8 exhibits two components: one diffuse pulse superimposed, on which are multiple sharp fronts that have slow and fast components. The disturbance originates in front of erupting coronal loops and some sharp fronts undergo accelerations, both effects implying that the disturbance is driven by a coronal mass ejection. The diffuse pulse, propagating at a uniform velocity of 204-238 km s{sup -1} with very little angular dependence within its extent in the south, maintains its coherence and stable profile for {approx}30 minutes. Its arrival at increasing distances coincides with the onsets of loop expansions and the slow sharp front. The fast sharp front overtakes the slow front, producing multiple 'ripples' and steepening the local pulse, and both fronts propagate independently afterward. This behavior resembles the nature of real waves. Unexpectedly, the amplitude and FWHM of the diffuse pulse decrease linearly with distance. A hybrid model, combining both wave and non-wave components, can explain many, but not all, of the observations. Discoveries of the two-component fronts and multiple ripples were made possible for the first time thanks to AIA's high cadences ({<=}20 s) and high signal-to-noise ratio.

  20. Ultraviolet-light-induced transformation of human primary cells

    SciTech Connect (OSTI)

    Sutherland, B.M.

    1981-01-01

    The development of model systems for probing the ultraviolet radiation induced oncogenic transformation of human skin cells is described. (ACR)

  1. Ultraviolet emissions from Gd3 + ions excited by energy transfer

    E-Print Network [OSTI]

    Cao, Wenwu

    Ultraviolet emissions from Gd3 + ions excited by energy transfer from Ho3 + ions Ying Yu October 2010 Accepted 28 October 2010 Available online 4 November 2010 Keywords: Ultraviolet emission Upconversion Energy transfer a b s t r a c t Ultraviolet (UV) upconversion (UC) emissions of Gd3+ ion were

  2. Microwave-driven ultraviolet light sources

    DOE Patents [OSTI]

    Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA)

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  3. ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Mendez-Torres, A.; Torres, R.; Lam, P.

    2011-07-15

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  4. ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Torres, R.; Mendez-Torres, A.; Lam, P.

    2011-06-09

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  5. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    SciTech Connect (OSTI)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Nigro, G.

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  6. The influence of coronal EUV irradiance on the emission in the He I 10830 A and D3 multiplets

    E-Print Network [OSTI]

    R. Centeno; J. Trujillo Bueno; H. Uitenbroek; M. Collados

    2007-12-13

    Two of the most attractive spectral windows for spectropolarimetric investigations of the physical properties of the plasma structures in the solar chromosphere and corona are the ones provided by the spectral lines of the He I 10830 A and 5876 A (or D3) multiplets, whose polarization signals are sensitive to the Hanle and Zeeman effects. However, in order to be able to carry out reliable diagnostics, it is crucial to have a good physical understanding of the sensitivity of the observed spectral line radiation to the various competing driving mechanisms. Here we report a series of off-the-limb non-LTE calculations of the He I D3 and 10830 A emission profiles, focusing our investigation on their sensitivity to the EUV coronal irradiation and the model atmosphere used in the calculations. We show in particular that the intensity ratio of the blue to the red components in the emission profiles of the He I 10830 A multiplet turns out to be a good candidate as a diagnostic tool for the coronal irradiance. Measurements of this observable as a function of the distance to the limb and its confrontation with radiative transfer modeling might give us valuable information on the physical properties of the solar atmosphere and on the amount of EUV radiation at relevant wavelengths penetrating the chromosphere from above.

  7. Space-resolved extreme ultraviolet spectroscopy free of high-energy neutral particle noise in wavelength range of 10–130 Å on the large helical device

    SciTech Connect (OSTI)

    Huang, Xianli; Morita, Shigeru; Oishi, Tetsutarou; Goto, Motoshi; National Institute for Fusion Science, Toki 509-5292 Gifu ; Dong, Chunfeng

    2014-04-15

    A flat-field space-resolved extreme ultraviolet (EUV) spectrometer system working in wavelength range of 10–130 Å has been constructed in the Large Helical Device (LHD) for profile measurements of bremsstrahlung continuum and line emissions of heavy impurities in the central column of plasmas, which are aimed at studies on Z{sub eff} and impurity transport, respectively. Until now, a large amount of spike noise caused by neutral particles with high energies (?180 keV) originating in neutral beam injection has been observed in EUV spectroscopy on LHD. The new system has been developed with an aim to delete such a spike noise from the signal by installing a thin filter which can block the high-energy neutral particles entering the EUV spectrometer. Three filters of 11 ?m thick beryllium (Be), 3.3 ?m thick polypropylene (PP), and 0.5 ?m thick polyethylene terephthalate (PET: polyester) have been examined to eliminate the spike noise. Although the 11 ?m Be and 3.3 ?m PP filters can fully delete the spike noise in wavelength range of ? ? 20 Å, the signal intensity is also reduced. The 0.5 ?m PET filter, on the other hand, can maintain sufficient signal intensity for the measurement and the spike noise remained in the signal is acceptable. As a result, the bremsstrahlung profile is successfully measured without noise at 20 Å even in low-density discharges, e.g., 2.9 × 10{sup 13} cm{sup ?3}, when the 0.5 ?m PET filter is used. The iron n = 3–2 L? transition array consisting of FeXVII to FeXXIV is also excellently observed with their radial profiles in wavelength range of 10–18 Å. Each transition in the L? array can be accurately identified with its radial profile. As a typical example of the method a spectral line at 17.62 Å is identified as FeXVIII transition. Results on absolute intensity calibration of the spectrometer system, pulse height and noise count analyses of the spike noise between holographic and ruled gratings and wavelength response of the used filters are also presented with performance of the present spectrometer system.

  8. Ice-assisted electron beam lithography of graphene This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Ice-assisted electron beam lithography of graphene This article has been downloaded from IOPscience-assisted electron beam lithography of graphene Jules A Gardener1 and J A Golovchenko1,2 1 Department of Physics demonstrate that a low energy focused electron beam can locally pattern graphene coated with a thin ice layer

  9. Decomposition of catechol and carbonaceous residues on TiO2,,110...: A model system for cleaning of extreme ultraviolet lithography optics

    E-Print Network [OSTI]

    Diebold, Ulrike

    oxidize and/or become contaminated with residual carbon, which significantly low- ers the mirror electron yield and rapid contamination of the reflective optics. In prototype mir- ror systems, the deposits are predominantly composed of car- bon and hydrogen with oxygen as a minority species.2,3 Capping

  10. Tungsten spectroscopy in the EUV observed in SH-HtscEBIT

    E-Print Network [OSTI]

    Li, Wenxian; Yang, Yang; Xiao, Jun; Brage, Tomas; Hutton, Roger; Zou, Yaming

    2015-01-01

    We have recorded extreme ultraviolet spectra from $\\mathrm{W^{11+}}$ to $\\mathrm{W^{15+}}$ ions using a new flat field spectrometer installed at the Shanghai high temperature superconducting electron beam ion trap. The spectra were recorded at beam energies ranging between 200 eV and 400 eV and showed spectral lines/transition arrays in the 170 - 260 \\AA{} region. The charge states and spectra transitions were identified by comparison with calculations using a detailed relativistic configuration interaction method and collisional-radiative model, both incorporated in the Flexible Atomic Code. Atomic structure calculations showed that the dominant emission arises from $5d$ $\\rightarrow$ $5p$ and $5p$ $\\rightarrow$ $5s$ transitions. The work also identified the ground-state configuration of $W^{13+}$ as $4f^{13}5s^2$, in contrast to earlier identifications.

  11. Tri-material multilayer coatings with high reflectivity and wide bandwidth for 25 to 50 nm extreme ultraviolet light

    E-Print Network [OSTI]

    Aquila, Andrew

    2010-01-01

    and testing ofEUV multilayer coatings for the AtmosphericTri-material multilayer coatings with high reflectivity andthe bandwidth of multilayer coatings. The simplest method to

  12. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    E-Print Network [OSTI]

    Aquila, Andrew Lee

    2009-01-01

    Dispersion . . . . . . . . . . . . . 2.2.3 Optics for Pulse4.3.2 Optic Development . . . . . . . . .of EUV Multilayer Optics . . . . . 3.1.1 The Necessity of

  13. Facile electron-beam lithography technique for irregular and fragile substrates

    SciTech Connect (OSTI)

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex, E-mail: azettl@berkeley.edu [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720 (United States)

    2014-10-27

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.

  14. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOE Patents [OSTI]

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  15. A reflective optical transport system for ultraviolet Thomson...

    Office of Scientific and Technical Information (OSTI)

    A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA Citation Details In-Document Search Title: A reflective optical...

  16. Vacuum-ultraviolet photoreduction of graphene oxide: Electrical...

    Office of Scientific and Technical Information (OSTI)

    Vacuum-ultraviolet photoreduction of graphene oxide: Electrical conductivity of entirely reduced single sheets and reduced micro line patterns Citation Details In-Document Search...

  17. Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET...

    Office of Scientific and Technical Information (OSTI)

    Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION Citation Details In-Document Search Title:...

  18. QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA

    SciTech Connect (OSTI)

    Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.; Ofman, Leon

    2012-07-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  19. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect (OSTI)

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  20. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of methylcyclohexane in the supersonic jet

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of methylcyclohexane t Vacuum ultraviolet (VUV) mass-analyzed threshold ionization (MATI) spectrum of supersonically cooled the vacuum ultraviolet (VUV) laser source is particu- larly useful for molecular systems with no stable

  1. THORIUM-BASED MIRRORS IN THE EXTREME ULTRAVIOLET Nicole Farnsworth

    E-Print Network [OSTI]

    Hart, Gus

    THORIUM-BASED MIRRORS IN THE EXTREME ULTRAVIOLET by Nicole Farnsworth Submitted to Brigham Young Ultraviolet and Thorium-based Mirrors . . . 1 1.2 Project Background the Optical Constants of Thorium Oxide 34 3.1 Reflectance and Transmittance Measurements

  2. Relationship between EUV microflares and small-scale magnetic fields in the quiet Sun

    E-Print Network [OSTI]

    Jiang, Fayu; Yang, Shuhong

    2015-01-01

    Microflares are small dynamic signatures observed in X-ray and extreme-ultraviolet channels. Because of their impulsive emission enhancements and wide distribution, they are thought to be closely related to coronal heating. By using the high resolution 171 {\\AA} images from the Atmospheric Imaging Assembly and the lines-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we trace 10794 microflares in a quiet region near the disk center with a field of view of 960 arcsec $\\times$ 1068 arcsec during 24 hr. The microflares have an occurrence rate of 4.4 $\\times$ 10$^{3}$ hr$^{-1}$ extrapolated over the whole Sun. Their average brightness, size, and lifetime are 1.7 I$_{0}$(of the quiet Sun), 9.6 Mm$^{2}$, and 3.6 min, respectively. There exists a mutual positive correlation between the microflares' brightness, area and lifetime. In general, the microflares distribute uniformly across the solar disk, but form network patterns locally, which are similar t...

  3. 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography

    E-Print Network [OSTI]

    Natelson, Douglas

    3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization online 16 March 2013 A B S T R A C T We present a method to develop single-wall carbon nanotube (SWCNT)/polymer-photon polymerization lithography, allows one to fabricate three-dimensional SWCNT/polymer composites with a minimum

  4. Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures

    E-Print Network [OSTI]

    Polymer sphere lithography for solid oxide fuel cells: a route to functional, well. Introduction Dramatic breakthroughs in the materials, particularly electrode materials, for solid oxide fuel cells (SOFCs) have been reported in recent years.1­3 Fundamental understanding of the electro- catalytic

  5. Feature filling modeling for step and flash imprint lithography Siddharth Chauhan, Frank Palmieri, Roger T. Bonnecaze,a

    E-Print Network [OSTI]

    : 10.1116/1.3147212 I. INTRODUCTION Step and flash imprint lithography SFIL is a low pres- sure molding technology of integrated circuits ICs , including high throughput and low defects, necessitate nearly perfect defect-free imprinting in SFIL. Complete filling of features during the imprint step is imperative

  6. Ultraviolet laser beam monitor using radiation responsive crystals

    DOE Patents [OSTI]

    McCann, Michael P. (Oliver Springs, TN); Chen, Chung H. (Knoxville, TN)

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  7. Dynamics of laser-produced Sn-based plasmas for a monochromatic 13.5 nm extreme ultraviolet source

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    EUV spectrum. It was shown that for CO2 laser most of the laser energy deposition is localized around to monochromatic 13.5 nm EUV emission can be expected. It was found that 0.5% Sn- doped foam targets show an almost

  8. Method for the fabrication of three-dimensional microstructures by deep X-ray lithography

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2005-04-05

    A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.

  9. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography.

    SciTech Connect (OSTI)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-08-13

    Soft x-ray lithography technology has been applied to fabrication of phase shifting Fresnel Zone Plate (FZP's) for hard x-rays. Effects of the exposure conditions, developing system, and electroplating process parameters on line width and aspect ratio have been analyzed. The process has been optimized and an aspect ratio of 11 has been achieved for 110 nm outermost zone width. SEM and AFM have been used for preliminary metrology of the FZPs. The FZP optical performance was characterized at 8 keV photon energy at the 2-ID-D beam line at the Advanced Photon Source. Focusing efficiencies of 23% for FZPs apertures to 100 microns and 18% for 150-micron-diameter apertures have been obtained. The parameters of the fabricated FZP are in good agreement with the predicted values.

  10. Study of nano imprinting using soft lithography on Krafty glue and PVDF polymer thin films

    SciTech Connect (OSTI)

    Sankar, M. S. Ravi, E-mail: rameshg.phy@pondiuni.edu; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu [Department of Physics, Pondicherry University, R. V. Nagar, Kalapet, Puducherry - 605014 (India)

    2014-04-24

    The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 ?m wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (?5) and PVDF (Polyvinylidene difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.

  11. Applications of free electron lasers and synchrotrons in industry...

    Office of Scientific and Technical Information (OSTI)

    in greater depth the potential applications to EUV lithography and to technologies for solar energy. Authors: Barletta, William A. 1 + Show Author Affiliations Dept. of...

  12. A direct-write thick-film lithography process for multi-parameter control of tooling in continuous roll-to-roll microcontact printing

    E-Print Network [OSTI]

    Nietner, Larissa F

    2014-01-01

    Roll-to-roll (R2R) microcontact printing ([mu]CP) aims to transform micron-precision soft lithography in a continuous, large-scale, high-throughput process for large-area surface patterning, flexible electronics and ...

  13. Laser Makes New Shade of Ultraviolet (COSMIC Log on MSNBC.com...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cosmiclog.nbcnews.comnews201012285725603-laser-makes-new-shade-of-ultraviolet Submitted: Wednesday, December 29...

  14. Coherent light scattering of ultraviolet light by avian feather barbs

    E-Print Network [OSTI]

    Prum, Richard O.; Andersson, Staffan; Torres, Rodolfo H.

    2003-04-05

    Ultraviolet (UV) structural colors of avian feathers are produced by the spongy medullary keratin of feather barbs, but various physical mechanisms have been hypothesized to produce those colors, including Rayleigh scattering, Mie scattering...

  15. Reduction of turkey hatching egg shell contamination with ultraviolet irradiation 

    E-Print Network [OSTI]

    Russo, Rebecca Ann

    2001-01-01

    The effects of ultraviolet light (UV) at 254 nm on indigenous eggshell surface aerobic bacteria, Salmonella, Escherichia coli, gram positive bacteria as well as inoculated Salmonella typhimurium chicken and E. coli O157:H7 were evaluated. Various...

  16. Subcutaneous and cutaneous melanins in Rhabdomys: complementary ultraviolet radiation shields

    E-Print Network [OSTI]

    Timm, Robert M.; Kermott, L. Henry

    1982-02-01

    We describe the pigmented tissue layer covering the skull of Rhabdomys pumilio and test the hypotheses that it is melanin and that it functions in absorption of ultraviolet solar radiation. The parietals were covered by a dark tissue layer...

  17. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect (OSTI)

    Shin, Joong-Won, E-mail: jshin@govst.edu [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States) [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States); Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ?}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  18. Intense ultraviolet perturbations on aquatic primary producers

    E-Print Network [OSTI]

    Guimarais, Mayrene; Horvath, Jorge

    2010-01-01

    During the last decade, the hypothesis that one or more biodiversity drops in the Phanerozoic eon, evident in the geological record, might have been caused by the most powerful kind of stellar explosion so far known (Gamma Ray Bursts) has been discussed in several works. These stellar explosions could have left an imprint in the biological evolution on Earth and in other habitable planets. In this work we calculate the short-term lethality that a GRB would produce in the aquatic primary producers on Earth. This effect on life appears as a result of ultraviolet (UV) re-transmission in the atmosphere of a fraction of the gamma energy, resulting in an intense UV flash capable of penetrating ~ tens of meters in the water column in the ocean. We focus on the action of the UV flash on phytoplankton, as they are the main contributors to global aquatic primary productivity. Our results suggest that the UV flash could cause an hemispheric reduction of phytoplankton biomass in the upper mixed layer of the World Ocean o...

  19. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    SciTech Connect (OSTI)

    Jiang, Ximan

    2006-05-18

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3{delta} CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.

  20. Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio

    E-Print Network [OSTI]

    Cunningham, Brian

    in a Si/SiO2/poly methyl- methacrylate substrate by electron-beam lithography and etched into the discovery,1 environmental detection, medical diagnostics, and life science research.2 Traditional labeled

  1. Excitation of an Outflow From the Lower Solar Atmosphere and a Co-Temporal EUV Transient Brightening

    E-Print Network [OSTI]

    Nelson, C J

    2013-01-01

    We analyse an absorption event within the H$\\alpha$ line wings, identified as a surge, and the co-spatial evolution of an EUV brightening, with spatial and temporal scales analogous to a small blinker. We conduct a multi-wavelength, multi-instrument analysis using high-cadence, high-resolution data, collected by the Interferometric BIdimensional Spectrometer on the Dunn Solar Telescope, as well as the space-borne Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager instruments onboard the Solar Dynamics Observatory. One large absorption event situated within the plage region trailing the lead sunspot of AR 11579 is identified within the H-alpha line wings. This event is found to be co-spatially linked to a medium-scale (around 4 arcseconds in diameter) brightening within the transition region and corona. This ejection appears to have a parabolic evolution, first forming in the H-alpha blue wing before fading and reappearing in the H-alpha red wing, and comprises of a number of smaller fibril even...

  2. Contribution of Velocity Vortices and Fast Shock Reflection and Refraction to the Formation of EUV Waves in Solar Eruptions

    E-Print Network [OSTI]

    Wang, Hongjuan; Gong, Jiancun; Wu, Ning; Lin, Jun

    2015-01-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock forward of the rope, which then produces the type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast s...

  3. Initiation and early evolution of the Coronal Mass Ejection on May 13, 2009 from EUV and white-light observations

    E-Print Network [OSTI]

    Reva, Anton; Bogachev, Sergey; Kuzin, Sergey

    2015-01-01

    We present the results of the observations of a coronal mass ejection (CME), which occurred on May 13, 2009. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii ($R_\\odot$). Below 2 $R_\\odot$, we used the data from the TESIS EUV telescopes obtained in the Fe 171 A and He 304 A lines, and above 2 $R_\\odot$, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5 $R_\\odot$from the Sun's surface as a U-shaped structure, which was observed both in the 171 A images and in white-light. Observations in the He 304 A line showed that the CME was associated with an erupting prominence, which was located not above-as predicts the standard model-but in the lowest part of the U-shaped structure close to the magnetic X-point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was ...

  4. Enhanced Ultraviolet Cancellations in N = 5 Supergravity at Four Loop

    E-Print Network [OSTI]

    Zvi Bern; Scott Davies; Tristan Dennen

    2014-09-09

    We show that the four-loop four-point amplitudes of N = 5 supergravity are ultraviolet finite in four dimensions, contrary to expectations based on supersymmetry and duality-symmetry arguments. We explain why the diagrams of any covariant local formalism cannot manifestly exhibit the necessary cancellations for finiteness but instead require a new type of nontrivial ultraviolet cancellation that we call "enhanced cancellations". We also show that the three-loop four-point amplitudes in N = 4 and N = 5 supergravity theories display enhanced cancellations. To construct the loop integrand, we use the duality between color and kinematics. We apply standard methods for extracting ultraviolet divergences in conjunction with the FIRE5 integral reduction program to arrive at the four-loop results.

  5. High reflectance-low stress Mo-Si multilayer reflective coatings

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Mirkarimi, Paul B. (Sunol, CA)

    2000-01-01

    A high reflectance-low stress Mo-Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  6. Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Mirkarimi, Paul B. (Sunol, CA)

    2001-01-01

    A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  7. Note on ultraviolet renormalization and ground state energy of the Nelson model

    E-Print Network [OSTI]

    Fumio Hiroshima

    2015-07-19

    Ultraviolet (UV) renormalization of the Nelson model in quantum field theory is considered. A relationship between a ultraviolet renormalization term and the ground state energy of the Hamiltonian with total momentum zero is studied by functional integrations.

  8. Time dependent changes in extreme ultraviolet reflectivity of Ru mirrors from electron-induced surface chemistry

    E-Print Network [OSTI]

    Harilal, S. S.

    dissociation of residual hydrocarbons plays a dominant role in the presence of additional PEs, and thus reduces degradation.2 In fact, radiation induced carbon contamination and surface oxidation have been shown to drive that the adsorption and subsequent EUV-induced dissociation of water molecules on Ru surface affect mirror performance

  9. Efficient laser-produced plasma extreme ultraviolet sources using grooved Sn targets

    E-Print Network [OSTI]

    Harilal, S. S.

    is to have a reliable, clean, and powerful light source at a wavelength near 13.5 nm. A laser-produced plasma A suitable LPP source will require a high conversion efficiency CE of the incident laser pulse energy to EUV-band CE is imperative, as this reduces the costs of production and own- ership for EUVL light source

  10. UBIQUITOUS ROTATING NETWORK MAGNETIC FIELDS AND EXTREME-ULTRAVIOLET CYCLONES IN THE QUIET SUN

    SciTech Connect (OSTI)

    Zhang Jun; Liu Yang E-mail: yliu@sun.stanford.edu

    2011-11-01

    We present Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) observations of EUV cyclones in the quiet Sun. These cyclones are rooted in the rotating network magnetic fields (RNFs). Such cyclones can last several to more than 10 hr and, at the later phase, they are found to be associated with EUV brightenings (microflares) and even EUV waves. SDO Helioseismic and Magnetic Imager (HMI) observations show a ubiquitous presence of RNFs. Using HMI line-of-sight magnetograms on 2010 July 8, we find 388 RNFs in an area of 800 x 980 arcsec{sup 2} near the disk center where no active region is present. The sense of rotation shows a weak hemisphere preference. The unsigned magnetic flux of the RNFs is about 4.0 x 10{sup 21} Mx, or 78% of the total network flux. These observational phenomena at small scale reported in this Letter are consistent with those at large scale in active regions. The ubiquitous RNFs and EUV cyclones over the quiet Sun may suggest an effective way to heat the corona.

  11. Near-normal-incidence extreme-ultraviolet efficiency of a flat crystalline anisotropically etched blazed grating

    E-Print Network [OSTI]

    designs for high- resolution EUV spectroscopy in astrophysics where high efficiency in high orders produce more scattered light. Second, deviations in the groove profile from an ideal shape cause power.kowalski@nrl.navy.mil) is with the U.S. Naval Research Laboratory, Code 7655.3, 4555 Overlook Avenue, SW, Washington, D.C. 20375. R. K

  12. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data, J. A. (2012) Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study Access Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data

  13. Key issues of ultraviolet radiation of OH at high altitudes

    SciTech Connect (OSTI)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}?{sup +}?X{sup 2}? ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  14. THE LOCAL INTERSTELLAR ULTRAVIOLET RADIATION FIELD Richard Conn Henry1

    E-Print Network [OSTI]

    THE LOCAL INTERSTELLAR ULTRAVIOLET RADIATION FIELD Richard Conn Henry1 Center for Astrophysical 21218; henry@jhu.edu Received 2001 July 20; accepted 2002 January 16 ABSTRACT I have used the Hipparcos of the interstellar extinction, to create a model of the expected intensity and spectral dis- tribution of the local

  15. Demonstration of electronic pattern switching and 10x pattern demagnification in a maskless micro-ion beam reduction lithography system

    SciTech Connect (OSTI)

    Ngo, V.V.; Akker, B.; Leung, K.N.; Noh, I.; Scott, K.L.; Wilde, S.

    2002-05-31

    A proof-of-principle ion projection lithography (IPL) system called Maskless Micro-ion beam Reduction Lithography (MMRL) has been developed and tested at the Lawrence Berkeley National Laboratory (LBNL) for future integrated circuits (ICs) manufacturing and thin film media patterning [1]. This MMRL system is aimed at completely eliminating the first stage of the conventional IPL system [2] that contains the complicated beam optics design in front of the stencil mask and the mask itself. It consists of a multicusp RF plasma generator, a multi-beamlet pattern generator, and an all-electrostatic ion optical column. Results from ion beam exposures on PMMA and Shipley UVII-HS resists using 75 keV H+ are presented in this paper. Proof-of-principle electronic pattern switching together with 10x reduction ion optics (using a pattern generator made of nine 50-{micro}m switchable apertures) has been performed and is reported in this paper. In addition, the fabrication of a micro-fabricated pattern generator [3] on an SOI membrane is also presented.

  16. Sub-50 nm scratch-proof DLC molds for reversal nanoimprint lithography L. Tao, C. T. Nelson, K. Trivedi, S. Ramachandran, M. Goeckner, L. Overzet, and Walter Hua)

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    Sub-50 nm scratch-proof DLC molds for reversal nanoimprint lithography L. Tao, C. T. Nelson, K of the industry is related to the mold life time that significantly affects cost of ownership and manufacturing reproducibility. Nowadays, most often used Si or glass molds that are very expensive can be damaged after certain

  17. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  18. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    E-Print Network [OSTI]

    Chou, Bo-Tsun; Wu, Yen-Mo; Chung, Yi-Chen; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2015-01-01

    Plasmonic devices have advanced significantly in the past decade. Being one of the most intriguing devices, plamonic nanolasers plays an important role in biomedicine, chemical sensor, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly in ultraviolet regime, are extremely sensitive to metal and interface quality, which renders the development of ultraviolet plasmonics. Here, by addressing the material issues, we demonstrate a low threshold, high characteristic temperature metal-oxide-semiconductor ZnO nanolaser working at room temperature. The template for ZnO nanowires consists of a flat single-crystalline aluminum film grown by molecular beam epitaxy and an ultra-smooth Al2O3 spacer layer prepared by atomic layer deposition. By effectively reducing surface plasmon scattering loss and metal intrinsic absorption loss, the high-quality metal film and sharp interfaces between layers boost the device performance. Our work paves the way for future applicati...

  19. PULSE: The Palomar Ultraviolet Laser for the Study of Exoplanets

    E-Print Network [OSTI]

    Baranec, Christoph; Burruss, Rick S; Bowler, Brendan P; van Dam, Marcos; Riddle, Reed; Shelton, J Christopher; Truong, Tuan; Roberts, Jennifer; Milburn, Jennifer; Tesch, Jonathan

    2014-01-01

    The Palomar Ultraviolet Laser for the Study of Exoplanets (PULSE) will dramatically expand the science reach of PALM-3000, the facility high-contrast extreme adaptive optics system on the 5-meter Hale Telescope. By using an ultraviolet laser to measure the dominant high spatial and temporal order turbulence near the telescope aperture, one can increase the limiting natural guide star magnitude for exquisite correction from mV < 10 to mV < 16. Providing the highest near-infrared Strehl ratios from any large telescope laser adaptive optics system, PULSE uniquely enables spectroscopy of low-mass and more distant young exoplanet systems, essential to formulating a complete picture of exoplanet populations.

  20. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  1. Amplitudes and Ultraviolet Behavior of N = 8 Supergravity

    SciTech Connect (OSTI)

    Bern, Zvi; Carrasco, John Joseph; Dixon, Lance J.; Johansson, Henrik; Roiban, Radu; /Penn State U.

    2011-05-20

    In this contribution we describe computational tools that permit the evaluation of multi-loop scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least four loops.

  2. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOE Patents [OSTI]

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  3. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, Scott (Albuquerue, NM); Walko, Robert J. (Albuquerue, NM); Ashley, Carol S. (Albuquerue, NM); Brinker, C. Jeffrey (Albuquerue, NM)

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  4. PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION

    SciTech Connect (OSTI)

    Landi, E.; Reale, F.

    2013-07-20

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  5. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    SciTech Connect (OSTI)

    Brown, Peter J., E-mail: pbrown@physics.tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States)

    2014-11-20

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10{sup 13} cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.

  6. Large-Amplitude Oscillation of an Erupting Filament as Seen in EUV, H-alpha and Microwave Observations

    E-Print Network [OSTI]

    H. Isobe; D. Tripathi; A. Asai; R. Jain

    2007-11-26

    We present multiwavelength observations of a large-amplitude oscillation of a polar crown filament on 15 October 2002. The oscillation occurred during the slow rise (about 1 km/s) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope onboard SOHO. The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The period of oscillation was about two hours and did not change significantly during the oscillation. We also identified the oscillation as a "winking filament" in the H-alpha images taken by the Flare Monitoring Telescope, and as a spatial displacement in 17 GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated.

  7. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    E-Print Network [OSTI]

    Ian B. Burgess; Joanna Aizenberg; Marko Loncar

    2012-11-29

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  8. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    E-Print Network [OSTI]

    Burgess, Ian B; Loncar, Marko

    2012-01-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  9. Sparkling extreme-ultraviolet bright dots observed with Hi-C

    SciTech Connect (OSTI)

    Régnier, S.; Alexander, C. E.; Walsh, R. W.; Winebarger, A. R.; Cirtain, J.; Golub, L.; Korreck, K. E.; Weber, M.; Mitchell, N.; Platt, S.; De Pontieu, B.; Title, A.; Kobayashi, K.; Kuzin, S.; DeForest, C. E.

    2014-04-01

    Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings 'sparkling' at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs have a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 10{sup 26} erg.

  10. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA)

    2002-01-01

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  11. The ultraviolet spectra of SO?¹? and SO?¹? near 2300 A 

    E-Print Network [OSTI]

    Kim, Sang Uk

    1966-01-01

    22 10 Isotope Shift of Bands in the 2300 S02 ~ 13 Vapor Pressure Curve of SO Correction Curve. A System of 24 33 INTRODUCTION SO has three absorption regions in the ultraviolet portion of its spectrum. They are located at 5900 ? 5400 A.... The emission spectrum lines of the iron arc were used as a 14 TABLE I CORRESPONDING PRESSURES AT DIFFERENT TEMPERATURES PLATL' NUMBER 3 Spectrograms Temperatures -100 C - 85'c - 70'0 - 65'c 50 C Pressures 22 mm 33 mm 43 mm 73 15 standard...

  12. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Quigley, Gerard P. (Los Alamos, NM)

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  13. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  14. Gamma Ray Burst Constraints on Ultraviolet Lorentz Invariance Violation

    E-Print Network [OSTI]

    Tina Kahniashvili; Grigol Gogoberidze; Bharat Ratra

    2006-10-20

    We present a unified general formalism for ultraviolet Lorentz invariance violation (LV) testing through electromagnetic wave propagation, based on both dispersion and rotation measure data. This allows for a direct comparison of the efficacy of different data to constrain LV. As an example we study the signature of LV on the rotation of the polarization plane of $\\gamma$-rays from gamma ray bursts in a LV model. Here $\\gamma$-ray polarization data can provide a strong constraint on LV, 13 orders of magnitude more restrictive than a potential constraint from the rotation of the cosmic microwave background polarization proposed by Gamboa, L\\'{o}pez-Sarri\\'{o}n, and Polychronakos (2006).

  15. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  16. ULTRAVIOLET NUMBER COUNTS OF GALAXIES FROM SWIFT ULTRAVIOLET/OPTICAL TELESCOPE DEEP IMAGING OF THE CHANDRA DEEP FIELD SOUTH

    SciTech Connect (OSTI)

    Hoversten, E. A.; Gronwall, C.; Koch, T. S.; Roming, P. W. A.; Siegel, M. H.; Berk, D. E. Vanden; Breeveld, A. A.; Curran, P. A.; Still, M.

    2009-11-10

    Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near-ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, and uvw1: 2600 A) and the u band (3645 A). UVOT observations cover the break in the slope of the NUV number counts with greater precision than the number counts by the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Galaxy Evolution Explorer, spanning a range 21 approx< m{sub AB} approx< 25. Model number counts confirm earlier investigations in favoring models with an evolving galaxy luminosity function.

  17. Ultraviolet Free Electron Laser Facility preliminary design report

    SciTech Connect (OSTI)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  18. Bipolar charging of dust particles under ultraviolet radiation

    SciTech Connect (OSTI)

    Filippov, A. V. Babichev, V. N.; Fortov, V. E.; Gavrikov, A. V.; Pal', A. F.; Petrov, O. F.; Starostin, A. N.; Sarkarov, N. E.

    2011-05-15

    The photoemission charging of dust particles under ultraviolet radiation from a xenon lamp has been investigated. The velocities of yttrium dust particles with a work function of 3.3 eV and their charges have been determined experimentally; the latter are about 400-500 and about 100 elementary charges per micron of radius for the positively and negatively charged fractions, respectively. The dust particle charging and the dust cloud evolution in a photoemission cell after exposure to an ultraviolet radiation source under the applied voltage have been simulated numerically. The photoemission charging of dust particles has been calculated on the basis of nonlocal and local charging models. Only unipolar particle charging is shown to take place in a system of polydisperse dust particles with the same photoemission efficiency. It has been established that bipolar charging is possible in the case of monodisperse particles with different quantum efficiencies. Polydispersity in this case facilitates the appearance of oppositely charged particles in a photoemission plasma.

  19. The far-ultraviolet spectra of "cool" PG1159 stars

    E-Print Network [OSTI]

    Werner, K; Kruk, J W

    2015-01-01

    We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 A) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range Teff = 75,000-200,000 K. As two representatives of the cooler objects, we have selected PG1707+427 (Teff = 85,000 K) and PG1424+535 (Teff = 110,000 K), complementing a previous study of the hotter prototype PG1159-035 (Teff = 140,000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C III-IV and O III-VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and ...

  20. Hopkins Ultraviolet Telescope Observations of Nova Circini 1995 and Nova Aquilae 1995

    E-Print Network [OSTI]

    Hopkins Ultraviolet Telescope Observations of Nova Circini 1995 and Nova Aquilae 1995 Bradford W 1995 and Nova Aql 1995 with the Hopkins Ultraviolet Telescope during the Astro­2 space shuttle mission in 1995 March. The spectra cover the wavelength range from 820 š A to 1840 š A with a spectral resolution

  1. Probing temporal evolution of extreme ultraviolet assisted contamination on Ru mirror by x-ray photoelectron spectroscopy

    E-Print Network [OSTI]

    Harilal, S. S.

    Lafayette, Indiana 47907 B. Rice SEMATECH Inc., Albany, New York 12203 (Received 7 October 2011; accepted 4 concentration in the first 1 h followed by a slow but linear growth in the presence of EUV radiation. Further from plasma source to the mask and then to target wafer.5 However, Mo/Si MLM shows a very poor chemical

  2. Multi-thermal representation of the kappa-distribution of solar flare electrons and application to simultaneous X-ray and EUV observations

    E-Print Network [OSTI]

    Battaglia, Marina; Kontar, Eduard P

    2015-01-01

    Acceleration of particles and plasma heating is one of the fundamental problems in solar flare physics. An accurate determination of the spectrum of flare energized electrons over a broad energy range is crucial for our understanding of aspects such as the acceleration mechanism and the total flare energy. Recent years have seen a growing interest in the kappa-distribution as representation of the total spectrum of flare accelerated electrons. In this work we present the kappa-distribution as a differential emission measure. This allows for inferring the electron distribution from X-ray observations and EUV observations by simultaneously fitting the proposed function to RHESSI and SDO/AIA data. This yields the spatially integrated electron spectra of a coronal source between less than 0.1 keV up to several tens of keV. The method is applied to a single-loop GOES C4.1 flare. The results show that the total energy can only be determined accurately by combining RHESSI and AIA observations. Simultaneously fitting...

  3. Monolithic pattern-sensitive detector

    DOE Patents [OSTI]

    Berger, Kurt W. (Livermore, CA)

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  4. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of p-, m-, and o-difluorobenzenes. Ionization energies

    E-Print Network [OSTI]

    Kim, Myung Soo

    Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of p-, m-, and o been measured by vacuum ultraviolet mass-analyzed threshold ionization VUV-MATI spectroscopy. From use of monochromatic and tunable vacuum ultraviolet radia- tion which is not routinely available

  5. Vacuum-ultraviolet mass-analyzed threshold ionization spectra of iodobutane isomers: Conformer-specific ionization and ion-core

    E-Print Network [OSTI]

    Kim, Myung Soo

    Vacuum-ultraviolet mass-analyzed threshold ionization spectra of iodobutane isomers: Conformer-analyzed threshold ionization MATI spectra using coherent vacuum ultraviolet radiation have been obtained for t-photon MATI spectroscopy using a vacuum-ultraviolet VUV laser source generated by four-wave mixing in Kr gas.8

  6. Chains of quantum dot molecules grown on Si surface pre-patterned by ion-assisted nanoimprint lithography

    SciTech Connect (OSTI)

    Smagina, Zh. V.; Stepina, N. P., E-mail: stepina@isp.nsc.ru; Zinovyev, V. A.; Kuchinskaya, P. A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Lavrenteva 13, 630090 Novosibirsk (Russian Federation); Novikov, P. L.; Dvurechenskii, A. V. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Lavrenteva 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation)

    2014-10-13

    An original approach based on the combination of nanoimprint lithography and ion irradiation through mask has been developed for fabrication of large-area periodical pattern on Si(100). Using the selective etching of regions amorphized by ion irradiation ordered structures with grooves and ridges were obtained. The shape and depth of the relief were governed by ion energy and by the number of etching stages as well. Laterally ordered chains of Ge quantum dots were fabricated by molecular beam epitaxy of Ge on the pre-patterned Si substrates. For small amount of Ge deposited chains contain separate quantum dot molecules. The increase of deposition amount leads to overlapping of quantum dot molecules with formation of dense homogeneous chains of quantum dots. It was shown that the residual irradiation-induced bulk defects underneath the grooves suppress nucleation of Ge islands at the bottom of grooves. On pre-patterned substrates with whole defect regions, etched quantum dots grow at the bottom of grooves. The observed location of Ge quantum dots is interpreted in terms of local strain-mediated surface chemical potential which controls the sites of islands nucleation. The local chemical potential is affected by additional strain formed by the residual defects. It was shown by molecular dynamics calculations that these defects form the compressive strain at the bottom of grooves.

  7. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    SciTech Connect (OSTI)

    Schunk, Peter Randall; King, William P. (Georgia Institute of Technology, Atlanta, GA); Sun, Amy Cha-Tien; Rowland, Harry D.

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measures polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.

  8. Integration of a 2D Periodic Nanopattern Into Thin Film Polycrystalline Silicon Solar Cells by Nanoimprint Lithography

    E-Print Network [OSTI]

    Abdo, Islam; Deckers, Jan; Depauw, Valérie; Tous, Loic; Van Gestel, Dries; Guindi, Rafik; Gordon, Ivan; Daif, Ounsi El

    2015-01-01

    The integration of two-dimensional (2D) periodic nanopattern defined by nanoimprint lithography and dry etching into aluminum induced crystallization (AIC) based polycrystalline silicon (Poly-Si) thin film solar cells is investigated experimentally. Compared to the unpatterned cell an increase of 6% in the light absorption has been achieved thanks to the nanopattern which, in turn, increased the short circuit current from 20.6 mA/cm2 to 23.8 mA/cm2. The efficiency, on the other hand, has limitedly increased from 6.4% to 6.7%. We show using the transfer length method (TLM) that the surface topography modification caused by the nanopattern has increased the sheet resistance of the antireflection coating (ARC) layer as well as the contact resistance between the ARC layer and the emitter front contacts. This, in turn, resulted in increased series resistance of the nanopatterned cell which has translated into a decreased fill factor, explaining the limited increase in efficiency.

  9. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect (OSTI)

    Yalin, Azer P., E-mail: ayalin@engr.colostate.edu; Dumitrache, Ciprian [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Wilvert, Nick [Sandia Laboratory, Albuquerque, New Mexico 87123 (United States); Joshi, Sachin [Cummins Inc., Columbus, Indiana 47201 (United States); Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266?nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064?nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ?10?ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  10. Paper II: Calibration of the Swift ultraviolet/optical telescope

    E-Print Network [OSTI]

    Breeveld, A A; Hoversten, E A; Koch, S; Landsman, W; Marshall, F E; Page, M J; Poole, T S; Roming, P; Smith, P J; Still, M; Yershov, V; Blustin, A J; Brown, P J; Gronwall, C; Holland, S T; Kuin, N P M; McGowan, K; Rosen, S; Boyd, P; Broos, P; Carter, M; Chester, M M; Hancock, B; Huckle, H; Immler, S; Ivanushkina, M; Kennedy, T; Mason, K O; Morgan, A N; Oates, S; de Pasquale, M; Schady, P; Siegel, M; Berk, D Vanden

    2010-01-01

    The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard the Swift observatory. The photometric calibration has been published, and this paper follows up with details on other aspects of the calibration including a measurement of the point spread function with an assessment of the orbital variation and the effect on photometry. A correction for large scale variations in sensitivity over the field of view is described, as well as a model of the coincidence loss which is used to assess the coincidence correction in extended regions. We have provided a correction for the detector distortion and measured the resulting internal astrometric accuracy of the UVOT, also giving the absolute accuracy with respect to the International Celestial Reference System. We have compiled statistics on the background count rates, and discuss the sources of the background, including instrumental scattered light. In each case we describe any impact on UVOT measurements, whether any correction is applied in the st...

  11. Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    E-Print Network [OSTI]

    Cao, Yi; Howell, D Andrew; Gal-Yam, Avishay; Kasliwal, Mansi M; Valenti, Stefano; Johansson, J; Amanullah, R; Goobar, A; Sollerman, J; Taddia, F; Horesh, Assaf; Sagiv, Ilan; Cenko, S Bradley; Nugent, Peter E; Arcavi, Iair; Surace, Jason; Wo?niak, P R; Moody, Daniela I; Rebbapragada, Umaa D; Bue, Brian D; Gehrels, Neil

    2015-01-01

    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.

  12. An Internet Database of Ultraviolet Lightcurves for Seyfert Galaxies

    E-Print Network [OSTI]

    Jay P. Dunn; Brian Jackson; Rajesh P. Deo; Chris Farrington; Varendra Das; D. Michael Crenshaw

    2006-03-29

    Using the Multimission Archives at Space Telescope (MAST), we have extracted spectra and determined continuum light curves for 175 Seyfert Galaxies that have been observed with the International Ultraviolet Explorer (IUE) and the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST). To obtain the light curves as a function of Julian Date, we used fix bins in the object's rest frame, and measured small regions (between 30 and 60 Angstroms) of each spectrum's continuum flux in the range 1150 Angstroms to 3200 Angstroms. We provide access to the UV light curves and other basic information about the observations in tabular and graphical form via the Internet at http://www.chara.gsu.edu/PEGA/IUE/.

  13. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect (OSTI)

    Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

    2009-06-03

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  14. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    DOE Patents [OSTI]

    Menoni, Carmen S. (Fort Collins, CO); Rocca, Jorge J. (Fort Collins, CO); Vaschenko, Georgiy (San Diego, CA); Bloom, Scott (Encinitas, CA); Anderson, Erik H. (El Cerrito, CA); Chao, Weilun (El Cerrito, CA); Hemberg, Oscar (Stockholm, SE)

    2011-04-26

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  15. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  16. Dual-domain lateral shearing interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2004-03-16

    The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.

  17. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

    E-Print Network [OSTI]

    Samutpraphoot, Polnop

    We present a simple method for narrowing the intrinsic Lorentzian linewidth of a commercial ultraviolet grating extended-cavity diode laser (TOPTICA DL Pro) using weak optical feedback from a long external cavity. We achieve ...

  18. Home ultraviolet light therapy for psoriasis: Why patients choose other options

    E-Print Network [OSTI]

    Dothard, Emily H.; Sandoval, Laura F.; Yentzer, Brad A.; Feldman, Steven R.

    2015-01-01

    of psoriasis [5]. A home light unit may therefore be theyou/your child for a home UV light device. I just need aboutFebruary 2015 Commentary Home ultraviolet light therapy for

  19. NEAR-ULTRAVIOLET PROPERTIES OF A LARGE SAMPLE OF TYPE Ia SUPERNOVAE...

    Office of Scientific and Technical Information (OSTI)

    SUPERNOVAE AS OBSERVED WITH THE Swift UVOT We present ultraviolet (UV) and optical photometry of 26 Type Ia supernovae (SNe Ia) observed from 2005 March to 2008 March with the...

  20. The far-ultraviolet UPS and downs of Alpha Centauri (Journal...

    Office of Scientific and Technical Information (OSTI)

    Centauri have yielded a detailed time history of far-ultraviolet (FUV: 1150-1700 ) emissions of the solarlike primary (A: G2 V) and the cooler but more active secondary (B: K1...

  1. MATING SYSTEM EVOLUTION, PLANT-POLLINATOR INTERACTIONS, AND FLORAL ULTRAVIOLET PATTERNING IN MIMULUS GUTTATUS

    E-Print Network [OSTI]

    Bodbyl-Roels, Sarah Ann

    2012-08-31

    speciation. In Chapter 4, I document within and among population variation in a cryptic floral trait, ultraviolet (UV) patterning. UV patterning is a visual stimulant for pollinators, but I found it in a selfing Mimulus species, suggesting that UV patterning...

  2. DETECTION OF NEUTRAL PHOSPHORUS IN THE NEAR-ULTRAVIOLET SPECTRA OF LATE-TYPE STARS

    E-Print Network [OSTI]

    Roederer, Ian U.

    We report the detection of several absorption lines of neutral phosphorus (P, Z = 15) in archival near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We ...

  3. Microbial Reduction on Eggshell Surfaces by the use of Hydrogen Peroxide and Ultraviolet Light 

    E-Print Network [OSTI]

    Gottselig, Steven Michael

    2011-10-21

    O2) in combination with ultraviolet light (UV) as an egg sanitization process on eggshell surfaces was studied. Preliminary experiments were conducted to develop an optimized methodology for eggshell disinfection that will be an effective...

  4. The development and application of a diode-laser-based ultraviolet absorption sensor for nitric oxide 

    E-Print Network [OSTI]

    Anderson, Thomas Nathan

    2004-09-30

    This thesis describes the development of a new type of sensor for nitric oxide (NO) that can be used in a variety of combustion diagnostics and control applications. The sensor utilizes the absorption of ultraviolet (UV) ...

  5. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOE Patents [OSTI]

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  6. Ultraviolet photodissociation of OCS: Product energy and angular distributions

    SciTech Connect (OSTI)

    McBane, G. C. [Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401 (United States); Schmidt, J. A.; Johnson, M. S. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Schinke, R. [Max-Planck-Institut fuer Dynamik und Selbstorganisation (MPIDS), D-37077 Goettingen (Germany)

    2013-03-07

    The ultraviolet photodissociation of carbonyl sulfide (OCS) was studied using three-dimensional potential energy surfaces and both quantum mechanical dynamics calculations and classical trajectory calculations including surface hopping. The transition dipole moment functions used in an earlier study [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 137, 054313 (2012)] were improved with more extensive treatment of excited electronic states. The new functions indicate a much larger contribution from the 1 {sup 1}A{sup Double-Prime} state ({sup 1}{Sigma}{sup -} in linear OCS) than was found in the previous work. The new transition dipole functions yield absorption spectra that agree with experimental data just as well as the earlier ones. The previously reported potential energy surfaces were also empirically modified in the region far from linearity. The resulting product state distributions P{sub v,j}, angular anisotropy parameters {beta}(j), and carbon monoxide rotational alignment parameters A{sub 0}{sup (2)}(j) agree reasonably well with the experimental results, while those computed from the earlier transition dipole and potential energy functions do not. The higher-j peak in the bimodal rotational distribution is shown to arise from nonadiabatic transitions from state 2 {sup 1}A{sup Prime} to the OCS ground state late in the dissociation.

  7. High photon flux table-top coherent extreme ultraviolet source

    E-Print Network [OSTI]

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  8. The Swift-UVOT ultraviolet and visible grism calibration

    E-Print Network [OSTI]

    Kuin, N P M; Breeveld, A A; Page, M J; James, C; Lamoureux, H; Mehdipour, M; Still, M; Yershov, V; Brown, P J; Carter, M; Mason, K O; Kennedy, T; Marshall, F; Roming, P W A; Siegel, M; Oates, S; Smith, P J; De Pasquale, M

    2015-01-01

    We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The...

  9. Probing the Role of Carbon in the Interstellar Ultraviolet Extinction

    E-Print Network [OSTI]

    Mishra, Ajay

    2015-01-01

    We probe the role of carbon in the ultraviolet (UV) extinction by examining the relations between the amount of carbon required to be locked up in dust [C/H]_dust with the 2175 Angstrom extinction bump and the far-UV extinction rise, based on an analysis of the extinction curves along 16 Galactic sightlines for which the gas-phase carbon abundance is known and the 2175 Angstrom extinction bump exhibits variable strengths and widths. We derive [C/H]_dust from the Kramers-Kronig relation which relates the wavelength-integrated extinction to the total dust volume. This approach is less model-dependent since it does not require the knowledge of the detailed optical properties and size distribution of the dust. We also derive [C/H]_dust from fitting the observed UV/optical/near-infrared extinction with a mixture of amorphous silicate and graphite. We find that the carbon depletion [C/H]_dust tends to correlate with the strength of the 2175 Angstrom bump, while the abundance of silicon depleted in dust shows no cor...

  10. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). V. Ultraviolet diffuse emission and cirrus properties in the Virgo cluster direction

    E-Print Network [OSTI]

    Boissier, S; Voyer, E; Bianchi, S; Pappalardo, C; Guhathakurta, P; Heinis, S; Cortese, L; Duc, P -A; Cuillandre, J -C; Davies, J I; Smith, M W L

    2015-01-01

    CONTEXT: The Virgo direction has been observed at many wavelengths in the recent years, in particular in the ultraviolet with GALEX. The far ultraviolet (FUV) diffuse light detected by GALEX bears interesting information on the large scale distribution of Galactic dust, owing to the GALEX FUV band sensitivity and resolution. AIMS: We aim to characterise the ultraviolet large scale distribution of diffuse emission in the Virgo direction. A map of this emission may become useful for various studies by identifying regions where dust affects observations by either scattering light or absorbing radiation. METHODS: We construct mosaics of the FUV and near ultraviolet diffuse emission over a large sky region (RA 12 to 13 hours, DEC 0 to 20 degrees) surrounding the Virgo cluster, using all the GALEX available data in the area. We test for the first time the utilisation of the FUV diffuse light as a Galactic extinction E(B-V) tracer. RESULTS: The FUV diffuse light scattered on cirrus reveals details in their geometry....

  11. Nanodiamond dust and the far-ultraviolet quasar break

    E-Print Network [OSTI]

    L. Binette; G. Magris C.; Y. Krongold; C. Morisset; S. Haro-Corzo; J. A. de Diego; H. Mutschke; A. C. Andersen

    2005-05-29

    We explore the possibility that the steepening observed shortward of 1000A in the energy distribution of quasars may result from absorption by dust, being either intrinsic to the quasar environment or intergalactic. We find that a dust extinction curve consisting of nanodiamonds, composed of terrestrial cubic diamonds or with surface impurities as found in carbonaceous chondrite meteorites, such as Allende, is successful in reproducing the sharp break observed. The intergalactic dust model is partially successful in explaining the shape of the composite energy distribution, but must be discarded in the end, as the amount of crystalline dust required is unreasonable and would imply an improbable fine tuning among the dust formation processes. The alternative intrinsic dust model requires a mixture of both cubic diamonds and Allende nanodiamonds and provide a better fit of the UV break. The gas column densities implied are of the order 10^{20} cm^{-2} assuming solar metallicity for carbon and full depletion of carbon into dust. The absorption only occurs in the ultraviolet and is totally negligible in the visible. The minimum dust mass required is of the order ~ 0.003 r_{pc}^{2}M_o, where r_{pc} is the distance in parsec between the dust screen and the continuum source. The intrinsic dust model reproduces the flux {\\it rise} observed around 660A in key quasar spectra quite well. We present indirect evidence of a shallow continuum break near 670A (18.5 eV), which would be intrinsic to the quasar continuum.

  12. The Near-Ultraviolet Continuum of Late-Type Stars

    E-Print Network [OSTI]

    Carlos Allende Prieto; David L. Lambert

    2000-01-28

    Analyses of the near-ultraviolet continuum of late-type stars have led to controversial results regarding the performance of state-of-the-art model atmospheres. The release of the homogeneous IUE final archive and the availability of the high-accuracy Hipparcos parallaxes provide an opportunity to revisit this issue, as accurate stellar distances make it possible to compare observed absolute fluxes with the predictions of model atmospheres. The near-UV continuum is highly sensitive to Teff and [Fe/H], and once the gravity is constrained from the parallax, these parameters may be derived from the analysis of low-dispersion "long-wavelength" (2000-3000 A) IUE spectra for stars previously studied by Alonso et al. (1996; A&AS 117, 227) using the Infrared Flux Method (IRFM). A second comparison is carried out against the stars spectroscopically investigated by Gratton et al. (1996; A&A 314, 191). It is shown that there is a good agreement between Teffs obtained from the IRFM and from the near-UV continuum, and a remarkable correspondence between observed and synthetic fluxes for stars with 4000 <= Teff <= 6000 K of any metallicity and gravity. These facts suggest that model atmospheres provide an adequate description of the near-UV continuum forming region and that the opacities involved are essentially understood. For cooler stars, the results of the IRFM are no longer reliable, as shown by Alonso et al., but the discrepancy noticed for stars hotter than 6000 K may reflect problems in the model atmospheres and/or the opacities at these higher temperatures.

  13. Therapy-resistant psoriasis treated with alefacept and subsequent narrow band ultraviolet B phototherapy with total clearing of psoriasis

    E-Print Network [OSTI]

    Scheinfeld, Noah

    2005-01-01

    and ultraviolet B light for treatment of psoriasis.Presented at: International Psoriasis Symposium. June 18-22;B light for treatment of psoriasis. Poster Presented at:

  14. Abstract: During a flare, the increase in solar flux at X-ray and EUV wavelengths causes an enhancement in electron densities in planetary ionospheres. Although it is known that relative changes in electron density during a flare are greater for lower alt

    E-Print Network [OSTI]

    Withers, Paul

    Abstract: During a flare, the increase in solar flux at X-ray and EUV wavelengths causes in electron density during a solar flare, based on analysis of 12 Mars Global Surveyor (MGS) radio occultation electron density profiles which have been affected by solar flares. We find that solar zenith angle also

  15. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, Glenn D. (124 Turquoise Way, Livermore, Alameda County, CA 94550); Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  16. Solvent Immersion Imprint Lithography

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  17. Membrane projection lithography

    SciTech Connect (OSTI)

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  18. Lithography Trouble-Shooter

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    , or alternative coating techniques such as spray coating, roller coating, or dip coating are possible work, roller coating, or dip coating are reasonable alternatives for spin coating. Please contact us and Comet-Like Structures After Spin Coating? Possible reasons and work- arounds are listed in the section

  19. Advances in Lithography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp &AdvancedAdvancedExamples

  20. Surface photoconductivity of organosilicate glass dielectrics induced by vacuum-ultraviolet radiation

    SciTech Connect (OSTI)

    Zheng, H.; Nichols, M. T.; Pei, D.; Shohet, J. L.; Nishi, Y.

    2013-08-14

    The temporary increase in the electrical surface conductivity of low-k organosilicate glass (SiCOH) during exposure to vacuum-ultraviolet radiation (VUV) is investigated. To measure the photoconductivity, patterned “comb structures” are deposited on dielectric films and exposed to synchrotron radiation in the range of 8–25 eV, which is in the energy range of most plasma vacuum-ultraviolet radiation. The change in photo surface conductivity induced by VUV radiation may be beneficial in limiting charging damage of dielectrics by depleting the plasma-deposited charge.

  1. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect (OSTI)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)] [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  2. Nanofabrication of super-high-aspect-ratio structures in hydrogen silsesquioxane from direct-write e-beam lithography and hot development.

    SciTech Connect (OSTI)

    Ocola, L. E.; Tirumala, V. R.; Center for Nanoscale Materials; NIST

    2008-11-01

    Super-high-aspect-ratio structures (>10) in hydrogen silsesquioxane resist using direct write electron beam lithography at 100 kV and hot development and rinse are reported. Posts of 100 nm in width and 1.2 {micro}m tall have been successfully fabricated without the need of supercritical drying. Hot rinse solution with isopropyl alcohol has been used to reduce surface tension effects during drying. Dose absorption effects have been observed and modeled using known Monte Carlo models. These results indicate that for e-beam exposures of thick negative resists (>1 {micro}m), the bottom of the structures will have less cross-link density and therefore will be less stiff than the top. These results will have impact in the design of high-aspect-ratio structures that can be used in microelectromechanical system devices and high-aspect-ratio Fresnel zone plates.

  3. Floriculture and Greenhouse Crops Utilization of ultraviolet-C (UV-C) irradiation on ornamental plants for disease

    E-Print Network [OSTI]

    Chen, Tsuhan

    Floriculture and Greenhouse Crops Utilization of ultraviolet-C (UV-C) irradiation on ornamental the effects of ultraviolet-C irradiation (UV-C) on commercially-valuable greenhouse ornamental plants UV lamps (Osram HNS OFR) have been suspended in the LIHREC greenhouses over greenhouse benches. Each

  4. Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX

    E-Print Network [OSTI]

    Asher, Sanford A.

    Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX Manash nitrate (NH4NO3), pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), nitroamine (HMX. The ultraviolet (UV) resonance Raman/differential Raman cross-sections of NH4NO3, PETN, TNT, HMX, and RDX

  5. Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors

    E-Print Network [OSTI]

    Rose, William I.

    Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed ultraviolet and infrared satellite sensors, Geochem. Geophys. Geosyst., 5, Q04001, doi:10.1029/ 2003GC000654

  6. Vacuum-ultraviolet ionization spectroscopy of the jet-cooled RNA-base Kyo-Won Choi, Joo-Hee Lee and Sang Kyu Kim*

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Vacuum-ultraviolet ionization spectroscopy of the jet-cooled RNA-base uracil Kyo-Won Choi, Joo accurately and precisely determined for the first time using a vacuum-ultraviolet mass-analyzed threshold be used for the clarification of the latter in this report. Here, we employ a vacuum-ultraviolet mass

  7. Nanowire Ultraviolet Photodetectors and Optical By Hannes Kind, Haoquan Yan, Benjamin Messer,

    E-Print Network [OSTI]

    Yang, Peidong

    of a Nd:YAG laser was used as the UV light source. Neutral density filters were used to change the incident UV light power. It was found that the photoresponse (Ipc) can be expressed by a simple power law is extremely sensitive to ultraviolet light exposure. The light-induced conductivity increase allows us

  8. Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang Shengli; Zhang Lei; Liang Run; Zhang Erhu; Liu Yachao; Zhao Shumin

    2005-11-01

    In this paper, we study the morphological transition of bacterial colonies exposed to ultraviolet radiation by modifying the bacteria model proposed by Delprato et al. Our model considers four factors: the lubricant fluid generated by bacterial colonies, a chemotaxis initiated by the ultraviolet radiation, the intensity of the ultraviolet radiation, and the bacteria's two-stage destruction rate with given radiation intensities. Using this modified model, we simulate the ringlike pattern formation of the bacterial colony exposed to uniform ultraviolet radiation. The following is shown. (1) Without the UV radiation the colony forms a disklike pattern and reaches a constant front velocity. (2) After the radiation is switched on, the bacterial population migrates to the edge of the colony and forms a ringlike pattern. As the intensity of the UV radiation is increased the ring forms faster and the outer velocity of the colony decreases. (3) For higher radiation intensities the total population decreases, while for lower intensities the total population increases initially at a small rate and then decreases. (4) After the UV radiation is switched off, the bacterial population grows both outward as well as into the inner region, and the colony's outer front velocity recovers to a constant value. All these results agree well with the experimental observations [Phys. Rev. Lett. 87, 158102 (2001)]. Along with the chemotaxis, we find that lubricant fluid and the two-stage destruction rate are critical to the dynamics of the growth of the bacterial colony when exposed to UV radiation, and these were not previously considered.

  9. Ultraviolet Spectroscopy of Protein Backbone Transitions in Aqueous Solution: Combined QM and MM Simulations

    E-Print Network [OSTI]

    Mukamel, Shaul

    Ultraviolet Spectroscopy of Protein Backbone Transitions in Aqueous Solution: Combined QM and MM (MM) calculations is developed to simulate the n f * and f * backbone transitions of proteins using a new algorithm, EHEF, which combines a molecular dynamics (MD) trajectory obtained with a MM

  10. NANODIAMOND DUST AND THE FAR-ULTRAVIOLET QUASAR BREAK Luc Binette,1

    E-Print Network [OSTI]

    Morisset, Christophe

    NANODIAMOND DUST AND THE FAR-ULTRAVIOLET QUASAR BREAK Luc Binette,1 Gladis Magris C.,2 Yair curve consisting of nanodiamonds, composed of terrestrial cubic diamonds or with surface impurities intrinsic dust model requires a mixture of both cubic diamonds and Allende nanodiamonds and provides

  11. First detection of an ultraviolet transition in an ionized polycyclic aromatic hydrocarbon

    E-Print Network [OSTI]

    ; accepted 3 May 1999 We report the first measurement of a polycyclic aromatic hydrocarbon cation electronicFirst detection of an ultraviolet transition in an ionized polycyclic aromatic hydrocarbon Xavier D of Physics. S0021-9606 99 02226-6 I. INTRODUCTION Polycyclic aromatic hydrocarbon PAH ions are prom- ising

  12. Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage

    E-Print Network [OSTI]

    Palmer, Paul

    of ultraviolet (UV) radiation-driven CH4 emissions from foliar pectin as a global CH4 source. · We combine source of UV-driven CH4 emissions and that other environmental stresses may also generate CH4 global warming potential 25 times that of CO2, and its current atmospheric concentration of 1.8 ppm makes

  13. Generation of intense continuum extreme-ultraviolet radiation by many-cycle

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields P in ultrashort pulse engineering have recently led to the breakthroughs of the generation of attosecond (10-18 s) pulse trains1­7 and isolated pulses8­11 . Although trains of multiple pulses can be generated through

  14. Signatures of the Protein Folding Pathway in Two-Dimensional Ultraviolet Spectroscopy

    E-Print Network [OSTI]

    Mukamel, Shaul

    Signatures of the Protein Folding Pathway in Two-Dimensional Ultraviolet Spectroscopy Jun Jiang of the signals provides a quantitative marker of protein folding status, accessible by both theoretical calculations and experiments. SECTION: Biophysical Chemistry and Biomolecules Protein folding is an important

  15. Combined effects of prepulsing and target geometry on efficient extreme ultraviolet

    E-Print Network [OSTI]

    Harilal, S. S.

    for Materials Under Extreme Environment School of Nuclear Engineering West Lafayette, Indiana 47907-2017 E-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3609043] Subject terms: nanolithography; extreme ultraviolet materials can significantly reduce their lifetime, and as a result, the efficiency and the economy

  16. EuroGeo4 Paper number 226 INSTALLATION AND ULTRAVIOLET EXPOSURE DAMAGE OF GEOTEXTILES

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    EuroGeo4 Paper number 226 1 INSTALLATION AND ULTRAVIOLET EXPOSURE DAMAGE OF GEOTEXTILES Benjamim, C-mail: zornberg@mail.utexas.edu) Abstract: A better understanding on the behavior of geotextile-reinforced soil material characterization program. Accordingly, eight prototype geotextile-reinforced soil structures were

  17. Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials

    E-Print Network [OSTI]

    Parikh, Atul N.

    Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials Atul N-directing agents in the synthesis of microporous materials. The method relies on the exposure of the sample. This method is applicable in making new materials from organic­inorganic pre- cursors and holds promise

  18. Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? (II) ----Ozone layer depth reconstruction via HEWV effect

    E-Print Network [OSTI]

    Chen, Jilong; Zheng, Yujun

    2014-01-01

    It is suggested by Chen {\\it et al.} that the Earth's surface Ultraviolet irradiance ($280-400$ nm) could influence the Earth's surface temperature variation by "Highly Excited Water Vapor" (HEWV) effect. In this manuscript, we reconstruct the developing history of the ozone layer depth variation from 1860 to 2011 based on the HEWV effect. It is shown that the reconstructed ozone layer depth variation correlates with the observational variation from 1958 to 2005 very well ($R=0.8422$, $P>99.9\\%$). From this reconstruction, we may limit the spectra band of the surface Ultraviolet irradiance referred in HEWV effect to Ultraviolet B ($280-320$ nm).

  19. Subsurface flow constructed wetland: treatment of domestic wastewater by gravel and tire chip media and ultraviolet disinfection of effluent 

    E-Print Network [OSTI]

    Richmond, Amanda Yvette

    2002-01-01

    spray application, wetland effluent must be disinfected (traditionally by chlorine). This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater and the effectiveness of ultraviolet (UV...

  20. Quality and Sensory Attributes of Shell Eggs Sanitized with a Combination of Hydrogen Peroxide and Ultraviolet Light 

    E-Print Network [OSTI]

    Woodring, Kristy Senise

    2011-10-21

    Two experiments were conducted to evaluate the combination of hydrogen peroxide (H2O2) and ultraviolet light (UV) as an alternative eggshell sanitization procedure for shell egg processing. In each experiment, two cases of eggs (720 total) were...

  1. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect (OSTI)

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  2. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    SciTech Connect (OSTI)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  3. Improved energy efficiency by use of the new ultraviolet light radiation paint curing process

    SciTech Connect (OSTI)

    Grosset, A.M.; Su, W.-F.A.

    1984-08-01

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures is more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. The replacement of a conventional natural gas fired oven by an ultraviolet radiation curing line for paint curing could save quadrillions of joules per year for each finishing line. In this program sponsored by the U.S. Department of Energy, Office of Industrial Programs, two photoinduced polymerizations, via free radical or cationic mechanisms, were considered in the formulation of UV curable paints. The spectral output of radiation sources was chosen so as to complement the absorption spectra of pigments and photoactive agents; thus highly pigmented thick films could be cured fully by UV radiation. One coat enamels, topcoats, and primers have been developed which can be applied on three dimensional objects by spraying and can be cured by passing through a tunnel containing UV lamps.

  4. Ultraviolet and electron irradiation of DC-704 siloxane oil in zinc orthotitanate paint

    SciTech Connect (OSTI)

    Mossman, D.L.; Barsh, M.K.; Greenberg, S.A.

    1982-01-01

    Discrepancies exist between accelerated laboratory simulation and geosynchronous orbit flight data for zinc orthotitanate (ZOT) paint degradation. The effects of ultraviolet and electron irradiation on ZOT contaminated with DC-704 silicone oil are reported. In-situ solar absorptance and emittance changes for contaminated and clean specimens are discussed with reference to post-test surface morphology, determined by scanning electron microscope analysis. Features of the contaminated ZOT degradation kinetics correlate with orbital performance.

  5. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect (OSTI)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  6. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  7. Time-resolved ultraviolet spectroscopy of the compact interacting binary QU Car

    E-Print Network [OSTI]

    L. E. Hartley; J. E. Drew; K. S. Long

    2002-07-01

    We present HST/STIS (1160--1700A) echelle spectra of the cataclysmic variable (CV) star, QU Car, observed in time-tag mode at three epochs. In catalogues this binary is classified as a nova-like variable. We find evidence of a high-state non-magnetic CV at low inclination, with unusually high ionisation. We observed narrow absorption lines (few hundred km/s wide) in N V1240, O V1371 and Si IV1398, as well as broader (HWZI ~1000km/s) emission in C III1176, C IV1549 and He II1640, all with a superposed absorption component. High ionisation is indicated by the unusually string He II emission and the relative strength of the O V absorption line. The dereddened UV SED of, on average, -2.3 suggests that disc accretion dominates the spectral energy distribution. In two observations velocity shifting is noted in the absorption lines on a timescale long enough not to repeat within the ~2600-sec exposures. The absorption superposed on the C IV emission line moves coherently with the N V and Si IV absorption, suggesting the same origin for all absorption lines -- most likely to be in the accretion disc atmosphere. Weak blueshifted absorption in NV and C\\IV provides evidence of an outflow component and we estimate a maximum outflow velocity of ~2000km/s. This may be linked to a wind launched from further out in the disc than is typically seen in those high-state non-magnetic CV whose wind speeds are observed to reach to >4000km/s. Unusually, three ionisation stages of carbon -- C II, C III and C IV -- are present in emission, with line width increasing with higher ionisation. The presence of C II in emission and the positive line-width/ionisation correlation is most easily reconciled with an origin in a disc chromosphere, beyond the influence of the EUV-emitting inner disc.

  8. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    SciTech Connect (OSTI)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  9. JET ROTATION INVESTIGATED IN THE NEAR-ULTRAVIOLET WITH THE HUBBLE SPACE TELESCOPE IMAGING SPECTROGRAPH

    SciTech Connect (OSTI)

    Coffey, Deirdre; Ray, Thomas P.; Rigliaco, Elisabetta; Bacciotti, Francesca; Eisloeffel, Jochen

    2012-04-20

    We present results of the second phase of our near-ultraviolet investigation into protostellar jet rotation using the Hubble Space Telescope Imaging Spectrograph. We obtain long-slit spectra at the base of five T Tauri jets to determine if there is a difference in radial velocity between the jet borders which may be interpreted as a rotation signature. These observations are extremely challenging and push the limits of current instrumentation, but have the potential to provide long-awaited observational support for the magnetocentrifugal mechanism of jet launching in which jets remove angular momentum from protostellar systems. We successfully detect all five jet targets (from RW Aur, HN Tau, DP Tau, and CW Tau) in several near-ultraviolet emission lines, including the strong Mg II doublet. However, only RW Aur's bipolar jet presents a sufficiently high signal-to-noise ratio to allow for analysis. The approaching jet lobe shows a difference of 10 km s{sup -1} in a direction which agrees with the disk rotation sense, but is opposite to previously published optical measurements for the receding jet. The near-ultraviolet difference is not found six months later, nor is it found in the fainter receding jet. Overall, in the case of RW Aur, differences are not consistent with a simple jet rotation interpretation. Indeed, given the renowned complexity and variability of this system, it now seems likely that any rotation signature is confused by other influences, with the inevitable conclusion that RW Aur is not suited to a jet rotation study.

  10. Total to Selective Extinction Ratios and Visual Extinctions from Ultraviolet Data

    E-Print Network [OSTI]

    Anna Geminale; Piotr Popowski

    2004-09-21

    We present determinations of the total to selective extinction ratio R_V and visual extinction A_V values for Milky Way stars using ultraviolet color excesses. We extend the analysis of Gnacinski and Sikorski (1999) by using non-equal weights derived from observational errors. We present a detailed discussion of various statistical errors. In addition, we estimate the level of systematic errors by considering different normalization of the extinction curve adopted by Wegner (2002). Our catalog of 782 R_V and A_V values and their errors is available in the electronic form on the World Wide Web.

  11. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect (OSTI)

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  12. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    SciTech Connect (OSTI)

    Eramo, R.; Bellini, M. [Istituto Nazionale di Ottica (INO-CNR), Largo E. Fermi 6, I-50125 Florence (Italy); European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Corsi, C.; Liontos, I. [European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Cavalieri, S. [European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy)

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  13. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    SciTech Connect (OSTI)

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P.; Théberge, F.; Daigle, J.-F.; Lassonde, P.; Kieffer, J.-C.

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25–300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 ?s. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  14. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    SciTech Connect (OSTI)

    Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  15. Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm

    SciTech Connect (OSTI)

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Kilbane, Deirdre; White, John; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Forschungszentrum Dresden, Bautzner Landstrs. 400, D-01328 Dresden (Germany)

    2010-09-13

    We have demonstrated a laser-produced plasma extreme ultraviolet source operating in the 6.5-6.7 nm region based on rare-earth targets of Gd and Tb coupled with a Mo/B{sub 4}C multilayer mirror. Multiply charged ions produce strong resonance emission lines, which combine to yield an intense unresolved transition array. The spectra of these resonant lines around 6.7 nm (in-band: 6.7 nm {+-}1%) suggest that the in-band emission increases with increased plasma volume by suppressing the plasma hydrodynamic expansion loss at an electron temperature of about 50 eV, resulting in maximized emission.

  16. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    SciTech Connect (OSTI)

    Mcgrane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  17. Chemo-physical properties of renal capsules under ultraviolet-c exposure

    SciTech Connect (OSTI)

    Baghapour, Sh.; Parvin, P. Mokhtari, S.; Reyhani, A.; Mortazavi, S. Z.; Amjadi, A.

    2014-08-07

    The renal capsule tissue of lamb was irradiated with ultraviolet-C light and the treated samples were analyzed by uniaxial tensile test, dynamic mechanical analysis, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. It was shown that the skin cross-linking is dominant in low doses in accordance with the contact angle assessment. Conversely, the strong bulk degradation takes place at high doses. Similarly, the bulk cross-linking affects the mechanical tests as to enhance the stiffness at low doses, whereas strong degradation occurs at high doses that mainly arises from the strong bulk chain scission.

  18. Far-ultraviolet Observations of the North Ecliptic Pole with SPEAR

    E-Print Network [OSTI]

    Eric J. Korpela; Jerry Edelstein; Julia Kregenow; Kaori Nishikida; Kyoung-Wook Min; Dae-Hee Lee; Kwangsun Ryu; Wonyong Han; Uk-Won Nam; Jang-Hyun Park

    2006-01-26

    We present SPEAR/FIMS far-ultraviolet observations near the North Ecliptic Pole. This area, at b~30 degrees and with intermediate HI column, seems to be a fairly typical line of sight that is representative of general processes in the diffuse ISM. We detect a surprising number of emission lines of many elements at various ionization states representing gas phases from the warm neutral medium (WNM) to the hot ionized medium (HIM). We also detect fluorescence bands of H2, which may be due to the ubiquitous diffuse H2 previously observed in absorption.

  19. Polaritonic-to-Plasmonic Transition in Optically Resonant Bismuth Nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters

    E-Print Network [OSTI]

    Cuadrado, Alexander; Serna, Rosalia

    2015-01-01

    In the quest aimed at unveiling alternative plasmonic elements overcoming noble metals for selected applications in photonics, we investigate by numerical simulations the near ultraviolet-to-near infrared optical response of solid and liquid Bi nanospheres embedded in a dielectric matrix. We also determine the resulting transmission contrast upon reversible solid-liquid phase transition to evaluate their potential for switchable optical filtering. The optical response of the solid (liquid) Bi nanospheres is ruled by localized polaritonic (plasmonic) resonances tunable by controlling the diameter. For a selected diameter between 20 nm and 50 nm, both solid and liquid nanospheres present a dipolar resonance inducing a strong peak extinction in the near ultraviolet, however at different photon energies. This enables a high transmission contrast at selected near ultraviolet photon energies. It is estimated that a two-dimensional assembly of 20 nm solid Bi nanospheres with a surface coverage of 28% will totally ex...

  20. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    SciTech Connect (OSTI)

    Gasper, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F.; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  1. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect (OSTI)

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  2. Detection of neutral phosphorus in the near-ultraviolet spectra of late-type stars

    SciTech Connect (OSTI)

    Roederer, Ian U. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Toller, Elizabeth, E-mail: iur@umich.edu [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2014-12-10

    We report the detection of several absorption lines of neutral phosphorus (P, Z = 15) in archival near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive phosphorus abundances or interesting upper limits in 14 late-type stars with metallicities spanning –3.8 < [Fe/H] <–0.1. Previously, phosphorus had only been studied in Galactic stars with –1.0 < [Fe/H] <+0.3. Iron lines reveal abundance offsets between the optical and ultraviolet regions, and we discuss and apply a correction factor to account for this offset. In stars with [Fe/H] >–1.0, the [P/Fe] ratio decreases toward the solar value with increasing metallicity, in agreement with previous observational studies. In stars with [Fe/H] <–1.0, ([P/Fe]) = +0.04 ± 0.10, which overlaps with the [P/Fe] ratios found in several high-redshift damped Lyman-? systems. This behavior hints at a primary origin in massive stars.

  3. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    E-Print Network [OSTI]

    Feltre, Anna; Gutkin, Julia

    2015-01-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as CIV 1548,1551, OIII]1661,1666, NIII]1750, [SiIII]1883+[SiIII]1892 and [CIII]1907+CIII]1909, with the HeII 1640 recombination line are individually good discriminants of the nature of the ionizing source...

  4. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    SciTech Connect (OSTI)

    Sarantopoulou, E. Stefi, A.; Kollia, Z.; Palles, D.; Cefalas, A. C.; Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Kakabakos, S.; Velentzas, A. D.

    2014-09-14

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm?²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, ?-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  5. Room-temperature ultraviolet emission from an organic light-emitting diode C. F. Qiu, L. D. Wang, H. Y. Chen, M. Wong, and H. S. Kwok

    E-Print Network [OSTI]

    Room-temperature ultraviolet emission from an organic light-emitting diode C. F. Qiu, L. D. Wang, H Ultraviolet emission was obtained from N,N -diphenyl-N,N -bis 3-methylphenyl - 1,1 -bi phenyl -4,4 -diamine. Gallium nitride was used as a hole-blocking layer to contain the holes. A peak emission wavelength of 400

  6. Development of a coherent vacuum ultraviolet source at 104108 nm generated by four-wave sum frequency mixing in Hg vapor

    E-Print Network [OSTI]

    Kim, Myung Soo

    Development of a coherent vacuum ultraviolet source at 104­108 nm generated by four-wave sum-harmonic generation and four-wave mixing in a gas- eous nonlinear medium.8­11 Two tunable outputs from a pulsed dye ultraviolet VUV light source in the 104­108 nm range has been developed by utilizing four-wave sum frequency

  7. Electron density diagnostics for solar ultraviolet lines E. O'Shea (e.oshea@queensbelfast.ac.uk), T. O'Neill

    E-Print Network [OSTI]

    :4), in conjunction with observational data obtained with the Solar Ultraviolet Measurements of Emitted Radiation resolve these fea­ tures. However, with the Solar Ultraviolet Measurements of Emitted Radiation (sumer of this particular ratio in different solar regions and in testing the accuracy of the new atomic data discussed here

  8. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    SciTech Connect (OSTI)

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

    2010-07-15

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

  9. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    SciTech Connect (OSTI)

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  10. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of benzene: Vibrational analysis of C6H6

    E-Print Network [OSTI]

    Kim, Myung Soo

    Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of benzene: Vibrational analysis-photon spectra agrees with the previous suggestion that the geometry of benzene cation in the ground electronic. INTRODUCTION Benzene cation has been the focus of an intensive re- search effort, both experimental1

  11. PUBLISHED ONLINE: 31 MARCH 2013 | DOI: 10.1038/NPHYS2590 Extreme-ultraviolet light generation in

    E-Print Network [OSTI]

    Loss, Daniel

    generation in plasmonic nanostructures M. Sivis1 , M. Duwe1 , B. Abel2 and C. Ropers1 * Strong-harmonic generation. However, there is growing tension between the great promise held by extreme-ultraviolet and attosecond-pulse generation on the nanoscale, and the lack of successful implementations. Here, we address

  12. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film

    E-Print Network [OSTI]

    Deng, Xunming

    -infrared to ultraviolet: Applications in thin film photovoltaics A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, and R. W. Collinsa) Department of Physics, Materials Research Institute, and Center for Thin Film, it has numerous applications in the analysis and simulation of thin film a-Si:H based p-i-n and n

  13. Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse 17 April 2008; accepted 4 June 2008; published online 23 June 2008 The effect of pulse duration on in with pulse durations from 25 to 110 ns. Employing a long pulse, for example, 110 ns, in a CO2 laser system

  14. Interaction of methanol and water on MgO,,100... studied by ultraviolet photoelectron and metastable impact electron spectroscopies

    E-Print Network [OSTI]

    Goodman, Wayne

    Interaction of methanol and water on MgO,,100... studied by ultraviolet photoelectron; accepted 27 October 1998 The coadsorption of methanol (CH3OH) and water (D2O) on the MgO 100 /Mo 100 photoelectron spectroscopy UPS HeI , and by thermal programmed desorption TPD . Methanol wets the MgO surface

  15. A close-up of the Sun (shown in ultraviolet light) reveals a mottled surface, bright flares,

    E-Print Network [OSTI]

    Christian, Eric

    #12;#12;A close-up of the Sun (shown in ultraviolet light) reveals a mottled surface, bright flares, and tongues of hot gas leaping into space. Though they look like burns in the face of the Sun, sunspots circle in the center of the photo--allows scientists to see the solar wind streaming away from the Sun

  16. THE ROLE OF POLYCYCLIC AROMATIC HYDROCARBONS IN ULTRAVIOLET EXTINCTION. I. PROBING SMALL MOLECULAR POLYCYCLIC AROMATIC HYDROCARBONS1

    E-Print Network [OSTI]

    THE ROLE OF POLYCYCLIC AROMATIC HYDROCARBONS IN ULTRAVIOLET EXTINCTION. I. PROBING SMALL MOLECULAR POLYCYCLIC AROMATIC HYDROCARBONS1 Geoffrey C. Clayton,2 Karl D. Gordon,3 F. Salama,4 L. J. Allamandola,4, with particular emphasis on a search for absorp- tion features produced by polycyclic aromatic hydrocarbons (PAHs

  17. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics

    E-Print Network [OSTI]

    Xiang, Jie; Li, Quan; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D

    2015-01-01

    Cholesteric liquid crystals with helicoidal molecular architecture are known for their ability to selectively reflect light with the wavelength that is determined by the periodicity of molecular orientations. Here we demonstrate that by using a cholesteric with oblique helicoidal(heliconical) structure, as opposed to the classic right-angle helicoid, one can vary the wavelength of selectively reflected light in a broad spectral range, from ultraviolet to visible and infrared (360-1520 nm for the same chemical composition) by simply adjusting the electric field applied parallel to the helicoidal axis. The effect exists in a wide temperature range (including the room temperatures) and thus can enable many applications that require dynamically controlled transmission and reflection of electromagnetic waves, from energy-saving smart windows to tunable organic lasers, reflective color display, and transparent see-through displays.

  18. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics

    E-Print Network [OSTI]

    Jie Xiang; Yannian Li; Quan Li; Daniel A. Paterson; John M. D. Storey; Corrie T. Imrie; Oleg D. Lavrentovich

    2015-03-30

    Cholesteric liquid crystals with helicoidal molecular architecture are known for their ability to selectively reflect light with the wavelength that is determined by the periodicity of molecular orientations. Here we demonstrate that by using a cholesteric with oblique helicoidal(heliconical) structure, as opposed to the classic right-angle helicoid, one can vary the wavelength of selectively reflected light in a broad spectral range, from ultraviolet to visible and infrared (360-1520 nm for the same chemical composition) by simply adjusting the electric field applied parallel to the helicoidal axis. The effect exists in a wide temperature range (including the room temperatures) and thus can enable many applications that require dynamically controlled transmission and reflection of electromagnetic waves, from energy-saving smart windows to tunable organic lasers, reflective color display, and transparent see-through displays.

  19. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    E-Print Network [OSTI]

    Ingleby, Laura; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G; Hillenbrand, Lynne; Brown, Alexander

    2013-01-01

    We analyze the accretion properties of 21 low mass T Tauri stars using a dataset of contemporaneous near ultraviolet (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph (STIS) and the ground based Small and Medium Aperture Research Telescope System (SMARTS), a unique dataset because of the nearly simultaneous broad wavelength coverage. Our dataset includes accreting T Tauri stars (CTTS) in Taurus, Chamaeleon I, $\\eta$ Chamaeleon and the TW Hydra Association. For each source we calculate the accretion rate by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high density, low filling factor accretion spots co-exist with low density, high filling factor spots. By fitting the UV and optical spectra wi...

  20. QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM SUNRISE

    SciTech Connect (OSTI)

    Hirzberger, J.; Feller, A.; Riethmueller, T. L.; Schuessler, M.; Borrero, J. M.; Gandorfer, A.; Solanki, S. K.; Barthol, P.; Afram, N.; Unruh, Y. C.; Berdyugina, S. V.; Berkefeld, T.; Schmidt, W.; Bonet, J. A.; MartInez Pillet, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    We present high-resolution images of the Sun in the near-ultraviolet spectral range between 214 nm and 397 nm as obtained from the first science flight of the 1 m SUNRISE balloon-borne solar telescope. The quiet-Sun rms intensity contrasts found in this wavelength range are among the highest values ever obtained for quiet-Sun solar surface structures-up to 32.8% at a wavelength of 214 nm. We compare the rms contrasts obtained from the observational data with theoretical intensity contrasts obtained from numerical magnetohydrodynamic simulations. For 388 nm and 312 nm the observations agree well with the numerical simulations whereas at shorter wavelengths discrepancies between observed and simulated contrasts remain.

  1. Ultraviolet Luminosity Density of the Universe During the Epoch of Reionization

    E-Print Network [OSTI]

    Mitchell-Wynne, Ketron; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-01-01

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multi-wavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcminute-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 $\\mu$m. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at $z$ > 8 to be $\\log \\rho_{\\rm UV} = 27.4^{+0.2}_{-1.2}$ erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$ $(1\\sigma)$. This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point source detection level in current surveys.

  2. Dynamics of the solar chromosphere. V. High-frequency modulation in ultraviolet image sequences from TRACE

    E-Print Network [OSTI]

    A. G. de Wijn; R. J. Rutten; T. D. Tarbell

    2007-06-13

    We search for signatures of high-frequency oscillations in the upper solar photosphere and low chromosphere in the context of acoustic heating of outer stellar atmospheres. We use ultraviolet image sequences of a quiet center-disk area from the Transition Region and Coronal Explorer (TRACE) mission which were taken with strict cadence regularity. The latter permits more reliable high-frequency diagnosis than in earlier work. Spatial Fourier power maps, spatially averaged coherence and phase-difference spectra, and spatio-temporal k-f decompositions all contain high-frequency features that at first sight seem of considerable intrinsic interest but actually are more likely to represent artifacts of different nature. Spatially averaged phase difference measurement provides the most sensitive diagnostic and indicates the presence of acoustic modulation up to f=20 mHz (periods down to 50 seconds) in internetwork areas.

  3. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    SciTech Connect (OSTI)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States) [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States)] [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)] [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  4. Swift-UVOT captures the earliest ultraviolet spectrum of a Gamma Ray Burst

    E-Print Network [OSTI]

    N. P. M. Kuin; W. B. Landsman; M. J. Page; P. Schady; M. Still; A. A. Breeveld; M. De Pasquale; P. J. Brown; M. Carter; C. James; P. A. Curran; A. Cucciara; C. Gronwall; S. T. Holland; E. A. Hoversten; S. Hunsberger; T. Kennedy; S. Koch; H. Lamoureux; F. E. Marshall; S. R. Oates; A. Parsons; D. Palmer; P. Roming; P. J. Smith

    2009-01-28

    We present the earliest ever ultraviolet spectrum of a gamma-ray burst (GRB) as observed with the Swift-UVOT. The GRB 081203A spectrum was observed for 50 seconds with the UV grism starting 251 seconds after the Swift-BAT trigger when the GRB was of u ~13.4 mag and still rising to its peak optical brightness. The UV grism spectrum shows a damped Ly-alpha line, Ly-beta, and the Lyman continuum break at a redshift z = 2.05 +/- 0.01. A model fit to the Lyman absorption implies log N(HI) = 22.0 +/- 0.2 cm-2, which is typical for GRB host galaxies with damped Ly-alpha absorbers. This observation of GRB 081203A demonstrates that for GRBs brighter than v ~14 mag and with 0.5 Swift-BAT trigger.

  5. Swift-UVOT captures the earliest ultraviolet spectrum of a Gamma Ray Burst

    E-Print Network [OSTI]

    Kuin, N P M; Page, M J; Schady, P; Still, M; Breeveld, A A; De Pasquale, M; Brown, P J; Carter, M; James, C; Curran, P A; Cucciara, A; Gronwall, C; Holland, S T; Hoversten, E; Hunsberger, S; Kennedy, T; Koch, S; Lamoureux, H; Marshall, F E; Oates, S R; Parsons, A; Palmer, D; Roming, P; Smith, P J

    2008-01-01

    We present the earliest ever ultraviolet spectrum of a gamma-ray burst (GRB) as observed with the Swift-UVOT. The spectrum of GRB 081203A was observed for 50 seconds with the UV grism starting 251 seconds after the Swift-BAT trigger when the GRB was of u ~13.4 mag and still rising to its peak optical brightness. The UV grism spectrum shows a damped Ly-alpha line, Ly-beta, and the Lyman continuum break at a redshift z = 2.05 +/- 0.01. A model fit to the Lyman absorption implies log N(HI) = 22.0 +/- 0.2 cm-2, which is typical for GRB host galaxies with damped Ly-alpha absorbers. This observation of GRB 081203A demonstrates that for GRBs brighter than v ~14 mag and with 0.5 Swift-BAT trigger.

  6. Origin of the Diffuse, Far Ultraviolet Emission in the Interarm Regions of M101

    E-Print Network [OSTI]

    Crocker, Alison F; Calzetti, Daniela; Holwerda, Benne Willem; Leitherer, Claus; Popescu, Cristina; Tuffs, R J

    2015-01-01

    We present images from the Solar Blind Channel on HST that resolve hundreds of far ultraviolet (FUV) emitting stars in two ~1 kpc$^2$ interarm regions of the grand-design spiral M101. The luminosity functions of these stars are compared with predicted distributions from simple star formation histories, and are best reproduced when the star formation rate has declined recently (past 10-50 Myr). This pattern is consistent with stars forming within spiral arms and then streaming into the interarm regions. We measure the diffuse FUV surface brightness after subtracting all of the detected stars, clusters and background galaxies. A residual flux is found for both regions which can be explained by a mix of stars below our detection limit and scattered FUV light. The amount of scattered light required is much larger for the region immediately adjacent to a spiral arm, a bright source of FUV photons.

  7. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    E-Print Network [OSTI]

    Henderson, Kevin; Funsten, Herb; MacDonald, Elizabeth

    2011-01-01

    We report the development of a versatile, compact, low to medium energy electron source. A collimated, monoenergetic beam of electrons, up to 50 mm in diameter, is produced with energies ranging from 0.03 to 30 keV. A uniform electron beam profile is generated by illuminating a metal cathode plate with a near ultraviolet (UV) light emitting diode (LED). A parallel electric field accelerates the electrons away from the cathode plate towards a grounded grid. The beam intensity can be controlled from 10 - 10^9 electrons cm-2 s-1 and the angular divergence of the beam is less than 1 degree FWHM for energies greater than 1 keV.

  8. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    SciTech Connect (OSTI)

    Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth [Space Science and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15

    We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm{sup 2} can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 Degree-Sign at 1 keV. The beam intensity can be controlled from 10 to 10{sup 9} electrons cm{sup -2} s{sup -1}.

  9. Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons

    E-Print Network [OSTI]

    Schütte, Bernd; Mermillod-Blondin, Alexandre; Vrakking, Marc J J; Rouzée, Arnaud; Fennel, Thomas

    2015-01-01

    We study the ionization dynamics of Ar clusters exposed to ultrashort near-infrared (NIR) laser pulses for intensities well below the threshold at which tunnel ionization could ignite the nanoplasma formation. We find that the emission of highly charged ions up to Ar$^{8+}$ can be switched on with unit contrast by generating only a few seed electrons with an ultrashort extreme ultraviolet (XUV) pulse prior to the NIR field. Molecular dynamics simulations can explain the experimental observations and predict a generic scenario where efficient heating via inverse bremsstrahlung and NIR avalanching are followed by resonant collective nanoplasma heating. The temporally and spatially well-controlled injection of the XUV seed electrons opens new routes for controlling avalanching and heating phenomena in nanostructures and solids, with implications for both fundamental and applied laser-matter science.

  10. Bandgap measurements of low-k porous organosilicate dielectrics using vacuum ultraviolet irradiation

    SciTech Connect (OSTI)

    Zheng, H.; Shohet, J. L. [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Ryan, V. [GLOBALFOUNDRIES, Albany, New York 12203 (United States); Nishi, Y. [Stanford University, Stanford, California 94305 (United States)

    2014-02-10

    Vacuum ultraviolet (VUV) photoemission spectroscopy is used to investigate the effect of VUV radiation on porous organosilicate (SiCOH) dielectrics during plasma processing. By comparing photoemission spectroscopic results before and after VUV exposure, VUV irradiation with photon energies less than 9.0?eV was found to be beneficial in depleting accumulated charge in SiCOH films while VUV photons with higher energies did not have this effect. Moreover, VUV irradiation with 8.9?eV photons depletes the most charge. From this result, it can be concluded that 8.9?eV is the bandgap plus the electron affinity energy of SiCOH dielectrics.

  11. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    E-Print Network [OSTI]

    Toshiyuki Hosoya; Martin Miranda; Ryotaro Inoue; Mikio Kozuma

    2014-12-02

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system, which does not depend on complex nonlinear frequency-doubling, has great importance for implementing transportable optical lattice clocks, and is also useful for investigations on condensed matter physics or quantum information processing using cold atoms.

  12. Far-ultraviolet observations of comet C/2001 Q4 (NEAT) with FIMS/SPEAR

    SciTech Connect (OSTI)

    Lim, Y.-M.; Min, K.-W. [Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Feldman, P. D. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Han, W. [Korea Astronomy and Space Science Institute (KASI), 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Edelstein, J., E-mail: ymlim@kaist.ac.kr [Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2014-02-01

    We present the results of far-ultraviolet observations of comet C/2001 Q4 (NEAT) that were made with the Far-Ultraviolet Imaging Spectrograph on board the Korean satellite STSAT-1. The observations were conducted in two campaigns during its perihelion approach between 2004 May 8 and 15. Based on the scanning mode observations in the wavelength band of 1400-1700 Å, we have constructed an image of the comet with an angular size of 5°×5°, which corresponds to the central coma region. Several important fluorescence emission lines were detected including S I multiplets at 1429 and 1479 Å, C I multiplets at 1561 and 1657 Å, and the CO A{sup 1}?-X{sup 1}?{sup +} Fourth Positive system; we have estimated the production rates of the corresponding species from the fluxes of these emission lines. The estimated production rate of CO was Q {sub CO} = (2.65 ± 0.63) × 10{sup 28} s{sup –1}, which is 6.2%-7.4% of the water production rate and is consistent with earlier predictions. The average carbon production rate was estimated to be Q{sub C} = ?1.59 × 10{sup 28} s{sup –1}, which is ?60% of the CO production rate. However, the observed carbon profile was steeper than that predicted using the two-component Haser model in the inner coma region, while it was consistent with the model in the outer region. The average sulfur production rate was Q{sub S} = (4.03±1.03) × 10{sup 27} s{sup –1}, which corresponds to ?1% of the water production rate.

  13. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    SciTech Connect (OSTI)

    Mao Yewei; Kong Xu [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Hao, Cai-Na [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Zhou Xu, E-mail: owen81@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-09-20

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in the IRX-UV relation.

  14. Optics and multilayer coatings for EUVL systems

    SciTech Connect (OSTI)

    Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S

    2008-03-21

    EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.

  15. Extreme-UV lithography system

    DOE Patents [OSTI]

    Replogle, William C. (Livermore, CA); Sweatt, William C. (Albuquerque, NM)

    2001-01-01

    A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer. The adjusting means can, for example, change at least one of: (i) partial coherence of the photolithography system, (ii) mask image illumination uniformity on the wafer or (iii) centroid position of the illumination flux in the entrance pupil. A particularly preferred adjusting means includes at least one vignetting mask that covers at least a portion of the at least two substantially equal radial segments of the parent aspheric mirror.

  16. Saturated 13.2 nm high-repetition-rate laser in nickellike cadmium

    E-Print Network [OSTI]

    Rocca, Jorge J.

    ps duration Ti:sap- phire laser pulses with an energy of only 1 J impinging at a grazing angle of 23 for at-wavelength metrology of extreme ultraviolet (EUV) projection li- thography optics.1 Laser laser in at-wavelength metrology of EUV optical systems composed of mul- tiple mirrors. In this Letter

  17. Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? A new effect may exist

    E-Print Network [OSTI]

    Chen, Jilong; Zhao, Juan; Zheng, Yujun

    2014-01-01

    Whether natural factors could interpret the rise of the Earth's surface temperature is still controversial. Though numerous recent researches have reported apparent correlations between solar activity and the Earth's climate, solar activity has encountered a big problem when describing the rapid global warming after 1970s. Our investigation shows the good positive correlations between the Earth's surface Ultraviolet irradiance (280-400 nm) and the Earth's surface temperature both in temporal and spatial variations by analyzing the global surface Ultraviolet irradiance (280-400 nm) and global surface temperature data from 1980-1999. The rise of CO$_2$ cannot interpret the good positive correlations, and we could even get an opposite result to the good correlations when employing the rise of CO$_2$ to describe the relation between them. Based on the good positive correlations, we suggest a new effect, named "Highly Excited Water Vapor" (HEWV) effect, which can interpret how the Sun influences the Earth's surfac...

  18. The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN

    SciTech Connect (OSTI)

    Gaddy, BE; Bryan, Z; Bryan, I; Xie, JQ; Dalmau, R; Moody, B; Kumagai, Y; Nagashima, T; Kubota, Y; Kinoshita, T; Koukitu, A; Kirste, R; Sitar, Z; Collazo, R; Irving, DL

    2014-05-19

    Co-doping AlN crystals with Si is found to suppress the unwanted 4.7 eV (265 nm) deep ultraviolet absorption associated with isolated carbon acceptors common in materials grown by physical vapor transport. Density functional theory calculations with hybrid functionals demonstrate that silicon forms a stable nearest-neighbor defect complex with carbon. This complex is predicted to absorb at 5.5 eV and emit at or above 4.3 eV. Absorption and photoluminescence measurements of co-doped samples confirm the presence of the predicted C-N-Si-Al complex absorption and emission peaks and significant reduction of the 4.7 eV absorption. Other sources of deep ultraviolet absorption in AlN are also discussed. (C) 2014 AIP Publishing LLC.

  19. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  20. Doubly-Resonant Fabry-Perot Cavity for Power Enhancement of Burst-Mode Picosecond Ultraviolet Pulses

    SciTech Connect (OSTI)

    Abudureyimu, Reheman [ORNL; Huang, Chunning [ORNL; Liu, Yun [ORNL

    2015-01-01

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  1. Removal of pollutant compounds from water supplies using ozone, ultraviolet light, and a counter, current packed column. Master's thesis

    SciTech Connect (OSTI)

    Kelly, E.L.

    1991-01-01

    Many water pollutants are determined to be carcinogenic and often appear in very low concentrations and still pose a health risk. Conventional water treatment processes cannot remove these contaminants and there is a great demand for the development of alternative removal technologies. The use of ozone and ultraviolet light in a counter current packed column could prove to be an effective treatment process to remove these contaminants.

  2. The effective spectral irradiance of ultra-violet radiations from inert-gas-shielded welding processes in relation to the ARC current density 

    E-Print Network [OSTI]

    DeVore, Robin Kent

    1973-01-01

    fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1973 Major Subject: Industrial Hygiene THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED WELDING PROCESSES IN RELATION TO THE ARC CURRENT... DENSITY A Thesis by ROBIN KENT DEVORE Approved as to style and content by: C alarm n of o itte Hea o partment e er Member December 1973 ABSTRACT The Effective Spectral Irradiance of Ultraviolet Radiations from Inert-Gas-Shielded Welding...

  3. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect (OSTI)

    Moloney, Joshua [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Michael Shull, J., E-mail: joshua.moloney@colorado.edu, E-mail: michael.shull@colorado.edu [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK. (United Kingdom)

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ? z ? 0.64, two AGNs with 0.32 ? z ? 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV ?765, O II ?833, and O III ?834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ? 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (?{sub H} ? 10{sup 22} cm{sup –2} s{sup –1}).

  4. Thorough characterization of a EUV mask

    E-Print Network [OSTI]

    McIntyre, G.

    2010-01-01

    SRAM (M! ) thorough characterization Figure 13 shows theresults of a thorough characterization of the SRAM area onFigure 13 Thorough characterization of 32nm technology node

  5. HXR and EUV Signatures Electron Acceleration

    E-Print Network [OSTI]

    Mrozek, Tomasz

    , 594 confinement by the overlying coronal magnetic field Hirose et al. 2001, ApJ,551, 586; Wang of the overlying magnetic field The decrease of the overlying magnetic field with height is a key factor leading system) after its emergence is dependent on ambient magnetic field Archontis & Török 2008, A&A, 492, L35

  6. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Ward, Jesse; Deng, Junjing; Mak, Rachel; Moonier, Nena; et al

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore »important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less

  7. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    SciTech Connect (OSTI)

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Ward, Jesse; Deng, Junjing; Mak, Rachel; Moonier, Nena; Jacobsen, Chris; Brody, James P.

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologically important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.

  8. High-performance deep ultraviolet photodetectors based on ZnO quantum dot assemblies

    SciTech Connect (OSTI)

    Xu, Xiaoyong; Xu, Chunxiang E-mail: jghu@yzu.edu.cn; Hu, Jingguo E-mail: jghu@yzu.edu.cn

    2014-09-14

    A high-performance ZnO quantum dots (QDs)-based ultraviolet (UV) photodetector has been successfully fabricated via the self-assembly of QDs on the Au interdigital electrode. The broadened band gap in ZnO QDs makes the device has the highly selective response for the deep UV detection. The unique QD-QD junction barriers similar to back-to-back Schottky barriers dominate the conductance of the QD network and the UV light-induced barrier-height modulation plays a crucial role in enhancing the photoresponsivity and the response speed. Typically, the as-fabricated device exhibits the fast response and recovery times of within 1 s, the deep UV selectivity of less than 340 nm, and the stable repeatability with on/off current ratio over 10³, photoresponsivity of 5.04×10²A/W, and photocurrent gain of 1.9×10³, demonstrating that the ZnO QD network is a superior building block for deep UV photodetectors.

  9. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, J.H.; Sander, R.K.

    1982-06-29

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  10. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, James H. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM)

    1985-01-01

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  11. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    SciTech Connect (OSTI)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  12. HST/STIS Ultraviolet Spectroscopy of the Components of the Massive Triple Star delta Ori A

    E-Print Network [OSTI]

    Richardson, Noel D; Gull, Theodore R; Lindler, Don J; Gies, Douglas R; Corcoran, Michael F; Chené, André-Nicolas

    2015-01-01

    The multiple star system of delta Orionis is one of the closest examples of a system containing a luminous O-type, bright giant star (component Aa1). It is often used as a spectral-type standard and has the highest observed X-ray flux of any hot-star binary. The main component Aa1 is orbited by two lower mass stars, faint Aa2 in a 5.7 day eclipsing binary, and Ab, an astrometric companion with an estimated period of 346 years. Generally the flux from all three stars is recorded in ground-based spectroscopy, and the spectral decomposition of the components has proved difficult. Here we present HST/STIS ultraviolet spectroscopy of delta Ori A that provides us with spatially separated spectra of Aa and Ab for the first time. We measured radial velocities for Aa1 and Ab in two observations made near the velocity extrema of Aa1. We show tentative evidence for the detection of the Aa2 component in cross-correlation functions of the observed and model spectra. We discuss the appearance of the UV spectra of Aa1 and A...

  13. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    SciTech Connect (OSTI)

    Ansdell, Megan; Baranec, Christoph; Gaidos, Eric; Mann, Andrew W.; Lépine, Sebastien; James, David; Buccino, Andrea; Mauas, Pablo; Petrucci, Romina; Law, Nicholas M.; Riddle, Reed

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5?) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ?16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  14. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; et al

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore »instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  15. An analysis of ultraviolet spectra of Extreme Helium Stars and new clues to their origins

    E-Print Network [OSTI]

    Pandey, G; Jeffery, C S; Rao, N K; Pandey, Gajendra; Lambert, David L.

    2006-01-01

    Abundances of about 18 elements including the heavy elements Y and Zr are determined from Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectra of seven extreme helium stars (EHes): LSE 78, BD+10 2179, V1920 Cyg, HD 124448, PV Tel, LS IV -1 2, and FQ Aqr. New optical spectra of the three stars -- BD+10 2179, V1920 Cyg, and HD 124448 were analysed. The abundance analyses is done using LTE line formation and LTE model atmospheres especially constructed for these EHe stars. The stellar parameters derived from an EHe's UV spectrum are in satisfactory agreement with those derived from its optical spectrum. Adopted abundances for the seven EHes are from a combination of the UV and optical analyses. Published results for an additional ten EHes provide abundances obtained in a nearly uniform manner for a total of 17 EHes, the largest sample on record. The initial metallicity of an EHe is indicated by the abundance of elements from Al to Ni; Fe is adopted to be the representative of initial m...

  16. Thermal characteristics and durability of sealed insulated glass units incorporating muntin bars under ultraviolet exposure

    SciTech Connect (OSTI)

    Elmahdy, A.H. [National Research Council of Canada, Ottawa, Ontario (Canada). Inst. for Research in Construction

    1998-10-01

    Recent developments in glazing manufacturing have resulted in the introduction of a variety of glazing systems to meet the consumers demand and, in many cases, with better thermal performance than conventional glazing. Insulating glass (IG) units are now available where air is replaced with argon and other heavy gases (or mixtures of gases), low emissivity coatings on glass or plastic films, and muntin bars in the cavity between the sheets of glass. Muntin bars are made of various materials such as aluminum (anodized or painted), vinyl, or silicone foam. Although muntin bars are used for aesthetic reasons, they may cause adverse effects on the IG units performance, which may be attributed to the improper preparation of the muntin bars or the use of interior paints. Ultraviolet (fogging) tests were performed on a number of argon-filled IG units with and without muntin bars. The test results indicate that most of the IG units with muntin bars fail the UV test when viewed at off-angle. Meanwhile, when viewed at right angle, most of the IG units with muntin bars passed the UV test. Test results also showed that the R-value and condensation resistance of IG units with muntin bars are 4% to 7% lower than those units without muntin bars. The thermal bridging effect of the muntin bars contribute to the lower glass surface temperature in the area adjacent to the muntin bars.

  17. K-corrections and filter transformations in the ultraviolet, optical, and near infrared

    E-Print Network [OSTI]

    Michael R. Blanton; Sam Roweis

    2006-06-07

    Template fits to observed galaxy fluxes allow calculation of K-corrections and conversions among observations of galaxies at various wavelengths. We present a method for creating model-based template sets given a set of heterogeneous photometric and spectroscopic galaxy data. Our technique, non-negative matrix factorization, is akin to principle component analysis (PCA), except that it is constrained to produce nonnegative templates, it can use a basis set of models (rather than the delta function basis of PCA), and it naturally handles uncertainties, missing data, and heterogeneous data (including broad-band fluxes at various redshifts). The particular implementation we present here is suitable for ultraviolet, optical, and near-infrared observations in the redshift range 0 base our templates on stellar population synthesis models, the results are intepretable in terms of approximate stellar masses and star-formation histories. We present templates fit with this method to data from GALEX, Sloan Digital Sky Survey spectroscopy and photometry, the Two-Micron All Sky Survey, the Deep Extragalactic Evolutionary Probe and the Great Observatories Origins Deep Survey. In addition, we present software for using such data to estimate K-corrections and stellar masses.

  18. Ultraviolet emission lines of Si II in cool star and solar spectra

    E-Print Network [OSTI]

    Laha, Sibasish; ferland, Gary J; Ramsbottom, Catherine A; Aggarwal, Kanti M; Ayres, Thomas R; Chatzikos, Marios; van Hoof, Peter A M; Williams, Robin J R

    2015-01-01

    Recent atomic physics calculations for Si II are employed within the Cloudy modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, Beta-Geminorum, Alpha-Centauri A and B, as well as previously published HST/GHRS observations of Alpha-Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{4}$P$_{J^{\\prime}}$ intercombination multiplet of Si II at 2335 Angs are significantly reduced, as are those for ratios containing the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{2}$D$_{J^{\\prime}}$ transitions at 1816 Angs. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et. al. (1993) for the intercombination lines. New m...

  19. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect (OSTI)

    Kurose, N., E-mail: kurose@fc.ritsumei.ac.jp; Aoyagi, Y. [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan); Shibano, K.; Araki, T. [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400?nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  20. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    SciTech Connect (OSTI)

    Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.

    2013-12-28

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10?nm at 355?nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  1. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  2. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  3. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  4. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect (OSTI)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  5. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect (OSTI)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7?nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p?3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  6. Exploring the Origin and Fate of the Magellanic Stream with Ultraviolet and Optical Absorption

    E-Print Network [OSTI]

    Fox, Andrew J; Smoker, Jonathan V; Richter, Philipp; Savage, Blair D; Sembach, Kenneth R

    2010-01-01

    (Abridged) We present an analysis of ionization and metal enrichment in the Magellanic Stream (MS), the nearest gaseous tidal stream, using HST/STIS and FUSE ultraviolet spectroscopy of two background AGN, NGC 7469 and Mrk 335. For NGC 7469, we include optical spectroscopy from VLT/UVES. In both sightlines the MS is detected in low-ion and high-ion absorption. Toward NGC 7469, we measure a MS oxygen abundance [O/H]_MS=[OI/HI]=-1.00+/-0.05(stat)+/-0.08(syst), supporting the view that the Stream originates in the SMC rather than the LMC. We use CLOUDY to model the low-ion phase of the Stream as a photoionized plasma using the observed Si III/Si II and C III/C II ratios. Toward Mrk 335 this yields an ionization parameter log U between -3.45 and -3.15 and a gas density log (n_H/cm^-3) between -2.51 and -2.21. Toward NGC 7469 we derive sub-solar abundance ratios for [Si/O], [Fe/O], and [Al/O], indicating the presence of dust in the MS. The high-ion column densities are too large to be explained by photoionization,...

  7. Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity

    E-Print Network [OSTI]

    Ahmad Borzou; Kai Lin; Anzhong Wang

    2011-04-23

    Detailed balance and projectability conditions are two main assumptions when Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz (HL) theory. While the latter represents an important ingredient, the former often believed needs to be abandoned, in order to obtain an ultraviolet stable scalar field, among other things. In this paper, because of several attractive features of this condition, we revisit it, and show that the scalar field can be stabilized, if the detailed balance condition is allowed to be softly broken. Although this is done explicitly in the non-relativistic general covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant $\\lambda$, generalized lately by da Silva, it is also true in other versions of the HL theory. With the detailed balance condition softly breaking, the number of independent coupling constants can be still significantly reduced. It is remarkable to note that, unlike other setups, in this da Silva generalization, there exists a master equation for the linear perturbations of the scalar field in the flat Friedmann-Robertson-Walker background.

  8. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    SciTech Connect (OSTI)

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  9. The Far Ultraviolet Spectral Signatures of Formaldehyde and Carbon Dioxide in Comets

    E-Print Network [OSTI]

    Feldman, Paul D; McCandliss, Stephan R; Weaver, Harold A

    2009-01-01

    Observations of four comets made with the Far Ultraviolet Spectroscopic Explorer show the rotational envelope of the (0,0) band of the CO Hopfield-Birge system (C - X) at 1088 A to consist of both "cold" and "hot" components, the "cold" component accounting for ~75% of the flux and with a rotational temperature in the range 55-75 K. We identify the "hot" component as coming from the dissociation of CO2 into rotationally "hot" CO, with electron impact dissociation probably dominant over photodissociation near the nucleus. An additional weak, broad satellite band is seen centered near the position of the P(40) line that we attribute to CO fluorescence from a non-thermal high J rotational population produced by photodissociation of formaldehyde into CO and H2. This process also leaves the H2 preferentially populated in excited vibrational levels which are identified by fluorescent H2 lines in the spectrum excited by solar OVI 1031.9 and solar Lyman-alpha. The amount of H2 produced by H2CO dissociation is compara...

  10. The WFPC2 ultraviolet survey: The blue straggler population in NGC 5824

    SciTech Connect (OSTI)

    Sanna, N.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Miocchi, P.

    2014-01-01

    We have used a combination of high-resolution Hubble Space Telescope Wide Field Planetary Camera 2 and wide-field ground-based observations, in ultraviolet and optical bands, to study the blue straggler star population of the massive outer halo globular cluster NGC 5824 over its entire radial extent. We have computed the center of the cluster and constructed the radial density profile from detailed star counts. The profile is well reproduced by a Wilson model with a small core (r{sub c} ? 4.''4) and a concentration parameter c ? 2.74. We also present the first age determination for this cluster. From a comparison with isochrones, we find t = 13 ± 0.5 Gyr. We discuss this result in the context of the observed age-metallicity relation of Galactic globular clusters. A total of 60 bright blue stragglers has been identified. Their radial distribution is found to be bimodal, with a central peak, a well-defined minimum at r ? 20'', and an upturn at large radii. In the framework of the dynamical clock recently defined by Ferraro et al., this feature suggests that NGC 5824 is a cluster of intermediate dynamical age.

  11. On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate)

    SciTech Connect (OSTI)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-05-15

    The role of chemical reactions is investigated versus the thermal and mechanical processes occurring in a polymer substrate during irradiation by a laser pulse and subsequent ablation. Molecular dynamics simulations with an embedded Monte Carlo based reaction scheme were used to study ultraviolet ablation of poly(methyl methacrylate) at 157 nm. We discuss the onset of ablation, the mechanisms leading to ablation, and the role of stress relaxation of the polymer matrix during ablation. Laser induced heating and chemical decomposition of the polymer substrate are considered as ablation pathways. It is shown that heating the substrate can set off ablation via mechanical failure of the material only for very short laser pulses. For longer pulses, the mechanism of ejection is thermally driven limited by the critical number of bonds broken in the substrate. Alternatively, if the photon energy goes towards direct bond breaking, it initiates chemical reactions, polymer unzipping, and formation of gaseous products, leading to a nearly complete decomposition of the top layers of substrates. The ejection of small molecules has a hollowing out effect on the weakly connected substrates which can lead to lift-off of larger chunks. Excessive pressure buildup upon the creation of gaseous molecules does not lead to enhanced yield. The larger clusters are thermally ejected, and an entrainment of larger polymer fragments in gaseous molecules is not observed.

  12. THE EXTREME ULTRAVIOLET DEFICIT AND MAGNETICALLY ARRESTED ACCRETION IN RADIO-LOUD QUASARS

    SciTech Connect (OSTI)

    Punsly, Brian

    2014-12-20

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ?580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  13. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone

    SciTech Connect (OSTI)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafe, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of+0.3% exists between the UV-RAD total ozone values and those given by the Brewer no. 63 spectroradiometer and that mean differences of+0.3% and-0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer no. 63 and the Brewer no. 104 spectroradiometers, respectively.

  14. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    SciTech Connect (OSTI)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  15. The formation of IRIS diagnostics. III. Near-ultraviolet spectra and images

    SciTech Connect (OSTI)

    Pereira, T. M. D.; Leenaarts, J.; De Pontieu, B.; Carlsson, M.; Uitenbroek, H. E-mail: jorritl@astro.uio.no E-mail: mats.carlsson@astro.uio.no

    2013-12-01

    The Mg II h and k lines are the prime chromospheric diagnostics of NASA's Interface Region Imaging Spectrograph (IRIS). In the previous papers of this series, we used a realistic three-dimensional radiative magnetohydrodynamics model to calculate the h and k lines in detail and investigated how their spectral features relate to the underlying atmosphere. In this work, we employ the same approach to investigate how the h and k diagnostics fare when taking into account the finite resolution of IRIS and different noise levels. In addition, we investigate the diagnostic potential of several other photospheric lines and near-continuum regions present in the near-ultraviolet (NUV) window of IRIS and study the formation of the NUV slit-jaw images. We find that the instrumental resolution of IRIS has a small effect on the quality of the h and k diagnostics; the relations between the spectral features and atmospheric properties are mostly unchanged. The peak separation is the most affected diagnostic, but mainly due to limitations of the simulation. The effects of noise start to be noticeable at a signal-to-noise ratio (S/N) of 20, but we show that with noise filtering one can obtain reliable diagnostics at least down to a S/N of 5. The many photospheric lines present in the NUV window provide velocity information for at least eight distinct photospheric heights. Using line-free regions in the h and k far wings, we derive good estimates of photospheric temperature for at least three heights. Both of these diagnostics, in particular the latter, can be obtained even at S/Ns as low as 5.

  16. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect (OSTI)

    Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune 411007 (India); Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  17. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64

    E-Print Network [OSTI]

    W. Zheng; G. A. Kriss; J. X. Wang; M. Brotherton; W. R. Oegerle; W. P. Blair; A. F. Davidsen; R. F. Green; J. B. Hutchings; M. E. Kaiser

    2001-07-30

    We present a moderate-resolution (~20 km/s) spectrum of the mini broad-absorption-line QSO PG1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional spectra at longer wavelengths were also obtained with the HST and ground-based telescopes. Broad absorption is present on the blue wings of CIII 977, Ly-beta, OVI 1032,1038, Ly-alpha, NV 1238,1242, SiIV 1393,1402, and CIV 1548,1450. The absorption profile can be fitted with five components at velocities of ~ -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The OVI emission feature is very weak, and the OVI/Lyalpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10^21 cm^-2, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  18. The Young and the Dustless: Interpreting Radio Observations of UltraViolet Luminous Galaxies

    E-Print Network [OSTI]

    Antara R. Basu-Zych; David Schiminovich; Benjamin D. Johnson; Charles Hoopes; Roderik Overzier; Marie A. Treyer; Timothy M. Heckman; Tom A. Barlow; Luciana Bianchi; Tim Conrow; Jose Donas; Karl G. Forster; Peter G. Friedman; Young-Wook Lee; Barry F. Madore; D. Christopher Martin; Bruno Milliard; Patrick Morrissey; Susan G. Neff; R. Michael Rich; Samir Salim; Mark Seibert; Todd A. Small; Alex S. Szalay; Ted K. Wyder; Suk Young Yi

    2007-07-12

    Ultraviolet Luminous Galaxies (UVLGs) have been identified as intensely star-forming, nearby galaxies. A subset of these, the supercompact UVLGs, are believed to be local analogs of high redshift Lyman Break Galaxies. Here we investigate the radio continuum properties of this important population for the first time. We have observed 42 supercompact UVLGs with the VLA, all of which have extensive coverage in the UV/optical by GALEX and SDSS. Our analysis includes comparison samples of multiwavelength data from the Spitzer First Look Survey and from the SDSS-Galex matched catalogs. In addition we have Spitzer MIPS data for 24 of our galaxies and find that they fall on the radio-FIR correlation of normal star-forming galaxies. We find that our galaxies have lower radio-to-UV ratios and lower Balmer decrements than other local galaxies with similar (high) star formation rates. Optical spectra show they have lower Dn(4000) and HdeltaA indices, higher Hbeta emission-line equivalents widths, and higher [OIII]5007/Hbeta emission-line ratios than normal star forming galaxies. Comparing these results to galaxy spectral evolution models we conclude that supercompact UVLGs are distinguished from normal star forming galaxies firstly by their high specific star formation rates. Moreover, compared to other types of galaxies with similar star formation rates, they have significantly less dust attenuation. In both regards they are similar to Lyman Break Galaxies. This suggests that the process that causes star formation in the supercompact UVLGs differs from other local star forming galaxies, but may be similar to Lyman Break Galaxies.

  19. Non-LTE model atmosphere analysis of the early ultraviolet spectra of nova OS Andromedae 1986

    E-Print Network [OSTI]

    Greg Schwarz; Peter H. Hauschildt; Sumner Starrfield; Eddie Baron; France Allard; Steve Shore; George Sonneborn

    1996-08-29

    We have analyzed the early optically thick ultraviolet spectra of Nova OS And 1986 using a grid of spherically symmetric, non-LTE, line-blanketed, expanding model atmospheres and synthetic spectra with the following set of parameters: $5,000\\le$ T$_{model}$ $\\le 60,000$K, solar abundances, $\\rho \\propto r^{-3}$, $\\v_{max} = 2000\\kms$, $L=6 \\times 10^{4}\\Lsun$, and a statistical or microturbulent velocity of 50 $\\kms$. We used the synthetic spectra to estimate the model parameters corresponding to the observed {\\it IUE} spectra. The fits to the observations were then iteratively improved by changing the parameters of the model atmospheres, in particular T$_{model}$ and the abundances, to arrive at the best fits to the optically thick pseudo-continuum and the features found in the {\\it IUE} spectra. The {\\it IUE} spectra show two different optically thick subphases. The earliest spectra, taken a few days after maximum optical light, show a pseudo-continuum created by overlapping absorption lines. The later observations, taken approximately 3 weeks after maximum light, show the simultaneous presence of allowed, semi-forbidden, and forbidden lines in the observed spectra. Analysis of these phases indicate that OS And 86 had solar metallicities except for Mg which showed evidence of being underabundant by as much as a factor of 10. We determine a distance of 5.1 kpc to OS And 86 and derive a peak bolometric luminosity of $\\sim$ 5 $\\times$ 10$^4$ L$_{\\odot}$. The computed nova parameters provide insights into the physics of the early outburst and explain the spectra seen by {\\it IUE}. Lastly, we find evidence in the later observations for large non-LTE effects of Fe{\\sc ii} which, when included, lead to much better agreement with the observations.

  20. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  1. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect (OSTI)

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Kuin, Paul; De Pasquale, Massimiliano [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking Surrey, RH5 6NT (United Kingdom); Scalzo, Richard [Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Holland, Stephen [Space Telescope Science Center 3700 San Martin Drive, Baltimore, MD 21218 (United States); Milne, Peter, E-mail: pbrown@physics.tamu.edu [Steward Observatory, University of Arizona, Tucson, AZ 85719 (United States)

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  2. Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld

    SciTech Connect (OSTI)

    Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J. E-mail: Lavinia.Heisenberg@unige.ch

    2014-11-01

    We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.

  3. Investigating the effective range of vacuum ultraviolet-mediated breakdown in high-power microwave metamaterials

    SciTech Connect (OSTI)

    Liu, Chien-Hao, E-mail: cliu82@wisc.edu; Neher, Joel D., E-mail: jdneher@wisc.edu; Booske, John H., E-mail: booske@engr.wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2014-10-14

    Metamaterials and periodic structures operating under high-power excitations are susceptible to breakdown. It was recently demonstrated that a localized breakdown created in a given region of a periodic structure can facilitate breakdown in other regions of the structure where the intensity of the incident electromagnetic fields may not be high enough to cause breakdown under normal circumstances. It was also demonstrated that this phenomenon is due to the generation of vacuum ultraviolet radiation at the location of the initial discharge, which propagates to the neighboring regions (e.g., other unit cells in a periodic structure) and facilitates the generation of a discharge at a lower incident power level. In this paper, we present the results of an experimental study conducted to determine the effective range of this physical phenomenon for periodic structures that operate in air and in pure nitrogen gas at atmospheric pressure levels. It is demonstrated that when breakdown is induced in a periodic structure using a high-power pulse with a frequency of 9.382 GHz, duration of 0.8 ?s, and peak power level of 25 kW, this phenomenon is highly likely to happen in radii of approximately 16–17 mm from the location of the initial discharge under these test conditions. The results of this study are significant in designing metamaterials and periodic structures for high-power microwave applications as they suggest that a localized discharge created in such a periodic structure with a periodicity less than 16–17 mm can spread over a large surface and result in a distributed discharge.

  4. ULTRAVIOLET EMISSION-LINE CORRELATIONS IN HST/COS SPECTRA OF ACTIVE GALACTIC NUCLEI: SINGLE-EPOCH BLACK HOLE MASSES

    SciTech Connect (OSTI)

    Tilton, Evan M.; Shull, J. Michael, E-mail: evan.tilton@colorado.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States)

    2013-09-01

    Effective methods of measuring supermassive black hole masses in active galactic nuclei (AGNs) are of critical importance to studies of galaxy evolution. While there has been much success in obtaining masses through reverberation mapping, the extensive observing time required by this method has limited the practicality of applying it to large samples at a variety of redshifts. This limitation highlights the need to estimate these masses using single-epoch spectroscopy of ultraviolet (UV) emission lines. We use UV spectra of 44 AGNs from HST/COS, the International Ultraviolet Explorer, and the Far Ultraviolet Spectroscopic Explorer of the C IV {lambda}1549, O VI {lambda}1035, O III] {lambda}1664, He II {lambda}1640, C II {lambda}1335, and Mg II {lambda}2800 emission lines and explore their potential as tracers of the broad-line region and supermassive black hole mass. The higher signal-to-noise ratio and better spectral resolution of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) resolve AGN intrinsic absorption and produce more accurate line widths. From these, we test the viability of mass-scaling relationships based on line widths and luminosities and carry out a principal component analysis based on line luminosities, widths, skewness, and kurtosis. At L{sub 1450} {<=} 10{sup 45} erg s{sup -1}, the UV line luminosities correlate well with H{beta}, as does the 1450 A continuum luminosity. We find that C IV, O VI, and Mg II can be used as reasonably accurate estimators of AGN black hole masses, while He II and C II are uncorrelated.

  5. PREDICTING Ly? AND Mg II FLUXES FROM K AND M DWARFS USING GALAXY EVOLUTION EXPLORER ULTRAVIOLET PHOTOMETRY

    SciTech Connect (OSTI)

    Shkolnik, Evgenya L.; Rolph, Kristina A.; Peacock, Sarah; Barman, Travis S. E-mail: kristina.rolph@fandm.edu E-mail: barman@lpl.arizona.edu

    2014-11-20

    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Ly? emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Ly?, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Ly? line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Ly? and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Ly? to the GALEX fluxes reveal how the relative strength of Ly? compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Ly?. The reported correlations provide estimates of intrinsic Ly? and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy.

  6. FAR-ULTRAVIOLET SPECTROSCOPY OF THE NOVA-LIKE VARIABLE KQ MONOCEROTIS: A NEW SW SEXTANTIS STAR?

    SciTech Connect (OSTI)

    Wolfe, Aaron; Sion, Edward M.; Bond, Howard E. E-mail: edward.sion@villanova.edu

    2013-06-01

    New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of {approx}0.6 M {sub Sun }, with an accretion rate of order 10{sup -9} M {sub Sun} yr{sup -1} and disk inclinations between 60 Degree-Sign and 75 Degree-Sign , yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

  7. Ultraviolet number counts of galaxies from Swift UV/Optical Telescope deep imaging of the Chandra Deep Field South

    E-Print Network [OSTI]

    Hoversten, E A; Berk, D E Vanden; Koch, T S; Breeveld, A A; Curran, P A; Hinshaw, D A; Marshall, F E; Roming, P W A; Siegel, M H; Still, M

    2009-01-01

    Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, uvw1: 2600 A) and the u band (3645 A). UVOT observations cover the break in the slope of the NUV number counts with greater precision than the number counts by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) and the Galaxy Evolution Explorer (GALEX), spanning a range from 21 < m_AB < 25. Number counts models confirm earlier investigations in favoring models with an evolving galaxy luminosity function.

  8. HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS OF THE TEMPERATURE STRUCTURE OF THE QUIET CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Williams, David R. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Watanabe, Tetsuya, E-mail: dhbrooks@ssd5.nrl.navy.mi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-11-10

    We present a differential emission measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We show that the expected quiet-Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log T = 5.6-6.4 K that can be used to derive the DEM distribution reliably, including a subset of iron lines that can be used to derive the DEM distribution free of the possibility of uncertainties in the elemental abundances. The subset can be used without the need for extensive measurements, and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1'' pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet-Sun data sets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log T approx 6.2 K in all cases. This result is consistent with the view that the shape of the quiet-Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This universal DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet-Sun region to region.

  9. The Efficacy of Ultraviolet Radiation for Sterilizing Tools Used for Surgically Implanting Transmitters into Fish

    SciTech Connect (OSTI)

    Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Gay, Marybeth E.; Woodley, Christa M.; Brown, Richard S.

    2013-02-28

    Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelom of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When several fish are implanted consecutively for large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. However, autoclaving tools can take a long period of time, and chemical sterilants or disinfectants can be harmful to both humans and fish and have varied effectiveness. Ultraviolet (UV) radiation is commonly used to disinfect water in aquaculture facilities. However, this technology has not been widely used to sterilize tools for surgical implantation of transmitters in fish. To determine its efficacy for this application, Pacific Northwest National Laboratory researchers used UV radiation to disinfect surgical tools (i.e., forceps, needle holder, stab scalpel, and suture) that were exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica. Surgical tools were exposed to the bacteria by dipping them into a confluent suspension of three varying concentrations (i.e., low, medium, high). After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods—2, 5, or 15 min. S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV light exposures of 5 and 15 min were effective at killing all four organisms. UV light was also effective at killing Geobacillus stearothermophilus, the organism used as a biological indicator to verify effectiveness of steam sterilizers. These techniques appear to provide a quick alternative disinfection technique for some surgical tools that is less harmful to both humans and fish while not producing chemical waste. However, we do not recommend using these methods with tools that have overlapping parts or other structures that cannot be directly exposed to UV light such as needle holders.

  10. SIMULTANEOUS X-RAY AND ULTRAVIOLET OBSERVATIONS OF THE SW SEXTANTIS STAR DW URSAE MAJORIS

    SciTech Connect (OSTI)

    Hoard, D. W.; Wachter, S. [Spitzer Science Center, California Institute of Technology, MS 220-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Lu, Ting-Ni [Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Knigge, Christian [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Homer, Lee; Szkody, Paula [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Still, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dhillon, V. S., E-mail: hoard@ipac.caltech.ed [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2010-11-15

    We present the first pointed X-ray observation of DW Ursae Majoris, a novalike cataclysmic variable (CV) and one of the archetype members of the SW Sextantis class, obtained with the XMM-Newton satellite. These data provide the first detailed look at an SW Sex star in the X-ray regime (with previous X-ray knowledge of the SW Sex stars limited primarily to weak or non-detections in the ROSAT All Sky Survey). It is also one of only a few XMM-Newton observations (to date) of any high mass transfer rate novalike CV, and the only one in the evolutionarily important 3-4 hr orbital period range. The observed X-ray spectrum of DW UMa is very soft, with {approx}95% of the detected X-ray photons at energies <2 keV. The spectrum can be fit equally well by a one-component cooling flow model, with a temperature range of 0.2-3.5 keV, or a two-component, two-temperature thermal plasma model, containing hard ({approx}5-6 keV) and soft ({approx}0.8 keV) components. The X-ray light curve of DW UMa shows a likely partial eclipse, implying X-ray reprocessing in a vertically extended region, and an orbital modulation, implying a structural asymmetry in the X-ray reprocessing site (e.g., it cannot be a uniform corona). We also obtained a simultaneous near-ultraviolet light curve of DW UMa using the Optical Monitor on XMM-Newton. This light curve is similar in appearance to published optical-UV light curves of DW UMa and shows a prominent deep eclipse. Regardless of the exact nature of the X-ray reprocessing site in DW UMa, the lack of a prominent hard X-ray total eclipse and very low fraction of high energy X-rays point to the presence of an optically and geometrically thick accretion disk that obscures the boundary layer and modifies the X-ray spectrum emitted near the white dwarf.

  11. OBSERVATIONS AND MODELING OF THE EMERGING EXTREME-ULTRAVIOLET LOOPS IN THE QUIET SUN AS SEEN WITH THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Chitta, L. P.; Van Ballegooijen, A. A.; DeLuca, E. E.; Kariyappa, R.; Hasan, S. S.; Hanslmeier, A.

    2013-05-01

    We used data from the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) to study coronal loops at small scales, emerging in the quiet Sun. With HMI line-of-sight magnetograms, we derive the integrated and unsigned photospheric magnetic flux at the loop footpoints in the photosphere. These loops are bright in the EUV channels of AIA. Using the six AIA EUV filters, we construct the differential emission measure (DEM) in the temperature range 5.7-6.5 in log T (K) for several hours of observations. The observed DEMs have a peak distribution around log T Almost-Equal-To 6.3, falling rapidly at higher temperatures. For log T < 6.3, DEMs are comparable to their peak values within an order of magnitude. The emission-weighted temperature is calculated, and its time variations are compared with those of magnetic flux. We present two possibilities for explaining the observed DEMs and temperatures variations. (1) Assuming that the observed loops are composed of a hundred thin strands with certain radius and length, we tested three time-dependent heating models and compared the resulting DEMs and temperatures with the observed quantities. This modeling used enthalpy-based thermal evolution of loops (EBTEL), a zero-dimensional (0D) hydrodynamic code. The comparisons suggest that a medium-frequency heating model with a population of different heating amplitudes can roughly reproduce the observations. (2) We also consider a loop model with steady heating and non-uniform cross-section of the loop along its length, and find that this model can also reproduce the observed DEMs, provided the loop expansion factor {gamma} {approx} 5-10. More observational constraints are required to better understand the nature of coronal heating in the short emerging loops on the quiet Sun.

  12. The 1999aa-like Type Ia Supernova iPTF14bdn in the Ultraviolet and Optical

    E-Print Network [OSTI]

    Smitka, Michael T; Suntzeff, Nicholas B; Zhang, Jujia; Wang, Xiaofeng; Zhai, Qian; Mo, Jun; Zhang, Tianmeng

    2015-01-01

    We present ultraviolet (UV) and optical photometry and spectra of the 1999aa-like supernova (SN) iPTF14bdn. The UV data were observed using the Swift Ultraviolet/Optical Telescope (UVOT) and constitute the first UV spectral series of a 1999aa-like SN. From the photometry we measure $\\Delta m_{15}({\\it B})\\,=\\,0.84 \\pm0.05$ mag and blue UV colors at epochs earlier than $-5$ days. The spectra show that the early-time blue colors are the result of less absorption between $2800 - 3200 \\,\\AA~$ than is present in normal SNe Ia. Using model spectra fits of the data at $-10 $ and $+10 $ days, we identify the origin of this spectral feature to be a temperature effect in which doubly ionized iron group elements create an opacity 'window'. We determine that the detection of high temperatures and large quantities of iron group elements at early epochs imply the mixing of a high Ni mass into the outer layers of the SN ejecta. We also identify the source of the I-band secondary maximum in iPTF14bdn to be the decay of Fe II...

  13. UVUDF: Ultraviolet Through Near-infrared Catalog and Photometric Redshifts of Galaxies in the Hubble Ultra Deep Field

    E-Print Network [OSTI]

    Rafelski, Marc; Gardner, Jonathan P; Coe, Dan; Bond, Nicholas A; Koekemoer, Anton M; Grogin, Norman; Kurczynski, Peter; McGrath, Elizabeth J; Bourque, Matthew; Atek, Hakim; Brown, Thomas M; Colbert, James W; Codoreanu, Alex; Ferguson, Henry C; Finkelstein, Steven L; Gawiser, Eric; Giavalisco, Mauro; Gronwall, Caryl; Hanish, Daniel J; Lee, Kyoung-Soo; Mehta, Vihang; de Mello, Duilia F; Ravindranath, Swara; Ryan, Russell E; Scarlata, Claudia; Siana, Brian; Soto, Emmaris; Voyer, Elysse N

    2015-01-01

    We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telescope observations. Our Wide Field Camera 3 (WFC3)/UV F225W, F275W, and F336W image mosaics from the ultra-violet UDF (UVUDF) imaging campaign are newly calibrated to correct for charge transfer inefficiency, and use new dark calibrations to minimize background gradients and pattern noise. Our NIR WFC3/IR image mosaics combine the imaging from the UDF09 and UDF12 campaigns with CANDELS data to provide NIR coverage for the entire UDF field of view. We use aperture-matched point-spread function corrected photometry to measure photometric redshifts in the UDF, sampling both the Lyman break and Balmer break of galaxies at z~0.8-3.4, and one of the breaks over the rest of the redshift range. Our comparison of these results with a compilation of robust spectroscopic redsh...

  14. Surface figure control for coated optics

    DOE Patents [OSTI]

    Ray-Chaudhuri, Avijit K. (Livermore, CA); Spence, Paul A. (Pleasanton, CA); Kanouff, Michael P. (Livermore, CA)

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  15. Pedestal substrate for coated optics

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA); Malsbury, Terry N. (Tracy, CA); Patterson, Steven R. (Concord, NC)

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  16. Method to adjust multilayer film stress induced deformation of optics

    DOE Patents [OSTI]

    Mirkarimi, Paul B. (Sunol, CA); Montcalm, Claude (Livermore, CA)

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  17. Quantitative nanoscale field effect sensors Aleksandar Vacica,c

    E-Print Network [OSTI]

    Reed, Mark

    device is formed by either electron beam lithography (EBL) or by deep ultraviolet (DUV) lithography, foll-free biomolecular sensors for rapid diagnostics. However, their practical application has been hindered due Rapid and reliable detection of biomolecules using direct electronic label-free detection in disparate

  18. Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped

    E-Print Network [OSTI]

    Kung, Andy

    W of 213 nm radiation were generated from a fundamental power of 7 W of 1064 nm light at 5 kHz. The overall-4018(02)01669-3 #12;the resonance condition increases the UV pulse duration. As a result, the peak power density 2002; accepted 10 June 2002 Abstract Stable high-power operation in the deep ultraviolet is achieved

  19. UVOC-MAC: A MAC Protocol for Outdoor Ultraviolet Networks Yiyang Lia, Jianxia Ningb, Zhengyuan Xua, Srikanth V. Krishnamurthyb, Gang Chena

    E-Print Network [OSTI]

    Krishnamurthy, Srikanth

    communications (UVOC) where solar blind and non- line-of-sight operations are attractive. Light beams from UV LED. Index Terms--Optical wireless communications, UV, MAC I. INTRODUCTION Recently, unlicensed ultraviolet be attractive for achieving low cost and high data rate operations. Meanwhile, communications in UV typically do

  20. Spin injection and spin dynamics at the CuPc/GaAs interface studied with ultraviolet photoemission spectroscopy and two-photon photoemission spectroscopy

    E-Print Network [OSTI]

    Aeschlimann, Martin

    injection via Schottky contacts. Only recently, direct electrical spin injec- tion with organicSpin injection and spin dynamics at the CuPc/GaAs interface studied with ultraviolet photoemission show a highly efficient spin injection of hot electrons from GaAs into CuPc, demonstrating that spin