Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EUV lithography  

Science Conference Proceedings (OSTI)

... This animation shows how the researchers measure contamination that results when EUV photons (green and purple lines) strike a photoresist on ...

2011-12-08T23:59:59.000Z

2

Extreme Ultraviolet Lithography (EUVL) Portfolio  

Abstract Fees; Passivating Overcoat Bilayer for Multilayer Reflective Coatings for Extreme Ultraviolet (EUV) Lithography. 5,958,605. A passivating overcoat bilayer is ...

3

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating Extreme Ultraviolet Lithography Mask Defects Print Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

4

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating Extreme Investigating Extreme Ultraviolet Lithography Mask Defects Investigating Extreme Ultraviolet Lithography Mask Defects Print Wednesday, 28 July 2010 00:00 Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

5

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating Extreme Ultraviolet Lithography Mask Defects Print Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized lenses made of curved mirrors with reflective coatings called multilayers to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, scientists at Berkeley Lab worked with SEMATECH, an international semiconductor industry consortium, to create a unique Fresnel zone-plate microscope on Advanced Light Source Beamline 11.3.2 called the SEMATECH Berkeley Actinic Inspection Tool (AIT).

6

EUV lithography cost of ownership analysis  

SciTech Connect

The cost of fabricating state-of-the-art integrated circuits (ICs) has been increasing and it will likely be economic rather than technical factors that ultimately limit the progress of ICs toward smaller devices. It is estimated that lithography currently accounts for approximately one-third the total cost of fabricating modem ICs({sup 1}). It is expected that this factor will be fairly stable for the forseeable future, and as a result, any lithographic process must be cost-effective before it can be considered for production. Additionally, the capital equipment cost for a new fabrication facility is growing at an exponential rate (2); it will soon require a multibillion dollar investment in capital equipment alone to build a manufacturing facility. In this regard, it is vital that any advanced lithography candidate justify itself on the basis of cost effectiveness. EUV lithography is no exception and close attention to issues of wafer fabrication costs have been a hallmark of its early history. To date, two prior cost analyses have been conducted for EUV lithography (formerly called {open_quotes}Soft X-ray Projection Lithography{close_quotes}). The analysis by Ceglio, et. al., provided a preliminary system design, set performance specifications and identified critical technical issues for cost control. A follow-on analysis by Early, et.al., studied the impact of issues such as step time, stepper overhead, tool utilization, escalating photoresist costs and limited reticle usage on wafer exposure costs. This current study provides updated system designs and specifications and their impact on wafer exposure costs. In addition, it takes a first cut at a preliminary schematic of an EUVL fabrication facility along with an estimate of the capital equipment costs for such a facility.

Hawryluk, A.M.; Ceglio, N.M.

1995-01-19T23:59:59.000Z

7

"A Novel Objective for EUV Microscopy and EUV Lithography" Inventors  

NLE Websites -- All DOE Office Websites (Extended Search)

A Novel Objective for EUV Microscopy and EUV Lithography" Inventors A Novel Objective for EUV Microscopy and EUV Lithography" Inventors ..--.. Manfred Bitter, Kenneth Hill, Philip Efthimion. This invention is a new x-ray scheme for stigmatic imaging. The scheme consists of one convex spherically bent crystal and one concave spherically bent crystal. The radii of curvature and Bragg reflecting lattice planes of the two crystals are properly matched to eliminate the astigmatism, so that the conditions for stigmatic imaging are met for a particular wavelength. The magnification is adjustable and solely a function of the two Bragg angles or angles of incidence. Although the choice of Bragg angles is constrained by the availability of crystals, this is not a severe limitation for the imaging of plasmas, since a particular wavelength can be

8

Microfield exposure tool enables advances in EUV lithography development  

SciTech Connect

With demonstrated resist resolution of 20 nm half pitch, the SEMATECH Berkeley BUV microfield exposure tool continues to push crucial advances in the areas of BUY resists and masks. The ever progressing shrink in computer chip feature sizes has been fueled over the years by a continual reduction in the wavelength of light used to pattern the chips. Recently, this trend has been threatened by unavailability of lens materials suitable for wavelengths shorter than 193 nm. To circumvent this roadblock, a reflective technology utilizing a significantly shorter extreme ultraviolet (EUV) wavelength (13.5 nm) has been under development for the past decade. The dramatic wavelength shrink was required to compensate for optical design limitations intrinsic in mirror-based systems compared to refractive lens systems. With this significant reduction in wavelength comes a variety of new challenges including developing sources of adequate power, photoresists with suitable resolution, sensitivity, and line-edge roughness characteristics, as well as the fabrication of reflection masks with zero defects. While source development can proceed in the absence of available exposure tools, in order for progress to be made in the areas of resists and masks it is crucial to have access to advanced exposure tools with resolutions equal to or better than that expected from initial production tools. These advanced development tools, however, need not be full field tools. Also, implementing such tools at synchrotron facilities allows them to be developed independent of the availability of reliable stand-alone BUY sources. One such tool is the SEMATECH Berkeley microfield exposure tool (MET). The most unique attribute of the SEMA TECH Berkeley MET is its use of a custom-coherence illuminator made possible by its implementation on a synchrotron beamline. With only conventional illumination and conventional binary masks, the resolution limit of the 0.3-NA optic is approximately 25 nm, however, with EUV not expected in production before the 22-nm half pitch node even finer resolution capabilities are now required from development tools. The SEMATECH Berkeley MET's custom-coherence illuminator allows it to be used with aggressive modified illumination enabling kJ factors as low as 0.25. Noting that the lithographic resolution of an exposure tool is defined as k{sub 1}{lambda}/NA, yielding an ultimate resolution limit of 11 nm. To achieve sub-20-nm aerial-image resolution while avoiding forbidden pitches on Manhattan-geometry features with the centrally-obscured MET optic, a 45-degree oriented dipole pupil fill is used. Figure 1 shows the computed aerial-image contrast as a function of half pitch for a dipole pupil fill optimized to print down to the 19-nm half pitch level. This is achieved with relatively uniform performance at larger dimensions. Using this illumination, printing down to the 20-nm half pitch level has been demonstrated in chemically amplified resists as shown in Fig. 2. The SEMATECH Berkeley MET tool plays a crucial role in the advancement of EUV resists. The unique programmable coherence properties of this tool enable it to achieve higher resolution than other EUV projection tools. As presented here, over the past year the tool has been used to demonstrate resist resolutions of 20 half pitch. Although not discussed here, because the Berkeley MET tool is a true projection lithography tool, it also plays a crucial role in advanced EUV mask research. Examples of the work done in this area include defect printability, mask architecture, and phase shift masks.

Naulleau, Patrick

2009-09-07T23:59:59.000Z

9

Advanced 0.3-NA EUV lithography capabilities at the ALS  

E-Print Network (OSTI)

micro-exposure capabilities at the ALS using the 0.3-NA METEUV Microexposures at the ALS using the 0.3-NA MET Optic,”EUV lithography capabilities at the ALS Patrick Naulleau 1 ,

2005-01-01T23:59:59.000Z

10

Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV ...  

Science Conference Proceedings (OSTI)

and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric ... the calibration of the ESP instrument is addressed by Didkovsky et al. (Solar Phys.

11

Reflective masks for extreme ultraviolet lithography  

SciTech Connect

Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 {mu}m wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

Nguyen, Khanh Bao

1994-05-01T23:59:59.000Z

12

High-efficiency spectral purity filter for EUV lithography  

DOE Patents (OSTI)

An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

Chapman, Henry N. (Livermore, CA)

2006-05-23T23:59:59.000Z

13

Low-cost method for producing extreme ultraviolet lithography optics  

DOE Patents (OSTI)

Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

Folta, James A. (Livermore, CA); Montcalm, Claude (Fort Collins, CO); Taylor, John S. (Livermore, CA); Spiller, Eberhard A. (Mt. Kisco, NY)

2003-11-21T23:59:59.000Z

14

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

types of mask defects recorded in several state-of-the-art tools: the AIT, a scanning electron microscope (SEM), and a commercial deep ultraviolet (DUV) mask inspection tool....

15

EUV Resists: Illuminating the challenges  

SciTech Connect

As extreme ultraviolet (EUV) lithography enters the commercialization phase with potential introduction at the 3x nm half-pitch node in 2013, the attention of advanced EUV resist research has turned to addressing patterning at 16-nm half pitch and below. Whereas line-edge roughness is the primary concern at 2x half pitch and larger, research at the 16-nm half pitch level is uncovering broader.

Naulleau, Patrick; Anderson, Christopher; George, Simi

2011-06-01T23:59:59.000Z

16

Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography  

SciTech Connect

Current challenges in the development of efficient laser produced plasma sources for the next generation extreme ultraviolet lithography (EUVL) are increasing EUV power and maximizing lifetime and therefore, reducing cost of devices. Mass-limited targets such as small tin droplets are considered among the best choices for cleaner operation of the optical system because of lower mass of atomic debris produced by the laser beam. The small diameter of droplets, however, decreases the conversion efficiency (CE) of EUV photons emission, especially in the case of CO{sub 2} laser, where laser wavelength has high reflectivity from the tin surface. We investigated ways of improving CE in mass-limited targets. We considered in our modeling various possible target phases and lasers configurations: from solid/liquid droplets subjected to laser beam energy with different intensities and laser wavelength to dual-beam lasers, i.e., a pre-pulse followed by a main pulse with adjusted delay time in between. We studied the dependence of vapor expansion rate, which can be produced as a result of droplet heating by pre-pulse laser energy, on target configuration, size, and laser beam parameters. As a consequence, we studied the influence of these conditions and parameters on the CE and debris mass accumulation. For better understanding and more accurate modeling of all physical processes occurred during various phases of laser beam/target interactions, plasma plume formation and evolution, EUV photons emission and collection, we have implemented in our heights package state-of-the art models and methods, verified, and benchmarked against laboratory experiments in our CMUXE center as well as various worldwide experimental results.

Sizyuk, T.; Hassanein, A. [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-08-15T23:59:59.000Z

17

Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography  

DOE Patents (OSTI)

A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

2002-01-01T23:59:59.000Z

18

Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography  

DOE Patents (OSTI)

A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

2001-01-01T23:59:59.000Z

19

Plasma-based EUV light source  

DOE Patents (OSTI)

Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

2010-11-02T23:59:59.000Z

20

Plasma-based EUV light source  

DOE Patents (OSTI)

Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

2008-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

At-wavelength interferometry of high-NA diffraction-limited EUV optics  

SciTech Connect

Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.

Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

2003-08-01T23:59:59.000Z

22

Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application  

SciTech Connect

The progress in development of commercial system for next generation EUV lithography requires, among other factors, significant improvement in EUV photon sources such as discharge produced plasma (DPP) and laser produced plasma (LPP) devices. There are still many uncertainties in determining the optimum device since there are many parameters for the suitable and efficient energy source and target configuration and size. Complex devices with trigger lasers in DPP or with pre-pulsing in LPP provide wide area for optimization in regards to conversion efficiency (CE) and components lifetime. We considered in our analysis a promising LPP source configuration using 10-30 {mu}m tin droplet targets, and predicted conditions for the most efficient EUV radiation output and collection as well as calculating photons source location and size. We optimized several parameters of dual-beam lasers and their relationship to target size. We used our HEIGHTS comprehensive and integrated full 3D simulation package to study and optimize LPP processes with various target sizes to maximize the CE of the system.

Sizyuk, T.; Hassanein, A. [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-08-01T23:59:59.000Z

23

X-ray and EUV Emission Studies of Copper Vacuum Spark Plasma  

SciTech Connect

A vacuum spark system with a copper anode and electrode of gap 1.5 mm is investigated for the purpose of developing it as a possible radiation source for Next Generation Lithography (NGL). At discharge voltage in the range of 10 to 15 kV and an ambient pressure of about 10{sup -3} mbar, both X-ray (measured by PIN diode) and extreme ultraviolet, EUV (measured by SXUV5A with integrated filter) can be measured simultaneously when good pinching discharge as indicated by sharp dip in the waveform of the rate of current is achieved. For discharge with mild pinching, only EUV emission is observed.

Chan, L. S.; Ghomeishi, M.; Yap, S. L.; Wong, C. S. [Plasma Research Laboratory, Physics Department, Faculty of Science, University of Malaya, 50603 KualaLumpur (Malaysia)

2010-07-07T23:59:59.000Z

24

Interferometric at-wavelength flare characterization of EUV optical systems  

DOE Patents (OSTI)

The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

Naulleau, Patrick P. (Oakland, CA); Goldberg, Kenneth Alan (Berkeley, CA)

2001-01-01T23:59:59.000Z

25

Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography  

DOE Patents (OSTI)

A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

Hassanein, Ahmed (Bolingbrook, IL); Konkashbaev, Isak (Bolingbrook, IL)

2006-10-03T23:59:59.000Z

26

Critical challenges for EUV resist materials  

SciTech Connect

Although Extreme ultraviolet lithography (EUVL) is now well into the commercialization phase, critical challenges remain in the development of EUV resist materials. The major issue for the 22-nm half-pitch node remains simultaneously meeting resolution, line-edge roughness (LER), and sensitivity requirements. Although several materials have met the resolution requirements, LER and sensitivity remain a challenge. As we move beyond the 22-nm node, however, even resolution remains a significant challenge. Chemically amplified resists have yet to demonstrate the required resolution at any speed or LER for 16-nm half pitch and below. Going to non-chemically amplified resists, however, 16-nm resolution has been achieved with a LER of 2 nm but a sensitivity of only 70 mJ/cm{sup 2}.

Naulleau, Patrick P.; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Rekawa, Seno; Smith, Nathan

2011-02-28T23:59:59.000Z

27

Chemical Effect of Dry and Wet Cleaning of the Ru Protective Layer of the Extreme ultraviolet (EUV) Lithography Reflector  

E-Print Network (OSTI)

Park, Physical Chemistry Chemical Y.B. He, et al. , JournalChemical Effect of Dry and Wet Cleaning of the Ru ProtectiveBerkeley, California 94720 Chemical Sciences Division,

Belau, Leonid

2010-01-01T23:59:59.000Z

28

Thorough characterization of a EUV mask  

SciTech Connect

We reported that we were successful in our 45nm technology node device demonstration in February 2008 and 22nm node technology node device patterning in February 2009 using ASML's Alpha Demo Tool (ADT). In order to insert extreme ultraviolet (EUV) lithography at the 15nm technology node and beyond, we have thoroughly characterized one EUV mask, a so-called NOVACD mask. In this paper, we report on three topics, The first topic is an analysis of line edge roughness (LER) using a mask Scanning Electron Microscope (SEM), an Atomic Force Microscope (AFM) and the Actinic Inspection Tool (AIT) to compare resist images printed with the ASML ADT. The results of the analysis show a good correlation between the mask AFM and the mask SEM measurements, However, the resist printing results for the isolated space patterns are slightly different. The cause ofthis discrepancy may be resist blur, image log slope and SEM image quality and so on. The second topic is an analysis of mask topography using an AFM and relative reflectivity of mirror and absorber surface using the AIT, The AFM data show 6 and 7 angstrom rms roughness for mirror and absorber, respectively. The reflectivity measurements show that the mirror reflects EUV light about 20 times higher than absorber. The last topic is an analysis of a 32nm technology node SRAM cell which includes a comparison of mask SEM image, AIT image, resist image and simulation results. The ADT images of the SRAM pattern were of high quality even though the mask patters were not corrected for OPC or any EUV-specific effects. Image simulation results were in good agreement with the printing results.

Mizuno, H.; McIntyre, G.; Koay, C.-W.; Burkhardt, M.; He, L.; Hartley, J.; Johnson, C.; Raghunathan, S.; Goldberg, K.; Mochi, I.; La Fontaine, B.; Wood, O.

2009-06-25T23:59:59.000Z

29

EUV Lithography: New Metrology Challenges  

Science Conference Proceedings (OSTI)

... Photo of SEMATECH/Berkeley MET Optics Courtesy: John Taylor, LLNL 220 mm ... Wavefront Reference Source Data Courtesy of John Taylor, LLNL ...

30

NGL comparable to 193-nm lithography in cost, footprint, and power consumption  

Science Conference Proceedings (OSTI)

A comparison of ArF immersion single exposure, double patterning, extreme UV, and multi-e-beam maskless lithography (MEB ML2) systems, is made on their special characteristics, then in footprint, cost, and raw energy consumption. Only the MEB ML2 system ... Keywords: Direct-write lithography, E-beam lithography, EUV lithography, Maskless lithography, Microlithography, Next-generation lithography

Burn J. Lin

2009-04-01T23:59:59.000Z

31

The ending of optical lithography and the prospects of its successors  

Science Conference Proceedings (OSTI)

This presentation starts from recounting the history of optical lithography since its >2@mm days until the sub-100nm era. To increase resolution and keep depth of focus in check, the wavelength has been shortened from 436, to 365, 248, and 193nm, numerical ... Keywords: Direct write lithography, E-beam lithography, EUV lithography, Immersion lithography, Microlithography, Optical lithography

Burn J. Lin

2006-04-01T23:59:59.000Z

32

Method for plasma formation for extreme ultraviolet lithography-theta pinch  

SciTech Connect

A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

Hassanein, Ahmed (Naperville, IL); Konkashbaev, Isak (Bolingbrook, IL); Rice, Bryan (Hillsboro, OR)

2007-02-20T23:59:59.000Z

33

Critical illumination condenser for x-ray lithography  

DOE Patents (OSTI)

A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

Cohen, Simon J. (Pleasanton, CA); Seppala, Lynn G. (Livermore, CA)

1998-01-01T23:59:59.000Z

34

Critical illumination condenser for x-ray lithography  

DOE Patents (OSTI)

A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

Cohen, S.J.; Seppala, L.G.

1998-04-07T23:59:59.000Z

35

A study of defects on EUV mask using blank inspection, patterned mask inspection, and wafer inspection  

SciTech Connect

The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm{sup 2}. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.

Huh, S.; Ren, L.; Chan, D.; Wurm, S.; Goldberg, K. A.; Mochi, I.; Nakajima, T.; Kishimoto, M.; Ahn, B.; Kang, I.; Park, J.-O.; Cho, K.; Han, S.-I.; Laursen, T.

2010-03-12T23:59:59.000Z

36

Top-surface imaging resists for lithography with strongly attenuated radiation  

SciTech Connect

Strong resist photoabsorption at wavelengths below 248 nm necessitates the use of a thin layer imaging (TLI) scheme for microlithography using 193 nm, 157 nm, or 13.4 nm radiation. Previous to this work, a TLI process commonly known as silylated top surface imaging (TSI) was developed by a Sandia/AT and T team for use in extreme ultraviolet lithography (EUVL) at 13.4 nm. Using this bilayer process, 0.13 {micro}m resolution with 87{degree} sidewalls in 0.7 {micro}m of resist was achieved for EUV exposures. New imaging layer polymers, silylation reagents and crosslinkers, and process conditions were screened for improvement in this TSI process with the ultimate goal of demonstrating a resist technology capable of 0.10 {micro}m critical dimension (CD). The results of these attempted improvements to the TSI process are described in this report.

Ray-Chaudhuri, A.; Kubiak, G.; Henderson, C.; Wheeler, D.; Pollagi, T.

1997-09-01T23:59:59.000Z

37

Wavelength-specific reflections: A decade of EUV actinic mask inspection research  

SciTech Connect

Mask inspection is essential for the success of any pattern-transfer lithography technology, and EUV Lithography in particular faces unique challenges. EUV masks resonant-reflective multilayer coatings have a narrow, wavelength-specific response that dramatically affects the way that defects appear, or disappear, at various illuminating wavelengths. Furthermore, the ever-shrinking size of 'critical' defects limits the potential effectiveness of DUV inspection techniques over time. Researchers pursuing numerous ways of finding and characterizing defects on EUV masks and have met with varying degrees of success. Their lessons inform the current, urgent exploration to select the most effective techniques for high-volume manufacturing. Ranging from basic research and demonstration experiments to commercial inspection tool prototypes, we survey the recent history of work in this area, including sixteen projects in Europe, Asia, and America. Solutions range from scanning beams to microscopy, dark field imaging to pattern transfer.

Goldberg, Kenneth; Mochi, Iacopo

2010-12-31T23:59:59.000Z

38

EUV Focus Sensor: Design and Modeling  

Science Conference Proceedings (OSTI)

We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wavelengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput optimizing the signal-to-noise ratio in the measured intensity contrast.

Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

2005-05-01T23:59:59.000Z

39

VUV lithography  

DOE Patents (OSTI)

Deep uv projection lithography can be performed using an e-beam pumped solid excimer uv source, a mask, and a uv reduction camera. The uv source produces deep uv radiation in the range 1700--1300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The uv reduction camera utilizes multilayer mirrors having high reflectivity at the uv wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 5 figs.

George, E.V.; Oster, Y.; Mundinger, D.C.

1990-01-09T23:59:59.000Z

40

VUV lithography  

DOE Patents (OSTI)

Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

George, E.V.; Oster, Y.; Mundinger, D.C.

1990-12-25T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Correction of SOHO CELIAS/SEM EUV Measurements saturated by extreme solar flare events  

E-Print Network (OSTI)

The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 sec cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 -- 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 -- 34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEM EUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Ea...

Didkovsky, L V; Jones, A R; Wieman, S; Tsurutani, B T; McMullin, D

2006-01-01T23:59:59.000Z

42

Nano-Scale Multilayer Mask for EUV Lithography Applications and ...  

Science Conference Proceedings (OSTI)

Effect of Initial Microstructure on the Processing of Titanium Using Equal Channel ... Investigation of Mechanical Properties of Silica/Epoxy Nano-Composites by ... of Ferroelectric Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer Films ... Sonochemistry as a Tool for Synthesis of Ion-Substituted Calcium Phosphate ...

43

Microfield exposure tool enables advances in EUV lithography development  

E-Print Network (OSTI)

This work was supported by the Director, Office of Science,of the Director, Office of Science, Office of Basic EnergyOffice of Basic Energy Sciences, of the US Department of

Naulleau, Patrick

2010-01-01T23:59:59.000Z

44

Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x-ray photoelectron spectroscopy study  

E-Print Network (OSTI)

Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x 2012) Extreme ultraviolet (EUV) radiation-induced carbon contamination and oxidation of Au surfaces modification during EUV exposure. XPS analysis showed that total carbon contamination (C 1s peak

Harilal, S. S.

45

A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry  

SciTech Connect

A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.

Goldberg, K.A. [Lawrence Berkeley National Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Physics; Tejnil, E. [California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences; Bokor, J. [Lawrence Berkeley National Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

1995-12-01T23:59:59.000Z

46

Correction of SOHO CELIAS/SEM EUV Measurements saturated by extreme solar flare events  

E-Print Network (OSTI)

The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 sec cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 -- 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 -- 34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEM EUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count-rate profiles, GOES X-ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about 7.5% for large X-class events.

L. V. Didkovsky; D. L. Judge; A. R. Jones; S. Wieman; B. T. Tsurutani; D. McMullin

2006-10-04T23:59:59.000Z

47

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

La Fontaine, A. Tchikoulaeva, and C. Holfeld, "Actinic imaging of native and programmed defects on a full-field mask," Proc. SPIE 7636, 76361A (2010). ALS Science Highlight 213...

48

Investigating Extreme Ultraviolet Lithography Mask Defects  

NLE Websites -- All DOE Office Websites (Extended Search)

Tchikoulaeva, and C. Holfeld, "Actinic imaging of native and programmed defects on a full-field mask," Proc. SPIE 7636, 76361A (2010). ALS Science Highlight 213 ALSNews Vol. 311...

49

Available Technologies: Extreme Ultraviolet Lithography Tools  

Capable of working with incoherent light sources; Does not require excessive spatial or temporal filtering; Large depth of focus (depending on source properties)

50

On The Mass and Energy Loading of EUV Brightpoints  

E-Print Network (OSTI)

We discuss the appearance of EUV brightpoints (BPs) in the analysis of long-duration observations in the He II 304 Angstrom passband of the Solar and Heliospheric Observatory (SOHO) Extreme-ultraviolet Imaging Telescope (EIT). The signature of the observed 304 Angstrom passband intensity fluctuations around the BPs suggest that the primary source of the mass and energy supplied to the magnetic structure is facilitated by relentless magnetoconvection-driven reconnection, forced by the magnetic evolution of the surrounding supergranules. Further, we observe that if the magnetic conditions in the supergranules surrounding the footpoints of the cool 304 Angstrom BPs are sufficient (large net imbalance with a magnetic field that closes beyond the boundaries of the cell it originates in) the magnetic topology comprising the BP will begin to reconnect with the overlying corona, increasing its visibility to hotter EUV passbands and possibly Soft X-Rays.

Scott W. McIntosh

2007-08-03T23:59:59.000Z

51

Contact thermal lithography  

E-Print Network (OSTI)

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

52

COMPLETED: Polymers for Next-Generation Lithography  

Science Conference Proceedings (OSTI)

... Metrology for Immersion Lithography: Next-generation lithography will use an ... edge roughness which causes excess chip power consumption and ...

2012-10-02T23:59:59.000Z

53

UNDERSTANDING SDO/AIA OBSERVATIONS OF THE 2010 JUNE 13 EUV WAVE EVENT: DIRECT INSIGHT FROM A GLOBAL THERMODYNAMIC MHD SIMULATION  

Science Conference Proceedings (OSTI)

In this work, we present a comprehensive observation and modeling analysis of the 2010 June 13 extreme-ultraviolet (EUV) wave observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). Due to extreme advances in cadence, resolution, and bandpass coverage in the EUV regime, the AIA instrument offers an unprecedented ability to observe the dynamics of large-scale coronal wave-like transients known as EUV waves. To provide a physical analysis and further complement observational insight, we conduct a three-dimensional, time-dependent thermodynamic MHD simulation of the eruption and associated EUV wave, and employ forward modeling of EUV observables to compare the results directly observations. We focus on two main aspects: (1) the interpretation of the stark thermodynamic signatures in the multi-filter AIA data within the propagating EUV wave front, and (2) an in-depth analysis of the simulation results and their implication with respect to EUV wave theories. Multiple aspects, including the relative phases of perturbed variables, suggest that the outer, propagating component of the EUV transient exhibits the behavior of a fast-mode wave. We also find that this component becomes decoupled from the evolving structures associated with the coronal mass ejection that are also visible, providing a clear distinction between wave and non-wave mechanisms at play.

Downs, Cooper; Roussev, Ilia I.; Lugaz, Noe [Institute for Astronomy, University of Hawaii, at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Van der Holst, Bart; Sokolov, Igor V., E-mail: cdowns@ifa.hawaii.edu [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109 (United States)

2012-05-10T23:59:59.000Z

54

Plating/Lithography-new  

NLE Websites -- All DOE Office Websites (Extended Search)

Plating/Lithography Plating/Lithography Manufacturing Technologies The Plating capabilities in the Thin Film, Vacuum and Packaging department include both electroless and electro plating. These processes support Multi-Chip Module, microelectromechanical systems (MEMS), Weapons Systems (Neutron Tubes) and other miscellaneous projects. Photo-processing facilities provide pattern- ing and circuitry on a variety of substrate materials. The department's capabilities include dry film, liquid, and electrophoreti- cally deposited resist application, exposure, development and patterning. Capabilities * Electroplate large areas using cyanide and non-cyanide based chemistries * Routinely plate copper, nickel and gold * Expertise in developing plating process- es for unusual applications and metals

55

Electron caustic lithography  

SciTech Connect

A maskless method of electron beam lithography is described which uses the reflection of an electron beam from an electrostatic mirror to produce caustics in the demagnified image projected onto a resist-coated wafer. By varying the electron optics, e.g. via objective lens defocus, both the morphology and dimensions of the caustic features may be controlled, producing a range of bright and tightly focused projected features. The method is illustrated for line and fold caustics and is complementary to other methods of reflective electron beam lithography.

Kennedy, S. M.; Zheng, C. X.; Tang, W. X.; Paganin, D. M.; Jesson, D. E. [School of Physics, Monash University, Victoria, 3800 (Australia); Fu, J. [Department of Mechanical and Aerospace Engineering, Monash University, Victoria, 3800 (Australia)

2012-06-15T23:59:59.000Z

56

An ice lithography instrument  

SciTech Connect

We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

Han, Anpan [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Chervinsky, John [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Branton, Daniel [Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Golovchenko, J. A. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

2011-06-15T23:59:59.000Z

57

Diffractive element in extreme-UV lithography condenser  

DOE Patents (OSTI)

Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

Sweatt, William C. (Albuquerque, NM); Ray-Chaudhuri, Avijit (Livermore, CA)

2001-01-01T23:59:59.000Z

58

Diffractive element in extreme-UV lithography condenser  

DOE Patents (OSTI)

Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

Sweatt, William C. (Albuquerque, NM); Ray-Chaudhurl, Avijit K. (Livermore, CA)

2000-01-01T23:59:59.000Z

59

NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES  

Science Conference Proceedings (OSTI)

New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Chamberlin, Phillip C.; Klimchuk, James A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD 20771 (United States); Didkovsky, Leonid; Judge, Darrell [Space Sciences Center, University of Southern California, Los Angeles, CA 90089 (United States); Mariska, John; Warren, Harry [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Schrijver, Carolus J. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Webb, David F. [Institute for Scientific Research, Boston College, Chestnut Hill, MA 02467 (United States); Bailey, Scott [Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, VA 24061 (United States); Tobiska, W. Kent, E-mail: tom.woods@lasp.colorado.edu [Space Environment Technologies, Pacific Palisades, CA 90272 (United States)

2011-10-01T23:59:59.000Z

60

XUV free-electron laser-based projection lithography systems  

SciTech Connect

Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

Newnam, B.E.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

THE EXTREME-ULTRAVIOLET EMISSION FROM SUN-GRAZING COMETS  

SciTech Connect

The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

Bryans, P. [ADNET Systems Inc., NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Pesnell, W. D. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

2012-11-20T23:59:59.000Z

62

Programmable imprint lithography template  

DOE Patents (OSTI)

A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

Cardinale, Gregory F. (Oakland, CA); Talin, Albert A. (Livermore, CA)

2006-10-31T23:59:59.000Z

63

radiometric far ultraviolet  

Science Conference Proceedings (OSTI)

... C.; Hill SB; et al., "The NIST EUV facility for advanced photoresist qualification using the witness-sample test," Proceedings of SPIE 7969, 79690K ...

2013-06-17T23:59:59.000Z

64

FLARE-ASSOCIATED TYPE III RADIO BURSTS AND DYNAMICS OF THE EUV JET FROM SDO/AIA AND RHESSI OBSERVATIONS  

Science Conference Proceedings (OSTI)

We present a detailed description of the interrelation between the Type III radio bursts and energetic phenomena associated with the flare activities in active region AR11158 at 07:58 UT on 2011 February 15. The timing of the Type III radio burst measured by the radio wave experiment on Wind/WAVE and an array of ground-based radio telescopes coincided with an extreme-ultraviolet (EUV) jet and hard X-ray (HXR) emission observed by SDO/AIA and RHESSI, respectively. There is clear evidence that the EUV jet shares the same source region as the HXR emission. The temperature of the jet, as determined by multiwavelength measurements by Atmospheric Imaging Assembly, suggests that Type III emission is associated with hot, 7 MK, plasma at the jet's footpoint.

Chen Naihwa; Ip, Wing-Huen [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Innes, Davina, E-mail: d949001@astro.ncu.edu.tw, E-mail: wingip@astro.ncu.edu.tw, E-mail: innes@mps.mpg.de [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany)

2013-06-01T23:59:59.000Z

65

Effect of high-energy neutral particles on extreme ultraviolet spectroscopy in large helical device  

Science Conference Proceedings (OSTI)

Spectra measured by an extreme ultraviolet (EUV) spectrometer frequently suffer large spike noise when Large Helical Device is operated in low-density range ({order to examine the effect of NBI, a carbon filter with thickness of 150 nm was installed in the EUV spectrometer. As a result, the spike noise was reduced by an order of magnitude. It is experimentally verified that the spike noise is caused by escaping high-energy neutral particles resulting from the circulating high-energy hydrogen ions borne from NBI.

Dong Chunfeng; Sakaue, Hiroyuki [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Tokitani, Masayuki; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Wang, Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Zushi, Hideki [RIAM, Kyushu University, Kasuga 816-8580, Fukuoka (Japan)

2012-10-15T23:59:59.000Z

66

EUV testing of multilayer mirrors: critical issues  

DOE Green Energy (OSTI)

Recently, while performing extensive EUV irradiation endurance testing on Ru-capped multilayer mirrors in the presence of elevated partial pressures of water and hydrocarbons, NIST has observed that the amount of EUV-induced damage actually decreases with increasing levels of water vapor above {approx} 5 x 10{sup -7} Torr. It is thought that the admitted water vapor may interact with otherwise stable, condensed carbonaceous species in an UHV vacuum system to increase the background levels of simple gaseous carbon-containing molecules. Some support for this hypothesis was demonstrated by observing the mitigating effect of very small levels of simple hydrocarbons with the intentional introduction of methyl alcohol in addition to the water vapor. It was found that the damage rate decreased by at least an order of magnitude when the partial pressure of methyl alcohol was just one percent of the water partial pressure. These observations indicate that the hydrocarbon components of the vacuum environment under actual testing conditions must be characterized and controlled to 10{sup -11} Torr or better in order to quantify the damage caused by high levels of water vapor. The possible effects of exposure beam size and out-of-band radiation on mirror lifetime testing will also be discussed.

Hill, S B; Ermanoski, I; Grantham, S; Tarrio, C; Lucatorto, T B; Madey, T E; Bajt, S; Chandhok, M; Yan, P; Wood, O; Wurn, S; Edwards, N V

2006-02-24T23:59:59.000Z

67

X-ray lithography source  

SciTech Connect

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

68

X-ray lithography source  

DOE Patents (OSTI)

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

69

Nano-Imprint Lithography: Nanonex NX-2000  

Science Conference Proceedings (OSTI)

Nano-Imprint Lithography: Nanonex NX-2000. Description: ... Nanoscale patterning; Polymer or Sol-gel nano device fabrication; Polymer property study ...

2013-04-20T23:59:59.000Z

70

Swords to plowshares: Shock wave applications to advanced lithography  

SciTech Connect

Extreme UltraViolet Lithography (EUVL) seeks to apply radiation in a wavelength region centered near 13 nm to produce microcircuits having features sizes 0.1 micron or less. A critical requirement for the commercial application of this technology is the development of an economical, compact source of this radiation which is suitable for lithographic applications. A good candidate is a laser-plasma source, which is generated by the interaction of an intermediate intensity laser pulse (up to 10{sup 12} W/cm{sup 2}) with a metallic target. While such a source has radiative characteristics which satisfy the needs of an EUVL source, the debris generated during the laser-target interaction strikes at the economy of the source. Here, the authors review the use of concepts and computer modeling, originally developed for hypervelocity impact analysis, to study this problem.

Trucano, T.G.; Grady, D.E.; Kubiak, G.D.; Kipp, M.E.; Olson, R.E.; Farnsworth, A.

1995-03-01T23:59:59.000Z

71

NIST: Ultraviolet Photoemission Electron Microscopy  

Science Conference Proceedings (OSTI)

Ultraviolet Photoemission Electron Microscopy. Summary: Ultraviolet photoemission electron microscopy is used to study ...

2012-11-19T23:59:59.000Z

72

Making a Good Impression: Nanoimprint Lithography Tests at ...  

Science Conference Proceedings (OSTI)

Making a Good Impression: Nanoimprint Lithography Tests at NIST. For Immediate Release: April 29, 2008. ...

2012-10-18T23:59:59.000Z

73

Absolute intensity calibration of flat-field space-resolved extreme ultraviolet spectrometer using radial profiles of visible and extreme ultraviolet bremsstrahlung continuum emitted from high-density plasmas in Large Helical Device  

Science Conference Proceedings (OSTI)

A precise absolute intensity calibration of a flat-field space-resolved extreme ultraviolet (EUV) spectrometer working in wavelength range of 60-400 A is carried out using a new calibration technique based on radial profile measurement of the bremsstrahlung continuum in Large Helical Device. A peaked vertical profile of the EUV bremsstrahlung continuum has been successfully observed in high-density plasmas (n{sub e}{>=} 10{sup 14} cm{sup -3}) with hydrogen ice pellet injection. The absolute calibration can be done by comparing the EUV bremsstrahlung profile with the visible bremsstrahlung profile of which the absolute value has been already calibrated using a standard lamp. The line-integrated profile of measured visible bremsstrahlung continuum is firstly converted into the local emissivity profile by considering a magnetic surface distortion due to the plasma pressure, and the local emissivity profile of EUV bremsstrahlung is secondly calculated by taking into account the electron temperature profile and free-free gaunt factor. The line-integrated profile of the EUV bremsstrahlung continuum is finally calculated from the local emissivity profile in order to compare with measured EUV bremsstrahlung profile. The absolute intensity calibration can be done by comparing measured and calculated EUV bremsstrahlung profiles. The calibration factor is thus obtained as a function of wavelength with excellent accuracy. It is also found in the profile analysis that the grating reflectivity of EUV emissions is constant along the direction perpendicular to the wavelength dispersion. Uncertainties on the calibration factor determined with the present method are discussed including charge-coupled device operation modes.

Dong Chunfeng; Wang Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Goto, Motoshi [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

2011-11-15T23:59:59.000Z

74

A Change of Solar He II EUV Global Network Structure of the Transition Region as an Indicator of Geo-Effectiveness of Solar Minima  

E-Print Network (OSTI)

Solar activity during 2007--2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He II spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) onboard of the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15 +- 6 % during the solar minimum between Cycles 23 and 24 compared with the Cycles 22/23 minimum when a yearly running mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a larger concentration of spatial power in the global network structure from the 30.4 nm SOHO Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008--2011. We interpret this larger concentration of spatial power in the transition reg...

Didkovsky, Leonid

2013-01-01T23:59:59.000Z

75

Review of technology for 157-nm lithography  

Science Conference Proceedings (OSTI)

This paper outlines the critical issues facing the implementation of 157-nm lithography as a sub-100-nm technology. The status of the present technology for mask materials, pellicles, optical materials, coatings, and resists is presented.

A. K. Bates; M. Rothschild; T. M. Bloomstein; T. H. Fedynyshyn; R. R. Kunz; V. Liberman; M. Switkes

2001-09-01T23:59:59.000Z

76

Solar EUV Spectrum Calculated for Quiet Sun Conditions  

E-Print Network (OSTI)

We present spectral synthesis calculations of the solar extreme UV (EUV) in spherical symmetry carried out with the 'Solar Modeling in 3D' code. The calculations are based on one-dimensional atmospheric structures that represent a temporal and spatial mean of the chromosphere, transition region, and corona. The synthetic irradiance spectra are compared with the recent calibration spectrum taken with the EUV Variability Experiment during the Whole Heliospheric Interval. The good agreement between the synthetic and observed quiet Sun spectrum shows that the employed atmospheric structures are suitable for irradiance calculations. The validation of the quiet Sun spectrum for the present solar minimum is the first step towards the modeling of the EUV variations.

Haberreiter, Margit

2011-01-01T23:59:59.000Z

77

Lithographic performance evaluation of a contaminated EUV mask after cleaning  

SciTech Connect

The effect of surface contamination and subsequent mask surface cleaning on the lithographic performance of a EUV mask is investigated. SEMATECH's Berkeley micro-field exposure tool (MET) printed 40 nm and 50 nm line and space (L/S) patterns are evaluated to compare the performance of a contaminated and cleaned mask to an uncontaminated mask. Since the two EUV masks have distinct absorber architectures, optical imaging models and aerial image calculations were completed to determine any expected differences in performance. Measured and calculated Bossung curves, process windows, and exposure latitudes for the two sets of L/S patterns are compared to determine how the contamination and cleaning impacts the lithographic performance of EUV masks. The observed differences in mask performance are shown to be insignificant, indicating that the cleaning process did not appreciably affect mask performance.

George, Simi; Naulleau, Patrick; Okoroanyanwu, Uzodinma; Dittmar, Kornelia; Holfeld, Christian; Wuest, Andrea

2009-11-16T23:59:59.000Z

78

EUV Dark-Field Microscopy for Defect Inspection  

SciTech Connect

An actinic EUV microscope for defect detection on mask blanks for operation in dark field using a table-top discharge-produced plasma source has been developed. Several test structures (pits and bumps) on multilayer mirrors were investigated by our Schwarzschild objective-based EUV microscope at 13.5-nm wavelength and then characterized with an atomic force microscope. Possible defect-detection limits with large field of view and moderate magnification are discussed in terms of required irradiation dose and system performance.

Juschkin, L.; Maryasov, A.; Herbert, S. [Chair for Technology of Optical Systems (TOS), RWTH Aachen University and JARA - Fundamentals of Future Information Technology, Steinbachstr. 15, 52074 Aachen (Germany); Aretz, A. [Central Facility for Electron Microscopy (GFE), RWTH Aachen University and JARA - Fundamentals of Future Information Technology, Ahornstrasse 52074 Aachen (Germany); Bergmann, K. [Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen (Germany); Lebert, R. [Bruker Advanced Supercon GmbH, Friedrich-Ebert-Strasse 1, 51429 Bergisch Gladbach (Germany)

2011-09-09T23:59:59.000Z

79

Extreme-UV lithography condenser  

Science Conference Proceedings (OSTI)

Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

Sweatt, William C. (Albuquerque, NM); Sweeney, Donald W. (San Ramon, CA); Shafer, David (Fairfield, CT); McGuire, James (Pasadena, CA)

2001-01-01T23:59:59.000Z

80

Sub-10-nm lithography with light-ion beams  

E-Print Network (OSTI)

Scanning-electron-beam lithography (SEBL) is the workhorse of nanoscale lithography in part because of the high brightness of the Schottky source of electrons, but also benefiting from decades of incremental innovation and ...

Winston, Donald, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Role of Surface Tension in Nano Imprint Lithography  

Science Conference Proceedings (OSTI)

ROLE OF SURFACE TENSION IN NANO IMPRINT LITHOGRAPHY. Kyle J. Alvine, Yifu Ding, Hyun Wook Ro, Brian Okerburg ...

82

Periodic Materials and Interference Lithography for Photonics ... - TMS  

Science Conference Proceedings (OSTI)

02/28/2011 - Periodic Materials and Interference Lithography for Photonics, ... photonic crystals (electromagnetic wave propagation) and phononic crystals ...

83

High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments  

Science Conference Proceedings (OSTI)

Multilayer coated blazed gratings with high groove density are the best candidates for use in high resolution EUV and soft x-ray spectroscopy. Theoretical analysis shows that such a grating can be potentially optimized for high dispersion and spectral resolution in a desired high diffraction order without significant loss of diffraction efficiency. In order to realize this potential, the grating fabrication process should provide a perfect triangular groove profile and an extremely smooth surface of the blazed facets. Here we report on recent progress achieved at the Advanced Light Source (ALS) in fabrication of high quality multilayer coated blazed gratings. The blazed gratings were fabricated using scanning beam interference lithography followed by wet anisotropic etching of silicon. A 200 nm period grating coated with a Mo/Si multilayer composed with 30 bi-layers demonstrated an absolute efficiency of 37.6percent in the 3rd diffraction order at 13.6 nm wavelength. The groove profile of the grating was thoroughly characterized with atomic force microscopy before and after the multilayer deposition. The obtained metrology data were used for simulation of the grating efficiency with the vector electromagnetic PCGrate-6.1 code. The simulations showed that smoothing of the grating profile during the multilayer deposition is the main reason for efficiency losses compared to the theoretical maximum. Investigation of the grating with cross-sectional transmission electron microscopy revealed a complex evolution of the groove profile in the course of the multilayer deposition. Impact of the shadowing and smoothing processes on growth of the multilayer on the surface of the sawtooth substrate is discussed.

Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Goray, Leonid; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

2011-07-26T23:59:59.000Z

84

Synchrotron Ultraviolet Radiation Facility SURF III - Calculate ...  

Science Conference Proceedings (OSTI)

Far Ultraviolet Physics Group / Synchrotron Ultraviolet Radiation Facility SURF III The Far Ultraviolet Physics Group maintains and improves the ...

85

Direct e-beam lithography of PDMS  

Science Conference Proceedings (OSTI)

In this paper, the viability of directly exposing thin films of liquid poly(dimethylsiloxane) (PDMS) to electron beam (e-beam) irradiation using e-beam lithographic methods for the purpose of creating permanent micro-scale components has been investigated. ... Keywords: Lithography, PDMS, Poly(dimethylsiloxane), e-Beam

J. Bowen; D. Cheneler; A. P. G. Robinson

2012-09-01T23:59:59.000Z

86

Biomimetic soft lithography on curved nanostructured surfaces  

Science Conference Proceedings (OSTI)

In this paper a nano-molding process using a nature-created master is demonstrated. The eye of night moth Agotis exclamationis having 100nm-scale structures on a curved surface is used as biomimetic master mold from which nanostructures are replicated ... Keywords: Antireflective, Biomimetic, Nanostructures, Replication, Soft lithography

V. Auzelyte; V. Flauraud; V. J. Cadarso; T. Kiefer; J. Brugger

2012-09-01T23:59:59.000Z

87

A nanoflare model of quiet Sun EUV emission  

E-Print Network (OSTI)

Nanoflares have been proposed as the main source of heating of the solar corona. However, detecting them directly has so far proved elusive, and extrapolating to them from the properties of larger brightenings gives unreliable estimates of the power-law exponent $\\alpha$ characterising their distribution. Here we take the approach of statistically modelling light curves representative of the quiet Sun as seen in EUV radiation. The basic assumption is that all quiet-Sun EUV emission is due to micro- and nanoflares, whose radiative energies display a power-law distribution. Radiance values in the quiet Sun follow a lognormal distribution. This is irrespective of whether the distribution is made over a spatial scan or over a time series. We show that these distributions can be reproduced by our simple model.

Anuschka Pauluhn; Sami K. Solanki

2006-12-20T23:59:59.000Z

88

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

89

Multilevel interference lithography--fabricating sub-wavelength periodic nanostructures  

E-Print Network (OSTI)

Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive ...

Chang, Chih-Hao, 1980-

2008-01-01T23:59:59.000Z

90

OBSERVATIONS AND INTERPRETATION OF A LOW CORONAL SHOCK WAVE OBSERVED IN THE EUV BY THE SDO/AIA  

Science Conference Proceedings (OSTI)

Taking advantage of both the high temporal and spatial resolutions of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we studied a limb coronal shock wave and its associated extreme ultraviolet (EUV) wave that occurred on 2010 June 13. Our main findings are: (1) the shock wave appeared clearly only in the channels centered at 193 A and 211 A as a dome-like enhancement propagating ahead of its associated semi-spherical coronal mass ejection (CME) bubble; (2) the density compression of the shock is 1.56 according to radio data and the temperature of the shock is around 2.8 MK; (3) the shock wave first appeared at 05:38 UT, 2 minutes after the associated flare has started and 1 minute after its associated CME bubble appeared; (4) the top of the dome-like shock wave set out from about 1.23 R{sub sun} and the thickness of the shocked layer is {approx}2 x 10{sup 4} km; (5) the speed of the shock wave is consistent with a slight decrease from about 600 km s{sup -1} to 550 km s{sup -1}; and (6) the lateral expansion of the shock wave suggests a constant speed around 400 km s{sup -1}, which varies at different heights and directions. Our findings support the view that the coronal shock wave is driven by the CME bubble, and the on-limb EUV wave is consistent with a fast wave or at least includes the fast wave component.

Ma Suli; Raymond, John C.; Golub, Leon; Grigis, Paolo; Testa, Paola; Long, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lin Jun [Yunnan Astronomical Observatory, Chinese Academy of Sciences (CAS), Kunming, Yunnan 650011 (China); Chen Huadong, E-mail: sma@upc.edu.cn [China University of Petroleum, 66 Changjiang West Road, Qingdao, Shandong 266555 (China)

2011-09-10T23:59:59.000Z

91

Ultraviolet absorption hygrometer  

DOE Patents (OSTI)

An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

Gersh, Michael E. (Bedford, MA); Bien, Fritz (Concord, MA); Bernstein, Lawrence S. (Bedford, MA)

1986-01-01T23:59:59.000Z

92

X-ray And EUV Spectroscopy Of Highly Charged Tungsten Ions  

SciTech Connect

The Berlin EBIT has been established by the Max-Planck-Institut fuer Plasmaphysik to generate atomic physics data in support of research in the field of controlled nuclear fusion, by measuring the radiation from highly charged ions in the x-ray, extreme ultraviolet and visible spectral ranges and providing valuable diagnostics for high temperature plasmas. In future fusion devices, for example ITER, currently being constructed at Cadarache, France, the plasma facing components will be armored with high-Z materials, most likely tungsten, due to the favorable properties of this element. At the same time the tremendous radiation cooling of these high-Z materials represents a threat to fusion and obliges one to monitor carefully the radiation. With EBIT a selected ensemble of ions in specific charge states can be produced, stored and excited for spectroscopic investigations. Employing this technique, we have for example resolved the wide structure observed around 5 nm at the ASDEX Upgrade tokamak as originating from E1-transitions into the open 4d shell of tungsten ions in charge states 25+ to 37+ producing a band-like emission pattern. Further, these ions emit well-separated M1 lines in the EUV range around 65 nm suitable for plasma diagnostics. Kr-like to Cr-like tungsten ions (38+ to 50+) show strong soft-x-ray lines in the range 0.5 to 2 and 5 to 15 nm. Lines of even higher charged tungsten ions, up to Ne-like W{sup 64+}, abundant in the core plasma of present and future fusion test devices, have been investigated with high resolution Bragg-crystal spectroscopy at 0.13 nm. Recently, x-ray spectroscopic measurements of the dielectronic recombination LMn resonances of W{sup 60+} to W{sup 67+} ions have been preformed and compare well with atomic structure calculations.

Biedermann, Christoph; Radtke, Rainer [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 17491 Greifswald, and Institut fuer Physik der Humboldt-Universitaet zu Berlin, Arbeitsgruppe Plasmaphysik, Newtonstr 15, 12489 Berlin (Germany)

2009-09-10T23:59:59.000Z

93

Uncertainties in (E)UV model atmosphere fluxes (Research Note)  

E-Print Network (OSTI)

Context. During the comparison of synthetic spectra calculated with two NLTE model atmosphere codes, namely TMAP and TLUSTY, we encounter systematic differences in the EUV fluxes due to the treatment of level dissolution by pressure ionization. Aims. In the case of Sirius B, we demonstrate an uncertainty in modeling the EUV flux reliably in order to challenge theoreticians to improve the theory of level dissolution. Methods. We calculated synthetic spectra for hot, compact stars using state-of-the-art NLTE model-atmosphere techniques. Results. Systematic differences may occur due to a code-specific cutoff frequency of the H I Lyman bound-free opacity. This is the case for TMAP and TLUSTY. Both codes predict the same flux level at wavelengths lower than about 1500 Å for stars with effective temperatures (Teff) below about 30 000 K only, if the same cutoff frequency is chosen. Conclusions. The theory of level dissolution in high-density plasmas, which is available for hydrogen only should be generalized to all species. Especially, the cutoff frequencies for the bound-free opacities should be defined in order to make predictions of UV fluxes more reliable.

T. Rauch

2008-01-01T23:59:59.000Z

94

TEMPERATURE AND EXTREME-ULTRAVIOLET INTENSITY IN A CORONAL PROMINENCE CAVITY AND STREAMER  

Science Conference Proceedings (OSTI)

We analyze the temperature and EUV line emission of a coronal cavity and surrounding streamer in terms of a morphological forward model. We use a series of iron line ratios observed with the Hinode Extreme-ultraviolet Imaging Spectrograph (EIS) on 2007 August 9 to constrain temperature as a function of altitude in a morphological forward model of the streamer and cavity. We also compare model predictions to the EIS EUV line intensities and polarized brightness (pB) data from the Mauna Loa Solar Observatory (MLSO) Mark 4 K-coronameter. This work builds on earlier analysis using the same model to determine geometry of and density in the same cavity and streamer. The fit to the data with altitude-dependent temperature profiles indicates that both the streamer and cavity have temperatures in the range 1.4-1.7 MK. However, the cavity exhibits substantial substructure such that the altitude-dependent temperature profile is not sufficient to completely model conditions in the cavity. Coronal prominence cavities are structured by magnetism so clues to this structure are to be found in their plasma properties. These temperature substructures are likely related to structures in the cavity magnetic field. Furthermore, we find that the model overestimates the EUV line intensities by a factor of 4-10, without overestimating pB. We discuss this difference in terms of filling factors and uncertainties in density diagnostics and elemental abundances.

Kucera, T. A. [NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States); Gibson, S. E.; Schmit, D. J. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Science, Space Research Building, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143 (United States); Tripathi, D. [Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune University Campus, Pune 411 007 (India)

2012-09-20T23:59:59.000Z

95

High-resolution lithography based on selective removal of atoms  

Science Conference Proceedings (OSTI)

A new method of high-resolution lithography based on selective removal of atoms is described. Drawbacks of lift-off lithography in comparison with the method proposed are pointed out and test structures of metal (Mo) stripes with a thickness of 50 nm are obtained.

Domantovskii, A. G.; Gurovich, B. A.; Maslakov, K. I. [Russian Research Centre Kurchatov Institute (Russian Federation)

2006-12-15T23:59:59.000Z

96

Imprint lithography enabling ultra-low loss coaxial interconnects  

Science Conference Proceedings (OSTI)

Processing techniques have been demonstrated to fabricate a novel structure with smooth transitions, metallic shielding, and encapsulated air dielectric layers using sacrificial polymers and the three-dimensional patterning capabilities of imprint lithography. ... Keywords: Air dielectrics, Imprint lithography, Interconnects, Sacrificial polymers

Venmathy Rajarathinam; Nathan Fritz; Sue Ann Bidstrup Allen; Paul A. Kohl

2011-03-01T23:59:59.000Z

97

Electron beam lithography using plasma polymerized hexane as resist  

Science Conference Proceedings (OSTI)

We present electron beam lithography using thin layers of plasma polymerized hexane as resist, as an alternative for conventional spincoated resists. Hexane is chosen due to the possible bioapplications, as well as the relatively simple polymerization ... Keywords: Electron beam lithography, Hexane, Plasma polymerization, Resist

R. H. Pedersen; M. Hamzah; S. Thoms; P. Roach; M. R. Alexander; N. Gadegaard

2010-05-01T23:59:59.000Z

98

Two methods of realising 10nm T-gate lithography  

Science Conference Proceedings (OSTI)

This paper presents two separate methods for the fabrication of 10nm footprint T-gates using a two-step gate process. We examine the limits of lithographic and pattern transfer processes using the exposure of ZEP520A resist by electron beam lithography, ... Keywords: Electron beam lithography, HEMT, ICP, RIE, Reactive ion etching, T-gate

S. Bentley; X. Li; D. A. J. Moran; I. G. Thayne

2009-04-01T23:59:59.000Z

99

Silated acidic copolymers for nanoimprint lithography on flexible plastic substrates  

Science Conference Proceedings (OSTI)

A new silated acidic polymer was developed as the resist for nanoimprint lithography on flexible substrates. This polymer was synthesized from methylmethacrylate, n-butylacrylate, methacrylic acid and 3-[tris(trimethylsiloxy)silyl]propyl methacrylate ... Keywords: Flexible plastic substrate, Nanoimprint lithography, Reactive ion etching resistability, Silated acidic polymer

Wen-chang Liao; Steve Lien-Chung Hsu; Jui-Chen Lin

2007-01-01T23:59:59.000Z

100

Plasma formed ion beam projection lithography system  

DOE Patents (OSTI)

A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA); Ngo, Vinh (San Jose, CA); Zahir, Nastaran (Greenbrae, CA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ultraviolet Complete Quantum Gravity  

E-Print Network (OSTI)

An ultraviolet complete (UV) quantum gravity theory is formulated in which vertex functions in Feynman graphs are entire functions and the propagating gravitons are described by local, causal propagators. A scalar-tensor action describes classical gravity theory. The cosmological constant problem is investigated in the context of the UV complete quantum gravity.

Moffat, J W

2010-01-01T23:59:59.000Z

102

Achieving sub-10-nm resolution using scanning electron beam lithography  

E-Print Network (OSTI)

Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for ...

Cord, Bryan M. (Bryan Michael), 1980-

2009-01-01T23:59:59.000Z

103

Two-dimensional Photonic Crystals Fabricated by Nanoimprint Lithography  

E-Print Network (OSTI)

We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is ...

Chen, A.

104

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... EUV lithography masks. Citation: SPIE Newsroom Article. Website: www.spie.org. Research Areas: Nanotechnology, Characterization ...

2013-08-12T23:59:59.000Z

105

Design and prototype : a manufacturing system for the soft lithography technique  

E-Print Network (OSTI)

Ever since 1998 when the term "soft lithography" was first created, soft lithography techniques have drawn close attention of the academia and the industry. Micro contact printing is by far the most widely used soft ...

Cao, Arthur Y. (Arthur Yao)

2006-01-01T23:59:59.000Z

106

157-nm lithography with high numerical aperture lens for sub-70 nm node  

Science Conference Proceedings (OSTI)

For sub-70 nm semiconductor devices, 157 nm lithography using F2 lasers is one of the most important technologies. Several candidates for critical components of 157 nm lithography, such as the exposure tool, resist materials and processing ... Keywords: 157 nm lithography, F2 laser, fluoropolymer resist, phase-shifting mask

Toshiro Itani; Wataru Wakamiya; Julian Cashmore; Malcolm Gower

2003-06-01T23:59:59.000Z

107

Argonne CNM Highlight: Block copolymer lithography approach to nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Block copolymer lithography approach to nanoscale self-assembly Block copolymer lithography approach to nanoscale self-assembly hybrid organic-organomemtalliic block copolymer thin film cast on a silicon nitride membrane substrate This image created by Seth Darling and Nathan Ramanathan was selected for the September 2009 cover of Materials Today. Block copolymer lithography represents a promising next-generation alternative to traditional top-down methodologies. The figure shows an optical micrograph of a hybrid organic-organometallic block copolymer thin film cast on a silicon nitride membrane substrate, which reveals thickness-induced coloring effects reminiscent of art glass. This polymer self-assembles into an ordered nanoscale cylindrical morphology, the orientation of which can be controlled with film thickness. Cylinders

108

Preparations for EUV interferometry of the 0.3 NA MET optic  

SciTech Connect

An at-wavelength interferometer is being created for the measurement and alignment of the 0.3 numerical aperture Micro Exposure Tool projection optic at EUV wavelengths. The prototype MET system promises to provide early learning from EUV lithographic imaging down to 20-nm feature size. The threefold increase to 0.3 NA in the image-side numerical aperture presents several challenges for the extension of ultra-high-accuracy interferometry, including pinhole fabrication and the calibration and removal of systematic error sources.

Goldberg, Kenneth A.; Naulleau, Patrick P.; Denham, Paul E.; Rekawa, Senajith B.; Jackson, Keith H.; Liddle, J. Alexander; Harteneck, Bruce; Gullikson, Eric; Anderson, Erik H.

2003-10-30T23:59:59.000Z

109

Biomedical devices from ultraviolet LEDs  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomedical devices from ultraviolet LEDs Biomedical devices from ultraviolet LEDs Light-emitting nanocrystal diodes go ultraviolet Biomedical devices with active components could be made from nanostructured systems. February 24, 2012 Researcher working with nanocrystals A researcher at LANL works with nanocrystals. Get Expertise Researcher Sergio Brovelli Physical Chem & Applied Spectroscopy Email Research Team Leader Alberto Paleari University of Milano-Bicocca in Italy Such devices could, for example, selectively activate light-sensitive drugs for better medical treatment or probe for the presence of fluorescent markers in medical diagnostics. LEDs produce light in the ultraviolet range A process for creating glass-based, inorganic light-emitting diodes (LEDs) that produce light in the ultraviolet range has been developed by a

110

Nanoimprint Lithography for Functional Polymer Patterning  

E-Print Network (OSTI)

Organic semiconductors have generated huge interested in recent years for low-cost and flexible electronics. Current and future device applications for semiconducting polymers include light-emitting diodes, thin-film transistors, photovoltaic cells, chemical and biological sensors, photodetectors, lasers, and memories. The performance of conjugated polymer devices depends on two major factors: the chain conformation in polymer film and the device architecture. Highly ordered chain structure usually leads to much improved performance by enhancing interchain interaction to facilitate carrier transport. The goal of this research is to improve the performance of organic devices with the nanoimprint lithography. The work begins with the controlling of polymer chain orientation in patterned nanostructures through nanoimprint mold design and process parameter manipulation, and studying the effect of chain ordering on material properties. After that, step-and-repeat thermal nanoimprint technique for large-scale continuous manufacturing of conjugated polymer nanostructures is developed. The actual chain orientation of molecular groups in polymer micro- and nanostructures patterning by nanoimprint is complicated. However, this information is crucial for intelligently controlling the electrical and photophysical properties of conjugated polymers by nanoimprint. Systematic investigation of polymer chain configuration by Raman spectroscopy is carried out to understand how nanoimprint process parameters, such as mold pattern size, temperature, and polymer molecular weight, affects polymer chain configuration. The results indicate that chain orientation in nanoimprinted polymer micro- and nanostructures is highly related to the nanoimprint temperature and the dimensions of the mold structures. The ability to create nanoscale polymer micro- and nanostructures and manipulate their internal chain conformation establishes an original experimental platform that enables studying the properties of functional polymers at the micro- and nanoscale and understanding their fundamental structure-property relationships. In addition to the impact on basic research, the techniques developed in this work are important in applied research and development. Large-area conjugated polymer micro- and nanostructures can be easily fabricated by thermal step-and-repeat nanoimprint for organic flat-panel displays, organic circuits and organic solar panels. The ability to manipulate chain orientation through nanoimprint presents a new route to fine-tune the electrical and photophysical properties of conjugated polymers, which can lead to improved performance for all organic electronics. The techniques developed here also allow for easy incorporation of other micro- and nanoscale soft functional polymers in miniaturized devices and systems for new applications in electronics, photonics, sensors and bioengineering.

Cui, Dehu

2011-12-01T23:59:59.000Z

111

Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources  

DOE Patents (OSTI)

Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

Kublak, G.D.; Richardson, M.C.

1996-11-19T23:59:59.000Z

112

EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory  

Science Conference Proceedings (OSTI)

Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamline X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.

Soufli, R; Windt, D L; Robinson, J C; Baker, S L; Spiller, E; Dollar, F J; Aquila, A L; Gullikson, E M; Kjonrattanawanich, B; Seely, J F; Golub, L

2006-02-09T23:59:59.000Z

113

Lithography scaling issues associated with III-V MOSFETs  

Science Conference Proceedings (OSTI)

In this work we investigate fabrication issues associated with scaling down the gate length and source drain contact separation of a III-V MOSFET. We used high resolution electron-beam lithography and lift-off for gate and ohmic contact patterning to ... Keywords: E-beam, GaAs, Lift-off, MOSFET, PMMA, Resist thickness variation

O. Ignatova; S. Thoms; W. Jansen; D. S. Macintyre; I. Thayne

2010-05-01T23:59:59.000Z

114

Contact Guidance Based on the Nanostructures Fabricated by Nanoimprint Lithography  

Science Conference Proceedings (OSTI)

Contact Guidance is an important phenomenon in the bio field. However it is complex and time-consuming to fabricate the micro/nano morphology used to guide cell growth behavior. Nover method of employing nanoimprint lithography to mass-produce nanostructures ...

Hongwen Sun; Jingquan Liu

2009-12-01T23:59:59.000Z

115

Condenser for extreme-UV lithography with discharge source  

DOE Patents (OSTI)

Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

2001-01-01T23:59:59.000Z

116

Photonic crystal fibre-based light source for STED lithography  

SciTech Connect

A light source having a relative noise level in the order of 10{sup -6} and sufficient stability for application in STED lithography has been obtained using the generation of Cherenkov peaks in a supercontinuum spectrum. (laser applications and other topics in quantum electronics)

Glubokov, D A; Sychev, V V; Vitukhnovsky, Alexey G; Korol'kov, A E

2013-06-30T23:59:59.000Z

117

High silicon content silylating reagents for dry-developed positive-tone resists for extreme ultraviolet (13.5 nm) and deep ultraviolet (248 nm) microlithography  

SciTech Connect

Recent results in the use of disilanes as silylating reagents for near-surface imaging with deep-UV (248 nm) and EUV (13.5 nm) lithography are reported. A relatively thin imaging layer of a photo-cross-linking resist is spun over a thicker layer of hard-baked resist that functions as a planarizing layer and antireflective coating. Photoinduced acid generation and subsequent heating crosslinks and renders exposed areas impermeable to an aminodisilane that reacts with the unexposed regions. Subsequent silylation and reactive ion etching afford a positive-tone image. The use of disilanes introduces a higher concentration of silicon into the polymer than is possible with silicon reagents that incorporate only one silicon atom per reactive site. The higher silicon content in the silylated polymer increases etching selectivity between exposed and unexposed regions and thereby increases the contrast. Additional improvements that help to minimize flow during silylation are also discussed, including the addition of bifunctional disilanes. We have resolved high aspect ratio, very high quality 0.20 {mu}m line and space patterns at 248 nm with a stepper having a numerical aperture (NA)= 0.53, and have resolved {<=} 0.15 {mu}m line and spaces at 13.5 nm.

Wheeler, D.; Scharrer, E.; Kubiak, G. [and others

1994-12-31T23:59:59.000Z

118

Foreign Participation in US-Funded R&D: the EUV Project as a New Model for a New Reality.  

E-Print Network (OSTI)

Participation in US-Funded R&D: the EUV Project as a Newworld economy. For US-funded R&D projects, as for technologya new model for US-funded R&D projects that better defines

Borrus, Michael

1998-01-01T23:59:59.000Z

119

Interferometry using undulator sources  

Science Conference Proceedings (OSTI)

Optical systems for extreme ultraviolet (EUV) lithography need to use optical components with subnanometer surface figure error tolerances to achieve diffraction-limited performance [M.D. Himel, in {ital Soft} {ital X}-{ital Ray} {ital Projection} {ital Lithography}, A.M. Hawryluk and R.H. Stulen, eds. (OSA, Washington, D.C., 1993), {bold 18}, 1089, and D. Attwood {ital et} {ital al}., Appl. Opt. {bold 32}, 7022 (1993)]. Also, multilayer-coated optics require at-wavelength wavefront measurement to characterize phase effects that cannot be measured by conventional optical interferometry. Furthermore, EUV optical systems will additionally require final testing and alignment at the operational wavelength for adjustment and reduction of the cumulative optical surface errors. Therefore, at-wavelength interferometric measurement of EUV optics will be the necessary metrology tool for the successful development of optics for EUV lithography. An EUV point diffraction interferometer (PDI) has been developed at the Center for X-Ray Optics (CXRO) and has been already in operation for a year [K. Goldberg {ital et} {ital al}., in {ital Extreme} {ital Ultra} {ital Lithography}, D.T. Attwood and F. Zernike, eds. (OSA, Washington, D.C., 1994), K. Goldberg {ital et} {ital al}., Proc. SPIE {bold 2437}, to be published, and K. Goldberg {ital et} {ital al}., J. Vac. Sci. Technol. B {bold 13}, 2923 (1995)] using an undulator radiation source and coherent optics beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. An overview of the PDI interferometer and some EUV wavefront measurements obtained with this instrument will be presented. In addition, future developments planned for EUV interferometry at CXRO towards the measurement of actual EUV lithography optics will be shown. {copyright} {ital 1996 American Institute of Physics.}

Beguiristain, R.; Goldberg, K.A.; Tejnil, E.; Bokor, J.; Medecki, H.; Attwood, D.T.; Jackson, K. [Center for X-ray Optics, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., MS 2-400, Berkeley, CA 94720 (United States)

1996-09-01T23:59:59.000Z

120

Sub-5keV electron-beam lithography in hydrogen silsesquioxane resist  

Science Conference Proceedings (OSTI)

We fabricated 9-30nm half-pitch nested Ls and 13-15nm half-pitch dot arrays, using 2keV electron-beam lithography with hydrogen silsesquioxane (HSQ) as the resist. All structures with 15nm half-pitch and above were fully resolved. We observed that the ... Keywords: High resolution, Hydrogen silsesquioxane, Low-energy electron-beam lithography, Low-voltage electron-beam lithography, Proximity effect

Vitor R. Manfrinato; Lin Lee Cheong; Huigao Duan; Donald Winston; Henry I. Smith; Karl K. Berggren

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Large-Area Zone Plate Fabrication with Optical Lithography  

Science Conference Proceedings (OSTI)

Zone plates as condenser optics for x-ray microscopes offer simple optical designs for both illumination and spectral resolution when used as a linear monochromator. However, due to the long write times for electron beam lithography, both the availability and the size of zone plates for condensers have been limited. Since the resolution provided by the linear monochromator scales almost linearly with the diameter of the zone plate, the full potential for zone plate monochromators as illumination systems for x-ray microscopes has not been achieved. For example, the 10-mm-diameter zone plate has demonstrated a spectral resolution of E/{Delta}E = 700[1], but with a 26-mm-diameter zone plate, the calculated spectral resolution is higher than E/{Delta}E = 3000. These large-area zone plates are possible to fabricate with the leading edge semiconductor lithography tools such as those available at the College of Nanoscale Science and Engineering at the University at Albany. One of the lithography tools available is the ASML TWINSCAN XT: 1950i with 37-nm resolution [2]. A single 300-mm wafer can contain more than 60 fields, each with a large area condenser, and the throughput of the tool can be more than one wafer every minute.

Denbeaux, G. [College of Nanoscale Science and Engineering, University at Albany, 255 Fuller Road, Albany, NY 12203 (United States)

2011-09-09T23:59:59.000Z

122

Low Cost Lithography Tool for High Brightness LED Manufacturing  

Science Conference Proceedings (OSTI)

The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

Andrew Hawryluk; Emily True

2012-06-30T23:59:59.000Z

123

Calculation of the Solar UV/EUV Spectrum in Spherical Symmetry  

E-Print Network (OSTI)

We present work in progress concerning spectral synthesis calculations of the solar UV/EUV in spherical symmetry carried out with the Solar Radiation Physical Modeling (SRPM) project. We compare the synthetic irradiance spectrum for the quiet Sun with the recent solar minimum spectrum taken with the EVE rocket instrument. The good agreement of the synthetic spectrum with the observation shows that the employed atmosphere structures are suitable for irradiance calculations.

Haberreiter, Margit

2009-01-01T23:59:59.000Z

124

Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL  

Science Conference Proceedings (OSTI)

Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

Soufli, R; Robinson, J C; Spiller, E; Baker, S L; Dollar, F J; Gullikson, E M

2006-02-22T23:59:59.000Z

125

Superconducting x-ray lithography source Phase 1 (XLS) safety analysis report  

SciTech Connect

This paper discusses safety aspects associated with the superconducting x-ray lithography source. The policy, building systems safety and storage ring systems safety are specifically addressed. (LSP)

Blumberg, L. (ed.)

1990-07-01T23:59:59.000Z

126

Resolution limits and process latitude of comformable contact nano-lithography  

E-Print Network (OSTI)

Conformable Contact Lithography enables researchers to attain high-resolution lithographic patterning at manageable cost. This thesis characterizes the minimum resolvable feature size and process latitude of Conformable ...

Fucetola, Corey Patrick

2007-01-01T23:59:59.000Z

127

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

... Physicist Sensor Science Division Ultraviolet Radiation Group. ... Ph.D. Optical Sciences and Engineering ... Orlando, FL MS Electrical Engineering, The ...

2013-03-21T23:59:59.000Z

128

A method for in situ measurement of residual layer thickness in nano-imprint lithography  

Science Conference Proceedings (OSTI)

Nanoimprint lithography has the advantages of high throughput, sub-10-nm fabrication process, and low cost. However, residual layer encountered in the imprinting process requires removal through reactive ion etching to maintain pattern fidelity. This ... Keywords: Nanoimprint lithography (NIL), Non-destructive measurement, Residual layer, Surface plasmon resonance (SPR)

Wei-Hsuan Hsu, Hong Hocheng, Jow-Tsong Shy

2013-10-01T23:59:59.000Z

129

Selective growth experiments on gallium arsenide (100) surfaces patterned using UV-nanoimprint lithography  

Science Conference Proceedings (OSTI)

We describe a nanoimprint lithography (NIL) process and subsequent solid-source molecular beam epitaxy (SSMBE) growth of III-V semiconductors on patterned substrates. In particular, growth of GaAs, GaInAs, and GaInP, and effects of growth temperature ... Keywords: Molecular beam epitaxy, Nanoimprint lithography, Patterned substrates, Selective growth

A. Tukiainen; J. Viheriälä; T. Niemi; T. Rytkönen; J. Kontio; M. Pessa

2006-12-01T23:59:59.000Z

130

High resolution and high density ion beam lithography employing HSQ resist  

Science Conference Proceedings (OSTI)

In the early stages of focused ion beam (FIB) development, ion beam lithography (IBL) employing organic resists showed potential advantages over electron beam lithography (EBL) (most notably less proximity effects and higher sensitivity [1,2]). However, ... Keywords: FIB, HSQ, IBL, LMIS, Nano patterning, Resist

L. Bruchhaus; S. Bauerdick; L. Peto; U. Barth; A. Rudzinski; J. Mussmann; J. Klingfus; J. Gierak; H. HöVel

2012-09-01T23:59:59.000Z

131

High resolution e-beam lithography using a thin titanium layer to promote resist adhesion  

Science Conference Proceedings (OSTI)

This paper describes improvements in high resolution large area e-beam lithography when a thin titanium layer is applied to substrates prior to the application of resist. The technique is particularly useful when there is a requirement to pattern long ... Keywords: Lithography, Resist adhesi

D. S. Macintyre; I. Young; A. Glidle; X. Cao; J. M. R. Weaver; S. Thoms

2006-04-01T23:59:59.000Z

132

Origination of nano- and microstructures on large areas by interference lithography  

Science Conference Proceedings (OSTI)

Many markets require large area surface relief micro- and nanostructures. Important examples are light management structures for display applications or the radiation power management in solar systems. Structuring techniques with both up-scaling and ... Keywords: Display technology, Interference lithography, Nanoimprint lithography, Replication, Solar cells

Andreas J. Wolf; Hubert Hauser; Volker KüBler; Christian Walk; Oliver HöHn; Benedikt BläSi

2012-10-01T23:59:59.000Z

133

High density phase change data on flexible substrates by thermal curing type nanoimprint lithography  

Science Conference Proceedings (OSTI)

In this study, high density phase change nano-pillar device (Tera-bit per inch^2 data density) was fabricated on flexible substrates by thermal curing type nanoimprint lithography with high throughput at a relatively low temperature (120^oC). Phase change ... Keywords: Flexible nano-device, Nanoimprint lithography, Phase change memory, Phase change nano-pillar device, Tera-bit record

Sung-Hoon Hong; Jun-Ho Jeong; Kang-In Kim; Heon Lee

2011-08-01T23:59:59.000Z

134

Time efficient fabrication of ultra large scale nano dot arrays using electron beam lithography  

Science Conference Proceedings (OSTI)

An astonishingly simple yet versatile alternative method for the creation of ultra large scale nano dot arrays [1-3] utilising the fact that exposure in electron beam lithography (EBL) is performed by addressing single pixels with defined distances is ... Keywords: Electron beam lithography, Nano dot, Patterning, Photonic crystal, Plasmonics

Jochen Grebing; JüRgen FaíBender; Artur Erbe

2012-09-01T23:59:59.000Z

135

Ultraviolet imaging of hydrogen flames  

DOE Green Energy (OSTI)

We have assembled an ultraviolet-sensitive intensified camera for observing hydrogen combustion by imaging the OH, A/sup 2/..sigma.. - X/sup 2//Pi/ bandhead emissions near 309 nm. The camera consists of a quartz and CaF achromat lense-coupled to an ultraviolet image intensifier which is in turn fiber-coupled to a focus projection scan (FPS) vidicon. The emission band is selected with interference filters which serve to discriminate against background. The camera provides optical gain of 100 to 1000 and is capable of being shuttered at nanosecond speeds and of being framed at over 600 frames per second. We present data from observations of test flames in air at standard RS-170 video rates with varying background conditions. Enhanced images using background subtraction are presented. Finally, we discuss the use of polarizaton effects to further discrimination against sky background. This work began as a feasibility study to investigate ultraviolet technology to detect hydrogen fires for the NASA space program. 6 refs., 7 figs, 2 tabs.

Yates, G.J.; Wilke, M.; King, N.

1988-01-01T23:59:59.000Z

136

Paving the Way to Nanoelectronics 16 nm and Smaller  

NLE Websites -- All DOE Office Websites (Extended Search)

Paving the Way to Paving the Way to Nanoelectronics 16 nm and Smaller Paving the Way to Nanoelectronics 16 nm and Smaller Print Wednesday, 30 March 2011 00:00 As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over the past decade, significant challenges remain, including defect-free mask fabrication (see Science Highlight Investigating Extreme Ultraviolet Lithography Mask Defects), and the development of ultrahigh-resolution photoresist-a light-sensitive material used to form a patterned coating-that simultaneously supports low line-edge roughness (LER), high sensitivity, and sub-22-nm resolution. Using the SEMATECH Berkeley Microfield Exposure Tool (MET) at ALS Beamline 12.0.1.3, advanced EUV photoresist research can be performed while high-power stand-alone light sources are still being developed. High-quality 16-nm lines and spaces have been printed using the MET, representing the highest resolution ever achieved from a single-exposure projection optical lithography tool.

137

Paving the Way to Nanoelectronics 16 nm and Smaller  

NLE Websites -- All DOE Office Websites (Extended Search)

Paving the Way to Nanoelectronics 16 nm and Smaller Print Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over the past decade, significant challenges remain, including defect-free mask fabrication (see Science Highlight Investigating Extreme Ultraviolet Lithography Mask Defects), and the development of ultrahigh-resolution photoresist-a light-sensitive material used to form a patterned coating-that simultaneously supports low line-edge roughness (LER), high sensitivity, and sub-22-nm resolution. Using the SEMATECH Berkeley Microfield Exposure Tool (MET) at ALS Beamline 12.0.1.3, advanced EUV photoresist research can be performed while high-power stand-alone light sources are still being developed. High-quality 16-nm lines and spaces have been printed using the MET, representing the highest resolution ever achieved from a single-exposure projection optical lithography tool.

138

Paving the Way to Nanoelectronics 16 nm and Smaller  

NLE Websites -- All DOE Office Websites (Extended Search)

Paving the Way to Nanoelectronics 16 nm and Smaller Print Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over the past decade, significant challenges remain, including defect-free mask fabrication (see Science Highlight Investigating Extreme Ultraviolet Lithography Mask Defects), and the development of ultrahigh-resolution photoresist-a light-sensitive material used to form a patterned coating-that simultaneously supports low line-edge roughness (LER), high sensitivity, and sub-22-nm resolution. Using the SEMATECH Berkeley Microfield Exposure Tool (MET) at ALS Beamline 12.0.1.3, advanced EUV photoresist research can be performed while high-power stand-alone light sources are still being developed. High-quality 16-nm lines and spaces have been printed using the MET, representing the highest resolution ever achieved from a single-exposure projection optical lithography tool.

139

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

Uwe Arp. Dr. Uwe Arp is a physicist in the Ultraviolet Radiation Group of the Sensor Science Division in the Physical Measurement Laboratory. ...

2013-08-19T23:59:59.000Z

140

Ultraviolet Germicidal Irradiation for Preventing Infectious...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultraviolet Germicidal Irradiation for Preventing Infectious Disease Transmission Speaker(s): Peng Xu Date: February 19, 2002 - 12:00pm Location: Bldg. 90 The transmission of...

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vitreous carbon mask substrate for X-ray lithography  

DOE Patents (OSTI)

The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

2009-10-27T23:59:59.000Z

142

Microgap ultra-violet detector  

DOE Patents (OSTI)

A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA)

1994-01-01T23:59:59.000Z

143

Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry  

Science Conference Proceedings (OSTI)

This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

Marcuse, W.

1987-01-01T23:59:59.000Z

144

Sequential Infiltration Synthesis Advances Lithography (IN-10-017, 10-106)  

Lithography is widely used for defining patterns with high spatial resolution. In most applications of this technique, a thin-film polymeric resist material coating the substrate is patterned using light, electrons, or self-assembly. This resist film ...

145

Contact region fidelity, sensitivity, and control in roll-based soft lithography  

E-Print Network (OSTI)

Soft lithography is a printing process that uses small features on an elastomeric stamp to transfer micron and sub-micron patterns to a substrate. Translating this lab scale process to a roll-based manufacturing platform ...

Petrzelka, Joseph E

2012-01-01T23:59:59.000Z

146

Ultra-high precision scanning beam interference lithography and its application : spatial frequency multiplication  

E-Print Network (OSTI)

Scanning beam interference lithography (SBIL) is a technique developed at MIT in 2003. The SBIL system, referred to as the Nanoruler, could fabricate grating patterns with around ten-nanometer phase repeatability. There ...

Zhao, Yong, 1980-

2008-01-01T23:59:59.000Z

147

A Study on Carbon-Nanotube Local Oxidation Lithography Using an Atomic Force Microscope  

Science Conference Proceedings (OSTI)

In this paper, nanoscale anodic oxidation lithography using an atomic force microscope (AFM) is systematically studied on carbon nanotubes (CNTs). Trends between the produced feature size and the corresponding process parameters, such as applied voltage, ...

K. Kumar; O. Sul; S. Strauf; D. S. Choi; F. Fisher; M. G. Prasad; E. Yang

2011-07-01T23:59:59.000Z

148

Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography  

Science Conference Proceedings (OSTI)

We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified.

S. P. Li; A. Lebib; D. Peyrade; M. Natali; Y. Chen; W. S. Lew; J. A. C. Bland

2001-01-01T23:59:59.000Z

149

Real-time spatial-phase-locked electron-beam lithography  

E-Print Network (OSTI)

The ability of electron-beam lithography (EBL) to create sub-10-nm features with arbitrary geometry makes it a critical tool in many important applications in nanoscale science and technology. The conventional EBL system ...

Zhang, Feng, 1973-

2005-01-01T23:59:59.000Z

150

M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features  

DOE Patents (OSTI)

Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

Brueck, Steven R.J. (Albuquerque, NM); Chen, Xiaolan (Albuquerque, NM); Zaidi, Saleem (Albuquerque, NM); Devine, Daniel J. (Los Gatos, CA)

1998-06-02T23:59:59.000Z

151

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color...

152

NIST Ultraviolet Source Helps NASA Spacecraft Measure the ...  

Science Conference Proceedings (OSTI)

... space weather can originate. NIST's unique 'sliding spark source' (inside the glass tubing) feeds ultraviolet (UV) light into NASA's Solar Ultraviolet ...

2010-09-28T23:59:59.000Z

153

The High-Resolution Lightweight Telescope for the EUV (HiLiTE)  

SciTech Connect

The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

2008-06-02T23:59:59.000Z

154

Fundamentals of embossing nanoimprint lithography in polymer substrates.  

Science Conference Proceedings (OSTI)

The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

Simmons, Blake Alexander; King, William P. (University of Illinois, Urbana IL)

2011-02-01T23:59:59.000Z

155

Low-speckle holographic beam shaping of high-coherence EUV sources  

Science Conference Proceedings (OSTI)

This paper describes a method to arbitrarily shape and homogenize high-coherence extreme ultraviolet sources using time-varying holographic optical elements and a scanning subsystem to mitigate speckle. In systems with integration times longer than 100 ms, a speckle contrast below 1% can be achieved.

Anderson, Christopher N.; Miyakawa, Ryan H.; Naulleau, Patrick

2010-08-01T23:59:59.000Z

156

The USDA Ultraviolet Radiation Monitoring Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Agriculture's Ultraviolet (UV) Radiation Monitoring Program has been measuring UV radiation since 1994. The initial network of 12 stations employed broadband meters to measure UVB irradiance and included ancillary ...

D. S. Bigelow; J. R. Slusser; A. F. Beaubien; J. H. Gibson

1998-04-01T23:59:59.000Z

157

Adhesion effect of interface layers on pattern fabrication with GeSbTe as laser thermal lithography film  

Science Conference Proceedings (OSTI)

Adhesion of pattern structures is a very important issue in laser thermal lithography. In this paper, Si"3N"4 and ZnS-SiO"2 were investigated as interface layers to improve patterns' adhesion to substrate on pattern fabrication with Ge"2Sb"2Te"5 as laser ... Keywords: Adhesion, GeSbTe, Interface layers, Thermal lithography, Thin films, Wet etching

Changmeng Deng; Yongyou Geng; Yiqun Wu; Yang Wang; Jinsong Wei

2013-03-01T23:59:59.000Z

158

Optimization of a short-range proximity effect correction algorithm in e-beam lithography using GPGPUs  

Science Conference Proceedings (OSTI)

The e-beam lithography is used to provide high resolution circuit patterning for circuit fabrication processes. However, due to electron scattering in resist and substrate it occurs an undesired exposure of regions which are adjacent to the actual exposed ... Keywords: GPGPUs, PEC, e-beam lithography, proximity effect correction, short-range proximity effect

Max Schneider; Nikola Belic; Christoph Sambale; Ulrich Hofmann; Dietmar Fey

2012-09-01T23:59:59.000Z

159

Fabrication of nano-hole array patterns on transparent conducting oxide layer using thermally curable nanoimprint lithography  

Science Conference Proceedings (OSTI)

A two-dimensional, periodic array of nano-sized holes was fabricated in an indium tin oxide (ITO) layer, deposited onto a glass substrate with nanoimprint lithography. As a result of a thermally curing imprint process, hole array patterns with a diameter ... Keywords: Indium tin oxide (ITO), Nanoimprint lithography (NIL), Patterned transparent electrode, Photonic crystals, Transparent conducting oxide (TCO) layer

Kyeong-Jae Byeon; Seon-Yong Hwang; Heon Lee

2008-05-01T23:59:59.000Z

160

The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography  

Science Conference Proceedings (OSTI)

Polymers with high glass transition temperatures, fluorinated ethylene propylene copolymer (FEP) and poly(ethylene naphthalate) (PEN), have been used in imprint lithography as a protective support layer and as a secondary mould, to imprint superficial ... Keywords: Embossing, Nanoimprint lithography, Polymer Engineering

Christopher A. Mills; Javier G. Fernandez; Abdelhamid Errachid; Josep Samitier

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

FIRST SDO AIA OBSERVATIONS OF A GLOBAL CORONAL EUV 'WAVE': MULTIPLE COMPONENTS AND 'RIPPLES'  

SciTech Connect

We present the first Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) observations of a global coronal EUV disturbance (so-called 'EIT wave') revealed in unprecedented detail. The disturbance observed on 2010 April 8 exhibits two components: one diffuse pulse superimposed, on which are multiple sharp fronts that have slow and fast components. The disturbance originates in front of erupting coronal loops and some sharp fronts undergo accelerations, both effects implying that the disturbance is driven by a coronal mass ejection. The diffuse pulse, propagating at a uniform velocity of 204-238 km s{sup -1} with very little angular dependence within its extent in the south, maintains its coherence and stable profile for {approx}30 minutes. Its arrival at increasing distances coincides with the onsets of loop expansions and the slow sharp front. The fast sharp front overtakes the slow front, producing multiple 'ripples' and steepening the local pulse, and both fronts propagate independently afterward. This behavior resembles the nature of real waves. Unexpectedly, the amplitude and FWHM of the diffuse pulse decrease linearly with distance. A hybrid model, combining both wave and non-wave components, can explain many, but not all, of the observations. Discoveries of the two-component fronts and multiple ripples were made possible for the first time thanks to AIA's high cadences ({<=}20 s) and high signal-to-noise ratio.

Liu Wei; Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, Department ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2010-11-01T23:59:59.000Z

162

Ultraviolet Germicidal Irradiation for Preventing Infectious Disease  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultraviolet Germicidal Irradiation for Preventing Infectious Disease Ultraviolet Germicidal Irradiation for Preventing Infectious Disease Transmission Speaker(s): Peng Xu Date: February 19, 2002 - 12:00pm Location: Bldg. 90 The transmission of tuberculosis (TB) and other infectious diseases in health-care buildings has been a recognized hazard for decades. Ultraviolet germicidal irradiation (UVGI) of upper room air is used as an engineering control method to prevent the spread of airborne infectious disease. Under full-scale conditions, the efficacy of UVGI for inactivating airborne bacterial spores and active cells was evaluated. A test room fitted with a modern UVGI system was used to conduct bio-aerosol inactivation experiments. UVGI efficacy can be affected by environmental factors such as relative humidity (RH), and air mixing

163

Electron beam lithography at 10keV using an epoxy based high resolution negative resist  

Science Conference Proceedings (OSTI)

The behaviour of a new epoxy based resist (mr-EBL 6000.1 XP) as a negative resist for e-beam lithography is presented. We demonstrate that it is possible to define sub-100nm patterns when irradiating thin (120nm) layers of resist with a 10keV electron ... Keywords: EBL, Nanopatterning, Negative resist, Polymer technology

C. Martin; G. Rius; A. Llobera; A. Voigt; G. Gruetzner; F. Pérez-Murano

2007-05-01T23:59:59.000Z

164

Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography  

Science Conference Proceedings (OSTI)

We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified. {copyright} 2001 American Institute of Physics.

Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

2001-07-01T23:59:59.000Z

165

Automatic detection of photoresist residual layer in lithography using a neural classification approach  

Science Conference Proceedings (OSTI)

Photolithography is a fundamental process in the semiconductor industry and it is considered as the key element towards extreme nanoscale integration. In this technique, a polymer photo sensitive mask with the desired patterns is created on the substrate ... Keywords: Ellipsometry, Lithography, Neural network, Nondestructive testing

Issam Gereige; StéPhane Robert; Jessica Eid

2012-09-01T23:59:59.000Z

166

The role of plasma evolution and photon transport in optimizing future advanced lithography sources  

E-Print Network (OSTI)

The role of plasma evolution and photon transport in optimizing future advanced lithography sources and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied, photons generation, and their transport and distribution. One of the most important processes

Harilal, S. S.

167

Investigation on LIGA-like process based on multilevel imprint lithography  

Science Conference Proceedings (OSTI)

A low-cost quasi-LIGA process is proposed, in which, instead of using thick resist technique, micro-structure with large structural height is achieved by multilevel imprinting and through-mask plating. To achieve precise alignment between individual ... Keywords: Imprint lithography, LIGA-like, Layered fabrication, Microstructure

Quandai Wang; Yugang Duan; Yucheng Ding; Bingheng Lu; Jiawei Xiang; Lianfa Yang

2009-01-01T23:59:59.000Z

168

Empirical Studies of Tropospheric Transmission in the Ultraviolet: Broadband Measurements  

Science Conference Proceedings (OSTI)

This work examines the effects of absorption and scattering in the troposphere on solar ultraviolet radiation reaching the ground. A site was established in the city of Chicago for monitoring broadband ultraviolet irradiance, total sunlight, and ...

John E. Frederick; Anne E. Koob; Amy D. Alberts; Elizabeth C. Weatherhead

1993-12-01T23:59:59.000Z

169

NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN  

Science Conference Proceedings (OSTI)

In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s {sup 2}3p {sup 5}4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

Landi, E.; Young, P. R. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States)

2009-12-20T23:59:59.000Z

170

VELOCITY CHARACTERISTICS OF EVAPORATED PLASMA USING HINODE/EUV IMAGING SPECTROMETER  

Science Conference Proceedings (OSTI)

This paper presents a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with hard X-ray (HXR) observations from Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The advanced capabilities of EIS were used to measure Doppler shifts in 15 emission lines covering the temperature range T = 0.05-16 MK during the impulsive phase of a C-class flare on 2007 December 14. Blueshifts indicative of the evaporated material were observed in six emission lines from Fe XIV-XXIV (2-16 MK). Upflow velocity (v{sub up}) was found to scale with temperature as v{sub up} (km s{sup -1}) {approx} 8-18T(MK). Although the hottest emission lines, Fe XXIII and Fe XXIV, exhibited upflows of >200 km s{sup -1}, their line profiles were found to be dominated by a stationary component in contrast to the predictions of the standard flare model. Emission from O VI-Fe XIII lines (0.5-1.5 MK) was found to be redshifted by v{sub down} (km s{sup -1}) {approx} 60-17T (MK) and was interpreted as the downward-moving 'plug' characteristic of explosive evaporation. These downflows occur at temperatures significantly higher than previously expected. Both upflows and downflows were spatially and temporally correlated with HXR emission observed by RHESSI that provided the properties of the electron beam deemed to be the driver of the evaporation. The energy flux of the electron beam was found to be {approx}>5 x 10{sup 10} erg cm{sup -2} s{sup -1}, consistent with the value required to drive explosive chromospheric evaporation from hydrodynamic simulations.

Milligan, Ryan O.; Dennis, Brian R. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2009-07-10T23:59:59.000Z

171

High-resolution crystal spectrometer for the 10-60 (angstrom) EUV region  

DOE Green Energy (OSTI)

A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 Angstroms. The instrument utilizes a flat octadecyl hydrogen maleate (OHM) crystal and a thin-window 1-D position-sensitive gas proportional detector. This detector employs a 1 {micro}m-thick 100 x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.

Beiersdorfer, P; Brown, G V; Goddard, R; Wargelin, B J

2004-02-20T23:59:59.000Z

172

Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection  

E-Print Network (OSTI)

Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a UV light disinfection system, and how to maintain such a system.

Lesikar, Bruce J.

2008-10-02T23:59:59.000Z

173

Microwave-driven ultraviolet light sources  

DOE Patents (OSTI)

A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA)

2002-01-29T23:59:59.000Z

174

Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions  

E-Print Network (OSTI)

This thesis describes the design and analysis of a system for patterning large-area gratings with nanometer level phase distortions. The novel patterning method, termed scanning beam interference lithography (SBIL), uses ...

Konkola, Paul Thomas, 1973-

2003-01-01T23:59:59.000Z

175

ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Mendez-Torres, A.; Torres, R.; Lam, P.

2011-07-15T23:59:59.000Z

176

ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Torres, R.; Mendez-Torres, A.; Lam, P.

2011-06-09T23:59:59.000Z

177

Commissioning of soft and deep X-ray lithography beamline on Indus-2  

Science Conference Proceedings (OSTI)

Soft and Deep x-ray lithography (SDXRL) beamline is commissioned on Indus-2. The beamline can be operated between 1.5 to 20 keV and in white beam mode. Beamline consists of two x-ray mirrors, slits, Be-windows, beam diagnostics and filters assemblies and radiation safety systems. A custom built X-ray scanner is used to create 3-D high aspect ratio micro structures. The paper reports the commissioning results of this beamline.

Dhamgaye, V. P.; Sankar, B. Gowri; Garg, C. K.; Lodha, G. S. [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2012-06-05T23:59:59.000Z

178

QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA  

SciTech Connect

We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Ofman, Leon, E-mail: weiliu@lmsal.com [Department of Physics, Catholic University of America, Washingtom, DC 20064 (United States)

2012-07-01T23:59:59.000Z

179

Nanograting-based compact vacuum ultraviolet spectrometer and ...  

Nanograting-based compact vacuum ultraviolet spectrometer and beam pro?ler for in situ characterization of high-order harmonic generation light sources

180

UVOC-MAC: a MAC protocol for outdoor ultraviolet networks  

Science Conference Proceedings (OSTI)

UVOC-MAC: a MAC protocol for outdoor ultraviolet networks. Yiyang Li • Jianxia Ning • Zhengyuan Xu •. Srikanth V. Krishnamurthy • Gang Chen. Ó Springer ...

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Can a Nanoflare Model of EUV Irradiances Describe the Heating of the Solar Corona?  

E-Print Network (OSTI)

Nanoflares, the basic unit of impulsive energy release may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies can give an estimation of the importance of nanoflares for heating the solar corona. If the power law index is greater than 2, then the nanoflare contribution is dominant. We model time series of extreme ultraviolet emission radiance, as random flares with a power law exponent of the flare event distribution. The model is based on three key parameters, the flare rate, the flare duration and the power law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 \\AA, observed by STEREO/EUVI and SDO/AIA. The Observed light curves are matched with simulated light curves using an Artificial Neural Network and parameter values are determined across regions of active region, quiet sun, and coronal hole. The damping rate of nano...

Tajfirouze, E; 10.1088/0004-637X/744/2/113

2011-01-01T23:59:59.000Z

182

The Impact of New EUV Diagnostics on CME-Related Kinematics  

E-Print Network (OSTI)

We present the application of novel diagnostics to the spectroscopic observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently developed line profile asymmetry analysis to the spectroscopic observation of NOAA AR 10930 on 14-15 December 2006 to three raster observations before and during the eruption of a 1000km/s CME. We see the impact that the observer's line-of-sight and magnetic field geometry have on the diagnostics used. Further, and more importantly, we identify the on-disk signature of a high-speed outflow behind the CME in the dimming region arising as a result of the eruption. Supported by recent coronal observations of the STEREO spacecraft, we speculate about the momentum flux resulting from this outflow as a secondary momentum source to the CME. The results presented highlight the importance of spectroscopic measurements in relation to CME kinematics, and the need for full-disk synoptic spectroscopic ob...

McIntosh, S W; Leamon, R J

2010-01-01T23:59:59.000Z

183

Fabrication and characterization of sub-500nm channel organic field effect transistor using UV nanoimprint lithography with cheap Si-mold  

Science Conference Proceedings (OSTI)

P-type poly (3-hexylthiophene) (P3HT) organic field effect transistors (OFETs) with channel length down to 500nm were fabricated. The gold source and drain electrodes were patterned using UV-based nanoimprint lithography and a lift-off process. To reduce ... Keywords: Lift-off process, Opaque Si-mold, Organic transistor, Short channel effect, UV-nanoimprint lithography

Lichao Teng; Robert Kirchner; Matthias PlöTner; Alexander TüRke; Andreas Jahn; Jian He; Falk Hagemann; Wolf-Joachim Fischer

2012-09-01T23:59:59.000Z

184

The GALEX Ultraviolet Atlas of Nearby Galaxies  

E-Print Network (OSTI)

We present images, integrated photometry, surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the GALEX satellite in its far-ultraviolet (FUV; 1516A) and near-ultraviolet (NUV; 2267A) bands. (...) This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different sub-types. Elliptical galaxies with brighter K-band luminosities (i.e. more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly available through a dedicated web page at http://nedwww.ipac.caltech.edu/level5/GALEX_Atlas/

A. Gil de Paz; S. Boissier; B. F. Madore; M. Seibert; Y. H. Joe; A. Boselli; T. K. Wyder; D. Thilker; L. Bianchi; S. -C. Rey; R. M. Rich; T. A. Barlow; T. Conrow; K. Forster; P. G. Friedman; D. C. Martin; P. Morrissey; S. G. Neff; D. Schiminovich; T. Small; J. Donas; T. M. Heckman; Y. -W. Lee; B. Milliard; A. S. Szalay; S. Yi

2006-06-19T23:59:59.000Z

185

Diffraction spectral filter for use in extreme-UV lithography condenser  

Science Conference Proceedings (OSTI)

A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.

Sweatt, William C. (Albuquerque, NM); Tichenor, Daniel A. (Castro Valley, CA); Bernardez, Luis J. (Livermore, CA)

2002-01-01T23:59:59.000Z

186

Atom Nano-lithography with Multi-layer Light Masks: Particle Optics Analysis  

E-Print Network (OSTI)

We study the focusing of atoms by multiple layers of standing light waves in the context of atom lithography. In particular, atomic localization by a double-layer light mask is examined using the optimal squeezing approach. Operation of the focusing setup is analyzed both in the paraxial approximation and in the regime of nonlinear spatial squeezing for the thin-thin as well as thin-thick atom lens combinations. It is shown that the optimized double light mask may considerably reduce the imaging problems, improve the quality of focusing and enhance the contrast ratio of the deposited structures.

R. Arun; I. Sh. Averbukh; T. Pfau

2005-03-22T23:59:59.000Z

187

Twenty-One Receive High Honors from Commerce ...  

Science Conference Proceedings (OSTI)

... "For advancing next generation semiconductor lithography by the discovery of deep, ultraviolet birefringence in calcium fluoride". ...

2012-12-13T23:59:59.000Z

188

Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet  

NLE Websites -- All DOE Office Websites (Extended Search)

Nano-Enabled Titanium Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project to someone by E-mail Share Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Facebook Tweet about Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Twitter Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Google Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Delicious Rank Building Technologies Office: Nano-Enabled Titanium Dioxide

189

EUV reflectance characterization of the 94/304 ? flight secondary AIA mirror at beamline 6.3.2 of the Advanced Light Source  

Science Conference Proceedings (OSTI)

The AIA secondary flight mirror, previously coated at Columbia University with Mg/SiC for the 303.8 {angstrom} channel and Mo/Y for the 93.9 {angstrom} channel was characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL on January 10, 2006. Paul Boerner (LMSAL) also participated in these measurements.

Soufli, R; Spiller, E; Aquila, A L; Gullikson, E M; Windt, D L

2006-02-22T23:59:59.000Z

190

Controlled doping of graphene using ultraviolet irradiation  

SciTech Connect

The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge concentration saturates at {approx}2 Multiplication-Sign 10{sup 12} cm{sup -2} and the quantum yield is {approx}10{sup -5} e/photon upon initial UV exposure. This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse applications.

Luo Zhengtang [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Pinto, Nicholas J.; Davila, Yarely [Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao, 00792 (Puerto Rico); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 (United States)

2012-06-18T23:59:59.000Z

191

Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction  

SciTech Connect

Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

2011-06-06T23:59:59.000Z

192

ALSNews Vol. 311  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Irradiation Effects on Human Cortical Bone Fracture Behavior The role irradiation plays in high-exposure bone fracturing experiments, and how it affects the properties of bone tissue, are not fully understood. To better predict fracturing in bone, researchers must understand the role of sustained irradiation damage at different size scales within bone. Using synchrotron radiation microtomography at ALS Beamline 8.3.2, researchers investigated changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that this can lead to drastic losses in strength, ductility, and toughness. Read more... Contact: Robert O. Ritchie Investigating Extreme Ultraviolet Lithography Mask Defects Printing computer chips using extreme ultraviolet (EUV) lithography will enable the production of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized, curved-mirror lenses to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, Berkeley Lab scientists worked with an international semiconductor industry consortium to create a unique Fresnel zoneplate microscope on ALS Beamline 11.3.2: The SEMATECH Berkeley Actinic Inspection Tool (AIT). Read more...

193

ALSNews Vol. 311  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Irradiation Effects on Human Cortical Bone Fracture Behavior The role irradiation plays in high-exposure bone fracturing experiments, and how it affects the properties of bone tissue, are not fully understood. To better predict fracturing in bone, researchers must understand the role of sustained irradiation damage at different size scales within bone. Using synchrotron radiation microtomography at ALS Beamline 8.3.2, researchers investigated changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that this can lead to drastic losses in strength, ductility, and toughness. Read more... Contact: Robert O. Ritchie Investigating Extreme Ultraviolet Lithography Mask Defects Printing computer chips using extreme ultraviolet (EUV) lithography will enable the production of smaller, faster, and cheaper semiconductors. EUV lithography relies on specialized, curved-mirror lenses to print patterns with high resolution. One special flat mirror called a mask is particularly sensitive to even the smallest imperfections. To better detect and characterize mask defects, Berkeley Lab scientists worked with an international semiconductor industry consortium to create a unique Fresnel zoneplate microscope on ALS Beamline 11.3.2: The SEMATECH Berkeley Actinic Inspection Tool (AIT). Read more...

194

Excitation of an Outflow From the Lower Solar Atmosphere and a Co-Temporal EUV Transient Brightening  

E-Print Network (OSTI)

We analyse an absorption event within the H$\\alpha$ line wings, identified as a surge, and the co-spatial evolution of an EUV brightening, with spatial and temporal scales analogous to a small blinker. We conduct a multi-wavelength, multi-instrument analysis using high-cadence, high-resolution data, collected by the Interferometric BIdimensional Spectrometer on the Dunn Solar Telescope, as well as the space-borne Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager instruments onboard the Solar Dynamics Observatory. One large absorption event situated within the plage region trailing the lead sunspot of AR 11579 is identified within the H-alpha line wings. This event is found to be co-spatially linked to a medium-scale (around 4 arcseconds in diameter) brightening within the transition region and corona. This ejection appears to have a parabolic evolution, first forming in the H-alpha blue wing before fading and reappearing in the H-alpha red wing, and comprises of a number of smaller fibril even...

Nelson, C J

2013-01-01T23:59:59.000Z

195

ONE-DIMENSIONAL MODELING FOR TEMPERATURE-DEPENDENT UPFLOW IN THE DIMMING REGION OBSERVED BY HINODE/EUV IMAGING SPECTROMETER  

Science Conference Proceedings (OSTI)

We previously found a temperature-dependent upflow in the dimming region following a coronal mass ejection observed by the Hinode EUV Imaging Spectrometer (EIS). In this paper, we reanalyzed the observations along with previous work on this event and provided boundary conditions for modeling. We found that the intensity in the dimming region dramatically drops within 30 minutes from the flare onset, and the dimming region reaches the equilibrium stage after {approx}1 hr. The temperature-dependent upflows were observed during the equilibrium stage by EIS. The cross-sectional area of the flux tube in the dimming region does not appear to expand significantly. From the observational constraints, we reconstructed the temperature-dependent upflow by using a new method that considers the mass and momentum conservation law and demonstrated the height variation of plasma conditions in the dimming region. We found that a super-radial expansion of the cross-sectional area is required to satisfy the mass conservation and momentum equations. There is a steep temperature and velocity gradient of around 7 Mm from the solar surface. This result may suggest that the strong heating occurred above 7 Mm from the solar surface in the dimming region. We also showed that the ionization equilibrium assumption in the dimming region is violated, especially in the higher temperature range.

Imada, S.; Shimizu, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara-shi, Kanagawa 252-5210 (Japan); Hara, H.; Watanabe, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan); Murakami, I. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Harra, L. K. [UCL-Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Zweibel, E. G. [Department of Astronomy, University of Wisconsin-Madison, 475 N Charter Street, Madison, WI 53706 (United States)

2011-12-10T23:59:59.000Z

196

Design and fabrication of densely integrated silicon quantum dots using a VLSI compatible hydrogen silsesquioxane electron beam lithography process  

Science Conference Proceedings (OSTI)

Hydrogen silsesquioxane (HSQ) is a high resolution negative-tone electron beam resist allowing for direct transfer of nanostructures into silicon-on-insulator. Using this resist for electron beam lithography, we fabricate high density lithographically ... Keywords: Electron beam resist, HSQ, High-resolution, Nanolithography, SET, SOI

Y. P. Lin; M. K. Husain; F. M. Alkhalil; N. Lambert; J. Perez-Barraza; Y. Tsuchiya; A. J. Ferguson; H. M. H. Chong; H. Mizuta

2012-10-01T23:59:59.000Z

197

Quantum lithography  

Science Conference Proceedings (OSTI)

The edge definition and the interior filling of pattern features are commonly performed using the same exposing beam regardless of the feature size. Separating the two processes

Nadim I. Maluf; R. Fabian W. Pease

1991-01-01T23:59:59.000Z

198

Tropospheric Influence on Solar Ultraviolet Radiation: The Role of Clouds  

Science Conference Proceedings (OSTI)

Measurements obtained from several Robertson-Berger (RB) meters over the course of one year define the role of cloud cover in moderating biologically effective ultraviolet radiation at the Earth's surface. In an annual mean sense, clouds reduce ...

John E. Frederick; Hilary E. Snell

1990-03-01T23:59:59.000Z

199

Quantitative imaging of living cells by deep ultraviolet microscopy  

E-Print Network (OSTI)

Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

Zeskind, Benjamin J

2006-01-01T23:59:59.000Z

200

Ultraviolet Index Forecasts Issued by the National Weather Service  

Science Conference Proceedings (OSTI)

The National Weather Service (NWS), in collaboration with the Environmental Protection Agency (EPA), now issues an Ultraviolet (UV) index forecast. The UV index (UVI) is a mechanism by which the American public is forewarned of the next day's ...

Craig S. Long; Alvin J. Miller; Hai-Tien Lee; Jeannette D. Wild; Richard C. Przywarty; Drusilia Hufford

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Ozone Determination from the Backscattered Ultraviolet (BUV) Experiment  

Science Conference Proceedings (OSTI)

The algorithm used to derive total ozone from the Nimbus 4 Backscattered Ultraviolet (BUV) experiment is described. A seven-year global data set with more than one million retrievals has been produced and archived using this algorithm. The ...

K. F. Klenk; P. K. Bhartia; V. G. Kaveeshwar; R. D. McPeters; P. M. Smith; A. J. Fleig

1982-11-01T23:59:59.000Z

202

A CCD Spectroradiometer for Ultraviolet Actinic Radiation Measurements  

Science Conference Proceedings (OSTI)

A new spectroradiometer for spectral measurements of ultraviolet (UV) atmospheric radiation (290–400 nm) using a charge coupled device (CCD) as a detector is introduced. The instrument development is motivated by the need for measurements with (a)...

Evelyn Jäkel; Manfred Wendisch; Mario Blumthaler; Rainer Schmitt; Ann R. Webb

2007-03-01T23:59:59.000Z

203

A Two-Path, Two-Wavelength Ultraviolet Hygrometer  

Science Conference Proceedings (OSTI)

An ultraviolet-absorption hygrometer for airborne use was designed and tested. Here the principles of operation, the design, and the results of the first test flights are presented. The motivation for the new design is to overcome the ...

Andrew J. Weinheimer; Ronald L. Schwiesow

1992-08-01T23:59:59.000Z

204

Estimation of Ultraviolet-B Irradiance under Variable Cloud Conditions  

Science Conference Proceedings (OSTI)

Methods to estimate the irradiance of ultraviolet-B (UVB; 280–320 nm) radiation are needed to assess biological effects of changes in atmospheric composition. Measurements of the spatial distribution of sky cloud cover, temporal variability of ...

Richard H. Grant; Gordon M. Heisler

2000-06-01T23:59:59.000Z

205

UV Spectra of Amino Acid Immobilized at Nanoparticles Formation through Nanosphere Lithography (NSL) by Plasma Treatment  

Science Conference Proceedings (OSTI)

The modifying of nanospheres structures by plasma treatments to the fabricated nanoparticles arrays by Nanosphere Lithography (NSL) techniques to create Periodic Particles Arrays (PPAs) with different size, shape and orientation. Spectra of amino acid that immobilized to the nanoparticles arrays under Ultra Violet (UV) spectrums were studied. The PPAs with different sizes, shapes and orientation were fabricated by plasma treatment of 5 sec, 7 sec and 10 sec to the Polystyrene Nanosphere (PSN). Plasma treatment will effect to the PSN including etching part of the PSN to produce a much bigger channel to the single layer template of the PSN. Metal was deposited at interstitial sites between of the polymer balls and later removed by dissolving them in organic solvent, leaving a hexagonal pattern of metal structures at the interstitial sites. The nanoparticles immobilized with the standard amino acid, which later investigated under UV spectrums. The spectrums shows the possibilities use as biosensor devices.

Mohamad, Farizan [Microelectronic and Nanotechnology-Shamsuddin Research Centre, Faculty of Electrical and Electronic Engineering (Malaysia); Agam, Mohd Arif [Microelectronic and Nanotechnology-Shamsuddin Research Centre, Faculty of Science, Arts and Heritage, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat (Malaysia); Nur, Hadi [Microelectronic and Nanotechnology-Shamsuddin Research Centre, Faculty Sciences, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai (Malaysia)

2011-05-25T23:59:59.000Z

206

Performance of the Phase 1 superconducting x-ray lithography source (SXLS) at BNL  

SciTech Connect

The Phase I SXLS electron storage ring has a circumference of 8.5 meters, it uses conventional dipole magnets, B {le} 1.1 T and p = 60 cm, and it is capable of operating in the range of 50--250 MeV. It is the forerunner of the Phase II SXLS ring which will operate at 700 MeV and will make use of superconducting dipoles, B{sub o} = 3.87 Tesla, as a source of {lambda}{sub c} = 10 angstrom x-rays for proximity printing lithography. The Phase I storage ring has been successfully commissioned; stored currents in excess of one ampere have been achieved. A report on the performance of the machine is presented.

Murphy, J.B.; Biscardi, R.; Halama, H.; Heese, R.; Kramer, S.; Nawrocky, R. [Brookhaven National Lab., Upton, NY (United States); Krishnaswamy, J. [Grumman Aerospace Corp., Bethpage, NY (United States)

1992-06-01T23:59:59.000Z

207

Performance of the Phase 1 superconducting x-ray lithography source (SXLS) at BNL  

Science Conference Proceedings (OSTI)

The Phase I SXLS electron storage ring has a circumference of 8.5 meters, it uses conventional dipole magnets, B {le} 1.1 T and p = 60 cm, and it is capable of operating in the range of 50--250 MeV. It is the forerunner of the Phase II SXLS ring which will operate at 700 MeV and will make use of superconducting dipoles, B{sub o} = 3.87 Tesla, as a source of {lambda}{sub c} = 10 angstrom x-rays for proximity printing lithography. The Phase I storage ring has been successfully commissioned; stored currents in excess of one ampere have been achieved. A report on the performance of the machine is presented.

Murphy, J.B.; Biscardi, R.; Halama, H.; Heese, R.; Kramer, S.; Nawrocky, R. (Brookhaven National Lab., Upton, NY (United States)); Krishnaswamy, J. (Grumman Aerospace Corp., Bethpage, NY (United States))

1992-01-01T23:59:59.000Z

208

Soft magnetic lithography and giant magnetoresistance in superconducting/ferromagnetic hybrids.  

Science Conference Proceedings (OSTI)

We demonstrate an approach to create a tunable pinning potential in a superconducting/ferromagnetic (SC/FM) hybrid, allowing the switching of their electronic properties through the application of a small magnetic field. Using direct magneto-optical imaging, macroscopic transport, and magnetic measurements, we show that the alignment of stripe domains in the ferromagnet provides a remarkable directionality for the superconducting vortex motion. An analysis of the anisotropic flux motion demonstrates a substantial critical current anisotropy in the superconductor. The possibility of aligning stable lattices of stripe domains in select directions using in-plane magnetic fields allows the realization of soft magnetic lithography for efficient manipulation of supercurrent flow in SC/FM bilayers. Furthermore, in our samples we observed a pronounced magnetoresistance effect yielding 4 orders of magnitude resistivity change in a few millitesla in-plane field.

Vlasko-Vlasov, V.; Welp, U.; Imre, A.; Rosenmann, D.; Pearson, J.; Kwok, W. K.

2008-01-01T23:59:59.000Z

209

Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam ( 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

1996-12-31T23:59:59.000Z

210

1982--1992: A decade of research on the vacuum ultraviolet ring at the National Synchrotron Light Source  

SciTech Connect

This report discusses highlights of research being conducted at the National Synchrotron Light Source in Physics, Chemistry, Biology, and X-ray lithography.

Not Available

1993-04-01T23:59:59.000Z

211

Measurement and analysis of near ultraviolet solar radiation  

DOE Green Energy (OSTI)

The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global-horizontal ultraviolet (280--385 nm) and full-spectrum (280--4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear-sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global-horizontal ultraviolet to full-spectrum radiation of 4%--6% that is weakly dependent on air mass. Conversely, data for direct-normal ultraviolet radiation indicate a much large dependence on air mass, with a ratio of approximately 5% at low air mass to 1% at higher at masses. Results show excellent agreement between the measured data and clear-sky predictions for both the ultraviolet and the full-spectrum global-horizontal radiation. For the direct-normal components, however, the tendency is for the clear-sky model to underpredict the measured that. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global-horizontal component of the radiation exceeds the direct-normal component throughout the year. 9 refs., 7 figs.

Mehos, M.S.; Pacheco, K.A.; Link, H.F.

1991-12-01T23:59:59.000Z

212

Wavelength-specific reflections: A decade of extreme ultraviolet actinic mask inspection research  

E-Print Network (OSTI)

experiments to commercial inspection tool prototypes, the authors survey the recent history of work of their effect on the reflected field of the aerial image. Owing to the resonant response of multilayer mirrors not significantly disturb the EUV aerial image. As we look to the future, with shrinking design rules and ever

213

Ultraviolet Renormalization of the Nelson Hamiltonian through Functional Integration  

E-Print Network (OSTI)

Starting from the N-particle Nelson Hamiltonian defined by imposing an ultraviolet cutoff, we perform ultraviolet renormalization by showing that in the zero cutoff limit a self-adjoint operator exists after a logarithmically divergent term is subtracted from the original Hamiltonian. We obtain this term as the diagonal part of a pair interaction appearing in the density of a Gibbs measure derived from the Feynman-Kac representation of the Hamiltonian. Also, we show existence of a weak coupling limit of the renormalized Hamiltonian and derive an effective Yukawa interaction potential between the particles.

M. Gubinelli; F. Hiroshima; J. Lorinczi

2013-04-24T23:59:59.000Z

214

The Effects of Sunshine, Cloudiness and Haze on Received Ultraviolet Radiation in New York  

Science Conference Proceedings (OSTI)

Ultraviolet data from Rochester, Schenectady and Whiteface Mountain, New York, for the period November 1975-December 1977, have been studied to ascertain the importance of extraterrestrial ultraviolet (UV) radiation, sunshine, cloudiness and haze ...

Anita Baker-Blocker

1980-07-01T23:59:59.000Z

215

Development and Characterization of a New Solar Ultraviolet-B Irradiance Detector  

Science Conference Proceedings (OSTI)

Characteristics of an instrument for measuring solar ultraviolet-B irradiance are presented together with a description of the instrument. The instrument measures direct and scattered broadband ultraviolet irradiance (wavelengths between 280 and ...

B. K. Dichter; A. F. Beaubien; D. J. Beaubien

1993-06-01T23:59:59.000Z

216

A Simple All Weather Model to Estimate Ultraviolet Solar Radiation (290–385 nm)  

Science Conference Proceedings (OSTI)

A new expression to estimate the solar ultraviolet irradiance from parameters usually available in radiometric networks is presented. The authors have analyzed the relation between solar ultraviolet global irradiance (290–385 nm), UV, and ...

I. Foyo-Moreno; J. Vida; L. Alados-Arboledas

1999-07-01T23:59:59.000Z

217

Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source  

SciTech Connect

APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam (<0.1 mrad), APS is well suited for producing high-aspect-ratio microstructures in thick resist films (> 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (< 1 {mu}m) control of the sample, allowing full use of the highly collimated beam for lateral accuracy and control of sidewall slopes during exposure of thick resists, as well as generation of conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

1996-12-31T23:59:59.000Z

218

Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence  

SciTech Connect

Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.

Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.

1998-10-14T23:59:59.000Z

219

Dust and the ultraviolet energy distribution of quasars  

E-Print Network (OSTI)

The ultraviolet energy distribution of quasars shows a sharp steepening of the continuum shortward of 1000 A (rest-frame). We describe how we came to consider the possibility that this continuum break might be the result of absorption by carbon crystallite dust grains.

Luc Binette; Christophe Morisset; Sinhue Haro-Corzo

2005-09-24T23:59:59.000Z

220

Effects of ultra-violet laser irradiation on graphene  

Science Conference Proceedings (OSTI)

Graphene can be applied for transparent electrodes instead of indium tin oxide (ITO). For patterning of ITO, the maskless laser process was reported as a simple and fast process. Raman spectra and electrical resistances of graphene were measured before ... Keywords: Graphene, Maskless laser process, Ultra-violet laser

Fujio Wakaya; Tsuyoshi Teraoka; Toshiya Kisa; Tomoya Manabe; Satoshi Abo; Mikio Takai

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) /  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) / Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) / Chemisorbent Air Cleaner for Indoor Air Applications Title Evaluation of a Combined Ultraviolet Photocatalytic Oxidation (UVPCO) / Chemisorbent Air Cleaner for Indoor Air Applications Publication Type Report LBNL Report Number LBNL-62202 Year of Publication 2007 Authors Hodgson, Alfred T., Hugo Destaillats, Toshifumi Hotchi, and William J. Fisk Report Number LBNL-62202 Abstract We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680 - 780 m3/h (400 - 460 cfm).

222

EUV Detector Calibrations  

Science Conference Proceedings (OSTI)

... Note that it is NIST policy that orders placed from outside the United States be prepaid by credit card, bank wire transfer, check, or other means. ...

2012-11-16T23:59:59.000Z

223

EUV Detector Radiometry Beamline  

Science Conference Proceedings (OSTI)

... The second grating is ruled with 300 lines per millimeter and is ... detector responsivity; filter transmission; uniformity of responsivity or transmission. ...

2011-10-03T23:59:59.000Z

224

Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases  

E-Print Network (OSTI)

This study aims at the early diagnostics of geoeffectiveness of coronal mass ejections (CMEs) from quantitative parameters of the accompanying EUV dimming and arcade events. We study events of the 23th solar cycle, in which major non-recurrent geomagnetic storms (GMS) with Dst solar sources in the central part of the disk. Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant dimming and arcade areas and calculate summarized unsigned magnetic fluxes in these regions at the photospheric level. The high relevance of this eruption parameter is displayed by its pronounced correlation with the Forbush decrease (FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz component but is determined by global characteristics of ICMEs. Correlations with the same magnetic flux in the solar source region are found for the GMS intensity (at the first step, without taking into account factors determining the Bz component near t...

Chertok, I M; Belov, A V; Abunin, A A

2012-01-01T23:59:59.000Z

225

PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION  

SciTech Connect

In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Reale, F. [Dipartimento di Fisica e Chimica, Universita di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

2013-07-20T23:59:59.000Z

226

The Ultraviolet Imaging Telescope: Instrument and Data Characteristics  

E-Print Network (OSTI)

The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro observatory on the Space Shuttle Columbia in December 1990 and again on the Space Shuttle Endeavor in March 1995. Ultraviolet (1200-3300?A) images of a variety of astronomical objects, with a 40 ? field of view and a resolution of about 3 ? ? , were recorded on photographic film. The data recorded during the first flight are available to the astronomical community through the National Space Science Data Center (NSSDC); the data recorded during the second flight will soon be available as well. This paper discusses in detail the design, operation, data reduction, and calibration of UIT, providing the user of the data with information for understanding and using the data. It also provides guidelines for analyzing other astronomical imagery made with image intensifiers and photographic film. – 3 –

Theodore P. Stecher; Robert H. Cornett; Michael R. Greason; Wayne B. L; Jesse K. Hill; Robert S. Hill; Ralph C. Bohlin; Peter C. Chen; Nicholas R; Michael N. Fanelli; Joan I. Hollis; Susan G. Neff; Robert W. O’connell; Joel D. Offenberg; Ronald A. Parise; Joel Wm. Parker; Morton S. Roberts; M. Smith; William H. Waller

1997-01-01T23:59:59.000Z

227

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents (OSTI)

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

1994-04-26T23:59:59.000Z

228

Durable Corrosion and Ultraviolet-Resistant Silver Mirror  

DOE Patents (OSTI)

A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

Jorgensen, G. J.; Gee, R.

2006-01-24T23:59:59.000Z

229

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents (OSTI)

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

Reed, Scott (Albuquerue, NM); Walko, Robert J. (Albuquerue, NM); Ashley, Carol S. (Albuquerue, NM); Brinker, C. Jeffrey (Albuquerue, NM)

1994-01-01T23:59:59.000Z

230

Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile Z-pinch environment  

Science Conference Proceedings (OSTI)

This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm power generator (1 MA, 100 ns risetime) at University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer.

Williamson, K. M.; Kantsyrev, V. L.; Safronova, A. S.; Wilcox, P. G.; Cline, W.; Batie, S.; LeGalloudec, B.; Nalajala, V.; Astanovitsky, A. [Plasma Physics and Diagnostics Laboratory, Physics Department, University of Nevada, Reno, Nevada 89557 (United States)

2011-09-15T23:59:59.000Z

231

Development of a microfluidic device for patterning multiple species by scanning probe lithography  

E-Print Network (OSTI)

Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale. One of the prolific SPL techniques is Dip Pen Nanolithography™ (DPN™). High resolution, multiplexed registration and parallel direct-write capabilities make DPN (and other SPL techniques) a power tool for applications that are envisioned in micro/nano-electronics, molecular electronics, catalysis, cryptography (brand protection), combinatorial synthesis (nano-materials discovery and characterization), biological recognition, genomics, and proteomics. One of the greatest challenges for the successful performance of the DPN process is the delivery of multiple inks to the scanning probe tips for nano-patterning. The purpose of the present work is to fabricate a microfluidic ink delivery device (called “Centiwell”) for DPN (and other SPL) applications. The device described in this study maximizes the number of chemical species (inks) for nanofabrication that can be patterned simultaneously by DPN to conform the industrial standards for fluid handling for biochemical assays (e.g., genomic and proteomic). Alternate applications of Centiwell are also feasible for the various envisioned applications of DPN (and other SPL techniques) that were listed above. The Centiwell consists of a two-dimensional array of 96 microwells that are bulk micromachined on a silicon substrate. A thermoelectric module is attached to the back side of the silicon substrate and is used to cool the silicon substrate to temperatures below the dew point. By reducing the temperature of the substrate to below the dew point, water droplets are condensed in the microwell array. Microbeads of a hygroscopic material (e.g., poly-ethylene glycol) are dispensed into the microwells to prevent evaporation of the condensed water. Furthermore, since poly-ethylene glycol (PEG) is water soluble, it forms a solution inside the microwells which is subsequently used as the ink for the DPN process. The delivery of the ink to the scanning probe tip is performed by dipping the tip (or multiple tips in an array) into the microwells containing the PEG solution. This thesis describes the various development steps for the Centiwell. These steps include the mask design, the bulk micromachining processes explored for the micro-fabrication of the microwell array, the thermal design calculations performed for the selection of the commercially available thermoelectric coolers, the techniques explored for the synthesis of the PEG microbeads, and the assembly of all the components for integration into a functional Centiwell. Finally, the successful implementation of the Centiwell for nanolithography of PEG solutions is also demonstrated.

Rivas Cardona, Juan Alberto

2006-08-01T23:59:59.000Z

232

Numerical Simulation of an Open Channel Ultraviolet Waste-water Disinfection Reactor.  

E-Print Network (OSTI)

??The disinfection characteristics of an open channel ultra-violet (UV) wastewater disinfection reactor are investigated using a computational fluid dynamics (CFD) model. The model is based… (more)

Saha, Rajib Kumar

2013-01-01T23:59:59.000Z

233

Gamma Ray Burst Constraints on Ultraviolet Lorentz Invariance Violation  

E-Print Network (OSTI)

We present a unified general formalism for ultraviolet Lorentz invariance violation (LV) testing through electromagnetic wave propagation, based on both dispersion and rotation measure data. This allows for a direct comparison of the efficacy of different data to constrain LV. As an example we study the signature of LV on the rotation of the polarization plane of $\\gamma$-rays from gamma ray bursts in a LV model. Here $\\gamma$-ray polarization data can provide a strong constraint on LV, 13 orders of magnitude more restrictive than a potential constraint from the rotation of the cosmic microwave background polarization proposed by Gamboa, L\\'{o}pez-Sarri\\'{o}n, and Polychronakos (2006).

Tina Kahniashvili; Grigol Gogoberidze; Bharat Ratra

2006-07-04T23:59:59.000Z

234

Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals  

E-Print Network (OSTI)

Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

Ian B. Burgess; Joanna Aizenberg; Marko Loncar

2012-11-29T23:59:59.000Z

235

THE TEMPERATURE AND DENSITY STRUCTURE OF THE SOLAR CORONA. I. OBSERVATIONS OF THE QUIET SUN WITH THE EUV IMAGING SPECTROMETER ON HINODE  

Science Conference Proceedings (OSTI)

Measurements of the temperature and density structure of the solar corona provide critical constraints on theories of coronal heating. Unfortunately, the complexity of the solar atmosphere, observational uncertainties, and the limitations of current atomic calculations, particularly those for Fe, all conspire to make this task very difficult. A critical assessment of plasma diagnostics in the corona is essential to making progress on the coronal heating problem. In this paper, we present an analysis of temperature and density measurements above the limb in the quiet corona using new observations from the EUV Imaging Spectrometer (EIS) on Hinode. By comparing the Si and Fe emission observed with EIS we are able to identify emission lines that yield consistent emission measure distributions. With these data we find that the distribution of temperatures in the quiet corona above the limb is strongly peaked near 1 MK, consistent with previous studies. We also find, however, that there is a tail in the emission measure distribution that extends to higher temperatures. EIS density measurements from several density sensitive line ratios are found to be generally consistent with each other and with previous measurements in the quiet corona. Our analysis, however, also indicates that a significant fraction of the weaker emission lines observed in the EIS wavelength ranges cannot be understood with current atomic data.

Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

2009-07-20T23:59:59.000Z

236

The Application of Ultraviolet Germicidal Technology in HVAC Systems  

E-Print Network (OSTI)

One of the most significant issues for today's HVAC (Heating, Ventilation, and Air Conditioning) engineer is Indoor Air Quality (IAQ). Many building owners, operators, and occupants complain of foul odors emanating from HVAC systems. The objectionable odor is the byproduct of the microbial growth (mold and fungus) that accumulates and develops on wet surfaces of HVAC units, causing foul odors to emanate from affected systems and degrading the IAQ and unit performance. This objectionable odor has been appropriately named the "Dirty Sock" syndrome. Less obvious to the building occupants, but of equal importance, are the physical effects the microbial organisms have on HVAC equipment. They restrict the airflow and limit the heat transfer capability, which increases the operating costs of the equipment. Fortunately, IAQ degradation, foul odor, and increased expenses can be eliminated with the installation of the ultraviolet 'C' band (W-C) lamps. The ultraviolet germicidal lamps are designed to kill odor causing mold and fungus that grow in wet evaporator sections of HVAC units. These lamps are installed inside HVAC systems and irradiate areas inhabited by the offending organisms, making it impossible for them to survive. The organisms disappear, the odors disappear, and most importantly, the IAQ complaints disappear. This guide will discuss the microbial growth and IAQ contaminant problems in the HVAC industry, the W-C lamp and other possible solutions, and the benefits of using the HVAC Duty W-C lamp.

Taylor, M. J.

2000-01-01T23:59:59.000Z

237

Ultraviolet and optical spectroscopy of the R Aquarii symmetrical jet  

Science Conference Proceedings (OSTI)

The first ultraviolet spectrum of the southwest (SW) component of the symmetrical jet in the R Aquarii binary system has been obtained in the range 1200-2000 A with the IUE. These results are compared to more encompassing spectra of the central H II region taken at the same time and also similar spectra of the northeast (NE) jet component obtained six months earlier. Moreover, optical spectra of both the NE and SW jet components in the range 3400-9800 A were obtained within about 6 months and about 1 month, respectively, of the ultraviolet spectra. These highly complementary observations argue that excitation of the symmetrical jet may be due to shock excitation as the jet components overtake and impact the previously ionized material associated with the expanding inner nebulosity. The problems with this shock model as well as problems with competing photoionization models are discussed. It is suggested that the jet components were ejected less than 90 years ago. 28 refs.

Hollis, J.M.; Oliversen, R.J.; Michalitsianos, A.G.; Kafatos, M.; Wagner, R.M. (NASA, Goddard Space Flight Center, Greenbelt, MD (United States) George Mason Univ., Fairfax, VA (United States) Lowell Observatory, Flagstaff, AZ (United States))

1991-08-01T23:59:59.000Z

238

Bipolar charging of dust particles under ultraviolet radiation  

SciTech Connect

The photoemission charging of dust particles under ultraviolet radiation from a xenon lamp has been investigated. The velocities of yttrium dust particles with a work function of 3.3 eV and their charges have been determined experimentally; the latter are about 400-500 and about 100 elementary charges per micron of radius for the positively and negatively charged fractions, respectively. The dust particle charging and the dust cloud evolution in a photoemission cell after exposure to an ultraviolet radiation source under the applied voltage have been simulated numerically. The photoemission charging of dust particles has been calculated on the basis of nonlocal and local charging models. Only unipolar particle charging is shown to take place in a system of polydisperse dust particles with the same photoemission efficiency. It has been established that bipolar charging is possible in the case of monodisperse particles with different quantum efficiencies. Polydispersity in this case facilitates the appearance of oppositely charged particles in a photoemission plasma.

Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N. [Troitsk Institute for Innovation and Fusion Research, State Research Center of the Russian Federation (Russian Federation); Fortov, V. E.; Gavrikov, A. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Pal', A. F. [Troitsk Institute for Innovation and Fusion Research, State Research Center of the Russian Federation (Russian Federation); Petrov, O. F. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Starostin, A. N.; Sarkarov, N. E. [Troitsk Institute for Innovation and Fusion Research, State Research Center of the Russian Federation (Russian Federation)

2011-05-15T23:59:59.000Z

239

PULSE: Palomar Ultraviolet Laser for the Study of Exoplanets  

E-Print Network (OSTI)

PULSE is a new concept to augment the currently operating 5.1-m Hale PALM-3000 exoplanet adaptive optics system with an ultraviolet Rayleigh laser and associated wavefront sensor. By using an ultraviolet laser to measure the high spatial and temporal order turbulence near the telescope aperture, where it dominates, one can extend the faintness limit of natural guide stars needed by PALM-3000. Initial simulations indicate that very-high infrared contrast ratios and good visible-light adaptive optics performance will be achieved by such an upgraded system on stars as faint as mV = 16-17 using an optimized low-order NGS sensor. This will enable direct imaging searches for, and subsequent characterization of, companions around cool, low-mass stars for the first time, as well as routine visible-light imaging twice as sharp as HST for fainter targets. PULSE will reuse the laser and wavefront sensor technologies developed for the automated Robo-AO laser system currently operating at the Palomar 60-inch telescope, as...

Baranec, Christoph; van Dam, Marcos; Burruss, Rick

2013-01-01T23:59:59.000Z

240

Ultraviolet Free Electron Laser Facility preliminary design report  

SciTech Connect

This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

Ben-Zvi, I. [ed.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Estimation of Ultraviolet-A Irradiance from Measurements of 368-nm Spectral Irradiance  

Science Conference Proceedings (OSTI)

The estimation of ultraviolet-A (UV-A) radiation across the earth’s surface is needed to model plant productivity and future impacts of ultraviolet-B radiation on plant productivity. We have developed two models to estimate the UV-A irradiance ...

R. H. Grant; J. R. Slusser

2005-12-01T23:59:59.000Z

242

Ultraviolet electroabsorption modulator based on AlGaN/GaN multiple quantum wells  

E-Print Network (OSTI)

Ultraviolet electroabsorption modulator based on AlGaN/GaN multiple quantum wells I. Friel, C online 20 June 2005 An ultraviolet electroabsorption modulator based on AlGaN/GaN quantum wells is demonstrated. Enhanced excitonic absorption in the quantum wells at around 3.48 eV was achieved using

Moustakas, Theodore

243

Spectral Measurements of Solar Ultraviolet-B Radiation in Southeast England  

Science Conference Proceedings (OSTI)

Spectral measurements of the ultraviolet region of the solar spectrum have been made at Reading, southeast England (51.5°N) since July 1989. The data presented here show the daily and annual variability of and within the ultraviolet-B wave band, ...

Ann R. Webb

1992-02-01T23:59:59.000Z

244

Ultra-violet laser processing of graphene on SiO2/Si  

Science Conference Proceedings (OSTI)

A graphene transparent electrode might be used in industry in the near future instead of indium tin oxide (ITO). For patterning of ITO, the maskless laser process was reported as a simple and fast process. In this paper, effects of ultra-violet laser ... Keywords: Graphene, Maskless laser process, Ultra-violet laser

Fujio Wakaya, Tadashi Kurihara, Satoshi Abo, Mikio Takai

2013-10-01T23:59:59.000Z

245

Analysis of Lipid OxidationChapter 3 Ultraviolet-Visible Spectrophotometry in the Analysis of Lipid Oxidation  

Science Conference Proceedings (OSTI)

Analysis of Lipid Oxidation Chapter 3 Ultraviolet-Visible Spectrophotometry in the Analysis of Lipid Oxidation Methods and Analyses eChapters Methods - Analyses Books Downloadable pdf of Chapter 3 Ultraviolet-Visible

246

Standoff ultraviolet raman scattering detection of trace levels of explosives.  

Science Conference Proceedings (OSTI)

Ultraviolet (UV) Raman scattering with a 244-nm laser is evaluated for standoff detection of explosive compounds. The measured Raman scattering albedo is incorporated into a performance model that focused on standoff detection of trace levels of explosives. This model shows that detection at {approx}100 m would likely require tens of seconds, discouraging application at such ranges, and prohibiting search-mode detection, while leaving open the possibility of short-range point-and-stare detection. UV Raman spectra are also acquired for a number of anticipated background surfaces: tile, concrete, aluminum, cloth, and two different car paints (black and silver). While these spectra contained features in the same spectral range as those for TNT, we do not observe any spectra similar to that of TNT.

Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.

2011-10-01T23:59:59.000Z

247

Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light  

DOE Patents (OSTI)

Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

Menoni, Carmen S. (Fort Collins, CO); Rocca, Jorge J. (Fort Collins, CO); Vaschenko, Georgiy (San Diego, CA); Bloom, Scott (Encinitas, CA); Anderson, Erik H. (El Cerrito, CA); Chao, Weilun (El Cerrito, CA); Hemberg, Oscar (Stockholm, SE)

2011-04-26T23:59:59.000Z

248

Ultraviolet Resonant Raman Enhancements in the Detection of Explosives  

Science Conference Proceedings (OSTI)

Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

2009-06-03T23:59:59.000Z

249

A long-duration flare in the X-ray/EUV selected chromospherically active binary 2RE J0743+224  

E-Print Network (OSTI)

2RE J0743+224 (BD +23 1799) is a chromospherically active star selected by X-rays and EUV emission detected in the Einstein Slew Survey and ROSAT Wide Field Camara (WFC) all sky survey, and classified as single-lined spectroscopic binary by (Jeffries et al. 1995). We present here high resolution echelle spectroscopic observations of this binary, obtained during a 10 night run 12-21 January 1998 using the 2.1m telescope at McDonald Observatory. These observations reveal it is a double-lined spectroscopic binary. A dramatic increase in the chromospheric emissions (H_alpha and Ca II IRT lines) is detected during the observations. Several arguments favor the interpretation of this behavior as an unusual long-duration flare. First the temporal evolution of the event is similar to the observed in other solar and stellar flares, with an initial impulsive phase characterized by a strong increase in the chromospheric lines (the H_alpha EW change in a factor of 5 in only one day) and thereafter, the line emission decreased gradually over several days. Second, a broad component in the H_alpha line profile is observed just at the beginning of the event. Third, the detection of the He I D_{3} in emission and a filled-in He I 6678 A. We detect a Li I 6708 A line enhancement which is clearly related with the temporal evolution of the flare. The maximum Li I enhancement occurs just after the maximum chromospheric emission observed in the flare. We suggest that this Li I is produced by spallation reactions in the flare. This is the first time that such LiI enhancement associate with a stellar flare is reported, and probably the long-duration of this flare is a key factor for this detection.

D. Montes; L. W. Ramsey

1998-09-09T23:59:59.000Z

250

Magnetically Trapped Neutron Lifetime Experiment (continued ...  

Science Conference Proceedings (OSTI)

... About 35 % of the initial electron energy goes into the production of extreme ultraviolet (EUV) photons from singlet decays, corresponding to ...

2013-07-22T23:59:59.000Z

251

Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses  

DOE Patents (OSTI)

A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

MacGowan, Brian J. (Livermore, CA); Matthews, Dennis L. (El Granada, CA); Trebes, James E. (Livermore, CA)

1988-01-01T23:59:59.000Z

252

Action Spectra for Human Skin Cells: Estimates of the Relative Cytotoxicity of the Middle Ultraviolet, Near Ultraviolet, and Violet Regions of Sunlight on  

E-Print Network (OSTI)

Action spectra for the cytotoxic action of electromagnetic radiation in the solar range 280-434 nm have been determined for human fibroblasts and epidermal keratinocytes derived from the same foreskin biopsy. The spectra for the two cell types are close to identical and coincide with our previously published data for a human lymphoblastoid line indicating that the mechanism of inactivation of the three human cell types is similar at any given wavelength. Using published data for ultraviolet transmission of human skin and sample spectral irradiarÃa'data, we have estimated the relative biological effectiveness of the middle ultraviolet (UVB) (290-320 nm), near ultraviolet (UVA) (320-380 nm), and violet (380-434 nm) regions of sunlight for cytotoxicity at the basal layer of the epidermis. We conclude that the UVB component in noon summer sunlight (the most UVB rich spectral conditions tested) may contribute only about 40 % of the total cytotoxic effectiveness of sunlight at 290-

Rex M. Tyrrell; Mireille Pidoux; Cancer Res; Contact The Aacr Publications; Epidermal Keratinocytes; Rex M. Tyrrell; Mireille Pidoux

2013-01-01T23:59:59.000Z

253

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nano-Enabled Titanium Dioxide Ultraviolet Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project The Department of Energy (DOE) is currently undertaking research into nano-enabled titanium dioxide (TiO2) ultraviolet (UV) protective layers for cool-color roofing applications. Project Description This project entails optimizing and scaling up silicon dioxide-coated TiO2 nanocrystal synthesis and functionalization in aqueous solution in order to formulate a 10 gallon waterborne clear UV protective nanocomposite coating material. Project Partners This project is being undertaken between DOE and Nanotrons, a Massachusetts-based company that uses nano-engineering technologies to

254

Total Ozone Variations 1970-74 Using Backscattered Ultraviolet (BUV) and Ground-Based Observations  

Science Conference Proceedings (OSTI)

The most long-lived satellite set of ozone observations, to date, is that derived from the Backscatter Ultraviolet (BUV) ozone sensor on Nimbus 4 and extends from April 1970 through 1976. Unfortunately, this experiment suffered spacecraft power ...

A. J. Miller; R. M. Nagatani; T. G. Rogers; A. J. Fleig; D. F. Heath

1982-05-01T23:59:59.000Z

255

In vitro models for investigating keratinocyte responses to ultraviolet B radiation.  

E-Print Network (OSTI)

??This thesis describes the use of 2- and 3-dimensional cell-based models for studying how skin cells respond to ultraviolet radiation. These methods were used to… (more)

Fernandez, Tara L.

2013-01-01T23:59:59.000Z

256

Airborne Doppler Lidar Investigation of Sea Surface Reflectance at a 355-nm Ultraviolet Wavelength  

Science Conference Proceedings (OSTI)

The analysis of the sea surface reflectance for different incidence angles based on observations of an airborne Doppler lidar at an ultraviolet wavelength of 355 nm is described. The results were compared to sea surface reflectance models, ...

Zhigang Li; Christian Lemmerz; Ulrike Paffrath; Oliver Reitebuch; Benjamin Witschas

2010-04-01T23:59:59.000Z

257

Dual-band ultraviolet-short-wavelength infrared imaging via luminescent downshifting with colloidal quantum dots  

E-Print Network (OSTI)

The performance of short-wavelength infrared (SWIR) cameras in the visible and ultraviolet (UV) regions is limited by the absorption of high-energy photons in inactive regions of the imaging array. Dual-band UV-SWIR imaging ...

Geyer, Scott M.

258

Quasi-Decadal Variability of the Stratosphere: Influence of Long-Term Solar Ultraviolet Variations  

Science Conference Proceedings (OSTI)

A multiple regression statistical model is applied to investigate the existence of upper-stratospheric ozone, temperature, and zonal wind responses to long-term (solar cycle) changes in solar ultraviolet radiation using 11.5 years of reprocessed ...

L. L. Hood; J. L. Jirikowic; J. P. McCormack

1993-12-01T23:59:59.000Z

259

Selective absorption of ultraviolet laser energy by human atherosclerotic plaque treated with tetracycline  

Science Conference Proceedings (OSTI)

Tetracycline is an antibiotic that absorbs ultraviolet light at 355 nm and preferentially binds to atherosclerotic plaque both in vitro and in vivo. Tetracycline-treated human cadaveric aorta was compared with untreated aorta using several techniques: absorptive spectrophotometry; and tissue uptake of radiolabeled tetracycline, which showed 4-fold greater uptake by atheroma than by normal vessel. In addition, intravenous tetracycline administered to patients undergoing vascular surgery demonstrated characteristic fluorescence in surgically excised diseased arteries. Because of tetracycline's unique properties, the authors exposed tetracycline-treated and untreated aorta to ultraviolet laser radiation at a wavelength of 355 nm. They found enhanced ablation of tetracycline-treated atheroma compared with untreated atheroma. The plaque ablation caused by ultraviolet laser radiation was twice as extensive in tetracycline-treated vs nontreated plaque. This study demonstrates the potential of tetracycline plaque enhancement for the selective destruction of atheroma by ultraviolet laser radiation.

Murphy-Chutorian, D.; Kosek, J.; Mok, W.; Quay, S.; Huestis, W.; Mehigan, J.; Profitt, D.; Ginsburg, R.

1985-05-01T23:59:59.000Z

260

Microsoft Word - fy06 10-31.doc  

Science Conference Proceedings (OSTI)

... Tech-Net Database System (http://tech-net.sba.gov ... The NIST Virtual Library, http://nvl.nist.gov/ may ... 9.02.05.68-R Power Meter for EUV Lithography ...

2012-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aluminum complexation by catechol as determined by ultraviolet spectrophotometry  

Science Conference Proceedings (OSTI)

Methods of ultraviolet (UV) spectrophotometry were used to determine the stoichiometry and association constant for the Al-catechol complex from pH 3.8 to 4.6. Job's method of continuous variation indicated the Al-catechol complex had a 1:1 stoichiometry in the pH range studied. Aluminum titrations of catechol and pH titrations of catechol plus Al resulted in a shift in the UV spectra due to the formation of an Al-catechol complex absorbing UV radiation uniquely different than that of free catechol. General equations were developed for the determination of association constants assuming an organic and Al-organic complex absorb UV radiation. Aluminum titrations with constant catechol concentration yielded a log k/sub 0.1//sup c/ of 16.22 for a 1:1 Al-catechol complex. Calculated absorbance as a function of pH agree dwell with experimental pH titrations of solutions containing catechol plus Al. The fact that Al can be complexed by catechol at low pH indicates the o-hydroxy group provides a potential source for Al complexation in soil and surface waters.

Sikora, F.J.; McBride, M.B.

1989-03-01T23:59:59.000Z

262

Ultraviolet reflector materials for solar detoxification of hazardous waste  

DOE Green Energy (OSTI)

Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

Jorgensen, G.; Govindarajan, R.

1991-07-01T23:59:59.000Z

263

Studying the Pulsation of Mira Variables in the Ultraviolet  

E-Print Network (OSTI)

We present results from an empirical study of the Mg II h & k emission lines of selected Mira variable stars, using spectra from the International Ultraviolet Explorer (IUE). The stars all exhibit similar Mg II behavior during the course of their pulsation cycles. The Mg II flux always peaks after optical maximum near pulsation phase 0.2-0.5, although the Mg II flux can vary greatly from one cycle to the next. The lines are highly blueshifted, with the magnitude of the blueshift decreasing with phase. The widths of the Mg II lines are also phase-dependent, decreasing from about 70 km/s to 40 km/s between phase 0.2 and 0.6. We also study other UV emission lines apparent in the IUE spectra, most of them Fe II lines. These lines are much narrower and not nearly as blueshifted as the Mg II lines. They exhibit the same phase-dependent flux behavior as Mg II, but they do not show similar velocity or width variations.

Brian E. Wood; Margarita Karovska

2000-02-14T23:59:59.000Z

264

Evaluating EUV mask pattern imaging with two EUV microscopes  

E-Print Network (OSTI)

This work was supported by the Director, Office of Science,Office of Basic Energy Sciences, of the U.S. Department of

Goldberg, Kenneth A.

2008-01-01T23:59:59.000Z

265

The coronal source of extreme-ultraviolet line profile asymmetries in solar active region outflows  

E-Print Network (OSTI)

High resolution spectra from the Hinode EUV Imaging Spectrometer (EIS) have revealed that coronal spectral line profiles are sometimes asymmetric, with a faint enhancement in the blue wing on the order of 100 km/s. These asymmetries could be important since they may be subtle, yet diagnostically useful signatures of coronal heating or solar wind acceleration processes. It has also been suggested that they are signatures of chromospheric jets supplying mass and energy to the corona. Until now, however, there have been no studies of the physical properties of the plasma producing the asymmetries. Here we identify regions of asymmetric profiles in the outflows of AR 10978 using an asymmetric Gaussian function and extract the intensities of the faint component using multiple Gaussian fits. We then derive the temperature structure and chemical composition of the plasma producing the asymmetries. We find that the asymmetries are dependent on temperature, and are clearer and stronger in coronal lines. The temperatur...

Brooks, David H

2012-01-01T23:59:59.000Z

266

Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources  

DOE Patents (OSTI)

Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

Kublak, Glenn D. (124 Turquoise Way, Livermore, Alameda County, CA 94550); Richardson, Martin C. (CREOL

1996-01-01T23:59:59.000Z

267

Ultraviolet - "Green" Energy in the "C" Band  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultraviolet - "Green" Energy in the "C" Band Ultraviolet - "Green" Energy in the "C" Band Speaker(s): Forrest Fencl Date: April 16, 2009 - 12:00pm Location: 90-3122 Mr. Forrest Fencl of UV Resources, Inc. will discuss how air conditioning system operation, maintenance, and utilization influence system cooling capacity and indoor air quality. The use of ultraviolet germicidal radiation to clean heat exchangers and maintain their efficiency will be reviewed and energy savings estimates will be provided. Additionally, he will discuss why UV-C is considered the "green" cleaner and how widely it is used today as an engineering strategy for precluding the growth, dissemination and recirculation of microbial contaminants. For more information about this seminar, please contact: Bill Fisk(510) 486-591

268

Metrology for Nanoimprint Lithography  

Science Conference Proceedings (OSTI)

... Intense R&D activities are currently centered on CMOS logic devices, bit patterned data storage media, high brightness LEDs, patterned biological ...

2013-07-23T23:59:59.000Z

269

Decal transfer lithography  

DOE Patents (OSTI)

A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.

Nuzzo, Ralph G. (Champaign, IL); Childs, William R. (Champaign, IL); Motala, Michael J. (Champaign, IL); Lee, Keon Jae (Savoy, IL)

2010-02-16T23:59:59.000Z

270

Feasibility of Determining Cloud-Top Heights Using the Backscattered Ultraviolet Satellite Observation Technique  

Science Conference Proceedings (OSTI)

A technique for determining cloud-top height by means of backscattered ultraviolet (BUV) solar radiation is presented. Cloud-top heights can be inferred using this technique if both the BUV radiance and its degree of polarization are measured by ...

Tadashi Aruga; Kaichi Maeda; Donald F. Heath

1984-05-01T23:59:59.000Z

271

Molecular Dynamics Model of Ultraviolet Matrix-Assisted Laser Desorption/Ionization Including Ionization Processes  

E-Print Network (OSTI)

Molecular Dynamics Model of Ultraviolet Matrix-Assisted Laser Desorption/Ionization Including A molecular dynamics model of UV-MALDI including ionization processes is presented. In addition/desorption of molecular systems, it includes radiative and nonradiative decay, exciton hopping, two pooling processes

Zhigilei, Leonid V.

272

The Center for X-ray Optics - Now hiring engineers. Apply Today.  

NLE Websites -- All DOE Office Websites (Extended Search)

Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Database Nanomagnetism X-Ray Microscopy EUV Lithography EUV Mask Imaging Reflectometry Zoneplate Lenses Coherent Optics Nanofabrication Optical Coatings Engineering Education Careers Publications Contact LBNL-Logo The Center for X-Ray Optics is a multi-disciplined research group within Lawrence Berkeley National Laboratory's (LBNL) Materials Sciences Division (MSD). Notice to users. Precision Engineering Building the tools that make nanoscience possible. A high-precision stage fabricated by CXRO's Instrument Fabrication Facility Zone plates Diffractive lenses for a new generation of x-ray beamlines. SEM image of a zoneplate fabricated by CXRO Interferometry Wavefront control with sub-angstrom sensitivity Null interferogram, in preparation for EUV metrology of the SEMATECH Berkeley Microfield Exposure Tool (MET)

273

Effect of Short-Term Solar Ultraviolet Flux Variability in a Coupled Model of Photochemistry and Dynamics  

Science Conference Proceedings (OSTI)

Variability in the solar ultraviolet radiative flux is known to cause changes in the chemistry and dynamics of the middle and upper atmosphere. Specifically, the 27-day solar rotation signal in irradiance has been correlated with responses in ...

Xun Zhu; Jeng-Hwa Yee; Elsayed R. Talaat

2003-02-01T23:59:59.000Z

274

Far Ultraviolet Continuum Emission: Applying this Diagnostic to the Chromospheres of Solar-Mass Stars  

E-Print Network (OSTI)

The far ultraviolet (FUV) continuum flux is recognized as a very sensitive diag- nostic of the temperature structure of the Sun's lower chromosphere. Until now analysis of the available stellar FUV data has shown that solar-type stars must also have chromospheres, but quantitative analyses of stellar FUV continua require far higher quality spectra and comparison with new non-LTE chromosphere models. We present accurate far ultraviolet (FUV, 1150-1500^{\\circ}) continuum flux measurements for solar-mass stars, made feasible by the high throughput and very low detector background of the Cosmic Origins Spectrograph (COS) on the Hubbble Space Telescope. We show that the continuum flux can be measured above the detector background even for the faintest star in our sample. We find a clear trend of increasing continuum brightness temperature at all FUV wavelengths with decreasing rotational period, which provides an important measure of magnetic heating rates in stellar chromospheres. Comparison with semiempirical so...

Linsky, Jeffrey L; Ayres, Tom; Fontenla, Juan; France, Kevin

2011-01-01T23:59:59.000Z

275

Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.  

SciTech Connect

We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

2005-11-01T23:59:59.000Z

276

Element abundances in cool white dwarfs. II. Ultraviolet observations of DZ white dwarfs  

E-Print Network (OSTI)

We present a small data base of homogeneously derived photospheric element abundances of DZ white dwarfs and related objects. Our previous investigations are supplemented with the analysis of ultraviolet spectra for nine white dwarfs. Of particular interest is the detection of Lalpha absorption in van Maanen 2 and a determination of the effective temperature of this star. The new value is about 1000K lower than previous results due to the strong ultraviolet absorption by metals which has to be considered consistently. The metal abundances of our sample stars are compatible with the predictions from the two-phase accretion model of Dupuis et al. (1992, 1993). Small deviations can be observed for the abundance ratios in some objects. This could indicate non-solar metal-to-metal ratios in the accreted material. Hydrogen can be detected in virtually all of our objects. However, its average accretion rate must be at least two orders of magnitude lower than the metal accretion rate.

B. Wolff; D. Koester; J. Liebert

2002-04-24T23:59:59.000Z

277

Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source  

SciTech Connect

We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placement of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.

Bakeman, M. S. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tilborg, J. van; Sokollik, T.; Baum, D.; Ybarrolaza, N.; Duarte, R.; Toth, C.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2010-10-15T23:59:59.000Z

278

Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments  

Science Conference Proceedings (OSTI)

The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented.

Ma, T; MacPhee, A; Key, M; Akli, K; Mackinnon, A; Chen, C; Barbee, T; Freeman, R; King, J; Link, A; Offermann, D; Ovchinnikov, V; Patel, P; Stephens, R; VanWoerkom, L; Zhang, B; Beg, F

2007-11-29T23:59:59.000Z

279

NIST Phys. Lab: Tech. Activities 2002 - Honors and Awards  

Science Conference Proceedings (OSTI)

... lithography by the discovery of deep ultraviolet birefringence in calcium fluoride.". ... the security of NIST radiation sources and radioactive materials in ...

280

Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system  

Science Conference Proceedings (OSTI)

The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5x10{sup 17} m{sup -3} which corresponds to a local carbon concentration of 2%.

Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr [Institut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Burhenn, Rainer [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany)

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared  

E-Print Network (OSTI)

We present an application of the da Cunha, Charlot & Elbaz (2008) model of the spectral energy distribution (SEDs) of galaxies from the ultraviolet to far-infrared to a small pilot sample of purely star-forming Ultra-Luminous Infrared Galaxies (ULIRGs). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model which accounts for the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid- and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, as well as temperatures and masses of different dust components and plausible star formation histories. We find that, although the ultraviolet to near-infrared emission represents only a small fraction of th...

da Cunha, Elisabete; Diaz-Santos, Tanio; Armus, Lee; Marshall, Jason A; Elbaz, David

2010-01-01T23:59:59.000Z

282

THE CORONAL SOURCE OF EXTREME-ULTRAVIOLET LINE PROFILE ASYMMETRIES IN SOLAR ACTIVE REGION OUTFLOWS  

SciTech Connect

High-resolution spectra from the Hinode EUV Imaging Spectrometer have revealed that coronal spectral line profiles are sometimes asymmetric, with a faint enhancement in the blue wing on the order of 100 km s{sup -1}. These asymmetries could be important since they may be subtle yet diagnostically useful signatures of coronal heating or solar wind acceleration processes. It has also been suggested that they are signatures of chromospheric jets supplying mass and energy to the corona. Until now, however, there have been no studies of the physical properties of the plasma producing the asymmetries. Here we identify regions of asymmetric profiles in the outflows of AR 10978 using an asymmetric Gaussian function and extract the intensities of the faint component using multiple Gaussian fits. We then derive the temperature structure and chemical composition of the plasma producing the asymmetries. We find that the asymmetries are dependent on temperature, and are clearer and stronger in coronal lines. The temperature distribution peaks around 1.4-1.8 MK with an emission measure at least an order of magnitude larger than that at 0.6 MK. The first ionization potential bias is found to be 3-5, implying that the high-speed component of the outflows may also contribute to the slow-speed wind. Observations and models indicate that it takes time for plasma to evolve to a coronal composition, suggesting that the material is trapped on closed loops before escaping, perhaps by interchange reconnection. The results, therefore, identify the plasma producing the asymmetries as having a coronal origin.

Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P., E-mail: dhbrooks@ssd5.nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2012-11-20T23:59:59.000Z

283

COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)  

SciTech Connect

We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kerber, Florian [European Southern Observatory, D-85748 Garching (Germany)

2012-10-15T23:59:59.000Z

284

Electron heated target temperature measurements in petawatt laser experiments based on extreme ultraviolet imaging and spectroscopy  

Science Conference Proceedings (OSTI)

Three independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 and 256 eV photon energies give a planar deuterated carbon target rear surface pre-expansion temperature in the 125-150 eV range, with the rear plasma plume averaging a temperature approximately 74 eV.

Ma, T. [Department of Mechanical and Aerospace Engineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0417 (United States); Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Beg, F. N. [Department of Mechanical and Aerospace Engineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0417 (United States); MacPhee, A. G.; Chung, H.-K.; Key, M. H.; Mackinnon, A. J.; Patel, P. K.; Hatchett, S. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Akli, K. U.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Chen, C. D. [Plasma Science Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Freeman, R. R.; Link, A.; Offermann, D. T.; Ovchinnikov, V.; Van Woerkom, L. D. [College of Mathematical and Physical Sciences, The Ohio State University, 425 Stillman Hall, Columbus, Ohio 43210-1123 (United States)

2008-10-15T23:59:59.000Z

285

Atomic hydrogen density measurements in an ion source plasma using a vacuum ultraviolet absorption spectrometer  

DOE Green Energy (OSTI)

A system to determine the density and temperature of ground state hydrogen atoms in a plasma by vacuum ultraviolet laser absorption spectroscopy is described. The continuous tunability of the spectrometer allows for analysis at any of the Lyman transitions. The narrow bandwidth of the laser system allows for the accurate determination of the absorption lineshape and hence the translational temperature. The utility of the system is exemplified by data obtained on an ion-source plasma. The measurements demonstrate the quality of the data as well as illustrating the behavior of this ion source under varying discharge conditions. 9 refs., 5 figs., 1 tab.

Stutzin, G.C.; Young, A.T.; Schlachter, A.S.; Stearns, J.W.; Leung, K.N.; Kunkel, W.B.; Worth, G.T.; Stevens, R.R.

1989-01-01T23:59:59.000Z

286

Ultraviolet Spectra of CV Accretion Disks with Non-Steady T(r) Laws  

E-Print Network (OSTI)

An extensive grid of synthetic mid- and far-ultraviolet spectra for accretion disks in cataclysmic variables has been presented by Wade and Hubeny (1998). In those models, the disk was assumed to be in steady-state, that is T_eff(r) is specified completely by the mass M_WD and radius R_WD of the accreting white dwarf star and the mass transfer rate M_dot which is constant throughout the disk. In these models, T_eff(r) is proportional to r^{-3/4} except as modified by a cutoff term near the white dwarf. Actual disks may vary from the steady-state prescription for T_eff(r), however, e.g. owing to outburst cycles in dwarf novae M_dot not constant with radius) or irradiation (in which case T_eff in the outer disk is raised above T_steady). To show how the spectra of such disks might differ from the steady case, we present a study of the ultraviolet (UV) spectra of models in which power-law temperature profiles T_eff(r) is proportional to r^{-gamma} with gamma < 3/4 are specified. Otherwise, the construction of...

Orosz, J A; Orosz, Jerome A.; Wade, Richard A.

2003-01-01T23:59:59.000Z

287

Molecular Hydrogen Emission Lines in Far Ultraviolet Spectroscopic Explorer Observations of Mira B  

E-Print Network (OSTI)

We present new Far Ultraviolet Spectroscopic Explorer (FUSE) observations of Mira A's wind-accreting companion star, Mira B. We find that the strongest lines in the FUSE spectrum are H2 lines fluoresced by H I Lyman-alpha. A previously analyzed Hubble Space Telescope (HST) spectrum also shows numerous Lyman-alpha fluoresced H2 lines. The HST lines are all Lyman band lines, while the FUSE H2 lines are mostly Werner band lines, many of them never before identified in an astrophysical spectrum. We combine the FUSE and HST data to refine estimates of the physical properties of the emitting H2 gas. We find that the emission can be reproduced by an H2 layer with a temperature and column density of T=3900 K and log N(H2)=17.1, respectively. Another similarity between the HST and FUSE data, besides the prevalence of H2 emission, is the surprising weakness of the continuum and high temperature emission lines, suggesting that accretion onto Mira B has weakened dramatically. The UV fluxes observed by HST on 1999 August 2 were previously reported to be over an order of magnitude lower than those observed by HST and the International Ultraviolet Explorer (IUE) from 1979--1995. Analysis of the FUSE data reveals that Mira B was still in a similarly low state on 2001 November 22.

Brian E. Wood; Margarita Karovska

2003-10-03T23:59:59.000Z

288

ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES  

Science Conference Proceedings (OSTI)

We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lag the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.

Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J. [Department of Physics, West Chester University, West Chester, PA 19383 (United States)

2012-11-20T23:59:59.000Z

289

Ultraviolet free-electron laser (uv FEL) facility at Brookhaven National Laboratory  

DOE Green Energy (OSTI)

The proposal for a Ultraviolet Free-Electron Laser Facility UV-FEL grew from the realization that neither existing lasers or synchrotrons, nor the third generation synchrotron radiation sources now under construction address all of the needs of scientists interested in the ultraviolet region of the spectrum, particularly with respect to the combination of continuous wavelength selection, high peak power and short pulse duration. Several workshops have been held at BNL and elsewhere which explored applications and source requirements in the 5 to 30 eV range. A critical requirement determined was is for very high peak power and short wavelength, especially for applications in chemical physics and non-linear optics. The need for wavelength tuning with the ease and agility to which synchrotron radiation users have become accustomed has also been strongly emphasized. With these initial parameters in mind, the accelerator physics staff set about devising ways to produce this radiation. Their design is for an FEL that has unique characteristics both in terms of possible applications, and in the range of radiation it could produce. In addition, the proposed location of the UV-FEL adjacent to the NSLS means that pump-probe experiments involving radiation from both sources will be possible. Each successive design has been reviewed in consultation with potential users in an iterative process to arrive at the present proposal design.

Johnson, E.D.; Sutherland, J.C.

1992-12-31T23:59:59.000Z

290

Ultraviolet free-electron laser (uv FEL) facility at Brookhaven National Laboratory  

DOE Green Energy (OSTI)

The proposal for a Ultraviolet Free-Electron Laser Facility UV-FEL grew from the realization that neither existing lasers or synchrotrons, nor the third generation synchrotron radiation sources now under construction address all of the needs of scientists interested in the ultraviolet region of the spectrum, particularly with respect to the combination of continuous wavelength selection, high peak power and short pulse duration. Several workshops have been held at BNL and elsewhere which explored applications and source requirements in the 5 to 30 eV range. A critical requirement determined was is for very high peak power and short wavelength, especially for applications in chemical physics and non-linear optics. The need for wavelength tuning with the ease and agility to which synchrotron radiation users have become accustomed has also been strongly emphasized. With these initial parameters in mind, the accelerator physics staff set about devising ways to produce this radiation. Their design is for an FEL that has unique characteristics both in terms of possible applications, and in the range of radiation it could produce. In addition, the proposed location of the UV-FEL adjacent to the NSLS means that pump-probe experiments involving radiation from both sources will be possible. Each successive design has been reviewed in consultation with potential users in an iterative process to arrive at the present proposal design.

Johnson, E.D.; Sutherland, J.C.

1992-01-01T23:59:59.000Z

291

POST-FLARE ULTRAVIOLET LIGHT CURVES EXPLAINED WITH THERMAL INSTABILITY OF LOOP PLASMA  

Science Conference Proceedings (OSTI)

In the present work, we study the C8 flare that occurred on 2000 September 26 at 19:49 UT and observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e., Ca X, Ca VII, Ne VI, O IV, and Si III (formed in the temperature range log T = 4.3-6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here, we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as it has cooled below {approx}2 MK. We can qualitatively reproduce the relative start time of the light curves of each line in the correct order with a simple (and standard) model of a single flaring loop. The agreement with the observed light curves is greatly improved, and a slower evolution of the line emission is predicted, if we assume that the model loop consists of an ensemble of subloops or strands heated at slightly different times. Our analysis can be useful for flare observations with the Solar Dynamics Observatory/Extreme ultraviolet Variability Experiment.

Reale, F. [Dipartimento di Fisica, Universita degli Studi di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

2012-02-10T23:59:59.000Z

292

Fabrication of self-supporting antireflection-structured film by UV-NIL  

Science Conference Proceedings (OSTI)

Ultraviolet nanoimprint lithography (UV-NIL) is a powerful tool for the fabrication of films with antireflection (AR) structures (AR films), which are widely used in flat panel displays, mobile phone displays, solar cell surfaces, optical lenses, and ... Keywords: Glassy carbon, Ion beam irradiation, UV photocurable polymer (resin), Ultraviolet nanoimprint lithography (UV-NIL)

Nurhafizah Binti Abu Talip[A]Yusof, Jun Taniguchi

2013-10-01T23:59:59.000Z

293

EFFECT OF TIN BOMBARDMENT AND DEPOSITION ON COLLECTOR MIRROR  

E-Print Network (OSTI)

Ultraviolet (EUV) reflective properties of candidate mirror materials is a critical issue for the commercial regarding optics lifetime during EUV source operation. Two types of Sn exposures were performed in IMPACT due to vapor condensation, while the energetic source simulates bombardment due to energetic ions

Harilal, S. S.

294

Near ultraviolet emission from nonpolar cubic AlxGa1-xN/GaN quantum wells  

E-Print Network (OSTI)

Near ultraviolet emission from nonpolar cubic AlxGa1-xN/GaN quantum wells J. Schörmann,a S and multiple quantum wells. The well widths ranged from 2.5 to 7.5 nm. Samples were grown by rf-plasma assisted wells clear reflection high energy electron diffraction oscillations were observed indicating a two

As, Donat Josef

295

Estimation of electron temperature and density of the decay plasma in a laser-assisted discharge plasma extreme ultraviolet source by using a modified Stark broadening method  

Science Conference Proceedings (OSTI)

In order to investigate the plasma expansion behaviors and the electrical recovery process after the maximum implosion in our tin fueled laser-assisted discharge plasma (LDP) 13.5 nm EUV source, we developed and evaluated a cost-efficient spectroscopic method to determine the electron temperature T{sub e} and density n{sub e} simultaneously, by using Stark broadenings of two Sn II isolated lines (5s{sup 2}4f{sup 2}F{sup o}{sub 5/2} - 5s{sup 2}5d{sup 2}D{sub 3/2} 558.9 nm and 5s{sup 2}6d{sup 2}D{sub 5/2} - 5s{sup 2}6p{sup 2}P{sup o}{sub 3/2} 556.2 nm) spontaneously emitted from the plasma. The spatial-resolved evolutions of T{sub e} and n{sub e} of the expansion plasma over 50 to 900 ns after the maximum implosion were obtained using this modified Stark broadening method. According to the different n{sub e} decay characteristics along the Z-pinch axis, the expansion velocity of the electrons was estimated as {approx}1.2 x 10{sup 4} ms{sup -1} from the plasma shell between the electrodes towards the cathode and the anode. The decay time constant of n{sub e} was measured as 183 {+-} 24 ns. Based on the theories of plasma adiabatic expansion and electron-impact ionization, the minimum time-span that electrical recovery between the electrodes needs in order to guarantee the next succeeding regular EUV-emitting discharge was estimated to be 70.5 {mu}s. Therefore, the maximum repetition rate of our LDP EUV source is {approx}14 kHz, which enables the output to reach 125 W/(2{pi}sr).

Zhu Qiushi; Muto, Takahiro; Yamada, Junzaburo; Kishi, Nozomu; Watanabe, Masato; Okino, Akitoshi; Horioka, Kazuhiko; Hotta, Eiki [Department of Energy Sciences, Tokyo Institute of Technology, Yokohama (Japan)

2011-12-15T23:59:59.000Z

296

Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation  

SciTech Connect

The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

1990-08-01T23:59:59.000Z

297

Optical data of meteoritic nano-diamonds from far-ultraviolet to far-infrared wavelengths  

E-Print Network (OSTI)

We have used different spectroscopic techniques to obtain a consistent quantitative absorption spectrum of a sample of meteoritic nano-diamonds in the wavelength range from the vacuum ultraviolet (0.12 $\\mu$m) to the far infrared (100 $\\mu$m). The nano-diamonds have been isolated by a chemical treatment from the Allende meteorite (Braatz et al.2000). Electron energy loss spectroscopy (EELS) extends the optical measurements to higher energies and allows the derivation of the optical constants (n & k) by Kramers-Kronig analysis. The results can be used to restrain observations and to improve current models of the environment where the nano-diamonds are expected to have formed. We also show that the amount of nano-diamond which can be present in space is higher than previously estimated by Lewis et al. (1989).

H. Mutschke; A. C. Andersen; C. Jaeger; Th. Henning; A. Braatz

2004-08-10T23:59:59.000Z

298

The effects of concentrated ultraviolet light on high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The importance of stability in the performance of solar cells is clearly recognized as fundamental. Some of the highest efficiency silicon solar cells demonstrated to date, such as the Point Contact solar cell and the Passivated Emitter solar cell, rely upon the passivation of cell surfaces in order to minimize recombination, which reduces cell power output. Recently, it has been shown that exposure to ultraviolet (UV) light of wavelengths present in the terrestrial solar spectrum can damage a passivating silicon-oxide interface and increase recombination. In this study, we compared the performance of Point Contact and Passivated Emitter solar cells after exposure to UV light. We also examined the effect of UV exposure on oxide-passivated silicon wafers. We found that current Passivated Emitter designs are stable at both one-sun and under concentrated sunlight. The evolution of Point Contact concentrator cell performance shows a clear trend towards more stable cells. 15 refs., 18 figs.

Ruby, D.S.; Schubert, W.K.

1991-01-01T23:59:59.000Z

299

Cryogenic detector development at LLNL: ultraviolet x-ray, gamma-ray and biomolecule spectroscopy  

SciTech Connect

We are developing low-temperature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present development work on these detectors and materials analysis and biomolecular mass spectrometry. We have measured thin-film Nb/Al/Al2O3/AlNb superconducting tunnel junction (STJ) X-ray detectors in the 0.2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution of 13 eV FWHM at 227 eV with an output count rate of 20,600 cts/s.

Labov, S.E.; Frank, M.; le Grand, J.B. [and others

1997-08-12T23:59:59.000Z

300

Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice  

Science Conference Proceedings (OSTI)

We present details on the ultraviolet lattice spectroscopy of the (6s{sup 2}) {sup 1}S{sub 0}{r_reversible} (6s6p) {sup 3}P{sub 0} transition in neutral mercury, specifically {sup 199}Hg. Mercury atoms are loaded into a one-dimensional vertically aligned optical lattice from a magneto-optical trap with an rms temperature of {approx}60 {mu}K. We describe aspects of the magneto-optical trapping, the lattice cavity design, and the techniques employed to trap and detect mercury in an optical lattice. The clock-line frequency dependence on lattice depth is measured at a range of lattice wavelengths. We confirm the magic wavelength to be 362.51(0.16) nm. Further observations to those reported by Yi et al.[Phys. Rev. Lett. 106, 073005 (2011)] are presented regarding the laser excitation of a Wannier-Stark ladder of states.

Mejri, S.; McFerran, J. J.; Yi, L.; Le Coq, Y.; Bize, S. [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 Avenue de l'Observatoire, FR-75014 Paris (France)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ultraviolet stimulated electron source for use with low energy plasma instrument calibration  

E-Print Network (OSTI)

We report the development of a versatile, compact, low to medium energy electron source. A collimated, monoenergetic beam of electrons, up to 50 mm in diameter, is produced with energies ranging from 0.03 to 30 keV. A uniform electron beam profile is generated by illuminating a metal cathode plate with a near ultraviolet (UV) light emitting diode (LED). A parallel electric field accelerates the electrons away from the cathode plate towards a grounded grid. The beam intensity can be controlled from 10 - 10^9 electrons cm-2 s-1 and the angular divergence of the beam is less than 1 degree FWHM for energies greater than 1 keV.

Henderson, Kevin; Funsten, Herb; MacDonald, Elizabeth

2011-01-01T23:59:59.000Z

302

Ultraviolet stimulated electron source for use with low energy plasma instrument calibration  

SciTech Connect

We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm{sup 2} can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 Degree-Sign at 1 keV. The beam intensity can be controlled from 10 to 10{sup 9} electrons cm{sup -2} s{sup -1}.

Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth [Space Science and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-07-15T23:59:59.000Z

303

Far Ultraviolet Spectroscopic Explorer Spectroscopy of the Nova-like BB Doradus  

E-Print Network (OSTI)

We present an analysis of the Far Ultraviolet Spectroscopic Explorer ({\\it{FUSE}}) spectra of the little-known southern nova-like BB Doradus. The spectrum was obtained as part of our Cycle 8 {\\it FUSE} survey of high declination nova-like stars. The FUSE spectrum of BB Dor, observed in a high state, is modeled with an accretion disk with a very low inclination (possibly lower than 10deg). Assuming an average WD mass of 0.8 solar leads to a mass accretion rate of 1.E-9 Solar mass/year and a distance of the order of 650 pc, consistent with the extremely low galactic reddening in its direction. The spectrum presents some broad and deep silicon and sulfur absorption lines, indicating that these elements are over-abundant by 3 and 20 times solar, respectively.

P. Godon; E. M. Sion; P. E. Barrett; P. Szkody; E. M. Schlegel

2008-05-27T23:59:59.000Z

304

Far Ultraviolet Spectroscopic Explorer Spectroscopy of the Nova-like BB Doradus  

E-Print Network (OSTI)

We present an analysis of the Far Ultraviolet Spectroscopic Explorer ({\\it{FUSE}}) spectra of the little-known southern nova-like BB Doradus. The spectrum was obtained as part of our Cycle 8 {\\it FUSE} survey of high declination nova-like stars. The FUSE spectrum of BB Dor, observed in a high state, is modeled with an accretion disk with a very low inclination (possibly lower than 10deg). Assuming an average WD mass of 0.8 solar leads to a mass accretion rate of 1.E-9 Solar mass/year and a distance of the order of 650 pc, consistent with the extremely low galactic reddening in its direction. The spectrum presents some broad and deep silicon and sulfur absorption lines, indicating that these elements are over-abundant by 3 and 20 times solar, respectively.

Godon, P; Barrett, P E; Szkody, P; Schlegel, E M

2008-01-01T23:59:59.000Z

305

QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM SUNRISE  

SciTech Connect

We present high-resolution images of the Sun in the near-ultraviolet spectral range between 214 nm and 397 nm as obtained from the first science flight of the 1 m SUNRISE balloon-borne solar telescope. The quiet-Sun rms intensity contrasts found in this wavelength range are among the highest values ever obtained for quiet-Sun solar surface structures-up to 32.8% at a wavelength of 214 nm. We compare the rms contrasts obtained from the observational data with theoretical intensity contrasts obtained from numerical magnetohydrodynamic simulations. For 388 nm and 312 nm the observations agree well with the numerical simulations whereas at shorter wavelengths discrepancies between observed and simulated contrasts remain.

Hirzberger, J.; Feller, A.; Riethmueller, T. L.; Schuessler, M.; Borrero, J. M.; Gandorfer, A.; Solanki, S. K.; Barthol, P. [Max-Planck-Institut fuer Sonnensystemforschung, D-37434 Katlenburg-Lindau (Germany); Afram, N.; Unruh, Y. C. [Astrophysics Group, Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Berdyugina, S. V.; Berkefeld, T.; Schmidt, W. [Kiepenheuer-Institut fuer Sonnenphysik, D-79104 Freiburg (Germany); Bonet, J. A.; MartInez Pillet, V. [Instituto de Astrofisica de Canarias, E-38200 La Laguna (Spain); Knoelker, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Title, A. M., E-mail: hirzberger@mps.mpg.d [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94305 (United States)

2010-11-10T23:59:59.000Z

306

CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE  

SciTech Connect

The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in the IRX-UV relation.

Mao Yewei; Kong Xu [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Hao, Cai-Na [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Zhou Xu, E-mail: owen81@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2012-09-20T23:59:59.000Z

307

Ultraviolet Spectra of CV Accretion Disks with Non-Steady T(r) Laws  

E-Print Network (OSTI)

An extensive grid of synthetic mid- and far-ultraviolet spectra for accretion disks in cataclysmic variables has been presented by Wade and Hubeny (1998). In those models, the disk was assumed to be in steady-state, that is T_eff(r) is specified completely by the mass M_WD and radius R_WD of the accreting white dwarf star and the mass transfer rate M_dot which is constant throughout the disk. In these models, T_eff(r) is proportional to r^{-3/4} except as modified by a cutoff term near the white dwarf. Actual disks may vary from the steady-state prescription for T_eff(r), however, e.g. owing to outburst cycles in dwarf novae M_dot not constant with radius) or irradiation (in which case T_eff in the outer disk is raised above T_steady). To show how the spectra of such disks might differ from the steady case, we present a study of the ultraviolet (UV) spectra of models in which power-law temperature profiles T_eff(r) is proportional to r^{-gamma} with gamma grid, to allow comparison. We discuss both the UV spectral energy distributions and the appearance of the UV line spectra. We also briefly discuss the eclipse light curves of the non-standard models. Comparison of these models with UV observations of novalike variables suggests that better agreement may be possible with such modified T_eff(r) profiles.

Jerome A. Orosz; Richard A. Wade

2003-05-20T23:59:59.000Z

308

Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes  

SciTech Connect

This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

2010-07-15T23:59:59.000Z

309

Optics and multilayer coatings for EUVL systems  

Science Conference Proceedings (OSTI)

EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.

Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S

2008-03-21T23:59:59.000Z

310

Improved etch resistance of ZEP 520A in reactive ion etching through heat and ultraviolet light treatment.  

Science Conference Proceedings (OSTI)

The authors have developed a treatment process to improve the etch resistance of an electron beam lithography resist (ZEP 520A) to allow direct pattern transfer from the resist into a hard mask using plasma etching without a metal lift-off process. When heated to 90 C and exposed for 17 min to a dose of approximately 8 mW/cm{sup 2} at 248 nm, changes occur in the resist that are observable using infrared spectroscopy. These changes increase the etch resistance of ZEP 520A to a CF{sub 4}/O{sub 2} plasma. This article will document the observed changes in the improved etch resistance of the ZEP 520A electron beam resist.

Tallant, David Robert; Czaplewski, David A.; Montoya, Bertha Marie; Wendt, Joel Robert; Patrizi, Gary A.

2008-10-01T23:59:59.000Z

311

EUV beam line moves to PML  

Science Conference Proceedings (OSTI)

... Explorer (ACE), and the new twin Solar Terrestrial Relations Observatory (STEREO) spacecraft, America's space-weather early-warning systems ...

2013-01-03T23:59:59.000Z

312

Measurements of electron and proton heating temperatures from extreme-ultraviolet light images at 68 eV in petawatt laser experiments  

Science Conference Proceedings (OSTI)

A 68 eV extreme-ultraviolet light imaging diagnostic measures short pulse isochoric heating by electrons and protons in petawatt laser experiments. Temperatures are deduced from the absolute intensities and comparison with modeling using a radiation hydrodynamics code.

Gu Peimin; Zhang, B.; Key, M. H.; Hatchett, S. P.; Barbee, T.; Freeman, R. R.; Akli, K.; Hey, D.; King, J. A.; Mackinnon, A. J.; Snavely, R. A.; Stephens, R. B. [College of Mathematical and Physical Sciences, Ohio State University, 425 Stillman Hall, Columbus, Ohio 43210-1123 (United States); Department of Applied Science, University of California-Davis, Davis, California 95616 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); College of Mathematical and Physical Sciences, Ohio State University, 425 Stillman Hall, Columbus, Ohio 43210-1123 (United States); Department of Applied Science, University of California-Davis, Davis, California 95616 (United States); University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); General Atomics, San Diego, California 92186 (United States)

2006-11-15T23:59:59.000Z

313

A Novel Integration of an Ultraviolet Nitrate Sensor On Board a Towed Vehicle for Mapping Open-Ocean Submesoscale Nitrate Variability  

Science Conference Proceedings (OSTI)

Initial results from a deployment of the SUV-6 ultraviolet spectrophotometer, integrated with the SeaSoar towed vehicle, are presented. The innovative, combined system measures nitrate concentration at high spatial resolution (4 m vertically, 5 ...

Rosalind Pidcock; Meric Srokosz; John Allen; Mark Hartman; Stuart Painter; Matt Mowlem; David Hydes; Adrian Martin

2010-08-01T23:59:59.000Z

314

Long-term nitrate measurements in the ocean using the In Situ Ultraviolet Spectrophotometer: sensor integration into the Apex profiling float  

Science Conference Proceedings (OSTI)

Reagent-free, optical nitrate sensors (ISUS: In Situ Ultraviolet Spectrophotometer) can be used to detect nitrate throughout most of the ocean. Although the sensor is a relatively high power device when operated continuously (7.5 W typical), the ...

Kenneth S. Johnson; Luke J. Coletti; Hans W. Jannasch; Carole M. Sakamoto; Dana D. Swift; Stephen C. Riser

315

NanoFab Equipment - Lithography  

Science Conference Proceedings (OSTI)

... Image sensors, photovoltaic devices and bio-chips. Laser Pattern Generator: Heidelberg DWL 2000. The system uses a ...

2013-09-30T23:59:59.000Z

316

Lithography for Advanced Supercomputing Devices  

Science Conference Proceedings (OSTI)

... REFERENCE ExaScale computing study: technology challenges in achieving exascale systems (DARPA/IPTO, 2008). KEY NANOFAB PROCESS ...

2013-01-19T23:59:59.000Z

317

Extreme-UV lithography system  

DOE Patents (OSTI)

A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer. The adjusting means can, for example, change at least one of: (i) partial coherence of the photolithography system, (ii) mask image illumination uniformity on the wafer or (iii) centroid position of the illumination flux in the entrance pupil. A particularly preferred adjusting means includes at least one vignetting mask that covers at least a portion of the at least two substantially equal radial segments of the parent aspheric mirror.

Replogle, William C. (Livermore, CA); Sweatt, William C. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

318

Rechargeable Batteries, Photochromics, Electrochemical Lithography...  

NLE Websites -- All DOE Office Websites (Extended Search)

employed to explore in detail fundamental interfacial processes. Using current-sensing atomic forcemicroscopy (CSAFM), small variations in the electronic conductance of battery...

319

Study of Possible Ultraviolet Zero of the Beta Function in Gauge Theories with Many Fermions  

E-Print Network (OSTI)

We study the possibility of an ultraviolet (UV) zero in the $n$-loop beta function of U(1) and non-Abelian gauge theories with $N_f$ fermions for large $N_f$. The effect of scheme transformations on the coefficients of different powers of $N_f$ in the $n$-loop term in the beta function is calculated. A general scheme-independent criterion is given for determining whether or not the $n$-loop beta function has a UV zero for large $N_f$. We compare the results with exact integral representations of the leading terms in the beta functions for the respective Abelian and non-Abelian theories in the limit $N_f \\to \\infty$ limit with $N_f \\alpha$ finite. As part of this study, new analytic and numerical results are presented for certain coefficients, denoted $b_{n,n-1}$, that control the large-$N_f$ behavior at $n$-loop order in the beta function. We also investigate various test functions incorporating a power-law and essential UV zero in the beta function and determine their manifestations in series expansions in powers of coupling and in powers of $1/N_f$.

Robert Shrock

2013-11-20T23:59:59.000Z

320

THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA  

Science Conference Proceedings (OSTI)

We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline ({Delta}m{sub 15}(B) = 1.69 {+-} 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

Foley, Ryan J.; Marion, G. Howie; Challis, Peter; Kirshner, Robert P.; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kromer, Markus; Taubenberger, Stefan; Hillebrandt, Wolfgang; Roepke, Friedrich K.; Ciaraldi-Schoolmann, Franco; Seitenzahl, Ivo R. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei Muenchen (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Hsiao, Eric Y.; Morrell, Nidia I. [Carnegie Observatories, Las Campanas Observatory, La Serena (Chile); Simcoe, Robert A., E-mail: rfoley@cfa.harvard.edu [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664D Cambridge, MA 02139 (United States); and others

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation  

SciTech Connect

Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

Glownia, James H. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

322

Ultraviolet photodissociation of iodine monochloride (ICl) at 235, 250, and 265 nm  

SciTech Connect

ICl photolysis in the ultraviolet region of the spectrum (235-265 nm) is studied using the Slice Imaging technique. The Cl*({sup 2}P{sub 1/2})/Cl({sup 2}P{sub 3/2}) and the I*({sup 2}P{sub 1/2})/I({sup 2}P{sub 3/2}) branching ratio between the I({sup 2}P{sub 3/2}) + Cl({sup 2}P{sub 3/2})/Cl*({sup 2}P{sub 1/2}) and I*({sup 2}P{sub 1/2}) + Cl({sup 2}P{sub 3/2})/Cl*({sup 2}P{sub 1/2}) channels is extracted from the respective iodine and chlorine photofragment images. We find that ground state chlorine atoms (Cl({sup 2}P{sub 3/2})) are formed nearly exclusively with excited state iodine atoms (I*({sup 2}P{sub 1/2})), while excited spin-orbit chlorine atoms (Cl*({sup 2}P{sub 1/2})) are concurrently produced only with ground state iodine atoms (I({sup 2}P{sub 3/2})). We conclude that photolysis of ICl in this UV region is a relatively ''clean'' source of spin-orbit excited chlorine atoms that can be used in crossed molecular beam experiments.

Diamantopoulou, N.; Kitsopoulos, Theofanis N. [Institute of Electronic Structure and Laser, Foundation of Research and Technology Hellas, Iraklion 71110 (Greece); Department of Chemistry, University of Crete, Iraklion 71003 (Greece); Kartakoulis, A.; Glodic, P.; Samartzis, Peter C. [Institute of Electronic Structure and Laser, Foundation of Research and Technology Hellas, Iraklion 71110 (Greece)

2011-05-21T23:59:59.000Z

323

Modelling the ultraviolet/submillimeter spectral energy distributions of normal galaxies  

E-Print Network (OSTI)

We give an overview of the factors shaping the ultraviolet (UV)/optical - far-infrared (FIR)/submillimeter (submm) spectral energy distributions (SEDs) of normal (non-starburst) galaxies. Particular emphasis is placed on the influen ce of the geometry of dust and stars on the propagation of light through the int erstellar medium. Although strong constraints can be placed on the amount and la rge scale distribution of dust in disks from the appearance of the galaxies in t he optical/UV range, this dust does not account for the observed amplitude and c olour of the FIR/submm radiation. Additional, optically thick components of dust associated with the young stellar population on large and small scales are requ ired to account for the complete UV/optical - FIR/submm SEDs. Self-consistent mo dels for the calculation of SEDs of spiral galaxies are reviewed, and their pred ictions for the dust emission and the attenuation of starlight are compared and contrasted.

Cristina C. Popescu; Richard J. Tuffs

2005-02-10T23:59:59.000Z

324

EVOLUTION OF X-RAY AND FAR-ULTRAVIOLET DISK-DISPERSING RADIATION FIELDS  

Science Conference Proceedings (OSTI)

We present new X-ray and far-ultraviolet (FUV) observations of T Tauri stars covering the age range 1-10 Myr. Our goals are to observationally constrain the intensity of radiation fields responsible for evaporating gas from the circumstellar disk and to assess the feasibility of current photoevaporation models, focusing on X-ray and UV radiation. We greatly increase the number of 7-10 Myr old T Tauri stars observed in X-rays by including observations of the well-populated 25 Ori aggregate in the Orion OB1a subassociation. With these new 7-10 Myr objects, we confirm that X-ray emission remains constant from 1 to 10 Myr. We also show, for the first time, observational evidence for the evolution of FUV radiation fields with a sample of 56 accreting and non-accreting young stars spanning 1 Myr to 1 Gyr. We find that the FUV emission decreases on timescales consistent with the decline of accretion in classical T Tauri stars until reaching the chromospheric level in weak T Tauri stars and debris disks. Overall, we find that the observed strength of high-energy radiation is consistent with that required by photoevaporation models to dissipate the disks in timescales of approximately 10 Myr. Finally, we find that the high-energy fields that affect gas evolution are not similarly affecting dust evolution; in particular, we find that disks with inner clearings, transitional disks, have similar levels of FUV emission as full disks.

Ingleby, Laura; Calvet, Nuria; Miller, Jon; Bergin, Edwin; Hartmann, Lee [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernandez, Jesus; Briceno, Cesar [Centro de Investigaciones de Astronomia (CIDA), Merida, 5101-A (Venezuela, Bolivarian Republic of); Espaillat, Catherine, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: jonmm@umich.edu, E-mail: ebergin@umich.edu, E-mail: lhartm@umich.edu, E-mail: jesush@cida.ve, E-mail: briceno@cida.ve, E-mail: cespaillat@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States)

2011-04-15T23:59:59.000Z

325

Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization  

SciTech Connect

Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

2010-03-11T23:59:59.000Z

326

Infrared and ultraviolet cutoffs in variational calculations with a harmonic oscillator basis  

E-Print Network (OSTI)

I abstract from a recent publication [1] the motivations for, analysis in and conclusions of a study of the ultraviolet and infrared momentum regulators induced by the necessary truncation of the model spaces formed by a variational trial wave function. This trial function is built systematically from a complete set of many-body basis states based upon three-dimensional harmonic oscillator (HO) functions. Each model space is defined by a truncation of the expansion characterized by a counting number (N) and by the intrinsic scale ($\\hbar\\omega$) of the HO basis. Extending both the uv cutoff to infinity and the ir cutoff to zero is prescribed for a converged calculation. In [1] we established practical procedures which utilize these regulators to obtain the extrapolated result from sequences of calculations with model spaces. Finally, I update this subject by mentioning recent work on our extrapolation prescriptions which have appeared since the submission of [1]. The numerical example chosen for this contribution consists of calculations of the ground state energy of the triton with the "bare" and "soft" Idaho N3LO nucleon-nucleon (NN) interaction.

Sidney A Coon

2013-03-26T23:59:59.000Z

327

Hinode/Extreme-Ultraviolet Imaging Spectrometer Observations of the Temperature Structure of the Quiet Corona  

E-Print Network (OSTI)

We present a Differential Emission Measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We show that the expected quiet Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log T = 5.6 to 6.4 K that can be used to derive the DEM distribution reliably, including a subset of Iron lines that can be used to derive the DEM distribution free of the possibility of uncertainties in the elemental abundances. The subset can be used without the need for extensive measurements and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1" pixels...

Brooks, David H; Williams, David R; Watanabe, Tetsuya

2009-01-01T23:59:59.000Z

328

SURFACE LAYER ACCRETION IN CONVENTIONAL AND TRANSITIONAL DISKS DRIVEN BY FAR-ULTRAVIOLET IONIZATION  

Science Conference Proceedings (OSTI)

Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. Disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by small condensates, ranging from {approx}0.01 {mu}m sized grains to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. Here we show that ionization by stellar far-ultraviolet (FUV) radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. The FUV-ionized layer, of thickness 0.01-0.1 g cm{sup -2}, behaves in the ideal magnetohydrodynamic limit and can accrete at observationally significant rates at radii {approx}> 1-10 AU. Surface layer accretion driven by FUV ionization can reproduce the trend of increasing accretion rate with increasing hole size seen in transitional disks. At radii {approx}<1-10 AU, FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance, and unless turbulent mixing of plasma can thicken the MRI-active layer, an additional means of transport is needed. In the case of transitional disks, it could be provided by planets.

Perez-Becker, Daniel [Department of Physics, University of California, Berkeley, CA 94720 (United States); Chiang, Eugene [Departments of Astronomy and Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States)

2011-07-01T23:59:59.000Z

329

Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes  

SciTech Connect

We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)] [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

2013-01-28T23:59:59.000Z

330

NF-kB activation by ultraviolet light not dependent on a nuclear signal  

Science Conference Proceedings (OSTI)

Exposure of mammalian cells to radiation triggers the ultraviolet (UV) response, which includes activation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-kB). This was postulated to occur by induction of a nuclear signaling cascade by damaged DNA. Recently, induction of AP-1 by UV was shown to be mediated by a pathway involving Src tyrosine kinases and the Ha-Ras small guanosine triphosphate-binding protein, proteins located at the plasma membrane. It is demonstrated here that the same pathway mediates induction of NF-kB by UV. Because inactive NF-kB is stored in the cytosol, analysis of its activation directly tests the involvement of a nuclear-initiated signaling cascade. Enucleated cells are fully responsive to UV both in NF-kB induction and in activation of another key signaling event. Therefore, the UV response does not require a signal generated in the nucleus and is likely to be initiated at or near the plasma membrane.

Devary, Y.; Rosette, C.; DiDonato, J.A.; Karin, M. (Univ. of California, San Diego, CA (United States))

1993-09-10T23:59:59.000Z

331

Effective photoelectric converters of ultraviolet radiation with graded-gap ZnS-based layers  

SciTech Connect

The use of ultrathin ({approx}10 nm) stable p-Cu{sub 1.8}S films as a transparent component of the p-Cu{sub 1.8}S-n-ZnS heterojunction as well as of the graded-gap layers made it possible to obtain effective photoconverters of ultraviolet radiation. The results of examination of the properties of photoactive Cu{sub 1.8}S-ZnS junctions grown on the CdS or CdSe substrates with intermediate graded-gap layers CdS-Zn{sub x}Cd{sub 1-x}S or CdSe-(ZnS){sub x}(CdSe){sub 1-} {sub x}, respectively, are presented. With the correct selection of parameters of the substrates, the graded-gap layers allows one to attain the optimal characteristics of the p-n junction, to realize high electric fields at the Cu{sub 1.8}S-ZnS contact, and to solve the problem of fabrication of the back ohmic contact to ZnS without additional doping of all components of the heterostructure with a foreign impurity. Varying the thickness of a thin ZnS layer, it is possible to control the extension of the space charge in the graded-gap layer and thereby to control the long-wavelength edge of photoconverter sensitivity.

Bobrenko, Yu. N.; Pavelets, S. Yu., E-mail: pavelets@voliacable.com; Pavelets, A. M. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

2009-06-15T23:59:59.000Z

332

FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR  

Science Conference Proceedings (OSTI)

We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fraction of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.

Park, S.-J.; Min, K.-W. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Seon, K.-I.; Han, W.; Lee, D.-H. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Edelstein, J., E-mail: einpark75@kaist.ac.kr [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

2012-07-20T23:59:59.000Z

333

ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE  

SciTech Connect

In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

Martino, C.; King, W.; Ketusky, E.

2012-07-10T23:59:59.000Z

334

ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS  

Science Conference Proceedings (OSTI)

Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune 411007 (India); Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-07-01T23:59:59.000Z

335

Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect

We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift (z=0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40percent of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z~;;=0.5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes.

Nugent, Peter E; Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam, A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2008-02-28T23:59:59.000Z

336

Finite element simulation for ultraviolet excimer laser processing of patterned Si/SiGe/Si(100) heterostructures  

SciTech Connect

Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.

Conde, J. C.; Chiussi, S.; Gontad, F.; Gonzalez, P. [Dpto. Fisica Aplicada, University of Vigo, E-36310 Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, University of Vigo, E-36310 Vigo (Spain); Serra, C. [CACTI, University of Vigo, E-36310 Vigo (Spain)

2010-07-05T23:59:59.000Z

337

A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques  

Science Conference Proceedings (OSTI)

Photoresponse characteristics of ZnO thin films deposited by three different techniques namely rf diode sputtering, rf magnetron sputtering, and electrophoretic deposition has been investigated in the metal-semiconductor-metal (MSM) configuration. A significant variation in the crystallinity, surface morphology, and photoresponse characteristics of ZnO thin film with change in growth kinetics suggest that the presence of defect centers and their density govern the photodetector relaxation properties. A relatively low density of traps compared to the true quantum yield is found very crucial for the realization of practical ZnO thin film based ultraviolet (UV) photodetector.

Yadav, Harish Kumar; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

2012-05-15T23:59:59.000Z

338

Ultraviolet Spectroscopy of Comet 9P/Tempel 1 with Alice/Rosetta during the Deep Impact Encounter  

E-Print Network (OSTI)

We report on spectroscopic observations of periodic comet 9P/Tempel 1 by the Alice ultraviolet spectrograph on the Rosetta spacecraft in conjunction with NASA's Deep Impact mission. Our objectives were to measure an increase in atomic and molecular emissions produced by the excavation of volatile sub-surface material. We unambiguously detected atomic oxygen emission from the quiescent coma but no enhancement at the 10% (1-sigma) level following the impact. We derive a quiescent water production rate of 9 x 10^27 molecules per second with an estimated uncertainty of 30%. Our upper limits to the volatiles produced by the impact are consistent with other estimates.

Paul D. Feldman; S. Alan Stern; Andrew J. Steffl; Joel Wm. Parker; David C. Slater; Michael F. A'Hearn; Jean-Loup Bertaux; Michel C. Festou

2006-08-31T23:59:59.000Z

339

The Efficacy of Ultraviolet Radiation for Sterilizing Tools Used for Surgically Implanting Transmitters into Fish  

SciTech Connect

Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelom of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When several fish are implanted consecutively for large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. However, autoclaving tools can take a long period of time, and chemical sterilants or disinfectants can be harmful to both humans and fish and have varied effectiveness. Ultraviolet (UV) radiation is commonly used to disinfect water in aquaculture facilities. However, this technology has not been widely used to sterilize tools for surgical implantation of transmitters in fish. To determine its efficacy for this application, Pacific Northwest National Laboratory researchers used UV radiation to disinfect surgical tools (i.e., forceps, needle holder, stab scalpel, and suture) that were exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica. Surgical tools were exposed to the bacteria by dipping them into a confluent suspension of three varying concentrations (i.e., low, medium, high). After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods—2, 5, or 15 min. S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV light exposures of 5 and 15 min were effective at killing all four organisms. UV light was also effective at killing Geobacillus stearothermophilus, the organism used as a biological indicator to verify effectiveness of steam sterilizers. These techniques appear to provide a quick alternative disinfection technique for some surgical tools that is less harmful to both humans and fish while not producing chemical waste. However, we do not recommend using these methods with tools that have overlapping parts or other structures that cannot be directly exposed to UV light such as needle holders.

Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Gay, Marybeth E.; Woodley, Christa M.; Brown, Richard S.

2013-02-28T23:59:59.000Z

340

HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS OF THE TEMPERATURE STRUCTURE OF THE QUIET CORONA  

Science Conference Proceedings (OSTI)

We present a differential emission measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We show that the expected quiet-Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log T = 5.6-6.4 K that can be used to derive the DEM distribution reliably, including a subset of iron lines that can be used to derive the DEM distribution free of the possibility of uncertainties in the elemental abundances. The subset can be used without the need for extensive measurements, and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1'' pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet-Sun data sets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log T approx 6.2 K in all cases. This result is consistent with the view that the shape of the quiet-Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This universal DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet-Sun region to region.

Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Williams, David R. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Watanabe, Tetsuya, E-mail: dhbrooks@ssd5.nrl.navy.mi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

2009-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)  

Science Conference Proceedings (OSTI)

We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

Didkovsky, L.; Judge, D.; Wieman, S. [Space Sciences Center, University of Southern California, Los Angeles, CA 90089 (United States); Kosovichev, A. G. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Woods, T., E-mail: leonid@usc.edu [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, CO 80301 (United States)

2011-09-01T23:59:59.000Z

342

Long-Term Nitrate Measurements in the Ocean Using the in situ Ultraviolet Spectrophotometer: Sensor Integration into the APEX Profiling Float  

Science Conference Proceedings (OSTI)

Reagent-free optical nitrate sensors [in situ ultraviolet spectrophotometer (ISUS)] can be used to detect nitrate throughout most of the ocean. Although the sensor is a relatively high-power device when operated continuously (7.5 W typical), the ...

Kenneth S. Johnson; Luke J. Coletti; Hans W. Jannasch; Carole M. Sakamoto; Dana D. Swift; Stephen C. Riser

2013-08-01T23:59:59.000Z

343

Plasma and vacuum ultraviolet induced charging of SiO{sub 2} and HfO{sub 2} patterned structures  

SciTech Connect

The authors compare the effects of plasma charging and vacuum ultraviolet (VUV) irradiation on oxidized patterned Si structures with and without atomic-layer-deposited HfO{sub 2}. It was found that, unlike planar oxidized Si wafers, oxidized patterned Si wafers charge up significantly after exposure in an electron-cyclotron resonance plasma. The charging is dependent on the aspect ratio of the patterned structures. This is attributed to electron and/or ion shading during plasma exposure. The addition of a 10 nm thick HfO{sub 2} layer deposited on top of the oxidized silicon structures increases the photoemission yield during VUV irradiation, resulting in more trapped positive charge compared to patterns without the HfO{sub 2} dielectric.

Lauer, J. L.; Upadhyaya, G. S.; Sinha, H.; Kruger, J. B.; Nishi, Y.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Stanford Nanofabrication Facility, Stanford University, Stanford, California 94303 (United States); Stanford University, Stanford, California 94305 (United States); Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-01-15T23:59:59.000Z

344

Measurement of H and H sub 2 populations in a low-temperature plasma by vacuum ultraviolet laser absorption spectroscopy  

DOE Green Energy (OSTI)

A new technique, vacuum ultraviolet laser absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H{sub 2} within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon backgrounds complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H{sub 2} as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous plasma discharges. H{sub 2} state distributions show a high degree of internal excitation, with levels up to v=5 and J=8 being observed. Hydrogen atom measurements indicate that, even for modest discharge currents, the fraction of H{sub 2} molecules dissociated can be greater than 0.15.

Young, A.T.; Stutzin, G.C.; Schlachter, A.S.; Stearns, J.W.; Leung, K.N.; Kunkel, W.B. (Lawrence Berkeley Laboratory, Berkeley, California 94720 (US)); Worth, G.T.; Stevens, R.R. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA))

1989-10-20T23:59:59.000Z

345

Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection  

SciTech Connect

Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

Lai, Y. H.; He, Q. L. [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China) [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Sou, I. K. [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China)] [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Ho, S. K. [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China)] [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China); Tam, K. W. [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)] [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)

2013-04-29T23:59:59.000Z

346

A COMPREHENSIVE GALEX ULTRAVIOLET CATALOG OF STAR CLUSTERS IN M31 AND A STUDY OF THE YOUNG CLUSTERS  

Science Conference Proceedings (OSTI)

We present a comprehensive catalog of 700 confirmed star clusters in the field of M31 compiled from three major existing catalogs. We detect 418 and 257 star clusters in Galaxy Evolution Explorer near-ultraviolet and far-ultraviolet (FUV) imaging, respectively. Our final catalog includes photometry of star clusters in up to 16 passbands ranging from FUV to NIR as well as ancillary information such as reddening, metallicity, and radial velocities. In particular, this is the most extensive and updated catalog of UV-integrated photometry for M31 star clusters. Ages and masses of star clusters are derived by fitting the multi-band photometry with model spectral energy distribution (SED); UV photometry enables more accurate age estimation of young clusters. Our catalog includes 182 young clusters with ages less than 1 Gyr. Our estimated ages and masses of young clusters are in good agreement with previously determined values in the literature. The mean age and mass of young clusters are about 300 Myr and 10{sup 4} M{sub Sun }, respectively. We found that the compiled [Fe/H] values of young clusters included in our catalog are systematically lower (by more than 1 dex) than those from recent high-quality spectroscopic data and our SED-fitting result. We confirm that most of the young clusters' kinematics shows systematic rotation around the minor axis and association with the thin disk of M31. The young cluster distribution exhibits a distinct peak in the M31 disk around 10-12 kpc from the center and follows a spatial distributions similar to other tracers of disk structure such as OB stars, UV star-forming regions, and dust. Some young clusters also show concentration around the ring splitting regions found in the southern part of the M31 disk and most of them have systematically younger (star formation ring structure in the M31 disk. Consequently, we suggest that various properties of young clusters in M31 might be in line with the scenarios that a satellite galaxy had passed through the disk of M31 less than few hundred million years ago.

Kang, Yongbeom; Rey, Soo-Chang; Lee, Kyungsook; Kim, YoungKwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sohn, Sangmo Tony, E-mail: ybkang@cnu.ac.kr, E-mail: screy@cnu.ac.kr [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

2012-04-01T23:59:59.000Z

347

Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source  

SciTech Connect

A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki [Department of Mechanical Engineering, Shizuoka University, 3-5-4 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

2012-12-15T23:59:59.000Z

348

The Far Ultraviolet Spectroscopic Explorer: Mission Overview and Prospects for Studies of the Interstellar Medium and High Velocity Clouds  

E-Print Network (OSTI)

The Far Ultraviolet Spectroscopic Explorer (FUSE) is a NASA astronomy mission that will explore the 905-1187 A wavelength region at high spectral resolution. Funded by NASA's Explorer Program, this Origins mission is scheduled for a 1999 launch and at least three years of operations. The development of FUSE is being led by the Johns Hopkins University, with major contributions to the program from the University of Colorado, the University of California-Berkeley, the space agencies of Canada and France, and corporate partners. FUSE will have approximately 10,000 times the sensitivity of its pioneering predecessor, Copernicus, which operated in the 1970s. Much of the FUSE Science Team observing time will be dedicated to studying the interstellar medium of the Milky Way and Magellanic Clouds. Observations of high velocity clouds play an important role in the FUSE program. In this paper, I outline some of the FUSE Science Team plans for observing HVCs. Simple absorption line models are also provided for investigators seeking to identify atomic and molecular species in this wavelength region.

Kenneth R. Sembach

1998-11-19T23:59:59.000Z

349

Effect of ultraviolet irradiation on luminescence properties of undoped ZnS and ZnS:Ag nanoparticles  

SciTech Connect

Undoped ZnS and ZnS:Ag nanoparticles have been prepared through hydrothemal synthesis. The changes of luminescence properties induced by ultraviolet irradiation have been investigated. For both samples, the initial slight increase in luminescence is ascribed to the fast electron filling, while the succedent decrease is supposed to be caused by nonradiative pathways originating from some unknown photochemical products. The more remarkable decrease in ZnS:Ag is put down to the segregation of Ag on the surfaces of ZnS:Ag nanoparticles. Multipeaks Gaussian fitting is applied to the emission spectra. The fitting peaks around 490 nm in both samples are related with the surface states emission and the fitting peaks around 456 nm in ZnS nanoparticles and 443 nm in ZnS:Ag nanoparticles are attributed to the type of donor-acceptor pair luminescence, which corresponds to the transition between different donor levels and acceptor levels in different samples. A model of stretched exponential function is used to fit the fluorescence decay spectra. Result shows that the introduction of Ag{sup +} ions causes a spectacular lifetime shortening of ZnS. Experiment result also verifies the model as that the lifetimes of both samples are notably shortened after irradiation for 2 h.

Qu Hua; Cao Lixin; Su Ge; Liu Wei; Sun Yuanguang; Dong Bohua [Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100 (China)

2009-11-01T23:59:59.000Z

350

Interaction of Metallophthalocyanines (Mpc, M=Co, Ni) on Au(001): Ultraviolet Photoemission Spectroscopy and Low Energy Electron Diffraction Study  

Science Conference Proceedings (OSTI)

Thin films of metallophthalocyanine (MPc,M=Co,Ni) evaporated onto a '5x20' reconstructed Au(001) substrate at room temperature have been investigated by employing low energy electron diffraction (LEED) and ultraviolet photoelectron spectroscopy (UPS). The LEED images from NiPc thin films show that the overlayers are highly ordered with a square unit cell of 12.8x12.8 {angstrom}{sup 2} aligned along the {l_angle}110{r_angle} and {l_angle}1{bar 1}0{r_angle} axes of the Au(001) substrate. For CoPc, the LEED pattern reveals the superposition of multiple rotationally equivalent domains of a 12.9x12.9 {angstrom}{sup 2} square lattice which are rotated by 16{sup o} with respect to each other. The contrast between NiPc and CoPc on Au(001) is further demonstrated in the interfacial electronic structure. UPS studies of the interfacial layers of NiPc deposited on the hexagonally reconstructed gold substrate indicate that NiPc physisorbs on the gold surface as evidenced by a uniform molecular orbital (MO) shift. The CoPc MO's, on the other hand, indicates a charge transfer at the interface, evidenced by the 13a{sub 1g} MO interacting with the Au surface.

Ellis,T.; Park, K.; Ulrich, M.; Hulbert, S.; Rowe, J.

2006-01-01T23:59:59.000Z

351

Compatibility of the ultraviolet light-ozone system for laundry waste water treatment in nuclear power plants  

SciTech Connect

As an alternative treatment system for laundry waste water in nuclear power plants, a system was chosen in which such organic compounds as surfactant would be oxidized by ultraviolet (UV) light and ozone. The system compatibility, UV light source, and dissolved ozone concentration were examined through experiments. First, ozone gas was absorbed in the waste water. After the dissolved ozone concentration equilibrated at the desired value, the waste water was irradiated by a mercury lamp. Then, the time dependence of the concentrations of the organic compounds, the dissolved ozone, and the hydrogen peroxide were measured to estimate the treatment rate of the system. The mercury lamp with a 10{sup 5}-Pa vapor pressure achieved large UV radiation and a treatment rate increase, leading to a compatible system without secondary waste generation. The effect of the dissolved ozone concentration on the treatment rate was saturated when concentration was >3.3 {times} 10{sup {minus}4} mol/10{sup {minus}3} m{sup 3} at the time UV radiation was started. Numerical results indicated the saturation was due to hydrogen peroxide generation, which prevents hydroxyl radical generation.

Matsuo, Toshiaki; Nishi, Takashi; Matsuda, Masami; Izumida, Tatsuo [Hitachi, Ltd. (Japan)

1997-08-01T23:59:59.000Z

352

Ionized Ultraviolet and Soft-X-ray Absorptions in the Low Redshift Active Galactic Nucleus PG1126-041  

E-Print Network (OSTI)

We present here the analysis of ultraviolet spectra from IUE and an X-ray spectrum from ROSAT PSPC observations of the X-ray weak, far-infrared loud AGN, PG 1126-041 (Mrk 1298). The first UV spectra taken in June 1992, simultaneously with ROSAT, show strong absorption lines of NV, CIV and SiIV, extending over a velocity range from -1000 to -5000 km/s with respect to the corresponding line centre. Our analysis shows that the Broad Emission Line Region (BELR) is, at least partially, covered by the material causing these absorption lines. In the IUE spectrum taken in Jan. 1995, the continuum was a factor of two brighter and the UV absorption lines are found to be considerably weaker than in 1992, but only little variation in the emission line fluxes is found. With UV spectral indices of A_{uv} \\simeq 1.82 and 1.46 for the 1992 and 1995 data, the far UV spectrum is steep. Based on the emission line ratios and the broad band spectral energy distribution, we argue that the steepness of the UV spectrum is unlikely t...

Wang, T G; Wamsteker, W; Yuan, W; Wang, J X

1999-01-01T23:59:59.000Z

353

Study of thin metal films and oxide materials for nanoelectronics applications  

E-Print Network (OSTI)

(blue), non-functionalized at 30 K (red) and functionalized at 30 K (green).101 6.6 M(T) dependences of the La1113 before (blue spheres) and after (red spheres) functionalization with HS-C8H16-HS. . . . . . . . . . 102 6.7 Magnetic response of the La... types of lithography used in this work are photolithography and e?-beam lithography. Photolithogra- phy, also called “optical lithography”, is a well known method used to produce a 11 2.1 Lithography pattern by ultraviolet (UV) light. A wafer is coated...

De Los Santos Valladares, Luis

2012-01-10T23:59:59.000Z

354

NON-RACEMIC AMINO ACID PRODUCTION BY ULTRAVIOLET IRRADIATION OF ACHIRAL INTERSTELLAR ICE ANALOGS WITH CIRCULARLY POLARIZED LIGHT  

Science Conference Proceedings (OSTI)

The delivery of organic matter to the primitive Earth via comets and meteorites has long been hypothesized to be an important source for prebiotic compounds such as amino acids or their chemical precursors that contributed to the development of prebiotic chemistry leading, on Earth, to the emergence of life. Photochemistry of inter/circumstellar ices around protostellar objects is a potential process leading to complex organic species, although difficult to establish from limited infrared observations only. Here we report the first abiotic cosmic ice simulation experiments that produce species with enantiomeric excesses (e.e.'s). Circularly polarized ultraviolet light (UV-CPL) from a synchrotron source induces asymmetric photochemistry on initially achiral inter/circumstellar ice analogs. Enantioselective multidimensional gas chromatography measurements show significant e.e.'s of up to 1.34% for ({sup 13}C)-alanine, for which the signs and absolute values are related to the helicity and number of CPL photons per deposited molecule. This result, directly comparable with some L excesses measured in meteorites, supports a scenario in which exogenous delivery of organics displaying a slight L excess, produced in an extraterrestrial environment by an asymmetric astrophysical process, is at the origin of biomolecular asymmetry on Earth. As a consequence, a fraction of the meteoritic organic material consisting of non-racemic compounds may well have been formed outside the solar system. Finally, following this hypothesis, we support the idea that the protosolar nebula has indeed been formed in a region of massive star formation, regions where UV-CPL of the same helicity is actually observed over large spatial areas.

De Marcellus, Pierre; Nuevo, Michel; Danger, Gregoire; Deboffle, Dominique; Le Sergeant d'Hendecourt, Louis [Univ Paris-Sud, 'Astrochimie et Origines', Institut d'Astrophysique Spatiale, UMR 8617, F-91405 Orsay (France); Meinert, Cornelia; Filippi, Jean-Jacques; Meierhenrich, Uwe J. [Laboratoire de Chimie des Molecules Bioactives et des Aromes, UMR 6001, Universite de Nice-Sophia Antipolis, F-06108 Nice (France); Nahon, Laurent, E-mail: laurent.nahon@synchrotron-soleil.fr, E-mail: ldh@ias.u-psud.fr [Synchrotron SOLEIL, F-91192 Gif-sur-Yvette (France)

2011-02-01T23:59:59.000Z

355

DISCOVERY OF THE OPTICAL/ULTRAVIOLET/GAMMA-RAY COUNTERPART TO THE ECLIPSING MILLISECOND PULSAR J1816+4510  

SciTech Connect

The energetic, eclipsing millisecond pulsar J1816+4510 was recently discovered in a low-frequency radio survey with the Green Bank Telescope. With an orbital period of 8.7 hr and a minimum companion mass of 0.16 M{sub Sun }, it appears to belong to an increasingly important class of pulsars that are ablating their low-mass companions. We report the discovery of the {gamma}-ray counterpart to this pulsar and present a likely optical/ultraviolet counterpart as well. Using the radio ephemeris, we detect pulsations in the unclassified {gamma}-ray source 2FGL J1816.5+4511, implying an efficiency of {approx}25% in converting the pulsar's spin-down luminosity into {gamma}-rays and adding PSR J1816+4510 to the large number of millisecond pulsars detected by Fermi. The likely optical/UV counterpart was identified through position coincidence (<0.''1) and unusual colors. Assuming that it is the companion, with R = 18.27 {+-} 0.03 mag and effective temperature {approx}> 15,000 K, it would be among the brightest and hottest of low-mass pulsar companions and appears qualitatively different from other eclipsing pulsar systems. In particular, current data suggest that it is a factor of two larger than most white dwarfs of its mass but a factor of four smaller than its Roche lobe. We discuss possible reasons for its high temperature and odd size, and suggest that it recently underwent a violent episode of mass loss. Regardless of origin, its brightness and the relative unimportance of irradiation make it an ideal target for a mass, and hence a neutron star mass, determination.

Kaplan, D. L.; Kotulla, R.; Biwer, C. M.; Day, D. F. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211 (United States); Stovall, K.; Dartez, L.; Ford, A. J.; Garcia, A.; Jenet, F. A. [Center for Advanced Radio Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Roberts, M. S. E. [Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Archibald, A. M.; Karako, C.; Kaspi, V. M.; Lynch, R. S. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Boyles, J.; Lorimer, D. R.; McLaughlin, M. A. [Department of Physics, West Virginia University, White Hall, 115 Willey Street, Morgantown, WV 26506 (United States); Hessels, J. W. T.; Kondratiev, V. I., E-mail: kaplan@uwm.edu [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

2012-07-10T23:59:59.000Z

356

Verifying the Cosmological Utility of Type Ia Supernovae:Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect

We analyze the mean rest-frame ultraviolet (UV) spectrum ofType Ia Supernovae(SNe) and its dispersion using high signal-to-noiseKeck-I/LRIS-B spectroscopyfor a sample of 36 events at intermediateredshift (z=0.5) discoveredby the Canada-France-Hawaii TelescopeSupernova Legacy Survey (SNLS). Weintroduce a new method for removinghost galaxy contamination in our spectra,exploiting the comprehensivephotometric coverage of the SNLS SNe and theirhost galaxies, therebyproviding the first quantitative view of the UV spectralproperties of alarge sample of distant SNe Ia. Although the mean SN Ia spectrumhas notevolved significantly over the past 40 percent of cosmic history,preciseevolutionary constraints are limited by the absence of acomparable sample ofhigh quality local spectra. The mean UV spectrum ofour z 0.5 SNe Ia and itsdispersion is tabulated for use in futureapplications. Within the high-redshiftsample, we discover significant UVspectral variations and exclude dust extinctionas the primary cause byexamining trends with the optical SN color. Although progenitormetallicity may drive some of these trends, the variations we see aremuchlarger than predicted in recent models and do not follow expectedpatterns.An interesting new result is a variation seen in the wavelengthof selected UVfeatures with phase. We also demonstrate systematicdifferences in the SN Iaspectral features with SN lightcurve width inboth the UV and the optical. Weshow that these intrinsic variations couldrepresent a statistical limitation in thefuture use of high-redshift SNeIa for precision cosmology. We conclude thatfurther detailed studies areneeded, both locally and at moderate redshift wherethe rest-frame UV canbe studied precisely, in order that future missions canconfidently beplanned to fully exploit SNe Ia as cosmological probes.

Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam,A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.G.; Conley,A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2007-11-02T23:59:59.000Z

357

Advanced flow lithography and barcoded particles  

E-Print Network (OSTI)

Anisotropic multifunctional particles have drawn much attention, leading to wide ranges of applications from biomedical areas to electronics. Despite their enormous potentials, particles with geometrically and chemically ...

Bong, Ki Wan

2012-01-01T23:59:59.000Z

358

Immersion nanoimprint lithography using perfluoroalkyl liquid  

Science Conference Proceedings (OSTI)

When an attempt is made to thermal-imprint on a thin film of thermoplastic coated on a hard-surface, e.g., an Si wafer, very often the amount of the fluidic resin is not found to be enough. In such cases any air trapped between the mold pattern, and ... Keywords: Bubble defect, Hot embossing, Immersion, Nanoimprint, PMMA, Perfluorotributylamine

Harutaka Mekaru; Hiroshi Hiroshima

2012-09-01T23:59:59.000Z

359

Laser Lithography: Heidelberg DWL-66FS  

Science Conference Proceedings (OSTI)

... High resolution pattern generator for low volume mask ... photomask blanks as well as direct patterning of ... gov Address: 100 Bureau Drive, Stop 6201 ...

2013-04-20T23:59:59.000Z

360

Transparent fluids for 157-nm immersion lithography  

E-Print Network (OSTI)

, the latter determined by the thickness of the spacer gaskets. Since the calcium fluoride windows were found that enables the fluid to be reused for many 100 expo- sure fields will be both necessary and possible

French, Roger H.

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Magnetic nanostructures patterned by block copolymer lithography  

E-Print Network (OSTI)

The aim of this research was twofold: understanding the methods of patterning magnetic films using self-assembled block copolymer masks and examining the magnetic reversal mechanisms of as deposited and patterned magnetic ...

Ilievski, Filip, 1980-

2008-01-01T23:59:59.000Z

362

CNST NanoFab Equipment - Lithography  

Science Conference Proceedings (OSTI)

... Use: Nano-Magnetic media; Bio-Nanomatrix; Polymer nanostructure property ... Exposure methods: flood, proximity, soft and hard contacts, low ...

2013-04-05T23:59:59.000Z

363

Determination of electron-heated temperatures of petawatt laser-irradiated foil targets with 256 and 68 eV extreme ultraviolet imaging  

Science Conference Proceedings (OSTI)

Measurements of plasma temperature at the rear surface of foil targets due to heating by hot electrons, which were produced in short pulse high intensity laser matter interactions using the 150 J, 0.5 ps Titan laser, are reported. Extreme ultraviolet (XUV) imaging at 256 and 68 eV energies is used to determine spatially resolved target rear surface temperature patterns by comparing absolute intensities to radiation hydrodynamic modeling. XUV mirrors at these two energies were absolutely calibrated at the Advanced Light Source at the Lawrence Berkeley Laboratory. Temperatures deduced from both imagers are validated against each other within the range of 75-225 eV.

Ma, T. [University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); MacPhee, A. G.; Key, M. H.; Hatchett, S. P.; Barbee, T. W.; Mackinnon, A. J.; Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Akli, K. U.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Chen, C. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Freeman, R. R.; Link, A.; Offermann, D. T.; Ovchinnikov, V.; Van Woerkom, L. D. [Ohio State University, Columbus, Ohio (United States); King, J. A.; Beg, F. N. [University of California-San Diego, La Jolla, California 92093 (United States); Zhang, B. [University of California-Davis, Davis, California 95616 (United States)

2008-09-15T23:59:59.000Z

364

Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave  

Science Conference Proceedings (OSTI)

Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R. [Austin Plasma Laboratory, Tokyo Electron America, Inc., Austin, Texas 78741 (United States); Nozawa, T. [Tokyo Electron Limited, TEL Technology Center Sendai, 2-1 Osawa 3-chome, Izumi-ku, Sendai 981-3137 (Japan); Samukawa, S. [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

2013-07-15T23:59:59.000Z

365

Impact of Xe partial pressure on the production of excimer vacuum ultraviolet emission for plasma display panels  

SciTech Connect

In this work, the effect of the Xe partial pressure on the excimer vacuum ultraviolet (VUV) emission intensity of the plasma display panels is investigated, both by measuring the spectral emission directly and by two-dimensional simulations. Experimentally, we find that at the high Xe partial pressure levels, there is an supra-linear increase of excimer VUV radiation and that determines the strong increase of luminance at the high pressures and high voltage. Due to the increase of the luminance and the almost unchanged discharge current, the luminous efficacy strongly increases with the Xe partial pressure. In addition, we also investigated the dynamics of the VUV generation, by measuring the decay time of the excimer VUV light as a function of the gas pressure. It is found that the decay time decreases with the increase of gas pressure. The spatial characteristics of the excimer VUV emission are also discussed. Different from the Ne and near-infrared emission, the excimer VUV emission is generated near the surface of the electrodes and increases uniformly on both sides of the anode and cathode (i.e., the bulk plasma region). Most importantly, it is found that the VUV production occurs during the afterglow period, while it is almost zero at the moment of the discharge itself. From the simulations, it can be seen that the Xe{sub 2}*({sup 3}{Sigma}{sub u}{sup +}) excimer species, which are generated from Xe*(1s{sub 5}), play a dominant role in the excimer VUV emission output at the high Xe partial pressure. The two-dimensional simulations also show that the strong increase of Xe excimer excitation states in the case of high pressure is mainly the result of the high conversion efficiency of the Xe excimer states, especially in the afterglow period. Due to the high conversion efficiency of Xe excitation species to Xe excimer species by the high collision rate in the case of high pressure, there is a strong increase of excimer VUV production, especially from the cathode.

Zhu Di [Display R and D center, School of Electronic Science and Engineering, Southeast University, Nanjing (China); Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima (Japan); Zhang Xiong [Display R and D center, School of Electronic Science and Engineering, Southeast University, Nanjing (China); Kajiyama, Hiroshi [Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima (Japan)

2012-08-01T23:59:59.000Z

366

Ultraviolet absorbing copolymers  

DOE Patents (OSTI)

Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

Gupta, Amitava (Pasadena, CA); Yavrouian, Andre H. (La Crescenta, CA)

1982-01-01T23:59:59.000Z

367

Vacuum ultraviolet laser  

DOE Patents (OSTI)

Transitions from the 2p/sup 4/(/sup 1/S/sub 0/)3s /sup 2/S/sub 1/2/ state of atomic fluorine to all allowed loser states produces laser emission at six new wavelengths: 680.7A, 682.6A, 3592.7A, 3574.1A, 6089.2A, and 6046.8A. Coherent radiation at these new wavelengths can be generated in an atomic fluorine laser operated as an amplifier or as an oscillator.

Berkowitz, J.; Ruscic, B.M.; Greene, J.P.

1984-07-06T23:59:59.000Z

368

Ultraviolet-spectrograph lens  

Science Conference Proceedings (OSTI)

A 700-mm f/4.7 spectrograph camera lens was designed for imaging spectral lines in the 200- to 400-nm region on a 120-mm flat image field. Lens elements of fused silica and crystal calcium fluoride give such good achromatization that raytracing calculations predict a resolution limit of 30 lines/mm without refocusing in the 238- to 365-nm region. Light scattering at the polished calcium-fluoride surfaces is avoided by sandwiching the fluoride elements between fused silica and cementing with silicone fluid. The constructed lens makes good spectrograms.

Brixner, B.; Winkler, M.A.

1981-01-01T23:59:59.000Z

369

Ultraviolet detectors Photon detectors  

E-Print Network (OSTI)

for combustion control, surveillance of rockets and inter- continental ballistic missiles, secure space- to

370

Far Ultraviolet Calibration Facility  

Science Conference Proceedings (OSTI)

... The H 2 discharge gives a rich spectrum of molecular lines and molecular ... detector responsivity; filter transmission; uniformity of responsivity. ...

2011-10-03T23:59:59.000Z

371

Ultraviolet Water Treatment  

Science Conference Proceedings (OSTI)

UV Ray of Hope for Safer Drinking Water. ... It is not, however, too soon for the American Water Works Association to express its appreciation. ...

2013-01-03T23:59:59.000Z

372

Vacuum ultraviolet laser  

SciTech Connect

Transitions from the 2p.sup.4 (.sup.1 S.sub.0)3s .sup.2 S.sub.1/2 state of atomic fluorine to all allowed lower states produces laser emission at six new wavelengths: 680.7 .ANG., 682.6 .ANG., 3592.7 .ANG., 3574.1 .ANG., 6089.2 .ANG., and 6046.8 .ANG.. Coherent radiation at these new wavelengths can be generated in an atomic fluorine laser operated as an amplifier or as an oscillator.

Berkowitz, Joseph (Hinsdale, IL); Ruscic, Branko M. (Zagreb, YU); Greene, John P. (Woodridge, IL)

1986-01-01T23:59:59.000Z

373

Ultraviolet Radiation Group  

Science Conference Proceedings (OSTI)

... The key external stakeholders include: NASA; NOAA, DARPA, members of the semiconductor industry, and academic and industrial researchers ...

2012-11-19T23:59:59.000Z

374

Ultra-short wavelength x-ray system  

DOE Patents (OSTI)

A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

2008-01-22T23:59:59.000Z

375

Application of a diode-laser-based ultraviolet absorption sensor for in situ measurements of atomic mercury in coal-combustion exhaust  

SciTech Connect

A diode-laser-based ultraviolet absorption sensor was successfully demonstrated for both in situ and extractive sampling atomic mercury measurements in a laboratory-scale 29.3 kWt (100 000 BTU/h) coal combustor and in situ measurements in a flow reactor at Texas A&M University. Laser sensor measurements were compared to measurements from a commercial mercury analyzer (CMA). A 375 nm single-mode laser and a 784 nm distributed feedback (DFB) laser are sum-frequency-mixed in a nonlinear {beta}-barium borate crystal to generate a 254 nm beam. By tuning the frequency of the DFB laser, the ultraviolet beam frequency was tuned across the transition frequency of mercury at 253.7 nm. The tuning range was large enough that an off-resonant baseline was clearly visible on both sides of the Hg transition. No pretreatment is required for elemental mercury measurements, and the effects of broadband absorption can be effectively eliminated during data analysis. Extractive sampling was demonstrated to improve the detection limit of the sensor and demonstrate the feasibility of total mercury concentration measurements in the future through extractive sampling. Significant variation in the atomic mercury concentration of coal-combustion exhaust was observed over short time periods during our in situ measurements. The sensor detection limits for in situ and extractive sampling are 0.3 and 0.1 parts per billion over a 1 m path length, respectively. 34 refs., 11 figs., 2 tabs.

Jesse K. Magnuson; Thomas N. Anderson; Robert P. Lucht; Udayasarathy A. Vijayasarathy; Hyukjin Oh; Kalyan Annamalai; Jerald A. Caton [Purdue University, West Lafayette, IN (United States). School of Mechanical Engineering

2008-09-15T23:59:59.000Z

376

System integration and performance of the EUV engineering test stand  

E-Print Network (OSTI)

No. W-7405-ENG-48, by Sandia National Laboratories under thef , and Pei-Yang Yan f , Sandia National Laboratories, POBox 969, Livermore CA 94551 Sandia National Laboratories, PO

2001-01-01T23:59:59.000Z

377

Actinic characterization of EUV bump-type phase defects  

E-Print Network (OSTI)

This work was supported by the Director, Office of Science,Office of Basic Energy Sciences, of the U.S. Department of

Goldberg, Kenneth A.

2011-01-01T23:59:59.000Z

378

EBIT EUV MEASUREMENTS OF KR XXI – KR XXXV AND ...  

Science Conference Proceedings (OSTI)

... Krypton is one of the elements proposed for use with the ITER tokamak, the fusion reactor under construction in Cadarache, France. ...

379

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

380

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

382

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

383

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

384

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

385

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

386

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

387

Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications  

SciTech Connect

An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-10-31T23:59:59.000Z

388

Validation of an UV inversion algorithm using satellite and surface measurements  

E-Print Network (OSTI)

Atmospheric Environment Service, Downsview, Ontario, Canada Abstract. Ultraviolet radiation in the spectral-based estimation of surface UV-B supplements the sparsely distributed ground-based UV-B monitoring networks.02 mW/m2 (mean) and 12.0 mW/m2 (s.d.) for EUV radiation. The large standard deviations are attributed

Li, Zhanqing

389

Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements  

SciTech Connect

Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

Niemi, K.; O'Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

2013-07-15T23:59:59.000Z

390

Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet (VUV) synchrotron ionization quadrupole mass spectrometry: Application to low--temperature kinetics and product detection  

SciTech Connect

A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit.

Soorkia, Satchin; Liu, Chen-Lin; Savee, John D.; Ferrell, Sarah J.; Leone, Stephen R.; Wilson, Kevin R.

2011-10-12T23:59:59.000Z

391

Do the environmental conditions affect the dust-induced fragmentation in low-metallicity clouds ?: Effect of pre-ionization and far-ultraviolet/cosmic-ray fields  

E-Print Network (OSTI)

We study effects of the fully ionized initial state, or pre-ionization, on the subsequent thermal evolution of low-metallicity clouds under various intensities of the external far-ultraviolet(FUV) and cosmic-ray(CR) fields. The pre-ionization significantly affects the thermal and dynamical evolution of metal-free clouds without FUV/CRs by way of efficient HD formation. On the other hand, the pre-ionization effect on the thermal evolution is limited in very low-density regime for more metal-enriched clouds ([Z/H] >~ -4) or those under modest FUV (>10^{-3}) or CR field (>0.1 of the present-day Galactic disk levels). In any case, for >10^8 cm^{-3}, neither the initial ionization state nor the irradiating FUV strength affect the thermal evolution. The dust cooling is an important mechanism for making sub-solar mass fragments in low-metallicity gas. Since this fragmentation occurs at the temperature minimum by the dust cooling at >10^{10} cm^{-3}, this process is not vulnerable either to initial ionization state o...

Omukai, Kazuyuki

2012-01-01T23:59:59.000Z

392

Temperature, but Not Available Energy, Affects the Expression of a Sexually Selected Ultraviolet (UV) Colour Trait in Male European Green Lizards  

E-Print Network (OSTI)

Background: Colour signals are widely used in intraspecific communication and often linked to individual fitness. The development of some pigment-based (e.g. carotenoids) colours is often environment-dependent and costly for the signaller, however, for structural colours (e.g. ultraviolet [UV]) this topic is poorly understood, especially in terrestrial ectothermic vertebrates. Methodology/Principal Findings: In a factorial experiment, we studied how available energy and time at elevated body temperature affects the annual expression of the nuptial throat colour patch in male European green lizards (Lacerta viridis) after hibernation and before mating season. In this species, there is a female preference for males with high throat UV reflectance, and males with high UV reflectance are more likely to win fights. We found that (i) while food shortage decreased lizards ’ body condition, it did not affect colour development, and (ii) the available time for maintaining high body temperature affected the development of UV colour without affecting body condition or other colour traits. Conclusions/Significance: Our results demonstrate that the expression of a sexually selected structural colour signal depends on the time at elevated body temperature affecting physiological performance but not on available energy gained from food per se in an ectothermic vertebrate. We suggest that the effect of high ambient temperature on UV colour in male L. viridis makes it an honest signal, because success in acquiring thermally favourable territories and/or effective behavioural

Katalin Bajer; Orsolya Molnár; János Török; Gábor Herczeg

2011-01-01T23:59:59.000Z

393

Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region  

SciTech Connect

A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, Per [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Eland, John H. D. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Baker, Neville [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom)

2012-01-15T23:59:59.000Z

394

Measurement of H and H/sub 2/ populations in-situ in a low-temperature plasma by vacuum-ultraviolet laser-absorption spectroscopy  

DOE Green Energy (OSTI)

A new technique, vacuum-ultraviolet laser-absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H/sub 2/ within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon background complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H/sub 2/ as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous H/sup /minus// ion-source plasma discharges. H/sub 2/ state distributions in a multicusp ''volume'' H/sup /minus// ion- source plasma show a high degree of internal excitation, with levels up to v = 5 and J = 8 being observed. The method is applicable for a very wide range of plasma conditions. Emission measurements from excited states of H are also reported. 17 refs., 9 figs.

Schlachter, A.S.; Young, A.T.; Stutzin, G.C.; Stearns, J.W.; Doebele, H.G.; Leung, K.N.; Kunkel, W.B.

1988-12-01T23:59:59.000Z

395

Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas  

SciTech Connect

Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China)

2012-03-01T23:59:59.000Z

396

Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma  

Science Conference Proceedings (OSTI)

We have demonstrated an efficient extreme ultraviolet (EUV) source at 6.7 nm by irradiating Gd targets with 0.8 and 1.06 {mu}m laser pulses of 140 fs to 10 ns duration. Maximum conversion efficiency of 0.4% was observed within a 0.6% bandwidth. A Faraday cup observed ion yield and time of flight signals for ions from plasmas generated by each laser. Ion kinetic energy was lower for shorter pulse durations, which yielded higher electron temperatures required for efficient EUV emission, due to higher laser intensity. Picosecond laser pulses were found to be the best suited to 6.7 nm EUV source generation.

Cummins, Thomas; Li Bowen; O'Gorman, Colm; Dunne, Padraig; Sokell, Emma; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Yugami, Noboru; Higashiguchi, Takeshi [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Jiang Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

2012-02-06T23:59:59.000Z

397

APS FEL Achieves Ultraviolet Saturation  

NLE Websites -- All DOE Office Websites (Extended Search)

has achieved "saturation" of self-amplified spontaneous emission in a mirrorless free-electron laser at a wavelength over 1000 times shorter than the previous record. This...

398

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations  

SciTech Connect

Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-09-30T23:59:59.000Z

399

Formation of Well-defined Nanocolumns by Ion Tracking Lithography  

SciTech Connect

Low dimensional systems on the nanometer scale afford a wealth of interesting possibilities including highly anisotropic behavior and quantum effects. Nanocolumns permit electrical and mechanical contact, yet benefit from two confined dimensions. This confinement leads to new optical, mechanical, electrical, chemical, and magnetic properties. We construct nanocolumn arrays with precise definition and independent control of diameter, length, orientation, areal density and composition so that geometry can be directly correlated to the quantum physical property of interest. The precision and control are products of the fabrication technique that we use. The process starts with an ion of sufficient energy to ''track'' a dielectric such as a film applied uniformly onto a substrate. The energy loss of the ion alters chemical bonding in the dielectric along the ion's straight trajectory. A suitable etchant quickly dissolves the latent tracks leaving high aspect ratio holes of small diameter ({approx}10nm) penetrating a film as thick as several microns. These small holes are interesting and useful in their own right and can be made to any desired size by continuing the etching process. Moreover, they serve as molds for electrochemical filling. After this electro-deposition, the mold material can be removed leaving the columns firmly attached to the substrate at the desired orientation. A variety of structures can be envisioned with these techniques. As examples, we have created arrays of Ni and of Pt nanocolumns ({approx}60 nm diameter and {approx}600 nm long) oriented perpendicular to the substrate. The high aspect ratio and small diameter of the columns enables easy observation of quantum behavior, namely efficient electron field emission and Fowler Nordheim behavior.

Felter, T E; Musket, R G; Macaulay, J; Contolini, R J; Searson, P C

2003-04-12T23:59:59.000Z

400

Strategies of Lithography for Trapping Nano-particles  

E-Print Network (OSTI)

Current research in materials science and engineering continues to drive it's attention to systems on the nanoscale. Thin films, nano-particles, quantum dots, nano-wires, etc are just a few of the areas that are becoming ...

Rajter, Rick

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Overview of Lithography: Challenges and Metrologies Harry J. ...  

Science Conference Proceedings (OSTI)

... Spec for flatness = 45 nm PV at the 32 nm node. ... 1980 1985 1990 1995 2000 2005 Year E xposure tool price Historical tool prices Page 35. ...

402

Lithography Program Advisory Group (PAG) Tuesday, June 12 ...  

Science Conference Proceedings (OSTI)

... 20 ~2010 2011, Albany Quad 2011, Albany Dipole 2011, LBNL 18nm Dipole 2011, LBNL Pseudo PSM 2011, LBNL Pseudo PSM Resolution(nm) ...

2013-04-01T23:59:59.000Z

403

Lithography-driven design for manufacturing in nanometer- era VLSI  

E-Print Network (OSTI)

cells within the same standard cell row as well as cellscoordinate in the given standard cell row, where coordinatesleft to right in the standard cell row. ? and ? give the

Park, Chul-Hong

2008-01-01T23:59:59.000Z

404

Optimization of the holographic process for imaging and lithography  

E-Print Network (OSTI)

Since their invention in 1948 by Dennis Gabor, holograms have demonstrated to be important components of a variety of optical systems and their implementation in new fields and methods is expected to continue growing. Their ...

Domínguez-Caballero, José Antonio

2010-01-01T23:59:59.000Z

405

Investigation of proximity effects in electron microscopy and lithography  

SciTech Connect

A fundamental challenge in lithographic and microscopic techniques employing focused electron beams are so-called proximity effects due to unintended electron emission and scattering in the sample. Herein, we apply a method that allows for visualizing electron induced surface modifications on a SiN substrate covered with a thin native oxide layer by means of iron deposits. Conventional wisdom holds that by using thin membranes proximity effects can be effectively reduced. We demonstrate that, contrary to the expectation, these can be indeed larger on a 200 nm SiN-membrane than on the respective bulk substrate due to charging effects.

Walz, M.-M.; Vollnhals, F.; Rietzler, F.; Schirmer, M.; Steinrueck, H.-P.; Marbach, H.

2012-01-30T23:59:59.000Z

406

Microphotonic parabolic light directors fabricated by two-photon lithography  

E-Print Network (OSTI)

light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs. VC 2011 American Institute of Physics. [doi:10.1063/1.3648115] Planar micro- and nano

Heaton, Thomas H.

407

A survey of advanced excimer optical imaging and lithography  

Science Conference Proceedings (OSTI)

The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters

Koichi Matsumoto; Kyoichi Suwa

1998-01-01T23:59:59.000Z

408

R-MATRIX ELECTRON-IMPACT EXCITATION OF Fe{sup 13+} AND ITS APPLICATION TO THE SOFT X-RAY AND EXTREME-ULTRAVIOLET SPECTROSCOPY OF CORONA-LIKE PLASMAS  

SciTech Connect

Accurate excitation parameters are required to interpret the ultraviolet and X-ray spectra of Fe{sup 13+}. In this work, we use the AUTOSTRUCTURE code to describe the atomic structure of Fe{sup 13+}. The 197 lowest-lying fine-structure levels of the 3s{sup x} 3p{sup y} 3d{sup z} (x + y + z = 3), 3s {sup 2}4l, and 3s3p4{l_brace}s, p, and d{r_brace} configurations are included along with further correlation configurations: 3s3p4f, 3p{sup x} 3d{sup y} 4l (x + y = 2), 3l4l'4l'', and 3l3l'5l''. The resultant level energies, lifetimes of excited states, and oscillator strengths of transitions between these levels are assessed by comparison with available experimental data and previous calculations. Electron-impact excitation data among these lowest-lying levels are generated using the intermediate-coupling frame transformation R-matrix method. We assess the present results by comparisons with laboratory measurement for the excitation to the metastable level 3s {sup 2}3p {sup 2} P {sup o} {sub 3/2} and with available close-coupling calculations for other excitations. Using these data and a collisional-radiative model, we have analyzed soft X-ray and extreme-ultraviolet spectra from space satellite observations of a stellar corona and of solar flares, as well as measurements from an electron beam ion trap. We assess the contribution from Fe{sup 13+} emission lines in the solar and Procyon corona observations, and find and identify new lines in the X-ray region observed in the solar and Procyon coronae. The laboratory measurements also confirm that weak lines (218.177 A and 224.354 A) of Fe{sup 13+} contribute to the observed intensities in solar observations. The polarization effect due to the directional monoenergetic distribution of the electron energy has been taken into account in comparison with the laboratory measurements. Electron density diagnostics for the astrophysical plasma sources have been performed using the updated data so as to investigate their sensitivity to the atomic data source.

Liang, G. Y.; Badnell, N. R. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Crespo Lopez-Urrutia, J. R.; Baumann, T. M.; Tawara, H.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Del Zanna, G. [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Storey, P. J., E-mail: guiyun.liang@strath.ac.u [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

409

Catastrophic cooling and cessation of heating in the solar corona  

E-Print Network (OSTI)

Condensations in the more than 10^6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the l...

Peter, H; Kamio, S

2011-01-01T23:59:59.000Z

410

EUV microexposures at the ALS using the 0.3-NA MET projection optics  

E-Print Network (OSTI)

micro-exposure capabilities at the ALS using the 0.3-NA METEUV Microexposures at the ALS using the 0.3-NA MET Optic,”microexposures at the ALS using the 0.3-NA MET projection

2005-01-01T23:59:59.000Z

411

FERMI @ Elettra -- A Seeded Harmonic Cascade FEL for EUV and Soft X-rays  

E-Print Network (OSTI)

laser systems for a FEL user facility”, M.B Danailov, F. Ö.will be the first user facility based on seeded harmonicsystem intended for a user facility that is operated on a

2005-01-01T23:59:59.000Z

412

Science & Technology Review September/October 2008  

SciTech Connect

This issue has the following articles: (1) Answering Scientists Most Audacious Questions--Commentary by Dona Crawford; (2) Testing the Accuracy of the Supernova Yardstick--High-resolution simulations are advancing understanding of Type Ia supernovae to help uncover the mysteries of dark energy; (3) Developing New Drugs and Personalized Medical Treatment--Accelerator mass spectrometry is emerging as an essential tool for assessing the effects of drugs in humans; (4) Triage in a Patch--A painless skin patch and accompanying detector can quickly indicate human exposure to biological pathogens, chemicals, explosives, or radiation; and (5) Smoothing Out Defects for Extreme Ultraviolet Lithography--A process for smoothing mask defects helps move extreme ultraviolet lithography one step closer to creating smaller, more powerful computer chips.

Bearinger, J P

2008-07-21T23:59:59.000Z

413

DOE Patents Database - News Archive  

Office of Scientific and Technical Information (OSTI)

8 2009 2010 8 2009 2010 2011 2012 2013 News Archive 2007 December 2007--Extreme Ultraviolet Lithography (EUVL) System and Method Extreme Ultraviolet Engineering Test Stand Caption: Drawing of the Extreme Ultraviolet Engineering Test Stand. The goal of the ETS is to demonstrate how ultraviolet wavelengths can be used to print patterns on integrated circuits at production levels and sizes. In order to keep faster, smaller, cheaper computer chips coming, three DOE laboratories worked together under a $250 million cooperative research and development agreement with a consortium of industrial partners to produce a next-generation technology for making computer chips. Researchers from Lawrence Livermore, Sandia Livermore and Lawrence Berkeley national laboratories developed a new technology that uses extreme

414

RHESSI AND SDO/AIA OBSERVATIONS OF THE CHROMOSPHERIC AND CORONAL PLASMA PARAMETERS DURING A SOLAR FLARE  

SciTech Connect

X-ray and extreme ultraviolet (EUV) observations are an important diagnostic of various plasma parameters of the solar atmosphere during solar flares. Soft X-ray and EUV observations often show coronal sources near the top of flaring loops, while hard X-ray emission is mostly observed from chromospheric footpoints. Combining RHESSI with simultaneous Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) observations, it is possible for the first time to determine the density, temperature, and emission profile of the solar atmosphere over a wide range of heights during a flare, using two independent methods. Here we analyze a near limb event during the first of three hard X-ray peaks. The emission measure, temperature, and density of the coronal source is found using soft X-ray RHESSI images while the chromospheric density is determined using RHESSI visibility analysis of the hard X-ray footpoints. A regularized inversion technique is applied to AIA images of the flare to find the differential emission measure (DEM). Using DEM maps, we determine the emission and temperature structure of the loop, as well as the density, and compare it with RHESSI results. The soft X-ray and hard X-ray sources are spatially coincident with the top and bottom of the EUV loop, but the bulk of the EUV emission originates from a region without cospatial RHESSI emission. The temperature analysis along the loop indicates that the hottest plasma is found near the coronal loop-top source. The EUV observations suggest that the density in the loop legs increases with increasing height while the temperature remains constant within uncertainties.

Battaglia, M. [Institute of 4D Technologies, School of Engineering, University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch (Switzerland); Kontar, E. P., E-mail: marina.battaglia@fhnw.ch [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2012-12-01T23:59:59.000Z

415

Ultraviolet Light Initiated Oxidation of Elemental Hg  

NLE Websites -- All DOE Office Websites (Extended Search)

The PCO Process for Removal of Mercury from Flue Gas The PCO Process for Removal of Mercury from Flue Gas Christopher R. McLarnon, Ph.D. Powerspan Corp., P.O. Box 219, 54 Old Bay Road, New Durham, NH 03855 Evan J. Granite* and Henry W. Pennline National Energy Technology Laboratory, United States Department of Energy, P.O. Box 10940, MS 58-106, Pittsburgh, PA 15236-0940 *Corresponding author. Tel.: +1412-386-4607; fax: +1412-386-6004 E-mail address: evan.granite@netl.doe.gov Abstract A promising technology has been developed to capture and remove elemental mercury species from coal-fired power plants. Powerspan Corp. has licensed the technology and initiated a bench and pilot test program to develop the Photochemical Oxidation, or PCO(tm), process for

416

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

... optical trap (MOT) for chromium with a fluorescence-detection efficiency sufficient to ... that first demonstrated a novel source of low-energy ions with a ...

2013-03-21T23:59:59.000Z

417

Ultraviolet radiometry with synchrotron radiation and ...  

Science Conference Proceedings (OSTI)

... give examples of the research of UV optical materials characterization by measuring the transmittance of fused silica and calcium fluoride windows. ...

2010-08-18T23:59:59.000Z

418

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

... occurs near liquid-liquid and liquid-vapor critical ... measurements of helium and other gases with uncertainties ... ab initio calculations of gas viscosity. ...

2013-03-21T23:59:59.000Z

419

Ultraviolet radiometry with synchrotron radiation and ...  

Science Conference Proceedings (OSTI)

... A CaF2 window is inserted into the light path as a beam splitter to reflect a small portion of the beam onto a monitor photodiode. ...

2010-08-19T23:59:59.000Z

420

New ultraviolet radiometry beamline at the Synchrotron ...  

Science Conference Proceedings (OSTI)

... Immediately before the exit slit, a CaF2 window is used to isolate the vacuum of the monochromator and the electron-storage ring from the vacuum ...

2010-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Characterization of materials using an ultraviolet radiometric ...  

Science Conference Proceedings (OSTI)

... uncertainty of less than 10±2. To demonstrate the capability of BL-4, we have performed a transmittance measurement of calcium ¯ uoride (CaF2). ...

2010-08-18T23:59:59.000Z

422

Absolute sensitivity calibration of extreme ultraviolet photoresists  

E-Print Network (OSTI)

back to E U V exposures at Sandia National Laboratories inV exposures performed at Sandia National Laboratories in theexposures performed on the Sandia E U V 10x tool and thus is

Naulleau, Patrick

2008-01-01T23:59:59.000Z

423

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

... He earned high honors in physics for his thesis, "A new predictive scheme for rotating superconductors." He received his Ph.D. in physics from the ...

2013-03-21T23:59:59.000Z

424

Synchrotron Ultraviolet Radiation Facility SURF III ...  

Science Conference Proceedings (OSTI)

... Synchrotron Radiation. What is Synchrotron Radiation? Synchrotron radiation ... known. Properties of Synchrotron Radiation. Schwinger ...

425

Femtosecond spectroscopy with vacuum ultraviolet pulse pairs  

DOE Green Energy (OSTI)

We combine different wavelengths from an intense high-order harmonics source with variable delay at the focus of a split-mirror interferometer to conduct pump-probe experiments on gas-phase molecules. We report measurements of the time resolution (< 44fs) and spatial profiles (4 {micro}m x 12 {micro}m) at the focus of the apparatus. We demonstrate the utility of this two-color, high-order-harmonic technique by time resolving molecular hydrogen elimination from C{sub 2} H{sub 4} excited into its absorption band at 161nm.

Allison, Tom; Wright, Travis; Stooke, Adam; Khurmi, Champak; van Tilborg, Jeroen; Liu, Yanwei; Falcone, Roger; Belkacem, Ali

2011-06-17T23:59:59.000Z

426

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

... meet industrial needs. Research Interests: Atomic structure and orientation of nano-clusters and ultrathin films on surfaces; ...

2013-04-10T23:59:59.000Z

427

Exposing the Sensitivity of Extreme Ultraviolet Photoresists  

Science Conference Proceedings (OSTI)

... EUVL sources produce light with wavelengths about an order of magnitude smaller, around 13.5 nanometers. Because ...

2013-07-11T23:59:59.000Z

428

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

... helps maintain and improve the storage ring as the national primary UV irradiance ... of about 1 part in 10000 at the standard operating energy of 380 ...

2013-03-21T23:59:59.000Z

429

Spectroradiometric Detector Measurements: Part I-Ultraviolet ...  

Science Conference Proceedings (OSTI)

... packages submitted for testing are limited in ... derivation provides an analytical foundation for ... photodiodes NIST provides meet these requirements. ...

2010-08-19T23:59:59.000Z

430

Nanofabrication, Nanomanufacturing, and Nanoprocessing ...  

Science Conference Proceedings (OSTI)

... Directed Self-Assembly; Electron Beam Lithography (EBL); Focused Ion Beam Milling (FIB); Inspection; Interference Lithography; ...

2013-01-02T23:59:59.000Z

431

Energy transfer and non-linear optical properties at near ultraviolet wavelengths: rare earth 4f->5d transitions in crystals and glasses. Progress report, June 1, 1985-May 31, 1986. [Ce-doped CaF2 and LiYF4  

SciTech Connect

The project has considered several aspects of how high-fluence, near-ultraviolet laser light modifies the optical properties of cerium-doped crystals. Illumination of CeT :CaF2 at 308 nm leads to a two-photon photoionization and the subsequent creation of photochromic color centers. A one-photon photobleaching of these centers and the finite electron acceptor density leads to a complex but solvable rate equation. The electron acceptors are trivalent cerium ions at quasi-cubic sites, which become divalent following the electron capture. The photo-bleaching involves the photoionization of the divalent cerium ions, with the electron returning to the original tetragonal symmetry site. Thermoluminescence measurements are used to study the thermally activated recombination radiation. Measurements of optical gain and loss in CeT :LiYF4 are presented.

Hamilton, D.S.

1986-01-01T23:59:59.000Z

432

Radiation-induced gene responses  

SciTech Connect

In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

1996-12-31T23:59:59.000Z

433

ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS  

Science Conference Proceedings (OSTI)

We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.

Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

2012-10-10T23:59:59.000Z

434

Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse  

E-Print Network (OSTI)

28th International Free Electron Laser Conference (FEL06),26th International Free Electron Laser Conference (FEL04),on the Free Electron Laser Theory and Related Topics, World

Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

2007-01-01T23:59:59.000Z

435

EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)  

E-Print Network (OSTI)

L. , Feldman, U. : 1972, The solar spectrum: Wavelengths andknowledge of the solar spectrum. SOHO/CDS/GIS has onedetails of the solar spectrum. Rocket ?ights typically

Sirk, M. M.; Hurwitz, M.; Marchant, W.

2010-01-01T23:59:59.000Z

436

High Average Power, 100 Hz Repetition Rate, Table-top EUV/Soft X-ray Lasers  

Science Conference Proceedings (OSTI)

Compact =13.9 nm and =18.9 nm lasers with >0.1 mW average power at 100 Hz repetition rate driven by a diode-pumped, 1 J, CPA laser were demonstrated. Wavelength scaling to =10.9 nm will be discussed.

Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Baumgarten, Cory [Colorado State University, Fort Collins; Durivage, Leon [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Salsbury, Chase [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins; Rocca, Jorge [Colorado State University, Fort Collins

2013-01-01T23:59:59.000Z

437

IMAGING SPECTROSCOPY USING AIA DIFFRACTION PATTERNS IN CONJUNCTION WITH RHESSI AND EVE OBSERVATIONS  

SciTech Connect

Extreme-ultraviolet (EUV) spectroscopy is a very powerful tool that can be used for probing the dynamic response of the solar corona and chromosphere during solar flares. Here we present a unique application of observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory using the artifacts of diffraction and dispersion. Using these techniques we can achieve imaging spectroscopy at the resolution of AIA (0.''6 plate scale) and at the revolutionary cadence of the instrument (nominally 12 s) for the brightest (saturated) pixels during solar flares. Analyzing the dispersion and diffraction effects that are observed as a result of the support grids used for the instrument's front filters, we can achieve up to 0.5 A spectral resolution across the EUV, optically thin passbands. Here we describe the technique used and present the first result of its application-the emission measure distribution for a single pixel at the top of a flaring loop. We analyze the AIA dispersion spectrum in conjunction with Extreme Ultraviolet Variability Experiment observations and spectroscopic and imaging results from the Reuven Ramaty High Energy Solar Spectroscopic Imager.

Raftery, Claire L. [Space Sciences Lab, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Krucker, Saem [Institute of 4D Technologies, School of Engineering, University of Applied Sciences, North Western Switzerland, 5210 Windisch (Switzerland); Lin, Robert P., E-mail: claire@ssl.berkeley.edu [Physics Department, University of California, Berkeley, CA 94720-7450 (United States)

2011-12-20T23:59:59.000Z

438

Resolution Improvement and Pattern Generator Development for the Maskless Micro-Ion-Beam Reduction Lithography System  

E-Print Network (OSTI)

c). High frequency electromagnetic interference (EMI) can bereduction of the electromagnetic interference and cleaningreducing the electromagnetic interference and cleaning the

Jiang, Ximan

2006-01-01T23:59:59.000Z

439

Resolution Improvement and Pattern Generator Development for the Maskless Micro-Ion-Beam Reduction Lithography System  

E-Print Network (OSTI)

bias voltage around 10 volts is sufficient to switch off theelectrostatic potential of 1.0 volt at an exposed insulatorswitched on and off using 10 volts of biasing voltage. A

Jiang, Ximan

2006-01-01T23:59:59.000Z

440

Design and synthesis of organic chromophores for imaging, lithography and organic electronics  

E-Print Network (OSTI)

The absorption and emission maxima, photostabilities and photoreactivities of small-molecule organic chromophores can be tailored by (a) the choice of an appropriate parent structure and (b) the deliberate introduction of ...

Andrew, Trisha Lionel

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Superconducting nanowire single-photon detectors and sub-10-nm lithography  

E-Print Network (OSTI)

Superconducting nanowire single-photon detectors (SNSPDs) are useful in applications such as free-space optical communications to achieve high-speed data transfer across vast distances with minimum transmission power. In ...

Yang, Joel K. (Joel Kwang wei)

2009-01-01T23:59:59.000Z

442

Planar Josephson junctions and arrays by electron beam lithography and ion damage  

E-Print Network (OSTI)

critical temperature of the weak link. At lower temperaturestogether. of the weak link and electrodes, amongst otherfrom the center of the weak link as a local I c is exceeded

Cybart, Shane A.

2005-01-01T23:59:59.000Z

443

Virtually distortion-free imaging system for large field, high resolution lithography  

DOE Patents (OSTI)

Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

Hawryluk, Andrew M. (Modesto, CA); Ceglio, Natale M. (Livermore, CA)

1993-01-01T23:59:59.000Z

444

Stop-flow lithography for complex particle synthesis and application in directed assembly  

E-Print Network (OSTI)

The synthesis of complex microparticles is an important objective. These particles can find use in a number of applications ranging from tissue engineering to ceramics and assembly. Tuned assembly of anisotropic particles ...

Panda, Priyadarshi

2012-01-01T23:59:59.000Z

445

Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.  

SciTech Connect

We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts.

Wiltzius, P. (University of Illinois, Urbana-Champaign, Illinois); Braun, P. V. (University of Illinois, Urbana-Champaign, Illinois); Liao, H. (University of Illinois, Urbana-Champaign, Illinois); Brzezinski, A. (University of Illinois, Urbana-Champaign, Illinois); Chen, Y. C. (University of Illinois, Urbana-Champaign, Illinois); Nelson, E. (University of Illinois, Urbana-Champaign, Illinois); Shir, D. (University of Illinois, Urbana-Champaign, Illinois); Rogers, J. A. (University of Illinois, Urbana-Champaign, Illinois); Bogart, Katherine Huderle Andersen

2008-08-01T23:59:59.000Z

446

2013 FCMN Presentations  

Science Conference Proceedings (OSTI)

... Nanoscale Acoustics, Energy Flow, and Imaging Using Tabletop Coherent EUV High ... WE-18, XPS Tool Matching and Optimization for EUV Optics ...

2013-06-21T23:59:59.000Z

447

Reflective optical imaging system for extreme ultraviolet wavelengths  

DOE Patents (OSTI)

This invention is comprised of a projection reflection optical system having two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have aspherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 {mu}m, and preferably less than 100 {mu}m. An image resolution of features less than 0.05--0.1 {mu}m, is obtained over a large area field; i.e., 25.4 mm {times} 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

Viswanathan, V.K.; Newnam, B.E.

1991-12-31T23:59:59.000Z

448

Ultraviolet structure in the lensed QSOs 0957+561  

E-Print Network (OSTI)

Imaging and spectra of the lensed QSO pair 0957+561 are presented and discussed. The data are principally those from the STIS NUV MAMA, and cover rest wavelengths from 850A to 1350A. The QSOs are both extended over about 1 arcsec, with morphology that matches with a small rotation, and includes one feature aligned with the VLBI radio jets. This is the first evidence of lensed structure in the host galaxy. The off-nuclear spectra arise from emission line gas and a young stellar population. The gas has velocity components with radial velocities at least 1000 km/s with respect to the QSO BLR, and may be related to the damped Ly alpha absorber in the nuclear spectra.

J. B. Hutchings

2003-03-24T23:59:59.000Z

449

Femtosecond Molecular Dynamics Studied with Vacuum Ultraviolet Pulse Pairs  

E-Print Network (OSTI)

and K. Osvay. Dispersion measurement of inert gases and gasone due to the dispersion of the noble gas atoms and one dueionization where dispersion due to the neutral gas atoms and

Allison III, Thomas K.

2010-01-01T23:59:59.000Z

450

Effects of solar ultraviolet radiation on photosynthesis of higher plants  

SciTech Connect

Rates of net photosynthesis were measured until 13 different crop species grown under an enhanced UV light regime simulating that which would occur in the event of a 50% atmospheric ozone depletion. Results indicated that a 50% reduction in ozone would dramatically reduce yields of some major crop species. The effects of UV on photosynthesis were also studied; it was found that UV inhibited photosynthesis. 100 references, 6 figures, 15 tables.

Thai, V.K.

1975-01-01T23:59:59.000Z

451

The spectral distribution of solar ultraviolet radiation at the ground  

Science Conference Proceedings (OSTI)

Measurements of spectral UV irradiance were made at Sutton Bonington and other sites in Saudi Arabia using a spectroradiometric system developed in this study. On clear days a linear relation between the logarithm of global irradiance I[sub [lambda

Albar, O.F.

1992-01-01T23:59:59.000Z

452

NIST SURF Beamline 4: Ultraviolet Optical Properties and ...  

Science Conference Proceedings (OSTI)

... In addition to detector power response calibration, the flexible design of the ... of photodetectors as well as reflectivity and transmission of optical ...

2012-11-19T23:59:59.000Z

453

Ultraviolet photoelectron spectroscopy of molybdenum and molybdenum monoxide anions  

E-Print Network (OSTI)

of Utah, Salt Lake City, Utah 84112 Received 30 May 1995; accepted 23 October 1995 The 351 nm photoelectron spectra of Mo and MoO have been measured. The electron affinity of atomic molybdenum is 0.748 2 e- denum monoxide illustrates these difficulties especially well, since the molybdenum atomic ground state

Lineberger, W. Carl

454

Beryllium based multilayers for normal incidence extreme ultraviolet reflectance  

Science Conference Proceedings (OSTI)

We report the experimental results of beryllium based multilayer mirrors for use in the 11.4 nm region. Mirrors using molybdenum as the high-Z material have demonstrated 68.7% peak reflectance at 11.3 nm.

Skulina, K.; Alford, C.; Bionta, R.; Makowiecki, D. [Lawrence Livermore National Lab., CA (United States); Gullikson, E.; Soufli, R.; Kortright, J.; Underwood, J. [Lawrence Berkeley Lab., CA (United States)

1994-11-01T23:59:59.000Z

455

Ultrafine ZnO Nanoparticles Synthesized by Ultraviolet ...  

Science Conference Proceedings (OSTI)

Author(s), Jyh Ming Wu, Hsin-Hsien Yeh, Hong-Ching Lin. On-Site ... Water molecular was found to be acted as key compoments during the formation process.

456

DD1, Ultraviolet Photodetectors with Novel Oxide Thin Films  

Science Conference Proceedings (OSTI)

The photodetector was capable of detecting solar-blind light of as weak as 1 .... E2, AlGaAs/GaAs/GaN Wafer Fused HBTs with Ar Implanted Extrinsic Collectors.

457

NIST, Electron and Optical Physics Division, Far Ultraviolet ...  

Science Conference Proceedings (OSTI)

... Before joining the Quantum Measurement Division Dr. Deng worked in the Electron and Optical Physics Division (1999-2011) and before that in Dr ...

2012-03-08T23:59:59.000Z

458

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) for...  

NLE Websites -- All DOE Office Websites (Extended Search)

165 and 580 m3h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were...

459

NIST SURF Long-Term Monitoring of the Ultraviolet Irradiance ...  

Science Conference Proceedings (OSTI)

... converted into a dedicated primary irradiance source ... SR) is the only standard source available, since ... the range of the blackbody standard sources. ...

2012-11-16T23:59:59.000Z

460

Synthesis of materials with infrared and ultraviolet lasers  

SciTech Connect

This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

Lyman, J.L.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultraviolet euv lithography" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optically-pumped ultraviolet microdisk laser on a silicon substrate  

E-Print Network (OSTI)

microelectronics.There has been much progress in silicon-basedpassive optoelectronic devices and light emitting diodes. though, a silicon-based laser has not yet been realized. We take a different approach

Ho, Seng-Tiong

462

Modeling and Characterization of Ultraviolet Scattering Communication Channels  

E-Print Network (OSTI)

3.1.2 UV Laser Impulse Response Measurement System . . 3.2our UV laser and LED-based measurement systems. ChanneldB. UV Laser Impulse Response Measurement System Figure 3.2

Ding, Haipeng

2011-01-01T23:59:59.000Z

463

An ultraviolet barrier-discharge OH molecular lamp  

Science Conference Proceedings (OSTI)

The energy and spectral parameters of a barrier discharge in a mixture of argon with hydroxyl {sup .}OH are studied experimentally. A sealed lamp with the radiation intensity maximum at {lambda} = 309.2 nm, an emitting surface area of {approx}700 cm{sup 2}, and a radiant excitance of 1.5 mW cm{sup -2} has been fabricated. The radiant power of the lamp is 1.1 W. (laser applications and other topics in quantum electronics)

Sosnin, E A; Erofeev, M V; Avdeev, S M; Panchenko, Aleksei N; Panarin, V A; Skakun, V S; Tarasenko, Viktor F; Shitts, D V [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2006-10-31T23:59:59.000Z

464

NIST, Electron and Optical Physics Division, Far Ultraviolet ...  

Science Conference Proceedings (OSTI)

... M.Sc., Physical Chemistry, Minors in Physics, Mathematics, and Theoretical Physics, University of Helsinki, Finland, 2003. Contact. ...

2011-10-03T23:59:59.000Z

465

TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15  

Science Conference Proceedings (OSTI)

We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

2012-04-10T23:59:59.000Z

466

Modeling Ultraviolet Radiation at the Earth's Surface. Part I: The Sensitivity of Ultraviolet Irradiances to Atmospheric Changes  

Science Conference Proceedings (OSTI)

A discrete-ordinate radiative transfer model is employed for the prediction of surface UV irradiances. A wide-ranging sensitivity study is undertaken to show how changes to the model input parameters aged UV irradiances at the surface. The ...

Piers M. De F. Forster

1995-11-01T23:59:59.000Z

467

SLOW MAGNETOACOUSTIC OSCILLATIONS IN THE MICROWAVE EMISSION OF SOLAR FLARES  

Science Conference Proceedings (OSTI)

Analysis of the microwave data, obtained in the 17 GHz channel of the Nobeyama Radioheliograph during the M1.6 flare on 2010 November 4, revealed the presence of 12.6 minute oscillations of the emitting plasma density. The oscillations decayed with the characteristic time of about 15 minutes. Similar oscillations with the period of about 13.8 minutes and the decay time of 25 minutes are also detected in the variation of EUV emission intensity measured in the 335 A channel of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed properties of the oscillations are consistent with the oscillations of hot loops observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) in the EUV spectra in the form of periodic Doppler shift. Our analysis presents the first direct observations of the slow magnetoacoustic oscillations in the microwave emission of a solar flare, complementing accepted interpretations of SUMER hot loop oscillations as standing slow magnetoacoustic waves.

Kim, S.; Shibasaki, K. [Nobeyama Solar Radio Observatory/NAOJ, Nagano 384-1305 (Japan); Nakariakov, V. M., E-mail: sjkim@nro.nao.ac.jp [Physics Department, University of Warwick, Coventry, CV4 7AL (United Kingdom)

2012-09-10T23:59:59.000Z

468

DIAGNOSTICS ON THE SOURCE PROPERTIES OF A TYPE II RADIO BURST WITH SPECTRAL BUMPS  

SciTech Connect

In recent studies, we proposed that source properties of type II radio bursts can be inferred through a causal relationship between the special shape of the type II dynamic spectrum (e.g., bump or break) and simultaneous extreme ultraviolet (EUV)/white light imaging observations (e.g., CME-shock crossing streamer structures). As a further extension of these studies, in this paper we examine the coronal mass ejection (CME) event on 2007 December 31 associated with a multiple type II radio burst. We identify the presence of two spectral bump features on the observed dynamic spectrum. By combining observational analyses of the radio spectral observations and the EUV-white light imaging data, we conclude that the two spectral bumps result from a CME-shock propagating across dense streamers on the southern and northern sides of the CME. It is inferred that the corresponding two type II emissions originate separately from the two CME-shock flanks where the shock geometries are likely quasi-perpendicular or oblique. Since the emission lanes are bumped as a whole within a relatively short time, it suggests that the type II radio bursts with bumps of this study are emitted from spatially confined sources (with a projected lateral dimension smaller than 0.05-0.1 R{sub Sun} at a fundamental frequency level of 20-30 MHz).

Feng, S. W.; Chen, Y.; Kong, X. L.; Li, G.; Song, H. Q. [Institute of Space Sciences and School of Space Science and Physics, Shandong University, Weihai 264209 (China)] [Institute of Space Sciences and School of Space Science and Physics, Shandong University, Weihai 264209 (China); Feng, X. S. [SIGMA Weather Group, State Key laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)] [SIGMA Weather Group, State Key laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Guo, Fan, E-mail: yaochen@sdu.edu.cn [Department of Planetary Sciences and Lunar and Planetary laboratory, University of Arizona, Tucson, AZ 85721 (United States)] [Department of Planetary Sciences and Lunar and Planetary laboratory, University of Arizona, Tucson, AZ 85721 (United States)

2013-04-10T23:59:59.000Z

469

INITIATION AND DEVELOPMENT OF THE WHITE-LIGHT AND RADIO CORONAL MASS EJECTION ON 2001 APRIL 15  

SciTech Connect

The 2001 April 15 event was one of the largest of the last solar cycle. A former study established that this event was associated with a coronal mass ejection (CME) observed both at white light and radio frequencies. This radio CME is illuminated by synchrotron emission from relativistic electrons. In this paper, we investigate the relation of the radio CME to its extreme-ultraviolet (EUV) and white-light counterpart and reach four main conclusions. (1) The radio CME corresponds to the white-light flux rope cavity. (2) The presence of a reconnecting current sheet behind the erupting flux rope is framed, both from below and above, by bursty radio sources. This reconnection is the source of relativistic radiating electrons which are injected down along the reconnected coronal arches and up along the flux rope border forming the radio CME. (3) Radio imaging reveals an important lateral overexpansion in the low corona; this overexpansion is at the origin of compression regions where type II and III bursts are imaged. (4) Already in the initiation phase, radio images reveal large-scale interactions of the source active region (AR) with its surroundings, including another AR and open magnetic fields. Thus, these complementary radio, EUV, and white-light data validate the flux rope eruption model of CMEs.

Demoulin, P.; Pick, M.; Bouteille, A. [LESIA, UMR 8109 CNRS, U