Sample records for ultramar diamond shamrock

  1. Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution

    E-Print Network [OSTI]

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

  2. Advanced Diamond Anvil Techniques (Customized Diamond Anvils)

    SciTech Connect (OSTI)

    Weir, S

    2009-02-11T23:59:59.000Z

    A complete set of diamond-based fabrication tools now exists for making a wide range of different types of diamond anvils which are tailored for various high-P applications. Current tools include: CVD diamond deposition (making diamond); Diamond polishing, laser drilling, plasma etching (removal of diamond); and Lithography, 3D laser pantography (patterning features onto diamond); - Metal deposition (putting electrical circuits and metal masks onto diamond). Current applications include the following: Electrical Conductivity; Magnetic Susceptibility; and High-P/High-T. Future applications may include: NMR; Hall Effect; de Haas - Shubnikov (Fermi surface topology); Calorimetry; and thermal conductivity.

  3. The Effect of Mergers on Consumer Prices: Evidence from Five Mergers on the Enforcement Margin

    E-Print Network [OSTI]

    Ashenfelter, Orley; Hosken, Daniel

    2009-01-01T23:59:59.000Z

    Effects of the Marathon - Ashland Joint Venture: ThePricing and the Marathon-Ashland and Ultramar Diamond

  4. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

    2009-05-19T23:59:59.000Z

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  5. Diamond and Polycrystalline Diamond for MEMS Applications: Simulations and Experiments

    E-Print Network [OSTI]

    Çagin, Tahir

    Diamond and Polycrystalline Diamond for MEMS Applications: Simulations and Experiments Tahir C¸ a on Silicon and polycrystalline diamond show that this rapid wear is caused by a variety of factors, related processes on diamond surfaces. We studied the atomic friction of diamond (100)­surface employing an extended

  6. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10T23:59:59.000Z

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  7. Diamond tool machining of materials which react with diamond

    DOE Patents [OSTI]

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14T23:59:59.000Z

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  8. Diamonds: For Ever Or For Everyone?

    E-Print Network [OSTI]

    Tu, Emily

    2009-01-01T23:59:59.000Z

    diamond companies such as Apollo Diamond are bringing forthCuellar 2005). In 2007, Apollo Diamond, a company based inCVD produced diamonds (Apollo Diamond). Using the website,

  9. Diamond nucleation using polyethene

    SciTech Connect (OSTI)

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23T23:59:59.000Z

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  10. Diamond films: Historical perspective

    SciTech Connect (OSTI)

    Messier, R. [Pennsylvania State Univ., University Park (United States)

    1993-01-01T23:59:59.000Z

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  11. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1998-06-09T23:59:59.000Z

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  12. Diamond-graphite field emitters

    DOE Patents [OSTI]

    Valone, Steven M. (Santa Fe, NM)

    1997-01-01T23:59:59.000Z

    A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.

  13. Lower pressure synthesis of diamond material

    DOE Patents [OSTI]

    Lueking, Angela (State College, PA); Gutierrez, Humberto (State College, PA); Narayanan, Deepa (Redmond, WA); Burgess Clifford, Caroline E. (State College, PA); Jain, Puja (King Of Prussia, PA)

    2010-07-13T23:59:59.000Z

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  14. CVD diamond - fundamental phenomena

    SciTech Connect (OSTI)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01T23:59:59.000Z

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  15. Structure and properties of diamond and diamond-like films

    SciTech Connect (OSTI)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01T23:59:59.000Z

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  16. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08T23:59:59.000Z

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  17. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  18. Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films

    E-Print Network [OSTI]

    Bristol, University of

    -like conductivity. A complication is that polycrystalline boron-doped CVD diamond films possess grain boundariesRaman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films P.W. May a,, W.J. Ludlow a , M. Hannaway a , P.J. Heard b , J

  19. High efficiency diamond solar cells

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL)

    2008-05-06T23:59:59.000Z

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  20. UV photoemission efficiency of polycrystalline CVD diamond films

    E-Print Network [OSTI]

    Tremsin, A S; Siegmund, OHW

    2005-01-01T23:59:59.000Z

    efficiency of a polycrystalline diamond planar reflectivequantum efficiency of polycrystalline diamond films grown onallowed the growth of polycrystalline diamond thin films on

  1. Tailoring nanocrystalline diamond film properties

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); McCauley, Thomas G. (Somerville, MA); Zhou, Dan (Orlando, FL); Krauss, Alan R. (Naperville, IL)

    2003-07-15T23:59:59.000Z

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  2. Amorphous-diamond electron emitter

    DOE Patents [OSTI]

    Falabella, Steven (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  3. DIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages

    E-Print Network [OSTI]

    Dandy, David

    a reality. Epi- taxial diamond has been grown on diamond and cubic-BN. Polycrystalline diamond films haveDIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages by Huimin Liu David S. Dandy of high-quality diamond coatings on preshaped parts and synthesis of free-standing shapes of diamond

  4. Raman and conductivity studies of boron doped microcrystalline diamond, facetted nanocrystalline diamond

    E-Print Network [OSTI]

    Bristol, University of

    superconductivity at temperatures polycrystalline boron-doped CVD diamond filmsRaman and conductivity studies of boron doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films P.W. May a,*, W.J. Ludlow a , M. Hannaway a , P.J. Heard b , J

  5. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1987-02-06T23:59:59.000Z

    Use of double or multiple bevel culet geometry on a diamond anvil to provide increased sample pressure and stability for a given force applied to the diamond tables. 7 figs.

  6. Diamond Thin Films Handbook David S. Dandy

    E-Print Network [OSTI]

    Dandy, David

    ..................................................................................10 A. Calculation of diamond surface structures and energetics .................................................................................................36 2. Reactor pressure ...........................................................................................48 VI. Reactor scale modeling

  7. Method of Forming Diamonds from Carbonaceous Material

    SciTech Connect (OSTI)

    Daulton, Tyrone; Lewis, Roy; Rehn, Lynn; Kirk, Marquis

    1999-11-30T23:59:59.000Z

    A method for producing diamonds is provided comprising exposing carbonaceous material to ion irradiation at ambient temperature and pressure.

  8. Recent Results on Diamond Radiation Tolerance

    E-Print Network [OSTI]

    Seidel, Sally

    -crystal (sc) and polycrystalline (poly) diamond exposed to 5 beam conditions. Figure of merit: Mean Free PathRecent Results on Diamond Radiation Tolerance Sally Seidel University of New Mexico Representing 1 #12;§ Overview of diamond and radiation damage issues § Investigation of the application

  9. Fracture of synthetic diamond M. D. Droty

    E-Print Network [OSTI]

    Ritchie, Robert

    of synthetic polycrystalline diamond make it a promising material for many structural applications studies on the fracture toughness of polycrystalline diamond,29 primarily due to the difficultiesFracture of synthetic diamond M. D. Droty Ctystallume, 3506 Bassett Street, Santa Clara, California

  10. Diamond and diamond-like films for transportation applications

    SciTech Connect (OSTI)

    Perez, J.M.

    1993-01-01T23:59:59.000Z

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  11. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13T23:59:59.000Z

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  12. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, J.M.

    1984-01-01T23:59:59.000Z

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  13. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, John M. (Greenville, TX)

    1986-01-01T23:59:59.000Z

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  14. Industrial Interruptible Power: An Economical Alternative 

    E-Print Network [OSTI]

    Reynolds, S. D.; Gardner, J. R.

    1984-01-01T23:59:59.000Z

    and Chemicals, Inc. Diamond Shamrock Corp. Kemanord, Inc. Kerr-McGee Chemical Corp. Monsanto Company Occidental Chemical Corp. Pennwalt Corporation Stauffer Chemical Co. Total Interruptible Under Contract: 640 MW EXHIBIT II Sample Monthly Power...

  15. EA-1795: Diamond Green Diesel Facility in Norco, LA | Department...

    Office of Environmental Management (EM)

    5: Diamond Green Diesel Facility in Norco, LA EA-1795: Diamond Green Diesel Facility in Norco, LA April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond...

  16. Magnetic properties of aggregate polycrystalline diamond: implications for carbonado history

    E-Print Network [OSTI]

    Kletetschka, Gunther

    Magnetic properties of aggregate polycrystalline diamond: implications for carbonado history Gu form 20 June 2000; accepted 25 June 2000 Abstract Carbonados are aggregate polycrystalline diamonds features; magnetic hysteresis 1. Introduction Carbonados are sintered polycrystalline micro- diamond

  17. Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)

    SciTech Connect (OSTI)

    Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; McMaster, M.; Fox, C.; Staley, D.

    1995-12-01T23:59:59.000Z

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.

  18. Epitaxial growth of europium monoxide on diamond

    SciTech Connect (OSTI)

    Melville, A.; Heeg, T. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)] [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Mairoser, T.; Schmehl, A. [Zentrum für elektronische Korrelationen und Magnetismus, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg (Germany)] [Zentrum für elektronische Korrelationen und Magnetismus, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg (Germany); Fischer, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)] [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany); Awschalom, D. D. [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States)] [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Holländer, B.; Schubert, J. [Peter Grünberg Institute, PGI9-IT, JARA-FIT, Research Centre Jülich, D-52425 Jülich (Germany)] [Peter Grünberg Institute, PGI9-IT, JARA-FIT, Research Centre Jülich, D-52425 Jülich (Germany); Schlom, D. G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States) [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2013-11-25T23:59:59.000Z

    We report the epitaxial integration of phase-pure EuO on both single-crystal diamond and on epitaxial diamond films grown on silicon utilizing reactive molecular-beam epitaxy. The epitaxial orientation relationship is (001) EuO ? (001) diamond and [110] EuO ?[100] diamond. The EuO layer is nominally unstrained and ferromagnetic with a transition temperature of 68 ± 2 K and a saturation magnetization of 5.5 ± 0.1 Bohr magnetons per europium ion on the single-crystal diamond, and a transition temperature of 67 ± 2 K and a saturation magnetization of 2.1 ± 0.1 Bohr magnetons per europium ion on the epitaxial diamond film.

  19. Diamond-silicon carbide composite and method

    DOE Patents [OSTI]

    Zhao, Yusheng (Los Alamos, NM)

    2011-06-14T23:59:59.000Z

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  20. All diamond self-aligned thin film transistor

    DOE Patents [OSTI]

    Gerbi, Jennifer (Champaign, IL)

    2008-07-01T23:59:59.000Z

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  1. Diamond turning machine controller implementation

    SciTech Connect (OSTI)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01T23:59:59.000Z

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  2. Electromagnetic Radiation Hardness of Diamond Detectors

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner

    2001-08-22T23:59:59.000Z

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  3. Diamond turning of thermoplastic polymers

    SciTech Connect (OSTI)

    Smith, E.; Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  4. Properties of chemical vapor infiltration diamond deposited in a diamond powder matrix

    SciTech Connect (OSTI)

    Panitz, J.K.G.; Tallant, D.R.; Hills, C.R.; Staley, D.J.

    1993-12-31T23:59:59.000Z

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors have developed two techniques: electrophoretic deposition and screen printing, to form nonmined diamond powder precursors on substrates. They then densify these precursors in a hot filament assisted reactor. Analysis indicated that a hot filament assisted chemical vapor infiltration process forms intergranular diamond deposits with properties that are to some degree different from predominantly hot-filament-assisted CVD material.

  5. Comparisons of Scintillating Fiber, Diamond Particle Detector

    E-Print Network [OSTI]

    McDonald, Kirk

    /W detector response map x-ray injection diamond detector response drooping ? To be examined on other (more intense) x-ray beamlines the drooping effect of diamond detector, if any x-ray injected on the back response is fairly uniform No drooping ? #12;

  6. Double bevel construction of a diamond anvil

    DOE Patents [OSTI]

    Moss, W.C.

    1988-10-11T23:59:59.000Z

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  7. Fluorinated diamond bonded in fluorocarbon resin

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  8. Energy Harvesting Diamond Channel with Energy Cooperation

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Diamond Channel with Energy Cooperation Berk Gurakan Sennur Ulukus Department@umd.edu Abstract--We consider the energy harvesting diamond channel, where the source and two relays harvest energy the option of wirelessly transferring some of its energy to the relays via energy cooperation. We find

  9. Optoelectronic applications of CVD diamond films

    SciTech Connect (OSTI)

    Beetz, C.P. Jr. (Semiconductor Products Dept., Advanced Technology Materials (US))

    1990-01-01T23:59:59.000Z

    Diamond films synthesized by chemical vapor deposition from hydrocarbon/hydrogen gas mixtures are being investigated for a wide number of industrial applications. This paper reports that the great interest in this new technology has created a number of small high tech entrepreneurial companies whose research programs are focused on developing electronic and optoelectronic applications of diamond.

  10. Integrated diamond networks for quantum nanophotonics

    E-Print Network [OSTI]

    Birgit J. M. Hausmann; Brendan Shields; Qimin Quan; Patrick Maletinsky; Murray McCutcheon; Jennifer T. Choy; Tom M. Babinec; Alexander Kubanek; Amir Yacoby; Mikhail D. Lukin; Marko Loncar

    2012-01-05T23:59:59.000Z

    Diamond is a unique material with exceptional physical and chemical properties that offers potential for the realization of high-performance devices with novel functionalities. For example diamond's high refractive index, transparency over wide wavelength range, and large Raman gain are of interest for the implementation of novel photonic devices. Recently, atom-like impurities in diamond emerged as an exceptional system for quantum information processing, quantum sensing and quantum networks. For these and other applications, it is essential to develop an integrated nanophotonic platform based on diamond. Here, we report on the realization of such an integrated diamond photonic platform, diamond on insulator (DOI), consisting of a thin single crystal diamond film on top of an insulating silicon dioxide/silicon substrate. Using this approach, we demonstrate diamond ring resonators that operate in a wide wavelength range, including the visible (630nm) and near-infrared (1,550nm). Finally, we demonstrate an integrated, on-chip quantum nanophotonic network, consisting of ring resonators coupled to low loss waveguides with grating couplers, that enables the generation and efficient routing of single photons at room temperature.

  11. Toroidal plasma enhanced CVD of diamond films

    SciTech Connect (OSTI)

    Zvanya, John, E-mail: zvanya03@students.rowan.edu; Cullen, Christopher, E-mail: cullen38@students.rowan.edu; Morris, Thomas, E-mail: morris1j@students.rowan.edu; Krchnavek, Robert R., E-mail: krchnavek@rowan.edu [Department of Electrical and Computer Engineering, Rowan University, Glassboro, New Jersey 08028 (United States); Holber, William, E-mail: b.holber@plasmability.com; Basnett, Andrew, E-mail: abasnett54@yahoo.com; Basnett, Robert, E-mail: b.basnett@plasmability.com [Plasmability LLC, Austin, Texas 78732 (United States); Hettinger, Jeffrey, E-mail: hettinger@rowan.edu [Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028 (United States)

    2014-09-01T23:59:59.000Z

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (?90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050?°C and a source to sample distance of 0.1–2.0?cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp{sup 3} peak has a narrow spectral width (FWHM 12?±?0.5?cm{sup ?1}) and that negligible amounts of the sp{sup 2} band are present, indicating good-quality diamond films.

  12. Multi-length Scale Modeling of CVD of Diamond Films

    E-Print Network [OSTI]

    Grujicic, Mica

    ) of single-- crystalline and polycrystalline diamond films in acrystalline and polycrystalline diamond filmsMulti-length Scale Modeling of CVD of Diamond Films M. Grujicic and S. G. LaiM. Grujicic and S. G-scale Modeling of CVD Deposition of Diamond Films RotatingRotating--disk Hotdisk Hot--filament CVD

  13. Appendix A SIMS profiles of hydrogen and deuterium in diamond

    E-Print Network [OSTI]

    Goddard III, William A.

    .5 due to the polycrystalline diamond coating on the quartz sample holder. The resulting layered127 Appendix A SIMS profiles of hydrogen and deuterium in diamond A.1 Introduction A diamond sample ion­beam doping. Impurity levels were profiled as a function of depth from the diamond surface using

  14. Nanofocusing optics for synchrotron radiation made from polycrystalline diamond

    E-Print Network [OSTI]

    Bristol, University of

    Nanofocusing optics for synchrotron radiation made from polycrystalline diamond O. J. L. Fox,1,2,* L. Alianelli,1 A. M. Malik,3,4 I. Pape,1,5 P. W. May,2 and K. J. S. Sawhney1 1 Diamond Light Source of Engineering, University of Nottingham, NG7 2RD, UK * oliver.fox@diamond.ac.uk Abstract: Diamond possesses many

  15. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    E-Print Network [OSTI]

    Muramatsu, Yasuji

    2009-01-01T23:59:59.000Z

    from the spectral profiles of HTP-B-diamond, h-BN, and c-BN.diamond differ from those of HTP-B-diamond and the reference

  16. Carbon sp2-on-sp3 Technology: Graphene-on-Diamond Devices and Interconnects

    E-Print Network [OSTI]

    Yu, Jie

    2012-01-01T23:59:59.000Z

    Table 2.2 lists the properties of polycrystalline diamond.Table 2.2 Polycrystalline diamond properties* Film Type MCD24 2.2 Polycrystalline diamond

  17. JOURNAL OF MATERIALS SCIENCE 31 (1996) 2801 2805 Laser ablation of diamond fibres and a diamond fibre

    E-Print Network [OSTI]

    Bristol, University of

    .been embedded in Ti-6A1-4V alloy to produce a diamond fibre-reinforced composite. Both the fibres and a diamond fibre-reinforced titanium alloy composite. 2. Experimental procedure Fibres have been made of a diamond-coated fibre after localized ablations is shown tn Fig. 1. The areas of the diamond surface

  18. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL)

    2009-08-11T23:59:59.000Z

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  19. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2012-09-04T23:59:59.000Z

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  20. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    SciTech Connect (OSTI)

    Benecha, E. M. [Department of Physics, University of South Africa, P.O. Box 392, UNISA 0003 Pretoria (South Africa); Lombardi, E. B., E-mail: lombaeb@unisa.ac.za [College of Graduate Studies, University of South Africa, P.O. Box 392, UNISA 0003 Pretoria (South Africa)

    2013-12-14T23:59:59.000Z

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe{sup +1} in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0??{sub B} per Fe atom and a large ferromagnetic stabilization energy of 33?meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications.

  1. Amorphous Diamond MEMS and Sensors

    SciTech Connect (OSTI)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01T23:59:59.000Z

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater than one order of magnitude increase in chemical sensitivity is expected through the use of ultra-thin aD membranes in the FPW sensor. The discoveries and development of the aD microsystems technology that were made in this project have led to new research projects in the areas of aD bioMEMS and aD radio frequency MEMS.

  2. Geometry and temperature dependent thermal conductivity of diamond nanowires: A non-equilibrium molecular dynamics study

    E-Print Network [OSTI]

    Melnik, Roderick

    plasma etching of polycrystalline diamond films [7], microwave plasma assisted chemical vapor deposition. For theoretical calculations of proper- ties of nanosized diamond materials, polycrystalline diamond thin filmsGeometry and temperature dependent thermal conductivity of diamond nanowires: A non

  3. Effective placement of detectors at diamond interchanges

    E-Print Network [OSTI]

    Prabhakar, Dayakar

    1994-01-01T23:59:59.000Z

    Most signalized interchanges in Texas are tight urban diamond interchanges of freeways having one-way frontage roads. At these interchanges, traffic actuated control with improper location of detectors may result in inefficient traffic operations...

  4. Ultrasensitive Magnetometry and Imaging with NV Diamond

    E-Print Network [OSTI]

    Kim, Changdong

    2011-08-08T23:59:59.000Z

    ULTRASENSITIVE MAGNETOMETRY AND IMAGING WITH NV DIAMOND A Dissertation by CHANGDONG KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Electrical Engineering ULTRASENSITIVE MAGNETOMETRY AND IMAGING WITH NV DIAMOND A Dissertation by CHANGDONG KIM Submitted to the Office of Graduate Studies of Texas A...

  5. Diamond film growth from fullerene precursors

    DOE Patents [OSTI]

    Gruen, D.M.; Liu, S.; Krauss, A.R.; Pan, X.

    1997-04-15T23:59:59.000Z

    A method and system are disclosed for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate. 10 figs.

  6. Plasma spraying method for forming diamond and diamond-like coatings

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Seals, Roland D. (Oak Ridge, TN); Price, R. Eugene (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  7. Sparkling Diamonds – Reducing High Energy in the Frozen North

    E-Print Network [OSTI]

    Feldman, J.

    2007-01-01T23:59:59.000Z

    De Beers, the undisputed world leader in diamond mining, in a typically proactive approach, completed an energy review at the Snap Lake Diamond Mine in the Northwest Territories. What makes the approach unique is that the mine is still under...

  8. Diamond Substrate Development at the Michigan State University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diamond Substrate Development at the Michigan State University and Fraunhofer USA's Center for Coatings and Diamond Technologies May 4, 2015 11:00AM to 12:00PM Presenter Thomas...

  9. Diamond film optical, x-ray and particle detectors

    SciTech Connect (OSTI)

    Beetz, C.P.; Lincoln, B. (ATM, Inc., New Milford, CT (US)); Winn, D.R.; Segall, K.; Vasas, M.; Wall, D. (Fairfield Univ., CT (United States). Dept. of Physics)

    1991-04-01T23:59:59.000Z

    Synthetic diamond film diodes have been fabricated and tested with electromagnetic and particle radiation (above and below bandgap). In this paper, a brief discussion of potential diamond film applications in high energy and nuclear physics is presented.

  10. Study of Electron Transport and Amplification in Diamond

    SciTech Connect (OSTI)

    Muller, Erik M.; Ben-Zvi, Ilan

    2013-03-31T23:59:59.000Z

    As a successful completion of this award, my group has demonstrated world-leading electron gain from diamond for use in a diamond-amplified photocathode. Also, using high-resolution photoemission measurements we were able to uncover exciting new physics of the electron emission mechanisms from hydrogen terminated diamond. Our work, through the continued support of HEP, has resulted in a greater understanding of the diamond material science, including current limits, charge transport modeling, and spatial uniformity.

  11. Comparative evaluation of CVD diamond technologies

    SciTech Connect (OSTI)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01T23:59:59.000Z

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  12. Etching of polycrystalline diamond films by electron beam assisted plasma

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Etching of polycrystalline diamond films by electron beam assisted plasma Koji Kobashi, Shigeaki) Polycrystalline diamond films were processed in a direct current plasma produced by a self-focused electron beam that the etching apparatus used was capable of forming at least a 5-mm wide pattern of polycrystalline diamond film

  13. Hydrogen-doped cubic diamond and the crystal structure of n-diamond Bin Wen a,b,

    E-Print Network [OSTI]

    Melnik, Roderick

    Hydrogen-doped cubic diamond and the crystal structure of n-diamond Bin Wen a,b, , Roderick Melnik. In particular, hydrogen concen- tration dependent elastic constants and lattice parameters for the H-doped diamond have been analyzed. Our results indicate that when the hydrogen concentration is less than 19 at

  14. Wear of diamond and diamondlike carbon films.

    SciTech Connect (OSTI)

    Erdemir, A.; Energy Technology

    2002-01-01T23:59:59.000Z

    Detailed tribological studies on diamond and diamond-like carbon (DLC) films have confirmed that these films are inherently self-lubricating and resistant to abrasive, adhesive and corrosive wear. Because of their high chemical inertness, they are also resistant to corrosion and oxidation (even at elevated temperatures). The combination of such exceptional qualities in these films makes them ideal for a wide range of demanding tribological applications (such as microelectromechanical systems, cutting tools, mechanical seals, magnetic hard disks, etc.). These films, available for more than three decades, have been used extensively for tooling and magnetic hard disk applications. Their potential in other application areas is currently being explored around the world. With the development of new and more robust deposition methods in recent years, it is envisioned that the production of high quality diamond and DLC films will become very cost effective and highly reliable for large-scale applications in the transportation and manufacturing sectors. In this paper, sliding wear mechanisms of diamond and DLC films will be presented. Specifically, it will be shown that, in general the wear of these films is extremely low (mainly because of their exceptional hardness and low friction characteristics). Specific test conditions established during each sliding test, however, may dramatically affect the wear performance of certain diamond and DLC films. One of the dominant wear mechanismsrelates to a phase transformation that is primarily the result of very high mechanical and thermal loadings of sliding contact interfaces. The transformation products (such as disordered graphite) trapped at the sliding interface may transfer to themating surface and significantly affect friction and wear. This paper describes, in terms of structural and fundamental tribological knowledge, the ideal film microstructures and chemistry, as well as operational conditions under which diamond and DLC films perform the best and provide superlow friction and wear properties in sliding tribological applications.

  15. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  16. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  17. Ultrasensitive Magnetometry and Imaging with NV Diamond 

    E-Print Network [OSTI]

    Kim, Changdong

    2011-08-08T23:59:59.000Z

    NV centers in a diamond are proving themselves to be good building blocks for quantum information, electron spin resonance (ESR) imaging, and sensor applications. The key feature of the NV is that it has an electron spin that can be polarized...

  18. In Situ Tribo-Electrochemical Characterization of Diamond-Containing Materials

    E-Print Network [OSTI]

    Xiao, Huaping

    2014-07-31T23:59:59.000Z

    , electrochemical evaluation and characterization of diamond-reinforced ceramic composites (DRCC), thin nanocrystalline diamond (NCD) film, thin microcrystalline diamond (MCD) film and their functionalized derivatives. After the tribotest, phase transformation from...

  19. Very low friction for diamond sliding on diamond in water Plasma Processing Laboratory, Auburn University, 200 Broun Hall, Auburn, Alabama 36849

    E-Print Network [OSTI]

    Tzeng, Yonhua

    on a polished polycrystalline chemically vapor deposited diamond film in water at a speed of 0.05 mm/s underVery low friction for diamond sliding on diamond in water Y. Tzeng Plasma Processing Laboratory for publication 17 September 1993) This letter reports the lowest coefficient of friction measured for diamond

  20. Workshop on diamond and diamond-like-carbon films for the transportation industry

    SciTech Connect (OSTI)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01T23:59:59.000Z

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  1. Method to fabricate micro and nano diamond devices

    DOE Patents [OSTI]

    Morales, Alfredo M; Anderson, Richard J; Yang, Nancy Y. C.; Skinner, Jack L; Rye, Michael J

    2014-10-07T23:59:59.000Z

    A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.

  2. amorphous diamond-like carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric plasma deposition of diamond-like carbon coatings Angela M. Ladwig a,b, Materials Science Websites Summary: Atmospheric plasma deposition of diamond-like carbon...

  3. adherent diamond-like carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric plasma deposition of diamond-like carbon coatings Angela M. Ladwig a,b, Materials Science Websites Summary: Atmospheric plasma deposition of diamond-like carbon...

  4. Precision diamond grinding of ceramics and glass

    SciTech Connect (OSTI)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  5. Measurement of tool forces in diamond turning

    SciTech Connect (OSTI)

    Drescher, J.; Dow, T.A.

    1988-12-01T23:59:59.000Z

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  6. Luminescence Dating `I also brought it [a diamond] to some

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Includes ­ Thermoluminescence (TL), Optically stimulated luminescence (OSL), infrared stimulatedLuminescence Dating `I also brought it [a diamond] to some kind of glimmering light by taking

  7. Radiation Hardness and Linearity Studies of CVD Diamonds

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof

    2002-12-09T23:59:59.000Z

    We report on the behavior of CVD diamonds under intense electromagnetic radiation and on the response of the detector to high density of deposited energy. Diamonds have been found to remain unaffected after doses of 10 MGy of MeV-range photons and the diamond response to energy depositions of up to 250 GeV/cm^3 has been found to be linear to better than 2 %. These observations make diamond an attractive detector material for a calorimeter in the very forward region of the detector proposed for TESLA.

  8. Robust Diamond-Based RF Switch Yields Enhanced Communication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust Diamond-Based RF Switch Yields Enhanced Communication Capabilities Technology available for licesning: A radio frequency (RF) microelectromechanical system (MEMS) switch...

  9. amorphous diamond films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulations of the nanometer-scale indentation of amorphous-carbon thin films Materials Science Websites Summary: , and lattice constants of both solid-state diamond and...

  10. Microsoft Word - DiamondB_Easement_CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to Montana Fish, Wildlife & Parks to purchase the Diamond B conservation easement. Fish and Wildlife...

  11. Argonne researchers develop two new diamond inventions | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop two new diamond inventions By Jared Sagoff * October 10, 2014 Tweet EmailPrint ARGONNE, IL - Researchers at the US Department of Energy's Argonne National Laboratory have...

  12. Electroless nickel: an important coating for diamond turning applications

    SciTech Connect (OSTI)

    Dini, J.W.

    1980-09-24T23:59:59.000Z

    Diamond turning is the use of a single-point diamond tool on a precision lathe under very precisely controlled machine and environmental conditions to fabricate finished components. With a machine presently available at LLNL a part accuracy between 0.05 and 1.0 ..mu..m (2 and 40 millionths of an inch) is obtainable. Coatings offer significant advantages for diamond turning applications inasmuch as they can be applied to lightweight substrates such as aluminum or beryllium. One of the most used coatings for diamond turning applications is electroless nickel. Purpose of this paper is to document case histories of such applications and suggest areas for future work.

  13. Synthesis and characterization of a nanocrystalline diamond aerogel

    E-Print Network [OSTI]

    Pauzauskie, Peter J.

    2012-01-01T23:59:59.000Z

    nanocrystalline diamond aerogel Peter J. Pauzauskie a,1,2 ,Laboratory, Berkeley, CA 94720 Aerogel materials have myriadcreating a nanodiamond aerogel matrix has remained an

  14. amorphous diamond flat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    32 Synthesis and characterization of single-wall carbon nanotubeamorphous diamond thin-film composites Materials Science Websites Summary: . Ultrahard, transparent,...

  15. advanced diamond product: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve allowing one to extrapolate their performance as a function of dose. W....

  16. A Diamond Nanowire Single Photon Antenna

    E-Print Network [OSTI]

    Tom Babinec; Birgit J. M. Hausmann; Mughees Khan; Yinan Zhang; Jero Maze; Philip R. Hemmer; Marko Loncar

    2009-10-28T23:59:59.000Z

    The development of a robust light source that emits one photon at a time is an outstanding challenge in quantum science and technology. Here, at the transition from many to single photon optical communication systems, fully quantum mechanical effects may be utilized to achieve new capabilities, most notably perfectly secure communication via quantum cryptography. Practical implementations place stringent requirements on the device properties, including stable photon generation, room temperature operation, and efficient extraction of many photons. Single photon light emitting devices based on fluorescent dye molecules, quantum dots, and carbon nanotube material systems have all been explored, but none have simultaneously demonstrated all criteria. Here, we describe the design, fabrication, and characterization of a bright source of single photons consisting of an individual Nitrogen-vacancy color center (NV center) in a diamond nanowire operating in ambient conditions. The nanowire plays a positive role in increasing the number of single photons collected from the NV center by an order of magnitude over devices based on bulk diamond crystals, and allows operation at an order of magnitude lower power levels. This result enables a new class of nanostructured diamond devices for room temperature photonic and quantum information processing applications, and will also impact fields as diverse as biological and chemical sensing, opto-mechanics, and scanning-probe microscopy.

  17. Panel 2 - properties of diamond and diamond-like-carbon films

    SciTech Connect (OSTI)

    Blau, P.J.; Clausing, R.E. [Oak Ridge National Lab., TN (United States); Ajayi, O.O.; Liu, Y.Y.; Purohit, A. [Argonne National Lab., IL (United States); Bartelt, P.F. [Deere & Co., Moline, IL (United States); Baughman, R.H. [Allied Signal, Morristown, NJ (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Cooper, C.V. [United Technologies Research Center, East Hartford, CT (United States); Dugger, M.T. [Sandia National Laboratories, Albuquerque, NM (United States); Freedman, A. [Aerodyne Research, Inc., Billerica, MA (United States); Larsen-Basse, J. [National Science Foundation, Washington, DC (United States); McGuire, N.R. [Caterpillar, Peoria, IL (United States); Messier, R.F. [Pennsylvania State Univ., University Park (United States); Noble, G.L.; Ostrowki, M.H. [John Crane, Inc., Morton Grove, IL (United States); Sartwell, B.D. [Naval Research Lab., Washington, DC (United States); Wei, R. [Colorado State Univ., Fort Collins (United States)

    1993-01-01T23:59:59.000Z

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  18. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Busmann, Hans-Gerd (Bremen, DE); Meyer, Eva-Maria (Bremen, DE); Auciello, Orlando (Bolingbrook, IL); Krauss, Alan R. (late of Naperville, IL); Krauss, Julie R. (Naperville, IL)

    2004-11-02T23:59:59.000Z

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  19. children in Old Diamond experiencing asthma or bronchitis.

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    the connection between human health and environmental well-being. Held on November 2, 2006, Environmental Justice plant in the neighborhood of Old Diamond in Norco, Louisiana. Diamond, a historically black community to their basic needs: clean water, healthy food, non-toxic communities, open space, safe energy, and equitable

  20. Yield Optimization of Nitrogen Vacancy Centers in Diamond

    E-Print Network [OSTI]

    Chen, Jeson

    2012-10-19T23:59:59.000Z

    To fully exploit the capability of NV centers in diamond as magnetic sensors and quantum bits, the optimum production recipe as well as the method to enhance its optical performance has been studied in this work. The NV centers in bulk diamond were...

  1. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOE Patents [OSTI]

    Swain, Greg M.; Wang, Jian

    2005-04-26T23:59:59.000Z

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  2. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect (OSTI)

    Robert Radtke

    2006-01-31T23:59:59.000Z

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  3. Method and apparatus for diamond wire cutting of metal structures

    DOE Patents [OSTI]

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19T23:59:59.000Z

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  4. Nanocrystalline diamond synthesized from C60 Natalia Dubrovinskaia*, Leonid Dubrovinsky, Falko Langenhorst,

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    , the synthesis of nanocrystalline films of diamond-like carbon (DLC) and polycrystalline cubic diamond have display excellent properties as surface coating for metals [9]. Polycrystalline cubic diamond synthesisedNanocrystalline diamond synthesized from C60 Natalia Dubrovinskaia*, Leonid Dubrovinsky, Falko

  5. The electrical and optical properties of thin lm diamond implanted with silicon

    E-Print Network [OSTI]

    Kolodzey, James

    :Si alloys were formed by the implantation of Si into polycrystalline diamond ®lms grown by che- mical vaporThe electrical and optical properties of thin ®lm diamond implanted with silicon K.J. Roea,* , J of diamond make it an attractive material for use in extreme conditions. Diamond devices have been fabricated

  6. Integrated High-Quality Factor Optical Resonators in Diamond B. J. M. Hausmann,,

    E-Print Network [OSTI]

    Loncar, Marko

    -performance devices places stringent requirements on the diamond film quality. For example, polycrystalline diamond associated with polycrystalline and ion-sliced single crystal diamond films. For example, low-loss opticalIntegrated High-Quality Factor Optical Resonators in Diamond B. J. M. Hausmann,, I. B. Bulu,, P. B

  7. Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures

    E-Print Network [OSTI]

    /Si sub- strates, depends on the polycrystalline-diamond grain size, diamond layer thicknessReduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated of synthetic diamond-silicon composite substrates. Although composite substrates are more thermally resistive

  8. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana)

    E-Print Network [OSTI]

    Cartigny, Pierre

    Carbonado is a unique type of polycrystalline diamond characterised, among others, by 13 C-depleted isotope carbonado diamonds are polycrystalline, but the reciprocal is not true, i.e. a polycrystalline diamond is not necessarily a carbonado. Most classifications for polycrystalline diamonds are established according

  9. THE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON

    E-Print Network [OSTI]

    Kolodzey, James

    devices. The C:Si alloys were formed by the implantation of Si into polycrystalline diamond films grownTHE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON K. J. Roe and J and electrical properties of diamond make it an attractive material for use in extreme conditions. Diamond

  10. Field emission properties of phosphorus doped microwave plasma chemical vapor deposition diamond films by ion implantation

    E-Print Network [OSTI]

    Lee, Jong Duk

    2002; published 5 February 2003 Phosphorus doped polycrystalline diamond films were grown using ion the electrical char- acteristics of diamond FEAs to lower the operating voltage. Polycrystalline diamond hasField emission properties of phosphorus doped microwave plasma chemical vapor deposition diamond

  11. Boron Doping of Microcrystalline and Nanocrystalline Diamond Films: Where is the Boron Paul William May1

    E-Print Network [OSTI]

    Bristol, University of

    is that polycrystalline boron-doped CVD diamond films possess grain boundaries containing a small-volume fraction of non-diamondBoron Doping of Microcrystalline and Nanocrystalline Diamond Films: Where is the Boron Going? Paul `cauliflower'-type nanocrystalline (c-NCD) CVD diamond films vary as a function of B content. The conductivity

  12. Estimation of parameters in thermal-field emission from diamond D.G. Walkera

    E-Print Network [OSTI]

    Walker, D. Greg

    : Thermal field emission; Diamond film 1. Introduction Polycrystalline diamond films can exhibit outstanding polycrystalline diamond films at elevated temperatures. Thermal effects are included in the models and provide. Wang et al. [10] observed emission from the region between grains in polycrystalline diamond films

  13. Atomistic simulations of structures and mechanical properties of S011diamond

    E-Print Network [OSTI]

    Brenner, Donald W.

    Polycrystalline diamond films obtained by chemical vapor deposition CVD have numerous applications due and their triple junctions in diamond O. A. Shenderova and Donald W. Brenner Department of Materials Science triple junctions TJ's in diamond as well as a multiply twinned diamond particle have been calculated

  14. Diamond machine tool face lapping machine

    DOE Patents [OSTI]

    Yetter, H.H.

    1985-05-06T23:59:59.000Z

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  15. Black Diamond Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEIBixby, Oklahoma: EnergyBlack Diamond Power

  16. Bruce Diamond | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations GuideAlternate WatchBenefitsDiamond |

  17. Performance evaluation of bound diamond ring tools

    SciTech Connect (OSTI)

    Piscotty, M.A.; Taylor, J.S.; Blaedel, K.L.

    1995-07-14T23:59:59.000Z

    LLNL is collaborating with the Center for Optics Manufacturing (COM) and the American Precision Optics Manufacturers Association (APOMA) to optimize bound diamond ring tools for the spherical generation of high quality optical surfaces. An important element of this work is establishing an experimentally-verified link between tooling properties and workpiece quality indicators such as roughness, subsurface damage and removal rate. In this paper, we report on a standardized methodology for assessing ring tool performance and its preliminary application to a set of commercially-available wheels. Our goals are to (1) assist optics manufacturers (users of the ring tools) in evaluating tools and in assessing their applicability for a given operation, and (2) provide performance feedback to wheel manufacturers to help optimize tooling for the optics industry. Our paper includes measurements of wheel performance for three 2-4 micron diamond bronze-bond wheels that were supplied by different manufacturers to nominally- identical specifications. Preliminary data suggests that the difference in performance levels among the wheels were small.

  18. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect (OSTI)

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko [Ruder Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia); Saguy, Cecile; Kalish, Rafi [Physics Department and Solid State Institute, Technion, Haifa 32000 (Israel); Djerdj, Igor [Department of Materials, Swiss Federal Institute of Technology (ETH) Zuerich, Wolfgang-Pauli-Str. 10, CH-8093 Zuerich (Switzerland); Tonejc, Andelka [Faculty of Science, Department of Physics, University of Zagreb, 10000 Zagreb (Croatia); Gamulin, Ozren [School of Medicine, Zagreb University, 10000 Zagreb (Croatia)

    2008-08-01T23:59:59.000Z

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.

  19. Well drilling tool with diamond radial/thrust bearings

    SciTech Connect (OSTI)

    Nagel, D.D.; Aparicio, T. Jr.

    1983-10-18T23:59:59.000Z

    A turbodrill is disclosed for connection to a drill string and has a rotating shaft for turning a drill bit. The turbodrill has rotor and stator blades operated by drilling mud flowing therethrough to rotate the shaft. The shaft is provided with radial/thrust bearing consisting of a pair of annular plates, each of which has conical surfaces supporting a plurality of friction bearing members of polycrystalline diamond. The radial and thrust loads are carried by the wear-resistant diamond bearing surfaces. The bearing members are preferably cylindrical studs having flat faces with flat disc-shaped diamond bearing members supported thereon around the adjacent surfaces of the supporting plates. The faces of the diamond bearings will wear into smoothly mating conical bearing surfaces with use. There are two or more pairs of diamond radial/thrust bearings to handle longitudinal as well as radial loads. The use of the diamond radial/thrust bearings makes it possible to eliminate the lubricant-flooded construction of prior art turbodrills and allow the bearings to be cooled and lubricated be drilling fluid flowing therethrough. The diamond radial/thrust bearings may be used with lubricant-flooded turbodrills and with other types of downhole motor driven drills such as drills driven by positive displacement motors.

  20. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01T23:59:59.000Z

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  1. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect (OSTI)

    Bogdanov, G.; Ludwig, R. [Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 (United States); Wiggins, J.; Bertagnolli, K. [US Synthetic, 1260 South 1600 West, Orem, UT 84058 (United States)

    2014-02-18T23:59:59.000Z

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  2. Printable, flexible and stretchable diamond for thermal management

    DOE Patents [OSTI]

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25T23:59:59.000Z

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  3. From Ultrananocrystalline Diamond to Single Crystal Diamond Growth in Hot Filament and Microwave Plasma-Enhanced CVD Reactors: a Unified Model for Growth Rates and

    E-Print Network [OSTI]

    Bristol, University of

    From Ultrananocrystalline Diamond to Single Crystal Diamond Growth in Hot Filament and Microwave, Moscow State UniVersity, 119991 Moscow, Russia ReceiVed: April 29, 2008 CVD Diamond can now be deposited either in the form of single crystal homoepitaxial layers, or as polycrystalline films with crystal sizes

  4. Coordinating diamond interchange and arterial street signal control

    E-Print Network [OSTI]

    Engelbrecht, Roelof Johannes

    1997-01-01T23:59:59.000Z

    that under some conditions, notably particular cycle lengths, the coordination of diamond interchange and arterial signal control could be beneficial. This will be the case when the optimal cycle lengths of the arterial and interchange systems are similar...

  5. Plasma-assisted conversion of solid hydrocarbon to diamond

    DOE Patents [OSTI]

    Valone, Steven M. (Santa Fe, NM); Pattillo, Stevan G. (Los Alamos, NM); Trkula, Mitchell (Los Alamos, NM); Coates, Don M. (Santa Fe, NM); Shah, S. Ismat (Wilmington, DE)

    1996-01-01T23:59:59.000Z

    A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

  6. Diamonds are an Electronic Device’s Best Friend

    Broader source: Energy.gov [DOE]

    Researchers at Argonne National Lab recently devised a way to use diamonds to brighten the performance of electronic devices, which could put a bit more sparkle in everyone’s day.

  7. Slip sliding away: Graphene and diamonds prove a slippery combination...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slip sliding away: Graphene and diamonds prove a slippery combination By Jared Sagoff * May 22, 2015 Tweet EmailPrint Scientists at the U.S. Department of Energy's Argonne National...

  8. Electrochemical hydrogen termination of boron-doped diamond

    SciTech Connect (OSTI)

    Hoffmann, Rene; Kriele, Armin; Obloh, Harald; Hees, Jakob; Wolfer, Marco; Smirnov, Waldemar; Yang Nianjun; Nebel, Christoph E. [Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, Freiburg 79108 (Germany)

    2010-08-02T23:59:59.000Z

    Boron-doped diamond is a promising transducer material for numerous devices which are designed for contact with electrolytes. For optimized electron transfer the surface of diamond needs to be hydrogen terminated. Up to now H-termination of diamond is done by plasma chemical vapor deposition techniques. In this paper, we show that boron-doped diamond can be H-terminated electrochemically by applying negative voltages in acidic solutions. Electrochemical H-termination generates a clean surface with virtually no carbon-oxygen bonds (x-ray photoelectron spectroscopy), a reduced electron affinity (scanning electron microscopy), a highly hydrophobic surface (water contact angle), and a fast electron exchange with Fe(CN){sub 6}{sup -3/-4} (cyclic voltammetry).

  9. Spin properties of very shallow nitrogen vacancy defects in diamond

    E-Print Network [OSTI]

    Ofori-Okai, Benjamin Kwasi

    We investigate spin and optical properties of individual nitrogen vacancy centers located within 1–10 nm from the diamond surface. We observe stable defects with a characteristic optically detected magnetic-resonance ...

  10. Robust Decoupling Techniques to Extend Quantum Coherence in Diamond

    E-Print Network [OSTI]

    Ryan, Colm A.

    We experimentally demonstrate over 2 orders of magnitude increase in the room-temperature coherence time of nitrogen-vacancy centers in diamond by implementing decoupling techniques. We show that equal pulse spacing ...

  11. World-leading lab opens new frontiers in diamond

    E-Print Network [OSTI]

    Machel, Hans

    and positioning Canada to be on the cutting edge of innovation." Pearson, a professor of geochemistry, came Pearson, also noting the support of colleagues-- leaders in diamond-related research who were a key factor

  12. Large piezoresistive effect in surface conductive nanocrystalline diamond

    SciTech Connect (OSTI)

    Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Drijkoningen, S. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

    2014-09-08T23:59:59.000Z

    Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350?nm thick, with a diameter of 656??m and a sheet resistance of 1.45 M?/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

  13. Electrodeposited coatings for diamond turning applications

    SciTech Connect (OSTI)

    Mayer, A.; Bramlett, R.D.; Day, R.D. (Los Alamos National Lab., NM (USA)); Evans, C.J.; Polvani, R.S. (National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1991-01-01T23:59:59.000Z

    Electrodeposited coatings are attractive for precision machining operations because thick coatings can be economically applied, with good adhesion, to a variety of substrates. Approximately 20 pure metals and a large number of alloys can be deposited from aqueous solutions. Fused salt and organic solvent electrolytes can be used to lengthen the list of metals that can be electrodeposited. However, both the choice of the metallic coating and the control of the plating process are critical for success in precision finishing of electrodeposited coatings. Some preliminary results at the National Institute of Standards and Technology and at the Lawrence Livermore National Laboratory suggest that electrodeposited nickel-phosphorus alloys are excellent coatings for single point diamond turning from the standpoint of material properties and low tool wear. Electrodeposited aluminum and aluminum alloy coatings also merit consideration for precision finishing where weight is an important factor. 10 refs., 6 figs.

  14. The influence of surface preparation on the electrochemistry of boron doped diamond: A study of the reduction of

    E-Print Network [OSTI]

    Bristol, University of

    ; Surface modification 1. Introduction Electrodes based on polycrystalline diamond are presently generating significant interest. Polycrystalline diamond possesses physical properties that suggest that electrodesThe influence of surface preparation on the electrochemistry of boron doped diamond: A study

  15. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, G.W.; Roybal, H.E.

    1983-11-14T23:59:59.000Z

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  16. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM); Roybal, Herman E. (Santa Fe, NM)

    1985-01-01T23:59:59.000Z

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  17. Method for the preparation of nanocrystalline diamond thin films

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.

    1998-06-30T23:59:59.000Z

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  18. Effectiveness of guidelines for retiming signalized diamond interchanges

    E-Print Network [OSTI]

    Irvine, Yvonne Denise

    1991-01-01T23:59:59.000Z

    powerful for studying the effect the use of diamond interchange guidelines had on test scores (17). For this experiment, a 95% confidence level was used to control a Type I error. The covariable is also referred to as the concomitant variable (+I...: Dr. Daniel B. Fambro This thesis documents the results of testing the effectiveness of guidelines for retiming signalized diamond interchanges. Two problems were addressed: how to measure benefits gained by use of the guidelines and, how to locate...

  19. Yield Optimization of Nitrogen Vacancy Centers in Diamond 

    E-Print Network [OSTI]

    Chen, Jeson

    2012-10-19T23:59:59.000Z

    /nmg2870 ………………………………………………………………. 21 3-7 The minimum implantation time to prevent graphitization versus temperature for various doses of 2 MeV nitrogen implantation………… 22 x FIGURE... is feasible and allows removal of most dirt, some amorphous carbon, and graphite on surface without eroding the diamond. The bond strength of diamond also allows heating in vacuum to high temperature up to 1700°C and can be baked in air up to 700°C...

  20. Analysis of the influence of tool dynamics in diamond turning

    SciTech Connect (OSTI)

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.

    1988-12-01T23:59:59.000Z

    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  1. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect (OSTI)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R. [Institution Project center ITER, Moscow (Russian Federation); Popovichev, S. [EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon, OXON, OX14 3DB (United Kingdom); Collaboration: JET EFDA Conbributors

    2014-08-21T23:59:59.000Z

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  2. Evaluation of TexSIM for modeling traffic behavior at diamond interchanges

    E-Print Network [OSTI]

    Meadors, Allison Christine Cherry

    1995-01-01T23:59:59.000Z

    traffic behavior at signalized diamond interchanges. To evaluate TexSIM 2.0 for simulating and providing accurate descriptive measures of performance for pretimed and actuated diamond interchanges, model outputs were compared to field data collected from...

  3. Amorphous boron gasket in diamond anvil cell research Jung-Fu Lin,a)

    E-Print Network [OSTI]

    Lin, Jung-Fu "Afu"

    -pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction in the drilling process can cause can- cer. Diamond, the hardest material known, has also been used as a gasket

  4. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    SciTech Connect (OSTI)

    Dolan, Daniel H.,

    2008-09-01T23:59:59.000Z

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  5. Progress in the Advanced Synthetic-Diamond Drill Bit Program

    SciTech Connect (OSTI)

    Glowka, D.A. [Sandia National Labs., Albuquerque, NM (United States); Dennis, T. [Dennis Tool Co., Houston, TX (United States); Le, Phi [Security DBS, Houston, TX (United States); Cohen, J. [Maurer Engineering, Inc., Houston, TX (United States); Chow, J. [Hughes Christensen Co., Salt Lake City, UT (United States)

    1995-11-01T23:59:59.000Z

    Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

  6. The 'Crazy Diamond' (and other blazars)

    SciTech Connect (OSTI)

    Vercellone, S. [INAF/IASF Milano, Via Bassini 15, 20133 Milano (Italy); INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Donnarumma, I.; Pacciani, L.; Pucella, G.; Vittorini, V. [INAF/IASF Roma, Via Fosso del Cavaliere 100, 00133 Roma (Italy); Bulgarelli, A. [INAF/IASF Bologna, Via Gobetti 101, 40129 Bologna (Italy); Chen, A. W. [CIFS-Torino, Viale Settimio Severo 3, 10133 Torino (Italy); INAF/IASF Milano, Via Bassini 15, 20133 Milano (Italy); D'Ammando, F.; Tavani, M. [INAF/IASF Roma, Via Fosso del Cavaliere 100, 00133 Roma (Italy); Dip. di Fisica, Univ. 'Tor Vergata', Via della Ricerca Scientifica 1, 00133 Roma (Italy); Giuliani, A. [INAF/IASF Milano, Via Bassini 15, 20133 Milano (Italy); Longo, F. [Dip. di Fisica and INFN, Via Valerio 2, 34127 Trieste (Italy)

    2009-04-08T23:59:59.000Z

    During the first year of observations, AGILE detected several blazars at high significance: 3 C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3 C 273, MKN 421, and W Comae. We obtained long-term coverage of the Crazy Diamond 3 C 454.3, for more than 100 days at energies above 100 MeV. 3 C 273 was the first blazar detected simultaneously by the AGILE gamma-ray imaging detector and by its hard X-ray monitor. S5 0716+714, an intermediate BL Lac object, exhibited a very fast and intense gamma-ray transient event during an optical high-state phase, while MKN 421 and W Comae where detected during an AGILE target of opportunity (ToO) repointing. Thanks to the rapid dissemination of our alerts, we were able to obtain multi-wavelength ToO data from other observatories such as Spitzer, Swift, INTEGRAL, RXTE, Suzaku, MAGIC, VERITAS, as well as optical coverage by means of the WEBT Consortium and REM.

  7. Stress state of diamond and gold under nonhydrostatic compression Jianghua Wang,1

    E-Print Network [OSTI]

    Duffy, Thomas S.

    for the polycrystalline gold under the highest load. Polycrystalline diamond can support a microscopic deviatoric stress of polycrystalline diamond and gold in the DAC under nonhydrostatic compression to above 300 GPa. The influenceStress state of diamond and gold under nonhydrostatic compression to 360 GPa Jianghua Wang,1

  8. Effects of phosphorus implantation and subsequent growth on diamond Euo Sik Choa,*, Cheon An Leea

    E-Print Network [OSTI]

    Lee, Jong Duk

    ]. Espe- cially, polycrystalline diamond films grown by microwave plasma chemical vapor deposition (MPCVD, and their fabrication is easy and economical. Polycrystalline diamond film has a rough surface and a lot of defectsEffects of phosphorus implantation and subsequent growth on diamond Euo Sik Choa,*, Cheon An Leea

  9. Thermal conductivity of nitrogenated ultrananocrystalline diamond films M. Shamsa,1,a

    E-Print Network [OSTI]

    , polycrystalline diamond PCD , diamondlike carbon DLC , carbon nanotubes, and single-layer graphene, have recentlyThermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon M. Shamsa,1,a S of nitrogenated ultrananocrystalline diamond UNCD films on silicon. For better accuracy, the thermal conductivity

  10. Grafting odorant binding proteins on diamond bio-MEMS R. Manai a,

    E-Print Network [OSTI]

    Boyer, Edmond

    . Beside, cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs onto polycrystalline diamond1 Grafting odorant binding proteins on diamond bio-MEMS R. Manai a, *, E. Scorsone a , L. Rousseau

  11. A Study of the Grain Boundaries and Hydrogen in HF-CVD Diamond Films

    E-Print Network [OSTI]

    Adler, Joan

    composition of grain boundaries in polycrystalline diamond lms by transmission electron microscopy and highA Study of the Grain Boundaries and Hydrogen in HF-CVD Diamond Films Israel Yoel Koenka #12;A Study of the Grain Boundaries and Hydrogen in HF-CVD Diamond Films Research Thesis In partial fulllment

  12. Raman spectroscopy study of the influence of processing conditions on the structure of polycrystalline diamond films

    E-Print Network [OSTI]

    Boolchand, Punit

    of polycrystalline diamond films R. Ramamurti, V. Shanov, and R. N. Singha Department of Chemical and Materials is obvious, especially when polycrystalline diamond PCD is considered for optical and electronic applications-0030 Received 17 May 2005; accepted 14 November 2005; published 8 February 2006 Diamond films are prepared

  13. Simulations of polycrystalline CVD diamond film growth using a simplified Monte Carlo model

    E-Print Network [OSTI]

    Bristol, University of

    Simulations of polycrystalline CVD diamond film growth using a simplified Monte Carlo model P online 6 November 2009 Keywords: CVD diamond growth Modelling Nucleation Nanodiamond A simple 1) of a diamond (100) surface. The model considers adsorption, etching/desorption, lattice incorporation

  14. Electrochemical studies of moderately boron doped polycrystalline diamond in non-aqueous solvent

    E-Print Network [OSTI]

    Bristol, University of

    Electrochemical studies of moderately boron doped polycrystalline diamond in non-aqueous solvent being marketed [83,84]. The first paper on the electrochemistry of boron doped polycrystalline diamond The electrochemistry of boron doped diamond is currently an active field of research. In the majority of studies

  15. Moleculardynamics simulation of thermal stress at the (100) diamond/substrate interface: effect of film continuity

    E-Print Network [OSTI]

    Adler, Joan

    with the development of advanced CVD techniques 2 producing polycrystalline diamond of quality approachingMolecular­dynamics simulation of thermal stress at the (100) diamond/substrate interface: effect at the (100) diamond/substrate interface. The stress­induced binding energy reduction obtained

  16. Transitions in morphology observed in nitrogenmethanehydrogen depositions of polycrystalline diamond films

    E-Print Network [OSTI]

    Ayres, Virginia

    % and 1% methane­hydrogen depositions of polycrystalline diamond films. Five results are reported. 1.1063/1.1362406 I. INTRODUCTION Controlled, textured growth of polycrystalline diamond films would be desirable of polycrystalline diamond films: 2% CH4 /H2 and 1% CH4 /H2 . Five results are reported and discussed. II

  17. Charge Collection in the MERIT Diamond Detectors Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    , Princeton University, Princeton, NJ 08544 (February 18, 2010) The polycrystalline diamond detectors usedCharge Collection in the MERIT Diamond Detectors Kirk T. McDonald Joseph Henry Laboratories detectors used a bias field of 1 V/m, i.e., 500 V.1 The capacitance of the diamond detector itself was about

  18. Studies of n-type doping and surface modification of CVD diamond for use

    E-Print Network [OSTI]

    Bristol, University of

    strategy in chemical vapour deposition (CVD) of polycrystalline diamond films. Lithium nitride (Li3NStudies of n-type doping and surface modification of CVD diamond for use in thermionic applications-type dopants in diamond, the work has examined the use of Li-N codoping as a possible alternative doping

  19. Microcrystalline diamond micromechanical resonators with quality factor limited by thermoelastic damping

    E-Print Network [OSTI]

    Lin, Liwei

    using polycrystalline films. However, polycrystalline diamond films may not retain the desirable, while j approaching 2000 W mÀ1 KÀ1 has been demonstrated in thick (250­500 lm) polycrystalline diamondMicrocrystalline diamond micromechanical resonators with quality factor limited by thermoelastic

  20. Spatially-Correlated Microstructure and Superconductivity in Polycrystalline Boron-Doped Diamond

    E-Print Network [OSTI]

    Spatially-Correlated Microstructure and Superconductivity in Polycrystalline Boron-Doped Diamond F tunneling spectroscopies are performed below 100 mK on nano-crystalline boron-doped diamond films been discovered in heavily doped group IV covalent semicon- ductors [1], in particular diamond [2

  1. The Influence of Doping Levels and Surface Termination on the Electrochemistry of Polycrystalline Diamond

    E-Print Network [OSTI]

    Bristol, University of

    of Polycrystalline Diamond Matthew N. Latto, Gustavo Pastor-Moreno, D. Jason Riley* School of Chemistry, University on the redox chemistry of Fe(CN)3À=4À 6 at CVD polycrystalline diamond electrodes is considered diamond metallic electrochemical behavior is always observed, even at boron doping densities as low as 7 Â

  2. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry Sphere resonance Nano-polycrystalline diamond NPD Elastic properties Superhard materials a b s t r a c t The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have

  3. Atomistic simulations of structures and mechanical properties of polycrystalline diamond: Symmetrical S001< tilt grain boundaries

    E-Print Network [OSTI]

    Brenner, Donald W.

    Atomistic simulations of structures and mechanical properties of polycrystalline diamond for diamond to deposit as a polycrystalline film with a high density of grain boundaries and related defects structures and energies of symmetrical 001 tilt grain boundaries GB's in diamond have been calculated over

  4. Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor

    E-Print Network [OSTI]

    George, Steven M.

    /high-temperature (HP/HT) synthesis methods [4­7] led to the discovery of polycrystalline diamond grit and the manufacture of polycrystalline diamond compact (PDC) materials [8]. PDC cutters are well known and widely usedAlumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed

  5. Direct engraving of quantum point contacts in heterostructures with a diamond tip

    E-Print Network [OSTI]

    Hohls, Frank

    of polycrystalline diamond onto a pre-patterned silicon substrate [7]. The results of the engraving procedure usingDirect engraving of quantum point contacts in heterostructures with a diamond tip J. Regul, U. F-Universit¨at Bochum, 44780 Bochum, Germany Abstract. We use the all-diamond tip of an atomic force microscope

  6. Fabrication of adherent porous diamond films on sintered WC-13 wt.%Co

    E-Print Network [OSTI]

    Bristol, University of

    and lower threshold voltages for field emission [10]. Conductive polycrystalline diamond films are alsoFabrication of adherent porous diamond films on sintered WC-13 wt.%Co substrates by bias enhanced 2011, accepted 3 May 2011 Published online 10 August 2011 Keywords diamond films, HFCVD, porous, WC

  7. Electrical and optical properties of diamond-like carbon films deposited by pulsed laser ablation

    E-Print Network [OSTI]

    Bristol, University of

    films, which make them more useful than polycrystalline diamond films for many applications. For exampleElectrical and optical properties of diamond-like carbon films deposited by pulsed laser ablation K e i n f o Available online 11 March 2010 Keyword: Pulsed laser ablation Diamond-like carbon films

  8. Spatially-correlated microstructure and superconductivity in polycrystalline Boron-doped diamond

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Spatially-correlated microstructure and superconductivity in polycrystalline Boron-doped diamond F are performed below 100 mK on polycrystalline Boron-doped diamond films characterized by Transmission Electron and the superconducting proximity effect.8,9 Neverthe- less, recent studies of polycrystalline diamond films10,11 did

  9. Atomistic modeling of the fracture of polycrystalline diamond O. A. Shenderova and D. W. Brenner

    E-Print Network [OSTI]

    Brenner, Donald W.

    Atomistic modeling of the fracture of polycrystalline diamond O. A. Shenderova and D. W. Brenner characteristic of GB toughness. Crack propagation in polycrystalline diamond samples under an applied load of several 001 and 011 symmetrical tilt grain boundaries GB's in diamond. Cohesive energies, the work

  10. FIELD EMISSION FROM BORON-DOPING POLYCRYSTALLINE DIAMOND FILMS ON SILICON

    E-Print Network [OSTI]

    FIELD EMISSION FROM BORON-DOPING POLYCRYSTALLINE DIAMOND FILMS ON SILICON J. A. N. Gonçalves, G. M material fail. The field emission current from boron-doped polycrystalline diamond films grown by hot Campos, SP, Brazi Abstract This work deals with the study and development of the boron-doped diamond

  11. Raman and Photoluminescence Spectroscopy of Nanocrystalline Diamond Films grown by Hot Filament CVD

    E-Print Network [OSTI]

    Bristol, University of

    H4 flow-rate ratio of standard polycrystalline diamond deposition parameters on formationRaman and Photoluminescence Spectroscopy of Nanocrystalline Diamond Films grown by Hot Filament CVD of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia b,c Diamond Research Laboratory, School

  12. Unravelling aspects of the gas phase chemistry involved in diamond chemical vapour deposition

    E-Print Network [OSTI]

    Bristol, University of

    of thin Ðlms of polycrystalline diamond by chemi- cal vapour deposition (CVD) methods,2h4 since which timeUnravelling aspects of the gas phase chemistry involved in diamond chemical vapour deposition been used to unravel details of the gas phase chemistry involved in diamond chemical vapour deposition

  13. EXPERIMENTAL DEMONSTRATION OF WAKEFIELD EFFECTS IN A 250 GHZ PLANAR DIAMOND ACCELERATING STRUCTURE*

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    of a rectangular waveguide loaded with polycrystalline CVD diamond plates as an accelerating structure. It should polycrystalline diamond plates loaded in a 6 cm long waveguide (Fig. 2). The beam gap was 200 microns (Fig. TM11EXPERIMENTAL DEMONSTRATION OF WAKEFIELD EFFECTS IN A 250 GHZ PLANAR DIAMOND ACCELERATING STRUCTURE

  14. Characterization of B-doped polycrystalline diamond films using thermally stimulated luminescence

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Characterization of B-doped polycrystalline diamond films using thermally stimulated luminescence, boron level in polycrystalline diamond films was identified by TL by an intense glow peak at 226 K polycrystalline diamond films grown by Chemical Vapor Deposition (CVD) have a wide array of potential applications

  15. Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions Mikael C. Rechtsman,1

    E-Print Network [OSTI]

    Stillinger, Frank

    Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions Mikael C with strongly repulsive cores that cause the tetrahedrally coordinated diamond and wurtzite lattices-dimensional diamond and wurtzite structures can self-assemble with isotropic in- teractions possessing a strongly

  16. Electrical characterisation of defects in polycrystalline B-doped diamond films

    E-Print Network [OSTI]

    Bristol, University of

    applied to B-doped thin polycrystalline diamond films deposited on p+ -silicon by hot filament chemical]. Recently valuable information about defects in monocrystalline [3] and polycrystalline [7] diamond filmsElectrical characterisation of defects in polycrystalline B-doped diamond films O. S. Elsherif 1, a

  17. Electronic, Magnetic and Thermal Properties of Graphene-Diamond Hybrid S. Konabe,2, 3

    E-Print Network [OSTI]

    Maruyama, Shigeo

    of the graphene-diamond hybrid system. Energies are mea- sured from that of the Fermi level. Blue and redElectronic, Magnetic and Thermal Properties of Graphene-Diamond Hybrid Structure T. Shiga,1 S, it is demonstrated that the heat generated in the graphene nanoribbon can efficiently dissipate to the diamond region

  18. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOE Patents [OSTI]

    Qian, Jiang (Los Alamos, NM); Zhao, Yusheng (Los Alamos, NM)

    2005-09-06T23:59:59.000Z

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  19. Mapping the location and configuration of nitrogen in diamond nanoparticles.

    SciTech Connect (OSTI)

    Barnard, A. S.; Sternberg, M.; Center for Nanoscale Materials; Univ. of Oxford

    2007-01-17T23:59:59.000Z

    Understanding how impurities such as nitrogen are included in diamond nanoparticles is expected to be important for use in future nanodevices, such as qubits for quantum computing. Most commercial diamond nanoparticles contain approximately 2-3% nitrogen, but it is difficult to determine experimentally whether it is located within the core or at the surface of the nanoparticles. Presented here are density functional tight-binding simulations examining the configuration and potential energy surface of substitutional nitrogen in diamond nanoparticles, directly comparing results of different sizes, shapes and surface chemistry. The results predict that nitrogen is metastable within the core of both hydrogenated and dehydrogenated particles, but that the binding energy, coordination and preferred location is dependent upon the structure of the nanoparticle as a whole.

  20. Synthesis and characterization of a nanocrystalline diamond aerogel

    SciTech Connect (OSTI)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06T23:59:59.000Z

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  1. Dichroism and birefringence of natural violet diamond crystals

    SciTech Connect (OSTI)

    Konstantinova, A. F. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: afkonst@ns.crys.ras.ru; Titkov, S. V. [Russian Academy of Sciences, Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (Russian Federation); Imangazieva, K. B. [Issyk Kul State University (Kyrgyzstan); Evdishchenko, E. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Sergeev, A. M. [Karpov Institute of Physical Chemistry, State Scientific Center of the Russian Federation (Russian Federation); Zudin, N. G. [OOO Roni Kerob (Russian Federation); Orekhova, V. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2006-05-15T23:59:59.000Z

    Investigation of the optical properties of natural violet diamonds from the Yakutian kimberlites is performed. A red shift of the absorption edge is revealed in the absorption spectra of these crystals. This shift is indicative of the presence of a high concentration of nitrogen in the diamonds studied. Along with the strong band at 0.550 {mu}m, weaker bands at 0.390, 0.456 and 0.496 {mu}m are revealed. It is shown that violet diamond crystals have birefringence and dichroism of about 10{sup -5} and 10{sup -6}, respectively. When a light beam propagates perpendicularly to colored lamellas, the dichroism is much larger and the birefringence is smaller than in the case where the beam direction is parallel to lamellas.

  2. Subtractive 3D Printing of Optically Active Diamond Structures

    E-Print Network [OSTI]

    Martin, Aiden A; Aharonovich, Igor

    2014-01-01T23:59:59.000Z

    Diamond has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate a chemical approach that enables the fabrication of functional diamond structures using gas-mediated electron induced etching. The method achieves chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by electron irradiation in a water vapor environment. High throughput, parallel processing is possible by electron flood exposure and the use of an etch mask, while single step, mask-free three dimensional fabrication and iterative editing are achieved using a variable pressure scanning electron microscope. The electron induced chemical etching paves the way to a transformative technology for nanofabrication of diamond and other wide band-gap semiconductors.

  3. Diamond tool wear of electrodeposited nickel-phosphorus alloy

    SciTech Connect (OSTI)

    Dini, J.W.; Donaldson, R.R.; Syn, C.K. (Lawrence Livermore National Lab., CA (USA)); Sugg, D.J. (Techmetals, Inc., Dayton, OH (USA))

    1990-02-01T23:59:59.000Z

    Nickel-Phosphorus alloys are attractive materials for diamond turning applications such as fabrication of large optics and other high precision parts. Although the mechanism is not understood, diamond tool wear is minimized when the phosphorus content of the deposit is greater than 11% (wgt). In recent years, increased attention has been directed at electrodeposition as an alternate to electroless deposition for producing Ni-P alloys. One principal advantage of the electrodeposition process is that alloys with 14--15% P can be obtained; another is that an order of magnitude greater deposition thickness can be provided if necessary. This paper compares diamond turning results for electrodeposited and electroless Ni-P alloys and shows that the electrodeposited coatings provide promising results. 28 refs., 7 figs., 1 tab.

  4. The role of inert gas in MW-enhanced plasmas for the deposition of nanocrystalline diamond thin films

    E-Print Network [OSTI]

    Bristol, University of

    in polycrystalline diamond film CVD [3,4]. While the mechanical, thermal and acoustic properties of MCD films haveThe role of inert gas in MW-enhanced plasmas for the deposition of nanocrystalline diamond thin diamond Nanocrystalline Inert gas Growth Nanocrystalline diamond thin films have been deposited using

  5. High-pressure X-ray absorption fine structure in the diamond anvil cell and its applications in geological materials

    E-Print Network [OSTI]

    Duffy, Thomas S.

    nano- polycrystalline diamond instead of single crystal anvils, the influence of diamond diffractionHigh-pressure X-ray absorption fine structure in the diamond anvil cell and its applications fine structure in the diamond anvil cell and its applications in geological materials Xinguo Hong1

  6. Fabrication of Diamond Nanowires for Quantum Information Processing Applications

    E-Print Network [OSTI]

    Birgit Hausmann; Mughees Khan; Tom Babinec; Yinan Zhang; Katie Martinick; Murray McCutcheon; Phil Hemmer; Marko Loncar

    2010-02-23T23:59:59.000Z

    We present a design and a top-down fabrication method for realizing diamond nanowires in both bulk single crystal and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color center and optical modes of a nanowire, and to find an optimal range of nanowire diameters that allows for large collection efficiency of emitted photons. Inductively coupled plasma (ICP) reactive ion etching (RIE) with oxygen is used to fabricate the nanowires. Drop-casted nanoparticles (including $\\mathrm{Au}$, $\\mathrm{SiO_{2}}$ and $\\mathrm{Al_2O_3}$) as well as electron beam lithography defined spin-on glass and evaporated $\\mathrm{Au}$ have been used as an etch mask. We found $\\mathrm{Al_2O_3}$ nanoparticles to be the most etch resistant. At the same time FOx e-beam resist (spin-on glass) proved to be a suitable etch mask for fabrication of ordered arrays of diamond nanowires. We were able to obtain nanowires with near vertical sidewalls in both polycrystalline and single crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are $\\unit[\\approx1]{\\mu m}$ and $\\unit[120-340]{nm}$, respectively, having a $\\unit[200]{nm/min}$ etch rate. In the case of single crystal diamond (types Ib and IIa) nanowires the height and diameter for different diamonds and masks shown in this paper were $\\unit[1-2.4]{\\mu m}$ and $\\unit[120-490]{nm}$ with etch rates between $\\unit[190-240]{nm/min}$.

  7. Smooth diamond films as low friction, long wear surfaces

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (Naperville, IL); Erdemir, Ali (Naperville, IL); Bindal, Cuma (Woodridge, IL); Zuiker, Christopher D. (LaGrange, IL)

    1999-01-01T23:59:59.000Z

    An article and method of manufacture of a nanocrystalline diamond film. The nanocrystalline film is prepared by forming a carbonaceous vapor, providing an inert gas containing gas stream and combining the gas stream with the carbonaceous containing vapor. A plasma of the combined vapor and gas stream is formed in a chamber and fragmented carbon species are deposited onto a substrate to form the nanocrystalline diamond film having a root mean square flatness of about 50 nm deviation from flatness in the as deposited state.

  8. Diamond turning of Si and Ge single crystals

    SciTech Connect (OSTI)

    Blake, P.; Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  9. Boron-doped superlattices and Bragg mirrors in diamond

    SciTech Connect (OSTI)

    Fiori, A. [University of Grenoble Alpes, Inst. NEEL, 38042 Grenoble (France); CNRS, Inst. NEEL, 25 rue des Martyrs, 38042 Grenoble (France); National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Bousquet, J.; Eon, D.; Omnès, F.; Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr [University of Grenoble Alpes, Inst. NEEL, 38042 Grenoble (France); CNRS, Inst. NEEL, 25 rue des Martyrs, 38042 Grenoble (France); Bellet-Amalric, E. [University of Grenoble Alpes, Inst. NEEL, 38042 Grenoble (France); CEA-Grenoble, INAC/SP2M, 17 rue des Martyrs, 38054 Grenoble (France)

    2014-08-25T23:59:59.000Z

    A periodic modulation of the boron doping level of single crystal diamond multilayers over more than three orders of magnitude during epitaxial growth by microwave plasma-enhanced chemical vapor deposition is shown to yield Bragg mirrors in the visible. The thicknesses and doping level of the individual layers were controlled by in situ spectroscopic ellipsometry, enabling to tune the reflectance peak to the wavelength range of diamond color centers, such as NV{sup 0} or NV{sup ?}. The crystalline quality, periodicity, and sharpness of the doping transitions in these doping superlattices over tens of periods were confirmed by high resolution X-ray diffraction.

  10. Nano-manipulation of diamond-based single photon sources

    E-Print Network [OSTI]

    E. Ampem-Lassen; D. A. Simpson; B. C. Gibson; S. Trpkovski; F. M. Hossain; S. T. Huntington; K. Ganesan; L. C. L. Hollenberg; S. Prawer

    2009-05-18T23:59:59.000Z

    The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a new technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a ~ 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.

  11. Quantum optics with nitrogen-vacancy centers in diamond

    E-Print Network [OSTI]

    Yiwen Chu; Mikhail D. Lukin

    2015-04-22T23:59:59.000Z

    We review the electronic level structure of the nitrogen-vacancy in diamond and some common experimental techniques to study its optical properties at low temperatures. We then summarize several recent experiments and advances in using nitrogen-vacancy centers for quantum optics.

  12. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    SciTech Connect (OSTI)

    Solar, B.; Graafsma, H.; Potdevin, G.; Trunk, U. [Hasylab, Deutsches Elektronen Synchroton, Hamburg (Germany); Morse, J.; Salome, M. [Instrumentation Services and Development Division, European Synchroton Radiation Facility, Grenoble (France)

    2010-06-23T23:59:59.000Z

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (diamond beam position monitors of simple quadrant electrode designs with metal contacts, operated using wideband electronic readout corresponding to the RF accelerator frequency. The instrumentation for these monitors must cover a large range of operating conditions: different beam sizes, fluxes, energies and time structure corresponding to the synchrotron fill patterns. Sophisticated new RF sampling electronics can satisfy most requirements: using a modified Libera Brilliance readout system, we measured the center of gravity position of a 25 {mu}m beam at the DORIS III F4 beam line at a rate of 130 Msample/s with narrowband filtering of a few MHz bandwidth. Digitally averaging the signal further provided a spatial resolution {approx}20 nm.

  13. New route to the fabrication of nanocrystalline diamond films

    SciTech Connect (OSTI)

    Varshney, Deepak, E-mail: deepvar20@gmail.com; Morell, Gerardo [Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931, Puerto Rico (United States); Department of Physics, University of Puerto Rico, San Juan, PO Box 70377, Puerto Rico 00936, Puerto Rico (United States); Palomino, Javier; Resto, Oscar [Department of Physics, University of Puerto Rico, San Juan, PO Box 70377, Puerto Rico 00936, Puerto Rico (United States); Gil, Jennifer [Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00936, Puerto Rico (United States); Weiner, Brad R. [Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931, Puerto Rico (United States); Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00936, Puerto Rico (United States)

    2014-02-07T23:59:59.000Z

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

  14. National Residence Hall Honorary Shamrock Chapter Awards (2004-2005 to Present)

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    Maloney Tori Seely #12; 2008-2009 Advisor of the Year Joni Burch Community of the Year MacAnerney Hall 2 Cunningham Jon Leek Josh Cardenzana #12; 2009-2010 Advisor of the Year Joni Burch Community of the Year of the Year Make a Child Smile Desk Attendant of the Year Eric Murray Diversity Program of the Year Lasting

  15. Diamond Wire Saw for Precision Machining of Laser Target Components

    SciTech Connect (OSTI)

    Bono, M J; Bennett, D W

    2005-08-08T23:59:59.000Z

    The fabrication of precision laser targets requires a wide variety of specialized mesoscale manufacturing techniques. The diamond wire saw developed in this study provides the capability to precisely section meso-scale workpieces mounted on the assembly stations used by the Target Fabrication Group. This new capability greatly simplifies the fabrication of many types of targets and reduces the time and cost required to build the targets. A variety of materials are used to fabricate targets, including metals, plastics with custom designed chemical formulas, and aerogels of various densities. The materials are usually provided in the form of small pieces or cast rods that must be machined to the required shape. Many of these materials, such as metals and some plastics, can be trimmed using a parting tool on a diamond turning machine. However, other materials, such as aerogels and brittle materials, cannot be adequately cut with a parting tool. In addition, the geometry of the parts often requires that the workpieces be held in a special assembly station, which excludes the use of a parting tool. In the past, these materials were sectioned using a small, handheld coping saw that used a diamond-impregnated wire as a blade. This miniature coping saw was effective, but it required several hours to cut through certain materials. Furthermore, the saw was guided by hand and often caused significant damage to fragile aerogels. To solve these problems, the diamond wire saw shown in Figure 1 was developed. The diamond wire saw is designed to machine through materials that are mounted in the Target Fabrication Group's benchtop assembly stations. These assembly stations are the primary means of aligning and assembling target components, and there is often a need to machine materials while they are mounted in the assembly stations. Unfortunately, commercially available saws are designed for very different applications and are far too large to be used with the assembly stations. Therefore, a custom diamond wire saw was designed and constructed. The diamond wire saw cuts through workpieces using a continuous loop of diamond-impregnated wire of length 840 mm. The wire loop runs around several idler pulleys and is driven by a simple geared DC motor that rotates at 17 rpm. The linear speed of the wire is 107 inches/minute. The saw is oriented at an angle of 20{sup o} from horizontal, so the operator can view the wire through the cutout at the front end of the saw. When looking through a microscope or camera with a horizontal line of sight, the operator can clearly see the wire as it cuts through the workpiece, as shown in the right side of Figure 1. The saw is mounted on a two-axis stage that allows the operator to align the wire with the workpiece. To cut through the workpiece, the operator drives the wire through the workpiece by turning the feed micrometer. An image of the interior of the diamond wire saw appears in Figure 2. This picture was taken after removing the protective cover plate from the saw.

  16. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1999-03-30T23:59:59.000Z

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.

  17. Method for producing fluorinated diamond-like carbon films

    DOE Patents [OSTI]

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03T23:59:59.000Z

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  18. Negative vacuum energy densities and the causal diamond measure

    SciTech Connect (OSTI)

    Salem, Michael P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

    2009-07-15T23:59:59.000Z

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.

  19. Superconducting single photon detectors integrated with diamond nanophotonic circuits

    E-Print Network [OSTI]

    Rath, Patrik; Ferrari, Simone; Sproll, Fabian; Lewes-Malandrakis, Georgia; Brink, Dietmar; Ilin, Konstantin; Siegel, Michael; Nebel, Christoph; Pernice, Wolfram

    2015-01-01T23:59:59.000Z

    Photonic quantum technologies promise to repeat the success of integrated nanophotonic circuits in non-classical applications. Using linear optical elements, quantum optical computations can be performed with integrated optical circuits and thus allow for overcoming existing limitations in terms of scalability. Besides passive optical devices for realizing photonic quantum gates, active elements such as single photon sources and single photon detectors are essential ingredients for future optical quantum circuits. Material systems which allow for the monolithic integration of all components are particularly attractive, including III-V semiconductors, silicon and also diamond. Here we demonstrate nanophotonic integrated circuits made from high quality polycrystalline diamond thin films in combination with on-chip single photon detectors. Using superconducting nanowires coupled evanescently to travelling waves we achieve high detection efficiencies up to 66 % combined with low dark count rates and timing resolu...

  20. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D. [Institution PROJECT CENTER ITER, 1, Akademik Kurchatov Sq., Moscow (Russian Federation)

    2014-08-21T23:59:59.000Z

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  1. Diamond Amplified Photocathode at BNL | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Diamond amplified photocathode Developed at: Brookhaven National Laboratory, New York Developed in: 2004-2007 Result of NP research: Electron cooling R&D for RHIC...

  2. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOE Patents [OSTI]

    Chang, R. P. H. (Glenview, IL); Grannen, Kevin J. (Evanston, IL)

    2002-01-01T23:59:59.000Z

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  3. Wireless Network Simplification: the Gaussian N-Relay Diamond Network

    E-Print Network [OSTI]

    " as opposed to s 1 2 ... N d h1s h2s hNs h1d h2d hNd Fig. 1. The Gaussian N-relay diamond network. The source is the loss in the capacity if we simplify the network by removing all but k of the N relays (for example, if we remove all but one of the relays). The performance loss can depend on the channel gains. Indeed

  4. HIGH-CURRENT COLD CATHODE EMPLOYING DIAMOND AND RELATED MATERIALS

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-10-22T23:59:59.000Z

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  5. Strategies for improving traffic operations at oversaturated signalized diamond interchanges

    E-Print Network [OSTI]

    Herrick, George Curtis

    1992-01-01T23:59:59.000Z

    to reduce both recurring and nonrecurring congestion. Incident detection and management systems can be implemented on freeways to decrease incident durations and reduce the resulting traffic congestion. Surveillance and control systems can be integrated... urban diamond interchanges, the traffic engineer needs to better understand these control strategies and seek new and innovative control strategies to more effectively address them. This research addressed two major objectives. The first objective...

  6. Use of diamond-turned mirrors for synchrotron radiation (SR)

    SciTech Connect (OSTI)

    Howells, M.R.; Takacs, P.Z.

    1981-01-01T23:59:59.000Z

    The diamond turning technique has great interest for users of synchrotron radiation because of its ability to produce surfaces of arbitrary shape. It also has the advantage of being well adapted to producing metal optics. These are of interest because they lend themselves to water cooling and hence represent one approach to the problem of high synchrotron radiation power loadings on optical surfaces. The optical figure produced by diamond turning is generally adequate for synchrotron radiation applications. The main difficulty centers around the question of smoothness. Diamond turned surfaces must receive a final polish after machining before they are sufficiently smooth for use with ultra-violet or x-ray radiation. The manufacturing stages can be carried out by various groups in the optics industry and the National Synchrotron Light Source has procured a considerable number of mirrors and is having them polished for use on the vuv storage ring. At the time of writing one mirror has been completed and evaluated and we give the results for this and discuss the indications for the future. The important measurement of the r.m.s. height of the surface roughness has given a value of 3 +- 0.9A using total integrated scatter of visible light at normal incidence.

  7. Amorphous Diamond Flat Panel Displays - Final Report of ER-LTR CRADA project with SI Diamond Technology

    SciTech Connect (OSTI)

    Ager III, Joel W.

    1998-05-08T23:59:59.000Z

    The objective of this project was to determine why diamond-based films are unusually efficient electron emitters (field emission cathodes) at room temperature. Efficient cathodes based on diamond are being developed by SI Diamond Technology (SIDT) as components for bright, sunlight-readable, flat panel displays. When the project started, it was known that only a small fraction (<1%) of the cathode area is active in electron emission and that the emission sites themselves are sub-micron in size. The critical challenge of this project was to develop new microcharacterization methods capable of examining known emission sites. The research team used a combination of cathode emission imaging (developed at SIDT), micro-Raman spectroscopy (LBNL), and electron microscopy and spectroscopy (National Center for Electron Microscopy, LBNL) to examine the properties of known emission sites. The most significant accomplishment of the project was the development at LBNL of a very high resolution scanning probe that, for the first time, measured simultaneously the topography and electrical characteristics of single emission sites. The increased understanding of the emission mechanism helped SIDT to develop a new cathode material,''nano-diamond,'' which they have incorporated into their Field Emission Picture Element (FEPix) product. SIDT is developing large-format flat panel displays based on these picture elements that will be brighter and more efficient than existing outdoor displays such as Jumbotrons. The energy saving that will be realized if field emission displays are introduced commercially is in line with the energy conservation mission of DOE. The unique characterization tools developed in this project (particularly the new scanning microscopy method) are being used in ongoing BES-funded basic research.

  8. Deposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b

    E-Print Network [OSTI]

    Bristol, University of

    of the polycrystalline diamond surface would prevent light from leaking out of the GaN layer and channel it to the endsDeposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b , W.N. Wang c , J.A. Smith a a School performed to deposit continuous layers of CVD diamond onto epitaxial GaN films. Such diamond coatings would

  9. Evidence for a mantle component shown by rare gases, C and N isotopes in polycrystalline diamonds from Orapa (Botswana)

    E-Print Network [OSTI]

    Cartigny, Pierre

    Evidence for a mantle component shown by rare gases, C and N isotopes in polycrystalline diamonds. Farley Abstract In an attempt to constrain the origin of polycrystalline diamond, combined analyses in the source of the polycrystalline diamonds from Orapa. The y13 C and y15 N isotopic values of À1.04 to À9.79x

  10. 785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser

    E-Print Network [OSTI]

    Bristol, University of

    . Here, we report that when using 785 nm excitation, the Raman spectra from thin polycrystalline diamond785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser Raman spectroscopy is a powerful technique often used to study CVD diamond films, however, very little

  11. Fabrication of diamond nanowires for quantum information processing applications Birgit J.M. Hausmann a,b,

    E-Print Network [OSTI]

    Loncar, Marko

    and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are 1Fabrication of diamond nanowires for quantum information processing applications Birgit J

  12. High-temperature electron emission from diamond films Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235

    E-Print Network [OSTI]

    Walker, D. Greg

    This work examines electron field-emission characteristics of polycrystalline diamond films at elevated in applications where high temperatures exist. Nitrogen-doped polycrystalline diamond films were grown by plasmaHigh-temperature electron emission from diamond films S. H. Shin Department of Mechanical

  13. Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filamentsubstrate separation

    E-Print Network [OSTI]

    Bristol, University of

    Polycrystalline diamond films have been grown by hot filament (HF) chemical vapor deposition on WC-Co bar is an established technique for growing hard, wear- resistant polycrystalline diamond films on a range of substratesDiamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament

  14. Field emission properties of the polycrystalline diamond film prepared by microwave-assisted plasma chemical vapor deposition

    E-Print Network [OSTI]

    Lee, Jong Duk

    Field emission properties of the polycrystalline diamond film prepared by microwave-assisted plasma Field emission characteristics for the diamond films grown using a gas mixture of different methane V 3.0 V/ m and 9 V 5.5 V/ m , respectively, for the diamond emitter of a little poor quality grown

  15. Evidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond resonators at millikelvin temperatures

    E-Print Network [OSTI]

    independent theory. In particular, polycrystalline diamond is an exciting material for nanomechanical devicesEvidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond fabricated from ultra-nanocrystalline diamond. Frequency shift f/f0 and dissipa- tion Q-1 demonstrate

  16. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    E-Print Network [OSTI]

    Bristol, University of

    .1063/1.3475506 Direct observation of electron emission site on boron-doped polycrystalline diamond thin films using or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force

  17. 785 nm Raman spectroscopy of CVD diamond films P.W. May , J.A. Smith, K.N. Rosser

    E-Print Network [OSTI]

    Bristol, University of

    using 785 nm excitation with 1 µm spot size, the Raman spectra from thin polycrystalline diamond films785 nm Raman spectroscopy of CVD diamond films P.W. May , J.A. Smith, K.N. Rosser School is a powerful technique often used to study CVD diamond films, however, very little work has been reported

  18. Strength of Materials, Vol. 46, No. 2, March, 2014 ANALYSIS OF FRACTURE BEHAVIOR OF THIN POLYCRYSTALLINE DIAMOND FILMS

    E-Print Network [OSTI]

    Qin, Qinghua

    POLYCRYSTALLINE DIAMOND FILMS D. S. Li,a,c,1 D. W. Zuo,a,b UDC 539.4 and Q. H. Qinc The effect of the substrate temperature and CH4 concentrations on the fracture behavior of thin polycrystalline diamond films that the fracture behavior of thin polycrystalline diamond films synthesized by direct current plasma jet chemical

  19. Fabrication of quantum point contacts by engraving GaAsAlGaAs heterostructures with a diamond tip

    E-Print Network [OSTI]

    Hohls, Frank

    by hot-filament chemical vapor deposition of polycrystalline diamond onto a prepat- terned siliconFabrication of quantum point contacts by engraving GaAsÕAlGaAs heterostructures with a diamond tip for publication 17 July 2002 We use the all-diamond tip of an atomic force microscope for the direct engraving

  20. Optical properties of polycrystalline diamond films in the far-infrared A. J. Gatesman, R. H. Giles, J. Waldman

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    Optical properties of polycrystalline diamond films in the far-infrared A. J. Gatesman, R. H. Giles for the complex refractive index (n - ik) of polycrystalline diamond films grown by microwave plasma enhanced a CO2 optically pumped submillimeter laser. Due to their polycrystalline nature, the diamond films

  1. MetalBosonic InsulatorSuperconductor Transition in Boron-Doped Granular Diamond Gufei Zhang,1,* Monika Zeleznik,2

    E-Print Network [OSTI]

    Bristol, University of

    . Second, the giant RðTÞ peak is observed in heavily boron-doped polycrystalline diamond thick filmsMetal­Bosonic Insulator­Superconductor Transition in Boron-Doped Granular Diamond Gufei Zhang,1 the onset of superconductivity in heavily boron-doped diamond. This anomalous RðTÞ peak in a 3D system

  2. High-dynamic-range magnetometry with a single nuclear spin in diamond

    E-Print Network [OSTI]

    Pfeifer, Holger

    High-dynamic-range magnetometry with a single nuclear spin in diamond G. Waldherr1 *, J. Beck1 , P, we implement a quantum phase estimation algorithm6­8 on a single nuclear spin in diamond to combineT). If this priorinformation aboutthemagnetic fieldisnotavailable, estimation of B cannot be performed. To summarize, shorter

  3. REVIEW OF EXPERIMENTS ON ARTIFICIAL CULTURE OF DIAMOND-BACK TERRAPIN 1

    E-Print Network [OSTI]

    REVIEW OF EXPERIMENTS ON ARTIFICIAL CULTURE OF DIAMOND-BACK TERRAPIN 1 By SAMUEL F. HILDEBRAND It is a well-known fact that the diamond-back terrapin (Malll.clemmys) once was plentiful. When this animal a heavy drain, as they do not reproduce rapidly and growth is gained slowly. The natural supply, therefore

  4. Growth of diamond films using an enclosed methyl-acetylene and propadiene combustion flame

    E-Print Network [OSTI]

    Dandy, David

    1 Growth of diamond films using an enclosed methyl-acetylene and propadiene combustion flame K Abstract Diamond growth in low pressure combustion flames was studied using a safer, more economical and chemical kinetic time scales in the combustion reactor. 1 Present Address: 3M Corporation, Bldg. 60-1N-01

  5. Method of bonding diamonds in a matrix and articles thus produced

    DOE Patents [OSTI]

    Taylor, G.W.

    1981-01-27T23:59:59.000Z

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  6. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28T23:59:59.000Z

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  7. Electronic Structure of Diamond Surfaces Functionalized by Ru(tpy)2 Ioannis Zegkinoglou,,

    E-Print Network [OSTI]

    Himpsel, Franz J.

    by reducing the output voltage by almost a factor of 2.4 For all solar energy conversion processes of the frontier orbitals of the dye relative to the band edges of diamond are inferred from the spectroscopic data. The implications of using diamond films as inert electron donors in photocatalysis and dye-sensitized solar cells

  8. Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing

    E-Print Network [OSTI]

    Igor Aharonovich; Jonathan C. Lee; Andrew P. Magyar; Bob B. Buckley; Christopher G. Yale; David D. Awschalom; Evelyn L. Hu

    2012-01-18T23:59:59.000Z

    Fabrication of devices designed to fully harness the unique properties of quantum mechanics through their coupling to quantum bits (qubits) is a prominent goal in the field of quantum information processing (QIP). Among various qubit candidates, nitrogen vacancy (NV) centers in diamond have recently emerged as an outstanding platform for room temperature QIP. However, formidable challenges still remain in processing diamond and in the fabrication of thin diamond membranes, which are necessary for planar photonic device engineering. Here we demonstrate epitaxial growth of single crystal diamond membranes using a conventional microwave chemical vapor deposition (CVD) technique. The grown membranes, only a few hundred nanometers thick, show bright luminescence, excellent Raman signature and good NV center electronic spin coherence times. Microdisk cavities fabricated from these membranes exhibit quality factors of up to 3000, overlapping with NV center emission. Our methodology offers a scalable approach for diamond device fabrication for photonics, spintronics, optomechanics and sensing applications.

  9. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same

    DOE Patents [OSTI]

    Rao, Triveni; Walsh, John; Gangone, Elizabeth

    2014-12-30T23:59:59.000Z

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  10. Method and apparatus for making diamond-like carbon films

    DOE Patents [OSTI]

    Pern, Fu-Jann (Golden, CO); Touryan, Kenell J. (Indian Hills, CO); Panosyan, Zhozef Retevos (Yerevan, AM); Gippius, Aleksey Alekseyevich (Moscow, RU)

    2008-12-02T23:59:59.000Z

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  11. All optical control of a single electron spin in diamond

    E-Print Network [OSTI]

    Yiwen Chu; Matthew Markham; Daniel J. Twitchen; Mikhail D. Lukin

    2014-09-22T23:59:59.000Z

    Precise coherent control of the individual electronic spins associated with atom-like impurities in the solid state is essential for applications in quantum information processing and quantum metrology. We demonstrate all-optical initialization, fast coherent manipulation, and readout of the electronic spin of the negatively charged nitrogen-vacancy (NV$^-$) center in diamond at T$\\sim$7K. We then present the observation of a novel double-dark resonance in the spectroscopy of an individual NV center. These techniques open the door for new applications ranging from robust manipulation of spin states using geometric quantum gates to quantum sensing and information processing.

  12. Refractory two-dimensional hole gas on hydrogenated diamond surface

    SciTech Connect (OSTI)

    Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Daicho, Akira; Kurihara, Shinichiro; Yokoyama, Yuki; Kawarada, Hiroshi [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2012-12-15T23:59:59.000Z

    Use of two-dimensional hole gas (2DHG), induced on a hydrogenated diamond surface, is a solution to overcoming one of demerits of diamond, i.e., deep energy levels of impurities. This 2DHG is affected by its environment and accordingly needs a passivation film to get a stable device operation especially at high temperature. In response to this requirement, we achieved the high-reliability passivation forming an Al{sub 2}O{sub 3} film on the diamond surface using an atomic-layer-deposition (ALD) method with an H{sub 2}O oxidant at 450 Degree-Sign C. The 2DHG thus protected survived air annealing at 550 Degree-Sign C for an hour, establishing a stable high-temperature operation of 2DHG devices in air. In part, this achievement is based on high stability of C-H bonds up to 870 Degree-Sign C in vacuum and above 450 Degree-Sign C in an H{sub 2}O-containing environment as in the ALD. Chemically, this stability is supported by the fact that both the thermal decomposition of C-H bonds and reaction between C-H bonds and H{sub 2}O are endothermic processes. It makes a stark contrast to the instability of Si-H bonds, which decompose even at room temperature being exposed to atomic hydrogen. In this respect, the diamond 2DHG devices are also promising as power devices expectedly being free from many instability phenomena, such as hot carrier effect and negative-bias temperature instability, associated with Si devices. As to adsorbate, which is the other prerequisite for 2DHG, it desorbed in vacuum below 250 Degree-Sign C, and accordingly some new adsorbates should have adsorbed during the ALD at 450 Degree-Sign C. As a clue to this question, we certainly confirmed that some adsorbates, other than those at room temperature, adsorbed in air above 100 Degree-Sign C and remained at least up to 290 Degree-Sign C. The identification of these adsorbates is open for further investigation.

  13. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Finger, J.T.; Glowka, D.A.

    1989-06-01T23:59:59.000Z

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  14. The reflection of very cold neutrons from diamond powder nanoparticles

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; E. V. Lychagin; A. Yu. Muzychka; A. V. Strelkov; G. Pignol; K. V. Protasov

    2008-05-17T23:59:59.000Z

    We study possibility of efficient reflection of very cold neutrons (VCN) from powders of nanoparticles. In particular, we measured the scattering of VCN at a powder of diamond nanoparticles as a function of powder sample thickness, neutron velocity and scattering angle. We observed extremely intense scattering of VCN even off thin powder samples. This agrees qualitatively with the model of independent nanoparticles at rest. We show that this intense scattering would allow us to use nanoparticle powders very efficiently as the very first reflectors for neutrons with energies within a complete VCN range up to $10^{-4}$ eV.

  15. Blue Diamond, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVI Jump to:Diamond, Nevada:

  16. Black Diamond, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEIBixby, Oklahoma: EnergyBlack Diamond

  17. Optical properties of chemical-vapor-deposited diamond films

    SciTech Connect (OSTI)

    Bi, X.X.; Eklund, P.C.; Zhang, J.G.; Rao, A.M. (Department of Physics and Astronomy, University of Kentucky, Lexington, KY (USA)); Perry, T.A.; Beetz, C.P. Jr. (Physics Department, General Motors Research Laboratory, Warren, MI (USA))

    1990-04-01T23:59:59.000Z

    Results of room-temperature optical studies on {similar to}10 micron thick, free-standing diamond films are reported. The films were grown on Si(100) substrates by hot filament-assisted chemical vapor deposition (CVD) from a methane/hydrogen mixture. The as-grown, free surface of the films exhibited a surface roughness of scale {sigma}{similar to}0.2 to 5 microns, depending on the methane/hydrogen mixture, which introduces significant optical scattering loss for frequencies greater than 0.5 eV. Specular reflection and transmission spectra in the range 0.01--10 eV were collected. Below the threshold for interband adsorption near {similar to}5 eV, the films studied behaved approximately as thin parallel plates of refractive index 2.4, with the rough free surface leading to increasingly larger loss of specular transmission/reflection with decreasing wavelength. Structure in the mid-infrared transmission spectra was observed and attributed to disorder-induced one-phonon absorption, intrinsic multi-phonon absorption, and infrared active --C--H{sub 2} stretching modes. The strength of the C--H band was observed to increase with increasing methane pressure in the growth chamber. At 5.3 eV, the onset of interband absorption was observed, in good agreement with the value of the indirect bandgap in type IIa (intrinsic) diamond.

  18. Increasing the creation yield of shallow single defects in diamond by surface plasma treatment

    SciTech Connect (OSTI)

    Osterkamp, Christian; Scharpf, Jochen; Naydenov, Boris; Jelezko, Fedor [Institut für Quantenoptik, Ulm University, Albert Einstein Allee 11, Ulm 89081 (Germany)] [Institut für Quantenoptik, Ulm University, Albert Einstein Allee 11, Ulm 89081 (Germany); Pezzagna, Sebastien; Meijer, Jan [Institut für Experimentelle Physik II, Abteilung Nukleare Festkörperphysik, Universität Leipzig, Linnestraße 5, Leipzig 04103 (Germany)] [Institut für Experimentelle Physik II, Abteilung Nukleare Festkörperphysik, Universität Leipzig, Linnestraße 5, Leipzig 04103 (Germany); Diemant, Thomas; Jürgen Behm, Rolf [Institut für Oberflächenchemie und Katalyse, Ulm University, Albert-Einstein-Allee 47, Ulm 89081 (Germany)] [Institut für Oberflächenchemie und Katalyse, Ulm University, Albert-Einstein-Allee 47, Ulm 89081 (Germany)

    2013-11-04T23:59:59.000Z

    Single Nitrogen-Vacancy (NV) centers in diamond close to the crystal surface are very promising magnetic field sensors with very high sensitivity. Here, we report the enhanced creation of very shallow (less than 3 nm below the diamond surface) NV centers by using fluorine and oxygen plasma treatment. We observe a four fold increase—from 0.11% to about 0.45% in the production yield when the sample surface is terminated with fluorine or oxygen atoms. This effect is explained by the stabilization of the NV's negative charge state which is influenced by the various defects present on the diamond surface.

  19. Plasma etching of cavities into diamond anvils for experiments at high pressures and high temperatures

    SciTech Connect (OSTI)

    Weir, S.T.; Cynn, H.; Falabella, S.; Evans, W.J.; Aracne-Ruddle, C.; Farber, D.; Vohra, Y.K. (LLNL); (UAB)

    2012-10-23T23:59:59.000Z

    We describe a method for precisely etching small cavities into the culets of diamond anvils for the purpose of providing thermal insulation for samples in experiments at high pressures and high temperatures. The cavities were fabricated using highly directional oxygen plasma to reactively etch into the diamond surface. The lateral extent of the etch was precisely controlled to micron accuracy by etching the diamond through a lithographically fabricated tungsten mask. The performance of the etched cavities in high-temperature experiments in which the samples were either laser heated or electrically heated is discussed.

  20. Long coherence time of spin qubits in $^{12}$C enriched polycrystalline CVD diamond

    E-Print Network [OSTI]

    K. D. Jahnke; B. Naydenov; T. Teraji; S. Koizumi; T. Umeda; J. Isoya; F. Jelezko

    2012-06-19T23:59:59.000Z

    Single defects in diamond and especially negatively charged nitrogen vacancy (NV) centers are very promising quantum systems with wide applications in physics and biology. It was shown that their coherence properties can be strongly improved by growing ultrapure diamond with low concentration of parasitic spins associated with nitrogen electron spins and nuclear spins related to $^{13}$C carbon isotope. Here we report a high quality $^{12}$C-enriched polycrystalline CVD diamond material with properties comparable with single crystals. We find single NVs in the grains of this material, which show extremely long electron spin coherence time $T_2 > 2\\,ms$.

  1. Diamondization of Graphene and Graphene-BN Bilayers: Chemical Functionalization and Electronic Structure Engineering

    E-Print Network [OSTI]

    Yuan, Long; Yang, Jinlong; Hou, Jian Guo

    2011-01-01T23:59:59.000Z

    In this article, based on first-principles calculations, we systematically study functionalization induced diamonization of graphene bilayer and graphene-BN hybrid bilayer. With single-side functionalization, the diamondized structures are magnetic semiconductor. Interestingly, if both sides of the bilayer are functionalized, diamondization becomes spontaneous without a barrier. On the other hand, when the bottom layer of the bilayer graphene is replaced by a single hexagonal BN layer, the diamondized structure becomes nonmagnetic metal. The tunable electronic and magnetic properties pave new avenues to construct graphene-based electronics and spintronics devices.

  2. Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy

    E-Print Network [OSTI]

    Li, Luozhou

    Commonly used preparation method for thin diamond membranes by focused ion beam (FIB) techniques results in surface damage. Here, the authors introduce an alternative method based on reactive ion etching (RIE). To compare ...

  3. Core-Shell Diamond as a Support for Solid-Phase Extraction and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid...

  4. Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing

    E-Print Network [OSTI]

    Aharonovich, Igor; Magyar, Andrew P; Buckley, Bob B; Yale, Christopher G; Awschalom, David D; Hu, Evelyn L

    2011-01-01T23:59:59.000Z

    Fabrication of devices designed to fully harness the unique properties of quantum mechanics through their coupling to quantum bits (qubits) is a prominent goal in the field of quantum information processing (QIP). Among various qubit candidates, nitrogen vacancy (NV) centers in diamond have recently emerged as an outstanding platform for room temperature QIP. However, formidable challenges still remain in processing diamond and in the fabrication of thin diamond membranes, which are necessary for planar photonic device engineering. Here we demonstrate epitaxial growth of single crystal diamond membranes using a conventional microwave chemical vapor deposition (CVD) technique. The grown membranes, only a few hundred nanometers thick, show bright luminescence, excellent Raman signature and good NV center electronic spin coherence times. Microdisk cavities fabricated from these membranes exhibit quality factors of up to 3000, overlapping with NV center emission. Our methodology offers a scalable approach for dia...

  5. Examination of the Material Removal Rate in Lapping Polycrystalline Diamond Compacts

    E-Print Network [OSTI]

    Sowers, Jason Michael

    2012-10-19T23:59:59.000Z

    This study examines the lapping machining process used during the manufacturing of polycrystalline diamond compacts (PDCs). More specifically, it is aimed at improving the productivity of the process by developing a better understanding...

  6. Development and analysis of a flexible signal phasing strategy for diamond interchange control

    E-Print Network [OSTI]

    Krueger, Gregory David

    1995-01-01T23:59:59.000Z

    There are many signal timing strategies for diamond interchanges. Due to the different geometric and traffic conditions, however, none of the available strategies is always optimal. The two most widely used strategies, three-phase, and four...

  7. Evaluation of traffic operations at diamond interchanges using advanced actuated control

    E-Print Network [OSTI]

    Koonce, Peter John Vincent

    1998-01-01T23:59:59.000Z

    This thesis documents an operational analysis of ographics. advanced actuated traffic control at signalized diamond interchanges. The study attempts to determine the benefits a "flexible'' phasing strategy provides to the interchange. Flexible...

  8. Diamond thin films: a 21st-century material By Paul W. May

    E-Print Network [OSTI]

    Bristol, University of

    in Kimberley, South Africa, creating a huge rush of European prospectors. The wealth this created helped between them at room temperature and pressure. Ironically, this large energy barrier, which makes diamond

  9. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOE Patents [OSTI]

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03T23:59:59.000Z

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  10. Persistence of Single Spin Coherence above 600K in Diamond

    E-Print Network [OSTI]

    Toyli, D M; Alkauskas, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2012-01-01T23:59:59.000Z

    We study the spin and orbital dynamics of single nitrogen vacancy (NV) centers in diamond between room temperature and 700 K. We find that the ability to optically address and coherently control single spins above room temperature is limited by nonradiative processes that quench the NV center's fluorescence-based spin readout between 550 K and 700 K. Combined with electronic structure calculations, our measurements indicate that the energy difference between the 3E and 1A1 electronic states is approximately 0.8 eV. We also find that the inhomogeneous spin lifetime (T2*) is independent of temperature up to at least 625 K, suggesting that single NV centers could be applied as nanoscale thermometers over a broad temperature range.

  11. The Discrete Geometry of a Small Causal Diamond

    E-Print Network [OSTI]

    Mriganko Roy; Debdeep Sinha; Sumati Surya

    2012-12-04T23:59:59.000Z

    We study the discrete causal set geometry of a small causal diamond in a curved spacetime using the average abundance of k-element chains or total orders in the underlying causal set C. We begin by obtaining the first order curvature corrections to the flat spacetime expression for the abundance using Riemann normal coordinates. For fixed spacetime dimension this allows us to find a new expression for the discrete scalar curvature of C as well as the time-time component of its Ricci tensor in terms of the abundances of k-chains. We also find a new dimension estimator for C which replaces the flat spacetime Myrheim-Meyer estimator in generic curved spacetimes.

  12. Study of narrowband single photon emitters in polycrystalline diamond films

    SciTech Connect (OSTI)

    Sandstrom, Russell G.; Shimoni, Olga; Martin, Aiden A.; Aharonovich, Igor, E-mail: igor.aharonovich@uts.edu.au [School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)

    2014-11-03T23:59:59.000Z

    Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible—near infra-red spectral range. The emitters possess fast lifetime (?several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.

  13. The effects of diamond injector angles on flow structures at various Mach numbers

    E-Print Network [OSTI]

    McLellan, Justin Walter

    2006-10-30T23:59:59.000Z

    THE EFFECTS OF DIAMOND INJECTOR ANGLES ON FLOW STRUCTURES AT VARIOUS MACH NUMBERS A Thesis by JUSTIN WALTER MCLELLAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2005 Major Subject: Aerospace Engineering THE EFFECTS OF DIAMOND INJECTOR ANGLES ON FLOW STRUCTURES AT VARIOUS MACH NUMBERS A Thesis by JUSTIN WALTER...

  14. Add MTBE unit ahead of alkylation

    SciTech Connect (OSTI)

    Masters, K.R.; Prohaska, E.A.

    1988-08-01T23:59:59.000Z

    Approximately three years ago, the people at Diamond Shamrock's Sunray, Texas, refinery recognized a growing demand for high octane super premium unleaded gasoline in their regional marketing area. It was apparent that they would need to change their processing scheme to meet this growing demand. After investigating several options, they decided to install an MTBE (methyl tert-butyl ether) unit upstream of their existing sulfuric acid (H/sub 2/SO/sub 4/) aklylation unit. The new unit would process olefin feed before it entered the alkylation unit. The MTBE unit was expected to improve Diamond Shamrock's gasoline pool in two ways. First, the MTBE would be an additional high octane blending stock for the gasoline pool. Second, the MTBE unit would improve the quality of the olefin stream going to the alkylation unit. Diamond Shamrock brought their MTBE unit onstream in December, 1985. The results of the combined operation exceeded expectations, producing alkylate in excess of 98 RON (Research octane number) and MTBE of 118 RON. These components significantly upgraded the refinery's capability to produce a super premium unleaded gasoline.

  15. hal-00761492,version1-5Dec2012 Author manuscript, published in "Diamond and Related Materials 17 (2008) 1324" DOI : 10.1016/j.diamond.2008.01.090

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2008-01-01T23:59:59.000Z

    the n-type phosphorus-doped polycrystalline diamond films PN04 (grain size: 1m), PN11 (grain size: 3m-00761492,version1-5Dec2012 Author manuscript, published in "Diamond and Related Materials 17 (2008) 1324" DOI : 10.1016/j.diamond.2008.01.090 #12;1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

  16. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Kagan, Harris; Kass, Richard; Gan, K.K.

    2014-01-23T23:59:59.000Z

    With the LHC upgrades in 2013, and further LHC upgrades scheduled in 2018, most LHC experiments are planning for detector upgrades which require more radiation hard technologies than presently available. At present all LHC experiments now have some form of diamond detector. As a result Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of all LHC experiments. Moreover CVD diamond is now being discussed as an alternative sensor material for tracking very close to the interaction region of the HL-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications. Our accomplishments include: • Developed a two U.S.companies to produce electronic grade diamond, • Worked with companies and acquired large area diamond pieces, • Performed radiation hardness tests using various proton energies: 70 MeV (Cyric, Japan), 800 MeV (Los Alamos), and 24 GeV (CERN).

  17. A comparative study of the conventional diamond and cloverleaf interchanges with respect to ramp capacity and vehicular delay

    E-Print Network [OSTI]

    Barnett, James David

    1963-01-01T23:59:59.000Z

    Volume. . 37 14 Eeighted Aver' ?. . e Tr; rcl Ti!ae Curve for Inside Lane or Left Turn Pueues. 40 15 Diamond Rarup Dcl-y Curves. 16 Cloverleaf H=mi Travel Thee Curves. 45 17 Plot cf Diamond -nd Cloverle-f Ramp Capacity Curves. . Comparison of Dia... indicating specific ;- rrcnts 2. V rrant A certain tr )ffic rolumn 0 Intersection cf tvc h'gh type road;; ys All urban ctree ccnnc ticn: (diamond) d. Cross road vrth less than 3000 vpd (diamond) o e. Cross road must have high s-eed o. )er. bien...

  18. Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties

    SciTech Connect (OSTI)

    Jiang, Qianqing; Liu, Dongqi; Liu, Gangqin; Chang, Yanchun; Li, Wuxia, E-mail: liwuxia@aphy.iphy.ac.cn, E-mail: czgu@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Xinyu; Gu, Changzhi, E-mail: liwuxia@aphy.iphy.ac.cn, E-mail: czgu@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2014-07-28T23:59:59.000Z

    Sources of single photons are of fundamental importance in many applications as to provide quantum states for quantum communication and quantum information processing. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, even at room temperature. However, the efficiency of photon collection of the color centers in bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, diamond structuring has been investigated by various methods. Among them, focused-ion-beam (FIB) direct patterning has been recognized as the most favorable technique. But it has been noted that diamond tends to present significant challenges in FIB milling, e.g., the susceptibility of forming charging related artifacts and topographical features. In this work, periodically-positioned-rings and overlay patterning with stagger-superimposed-rings were proposed to alleviate some problems encountered in FIB milling of diamond, for improved surface morphology and shape control. Cross-scale network and uniform nanostructure arrays have been achieved in single crystalline diamond substrates. High quality diamond solid immersion lens and nanopillars were sculptured with a nitrogen-vacancy center buried at the desired position. Compared with the film counterpart, an enhancement of about ten folds in single photon collection efficiency was achieved with greatly improved signal to noise ratio. All these results indicate that FIB milling through over-lay patterning could be an effective approach to fabricate diamond structures, potentially for quantum information studies.

  19. Diamond and Related Materials, 3 (1994) 783-786 783 Comparison of two models of thin diamond film microhardness data to

    E-Print Network [OSTI]

    Bristol, University of

    1994-01-01T23:59:59.000Z

    of Aerospace Engineering, University of Bristol, Queen's Building, University Walk, Bristol, BS8 1TR ( UK) Paul of diamond films (1-3 ~tm thick) on silicon and on a titanium alloy is reported. The measured hardness for the silicon and titanium alloy substrates respectively. There is a large titanium carbide interfacial layer

  20. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOE Patents [OSTI]

    Schiferl, David (Los Alamos, NM); Olinger, Barton W. (Santa Fe, NM); Livingston, Robert W. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  1. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOE Patents [OSTI]

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30T23:59:59.000Z

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  2. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    SciTech Connect (OSTI)

    Benecha, E. M. [Department of Physics, University of South Africa, P.O Box 392, UNISA 0003, Pretoria (South Africa); Lombardi, E. B. [College of Graduate Studies, University of South Africa, P.O Box 392, UNISA 0003, Pretoria (South Africa)

    2014-02-21T23:59:59.000Z

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 ?{sub B}) and 33.3 meV (1.0 ?{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  3. Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond

    SciTech Connect (OSTI)

    Himics, L., E-mail: himics.laszlo@wigner.mta.hu; Tóth, S.; Veres, M.; Koós, M. [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Balogh, Z. [Uzhhorod National University, 88000 Uzhhorod (Ukraine)

    2014-03-03T23:59:59.000Z

    This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He{sup +} ion implantation into nanosized diamond “layer” was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N{sub 2}{sup +} ion and heat treatment in vacuum at 750?°C to initiate vacancy diffusion. To decrease the sp{sup 2} carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450?°C in flowing air atmosphere was used. The modification of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98?eV, 2.83?eV, and 2.71?eV photon energies.

  4. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13T23:59:59.000Z

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  5. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing

    SciTech Connect (OSTI)

    Parikh, N.R.; Hunn, J.D.; McGucken, E.; Swanson, M.L. (University of North Carolina, Chapel Hill, North Carolina 27599-3255 (United States)); White, C.W. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6048 (United States)); Rudder, R.A.; Malta, D.P.; Posthill, J.B.; Markunas, R.J. (Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194 (United States))

    1992-12-28T23:59:59.000Z

    We describe a new method for removing thin, large area sheets of diamond from bulk or homoepitaxial diamond crystals. This method consists of an ion implantation step, followed by a selective etching procedure. High energy (4--5 MeV) implantation of carbon or oxygen ions creates a well-defined layer of damaged diamond that is buried at a controlled depth below the surface. For C implantations, this layer is graphitized by annealing in vacuum, and then etched in either an acid solution, or by heating at 550--600 [degree]C in oxygen. This process successfully lifts off the diamond plate above the graphite layer. For O implantations of a suitable dose (3[times]10[sup 17] cm[sup [minus]2] or greater), the liftoff is achieved by annealing in vacuum or flowing oxygen. In this case, the O required for etching of the graphitic layer is also supplied internally by the implantation. This liftoff method, combined with well-established homoepitaxial growth processes, has considerable potential for the fabrication of large area single crystalline diamond sheets.

  6. Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    SciTech Connect (OSTI)

    MacDougall, Gregory J [ORNL; Gout, Delphine J [ORNL; Zarestky, Jerel L [ORNL; Ehlers, Georg [ORNL; Podlesnyak, Andrey A [ORNL; McGuire, Michael A [ORNL; Mandrus, David [ORNL; Nagler, Stephen E [ORNL

    2011-01-01T23:59:59.000Z

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.

  7. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A. [Tech-X Corp., Boulder, CO (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smithe, D. [Tech-X Corp., Boulder, CO (United States); Cary, J. R. [Tech-X Corp., Boulder, CO (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smedley, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-07T23:59:59.000Z

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity ? is the only parameter varied in the simulations, the value ? = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  8. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A.; Ben-Zvi, I.; Smithe, D.; Cary, J. R.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-07T23:59:59.000Z

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore »electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity ? is the only parameter varied in the simulations, the value ? = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  9. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G. [Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Energy Department, Politecnico di Milano, Milano (Italy); Dipartimento di Fisica, Centro NAST, Universita degli Studi di Roma Tor Vergata, Roma (Italy); STFC, ISIS facility, Rutherford Appleton Laboratory, Chilton Didcot Oxfordshire (United Kingdom); Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy)

    2012-06-19T23:59:59.000Z

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  10. Diamond tool wear vs cutting distance on electroless nickel mirrors

    SciTech Connect (OSTI)

    Syn, C.K.; Taylor, J.S.; Donaldson, R.R.

    1986-10-14T23:59:59.000Z

    Wear data are presented for diamond tools cutting electroless nickel (eNi) for cut lengths up to 70,000 ft (13 miles). Two tools having different infrared absorption characteristics were used to cut an eNi preparation that had yielded minimum values for surface roughness and tool wear rate in a previous study. The data include Talystep measurement of the rms amplitude of the feed-marks versus cumulative cutting distance, representative examples of shape changes for the feed-mark profiles, SEM and optical micrographs of the tool rake and flank face wear zones, and measurements of the cutting edge profile and edge recession distance by a tool-nose replication technique. Feed-mark roughness values were found to increase from 5 to 90 A rms over the duration of the test, with an associated edge recession of about 1000 A and the development of a periodic tool edge grooving indicative of burnishing of the part surface. The ir absorption data successfully predicted the order of the two tools in terms of wear rate and fracture toughness.

  11. Photophysics of single nitrogen-vacancy centers in diamond nanocrystals

    E-Print Network [OSTI]

    M. Berthel; O. Mollet; G. Dantelle; T. Gacoin; S. Huant; A. Drezet

    2015-01-15T23:59:59.000Z

    A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a function of the excitation power for both pure charge states, neutral and negatively charged, as well as for the photochromic state, where the center switches between both states at any power. A dedicated three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters, we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large extent dominated by that of the negative state, in agreement with the excess charge release of the negative center being much slower than the photon emission process.

  12. Rome 2007 2nd International Industrial Diamond Conference Proceedings, Rome April 19-Development of a Procedure for Fatigue Crack Growth in PCD

    E-Print Network [OSTI]

    and the crack morphology. #12;1. Background Polycrystalline diamond cutters are known to fail during drilling polycrystalline diamond material inevitably leads to premature degradation of the cutter's ability to drill rockRome 2007 2nd International Industrial Diamond Conference Proceedings, Rome April 19- 20, 2007

  13. FAR-INFRARED SPECTROSCOPIC STUDY OF DIAMOND FILMS A. J. Gatesman*, R. H. Giles*, G. C. Phillips*, J. Waldman*, L. P. Bourget** and R. Post**

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    **Applied Science and Technology, Inc., Woburn, MA 01801 High quality polycrystalline diamond films grownFAR-INFRARED SPECTROSCOPIC STUDY OF DIAMOND FILMS A. J. Gatesman*, R. H. Giles*, G. C. Phillips*, J in this frequency regime. INTRODUCTION Recent interest in the growth, production and application of diamond thin

  14. singapore_composites5.doc submitted to World Scientific 22/10/2003 -14:46 1/1 DIAMOND-FIBRE REINFORCED PLASTIC COMPOSITES

    E-Print Network [OSTI]

    Bristol, University of

    thin films of polycrystalline diamond on different substrates has enabled scientists and engineerssingapore_composites5.doc submitted to World Scientific 22/10/2003 - 14:46 1/1 DIAMOND of Bristol, Bristol BS8 1TR, UK Email: David.Smith@bris.ac.uk Diamond fibre reinforced poly

  15. Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition

    E-Print Network [OSTI]

    Bristol, University of

    chemical vapor deposition of polycrystalline diamond. Several tracer species are monitored in order to gain used for diamond chemical vapor deposition Jie Ma,1 Michael N. R. Ashfold,1,a and Yuri A. Mankelevich2 spectroscopic methods used to diagnose microwave MW plasmas used for diamond chemical vapor deposition CVD . Zhu

  16. Reply to: "Recycled" volatiles in mantle derived diamonds--Evidence from nitrogen and noble gas isotopic data

    E-Print Network [OSTI]

    Cartigny, Pierre

    and Honda [R.K. Mohapatra, and M. Honda, "Recycled" volatiles in mantle derived diamonds--evidence from (2005) 559­572.]. We present here reasons why the alternative view of Mohapatra and Honda [R.K. Mohapatra and M. Honda, "Recycled" volatiles in mantle derived diamonds--evidence from nitrogen and noble

  17. Synthetic diamond and wurtzite structures selfassemble with isotropic pair interactions Mikael Rechtsman, Frank Stillinger, Salvatore Torquato 2,3,4

    E-Print Network [OSTI]

    Stillinger, Frank

    Synthetic diamond and wurtzite structures self­assemble with isotropic pair interactions Mikael wurtzite lattices stabilize, evidenced lattice sums, phonon spectra, positive­energy defects, self result three­dimensional diamond and wurtzite structures self­assemble with isotropic teractions

  18. Salsbury and Diamond: Automated Testing of HVAC Systems for Commissioning -1 -Automated Testing of HVAC Systems for Commissioning

    E-Print Network [OSTI]

    and Diamond: Automated Testing of HVAC Systems for Commissioning - 1 - Automated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond Lawrence Berkeley National Laboratory Berkeley, CA 94720 Synopsis This paper describes an approach to the automation of the commissioning of HVAC systems. The approach

  19. Plasma-activated direct bonding of diamond-on-insulator wafers to thermal oxide grown silicon wafers

    E-Print Network [OSTI]

    Akin, Tayfun

    microscopy, profilometer and wafer bow measurements. Plasma-activated direct bonding of DOI wafers to thermalPlasma-activated direct bonding of diamond-on-insulator wafers to thermal oxide grown silicon (CMP) on the diamond surface makes a poor bonding to silicon wafers with thermal oxide. Our results

  20. Seasonal steroid hormone levels and their relation to reproduction in the Western Diamond-backed Rattlesnake, Crotalus

    E-Print Network [OSTI]

    Taylor, Emily

    Seasonal steroid hormone levels and their relation to reproduction in the Western Diamond-backed levels in blood samples from free-ranging Western Diamond-backed Rattle- snakes (Crotalus atrox physiology, from under- standing basic mechanisms to designing treatments for reproductive dysfunction

  1. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect (OSTI)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28T23:59:59.000Z

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  2. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28T23:59:59.000Z

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  3. Nano-fabricated solid immersion lenses registered to single emitters in diamond

    E-Print Network [OSTI]

    L. Marseglia; J. P. Hadden; A. C. Stanley-Clarke; J. P. Harrison; B. Patton; Y. -L. D. Ho; B. Naydenov; F. Jelezko; J. Meijer; P. R. Dolan; J. M. Smith; J. G. Rarity; J. L. O'Brien

    2011-02-22T23:59:59.000Z

    We describe a technique for fabricating micro- and nano-structures incorporating fluorescent defects in diamond with a positional accuracy in the hundreds of nanometers. Using confocal fluorescence microscopy and focused ion beam (FIB) etching we first locate a suitable defect with respect to registration marks on the diamond surface and then etch a structure using these coordinates. We demonstrate the technique here by etching an 8 micron diameter hemisphere positioned such that a single negatively charged nitrogen-vacancy defect lies at its origin. This type of structure increases the photon collection efficiency by removing refraction and aberration losses at the diamond-air interface. We make a direct comparison of the fluorescence photon count rate before and after fabrication and observe an 8-fold increase due to the presence of the hemisphere.

  4. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Rainer Wallny

    2012-10-15T23:59:59.000Z

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  5. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06T23:59:59.000Z

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrents around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.

  6. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06T23:59:59.000Z

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrentsmore »around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less

  7. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    SciTech Connect (OSTI)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06T23:59:59.000Z

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrents around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.

  8. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect (OSTI)

    Rainey, E. S. G.; Kavner, A. [Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 (United States); Hernlund, J. W. [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Earth-Life Science Institute, Megoro, Tokyo 152-8551 (Japan)

    2013-11-28T23:59:59.000Z

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  9. Improved x-ray collimation system for diamond-anvil high-pressure cells

    SciTech Connect (OSTI)

    Schiferl, D.; Olinger, B.; Livingston, R.

    1983-09-01T23:59:59.000Z

    An improved x-ray collimation system for diamond-anvil high-pressure cells is described. The usual practice of mounting the collimator directly in the diamond-anvil cell is not followed. Instead, the collimator is mounted and aligned in a fixture which can be removed from the diamong-anvil cell. The end of the collimator furthest from the sample can be fitted with a set of removable plugs, each with a different aperture. This collimation system is easily aligned, can be removed from the high-pressure cell with no loss of alignment, and is inexpensive to construct.

  10. Hyperfine-Enhanced Gyromagnetic Ratio of a Nuclear Spin in Diamond

    E-Print Network [OSTI]

    S. Sangtawesin; J. R. Petta

    2015-03-25T23:59:59.000Z

    Nuclear spins in the solid state environment of diamond are highly coherent, but difficult to rapidly control due to the small nuclear gyromagnetic ratio. Here we demonstrate a more than 50-fold enhancement of the effective nuclear gyromagnetic ratio by coupling the nuclear spin to an electronic spin of a nitrogen-vacancy (NV) center in diamond. The enhancement allows for faster nuclear spin rotations and is in good agreement with second-order perturbation theory. The method may be applied to other systems with similar electron-nuclear spin interactions, such as phosphorous donors in silicon, opening up the possibility of fast and direct nuclear spin control in coupled spin systems.

  11. Photo-stimulated low electron temperature high current diamond film field emission cathode

    DOE Patents [OSTI]

    Shurter; Roger Philips (Los Alamos, NM), Devlin; David James (Santa Fe, NM), Moody; Nathan Andrew (Los Alamos, NM), Taccetti; Jose Martin (Santa Fe, NM), Russell; Steven John (Los Alamos, NM)

    2012-07-24T23:59:59.000Z

    An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.

  12. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    SciTech Connect (OSTI)

    Ming, L. C. [University of Hawaii] [University of Hawaii; Zinin, P. V. [University of Hawaii] [University of Hawaii; Sharma, S. K. [University of Hawaii] [University of Hawaii

    2014-04-22T23:59:59.000Z

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  13. Field emission from bias-grown diamond thin films in a microwave plasma

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (Naperville, IL); Ding, Ming Q. (Beijing, CN); Auciello, Orlando (Bolinbrook, IL)

    2002-01-01T23:59:59.000Z

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  14. Design of flexible ultrahigh-Q microcavities in diamond-based photonic crystal slabs

    E-Print Network [OSTI]

    Snjezana Tomljenovic-Hanic; Andrew D. Greentree; C. Martijn de Sterke; Steven Prawer

    2008-12-10T23:59:59.000Z

    We design extremely flexible ultrahigh-Q diamond-based double-heterostructure photonic crystal slab cavities by modifying the refractive index of the diamond. The refractive index changes needed for ultrahigh-Q cavities with $Q ~ 10^7$, are well within what can be achieved ($\\Delta n \\sim 0.02$). The cavity modes have relatively small volumes $Vflexible because the range of parameters, cavity length and the index changes, that enables an ultrahigh-Q is quite broad. Furthermore as the index modification is post-processed, an efficient technique to generate cavities around defect centres is achievable, improving prospects for defect-tolerant quantum architectures.

  15. Diamond-anvil high-pressure cell with improved x-ray collimation system

    SciTech Connect (OSTI)

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1986-07-22T23:59:59.000Z

    This patent describes a diamond-anvil high-pressure cell having a tubular piston and a cylinder in which the piston is slidable to effect compression of a pair of opposed diamonds located between the piston and the cylinder. The piston includes a central bore opening on one end, an adjustable X-ray collimation system comprising a tubular insert engageable in the bore of the piston, the insert including a central bore and having first and second ends, with the first end of the insert being closest to the opposed diamonds and the second end of the insert extending out of the open end of the piston, a collimator insertable in the bore of the tubular insert. The collimator has a central bore and having first and second ends corresponding respectively with the first and second ends of the insert, elastomeric pivot means mounted in the bore of the insert at the first end of the insert for flexibly retaining the first end of the collimator while allowing the collimator to pivot within the pivot means, and adjustable locking means located at the second end of the insert for adjusting and securing the second end of the collimator so as to be in alignment with the opposed diamonds.

  16. Automated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond

    E-Print Network [OSTI]

    Diamond, Richard

    carrying out a proof of operation. In large modern buildings, the energy management and control system to exercise systems while under closed-loop control. The test signals are in the form of setpoint changesAutomated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond Lawrence Berkeley

  17. PHYSICAL REVIEW B 83, 193410 (2011) Denser than diamond: Ab initio search for superdense carbon allotropes

    E-Print Network [OSTI]

    Oganov, Artem R.

    . At ambient conditions, the hP3 phase is a semiconductor with the GW band gap of 3.0 eV, tI12 is an insulator semimetallic (graphite, an excel- lent lubricant) and even superconducting (doped diamond and fullerenes).1 two-dimensional (2D) mate- rial is graphene. Such extremely high density, with uniquely high valence

  18. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres P-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single

  19. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOE Patents [OSTI]

    Carlisle, John A. (Plainfield, IL); Gruen, Dieter M. (Downers Grove, IL); Auciello, Orlando (Bolingbrook, IL); Xiao, Xingcheng (Woodridge, IL)

    2009-07-07T23:59:59.000Z

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  20. Advances in PSII Deposited Diamond-Like Carbon Coatings for Use as a Corrosion Barrier

    E-Print Network [OSTI]

    Advances in PSII Deposited Diamond-Like Carbon Coatings for Use as a Corrosion Barrier R. S to improve corrosion resistance, however, the necessary organometallics needed to implant these materials to produce an adherent, hard, wear and, corrosion-resistant coating plays a vital role. These applications

  1. Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon

    E-Print Network [OSTI]

    Tzeng, Yonhua

    Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology Joint Conference (ADC/FCT 2003) NASA/CP--2003-212319 August 2003 #12;The NASA STI Program Office . . . in Profile. · CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars

  2. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14T23:59:59.000Z

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  3. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L. (Espanola, NM); Morris, John S. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  4. Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp2

    E-Print Network [OSTI]

    Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp2 -on-sp3 Technology Laboratory, Illinois 60439, United States *S Supporting Information ABSTRACT: Graphene demonstrated potential for practical applications owing to its excellent electronic and thermal properties. Typical graphene field

  5. High quality factor nanocrystalline diamond micromechanical resonators limited by thermoelastic damping

    SciTech Connect (OSTI)

    Najar, Hadi, E-mail: hnajar@ucdavis.edu [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Chan, Mei-Lin [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Yang, Hsueh-An; Lin, Liwei [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Cahill, David G. [Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Horsley, David A. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States)

    2014-04-14T23:59:59.000Z

    We demonstrate high quality factor thin-film nanocrystalline diamond micromechanical resonators with quality factors limited by thermoelastic damping. Cantilevers, single-anchored and double-anchored double-ended tuning forks, were fabricated from 2.5??m thick in-situ boron doped nanocrystalline diamond films deposited using hot filament chemical vapor deposition. Thermal conductivity measured by time-domain thermoreflectance resulted in 24?±?3?W m{sup ?1} K{sup ?1} for heat transport through the thickness of the diamond film. The resonant frequencies of the fabricated resonators were 46?kHz–8?MHz and showed a maximum measured Q???86?000 at f{sub n}?=?46.849?kHz. The measured Q-factors are shown to be in good agreement with the limit imposed by thermoelastic dissipation calculated using the measured thermal conductivity. The mechanical properties extracted from resonant frequency measurements indicate a Young's elastic modulus of ?788?GPa, close to that of microcrystalline diamond.

  6. Diamond Amplified Photocathode Ilan Ben-Zvi, Andrew Burrill, Xiangyun Chang, Peter D.

    E-Print Network [OSTI]

    the diamond sample This heat load can be handled by LN cooling #12;Experimental Program I · Measure SEY and temporal broadening · Determine High Current Performance (Heat load, electron temperature) · Establish temperature is calculated to be ~ 0.35eV. Electron temperature for transport mode #12;Transit time: Drift

  7. Standards Panel: 1. Stephen Diamond, General Manager, Industry Standards Office and Global Standards Officer, EMC

    E-Print Network [OSTI]

    Standards Officer, EMC Corporation, Office of the CTO Steve Diamond has 30 years of management, marketing was President of the IEEE Computer Society. Steve is General Manager of the Industry Standards Office at EMC Corporation, and Global Standards Officer in the Office of the CTO. Before EMC, he was responsible for cloud

  8. N-type droping of nanocrystalline diamond films with nitrogen and electrodes made therefrom

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (late of Naperville, IL); Auciello, Orlando H. (Bolingbrook, IL); Carlisle, John A. (Plainfield, IL)

    2004-09-21T23:59:59.000Z

    An electrically conducting n-type ultrananocrystalline diamond (UNCD) having no less than 10.sup.19 atoms/cm.sup.3 of nitrogen is disclosed. A method of making the n-doped UNCD. A method for predictably controlling the conductivity is also disclosed.

  9. Vol 435|30 June 2005 Jianguo Liu and Jared Diamond

    E-Print Network [OSTI]

    Huang, Youqin

    , social conflicts and health costs within China. China's environmental prob- lems are also spilling overVol 435|30 June 2005 1179 Jianguo Liu and Jared Diamond China is the world's most popu- lous into other countries, while other coun- tries affect China's environment through globalization, pollution

  10. Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices.

    SciTech Connect (OSTI)

    Krauss, A. R.; Gruen, D. M.; Jayatissa, A.; Sumant, A.; Tucek, J.; Auciello, O.; Mancini, D.; Moldovan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busmann, H. G.; Meyer, E. M.; Ding, M. Q.; Univ. of Illinois at Chicago; Raytheon Electronic Systems Comp.; Fraunhofer Inst. for Applied Materials Science; Univ. of Bremen; Beijing Inst. of Electronics

    2001-11-01T23:59:59.000Z

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. A major problem with the Si-based MEMS technology is that Si has poor mechanical and tribological properties [J.J. Sniegowski, in: B. Bushan (Ed.), Tribology Issues and Opportunities in MEMS, Kluwer Academic Publisher, The Netherlands, 1998, p. 325; A.P. Lee, A.P. Pisano, M.G. Lim, Mater. Res. Soc. Symp. Proc. 276 (1992) 67.], and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors. However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophilic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments, Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS MMAs) is 10 000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS MMA applications. Diamond-like films are also being investigated for application to MEMS devices. However, they involve mainly physical vapor deposition methods that are not suitable for good conformal deposition on high aspect ratio features, and generally they do not exhibit the outstanding mechanical properties of diamond. We demonstrate here the application of a novel microwave plasma technique using a unique C{sub 60}/Ar or CH{sub 4}/Ar chemistry that produces phase-pure ultrananocrystalline diamond (UNCD) coatings with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. We have developed lithographic techniques for the fabrication of UNCD-MEMS components, including cantilevers and multi-level devices, acting as precursors to microbearings and gears, making UNCD a promising material for the development of high performance MEMS devices.

  11. Tribological performance of diamond and diamondlike carbon films at elevated temperatures

    SciTech Connect (OSTI)

    Erdemir, A.; Fenske, G.R.

    1995-09-01T23:59:59.000Z

    In this study, we investigated the tribological performance of diamond and diamondlike carbon (DLC) films as a function of ambient temperature. Both films were deposited on silicon carbide (SiC) by microwave plasma chemical vapor deposition and ion-beam deposition processes. Tribological tests were performed on a reciprocating wear machine in open air (20 to 30% relative humidity) and under a 10-N load using SiC pins. For the test conditions explored, the steady- state friction coefficients of test pairs without a diamond or DLC film were 0.7 to 0.9 and the average wear rates of pins were 10{sup {minus}5} to 10{sup {minus}7} mm{sup 3}/N.m, depending on ambient temperature. DLC films reduced the steady-state friction coefficients of test pairs by factors of 3 to 5 and the wear rates of pins by two to three orders of magnitude. Low friction coefficients were also obtained with the diamond films, but wear rates of the counterface pins were high due to the very abrasive nature of these films. The wear of SiC disks coated with either diamond or DLC films was virtually unmeasurable while the wear of uncoated disks was substantial. Test results showed that the DLC films could afford low friction up to about 300{degrees}C. At higher temperatures, the DLC films became graphitized and were removed from the surface. The diamond films could withstand much higher temperatures, but their tribological behavior degraded. Raman spectroscopy and scanning electron microscopy were used to elucidate the friction and wear mechanisms of both films at high temperatures.

  12. Ventilation and Infiltration in High-Rise Apartment Buildings Richard C. Diamond, Helmut E. Feustel and Darryl J. Dickerhoff

    E-Print Network [OSTI]

    Diamond, Richard

    1 Ventilation and Infiltration in High-Rise Apartment Buildings Richard C. Diamond, Helmut E to characterize the ventilation rates for the individual apartments. Parametric simulations were performed flow simulations suggest that the ventilation to the individual units varies considerably

  13. Design of diamond turned holograms by the nonlinear conjugate gradients method Colin Dankwart, Claas Falldorf and Jurgen Jahns

    E-Print Network [OSTI]

    Jahns, Jürgen

    Design of diamond turned holograms by the nonlinear conjugate gradients method Colin Dankwart investigate a different optimization approach, the nonlinear conjugate gradients (NCG) method. The NGC method design algorithm, based on the generalized projections method (GPM) [?] was established, taking

  14. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    SciTech Connect (OSTI)

    Chu, Yueh-Chieh; Jiang, Gerald [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Tu, Chia-Hao [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Chang Chi [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Liu, Chuan-pu; Ting, Jyh-Ming [Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Lee, Hsin-Li [Industrial Technology Research Institute - South, Tainan 701, Taiwan (China); Tzeng, Yonhua [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Advanced Optoelectronics Technology Center, No.1, University Road, Tainan 701, Taiwan (China); Auciello, Orlando [Argonne National Laboratory, Materials Science Division, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2012-06-15T23:59:59.000Z

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  15. Tests in Time: A Review of Natural Experiments of History, edited by Jared Diamond and James A. Robinson

    E-Print Network [OSTI]

    Currie, Thomas E

    2010-01-01T23:59:59.000Z

    on the island of Hispaniola (discussed in more detailCaribbean island of Hispaniola. Diamond wants to understandhave played a key role in Hispaniola’s history it is unclear

  16. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    SciTech Connect (OSTI)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07T23:59:59.000Z

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  17. Perfect alignment and preferential orientation of nitrogen-vacancy centers during CVD growth of diamond on (111) surfaces

    E-Print Network [OSTI]

    Julia Michl; Tokuyuki Teraji; Sebastian Zaiser; Ingmar Jakobi; Gerald Waldherr; Florian Dolde; Philipp Neumann; Marcus W. Doherty; Neil B. Manson; Junichi Isoya; Jörg Wrachtrup

    2014-02-11T23:59:59.000Z

    Synthetic diamond production is key to the development of quantum metrology and quantum information applications of diamond. The major quantum sensor and qubit candidate in diamond is the nitrogen-vacancy (NV) color center. This lattice defect comes in four different crystallographic orientations leading to an intrinsic inhomogeneity among NV centers that is undesirable in some applications. Here, we report a microwave plasma-assisted chemical vapor decomposition (MPCVD) diamond growth technique on (111)-oriented substrates that yields perfect alignment ($94\\pm2%$) of as-grown NV centers along a single crystallographic direction. In addition, clear evidence is found that the majority ($74\\pm4%$) of the aligned NV centers were formed by the nitrogen being first included in the (111) growth surface and then followed by the formation of a neighboring vacancy on top. The achieved homogeneity of the grown NV centers will tremendously benefit quantum information and metrology applications.

  18. The contact heat conductance at diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    SciTech Connect (OSTI)

    Assoufid, L.; Khounsary, A.M.

    1996-01-01T23:59:59.000Z

    Results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray diamond monochromators under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 {mu}m of nickel, while in the other, the copper contact surface was left as machined. Measured average interface heat conductances are 44.7 {plus_minus}8 W/cm{sup 2}{minus}K for nonplated copper and 23.0 {plus_minus}3 W/cm{sup 2}{minus}K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm{sup 2} contact area, will be about 10{degree}C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes.

  19. Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds

    SciTech Connect (OSTI)

    Bernacki, B.E.; Miller, A.C.; Maxey, L.C.; Cunningham, J.P. [Oak Ridge National Lab., TN (United States); Moreshead, W.V.; Nogues, J.L.R. [Geltech Inc., Alachua, FL (United States)

    1995-07-01T23:59:59.000Z

    Recent combinations of diffractive and refractive functions in the same optical component allow designers additional opportunities to make systems more compact and enhance performance. This paper describes a research program for fabricating hybrid refractive/diffractive components from diamond-turned molds using the bulk casting of sol-gel silica glass. The authors use the complementary dispersive nature of refractive and diffractive optics to render two-color correction in a single hybrid optical element. Since diamond turning has matured as a deterministic manufacturing technology, techniques previously suitable only in the infrared are now being applied to components used at visible wavelengths. Thus, the marriage of diamond turning and sol-gel processes offers a cost-effective method for producing highly customized and specialized optical components in high quality silica glass. With the sol-gel casting method of replication, diamond-turned mold costs can be shared over many pieces. Diamond turning takes advantage of all of the available degrees of freedom in a single hybrid optical element: aspheric surface to eliminate spherical aberration, kinoform surface for control of primary chromatic aberration, and the flexibility to place the kinoform on non-planar surfaces for maximum design flexibility. The authors discuss the critical issues involved in designing the hybrid element, single point diamond-turning the mold, and fabrication in glass using the sol-gel process.

  20. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    SciTech Connect (OSTI)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie, E-mail: jjli@iphy.ac.cn; Gu, Changzhi, E-mail: czgu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institution of Physics Chinese Academy of Sciences, Beijing 100190 (China)

    2014-05-05T23:59:59.000Z

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3?K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63?nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity.

  1. Local and bulk 13C hyperpolarization in NV-centered diamonds at variable fields and orientations

    E-Print Network [OSTI]

    Alvarez, Gonzalo A; Fischer, Ran; London, Paz; Kanda, Hisao; Onoda, Shinobu; Isoya, Junichi; Gershoni, David; Frydman, Lucio

    2014-01-01T23:59:59.000Z

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk, usually demand operation at cryogenic temperatures. Room-temperature approaches targeting diamonds with nitrogen-vacancy (NV) centers could alleviate this need, but hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron->13C spin alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. 13C-detected Nuclear Magnetic Resonance (NMR) experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs, throughout the nuclear ...

  2. Diamond pixel detector for beam profile monitoring in COMET experiment at J-PARC

    E-Print Network [OSTI]

    M. Cerv; P. Sarin; H. Pernegger; P. Vageesvaran; E. Griesmayer

    2014-11-15T23:59:59.000Z

    We present the design and initial prototype results of a pixellized proton beam profile monitor for the COMET experiment at J-PARC. The goal of COMET is to look for charged lepton flavor violation by direct muon to electron conversion at a sensitivity of $0^{-19}$. An 8 GeV proton beam pulsed at 100 ns with $10^{10}$ protons/s will be used to create muons through pion production and decay. In the final experiment, the proton flux will be raised to $10^{14}$ protons/sec to increase the sensitivity. These requirements of harsh radiation tolerance and fast readout make diamond a good choice for constructing a beam profile monitor in COMET. We present first results of the characterization of single crystal diamond (scCVD) sourced from a new company, 2a systems Singapore. Our measurements indicate excellent charge collection efficiency and high carrier mobility down to cryogenic temperatures.

  3. Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond

    SciTech Connect (OSTI)

    ?ermák, Jan, E-mail: cermakj@fzu.cz; Rezek, Bohuslav [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 16200 Prague 6 (Czech Republic); Koide, Yasuo [Sensor Materials Center, National Institute for Material Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Takeuchi, Daisuke [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-02-07T23:59:59.000Z

    Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4?nm thin tungsten-carbide (WC) layer on a 500?nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650?nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365?nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210?mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent.

  4. Scanning localized magnetic fields in a microfluidic device using single spin in a nano-diamond

    E-Print Network [OSTI]

    Lim, Kangmook; Shapiro, Benjamin; Taylor, Jacob M; Waks, Edo

    2014-01-01T23:59:59.000Z

    Nitrogen vacancy (NV) color centers in diamond have emerged as highly versatile optical emitters that exhibit room temperature spin properties. These characteristics make NV centers ideal for magnetometry which plays an important role in a broad range of chemical and biological sensing applications. The integration of NV magnetometers with microfluidic systems could enable the study of isolated chemical and biological samples in a fluid environment with high spatial resolution. Here we demonstrate a method to perform localized magnetometry with nanometer spatial precision using a single NV center in a microfluidic device. We manipulate a magnetic particle within a liquid environment using a combination of planar flow control and vertical magnetic actuation to achieve 3-dimensional manipulation. A diamond nanocrystal containing a single NV center is deposited in the microfluidic channels and acts as a local magnetic field probe. We map out the magnetic field distribution of the magnetic particle by varying its...

  5. Heteroepitaxial ZnO films on diamond: Optoelectronic properties and the role of interface polarity

    SciTech Connect (OSTI)

    Schuster, Fabian, E-mail: Fabian.Schuster@wsi.tum.de; Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin [Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, 85748 Garching (Germany); Magén, Cesar [Laboratorio de Microscopías Avanzadas (LMA) - Instituto de Nanociencia de Aragon (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Fundación ARAID, 50018 Zaragoza (Spain); Arbiol, Jordi [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, CAT (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, CAT (Spain)

    2014-06-07T23:59:59.000Z

    We demonstrate the growth of heteroepitaxial ZnO films on (110) diamond substrates by molecular beam epitaxy and report on a major advance in structural quality, as confirmed by XRD and high-resolution TEM measurements. The growth direction is found to be along the polar c-axis with Zn-polarity, deduced from annular bright-field scanning transmission electron microscopy imaging. This is important information, as simulations of the electronic band structure reveal the ZnO polarity to dominate the electronic structure of the interface: the formation of a two-dimensional electron gas on the ZnO side or a two-dimensional hole gas on the diamond side are predicted for Zn- and O-polarity, respectively. In addition, photoluminescence and absorption studies exhibit good optical properties and reveal stimulated emission for optical excitation above a threshold of 30?kW/cm{sup 2}.

  6. Electroless vs electrodeposited Ni-P alloys for diamond turning applications

    SciTech Connect (OSTI)

    Dini, J.W.

    1991-07-01T23:59:59.000Z

    Electrolytes nickel deposits with greater than 10% phosphorous have been widely used for diamond turning applications such as fabrications of large optics and other high precision parts. Although the coatings have worked well, they are not without their drawbacks. Porosity and nodule formation have been problems as well as the difficulty of obtaining deposits greater than about 75 {mu}m. In recent years much effort has been directed at the investigating electrodeposition of Ni-P alloys in an attempt to avoid these problems. The purpose of this paper is to compare diamond turning results for both electroless and electrodeposited alloys and speculate about the future uses of electrodeposited Ni-P for precision finishing applications. 16 refs., 7 figs.

  7. Flexible electron field emitters fabricated using conducting ultrananocrystalline diamond pyramidal microtips on polynorbornene films

    SciTech Connect (OSTI)

    Sankaran, K. J.; Tai, N. H., E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Lin, I. N., E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-01-20T23:59:59.000Z

    High performance flexible field emitters made of aligned pyramidal shaped conducting ultrananocrystalline diamond (C-UNCD) microtips on polynorbornene substrates is demonstrated. Flexible C-UNCD pyramidal microtips show a low turn-on field of 1.80?V/?m with a field enhancement factor of 4580 and a high emission current density of 5.8?mA/cm{sup 2} (at an applied field of 4.20?V/?m) with life-time stability of 210 min. Such an enhancement in the field emission is due to the presence of sp{sup 2}-graphitic sheath with a nanowire-like diamond core. This high performance flexible C-UNCD field emitter is potentially useful for the fabrication of diverse, flexible electronic devices.

  8. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  9. Signal transduction and conversion with color centers in diamond and piezo-elements

    E-Print Network [OSTI]

    Jianming Cai; Fedor Jelezko; Martin B. Plenio

    2014-04-25T23:59:59.000Z

    The ability to measure weak signals such as pressure, force, electric field, and temperature with nanoscale devices and high spatial resolution offers a wide range of applications in fundamental and applied sciences. Here we present a proposal for a hybrid device composed of thin film layers of diamond with color centers implanted and piezo-active elements for the transduction and measurement of a wide variety of physical signals. The magnetic response of a piezomagnetic layer to an external stress or a stress induced by the change of electric field and temperature is shown to affect significantly the spin properties of nitrogen-vacancy centers in diamond. Under ambient conditions, realistic environmental noise and material imperfections, our detailed numerical studies show that this hybrid device can achieve significant improvements in sensitivity over the pure diamond based approach in combination with nanometer scale spatial resolution. Beyond its applications in quantum sensing the proposed hybrid architecture offers novel possibilities for engineering strong coherent couplings between nanomechanical oscillator and solid state spin qubits.

  10. Local and bulk 13C hyperpolarization in NV-centered diamonds at variable fields and orientations

    E-Print Network [OSTI]

    Gonzalo A. Alvarez; Christian O. Bretschneider; Ran Fischer; Paz London; Hisao Kanda; Shinobu Onoda; Junichi Isoya; David Gershoni; Lucio Frydman

    2014-12-30T23:59:59.000Z

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk, usually demand operation at cryogenic temperatures. Room-temperature approaches targeting diamonds with nitrogen-vacancy (NV) centers could alleviate this need, but hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron->13C spin alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. 13C-detected Nuclear Magnetic Resonance (NMR) experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs, throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond NV centers in NMR, and in quantum information processing.

  11. Effect of Decreasing of Cobalt Content in Properties for Diamond/Cemented Carbide Tools

    SciTech Connect (OSTI)

    Waratta, A.; Hamdi, M. [Department of Design and Manufacture, Faculty of Engineering, University of Malaya (Malaysia); Ariga, T. [Department of Materials Science, School of Engineering, Tokai University (Japan)

    2010-03-11T23:59:59.000Z

    Powder metallurgy plays a role in manufacturing such as automotive and cutting tool applications. Diamond/cemented carbide tools are also made from this technique. Diamond particle and other matrix materials were employed in this study. The purpose is to investigate the physical and mechanical properties of different Cobalt (Co) content samples by using Taguchi's method. The materials used in the experiments were mixed by using a ball-mill machine. The mixed powders were pressed by conventional method. Then the green samples were sintered in a vacuum furnace. After reaching 500 deg. C, the samples were sintered with Argon (Ar) gas. The sintered samples were investigated density by immersion method, porosity by water saturation method, and hardness by Vicker hardness tester. It was found that with 59.5% Co content, plain diamond type, sintering temperature of 950 deg. C, sintering time of 40 minutes, and pressure of 625 MPa, density, porosity, and hardness got the best result in this study. From the Taguchi's analysis, the significant factors effected the performance were composition, sintering temperature, and sintering time.

  12. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    E-Print Network [OSTI]

    M. Osipenko; F. Pompili; M. Ripani; M. Pillon; G. Ricco; B. Caiffi; R. Cardarelli; G. Verona-Rinati; S. Argiro

    2015-05-23T23:59:59.000Z

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of $10^6$ n/cm$^2$s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10$^9$ n/cm$^2$s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4.

  13. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    E-Print Network [OSTI]

    Osipenko, M; Ripani, M; Pillon, M; Ricco, G; Caiffi, B; Cardarelli, R; Verona-Rinati, G; Argiro, S

    2015-01-01T23:59:59.000Z

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source na...

  14. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    SciTech Connect (OSTI)

    Assoufid, L.; Khounsary, A. [Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    1996-09-01T23:59:59.000Z

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 {mu}m of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7{plus_minus}8 W/cm{sup 2}-K for nonplated copper and 23.0{plus_minus}8 W/cm{sup 2}-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm {sup 2}contact area, will be about 10{degree}C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes. {copyright} {ital 1996 American Institute of Physics.}

  15. Ab initio investigation of lithium on the diamond C(100) surface K. M. O'Donnell,1,2,* T. L. Martin,2,3 N. A. Fox,3 and D. Cherns3

    E-Print Network [OSTI]

    Bristol, University of

    for diamond thermionic converters currently of interest for solar power generation and heat recycling. INTRODUCTION Diamond is a promising photocathode, field emitter, and thermionic emitter due to its chemical of approximately 400 °C, too low for thermionic applications.3 As such, research into diamond thermionics has

  16. W. N. WANGet al.: Laser Raman Studies of Polycrystalline and A-Diamond Films 255 phys. stat. sol. (a) 154,255 (1996)

    E-Print Network [OSTI]

    Bristol, University of

    1996-01-01T23:59:59.000Z

    W. N. WANGet al.: Laser Raman Studies of Polycrystalline and A-Diamond Films 255 phys. stat. sol, Transducer Systems Division, Wotton-under-Edge4)(d) Laser Raman Studies of Polycrystalline and Amorphic Diamond Films W. N. WANG(a), N. A. FOX(a), P. W. MAY(b), M. P. KNAPPER(b), G. MEADEN(c), P. G. PARTRIDGE

  17. CVD POLYCRYSTALLINE DIAMOND HIGH-Q MICROMECHANICAL RESONATORS Jing Wang, James E. Butler*, D. S. Y. Hsu*, and Clark T.-C. Nguyen

    E-Print Network [OSTI]

    Nguyen, Clark T.-C.

    CVD POLYCRYSTALLINE DIAMOND HIGH-Q MICROMECHANICAL RESONATORS Jing Wang, James E. Butler*, D. S. Y one variant of approach (3), in which CVD polycrystalline diamond material, with an acoustic velocity@engin.umich.edu ABSTRACT Chemical Vapor Deposited (CVD) polycrystalline dia- mond material, with an acoustic velocity

  18. JOURNAL OF MATERIALS SCIENCE LETTERS, 14 (1995) 1448-1450 A technique for the manufacture of long hollow diamond fibres by

    E-Print Network [OSTI]

    Bristol, University of

    1995-01-01T23:59:59.000Z

    standard 1448 Wire Figure i Schematic diagram of tungsten wire helical coil wound around a metallic, to form a continuous diamond coated coil is to =x/R, where R is the diamond deposition rate. If D > 2x a helical tungsten wire coil. The diameter of the tungsten wire was in the range dl= 10-20 gm. The coil

  19. Circularly polarized microwaves for magnetic resonance study in the GHz range: application to nitrogen-vacancy in diamonds

    E-Print Network [OSTI]

    Mrozek, Mariusz; Rudnicki, Daniel S; Gawlik, Wojciech

    2015-01-01T23:59:59.000Z

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85% it is possible to address the specific spin states of a diamond sample using a low power microwave generator.

  20. An ultra-thin diamond membrane as a transmission particle detector and vacuum window for external microbeams

    SciTech Connect (OSTI)

    Grilj, V.; Skukan, N.; Jakši?, M. [Division of Experimental Physics, Ru?er Boškovi? Institute, 10000 Zagreb (Croatia)] [Division of Experimental Physics, Ru?er Boškovi? Institute, 10000 Zagreb (Croatia); Pomorski, M. [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France)] [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France); Kada, W. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan)] [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Iwamoto, N.; Kamiya, T.; Ohshima, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)] [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2013-12-09T23:59:59.000Z

    Several applications of external microbeam techniques demand a very accurate and controlled dose delivery. To satisfy these requirements when post-sample ion detection is not feasible, we constructed a transmission single-ion detector based on an ultra-thin diamond membrane. The negligible intrinsic noise provides an excellent signal-to-noise ratio and enables a hit-detection efficiency of close to 100%, even for energetic protons, while the small thickness of the membrane limits beam spreading. Moreover, because of the superb mechanical stiffness of diamond, this membrane can simultaneously serve as a vacuum window and allow the extraction of an ion microbeam into the atmosphere.

  1. Analysis of the spectroscopy of a hybrid system composed of a superconducting flux qubit and diamond NV centers

    E-Print Network [OSTI]

    H. Cai; Y. Matsuzaki; K. Kakuyanagi; H. Toida; X. Zhu; N. Mizuochi; K. Nemoto; K. Semba; W. J. Munro; S. Saito; H. Yamaguchi

    2015-05-28T23:59:59.000Z

    A hybrid system that combines the advantages of a superconducting flux qubit and an electron spin ensemble in diamond is one of the promising devices to realize quantum information processing. Exploring the properties of the superconductor diamond system is essential for the efficient use of this device. When we perform spectroscopy of this system, significant power broadening is observed. However, previous models to describe this system are known to be applicable only when the power broadening is negligible. Here, we construct a new approach to analyze this system with strong driving, and succeed to reproduce the spectrum with the power broadening. Our results provide an efficient way to analyze this hybrid system.

  2. Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate

    DOE Patents [OSTI]

    Feng, Z.; Brewer, M.; Brown, I.; Komvopoulos, K.

    1994-05-03T23:59:59.000Z

    A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment. 6 figures.

  3. All-optical high-resolution magnetic resonance using a nitrogen-vacancy spin in diamond

    E-Print Network [OSTI]

    Zhen-Yu Wang; Jian-Ming Cai; Alex Retzker; Martin B. Plenio

    2014-04-04T23:59:59.000Z

    We propose an all-optical scheme to prolong the quantum coherence of a negatively charged nitrogen-vacancy (NV) center in diamond. Optical control of the NV spin suppresses energy fluctuations of the $^{3}\\text{A}_{2}$ ground states and forms an energy gap protected subspace. By optical control, the spectral linewidth of magnetic resonance is much narrower and the measurement of the frequencies of magnetic field sources has higher resolution. The optical control also improves the sensitivity of the magnetic field detection and can provide measurement of the directions of signal sources.

  4. Effect of Temperature and Charged Particle Fluence on the Resistivity of Polycrystalline CVD Diamond Sensors

    E-Print Network [OSTI]

    Rui Wang; Martin Hoeferkamp; Sally Seidel

    2013-10-09T23:59:59.000Z

    The resistivity of polycrystalline chemical vapor deposition diamond sensors is studied in samples exposed to fluences relevant to the environment of the High Luminosity Large Hadron Collider. We measure the leakage current for a range of bias voltages on samples irradiated with 800 MeV protons up to 1.6\\times 10^{16} p/cm^2. The proton beam at LANSCE, Los Alamos National Laboratory, was applied to irradiate the samples. The devices' resistivity is extracted for temperatures in the -10^\\circC to +20^\\circC range.

  5. Effect of Temperature and Charged Particle Fluence on the Resistivity of Polycrystalline CVD Diamond Sensors

    E-Print Network [OSTI]

    Wang, Rui; Seidel, Sally

    2013-01-01T23:59:59.000Z

    The resistivity of polycrystalline chemical vapor deposition diamond sensors is studied in samples exposed to fluences relevant to the environment of the High Luminosity Large Hadron Collider. We measure the leakage current for a range of bias voltages on samples irradiated with 800 MeV protons up to 1.6\\times 10^{16} p/cm^2. The proton beam at LANSCE, Los Alamos National Laboratory, was applied to irradiate the samples. The devices' resistivity is extracted for temperatures in the -10^\\circC to +20^\\circC range.

  6. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13T23:59:59.000Z

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  7. Robust Dynamical Decoupling for Arbitrary Quantum States of a Single NV Center in Diamond

    E-Print Network [OSTI]

    J. H. Shim; I. Niemeyer; J. Zhang; D. Suter

    2012-07-24T23:59:59.000Z

    Dynamical decoupling is a powerful technique for extending the coherence time (T$_2$) of qubits. We apply this technique to the electron spin qubit of a single nitrogen-vacancy center in type IIa diamond. In a crystal with natural abundance of $^{13}$C nuclear spins, we extend the decoherence time up to 2.2 ms. This is close to the T$_1$ value of this NV center (4 ms). Since dynamical decoupling must perform well for arbitrary initial conditions, we measured the dependence on the initial state and compared the performance of different sequences with respect to initial state dependence and robustness to experimental imperfections.

  8. Direct-write milling of diamond by a focused oxygen ion beam

    E-Print Network [OSTI]

    Martin, Aiden A; Botman, Aurelien; Toth, Milos; Aharonovich, Igor

    2015-01-01T23:59:59.000Z

    Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhibit device performance. Here we report on direct-write milling of single crystal diamond using a focused beam of oxygen ions. Material quality is assessed by Raman and luminescence analysis, and reveals that the damage layer generated by oxygen ions can be removed by nonintrusive post-processing methods such as localised electron beam induced chemical etching.

  9. First Evidence of Near-Infrared Photonic Bandgap in Polymeric Rod-Connected Diamond Structure

    E-Print Network [OSTI]

    Chen, Lifeng; Zheng, Xu; Lin, Jia-De; Oulton, Ruth; Lopez-Garcia, Martin; Ho, Ying-Lung D; Rarity, John G

    2015-01-01T23:59:59.000Z

    We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

  10. Surface finish measurements of diamond-turned electroless-nickel-plated mirrors

    SciTech Connect (OSTI)

    Taylor, J.S.; Syn, C.K.; Saito, T.T.; Donaldson, R.R.

    1986-09-01T23:59:59.000Z

    Surface roughness data are presented for a matrix of diamond-turned electroless nickel samples having a combination of six phosphorus contents and four heat treatments. Roughness measurements were conducted with commercial optical and stylus profilers (WYKO and Talystep). The results are discussed in terms of the material composition and heat treatment, plus other factors having an observed influence on the surface roughness. For the optimum material properties, full-length (665..mu..m) 20x WYKO scans yielded values of better than 10 A rms after correction for instrument roll-off.

  11. Surface finish measurements of diamond-turned electroless-nickel-plated mirrors

    SciTech Connect (OSTI)

    Taylor, J.S.; Syn, C.K.; Saito, T.T.; Donaldson, R.R.

    1985-08-16T23:59:59.000Z

    Surface roughness data are presented for a matrix of diamond-turned electroless-nickel samples having a combination of six phosphorous contents and four heat treatments. Roughness measurements were conducted with commercial optical and stylus profilometers (Wyko and Talystep). The results are discussed in terms of the material composition and heat treatment, plus other factors having an observed influence on the surface roughness. For the optimum material properties, full-length (665 ..mu..m) restored 20X Wyko scans yielded values of better than 10A rms.

  12. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect (OSTI)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J. [OncoRay-National Center for Radiation Research in Oncology, Technische Universitaet Dresden, Fetscherstr, 74, 01307 Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, P.O. Box 510119, 01314 Dresden (Germany); OncoRay-National Center for Radiation Research in Oncology, Technische Universitaet Dresden, Fetscherstr, 74, 01307 Dresden (Germany) and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, P.O. Box 510119, 01314 Dresden (Germany)

    2012-05-15T23:59:59.000Z

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  13. Stokes--anti-Stokes Correlations in Raman Scattering from Diamond Membranes

    E-Print Network [OSTI]

    Kasperczyk, Mark; Neu, Elke; Maletinsky, Patrick; Novotny, Lukas

    2015-01-01T23:59:59.000Z

    We investigate the arrival statistics of Stokes (S) and anti-Stokes (aS) Raman photons generated in diamond membranes. Strong quantum correlations between the S and aS signals are observed, which implies that the two processes share the same phonon, that is, the phonon excited by the S process is consumed in the aS process. We show that the intensity cross-correlation $g_{\\rm S,aS}^{(2)}(0)$, which describes the simultaneous detection of Stokes and anti-Stokes photons, decreases steadily with laser power as $1/{\\rm P_L}$. Contrary to many other material systems, diamond exhibits a maximum $g_{\\rm S,aS}^{(2)}(0)$ at very low pump powers, implying that the Stokes-induced aS photons outnumber the thermally generated aS photons. On the other hand, the coincidence rate shows a quadratic plus cubic power dependence, which indicates a departure from the Stokes-induced anti-Stokes process.

  14. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect (OSTI)

    Cazzaniga, C., E-mail: carlo.cazzaniga@mib.infn.it; Nocente, M.; Gorini, G. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Rebai, M.; Giacomelli, L. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Tardocchi, M.; Croci, G.; Grosso, G. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Calvani, P.; Girolami, M.; Trucchi, D. M. [CNR-ISM, Research Area Roma 1, Via Salaria km 29.300, 00015-Monterotondo Scalo (Rm) (Italy); Griesmayer, E. [Atominstitut, Vienna University of Technology, Vienna (Austria); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Roma) (Italy)

    2014-11-15T23:59:59.000Z

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, ?){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  15. Electronic and physico-chemical properties of nanometric boron delta-doped diamond structures

    SciTech Connect (OSTI)

    Chicot, G., E-mail: gauthier.chicot@neel.cnrs.fr; Fiori, A.; Tran Thi, T. N.; Bousquet, J.; Delahaye, J.; Grenet, T.; Eon, D.; Omnès, F.; Bustarret, E. [Université Grenoble Alpes, Institut NEEL, 38042 Grenoble (France); CNRS, Institut NEEL, 38042 Grenoble (France); Volpe, P. N.; Tranchant, N.; Mer-Calfati, C.; Arnault, J. C. [CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette (France); Gerbedoen, J. C.; Soltani, A.; De Jaeger, J. C. [IEMN, UMR-CNRS 8520, Avenue Poincaré, Université de Lille 1, 59652 Villeneuve d'Ascq (France); Alegre, M. P.; Piñero, J. C.; Araújo, D. [Dpto Ciencia de los Materiales, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain); Jomard, F. [Groupe d'Étude de la Matière Condensée (GEMaC), UMR 8635 du CNRS, UVSQ, 45 Avenue des États-Unis, 78035 Versailles Cedex (France); and others

    2014-08-28T23:59:59.000Z

    Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2?nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called delta-doped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6?K?

  16. Diamond logic inverter with enhancement-mode metal-insulator-semiconductor field effect transistor

    SciTech Connect (OSTI)

    Liu, J. W., E-mail: liu.jiangwei@nims.go.jp [International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Liao, M. Y.; Imura, M. [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Watanabe, E.; Oosato, H. [Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Koide, Y., E-mail: koide.yasuo@nims.go.jp [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-08-25T23:59:59.000Z

    A diamond logic inverter is demonstrated using an enhancement-mode hydrogenated-diamond metal-insulator-semiconductor field effect transistor (MISFET) coupled with a load resistor. The gate insulator has a bilayer structure of a sputtering-deposited LaAlO{sub 3} layer and a thin atomic-layer-deposited Al{sub 2}O{sub 3} buffer layer. The source-drain current maximum, extrinsic transconductance, and threshold voltage of the MISFET are measured to be ?40.7?mA·mm{sup ?1}, 13.2?±?0.1?mS·mm{sup ?1}, and ?3.1?±?0.1?V, respectively. The logic inverters show distinct inversion (NOT-gate) characteristics for input voltages ranging from 4.0 to ?10.0?V. With increasing the load resistance, the gain of the logic inverter increases from 5.6 to as large as 19.4. The pulse response against the high and low input voltages shows the inversion response with the low and high output voltages.

  17. Miniature CVD-diamond corning drills for robotic sample collection and analysis.

    SciTech Connect (OSTI)

    Vaniman, D. T. (David T.); Trava-Airoldi, V.J.; Bish, D. L. (David L.); Chipera, S. J. (Steve J.)

    2003-01-01T23:59:59.000Z

    Coring tools have been used etlectivelv on the Moon, but to date no such tools have been used on any other extraterrestrial surface. The lunar experience includes both manual (Apollo) and robotic (Luna) systems . These coring systems were concerned primarily with acquiring samples from depth for return to Earth or for the creation of instrument emplacement holes (e .g ., heat probes). Current designs for planetary drills differ from the lunar tools primarily in that they are integrated with robotic instrumentation for remote analysis, but the role of the drilling or coring system remains one of acquiring samples that must be extracted from the core barrel for analysis . Missing from current sample collection systems is a tool that can double as both a conng device and a sample holder. This dual utility can minimize the number of motions, the mass, and the power required for several classes of instruments in planetary surface exploration. To be effective, such a system must be durable and simple in operation. Hollow CVD diamond drills possess the hardness, excellent cutting properties, and heat resistance required for drilling into a wide variety of rocks and minerals. Because CVD diamond is also unreactive and transparent to infrared radiation and to X-rays of moderate to high energry, it can be used as a sample holder in various instruments for X-ray diffraction (XRD), Xray fluorescence (XRF), infrared spectroscopy, Raman spectroscopy, and thermal analysis.

  18. Evidence for ice VI as an inclusion in cuboid diamonds from high P-T near infrared spectroscopy

    E-Print Network [OSTI]

    Hemley, Russell J.

    Evidence for ice VI as an inclusion in cuboid diamonds from high P-T near infrared spectroscopy H.W., Washington, D.C. 20015-1305, USA ABSTRACT Near infrared absorption (NIR) spectra of natural morphologically on heating to 1208C. The combination band of H2O at high pressure and temperature was measured using

  19. Renewable Energy 33 (2008) 226231 The effect of annealing on the properties of diamond-like carbon

    E-Print Network [OSTI]

    Hong, Byungyou

    Renewable Energy 33 (2008) 226­231 The effect of annealing on the properties of diamond-like carbon (XPS) and high-resolution transmission electron microscopy (HRTEM). The reflectance of DLC thin film was investigated by UV­vis spectrometry and its electrical properties were investigated using a four point probe

  20. THERMAL DISTRIBUTION SYSTEMS IN COMMERCIAL BUILDINGS Rick Diamond, Craig Wray, Darryl Dickerhoff, Nance Matson, and Duo Wang

    E-Print Network [OSTI]

    1 THERMAL DISTRIBUTION SYSTEMS IN COMMERCIAL BUILDINGS Rick Diamond, Craig Wray, Darryl Dickerhoff SYSTEMS IN COMMERCIAL BUILDINGS 2 Acknowledgements Our largest debt of gratitude is to our Energy assistance guiding us through the EMCS system of the large commercial test building. The building management

  1. Producing diamond anvil cell gaskets for ultrahigh-pressure applications using an inex ensive electric discharge machine

    E-Print Network [OSTI]

    Kruger, Michael - Department of Physics, University of Missouri

    . Laser drilling is another method for preparing holes but, of course, is dependent on the availability are drilled in diamond anvil cell gaskets to contain and pressurize samples. As high-pressure technology machine that can drill metals with holes as small as 25 pm in diameter. This method of drilling is easy

  2. Does the "Feebate" Approach to A/E Compensation Lead to an Energy-Efficient John Busch and Rick Diamond

    E-Print Network [OSTI]

    Diamond, Richard

    and Rick Diamond Lawrence Berkeley Laboratory Energy and Environment Division Berkeley CA 94720 USA are almost exclusively used in retrofit situations where the baseline energy consumption is moreDoes the "Feebate" Approach to A/E Compensation Lead to an Energy-Efficient Building?* John Busch

  3. Quantum Monte Carlo Study of the Optical and Diffusive Properties of theVacancy Defect in Diamond

    E-Print Network [OSTI]

    Kent, Paul

    associated with radiation damage. It is also very interesting scientifically, with a wide variety of physicalQuantum Monte Carlo Study of the Optical and Diffusive Properties of theVacancy Defect in Diamond]. The best-known optical transition, GR1 at 1.673 eV [5], long associated with the neutral vacancy, cannot

  4. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams

    SciTech Connect (OSTI)

    Mandapaka, A. K.; Ghebremedhin, A.; Patyal, B. [Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, California 92354 (United States)] [Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, California 92354 (United States); Marinelli, Marco; Prestopino, G.; Verona, C.; Verona-Rinati, G. [INFN–Dipartimento di Ingegneria Industriale, Università di Roma ‘Tor Vergata’, Via del Politecnico 1, 00133 Roma (Italy)] [INFN–Dipartimento di Ingegneria Industriale, Università di Roma ‘Tor Vergata’, Via del Politecnico 1, 00133 Roma (Italy)

    2013-12-15T23:59:59.000Z

    Purpose: To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams.Methods: The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up/stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated.Results: A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy/min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters.Conclusions: The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.

  5. Resolving single molecule structures with nitrogen-vacancy centers in diamond

    E-Print Network [OSTI]

    Matthias Kost; Jianming Cai; Martin B. Plenio

    2014-07-23T23:59:59.000Z

    We present two-dimensional nuclear magnetic resonance spectroscopy protocols based on nitrogen-vacancy (NV) centers in diamond as efficient quantum sensors of protein structure. Continuous microwave driving fields are used to achieve Hartmann-Hahn resonances between NV spin sensor and proximate nuclei for selective control of nuclear spins and measurement of their polarization. Our protocols take advantage of the strong coupling between the NV sensor and the nuclei, thus facilitating coherence control of nuclear spins and relax the requirement of nuclear spin polarization. We dramatically reduce the experimental effort by employing a singular value thresholding matrix completion algorithm from signal processing to regain the resolution of protein structure based on sub-sampled data from NV based single molecule nuclear magnetic resonance spectroscopy. As an illustration, we demonstrate the power of this approach by identifying the nitrogen-Hydrogen interaction peak in an Alanine spectrum based on merely 5% of the sample data.

  6. Coherent spin control of a nanocavity-enhanced qubit in diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Luozhou [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Lu, Ming [Brookhaven National Lab. (BNL), Upton, NY (United States); Schroder, Tim [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Chen, Edward H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Walsh, Michael [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Bayn, Igal [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Goldstein, Jordan [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Gaathon, Ophir [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Trusheim, Matthew E. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Mower, Jacob [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Cotlet, Mircea [Brookhaven National Lab. (BNL), Upton, NY (United States); Markham, Matthew L. [Element Six, Santa Clara, CA (United States); Twitchen, Daniel J. [Element Six, Santa Clara, CA (United States); Englund, Dirk [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2015-01-28T23:59:59.000Z

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interface is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.

  7. Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell

    SciTech Connect (OSTI)

    Armstrong, M; Crowhurst, J; Reed, E; Zaug, J

    2008-02-04T23:59:59.000Z

    We have used sub-picosecond laser pulses to launch ultra-high strain rate ({approx} 10{sup 9} s{sup -1}) nonlinear acoustic waves into a 4:1 methanol-ethanol pressure medium which has been precompressed in a standard diamond anvil cell. Using ultrafast interferometry, we have characterized acoustic wave propagation into the pressure medium at static compression up to 24 GPa. We find that the velocity is dependent on the incident laser fluence, demonstrating a nonlinear acoustic response which may result in shock wave behavior. We compare our results with low strain, low strain-rate acoustic data. This technique provides controlled access to regions of thermodynamic phase space that are otherwise difficult to obtain.

  8. Broadband, noise-free optical quantum memory with neutral nitrogen-vacancy centers in diamond

    E-Print Network [OSTI]

    E. Poem; C. Weinzetl; J. Klatzow; K. T. Kaczmarek; J. H. D. Munns; T. F. M. Champion; D. J. Saunders; J. Nunn; I. A. Walmsley

    2015-01-11T23:59:59.000Z

    It is proposed that the ground-state manifold of the neutral nitrogen-vacancy center in diamond could be used as a quantum two-level system in a solid-state-based implementation of a broadband, noise-free quantum optical memory. The proposal is based on the same-spin $\\Lambda$-type three level system created between the two E orbital ground states and the A$_1$ orbital excited state of the center, and the cross-linear polarization selection rules obtained with the application of transverse electric field or uniaxial stress. Possible decay and decoherence mechanisms of this system are discussed, and it is shown that high efficiency, noise-free storage of photons with a bandwidth of a few tens of GHz for a few tens of nanoseconds would be possible at low temperature.

  9. Coherent spin control of a nanocavity-enhanced qubit in diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Luozhou; Lu, Ming; Schroder, Tim; Chen, Edward H.; Walsh, Michael; Bayn, Igal; Goldstein, Jordan; Gaathon, Ophir; Trusheim, Matthew E.; Mower, Jacob; et al

    2015-01-28T23:59:59.000Z

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore »is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less

  10. Calibration of the nonlinear ring model at the Diamond Light Source

    E-Print Network [OSTI]

    Bartolini, R; Rehm, G; Martin, I P S

    2011-01-01T23:59:59.000Z

    Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration ...

  11. Channeling Effect in Polycrystalline Deuterium-Saturated CVD Diamond Target Bombarded by Deuterium Ion Beam

    E-Print Network [OSTI]

    Bagulya, A V; Negodaev, M A; Rusetskii, A S; Chubenko, A P; Ralchenko, V G; Bolshakov, A P

    2014-01-01T23:59:59.000Z

    At the ion accelerator HELIS at the LPI, the neutron yield is investigated in DD reactions within a polycrystalline deuterium-saturated CVD diamond, during an irradiation of its surface by a deuterium ion beam with the energy less than 30 keV. The measurements of the neutron flux in the beam direction are performed in dependence on the target angle, \\b{eta}, with respect to the beam axis. These measurements are performed using a multichannel detector based on He3 counters. A significant anisotropy in neutron yield is observed, it was higher by a factor of 3 at \\b{eta}=0 compared to that at \\b{eta} = +-45{\\deg}. The possible reasons for the anisotropy, including ion channeling, are discussed.

  12. Channeling Effect in Polycrystalline Deuterium-Saturated CVD Diamond Target Bombarded by Deuterium Ion Beam

    E-Print Network [OSTI]

    A. V. Bagulya; O. D. Dalkarov; M. A. Negodaev; A. S. Rusetskii; A. P. Chubenko; V. G. Ralchenko; A. P. Bolshakov

    2014-09-08T23:59:59.000Z

    At the ion accelerator HELIS at the LPI, the neutron yield is investigated in DD reactions within a polycrystalline deuterium-saturated CVD diamond, during an irradiation of its surface by a deuterium ion beam with the energy less than 30 keV. The measurements of the neutron flux in the beam direction are performed in dependence on the target angle, \\b{eta}, with respect to the beam axis. These measurements are performed using a multichannel detector based on He3 counters. A significant anisotropy in neutron yield is observed, it was higher by a factor of 3 at \\b{eta}=0 compared to that at \\b{eta} = +-45{\\deg}. The possible reasons for the anisotropy, including ion channeling, are discussed.

  13. Synthetic Diamond and Wurtzite Structures Self-Assemble with Isotropic Pair Interactions

    E-Print Network [OSTI]

    Mikael C. Rechtsman; Frank H. Stillinger; Salvatore Torquato

    2007-09-24T23:59:59.000Z

    Using inverse statistical-mechanical optimization techniques, we have discovered isotropic pair interaction potentials with strongly repulsive cores that cause the tetrahedrally coordinated diamond and wurtzite lattices to stabilize, as evidenced by lattice sums, phonon spectra, positive-energy defects, and self-assembly in classical molecular dynamics simulations. These results challenge conventional thinking that such open lattices can only be created via directional covalent interactions observed in nature. Thus, our discovery adds to fundamental understanding of the nature of the solid state by showing that isotropic interactions enable the self-assembly of open crystal structures with a broader range of coordination number than previously thought. Our work is important technologically because of its direct relevance generally to the science of self-assembly and specifically to photonic crystal fabrication.

  14. Kernel polynomial method for a nonorthogonal electronic-structure calculation of amorphous diamond

    SciTech Connect (OSTI)

    Roeder, H.; Silver, R.N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Drabold, D.A.; Dong, J.J. [Department of Physics and Astronomy, Condensed Matter and Surface Science Program, Ohio University, Athens, Ohio 45701 (United States)

    1997-06-01T23:59:59.000Z

    The Kernel polynomial method (KPM) has been successfully applied to tight-binding electronic-structure calculations as an O(N) method. Here we extend this method to nonorthogonal basis sets with a sparse overlap matrix {bold S} and a sparse Hamiltonian {bold H}. Since the KPM method utilizes matrix vector multiplications it is necessary to apply {bold S}{sup {minus}1}{bold H} onto a vector. The multiplication of {bold S}{sup {minus}1} is performed using a preconditioned conjugate-gradient method and does not involve the explicit inversion of {bold S}. Hence the method scales the same way as the original KPM method, i.e., O(N), although there is an overhead due to the additional conjugate-gradient part. We apply this method to a large scale electronic-structure calculation of amorphous diamond. {copyright} {ital 1997} {ital The American Physical Society}

  15. Polarization dependent asymmetric magneto-resistance features in nanocrystalline diamond films

    SciTech Connect (OSTI)

    Bhattacharyya, Somnath, E-mail: Somnath.Bhattacharyya@wits.ac.za [Nano-Scale Transport Physics Laboratory, School of Physics, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa and Department of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Churochkin, Dmitry [Nano-Scale Transport Physics Laboratory, School of Physics, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg (South Africa)

    2014-08-18T23:59:59.000Z

    Polar angle-dependence of magneto-resistance (AMR) in heavily nitrogen-incorporated ultra-nanocrystalline diamond (UNCD) films is recorded by applying high magnetic fields, which shows strong anisotropic features at low temperatures. The temperature-dependence of MR and AMR can reveal transport in the weak-localization regime, which is explained by using a superlattice model for arbitrary values of disorder and angles. While a propagative Fermi surface model explains the negative MR features for low degree of disorder the azimuthal angle-dependent MR shows field dependent anisotropy due to the aligned conducting channels on the layers normal to film growth direction. The analysis of MR and AMR can extract the temperature dependence of dephasing time with respect to the elastic scattering time which not only establishes quasi-two dimensional features in this system but also suggests a potential application in monitoring the performance of UNCD based quantum devices.

  16. Room-temperature high-speed nuclear-spin quantum memory in diamond

    E-Print Network [OSTI]

    J. H. Shim; I. Niemeyer; J. Zhang; D. Suter

    2013-01-03T23:59:59.000Z

    Quantum memories provide intermediate storage of quantum information until it is needed for the next step of a quantum algorithm or a quantum communication process. Relevant figures of merit are therefore the fidelity with which the information can be written and retrieved, the storage time, and also the speed of the read-write process. Here, we present experimental data on a quantum memory consisting of a single $^{13}$C nuclear spin that is strongly coupled to the electron spin of a nitrogen-vacancy (NV) center in diamond. The strong hyperfine interaction of the nearest-neighbor carbon results in transfer times of 300 ns between the register qubit and the memory qubit, with an overall fidelity of 88 % for the write - storage - read cycle. The observed storage times of 3.3 ms appear to be limited by the T$_1$ relaxation of the electron spin. We discuss a possible scheme that may extend the storage time beyond this limit.

  17. Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report

    SciTech Connect (OSTI)

    Hibbs, L.E. Jr.; Sogoian, G.C.

    1983-05-01T23:59:59.000Z

    The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

  18. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.] [Lawrence Berkeley National Lab., CA (United States); Scherson, D. [ed.] [Case Western Reserve Univ., Cleveland, OH (United States)

    1998-02-01T23:59:59.000Z

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  19. A superconducting cavity bus for single Nitrogen Vacancy defect centres in diamond

    E-Print Network [OSTI]

    J. Twamley; S. D. Barrett

    2009-12-18T23:59:59.000Z

    Circuit-QED has demonstrated very strong coupling between individual microwave photons trapped in a superconducting coplanar resonator and nearby superconducting qubits. In this work we show how, by designing a novel interconnect, one can strongly connect the superconducting resonator, via a magnetic interaction, to a small number (perhaps single), of electronic spins. By choosing the electronic spin to be within a Nitrogen Vacancy centre in diamond one can perform optical readout, polarization and control of this electron spin using microwave and radio frequency irradiation. More importantly, by utilising Nitrogen Vacancy centres with nearby 13C nuclei, using this interconnect, one has the potential build a quantum device where the nuclear spin qubits are connected over centimeter distances via the Nitrogen Vacancy electronic spins interacting through the superconducting bus.

  20. Photonic architecture for scalable quantum information processing in NV-diamond

    E-Print Network [OSTI]

    Kae Nemoto; Michael Trupke; Simon J. Devitt; Ashley M. Stephens; Kathrin Buczak; Tobias Nobauer; Mark S. Everitt; Jorg Schmiedmayer; William J. Munro

    2013-09-17T23:59:59.000Z

    Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively-charged nitrogen vacancy centre in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.

  1. The CONVEX Liner Add-On to the DIAMOND-FORTUNE event

    SciTech Connect (OSTI)

    Heuze, F.E. [Lawrence Livermore National Lab., CA (United States); Swift, R.P. [Los Alamos National Lab., NM (United States); Hill, L.R.; Barrett, W.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-15T23:59:59.000Z

    This report describes the execution of the CONVEX Liner Add-On to the DIAMOND FORTUNE low-yield cavity test of the Defense Nuclear Agency. CONVEX stands for COntained Nuclear Vessel EXperiment. It concerns the design of underground chambers where repeated low-yield nuclear explosions could be conducted. The approach proposed by the first author in the early 1980`s was to engineer a steel-lined rock cavern where the steel liner would be prestressed against the rock by tendons and/or bolts. These would daylight in tunnels surrounding the main cavity. From there, they could be initially tensioned and retensioned, if needed, after each test. The CONVEX Liner Add-On to DIAMOND FORTUNE consisted of anchoring a 1.4-m square, 2.5-cm thick steel plate to the wall of the cavity, using a 5-cm diameter center bolt, and four 2.5-cm diameter comer bolts. The bolts daylighted in a drift surrounding the gallery, and separated from it by a 9-m thick rock pillar. The liner plate, the bolts, and the rock pillar were equipped with 23 gages to describe the thermal and mechanical response of the system during pretensioning, during the dynamic loading phase, and post-test. Particular emphasis was given to obtaining the response both upon loading and during the rebound of the system, in order to determine whether the plate ever separated from the rock. So, the main operational objectives of this project were to acquire response data of the system under nuclear loading and to ascertain the status of contact between the steel plate and the rock, as shown by toadstool data and bolt tension data. The instrumentation and data acquisition system performed extremely well. Data were recorded during the dynamic phase; plate temperature was monitored for several hours after the test; and the remaining tension was obtained for several bolts more than three months after the test, upon re-entry in the runaround drift.

  2. Levitation and collection of diamond fine particles in the rf plasma chamber equipped with a hot filament

    SciTech Connect (OSTI)

    Shimizu, S.; Shimizu, T.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Jacob, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-11-15T23:59:59.000Z

    We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful if it is necessary to analyze the particles after the levitation.

  3. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    SciTech Connect (OSTI)

    Panda, Kalpataru, E-mail: panda@afm.eei.eng.osaka-u.ac.jp, E-mail: phy.kalpa@gmail.com; Inami, Eiichi; Sugimoto, Yoshiaki [Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Sankaran, Kamatchi J.; Tai, Nyan Hwa [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, I-Nan, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-10-20T23:59:59.000Z

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17?V/?m with high EFE current density of 5.08?mA/cm{sup 2} at an applied field of 7.0?V/?m. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  4. A neutral oxygen-vacancy center in diamond: A plausible qubit candidate and its spintronic and electronic properties

    SciTech Connect (OSTI)

    Zhang, Y. G.; Tang, Z., E-mail: ztang@ee.ecnu.edu.cn; Zhao, X. G.; Cheng, G. D.; Tu, Y.; Cong, W. T.; Zhu, Z. Q.; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education of China, East China Normal University, Shanghai 200241 (China); Peng, W., E-mail: wpeng@ecnu.edu.cn [Supercomputer Center, Administration Department of Equipments, East China Normal University, Shanghai 200062 (China)

    2014-08-04T23:59:59.000Z

    Spintronic and electronic properties of a neutral oxygen-vacancy (O-V) center, an isoelectronic defect similar to the negatively charged nitrogen-vacancy center in diamond, were studied by combining first-principles calculations and a mean-field theory for spin hyperfine interaction. It is elucidated that the neutral O-V center is stable in the p-type diamond and possesses an S?=?1 triplet ground state and four spin-conserved excited states with the spin coherence times in an order of second at T?=?0?K. The results indicate that the neutral O-V center is another promising candidate for spin coherent manipulation and qubit operation.

  5. Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki, E-mail: yoshi-miyamoto@aist.go.jp; Miyazaki, Takehide [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takeuchi, Daisuke; Yamasaki, Satoshi [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, ALCA, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-09-28T23:59:59.000Z

    We examined the field emission properties of lithium(Li)/oxygen(O)-co-terminated diamond (001) surface [C(001)-LiO] through real-time electron dynamics simulation under an applied field. The current emitted from this surface was found to be more than four-fold that emitted by an H-terminated (001) surface, the latter being a typical negative electron affinity system. This high performance is attributed to the Li layer, which bends the potential wall of O-induced electron pockets down in the direction of vacuum, thus facilitating electron emission. Detailed analysis of the emitted electrons and the profile of the self-consistent potential elucidated that the role of O atoms changes from an electron barrier on OH-terminated diamond surfaces to an outlet for electron emission on C(001)-LiO.

  6. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    SciTech Connect (OSTI)

    Piot, P. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Brau, C. A.; Gabella, W. E.; Ivanov, B.; Mendenhall, M. H. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Choi, B. K. [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Blomberg, B.; Mihalcea, D.; Panuganti, H. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Jarvis, J. [Advanced Energy Systems, Inc., Medford, New York 11763 (United States); Prieto, P.; Reid, J. [Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2014-06-30T23:59:59.000Z

    We report on the operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of ?10{sup 6} diamond tips on pyramids. Maximum current on the order of 15?mA was reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed.

  7. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect (OSTI)

    ILINSKI P.

    2012-07-10T23:59:59.000Z

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  8. Spectroscopic analysis of H{sub 2}/CH{sub 4} microwave plasma and fast growth rate of diamond single crystal

    SciTech Connect (OSTI)

    Derkaoui, N.; Rond, C., E-mail: rond@lspm.cnrs.fr; Hassouni, K.; Gicquel, A. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM), UPR3407 CNRS, Université Paris 13, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse (France)

    2014-06-21T23:59:59.000Z

    One of the best ways to increase the diamond growth rate is to couple high microwave power to the plasma. Indeed, increasing the power density leads to increase gas temperature the atomic hydrogen density in the plasma bulk, and to produce more hydrogen and methyl at the diamond surface. Experimental and numerical approaches were used to study the microwave plasma under high power densities conditions. Gas temperature was measured by optical emission spectroscopy and H-atom density using actinometry. CH{sub 3}-radical density was obtained using a 1D model that describes temperatures and plasma composition from the substrate to the top of the reactor. The results show that gas temperature in the plasma bulk, atomic hydrogen, and methyl densities at the diamond surface highly increase with the power density. As a consequence, measurements have shown that diamond growth rate also increases. At very high power density, we measured a growth rate of 40??m/h with an H-atom density of 5 × 10{sup 17} cm{sup ?3} which corresponds to a H{sub 2} dissociation rate higher than 50%. Finally, we have shown that the growth rate can be framed between a lower and an upper limit as a function depending only on the maximum of H-atom density measured or calculated in the plasma bulk. The results also demonstrated that increasing fresh CH{sub 4} by an appropriate injection into the boundary layer is a potential way to increase the diamond growth rates.

  9. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Santra, T. S.; Liu, C. H. [Institute of Nanoengineering and Microsystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Bhattacharyya, T. K. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Patel, P. [Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States); Barik, T. K. [School of Applied Sciences, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India)

    2010-06-15T23:59:59.000Z

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  10. Theory of Linear Optical Absorption in Diamond Shaped Graphene Quantum Dots

    E-Print Network [OSTI]

    Basak, Tista; Shukla, Alok

    2015-01-01T23:59:59.000Z

    In this paper, optical and electronic properties of diamond shaped graphene quantum dots (DQDs) have been studied by employing large-scale electron-correlated calculations. The computations have been performed using the $\\pi$-electron Pariser-Parr-Pople model Hamiltonian, which incorporates long-range Coulomb interactions. The influence of electron-correlation effects on the ground and excited states has been included by means of the configuration-interaction approach, used at various levels. Our calculations have revealed that the absorption spectra are red-shifted with the increasing sizes of quantum dots. It has been observed that the first peak of the linear optical absorption, which represents the optical gap, is not the most intense peak. This result is in excellent agreement with the experimental data, but in stark contrast to the predictions of the tight-binding model, according to which the first peak is the most intense peak, pointing to the importance of electron-correlation effects. Furthermore, a...

  11. Characterization of Monoenergetic Neutron Reference Fields with a High Resolution Diamond Detector

    E-Print Network [OSTI]

    Zimbal, A; Nolte, R; Schuhmacher, H

    2009-01-01T23:59:59.000Z

    A novel radiation detector based on an artificial single crystal diamond was used to characterize in detail the energy distribution of neutron reference fields at the Physikalisch-Technische Bundesanstalt (PTB) and their contamination with charged particles. The monoenergetic reference fields at PTB in the neutron energy range from 1.5 MeV up to 19 MeV are generated by proton and deuteron beams impinging on solid and gas targets of tritium and deuterium. The energy of the incoming particles and the variation of the angle under which the measurement is performed produce monoenergetic reference fields with different mean energies and line shapes. In this paper we present high resolution neutron spectrometry measurements of different monoenergetic reference fields. The results are compared with calculated spectra taking into account the actual target parameters. Line structures in the order of 80 keV for a neutron energy of 9 MeV were resolved. The shift of the mean energy and the increasing of the width of the ...

  12. QUANTIFICATION OF MERCURY IN FLUE GAS EMISSION USING BORON-DOPED DIAMOND ELECTROCHEMISTRY

    SciTech Connect (OSTI)

    A. Manivannan; M.S. Seehra

    2003-08-19T23:59:59.000Z

    In this project, we have attempted to develop a new technique utilizing Boron-doped diamond (BDD) films to electrochemically detect mercury dissolved in solution via the initial deposition of metallic mercury, followed by anodic linear sweep voltammetry in the range from 10-10{sup -10} M to 10{sup -5} M. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were employed. The extremely low background current for BDD electrodes compared to glassy carbon (GC) provides a strong advantage in trace metal detection. CV peak currents showed good linearity in the micromolar range. A detection level of 6.8 x 10{sup -10} M was achieved with DPV in 0.1 M KNO{sub 3} (pH = 1) for a deposition time of 20 minutes. Reproducible stripping peaks were obtained, even for the low concentration range. A comparison with GC shows that BDD is superior. Linear behavior was also obtained in the mercury concentration range from 10{sup -10} M to 10{sup -9} M.

  13. Frictional heating and convective cooling of polycrystalline diamond drag tools during rock cutting

    SciTech Connect (OSTI)

    Ortega, A.; Glowka, D.A.

    1982-01-01T23:59:59.000Z

    A numerical-analytical model is developed to predict temperatures in stud-mounted polycrystalline diamond compact (PDC) drag tools during rock cutting. Experimental measurements of the convective heat transfer coefficient for PDC cutters are used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is shown that mean cutter wearflat temperatures can be maintained below the critical value of 750{sup 0}C only under conditions of low friction at the cutter/rock interface. This is true, regardless of the level of convective cooling. In fact, a cooling limit is established above which increases in convective cooling do not further reduce cutter temperatures. The ability of liquid drilling fluids to reduce interface friction is thus shown to be far more important in preventing excessive temperatures than their ability to provide cutter cooling. Due to the relatively high interface friction developed under typical air drilling conditions, it is doubtful that temperatures can be kept subcritical at high rotary speeds in some formations when air is employed as the drilling fluid, regardless of the level of cooling achieved.

  14. The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection

    SciTech Connect (OSTI)

    Chen, Huang-Chin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Chen, Shih-Show [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Information Technology and Mobile Communication, Taipei College of Maritime Technology, Tamsui, New-Taipei, Taiwan 251 (China); Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-06-15T23:59:59.000Z

    The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f{sub c}= 5.0 Multiplication-Sign 10{sup 12} ions/cm{sup 2}) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp{sup 2}-bonded phase ({pi}{sup *}-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value.

  15. Failure mechanisms of polycrystalline diamond compact drill bits in geothermal environments

    SciTech Connect (OSTI)

    Hoover, E.R.; Pope, L.E.

    1981-09-01T23:59:59.000Z

    Over the past few years the interest in polycrystalline diamond compact (PDC) drill bits has grown proportionately with their successful use in drilling oil and gas wells in the North Sea and the United States. This keen interest led to a research program at Sandia to develop PDC drill bits suitable for the severe drilling conditions encountered in geothermal fields. Recently, three different PDC drill bits were tested using either air or mud drilling fluids: one in the laboratory with hot air, one in the Geysers field with air, and one in the Geysers field with mud. All three tests were unsuccessful due to failure of the braze joint used to attach the PDC drill blanks to the tungsten carbide studs. A post-mortem failure analysis of the defective cutters identified three major failure mechanisms: peripheral nonbonding caused by braze oxidation during the brazing step, nonbonding between PDC drill blanks and the braze due to contamination prior to brazing, and hot shortness. No evidence was found to suggest that the braze failures in the Geysers field tests were caused by frictional heating. In addition, inspection of the PDC/stud cutter assemblies using ultrasonic techniques was found to be ineffective for detecting the presence of hot shortness in the braze joint.

  16. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downers Grove, IL); Pellin, Michael J. (Naperville, IL); Auciello, Orlando (Bolingbrook, IL)

    2002-07-23T23:59:59.000Z

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  17. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downers Grove, IL); Pellin, Michael J. (Naperville, IL); Auciello, Orlando (Bolingbrook, IL)

    2003-09-02T23:59:59.000Z

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  18. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    SciTech Connect (OSTI)

    Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

    2005-02-01T23:59:59.000Z

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 {approx} 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies.

  19. Effect of doping on electronic states in B-doped polycrystalline CVD diamond films This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Bristol, University of

    Effect of doping on electronic states in B-doped polycrystalline CVD diamond films This article has-doped polycrystalline CVD diamond films O S Elsherif1,4, K D Vernon-Parry1, J H Evans-Freeman2 and P W May3 1 Materials the effect of boron (B) concentration on the electronic states in polycrystalline chemical vapour deposition

  20. Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries

    DOE Patents [OSTI]

    Carlisle, John A.; Auciello, Orlando; Birrell, James

    2006-10-31T23:59:59.000Z

    An ultrananocrystalline diamond (UNCD) having an average grain size between 3 and 5 nanometers (nm) with not more than about 8% by volume diamond having an average grain size larger than 10 nm. A method of manufacturing UNCD film is also disclosed in which a vapor of acetylene and hydrogen in an inert gas other than He wherein the volume ratio of acetylene to hydrogen is greater than 0.35 and less than 0.85, with the balance being an inert gas, is subjected to a suitable amount of energy to fragment at least some of the acetylene to form a UNCD film having an average grain size of 3 to 5 nm with not more than about 8% by volume diamond having an average grain size larger than 10 nm.

  1. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2005-09-30T23:59:59.000Z

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

  2. Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond

    E-Print Network [OSTI]

    I. Popa; T. Gaebel; M. Domhan; C. Wittmann; F. Jelezko; J. Wrachtrup

    2004-09-12T23:59:59.000Z

    The coherent behavior of the single electron and single nuclear spins of a defect center in diamond and a 13C nucleus in its vicinity, respectively, are investigated. The energy levels associated with the hyperfine coupling of the electron spin of the defect center to the 13C nuclear spin are analyzed. Methods of magnetic resonance together with optical readout of single defect centers have been applied in order to observe the coherent dynamics of the electron and nuclear spins. Long coherence times, in the order of microseconds for electron spins and tens of microseconds for nuclear spins, recommend the studied system as a good experimental approach for implementing a 2-qubit gate.

  3. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    SciTech Connect (OSTI)

    Banerjee, Amit, E-mail: erdd@iacs.res.in; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2014-04-24T23:59:59.000Z

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  4. Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting

    SciTech Connect (OSTI)

    Ortega, A.; Glowka, D.A.

    1982-06-01T23:59:59.000Z

    A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

  5. Relationship between the structure and electrical characteristics of diamond-like carbon films

    SciTech Connect (OSTI)

    Takabayashi, Susumu, E-mail: stak@riec.tohoku.ac.jp; Otsuji, Taiichi [Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yang, Meng; Ogawa, Shuichi; Hayashi, Hiroyuki; Ješko, Radek; Takakuwa, Yuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-09-07T23:59:59.000Z

    To elucidate the relationship between the structure and the electrical characteristics of diamond-like carbon (DLC) films, DLC films were synthesized in a well-controlled glow discharge with the aid of photoelectrons in an argon/methane atmosphere. The dielectric constant and breakdown strength of the films exhibited opposite behaviors, depending on the total pressure during the synthesis. The product of these two values decreased monotonically as the pressure increased. The Raman spectra were analyzed with a Voigt-type formula. Based on the results, the authors propose the “sp{sup 2} cluster model” for the DLC structure. This model consists of conductive clusters of sp{sup 2} carbons surrounded by a dielectric matrix sea of sp{sup 2} carbon, sp{sup 3} carbon, and hydrogen, and indicates that the dielectric constant of the whole DLC film is determined by the balance between the dielectric constant of the matrix and the total size of the clusters, while the breakdown strength is determined by the reciprocal of the cluster size. The model suggests that a high-? DLC film can be synthesized at a middle pressure and consists of well-grown sp{sup 2} clusters and a dense matrix. A low-? DLC film can be synthesized both at low and high pressures. The sp{sup 2} cluster model explains that a low-? DLC film synthesized at low pressure consists of a dense matrix and a low density of sp{sup 2} clusters, and exhibits a high breakdown strength. On the other hand, a low-? film synthesized at high pressure consists of a coarse matrix and a high density of clusters and exhibits a low breakdown strength.

  6. Sound speed and thermal property measurements of inert materials: laser spectroscopy and the diamond-anvil cell

    SciTech Connect (OSTI)

    Zaug, J.M.

    1997-07-01T23:59:59.000Z

    An indispensable companion to dynamical physics experimentation, static high-pressure diamond-anvil cell research continues to evolve, with laser diagnostic, as an accurate and versatile experimental deep planetary properties have bootstrapped each other in a process that has produced even higher pressures; consistently improved calibrations of temperature and pressure under static and dynamic conditions; and unprecedented data and understanding of materials, their elasticity, equations of state (EOS), and transport properties under extreme conditions. A collection of recent pressure and/or temperature dependent acoustic and thermal measurements and deduced mechanical properties and EOS data are summarized for a wide range of materials including H2, H2O, H2S, D2S, CO2, CH4, N2O, CH3OH,, SiO2, synthetic lubricants, PMMA, single crystal silicates, and ceramic superconductors. Room P&T sound speed measurements are presented for the first time on single crystals of beta-HMX. New high-pressure and temperature diamond cell designed and pressure calibrant materials are reviewed.

  7. C-H surface diamond field effect transistors for high temperature (400?°C) and high voltage (500?V) operation

    SciTech Connect (OSTI)

    Kawarada, H., E-mail: kawarada@waseda.jp [Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051 (Japan); Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T. [Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hiraiwa, A. [Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2014-07-07T23:59:59.000Z

    By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400?°C (673?K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600?V at a gate-drain distance (L{sub GD}) of 7 ?m. We fabricated some MOSFETs for which V{sub B}/L{sub GD}?>?100?V/?m. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-H surface by atomic layer deposition (ALD) at 450?°C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400?°C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400?°C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.

  8. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

  9. Mean carrier transport properties and charge collection dynamics of single-crystal, natural type IIa diamonds from ion-induced conductivity measurements

    SciTech Connect (OSTI)

    Han, S.S.

    1993-09-01T23:59:59.000Z

    Ion-induced conductivity has been used to investigate the detector characteristics of diamond detectors. Both integrated-charge, and time-resolved current measurements were performed to examine the mean carrier transport properties of diamond and the dynamics of charge collection under highly-localized and high-density excitation conditions. The integrated-charge measurements were conducted with a standard pulse-counting system with {sup 241}Am radioactivity as the excitation source for the detectors. The time-resolved current measurements were performed using a 70 GHz random sampling oscilloscope with the detectors incorporated into high-speed microstrip transmission lines and the excitation source for these measurements was an ion beam of either 5-MeV He{sup +} or 10-MeV Si{sup 3+}. The detectors used in both experiments can be described as metal-semiconductor-metal (MSM) devices where a volume of the detector material is sandwiched between two metal plates. A charge collection model was developed to interpret the integrated-charge measurements which enabled estimation of the energy required to produce an electron-hole pair ({epsilon}{sub di}) and the mean carrier transport properties in diamond, such as carrier mobility and lifetime, and the behavior of the electrical contacts to diamond.

  10. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    SciTech Connect (OSTI)

    Schaefer-Nolte, E.; Wrachtrup, J. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Reinhard, F. [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany)] [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Ternes, M., E-mail: m.ternes@fkf.mpg.de [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Kern, K. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condenseé, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2014-01-15T23:59:59.000Z

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  11. Phlogopite and Quartz Lamellae in Diamond-bearing Diopside from Marbles of the Kokchetav Massif Kazakhstan: Exsolution or Replacement Reaction

    SciTech Connect (OSTI)

    L Dobrzhinetskaya; R Wirth; D Rhede; Z Liu; H Green

    2011-12-31T23:59:59.000Z

    Exsolution lamellae of pyroxene in garnet (grt), coesite in titanite and omphacite from UHPM terranes are widely accepted as products of decompression. However, interpretation of oriented lamellae of phyllosilicates, framework silicates and oxides as a product of decompression of pyroxene is very often under debate. Results are presented here of FIB-TEM, FEG-EMP and synchrotron-assisted infrared (IR) spectroscopy studies of phlogopite (Phlog) and phlogopite + quartz (Qtz) lamellae in diamond-bearing clinopyroxene (Cpx) from ultra-high pressure (UHP) marble. These techniques allowed collection of three-dimensional information from the grain boundaries of both the single (phlogopite), two-phase lamellae (phlogopite + quartz), and fluid inclusions inside of diamond included in K-rich Cpx and understanding their relationships and mechanisms of formation. The Cpx grains contain in their cores lamellae-I, which are represented by topotactically oriented extremely thin lamellae of phlogopite (that generally are two units cell wide but locally can be seen to be somewhat broader) and microdiamond. The core composition is: (Ca{sub 0.94}K{sub 0.04}Na{sub 0.02})(Al{sub 0.06}Fe{sub 0.08}Mg{sub 0.88})(Si{sub 1.98}Al{sub 0.02})O{sub 6.00}. Fluid inclusions rich in K and Si are recognized in the core of the Cpx, having no visible connections to the lamellae-I. Lamellar-II inclusions consist of micron-size single laths of phlogopite and lens-like quartz or slightly elongated phlogopite + quartz intergrowths; all are situated in the rim zone of the Cpx. The composition of the rim is (Ca{sub 0.95}Fe{sub 0.03}Na{sub 0.02})(Al{sub 0.05}Fe{sub 0.05}Mg{sub 0.90})Si{sub 2}O{sub 6}, and the rim contains more Ca, Mg than the core, with no K there. Such chemical tests support our microstructural observations and conclusion that the phlogopite lamellae-I are exsolved from the K-rich Cpx-precursor during decompression. It is assumed that Cpx-precursor was also enriched in H{sub 2}O, because diamond included in the core of this Cpx contains fluid inclusions. The synchrotron IR spectra of such diamond record the presence of OH{sup -} stretching and H{sub 2}O bending motion regions. Lamellar-II inclusions are interpreted as forming partly because of modification of the lamellae-i in the presence of fluid enriched in K, Fe and Si during deformation of the host diopside; the latter is probably related to the shallower stage of exhumation of the UHP marble. This study emphasizes that in each case to understand the mechanism of lamellar inclusion formation more detailed studies are needed combining both compositional, structural and three-dimensional textural features of lamellar inclusions and their host.

  12. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements

    SciTech Connect (OSTI)

    Feng, Yejun [The Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [The Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States); Silevitch, D. M.; Rosenbaum, T. F. [The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)

    2014-03-15T23:59:59.000Z

    We present the design of an efficient bellows-controlled diamond anvil cell that is optimized for use inside the bores of high-field superconducting magnets in helium-3 cryostats, dilution refrigerators, and commercial physical property measurement systems. Design of this non-magnetic pressure cell focuses on in situ pressure tuning and measurement by means of a helium-filled bellows actuator and fiber-coupled ruby fluorescence spectroscopy, respectively. We demonstrate the utility of this pressure cell with ac susceptibility measurements of superconducting, ferromagnetic, and antiferromagnetic phase transitions to pressures exceeding 8 GPa. This cell provides an opportunity to probe charge and magnetic order continuously and with high resolution in the three-dimensional Magnetic Field–Pressure–Temperature parameter space.

  13. Van der Waals density-functional theory study for bulk solids with BCC, FCC, and diamond structures

    E-Print Network [OSTI]

    Park, Jinwoo; Hong, Suklyun

    2015-01-01T23:59:59.000Z

    Proper inclusion of van der Waals (vdW) interactions in theoretical simulations based on standard density functional theory (DFT) is crucial to describe the physics and chemistry of systems such as organic and layered materials. Many encouraging approaches have been proposed to combine vdW interactions with standard approximate DFT calculations. Despite many vdW studies, there is no consensus on the reliability of vdW methods. To help further development of vdW methods, we have assessed various vdW functionals through the calculation of structural prop- erties at equilibrium, such as lattice constants, bulk moduli, and cohesive energies, for bulk solids, including alkali, alkali-earth, and transition metals, with BCC, FCC, and diamond structures as the ground state structure. These results provide important information for the vdW-related materials research, which is essential for designing and optimizing materials systems for desired physical and chemical properties.

  14. The Geometry of Large Causal Diamonds and the No Hair Property of Asymptotically de-Sitter Spacetimes

    E-Print Network [OSTI]

    G. W. Gibbons; S. N. Solodukhin

    2007-06-12T23:59:59.000Z

    In a previous paper we obtained formulae for the volume of a causal diamond or Alexandrov open set $I^+(p) \\cap I^-(q)$ whose duration $\\tau(p,q) $ is short compared with the curvature scale. In the present paper we obtain asymptotic formulae valid when the point $q$ recedes to the future boundary ${\\cal I}^+$ of an asymptotically de-Sitter spacetime. The volume (at fixed $\\tau$) remains finite in this limit and is given by the universal formula $V(\\tau) = {4\\over 3}\\pi (2\\ln \\cosh{\\tau\\over 2}-\\tanh^2{\\tau\\over 2})$ plus corrections (given by a series in $e^{-t_q}$) which begin at order $e^{-4t_q}$. The coefficents of the corrections depend on the geometry of ${\\cal I}^+$. This behaviour is shown to be consistent with the no-hair property of cosmological event horizons and with calculations of de-Sitter quasinormal modes in the literature.

  15. The structure and electrochemical behavior of nitrogen-containing nanocrystalline diamond films deposited from CH4/N2/Ar mixtures.

    SciTech Connect (OSTI)

    Chen, Q.; Gruen, D. M.; Krauss, A. R.; Corrigan, T. D.; Swain, G. M.; Utah State Univ.; Northwestern Univ.

    2001-01-01T23:59:59.000Z

    Electrically conductive nanocrystalline diamond films (approximately 750 to 1000 nm thick) were deposited on conducting Si and W substrates from CH{sub 4}/N{sub 2}/Ar gas mixtures using plasma-enhanced chemical vapor deposition. Such films are continuous over the surface and nanometer smooth. The grain size is 3 to 10 nm, and the grain boundaries are 0.2 to 0.5 nm wide (two carbon atoms). Nitrogen appears to substitutionally insert into the grain boundaries and the film concentration ({approx}10{sup 20} atom/cm{sup 3}) scales with the N{sub 2} added to the source gas mixture up to about the 5% level. The nitrogen-incorporated films are void of pinholes and cracks, and electrically conducting due in part to the high concentration of nitrogen impurities and or the nitrogen-related defects (sp{sup 2} bonding). The films possess semimetallic electronic properties over a potential range from at least -1.5 to 1.0 V vs. SCE. The electrodes, like boron-doped microcrystalline diamond, exhibit a wide working potential window, a low background current, and high degree of electrochemical activity for redox systems such as Fe(CN)6{sup -3/-4}, Ru(NH{sub 3}6{sup +3/+2}), IrCl6{sup -2/-3}, and methyl viologen (MV{sup +2/+}). More sluggish electrode kinetics are observed for 4-methylcatechol, presumably due to weak adsorption on the surface. Apparent heterogeneous electron transfer rate constants of 10{sup -2} to 10{sup -1} cm/s are observed for Fe(CN)6{sup -3/-4}, Ru(NH{sub 3})6{sup +3/+2}, IrCl6{sup -2/-3}, and MV {sup +2/+} at films without any pretreatment.

  16. Method and article of manufacture corresponding to a composite comprised of ultra nonacrystalline diamond, metal, and other nanocarbons useful for thermoelectric and other applications

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2010-05-18T23:59:59.000Z

    One provides (101) disperse ultra-nanocrystalline diamond powder material that comprises a plurality of substantially ordered crystallites that are each sized no larger than about 10 nanometers. One then reacts (102) these crystallites with a metallic component. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also substantially preserving the thermal conductivity behavior of the disperse ultra-nanocrystalline diamond powder material. The reaction process can comprise combining (201) the crystallites with one or more metal salts in an aqueous solution and then heating (203) that aqueous solution to remove the water. This heating can occur in a reducing atmosphere (comprising, for example, hydrogen and/or methane) to also reduce the salt to metal.

  17. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

  18. Simulation of ultraviolet- and soft X-ray-pulse generation as a result of cooperative recombination of excitons in diamond nanocrystals embedded in a polymer film

    SciTech Connect (OSTI)

    Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru [Russian Academy of Sciences, Institute for Applied Physics (Russian Federation)

    2013-11-15T23:59:59.000Z

    Using numerical simulation, it is shown that the recombination of free excitons photoexcited in diamond nanocrystals embedded in a polymer film can occur in the cooperative mode. It is found that this mode can be implemented despite the fact that diamond is an 'indirect' semiconductor. It is shown that the power of the generated radiation at the pulse peak during the cooperative recombination of free excitons can exceed that of the incoherent spontaneous emission of the same initial number of free excitons by more than an order of magnitude. Finally, it is shown that the process under consideration can be used to generate picosecond pulses of ultraviolet and soft X-ray electromagnetic field at a wavelength of 235 nm.

  19. Predicting spatial distribution of critical pore types and their influence on reservoir quality, Canyon (Pennsylvanian) Reef reservoir, Diamond M field, Texas

    E-Print Network [OSTI]

    Fisher, Aaron Jay

    2007-04-25T23:59:59.000Z

    Subject: Geology iii ABSTRACT Predicting Spatial Distribution of Critical Pore Types and Their Influence on Reservoir Quality, Canyon (Pennsylvanian) Reef Reservoir, Diamond M Field, Texas... scale. Ultimately slice maps of reservoir quality at a 10 ft interval for a 150 ft section of the Canyon Reef reservoir were developed. These iv reservoir quality maps will provide a useful tool for the design and implementation of accurate...

  20. Fabrication and testing of diamond-machined gratings in ZnSe, GaP, and bismuth germanate for the near infrared and visible

    SciTech Connect (OSTI)

    Kuzmenko, P J; Little, S L; Ikeda, Y; Kobayashi, N

    2008-06-22T23:59:59.000Z

    High quality immersion gratings for infrared applications have been demonstrated in silicon and germanium. To extend this technology to shorter wavelengths other materials must be investigated. We selected three materials, zinc selenide, gallium phosphide and bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}), based on high refractive index, good visible transmission and commercial availability in useful sizes. Crystal samples were diamond turned on an ultra-precision lathe to identify preferred cutting directions. Using this information we diamond-flycut test gratings over a range of feed rates to determine the optimal cutting conditions. For both ZnSe and GaP good surface quality was achieved at feed rates up to 1.0 cm/minute using a special compound angle diamond tool with negative rake angles on both cutting surfaces. The surface roughness of the groove facets was about 4 nm. A Zygo interferometer measured grating wavefront errors in reflection. For the ZnSe the RMS error was < {lambda}/20 at 633nm. More extensive testing was performed with a HeNe laser source and a cooled CCD camera. These measurements demonstrated high relative diffraction efficiency (> 80%), low random groove error (2.0 nm rms), and Rowland ghost intensities at < 0.1%. Preliminary tests on bismuth germanate show high tool wear.

  1. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  2. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  3. Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    SciTech Connect (OSTI)

    McClintock, Carlee [ORNL; Hettich, Robert {Bob} L [ORNL

    2013-01-01T23:59:59.000Z

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent hydroxyl radicals for these measurements; however, many of these approaches require use of radioactive sources or caustic oxidizing chemicals. The purpose of this research was to evaluate and optimize the use of boron-doped diamond (BDD) electrochemistry as a highly accessible tool for producing hydroxyl radicals as a means to induce a controllable level of oxidation on a range of intact proteins. These experiments utilize a relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber, along with a unique cell activation approach to improve control over the intact protein oxidation yield. Studies were conducted to evaluate the level of protein adsorption onto the electrode surface. This report demonstrates a robust protocol for the use of BDD electrochemistry and high performance LC-MS/MS as a high-throughput experimental pipeline for probing higher order protein structure, and illustrates how it is complementary to predictive computational modeling efforts.

  4. Microwave plasma enhanced chemical vapor deposition of nanocrystalline diamond films by bias-enhanced nucleation and bias-enhanced growth

    SciTech Connect (OSTI)

    Chu, Yueh-Chieh [Institute of Microelectronics, National Cheng Kung University No.1, University Road, Tainan 701, Taiwan (China); Tzeng, Yonhua, E-mail: tzengyo@mail.ncku.edu.tw [Institute of Microelectronics, National Cheng Kung University No.1, University Road, Tainan 701, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University No.1, University Road, Tainan 701, Taiwan (China); Auciello, Orlando [Department of Materials Science and Engineering and Bioengineering, University of Texas in Dallas, 800 W. Campbell Rd, Richardson, Texas 75080 (United States)

    2014-01-14T23:59:59.000Z

    Effects of biasing voltage-current relationship on microwave plasma enhanced chemical vapor deposition of ultrananocrystalline diamond (UNCD) films on (100) silicon in hydrogen diluted methane by bias-enhanced nucleation and bias-enhanced growth processes are reported. Three biasing methods are applied to study their effects on nucleation, growth, and microstructures of deposited UNCD films. Method A employs 320?mA constant biasing current and a negative biasing voltage decreasing from ?490?V to ?375?V for silicon substrates pre-heated to 800?°C. Method B employs 400?mA constant biasing current and a decreasing negative biasing voltage from ?375?V to ?390?V for silicon pre-heated to 900?°C. Method C employs ?350?V constant biasing voltage and an increasing biasing current up to 400?mA for silicon pre-heated to 800?°C. UNCD nanopillars, merged clusters, and dense films with smooth surface morphology are deposited by the biasing methods A, B, and C, respectively. Effects of ion energy and flux controlled by the biasing voltage and current, respectively, on nucleation, growth, microstructures, surface morphologies, and UNCD contents are confirmed by scanning electron microscopy, high-resolution transmission-electron-microscopy, and UV Raman scattering.

  5. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2003-10-01T23:59:59.000Z

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  6. Rabi Waves and Peculiarities of Raman Scattering in Carbon Nanotubes, Produced by High Energy Ion Beam Modification of Diamond Single Crystals

    E-Print Network [OSTI]

    Dmitry Yearchuck; Alla Dovlatova

    2011-03-06T23:59:59.000Z

    QED-model for multichain coupled qubit system, proposed in \\cite{Part1}, was confirmed by Raman scattering studies of carbon zigzag-shaped nanotubes, produced by high energy ion beam modification of natural diamond single crystals. New quantum optics phenomenon - Rabi waves - has been experimentally identified for the first time. Raman spectra in perfect quasi-1D carbon nanotubes are quite different in comparison with well known Raman spectra in 2D carbon nanotubes of larger diameter. They characterized by vibronic mode of Su-Schriffer-Heeger $\\sigma$-polaron lattice and its revival part in frequency representation, which is the consequence of Rabi wave packet formation.

  7. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30T23:59:59.000Z

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  8. Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH{sub 4}/Ar plasma

    SciTech Connect (OSTI)

    Sankaran, K. J.; Tai, N. H., E-mail: inanlin@mail.tku.edu.tw, E-mail: nhtai@mse.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Huang, B. R.; Saravanan, A. [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Lin, I. N., E-mail: inanlin@mail.tku.edu.tw, E-mail: nhtai@mse.nthu.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-10-28T23:59:59.000Z

    Microstructural evolution of bias-enhanced grown (BEG) ultrananocrystalline diamond (UNCD) films has been investigated using microwave plasma enhanced chemical vapor deposition in gas mixtures of CH{sub 4} and Ar under different negative bias voltages ranging from ?50 to ?200?V. Scanning electron microscopy and Raman spectroscopy were used to characterize the morphology, growth rate, and chemical bonding of the synthesized films. Transmission electron microscopic investigation reveals that the application of bias voltage induced the formation of the nanographitic filaments in the grain boundaries of the films, in addition to the reduction of the size of diamond grains to ultra-nanosized granular structured grains. For BEG-UNCD films under ?200?V, the electron field emission (EFE) process can be turned on at a field as small as 4.08?V/?m, attaining a EFE current density as large as 3.19?mA/cm{sup 2} at an applied field of 8.64?V/?m. But the films grown without bias (0?V) have mostly amorphous carbon phases in the grain boundaries, possessing poorer EFE than those of the films grown using bias. Consequently, the induction of nanographitic filaments in grain boundaries of UNCD films grown in CH{sub 4}/Ar plasma due to large applied bias voltage of ?200?V is the prime factor, which possibly forms interconnected paths for facilitating the transport of electrons that markedly enhance the EFE properties.

  9. Charge exchange neutral particle measurements with natural diamond detector under the deuterium-deuterium neutron field on JT-60U tokamak

    SciTech Connect (OSTI)

    Ishikawa, M.; Kusama, Y.; Takechi, M.; Nishitani, T.; Morioka, A.; Sasao, M.; Isobe, M.; Krasilnikov, A.; Kaschuck, Yu. A. [Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 319-0193 (Japan); Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); National Institute for Fusion Science, Toki, Gihu 509-5292 (Japan); Troitsk Institute of Innovating and Fusion Research (TRINITI) Troitsk, Moscow Region 142092 (Russian Federation)

    2004-10-01T23:59:59.000Z

    A natural diamond detector (NDD) has been installed on the JT-60U tokamak to measure the flux and the energy distribution of charge exchange (CX) fast neutral particles. A NDD has many important advantages to be used as a CX neutral particle analyzer, for example very compact size, high energy resolution, and high radiation hardness etc., while the neutrons and {gamma} rays are a large noise source in the deuterium plasma. The shield was set up around the NDD to reduce those noises. Time-resolved energy distribution of CX neutral particles corresponding to injected beam energy have been successfully obtained under high intensity neutron yield Y{sub n}>10{sup 15} n/s. Further enhanced neutral particle fluxes during sawtooth oscillation and Alfven eigenmodes were observed with the NDD. The performance of the NDD as CX neutral particle spectrometer under high intensity neutron yield was demonstrated for the first time on JT-60U in this work.

  10. The influence of surface interactions on the reversibility of ferri/ferrocyanide at boron-doped diamond thin-film electrodes

    SciTech Connect (OSTI)

    Granger, M.C.; Swain, G.M.

    1999-12-01T23:59:59.000Z

    The electrochemistry of four redox analytes [Fe(CN){sub 6}{sup {minus}3/{minus}4}, Ru(NH{sub 3}){sub 6}{sup +2/+3}, IrCl{sub 6}{sup {minus}2/{minus}3}, and methyl viologen, MV{sup +2/+/0}] was investigated at polycrystalline, boron-doped diamond thin-film electrodes before and after anodic polarization and hydrogen plasma treatment. The as-deposited diamond surface is predominantly hydrogen treatment, and quasi-reversible cyclic voltammograms ({Delta}E{sub p} of 60--80 mV) were observed for all of these couples at 0.1 V/s. After anodic polarization in H{sub 2}SO{sub 4}, the surface atomic O/C ratio, as determined by X-ray photoelectron spectroscopy, increased from 0.02 to ca. 0.20. Concomitant with the increase in surface oxygen, the {Delta}E{sub p} for Fe(CN){sub 6}{sup {minus}3/{minus}4} increased to over 200 mV, while the {Delta}E{sub p} values for the other redox systems remained relatively unchanged. After acid washing and rehydrogenating the surface in hydrogen plasma (i.e., atomic hydrogen), the {Delta}E{sub p} for Fe(CN){sub 6}{sup {minus}3/{minus}4} returned to ca. 80 mV, while the {Delta}E{sub p} values for the other three redox analytes remained close to the original values. The results demonstrate the electron transfer for ferri/ferrocyanide is very sensitive to the presence of surface carbon-oxygen functionalities and that the electron transfer involves a site associated with the hydrogen-terminated surface. The results also unequivocally rule out the influence of adventitious nondiamond phases as the sole sites for the electron transfer.

  11. High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Daicho, Akira, E-mail: notevayas-tales@ruri.waseda.jp; Saito, Tatsuya; Kurihara, Shinichiro; Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan)

    2014-06-14T23:59:59.000Z

    Although the two-dimensional hole gas (2DHG) of a hydrogen-terminated diamond surface provides a unique p-type conducting layer for high-performance transistors, the conductivity is highly sensitive to its environment. Therefore, the surface must be passivated to preserve the 2DHG, especially at high temperature. We passivated the surface at high temperature (450?°C) without the loss of C-H surface bonds by atomic layer deposition (ALD) and investigated the thermal reliability of the Al{sub 2}O{sub 3} film. As a result, C-H bonds were preserved, and the hole accumulation effect appeared after the Al{sub 2}O{sub 3} deposition by ALD with H{sub 2}O as an oxidant. The sheet resistivity and hole density were almost constant between room temperature and 500?°C by the passivation with thick Al{sub 2}O{sub 3} film thicker than 38?nm deposited by ALD at 450?°C. After the annealing at 550?°C in air The sheet resistivity and hole density were preserved. These results indicate the possibility of high-temperature application of the C-H surface diamond device in air. In the case of lower deposition temperatures, the sheet resistivity increased after air annealing, suggesting an insufficient protection capability of these films. Given the result of sheet resistivity after annealing, the increase in the sheet resistivity of these samples was not greatly significant. However, bubble like patterns were observed in the Al{sub 2}O{sub 3} films formed from 200 to 400?°C by air annealing at 550?°C for 1 h. On the other hand, the patterns were no longer observed at 450?°C deposition. Thus, this 450?°C deposition is the sole solution to enabling power device application, which requires high reliability at high temperatures.

  12. Elastic properties, sp{sup 3} fraction, and Raman scattering in low and high pressure synthesized diamond-like boron rich carbides

    SciTech Connect (OSTI)

    Zinin, Pavel V.; Burgess, Katherine; Jia, Ruth; Sharma, Shiv; Ming, Li-Chung [Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96822 (United States); Liu, Yongsheng [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an Shanxi (China); Ciston, Jim [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hong, Shiming [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, Sichuan (China)

    2014-10-07T23:59:59.000Z

    Dense BC{sub x} phases with high boron concentration are predicted to be metastable, superhard, and conductors or superconductors depending on boron concentration. However, up to this point, diamond-like boron rich carbides BC{sub x} (dl-BC{sub x}) phases have been thought obtainable only through high pressure and high temperature treatment, necessitating small specimen volume. Here, we use electron energy loss spectroscopy combined with transmission electron microscopy, Raman spectroscopy, surface Brillouin scattering, laser ultrasonics (LU) technique, and analysis of elastic properties to demonstrate that low pressure synthesis (chemical vapor deposition) of BC{sub x} phases may also lead to the creation of diamond-like boron rich carbides. The elastic properties of the dl-BC{sub x} phases depend on the carbon sp{sup 2} versus sp{sup 3} content, which decreases with increasing boron concentration, while the boron bonds determine the shape of the Raman spectra of the dl-BC{sub x} after high pressure-high temperature treatment. Using the estimation of the density value based on the sp{sup 3} fraction, the shear modulus ? of dl-BC{sub 4}, containing 10% carbon atoms with sp{sup 3} bonds, and dl-B{sub 3}C{sub 2}, containing 38% carbon atoms with sp{sup 3} bonds, were found to be ??=?19.3?GPa and ??=?170?GPa, respectively. The presented experimental data also imply that boron atoms lead to a creation of sp{sup 3} bonds during the deposition processes.

  13. Diamond Schottky barrier diodes

    E-Print Network [OSTI]

    Brezeanu, Mihai

    2008-03-11T23:59:59.000Z

    Laboratory, to Suat for showing La Dolce vita, to Mash-hud and the right to ask questions, to Marina Antoniou and her future Romanian villa, to Zeeshan and our twin PhD-routes, to Hatice and her heinous Bukowskian nights To Alex and our Internautian nights... ....................... .. . .............. ....... ..... ......... 20 2.4.1 Introduction. . .. . .. . . . . .. . ...... ... . .. . .. . ... ..... . .. . .. . .............. 20 2.4.2 Schottky diodes...... ............ .................................... 20 2.4.3 Field effect transistors...

  14. Diamond Pixel Luminosity Telescopes

    SciTech Connect (OSTI)

    Halyo, Valerie

    2014-12-23T23:59:59.000Z

    In this document, Halyo summaries her key contributions to CMS at the LHC and provide an explanation of their importance and her role in each project. At the end Halyo describes her recent research interest that includes GPU/MIC Acceleration of the High Level Trigger (HLT) to Extend the Physics Research at the LHC. A descriptionof her work the recent promising results that she accomplished and the deliverable are also elaborated. These contribution were only possible thanks to DOE support of junior faculty research and their clear goal to promote research and innovations. #3;Princeton University i

  15. Stability and breakdown of Ca{sup 13}CO{sub 3} melt associated with formation of {sup 13}C-diamond in static high pressure experiments up to 43 GPa and 3900 K

    SciTech Connect (OSTI)

    Spivak, A.V., E-mail: spivak@iem.ac.ru [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Litvin, Yu.A. [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Ovsyannikov, S.V. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany); Dubrovinskaia, N.A. [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth (Germany); Dubrovinsky, L.S. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany)

    2012-07-15T23:59:59.000Z

    Melting of calcium carbonate Ca{sup 13}CO{sub 3}, stability of the melt and its decomposition were studied in static high pressure experiments at pressures of 11-43 GPa and temperatures of 1600-3900 K using diamond anvil cell technique with laser heating. We observed formation of {sup 13}C-graphite (below 16 GPa) and {sup 13}C-diamond (between 16 and 43 GPa) on decomposition of the Ca{sup 13}CO{sub 3} melt at temperatures above 3400 K. At temperatures below 3400 K congruent melting of calcium carbonate was confirmed. The experimental results were applied to construction of the phase diagram of CaCO{sub 3} up to 43 GPa and 3900 K focusing at the melting curve of calcium carbonate and the decomposition phase boundary of CaCO{sub 3} melt. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer Phase states of CaCO{sub 3} were studied at P=11-43 GPa and T=1600-3900 K. Black-Right-Pointing-Pointer {sup 13}C-diamond easily crystallizes in carbonate-carbon (Ca{sup 13}CO{sub 3-}{sup 13}C-graphite) melt-solutions. Black-Right-Pointing-Pointer Ca-carbonate melts congruently that was observed in experiments in DAC with laser heating. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} melt, indicated by formation of graphite and/or diamond. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} was observed at temperatures above 3400 K in the pressure interval studied.

  16. Behavior of the Diamond Difference and Low-Order Nodal Numerical Transport Methods in the Thick Diffusion Limit for Slab Geometry

    SciTech Connect (OSTI)

    Gill DF

    2007-04-17T23:59:59.000Z

    The objective of this work is to investigate the thick diffusion limit of various spatial discretizations of the one-dimensional, steady-state, monoenergetic, discrete ordinates neutron transport equation. This work specifically addresses the two lowest order nodal methods, AHOT-N0 and AHOT-N1, as well as reconsiders the asymptotic limit of the Diamond Difference method. The asymptotic analyses of the AHOT-N0 and AHOT-N1 nodal methods show that AHOT-N0 does not possess the thick diffusion limit for cell edge or cell average fluxes except under very limiting conditions, which is to be expected considering the AHOT-N0 method limits to the Step method in the thick diffusion limit. The AHOT-N1 method, which uses a linear in-cell representation of the flux, was shown to possess the thick diffusion limit for both cell average and cell edge fluxes. The thick diffusion limit of the DD method, including the boundary conditions, was derived entirely in terms of cell average scalar fluxes. It was shown that, for vacuum boundaries, only when {sigma}{sub t}, h, and Q are constant and {sigma}{sub a} = 0 is the asymptotic limit of the DD method close to the finite-differenced diffusion equation in the system interior, and that the boundary conditions between the systems will only agree in the absence of an external source. For a homogeneous medium an effective diffusion coefficient was shown to be present, which was responsible for causing numeric diffusion in certain cases. A technique was presented to correct the numeric diffusion in the interior by altering certain problem parameters. Numerical errors introduced by the boundary conditions and material interfaces were also explored for a two-region problem using the Diamond Difference method. A discrete diffusion solution which exactly solves the one-dimensional diffusion equation in a homogeneous region with constant cross sections and a uniform external source was also developed and shown to be equal to the finite-differenced diffusion discretization for c = 1 in the system interior, where again the boundary conditions again only agree in the absence of an external source. It was also shown that for c < 1 the exact discrete diffusion solution is written in terms of hyperbolic functions, with expressions which limit to the exact solution for the c = 1 case as c {yields} 1. Finally, a transport discretization is developed which reproduces the exact S2 solution for the case of a purely scattering homogeneous region with vacuum boundary conditions, and an extension to the discretization for the case of c < 1 is found by considering a Taylor series expansion of the exact answer centered at c = 0.

  17. Probing the Electronic Structures of [Cmu(Mu-XR(2)]**N+ Diamond Cores As a Function of the Bridging X Atom (X = N Or P) And Charge (N=0, 1, 2)

    SciTech Connect (OSTI)

    Harkins, S.B.; Mankad, N.P.; Miller, A.J.M.; Szilagyi, R.K.; Peters, J.C.

    2009-05-18T23:59:59.000Z

    A series of dicopper diamond core complexes that can be isolated in three different oxidation states ([Cu{sub 2}({mu}-XR{sub 2})]{sup n+}, where n = 0, 1, 2 and X = N or P) is described. Of particular interest is the relative degree of oxidation of the respective copper centers and the bridging XR{sub 2} units, upon successive oxidations. These dicopper complexes feature terminal phosphine and either bridging amido or phosphido donors, and as such their metal-ligand bonds are highly covalent. Cu K-edge, Cu L-edge, and P K-edge spectroscopies, in combination with solid-state X-ray structures and DFT calculations, provides a complementary electronic structure picture for the entire set of complexes that tracks the involvement of a majority of ligand-based redox chemistry. The electronic structure picture that emerges for these inorganic dicopper diamond cores shares similarities with the Cu{sub 2}({mu}-SR){sub 2} Cu{sub A} sites of cytochrome c oxidases and nitrous oxide reductases.

  18. David Jardini President, Black Diamond

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    President, Guttman Energy, Inc. Gene Harris Principal, Harris Consulting Ex Officio Marc S. Malandro, Ph.entrepreneur.pitt.edu The Institute for Entrepreneurial Excellence Advisory Board With statistics like these, it is no surprise in new funding obtained for client company growth million in increased revenue reported by client

  19. Recreating the Strength of Diamonds

    E-Print Network [OSTI]

    , scientists must respond to the growing demand for electricity with rapidly accelerated efforts to harness for thousands of years. An automo- tive industry engaged in a ferocious international competition demands new the sun's energy for generating electricity for transportation, industrial and residential applica- tions

  20. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect (OSTI)

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey [Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Mankelevich, Yuri A. [Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2009-08-01T23:59:59.000Z

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2} conversion, whereas the reverse C{sub 2}H{sub 2}->CH{sub 4} process only requires H atoms to drive the reactions; H atoms are not consumed by the overall conversion.

  1. Supplement 16, Authors: A To Z

    E-Print Network [OSTI]

    Segal, Dorothy B.; Humphrey, Judith M.; Beard, Mary I.; Edwards, Shirley J.; Kirby, Margie D.

    1966-01-01T23:59:59.000Z

    Indust- ries. Division of Plant Industry. Brisbane. Bull. Univ. Nebraska State Mus.? Bulletin of the Univer- sity of Nebraska State Museum. Lincoln, Nebraska. Essays Nat. Sc. Honor Captain Allan Hancock.-- Essays in the Natural Sciences in Honor... of Captain Allan Hancock. On the Occasion of his Birthday, July 26, 1955? Los Ang eles, Cali fornia . Estudos, Ensaios e Doc?, Junta Invest. Ultramar, Lisboa .? Estudos, Ensaios e Documentos. Junta de Investiga- tes do Ultramar. Lisboa. Exper. Rep...

  2. wvBLACK DIAMONDS table of contents

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    with mining! WE'RE ON THE WEB! www.mine.cemr.wvu.edu College of Engineering and Mineral Resources DEPARTMENT

  3. wvBLACK DIAMONDS table of contents

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    'RE ON THE WEB! www.mine.cemr.wvu.edu Statler College of Engineering and Mineral Resources DEPARTMENT OF MINING

  4. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies...

  5. wvBLACK DIAMONDS Engineering and

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . Robert E. Murray is president of Murray Energy Corp., the largest privately owned coal mining company before establishing Murray Energy. Although a graduate of Ohio State University, Murray sent his three they earned degrees in mining engineering and geology. They all work for Murray Energy. Bob and Brenda Murray

  6. Diamond Detectors for Accurate Compton Polarimetry

    E-Print Network [OSTI]

    Martin, Jeff

    'd Operable for a variety of beam energies from 1.165 GeV ­ 11.0 GeV chicane must fit in Hall C Most design by UVa+JLab group #12; Photon Detector options 3x3 array of PbWO4 Monolithic CsI (undoped) Detectors

  7. Traditionally configured prawn trawls contain small diamond-

    E-Print Network [OSTI]

    quantities of nontarget organ- isms, collectively termed bycatch (for reviews see Andrew and Pep- perell, is of major concern, because it may deleteriously affect the re- cruitment and biomass of stocks Use 120 Henley Beach, South Australia 5022, Australia Present address: Universidade Federal Rural de

  8. Thursday, February 28, 2013 Diamond Alumni Centre

    E-Print Network [OSTI]

    and University Awards Community and University Awards Dahabieh, Sam BC Hydro Power Smart Leadership Excellence Officer of the Order of Canada Harris, Gordon City of Burnaby Environment Award Lee, Jack Glenfiddich SFU Excellence in Teaching Award McCarthy, Ian Business Insider, 54 Smart Thinkers Everyone Should

  9. Diamond Power Infrastructure Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilaria dethe

  10. Diamond Based TE Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergy studies on Li-battery cells

  11. Diamond Walnut Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:ResearchWalnut Biomass

  12. Diamond Wire Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:ResearchWalnut BiomassWire

  13. Diamond, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:ResearchWalnut

  14. Blue Diamond Ventures Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins Energia Jump to:Black Riverblogs

  15. Diamond Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm Jump

  16. Diamond Willow Extension | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm JumpExtension

  17. Observations of Rabi oscillations in a non-polar InGaN quantum dot

    E-Print Network [OSTI]

    Reid, Benjamin P. L.; Kocher, Claudius; Zhu, Tongtong; Oehler, Fabrice; Emery, Robert; Chan, Christopher C. S.; Oliver, Rachel A.; Taylor, Robert A.

    2014-07-03T23:59:59.000Z

    by the same objective and imaged onto a 25µm slit and dispersed by a 1200 lines/mm grating in a 0.3m spectrometer (Shamrock 303i) and detected by a Peltier-cooled Si-based charge-coupled device (Andor). The setup as described gives a spectral resolution...

  18. LEFT The electron gun at the Diamond Synchrotron in

    E-Print Network [OSTI]

    Crowther, Paul

    | HowItWorks TECHNOLOGY "To convert the electronic signals into power, heat is created by kinetic energy as thermionic emission. Inside the gun there is a small filament that heats the cathode, which makes it release. There are two main types of electron gun: thermionic and field emission. The former are much more common

  19. Strategic level expert system design for diamond interchange control

    E-Print Network [OSTI]

    Patrone, David Michael

    1999-01-01T23:59:59.000Z

    to the Prototype C. Scenarios. 1. Scenario Generator. . 2. General Scenario Information . . 3. Three-Phase Lead-Lead Scenario . . 4. Three-Phase Lag-Lag Scenario . . 5. Three-Phase Lead-Lag/Lag-Lead Scenario. 6. Four-Phase Scenario. D. Verification... of Generated Scenarios with PASSER-III l. Three-Phase Lead-Lead Generated Scenario Verification. . . . 2. Three-Phase Lag-Lag Generated Scenario Verification . . . . . . . 3. Three-Phase Lead-Lag Generated Scenario Verification. . . . . . 4. Three-Phase Lag-Lead...

  20. Mechanical Properties of Ultrananocrystalline Diamond Thin Films for MEMS Applications

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    such as microturbines have already been produced. These preliminary exercises are promising steps toward full

  1. Operational characteristics of the three-level diamond interchange

    E-Print Network [OSTI]

    McCann, Charles Howard Wesley

    1963-01-01T23:59:59.000Z

    phasiaS (City of Soustca IssiSa) IosiSS '0 With T7 Tera Lace ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 27 27 ~ ~ ~ 2S ~ * ~ 29 ~ . . 29 ~ ~ e 3O ~ ~ ~ 33 SSFINITIONS Arterial reap; Rsnp joining ss artcc'isl with either cn fntsrssctioa or ss interchange... ~ 1 peu articles hsw bees publishe4 coaeoraisg the three-lewl disused interchange. gcgschern reporte4 that ths throe-level dtcsosd iater 6o chaago offers s specific advantage shen s fully diractioaal interchaage io not justified~ ssd ~ cuo lovel...

  2. Synthesis and characterization of a nanocrystalline diamond aerogel

    E-Print Network [OSTI]

    Pauzauskie, Peter J.

    2012-01-01T23:59:59.000Z

    aerogel material consists of nanocrystalline grains connected through what appears to be thin surface coatings

  3. The Best of Both Worlds: Bulk Diamond Properties Realized at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC, Conference Room 137-322 Presented by Abraham Wolcott, Department of Chemistry, Columbia University High-pressure, high-temperature (HPHT) nanodiamonds with nitrogen...

  4. WATERJET ASSISTED POLYCRYSTALLINE DIAMOND INDENTATION DRILLING OF ROCK

    E-Print Network [OSTI]

    ., and Summers, D.A., University of Missouri-Rolla, USA Pixton, D., Novatek, Provo, Utah USA Abstract The use of drilling and completions of the wells can account for 25 ­ 50% of the cost of the electricity which

  5. Student Pages Diamond Head Tuff Ring Field Study

    E-Print Network [OSTI]

    Hammer, Julia Eve

    or steam. Tuff cones range in size from 60 to 2000 m (200 to 6,500 feet) across and from 10 to 200 m (30 conduit. The fragments may be held tightly together by cementing material, creating a rock you can break pattern; if the unit appears to be layered, indicate these with lines. If the units have distinctive

  6. Captulo 4. Los Trpicos H. J. Diamond, Editor

    E-Print Network [OSTI]

    ) durante la temporada 2008 en siete cuencas distintas: Atlántico Norte, Pacífico Norte Oriental, Pacífico Noroeste, Índico Norte e Índico Sur, Pacífico Sur y Australia; (4) Comportamiento de la Zona de considerablemente por debajo de la normal durante 2008. Por su parte, la actividad en el Océano Índico Norte alcanzó

  7. Optical control of individual nitrogen-vacancy centers in diamond

    E-Print Network [OSTI]

    Loncar, Marko

    generation, leading iii #12;Abstract iv to quantum channels, between remote NV centers. Finally we demonstrate optical cooling, real-time measurement and conditional preparation of the nuclear spin environment centers . . 7 1.2.4 All-optical measurement and cooling of the nuclear spin envi- ronment of an NV center

  8. Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling

    SciTech Connect (OSTI)

    Robert Lee Cardenas

    2000-10-31T23:59:59.000Z

    Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

  9. Electronic diamond: Fabrication processes and electron emission performance

    SciTech Connect (OSTI)

    Scott, M.; Springer, R.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to develop a working Laboratory prototype model that would demonstrate the viability of a mercury-free light bulb concept in a controlled laboratory setting. A successful demonstration of the light bulb is reported.

  10. The Advantages of Not Entangling Macroscopic Diamonds at Room Temperature

    E-Print Network [OSTI]

    Brezinski, Mark E.

    2012-01-01T23:59:59.000Z

    The recent paper entitled by K. C. Lee et al. (2011) establishes nonlocal macroscopic quantum correlations, which they term “entanglement”, under ambient conditions. Photon(s)-phonon entanglements are established within ...

  11. USES OF HYPERTHERMAL ATOMIC BEAM FOR LOW TEMPERATURE DIAMOND GROWTH |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram |Frank CasellaEnergy Workforce of Tomorrow

  12. Sandia Energy - Diamond Plates Create Nanostructures through Pressure,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors ToDecision SupportDesal HomeNot

  13. Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergy studies on Li-battery cellsDepartment

  14. Ultrananocrystalline Diamond (UNCD) Seal Faces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-JapanCatalysts | DepartmentBoilers |

  15. Diamond Bar, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:Research CompanyBar,

  16. Diamond Beach, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:Research CompanyBar,Beach,

  17. Diamond Ridge, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:Research

  18. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 Million SolicitationNanocomposites for Drill Bits

  19. BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it !D;rC. lo

  20. Diamond RF Switch for Enhanced Communications - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu, James CowinPhysics

  1. Diamond Willow Wind (07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm

  2. Diamond Willow Wind (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm8) Wind Farm

  3. Diamond and Related Materials, 3 (1994) 939-941 939 CVD diamond growth on germanium for IR window applications

    E-Print Network [OSTI]

    Bristol, University of

    1994-01-01T23:59:59.000Z

    [ Chemistry, Unil,ersity of Bristol, Cantock 's Close, Bristol BS8 1TS (UK) N. M. Everitt Department o[Aerospace with ition times. An alternative is to coat existing IR window epitaxial layers of Si-Ge alloy 2 Bm thick

  4. Heiniger, Wlti: Novel Single Crystal Diamonds for Waterjet Cutting Applications Novel Single Crystal Diamonds for Waterjet Cutting

    E-Print Network [OSTI]

    change in the cutting head. Furthermore water produced employing a reduced water treatment is sufficient of such orifices are strongly limited to only dozens of hours due to the high water pressure environment (typically 350 MPa) and contacts with abra- sives through the water hammer effect during cut-offs. Due to its

  5. Amorphous Diamond Flat Panel Displays - Final Report of ER-LTR CRADA project with SI Diamond Technology

    E-Print Network [OSTI]

    Ager III, Joel W.

    1998-01-01T23:59:59.000Z

    Department of Energy under a CRADA (Cooperative Research andnm in size. Page 4 of 7 SIDT CRADA Final Report In order toFinal report of ER-LTR CRADA Project Lawrence Berkeley

  6. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01T23:59:59.000Z

    vapor deposition polycrystalline diamond ?lms. Diamonddoped (B- doped) polycrystalline diamond thin ?lms (MR?

  7. 1234 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 5, OCTOBER 2010 Piezoresistive Microcantilevers From

    E-Print Network [OSTI]

    Bashir, Rashid

    of doped and insulating CVD diamond films. Ultrananocrystalline diamond (UNCD) is a polycrystalline diamond Microcantilevers From Ultrananocrystalline Diamond Natalya L. Privorotskaya, Hongjun Zeng, Senior Member, IEEE- doped ultrananocyrstalline diamond (UNCD) and the fabrication of piezoresistive microcantilevers using

  8. Computation modeling of drill bits : a new method for reproducing bottom hole geometry and a second-order explicit integrator via composition for coupled rotating rigid bodies

    E-Print Network [OSTI]

    Endres, Lanson Adam

    2007-01-01T23:59:59.000Z

    bit which uses ?xed polycrystalline diamond compact cutters.laboratory data. Two polycrystalline diamond compact (PDC)and their counterpart, polycrystalline diamond compact (PDC)

  9. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01T23:59:59.000Z

    within Acoustically Hard Polycrystalline Diamond Barriers,”of CVD grown polycrystalline diamond films …………………… 42discovered that polycrystalline diamond films can be grown

  10. Lightweight Impact-Resistant Composite Materials: Lessons from Mantis Shrimp

    E-Print Network [OSTI]

    Milliron, Garrett

    2012-01-01T23:59:59.000Z

    paper and then with polycrystalline diamond suspensions downpaper and then with polycrystalline diamond suspensions downpaper and then with polycrystalline diamond suspensions down

  11. eCopy, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is bonded to a substrate made of polycrystaUine diamond to build what we call an integral diamond crystal. Polycrystalline diamonds can have high thermal conductivities 22...

  12. Material Removal Mechanisms in Lapping and Polishing

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    diamond polishing of electroless nickel optics or silicon [diamond polishing of electroless nickel optics or silicon)to diamond polish electroless nickel. Commercially available

  13. Electrocodeposition of nanoparticle composite films using an impinging jet electrode

    E-Print Network [OSTI]

    Osborne, Steven J.

    2006-01-01T23:59:59.000Z

    G. Maybee, “Electrodeposition of Nickel- Diamond and Cobalt-G. Maybee, “Electrodeposition of Nickel- Diamond and Cobalt-G. Maybee, “Electrodeposition of Nickel- Diamond and Cobalt-

  14. Temperature-Compensated and High-Q Piezoelectric Aluminum Nitride Lamb Wave Resonators for Timing and Frequency Control Applications

    E-Print Network [OSTI]

    Lin, Chih-Ming

    2013-01-01T23:59:59.000Z

    Young's modulus of polycrystalline diamond,” Diam. Relat.thin film and a polycrystalline diamond layer on a Si

  15. Bounds on the Minimum Energy-Per-Bit for Bursty Traffic in Diamond Networks

    E-Print Network [OSTI]

    Danforth, Bryan Nicholas

    , these studies lack a fundamental characterization of the energy and bandwidth costs of synchronization. Early work on the fundamental limits of asynchronous communication involved characterizing the data rates are often battery-operated. Thus, in the case of short and sporadic transmissions, i.e., bursty traffic

  16. DESIGNING AN ENVIRONMENTAL SHOWCASE: THE SAN FRANCISCO Dale Sartor, Rick Diamond, Lawrence Berkeley National Laboratory,

    E-Print Network [OSTI]

    Diamond, Richard

    public and private sector activities, but it will also have high-visibility, with over eight million, and to reduce energy consumption by 30% or more. Fully occupied, the baseline energy cost at the Presidio, Lawrence Berkeley National Laboratory, Andy Walker, National Renewable Energy Laboratory Michael Giller

  17. Diamond fragments as building blocks of functional nanostructures Gregory C. McIntosh,1

    E-Print Network [OSTI]

    . Traditionally, diamondoids have been known in the oil industry,13,14 where they occur naturally dissolved in oil the solution and act as nucleation sites for the formation of sludge, which often blocks pipelines.15,16 Only the sludge5 and are now being considered for nanotechnology applications. The isolated diamondoids oc- cur

  18. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    SciTech Connect (OSTI)

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25T23:59:59.000Z

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  19. Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths

    E-Print Network [OSTI]

    , Zürich, Switzerland e Geological Survey of Western Australia, Mineral House, 100 Plain Street, East Perth, WA 6004, Australia a b s t r a c ta r t i c l e i n f o Article history: Received 8 September 2008 using free energy minimization techniques. Here we present calculated phase relations in Cr-rich mantle

  20. ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it is convenient to give here an approximate expression for this dependence: a o 3.56715 - 5.3 10 -4 X 13 C + 3.14 X N 2 + 3.6 10 -6 K -1 (T -...