National Library of Energy BETA

Sample records for ultrafast solvation dynamics

  1. Achieving atomistic understanding of solvation dynamics from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanics and Quantum Mechanical Molecular Mechanics calculations, we have been ... Achieving atomistic understanding of solvation dynamics from X-ray free-electron laser ...

  2. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart, J.F.

    2011-06-12

    , which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

  3. Solvation!

    SciTech Connect (OSTI)

    Ivana Adamovic

    2004-12-19

    This dissertation consists of two closely related parts: theory development and coding of correlation effects in a model potential for solvation, and study of solvent effects on chemical reactions and processes. The effective fragment potential (EFP) method has been re-parameterized, using density functional theory (DFT), more specifically, the B3LYP functional. The DFT based EFP method includes short-range correlation effects; hence it is a first step in incorporating the treatment of correlation in the EFP solvation model. In addition, the gradient of the charge penetration term in the EFP model was derived and coded. The new method has been implemented in the electronic structure code GAMESS and is in use. Formulas for the dynamic dipole polarizability, C{sub 6} dispersion coefficient and dispersion energy were derived and coded as a part of a treatment of the dispersion interactions in the general solvation model, EFP2. Preliminary results are in good agreement with experimental and other theoretical data. The DFT based EFP (EFP1/DFT) method was used in the study of microsolvation effects on the S{sub N}2 substitution reaction, between chloride and methyl bromide. Changes in the central barrier, for several lowest lying isomers of the systems with one, two, three and four waters, were studied using second order perturbation theory (MP2), DFT and mixed quantum mechanics (QM)/(EFP1/DFT) methods. EFP1/DFT is found to reproduce QM results with high accuracy, at just a fraction of the cost. Molecular structures and potential energy surfaces for IHI{sup -} {center_dot} Ar{sub n} (n=1-7) were studied using the MP2 method. Experimentally observed trends in the structural arrangement of the Ar atoms were explained through the analysis of the geometrical parameters and three-dimensional MP2 molecular electrostatic potentials.

  4. Ultrafast studies of solution dynamics

    SciTech Connect (OSTI)

    Woodruff, W.H.; Dyer, R.B.; Callender, R.H.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Fast chemical dynamics generally must be initiated photochemically. This limits the applicability of modern laser methods for following the structural changes that occur during chemical and biological reactions to those systems that have an electronic chromophore that has a significant yield of photoproduct when excited. This project has developed a new and entirely general approach to ultrafast initiation of reactions in solution: laser-induced temperature jump (T-jump). The results open entire new fields of study of ultrafast molecular dynamics in solution. The authors have demonstrated the T-jump technique on time scales of 50 ps and longer, and have applied it to study of the fast events in protein folding. They find that a general lifetime of alpha-helix formation is ca 100 ns, and that tertiary folds (in apomyoglobin) form in ca 100 {mu}s.

  5. Interfacial effects revealed by ultrafast relaxation dynamics...

    Office of Scientific and Technical Information (OSTI)

    Title: Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3 YBa 2 Cu 3 O 7 bilayers Authors: Springer, D. ; Nair, Saritha K. ; He, Mi ; Lu, C. L. ; Cheong, S. ...

  6. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  7. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect (OSTI)

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  8. Ultrafast optical control of magnetization dynamics in polycrystalline...

    Office of Scientific and Technical Information (OSTI)

    bismuth doped iron garnet thin films Citation Details In-Document Search Title: Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron ...

  9. Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort Laser-Matter Interaction Citation ... We report results of recent experiment in which such charge ...

  10. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation...

  11. Ultrafast carriers dynamics in filled-skutterudites

    SciTech Connect (OSTI)

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4–0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  12. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Ultrafast Core-Hole Induced Dynamics in Water Print Wednesday, 22 February 2006 00:00 A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in

  13. Ultrafast resonant soft x-ray diffraction dynamics of the charge...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast resonant soft x-ray diffraction dynamics of the charge density wave in TbTe 3 ... Title: Ultrafast resonant soft x-ray diffraction dynamics of the charge density wave in ...

  14. Ultrafast Dynamic Response of Single Crystal PETN and Beta-HMX...

    Office of Scientific and Technical Information (OSTI)

    Conference: Ultrafast Dynamic Response of Single Crystal PETN and Beta-HMX Citation Details In-Document Search Title: Ultrafast Dynamic Response of Single Crystal PETN and Beta-HMX...

  15. Ultrafast Magnetism Dynamics Measure Using Tabletop Ultrafast EUV Sources

    SciTech Connect (OSTI)

    Silva, Thomas J.; Murnane, Margaret

    2013-08-21

    In our work to date, we made two significant advances. First we demonstrated element-selective demagnetization dynamics for the first time, with a record time resolution for x-ray probing of 55 fs. Second, in new work, we were able to probe the timescale of the exchange interaction in magnetic materials, also for the first time. Our measurements were made using the transverse magneto-optic Kerr effect (T-MOKE) geometry, since the reflectivity of a magnetic material changes with the direction of the magnetization vector of a surface. In our experiment, we periodically reversed the magnetization direction of a grating structure made of Permalloy (Ni80Fe20) using an external magnetic field. To achieve maximum contrast, we used HHG light spanning the M-shell (3p) absorption edges of Fe and Ni. Our characterization of the static magnetization of a Permalloy sample shows high magnetic asymmetry at photon energies just above and below the absorption edges at 55 eV and 65 eV, respectively. This result is in excellent agreement with measurements done on the same using a synchrotron source.

  16. First Principals and Classical Molecular Dynamics Simulations of Solvated Benzene

    SciTech Connect (OSTI)

    Allesch, M; Lightstone, F; Schwegler, E; Galli, G

    2007-09-11

    We have performed extensive ab initio and classical MD simulations of benzene in water in order to examine the unique solvation structures that are formed. Qualitative differences between classical and ab initio MD simulations are found and the importance of various technical simulation parameters is examined. Our comparison indicates that non-polarizable classical models are not capable of describing the solute-water interface correctly if local interactions become energetically comparable to water hydrogen bonds. In addition, a comparison is made between a rigid water model and fully flexible water within ab initio MD simulations which shows that both models agree qualitatively for this challenging system.

  17. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  18. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  19. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  20. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  1. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  2. Ultrafast image-based dynamic light scattering for nanoparticle...

    Office of Scientific and Technical Information (OSTI)

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast ... This method makes use of the intensity fluctuation of scattered light from nanoparticles ...

  3. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect (OSTI)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  4. Ultrafast myoglobin structural dynamics observed with an X-ray...

    Office of Scientific and Technical Information (OSTI)

    An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes ...

  5. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    SciTech Connect (OSTI)

    Weber, Peter M.

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecules structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecules structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of

  6. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    SciTech Connect (OSTI)

    Carnevale, V.; Raugei, S.

    2009-12-14

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  7. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    SciTech Connect (OSTI)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  8. Electron Solvation Dynamics and Reactivity in Ionic Liquids Observed by Picosecond RadiolysisTechniques

    SciTech Connect (OSTI)

    Wishart J. F.; Funston, A.M.; Szreder, T.; Cook, A.R.; Gohdo, M.

    2012-01-01

    On time scales of a nanosecond or less, radiolytically-generated excess electrons in ionic liquids undergo solvation processes and reactions that determine all subsequent chemistry and the accumulation of radiolytic damage. Using picosecond pulse radiolysis detection methods, we observed and quantified the solvation response of the electron in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide and used it to understand electron scavenging by a typical solute, duroquinone.

  9. Simultaneous investigation of ultrafast structural dynamics and transient electric field by sub-picosecond electron pulses

    SciTech Connect (OSTI)

    Li, Run-Ze; Zhu, Pengfei; Chen, Long; Chen, Jie E-mail: jzhang1@sjtu.edu.cn; Sheng, Zheng-Ming; Zhang, Jie E-mail: jzhang1@sjtu.edu.cn; Cao, Jianming

    2014-05-14

    The ultrafast structure dynamics and surface transient electric field, which are concurrently induced by laser excited electrons of an aluminum nanofilm, have been investigated simultaneously by the same transmission electron diffraction patterns. These two processes are found to be significantly different and distinguishable by tracing the time dependent changes of electron diffraction and deflection angles, respectively. This study also provides a practical means to evaluate simultaneously the effect of transient electric field during the study of structural dynamics under low pump fluence by transmission ultrafast electron diffraction.

  10. Lattice and Carrier Dynamics in Quantum-Confined Materials on Ultrafast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timescales | MIT-Harvard Center for Excitonics Lattice and Carrier Dynamics in Quantum-Confined Materials on Ultrafast Timescales April 3, 2014 at 3pm/36-428 Richard Schaller Department of Chemistry, Northwestern University, Argonne National Laboratory richard-schaller_000 Abstract: Excess carrier energy, which many aim to utilize for advanced energy conversion technologies, rapidly dissipates from electrons and holes in both bulk and quantum confined semiconductors despite expectation of

  11. Ultrafast Dynamic Response of Single Crystal PETN and Beta-HMX (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Dynamic Response of Single Crystal PETN and Beta-HMX Citation Details In-Document Search Title: Ultrafast Dynamic Response of Single Crystal PETN and Beta-HMX Authors: Zaug, J M ; Armstrong, M R ; Crowhurst, J C ; Feranti, L ; Swan, R ; Gross, R ; Teshlich, N E ; Wall, M ; Austin, R A ; Fried, L E Publication Date: 2014-06-30 OSTI Identifier: 1149550 Report Number(s): LLNL-CONF-656341 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation:

  12. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown...

  13. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters If you look deeply enough at even the stillest of waters, as deep as the molecular level, you will find a surprisingly turbulent, dynamic universe. The water...

  14. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation therapy. The detailed study of substances in the condensed and dynamic liquid state poses unique challenges that aren't an issue with isolated gas molecules or solids...

  15. Ultrafast dynamics of type-II GaSb/GaAs quantum dots

    SciTech Connect (OSTI)

    Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huffaker, D. L.; Huyet, G.; Houlihan, J.

    2015-01-19

    In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures.

  16. Ultrafast carrier dynamics in the large-magnetoresistance material WTe2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Y. M.; Bowlan, J.; Li, H.; Miao, H.; Wu, S. F.; Kong, W. D.; Shi, Y. G.; Trugman, S. A.; Zhu, J. -X.; Ding, H.; et al

    2015-10-07

    In this study, ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large-magnetoresistance material WTe2. Our experiments reveal a fast relaxation process occurring on a subpicosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of ~5–15 ps, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the time scale governing this process increases due to the reduction of the phonon population. However, below ~50 K, an unusual decrease of the recombination time sets in, mostmore » likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.« less

  17. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    SciTech Connect (OSTI)

    Forst, M.; Wilkins, S. B.; Caviglia, A. D.; Scherwitz, R.; Mankowsky, R.; Zubko, P.; Khanna, V.; Bromberger, H.; Chuang, Y. -D.; Lee, W. S.; Schlotter, W. F.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; Clark, S. R.; Jaksch, D.; Triscone, J. -M.; Hill, J. P.; Dhesi, S. S.; Cavalleri, A.

    2015-07-06

    Static strain in complex oxide heterostructures1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Lastly, light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

  18. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forst, M.; Wilkins, S. B.; Caviglia, A. D.; Scherwitz, R.; Mankowsky, R.; Zubko, P.; Khanna, V.; Bromberger, H.; Chuang, Y. -D.; Lee, W. S.; et al

    2015-07-06

    Static strain in complex oxide heterostructures1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion.more » Lastly, light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.« less

  19. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Authors: Ong, M T ; Verners, O ; Draeger, E ...

  20. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    in Bulk Organic Electrolytes from First Principles Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic ...

  1. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  2. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect (OSTI)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  3. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    SciTech Connect (OSTI)

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; Cammarata, Marco

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.

  4. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; et al

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore » a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  5. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Ultrafast Transformations in Superionic Nanocrystals Print Wednesday, 29 January 2014 00:00 A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other.

  6. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in

  7. Ultrafast laser spectroscopy in complex solid state materials

    SciTech Connect (OSTI)

    Li, Tianqi

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  8. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  9. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan

    2016-08-01

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  10. Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives

    SciTech Connect (OSTI)

    Whitley, Von H; Mcgrane, Shawn D; Moore, David S; Eakins, Dan E; Bolme, Cindy A

    2009-01-01

    We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, sample quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.

  11. Low-power, ultrafast, and dynamic all-optical tunable plasmonic analog to electromagnetically induced transparency in two resonators side-coupled with a waveguide system

    SciTech Connect (OSTI)

    Wang, Boyun; Wang, Tao Li, Xiaoming; Han, Xu; Zhu, Youjiang

    2015-06-07

    We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmonic analog to electromagnetically induced transparency (EIT) in two nanodisk resonators side-coupled to a metal-insulator-metal plasmonic waveguide system. The optical Kerr effect is enhanced by the slow light effect of the plasmonic EIT-like effect and the plasmonic waveguide based on graphene-Ag composite material structures with giant effective Kerr nonlinear coefficient. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the plasmonic EIT-like system is achieved under excitation of a pump light with an intensity as low as 5.85 MW/cm{sup 2}. The group delay is controlled between 0.09 and 0.4 ps. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward the low power consumption and ultrafast responses of integration plasmonic photonic devices and all-optical dynamical storage of light devices in optical communication and quantum information processing.

  12. Tracing ultrafast dynamics of strong fields at plasma-vacuum interfaces with longitudinal proton probing

    SciTech Connect (OSTI)

    Abicht, F.; Braenzel, J.; Koschitzki, Ch.; Schnürer, M.; Priebe, G.; Andreev, A. A.; Nickles, P. V.; Sandner, W.

    2014-07-21

    If regions of localized strong fields at plasma-vacuum interfaces are probed longitudinally with laser accelerated proton beams their velocity distribution changes sensitively and very fast. Its measured variations provide indirectly a higher temporal resolution as deduced from deflection geometries which rely on the explicit temporal resolution of the proton beam at the position of the object to probe. With help of reasonable models and comparative measurements changes of proton velocity can trace the field dynamics even at femtosecond time scale. In longitudinal probing, the very low longitudinal emittance together with a broad band kinetic energy distribution of laser accelerated protons is the essential prerequisite of the method. With a combination of energy and one-dimensional spatial resolution, we resolve fast field changes down to 100 fs. The used pump probe setup extends previous schemes and allows discriminating simultaneously between electric and magnetic fields in their temporal evolution.

  13. Ultrafast charge localization in a stripe-phase nickelate (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast excitation triggers a sub-picosecond dynamics exposing the synchronous ... Publisher: Nature Publishing Group Research Org: Ernest Orlando Lawrence Berkeley National ...

  14. MAUI: Modeling, Analysis, and Ultrafast Imaging | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interfaces. Our goal is to integrate ultrafast time-resolved imaging with large-scale molecular dynamics modeling and in situ data analysis and visualization. This will allow...

  15. Anion Solvation in Carbonate Electrolytes

    SciTech Connect (OSTI)

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  16. Ultrafast Laser Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Laser Facility Ultrafast Laser Facility Click for an Overview of the Ultrafast Laser Facility The PARC Ultrafast Laser Facility, under the direction of Associate Director ...

  17. Ultrafast carrier dynamics in the large-magnetoresistance material WTe2

    SciTech Connect (OSTI)

    Dai, Y. M.; Bowlan, J.; Li, H.; Miao, H.; Wu, S. F.; Kong, W. D.; Shi, Y. G.; Trugman, S. A.; Zhu, J. -X.; Ding, H.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.

    2015-10-07

    In this study, ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large-magnetoresistance material WTe2. Our experiments reveal a fast relaxation process occurring on a subpicosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of ~5–15 ps, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the time scale governing this process increases due to the reduction of the phonon population. However, below ~50 K, an unusual decrease of the recombination time sets in, most likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.

  18. Effect of carrier recombination on ultrafast carrier dynamics in thin films of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect (OSTI)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2014-10-27

    Transient reflectivity (TR) from thin films (6–40 nm thick) of the topological insulator Bi{sub 2}Se{sub 3} revealed ultrafast carrier dynamics, which suggest the existence of both radiative and non-radiative recombination between electrons residing in the upper cone of initially unoccupied high energy Dirac surface states (SS) and holes residing in the lower cone of occupied low energy Dirac SS. The modeling of measured TR traces allowed us to conclude that recombination is induced by the depletion of bulk electrons in films below ∼20 nm thick due to the charge captured on the surface defects. We predict that such recombination processes can be observed using time-resolved photoluminescence techniques.

  19. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    SciTech Connect (OSTI)

    Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi; Tahara, Tahei; Yamaguchi, Shoichi

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup ?1} ? ?{sub pump} ? 3600 cm{sup ?1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ?0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup ?1} and 3420 cm{sup ?1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  20. Preparation of cerium halide solvate complexes

    DOE Patents [OSTI]

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  1. Structure, solvation, and dynamics of Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, and Ba{sup 2+} complexes with 3-hydroxyflavone and perchlorate anion in acetonitrile medium: A molecular dynamics simulation study

    SciTech Connect (OSTI)

    Agieienko, Vira N.; Kolesnik, Yaroslav V.; Kalugin, Oleg N.

    2014-05-21

    Molecular dynamics simulations of complexes of Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, and Ba{sup 2+} with 3-hydroxyflavone (flavonol, 3HF) and ClO {sub 4}{sup ?} in acetonitrile were performed. The united atoms force field model was proposed for the 3HF molecule using the results of DFT quantum chemical calculations. 3HF was interpreted as a rigid molecule with two internal degrees of freedom, i.e., rotation of the phenyl ring and of the OH group with respect to the chromone moiety. The interatomic radial distribution functions showed that interaction of the cations with flavonol occurs via the carbonyl group of 3HF and it is accompanied with substitution of one of the acetonitrile molecules in the cations first solvation shells. Formation of the cation3HF complexes does not have significant impact on the rotation of the phenyl ring with respect to the chromone moiety. However, the orientation of the flavonol's OH-group is more sensitive to the interaction with doubly charged cations. When complex with Mg{sup 2+} is formed, the OH-group turns out of the plane of the chromone moiety that leads to rupture of intramolecular H-bond in the ligand molecule. Complexation of Ca{sup 2+}, Sr{sup 2+}, and BaClO {sub 4}{sup +} with 3HF produces two structures with different OH-positions, as in the free flavonol with the intramolecular H-bond and as in the complex with Mg{sup 2+} with disrupted H-bonding. It was shown that additional stabilization of the [MgClO{sub 4}(3HF)]{sup +} and [BaClO{sub 4}(3HF)]{sup +} complexes is determined by strong affinity of perchlorate anion to interact with flavonol via intracomplex hydrogen bond between an oxygen atom of the anion and the hydrogen atom of the 3-hydroxyl group. Noticeable difference in the values of the self-diffusion coefficients for Kt{sup 2+} from one side and ClO {sub 4}{sup ?}, 3HF, and AN in the cations coordination shell from another side implies quite weak interaction between cation, anion, and ligands in the

  2. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Print A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other. Discovered by Michael Faraday almost 200 years ago, superionic materials today hold promise

  3. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Print A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other. Discovered by Michael Faraday almost 200 years ago, superionic materials today hold promise

  4. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Print A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other. Discovered by Michael Faraday almost 200 years ago, superionic materials today hold promise

  5. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Print A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other. Discovered by Michael Faraday almost 200 years ago, superionic materials today hold promise

  6. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Print A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other. Discovered by Michael Faraday almost 200 years ago, superionic materials today hold promise

  7. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Print A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other. Discovered by Michael Faraday almost 200 years ago, superionic materials today hold promise

  8. Indirect excitation of ultrafast demagnetization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; et al

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset andmore » at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.« less

  9. Excited state carrier dynamics in CdS{sub x}Se{sub 1-x} semisconductor alloys as studied by ultrafast fluorescence spectroscopy

    SciTech Connect (OSTI)

    Gadd, S.E.

    1995-08-01

    This dissertation discusses studies of the electron-hole pair dynamics of CdS{sub x}Se{sub 1-x} semiconductor alloys for the entire compositional range from x = 1 to x = 0 as examined by the ultrafast fluorescence techniques of time correlated single photon counting and fluorescence upconversion. Specifically, samples with x = 1, .75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective emission maximum which varies according to {lambda} = 718nm - 210x nm. The decays of these samples were found to obey a Kohlrausch distribution, exp [(t/{tau}){sup {beta}}], with the exponent 3 in the range .5-.7 for the alloys. These results are in agreement with those expected for localization due to local potential variations resulting from the random distribution of sulfur and selenium atoms on the element VI A sub-lattice. This localization can be understood in terms of Anderson localization of the holes in states whose energy distribution tails into the forbidden energy band-gap. Because these states have energy dependent lifetimes, the carriers can decay via many parallel channels. This distribution of channels is the ultimate source of the Kohlrausch form of the fluorescence decays.

  10. Ultrafast dynamics of strong-field dissociative ionization ofCH2Br2 probed by femtosecond soft x-ray transient absorptionspectroscopy

    SciTech Connect (OSTI)

    Loh, Zhi-Heng; Leone, Stephen R.

    2008-01-15

    Femtosecond time-resolved soft x-ray transient absorption spectroscopy based on a high-order harmonic generation source is used to investigate the dissociative ionization of CH{sub 2}Br{sub 2} induced by 800 nm strong-field irradiation. At moderate peak intensities (2.0 x 10{sup 14} W/cm{sup 2}), strong-field ionization is accompanied by ultrafast C-Br bond dissociation, producing both neutral Br ({sup 2}P{sub 3/2}) and Br* ({sup 2}P{sub 1/2}) atoms together with the CH{sub 2}Br{sup +} fragment ion. The measured rise times for Br and Br* are 130 {+-} 22 fs and 74 {+-} 10 fs, respectively. The atomic bromine quantum state distribution shows that the Br/Br* population ratio is 8.1 {+-} 3.8 and that the Br {sup 2}P{sub 3/2} state is not aligned. The observed product distribution and the timescales of the photofragment appearances suggest that multiple field-dressed potential energy surfaces are involved in the dissociative ionization process. In addition, the transient absorption spectrum of CH{sub 2}Br{sub 2}{sup +} suggests that the alignment of the molecule relative to the polarization axis of the strong-field ionizing pulse determines the electronic symmetry of the resulting ion; alignment of the Br-Br, H-H, and C{sub 2} axis of the molecule along the polarization axis results in the production of the ion {tilde X}({sup 2}B{sub 2}), {tilde B}({sup 2}B{sub 1}) and {tilde C}({sup 2}A{sub 1}) states, respectively. At higher peak intensities (6.2 x 10{sup 14} W/cm{sup 2}), CH{sub 2}Br{sub 2}{sup +} undergoes sequential ionization to form the metastable CH{sub 2}Br{sub 2}{sup 2+} dication. These results demonstrate the potential of core-level probing with high-order harmonic transient absorption spectroscopy for studying ultrafast molecular dynamics.

  11. Solvation Structure and Transport Properties of Alkali Cations in Dimethyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sulfoxide Under Exogenous Static Electric Fields - Joint Center for Energy Storage Research June 14, 2015, Research Highlights Solvation Structure and Transport Properties of Alkali Cations in Dimethyl Sulfoxide Under Exogenous Static Electric Fields Top: Snapshots of molecular dynamics simulations of alkali ions in DMSO at 298 K and zero-applied electric field: (left) Li+ and (right) Cs+. Sulfur atoms are shown in yellow, oxygen atoms in red, and methyl groups in gray. Graph: Average

  12. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect (OSTI)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  13. Ultrafast Laser Facility - Virtual Tour | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Laser Facility - Virtual Tour December 10, 2015 Ultrafast Laser Facility - Virtual Tour A look at the technology and science in the Ultrafast lab PARC Research Scientist ...

  14. New Polymer Architectures for Imidazole Solvating groups, Anion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Architectures for Imidazole Solvating groups, Anion Mobility and Flexibility New Polymer Architectures for Imidazole Solvating groups, Anion Mobility and Flexibility ...

  15. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  16. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers ...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Citation Details In-Document Search Title: Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Authors:...

  17. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    SciTech Connect (OSTI)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es; Siegel, Jan, E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, Javier; Solis, Javier [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2014-09-21

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  18. Solvate Structures and Computational/Spectroscopic Characterization...

    Office of Scientific and Technical Information (OSTI)

    The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates ...

  19. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface.

  20. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect (OSTI)

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  1. Reactions of Solvated Ions Final Report

    DOE R&D Accomplishments [OSTI]

    Taube, H.

    1962-09-24

    Brief summaries are presented on isotopic dilution studies on salts dissolved in CH{sub 3}OH, studies on metal and metal salts in solvents of the amine type, and studies on phosphato complexes of the pentammine Co(III) series. A list of papers published on reactions of solvated ions is included. (N.W.R.)

  2. Solvation and Reaction in Ionic Liquids

    SciTech Connect (OSTI)

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  3. The Solvation Structure of Mg Ions in Dichloro Complex Solutions from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-Principles Molecular Dynamics and Simulated X-ray Absorption Spectra - Joint Center for Energy Storage Research September 22, 2014, Research Highlights The Solvation Structure of Mg Ions in Dichloro Complex Solutions from First-Principles Molecular Dynamics and Simulated X-ray Absorption Spectra The coordination of a Mg-ion dimer complex extracted from solution phase simulations at room temperature indicating 4- and 5-fold coordination of Mg ions (orange) by Cl counterions (green) and

  4. Navigating Space-Time with Ultrafast Exciton Photolithography or

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scintillating Near-fields to Follow Dynamic Processes in Molecular Materials | MIT-Harvard Center for Excitonics Navigating Space-Time with Ultrafast Exciton Photolithography or Scintillating Near-fields to Follow Dynamic Processes in Molecular Materials May 5, 2015 at 4:30pm/ rm: 4-370 Naomi Ginsberg University of California/Department of Chemistry and Physics nsginsberg abstract: A cross-cutting theme in my research group is to examine dynamic processes in spatially-heterogeneous condensed

  5. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George

    2015-10-12

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate thatmore » nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.« less

  6. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George

    2015-10-12

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate thatmore »nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.« less

  7. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research July 11, 2016, Research Highlights Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries Precipitation-dissolution Li-S chemistry achieved by sparingly solvating electrolyte and various electrolyte design concepts Scientific Achievement This work presents the promising new concepts of using sparingly solvating electrolyte to enable Li-S battery operation at lean electrolyte condition, as well as the design rules

  8. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    Electrolyte Properties (Technical Report) | SciTech Connect Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties Citation Details In-Document Search Title: Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the

  9. Femtosecond laser studies of ultrafast intramolecular processes

    SciTech Connect (OSTI)

    Hayden, C.

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  10. Lithium Ion Solvation and Intercalation at Anode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Intercalation at Anode-Electrolyte Interface from First Principles Authors: Ong, M T ; Lordi, V ; Draeger, E W ; Pask, J E Publication Date: ...

  11. Lithium Ion Solvation and Intercalation at Anode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Interface from First Principles Citation Details In-Document Search Title: Lithium Ion Solvation and Intercalation at Anode-Electrolyte Interface from First ...

  12. Ultrafast Probes for Dirac Materials Yarotski, Dmitry Anatolievitch...

    Office of Scientific and Technical Information (OSTI)

    Science(36) Material Science; topological insulators, ultrafast spectroscopy, graphene Material Science; topological insulators, ultrafast spectroscopy, graphene Abstract...

  13. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry

    SciTech Connect (OSTI)

    Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; Olguin, Marco; Allen, Joshua L.; Henderson, Wesley A.

    2015-11-17

    The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC)n(DMC)m–Li+ and (EC)n(DMC)m–LiPF6 solvates in the gas-phase and for an implicit solvent (as a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC4)–Li+ and (EC)3–LiPF6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF6 mixed solvent electrolyte was studied using the BOMD simulations.

  14. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; Olguin, Marco; Allen, Joshua L.; Henderson, Wesley A.

    2015-11-17

    The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC)n(DMC)m–Li+ and (EC)n(DMC)m–LiPF6 solvates in the gas-phase and for an implicit solvent (as a function of the solvent dielectricmore » constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC4)–Li+ and (EC)3–LiPF6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF6 mixed solvent electrolyte was studied using the BOMD simulations.« less

  15. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers have recently carried out a range of ultrafast x-ray spectroscopy and scattering experiments at three x-ray light sources, including the ALS, to obtain an atomic-level, ...

  16. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect (OSTI)

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  17. Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures. Highly Associated Salts Revisited

    SciTech Connect (OSTI)

    Borodin, Oleg; Han, Sang D.; Daubert, James S.; Seo, D. M.; Yun, Sung-Hyun; Henderson, Wesley A.

    2015-01-14

    Molecular dynamics (MD) simulations of acetonitrile (AN) mixtures with LiBF4, LiCF3SO3 and LiCF3CO2 provide extensive details about the molecular- and mesoscale-level solution interactions and thus explanations as to why these electrolytes have very different thermal phase behavior and electrochemical/physicochemical properties. The simulation results are in full accord with a previous experimental study of these (AN)n-LiX electrolytes. This computational study reveals how the structure of the anions strongly influences the ionic association tendency of the ions, the manner in which the aggregate solvates assemble in solution and the length of time in which the anions remain coordinated to the Li+ cations in the solvates which result in dramatic variations in the transport properties of the electrolytes.

  18. Ultrafast Spectroscopy of Midinfrared Internal Exciton Transitions...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast Spectroscopy of Midinfrared ... Carbon Nanotubes Citation Details In-Document ... Carbon Nanotubes We report a femtosecond midinfrared ...

  19. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  20. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  1. Ultrafast free-carrier dynamics in Cu{sub 2}ZnSnS{sub 4} single crystals studied using femtosecond time-resolved optical spectroscopy

    SciTech Connect (OSTI)

    Phuong, L. Q.; Kanemitsu, Y.; Okano, M.; Yamada, Y.; Yamashita, G.; Morimoto, T.; Nagai, M.; Ashida, M.; Nagaoka, A.; Yoshino, K.

    2014-12-08

    We studied the dynamics of photogenerated carriers in Cu{sub 2}ZnSnS{sub 4} (CZTS) single crystals using femtosecond transient reflectivity (TR) and optical pump-THz probe transient absorption (THz-TA) spectroscopy. The TR and THz-TA decay dynamics consistently showed that free carriers have long lifetimes of up to a few nanoseconds. The excitation-photon-energy-dependent TR measurements revealed a slow picosecond energy relaxation of free carriers to the band edge in CZTS. The relaxation and recombination dynamics of free carriers were affected by nonradiative recombinations at the surface. Our results revealed a global feature of energy relaxation and recombination processes of free carriers in CZTS single crystals.

  2. Ultrafast X-Ray Coherent Control

    SciTech Connect (OSTI)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  3. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect (OSTI)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  4. Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters

    SciTech Connect (OSTI)

    Afroz, Taliman; Seo, D. M.; Han, Sang D.; Boyle, Paul D.; Henderson, Wesley A.

    2015-03-06

    Solvate crystal structures serve as useful models for the molecular-level interactions within the diverse solvates present in liquid electrolytes. Although acyclic carbonate solvents are widely used for Li-ion battery electrolytes, only three solvate crystal structures with lithium salts are known for these and related solvents. The present work, therefore, reports six lithium salt solvate structures with dimethyl and diethyl carbonate: (DMC)2:LiPF6, (DMC)1:LiCF3SO3, (DMC)1/4:LiBF4, (DEC)2:LiClO4, (DEC)1:LiClO4 and (DEC)1:LiCF3SO3 and four with the structurally related methyl and ethyl acetate: (MA)2:LiClO4, (MA)1:LiBF4, (EA)1:LiClO4 and (EA)1:LiBF4.

  5. Ionic strength independence of charge distributions in solvation of biomolecules

    SciTech Connect (OSTI)

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  6. Solvation Properties of Microhydrated Sulfate Anion Clusters: Insights from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abInitio Calculations | Argonne Leadership Computing Facility Solvation Properties of Microhydrated Sulfate Anion Clusters: Insights from abInitio Calculations Authors: Wan, Q., Spanu, L., Galli, G. Sulfate-water clusters play an important role in environmental and industrial processes, yet open questions remain on their physical and chemical properties. We investigated the smallest hydrated sulfate anion clusters believed to have a full solvation shell, with 12 or 13 water molecules. We

  7. Water-enhanced solvation of organics

    SciTech Connect (OSTI)

    Lee, J.H.

    1993-07-01

    Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log {gamma}{sub s} vs x{sub w}/x{sub s} curve. From graph shape {Delta}(log {gamma}{sub s}) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid, propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement {Delta} (log {gamma}{sub acid})/{Delta}(x{sub w}/x{sub acid}) = {minus}0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was {minus}0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.

  8. Surface modified CFx cathode material for ultrafast discharge...

    Office of Scientific and Technical Information (OSTI)

    Surface modified CFx cathode material for ultrafast discharge and high energy density Prev Next Title: Surface modified CFx cathode material for ultrafast discharge and high...

  9. Plasmas, Dielectrics and the Ultrafast: First Science and Operational...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast: First Science and Operational Experience at FACET Citation Details In-Document Search Title: Plasmas, Dielectrics and the Ultrafast: First Science and Operational ...

  10. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping...

  11. Ultrafast chirped optical waveform recorder using a time microscope...

    Office of Scientific and Technical Information (OSTI)

    DOepatents Search Results Ultrafast chirped optical waveform recorder using a time microscope Title: Ultrafast chirped optical waveform recorder using a time microscope A new ...

  12. Ultrafast chirped optical waveform recorder using a time microscope...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Ultrafast chirped optical waveform recorder using a time microscope Title: Ultrafast chirped optical waveform recorder using a time microscope A new ...

  13. Ultrafast laser diagnostics for studies of shock initiation in...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast laser diagnostics for studies of shock initiation in energetic materials. Citation Details In-Document Search Title: Ultrafast laser diagnostics for studies of shock ...

  14. Ultrafast Probes for Dirac Materials (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Technical Report: Ultrafast Probes for Dirac Materials Citation Details In-Document Search Title: Ultrafast Probes for Dirac Materials Authors: ...

  15. Ultrafast all-optical manipulation of interfacial magnetoelectric...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast all-optical manipulation of interfacial magnetoelectric coupling Citation Details In-Document Search Title: Ultrafast all-optical manipulation of ...

  16. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping ...

  17. Cavity-Enhanced Transient Absorption Spectroscopy: Ultrafast...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cavity-Enhanced Transient Absorption Spectroscopy: Ultrafast Spectroscopy goes Ultra-Sensitive Wednesday, November 11, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A...

  18. Electronic Coupling Dependence of Ultrafast Interfacial Electron...

    Office of Scientific and Technical Information (OSTI)

    Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic ...

  19. Order and correlation contributions to the entropy of hydrophobic solvation

    SciTech Connect (OSTI)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  20. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seo, Minah; Yamaguchi, Hisato; Mohite, Aditya D.; Boubanga-Tombet, Stephane; Blancon, Jean-Christophe; Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun; Taylor, Antoinette J.; Prasankumar, Rohit P.

    2016-02-15

    We performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. Furthermore, the ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems.

  1. Preferential solvation of lithium cations and impacts on oxygen reduction in lithium–air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-09-16

    The solvation of Li⁺ with eleven non-aqueous solvents commonly used as the electrolytes for Li batteries were studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li⁺ was determined. The Lewis acidity of the solvated Li⁺ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O₂⁻ depends on the relative Lewis acidity of the solvated Li⁺ ion. The impact of the solvated Li⁺ cation on the O₂ redoxmore » reaction was also investigated.« less

  2. Preferential solvation of lithium cations and impacts on oxygen reduction in lithium–air batteries

    SciTech Connect (OSTI)

    Zheng, Dong; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-09-16

    The solvation of Li⁺ with eleven non-aqueous solvents commonly used as the electrolytes for Li batteries were studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li⁺ was determined. The Lewis acidity of the solvated Li⁺ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O₂⁻ depends on the relative Lewis acidity of the solvated Li⁺ ion. The impact of the solvated Li⁺ cation on the O₂ redox reaction was also investigated.

  3. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Trulove, Paul C; Foley, Matthew P

    2013-03-14

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-????salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  4. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein

    SciTech Connect (OSTI)

    Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan

    2015-10-07

    The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularly far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.

  5. Impact system for ultrafast synchrotron experiments

    SciTech Connect (OSTI)

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-15

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 {+-} 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  6. Pure Optical Dephasing Dynamics in Semiconducting Single-Walled...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pure Optical Dephasing Dynamics in Semiconducting Single-Walled Carbon Nanotubes Citation ... We report a detailed study of ultrafast exciton dephasing ...

  7. Computational observation of enhanced solvation of the hydroxyl radical with increased NaCl concentration

    SciTech Connect (OSTI)

    Wick, Collin D.; Dang, Liem X.

    2006-05-11

    Classical molecular dynamics simulations with many-body potentials were carried out to quantitatively determine the effect of NaCl salt concentration on the aqueous solvation and surface concentration of hydroxyl radicals. The potential of mean force technique was used to track the incremental free energy of the hydroxyl radical from the vapor, crossing the air-water interface into the aqueous bulk. Results showed increased NaCl salt concentration significantly enhanced hydroxyl radical solvation, which should significantly increase its accommodation on water droplets. This has been experimentally observed for ozone aqueous accommodation with increased NaI concentration, but to our knowledge, no experimental study has probed this for hydroxyl radicals. The origin for this effect was found to be very favorable hydroxyl radical-chloride ion interactions, being stronger than for water-chloride. This work was performed at Pacific Northwest National Laboratory (PNNL) under the auspices of the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. Battelle operates PNNL for the Department of Energy.

  8. Ultrafast carrier capture in InGaAs quantum posts

    SciTech Connect (OSTI)

    Talbayev, Diyar; Taylor, Antoinette J; Stehr, D; Morris, C M; Wagner, M; Kim, H C; Schneider, H; Petroff, P M; Sherwin, M S

    2009-01-01

    To explore the capture dynamics of photoexcited carriers in semiconductor quantum posts, optical pump - THz probe and time-resolved photoluminescence spectroscopy were performed. The results of the THz experiment show that after ultrafast excitation, electrons relax within a few picoseconds into the quantum posts, which are acting as efficient traps. The saturation of the quantum post states, probed by photoluminescence, was reached approximately at ten times the quantum post density in the samples. The results imply that quantum posts are posts highly attractive nanostructures for future device applications.

  9. Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions

    SciTech Connect (OSTI)

    Rinne, Klaus F.; Netz, Roland R.; Gekle, Stephan

    2014-12-07

    Using extensive equilibrium molecular dynamics simulations we determine the dielectric spectra of aqueous solutions of NaF, NaCl, NaBr, and NaI. The ion-specific and concentration-dependent shifts of the static dielectric constants and the dielectric relaxation times match experimental results very well, which serves as a validation of the classical and non-polarizable ionic force fields used. The purely ionic contribution to the dielectric response is negligible, but determines the conductivity of the salt solutions. The ion-water cross correlation contribution is negative and reduces the total dielectric response by about 5%-10% for 1?M solutions. The dominating water dielectric response is decomposed into different water solvation shells and ion-pair configurations, by this the spectral blue shift and the dielectric decrement of salt solutions with increasing salt concentration is demonstrated to be primarily caused by first-solvation shell water. With rising salt concentration the simulated spectra show more pronounced deviations from a single-Debye form and can be well described by a Cole-Cole fit, in quantitative agreement with experiments. Our spectral decomposition into ionic and different water solvation shell contributions does not render the individual contributions more Debye-like, this suggests the non-Debye-like character of the dielectric spectra of salt solutions not to be due to the superposition of different elementary relaxation processes with different relaxation times. Rather, the non-Debye-like character is likely to be an inherent spectral signature of solvation water around ions.

  10. Strong influence of coadsorbate interaction on CO desorption dynamics on

    Office of Scientific and Technical Information (OSTI)

    Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations (Journal Article) | SciTech Connect Journal Article: Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations Citation Details In-Document Search Title: Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations We show that coadsorbed oxygen

  11. Ultrafast infrared studies of complex ligand rearrangements in solution

    SciTech Connect (OSTI)

    Payne, Christine K.

    2003-05-31

    , this research demonstrates the importance of examining reaction dynamics on the ultrafast timescale. In the case of both ring slip and alkyne polymerization, early time dynamics have been invaluable in understanding the exact reaction mechanisms which show important differences from previously accepted models.

  12. An ultrafast carbon nanotube terahertz polarisation modulator

    SciTech Connect (OSTI)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B.

    2014-05-28

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  13. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Ultrafast Spectroscopy of Warm Dense Matter Print Wednesday, 25 April 2012 00:00 Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material

  14. Structural Interactions within Lithium Salt Solvates: Cyclic Carbonates and Esters

    SciTech Connect (OSTI)

    Seo, D. M.; Afroz, Taliman; Allen, Joshua L.; Boyle, Paul D.; Trulove, Paul C.; De Long, Hugh C.; Henderson, Wesley A.

    2014-11-13

    Only limited information is available regarding the manner in which cyclic carbonate and ester solvents coordinate Li+ cations in electrolyte solutions for lithium batteries. One approach to gleaning significant insight into these interactions is to examine crystalline solvate structures. To this end, eight new solvate structures are reported with ethylene carbonate, ?-butyrolactone and ?-valerolactone: (EC)3:LiClO4, (EC)2:LiClO4, (EC)2:LiBF4, (GBL)4:LiPF6, (GBL)1:LiClO4, (GVL)1:LiClO4, (GBL)1:LiBF4 and (GBL)1:LiCF3SO3. The crystal structure of (EC)1:LiCF3SO3 is also re-reported for comparison. These structures enable the factors which govern the manner in which the ions are coordinated and the ion/solvent packingin the solid-stateto be scrutinized in detail.

  15. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research August 24, 2016, Videos Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries As JCESR scientists work to develop lighter and less expensive chemistries than those used in current lithium-ion batteries, lithium-sulfur shows tremendous promise. However, current lithium-sulfur batteries require an excessive amount of electrolyte to achieve moderate cycle life. This perspective presents an alternate approach of

  16. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid

    SciTech Connect (OSTI)

    Welch, David A.; Woehl, Taylor J.; Park, Chiwoo; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-11-20

    We discuss optimization of colloidal nanoparticle synthesis techniques, which requires an understanding of underlying particle growth mechanisms. Nonclassical growth mechanisms are particularly important as they affect nanoparticle size and shape distributions, which in turn influence functional properties. For example, preferential attachment of nanoparticles is known to lead to the formation of mesocrystals, although the formation mechanism is currently not well-understood. Here we employ in situ liquid cell scanning transmission electron microscopy and steered molecular dynamics (SMD) simulations to demonstrate that the experimentally observed preference for end-to-end attachment of silver nanorods is a result of weaker solvation forces occurring at rod ends. In conclusion, SMD reveals that when the side of a nanorod approaches another rod, perturbation in the surface-bound water at the nanorod surface creates significant energy barriers to attachment. Additionally, rod morphology (i.e., facet shape) effects can explain the majority of the side attachment effects that are observed experimentally.

  17. Ultrafast terahertz gating of the polarization and giant nonlinear...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast terahertz gating of the polarization and giant nonlinear optical response in BiFeO3 thin films Citation Details In-Document Search Title: Ultrafast ...

  18. Electronic/photonic interfaces for ultrafast data processing...

    Office of Scientific and Technical Information (OSTI)

    and hybrid integration processes, two key elements of an ultrafast data processor. ... TRANSMISSION; TECHNOLOGY ASSESSMENT Numerical analysis-Data processing.; ...

  19. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures

    SciTech Connect (OSTI)

    Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

    2014-09-30

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  20. A self-consistent phase-field approach to implicit solvation...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics This content will become...

  1. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    SciTech Connect (OSTI)

    Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S.; Gu, Genda; Gilbertson, Steve M.; Taylor, Antoinette; Rodriguez, George

    2015-10-12

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.

  2. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  3. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect (OSTI)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  4. Multibody correlations in the hydrophobic solvation of glycine peptides

    SciTech Connect (OSTI)

    Harris, Robert C.; Drake, Justin A.; Pettitt, B. Montgomery

    2014-12-14

    Protein collapse during folding is often assumed to be driven by a hydrophobic solvation energy (ΔG{sub vdw}) that scales linearly with solvent-accessible surface area (A). In a previous study, we argued that ΔG{sub vdw}, as well as its attractive (ΔG{sub att}) and repulsive (ΔG{sub rep}) components, was not simply a linear function of A. We found that the surface tensions, γ{sub rep}, γ{sub att}, and γ{sub vdw}, gotten from ΔG{sub rep}, ΔG{sub att}, and ΔG{sub vdw} against A for four configurations of deca-alanine differed from those obtained for a set of alkanes. In the present study, we extend our analysis to fifty decaglycine structures and atomic decompositions. We find that different configurations of decaglycine generate different estimates of γ{sub rep}. Additionally, we considered the reconstruction of the solvation free energy from scaling the free energy of solvation of each atom type, free in solution. The free energy of the isolated atoms, scaled by the inverse surface area the atom would expose in the molecule does not reproduce the γ{sub rep} for the intact decaglycines. Finally, γ{sub att} for the decaglycine conformations is much larger in magnitude than those for deca-alanine or the alkanes, leading to large negative values of γ{sub vdw} (−74 and −56 cal/mol/Å{sup 2} for CHARMM27 and AMBER ff12sb force fields, respectively). These findings imply that ΔG{sub vdw} favors extended rather than compact structures for decaglycine. We find that ΔG{sub rep} and ΔG{sub vdw} have complicated dependencies on multibody correlations between solute atoms, on the geometry of the molecular surface, and on the chemical identities of the atoms.

  5. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    SciTech Connect (OSTI)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.; Bylaska, Eric J.; Doud, Darrin

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predicting acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.

  6. Ultrafast photodetectors allow direct observation of multiple electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generated by a single photon Ultrafast photodetectors Ultrafast photodetectors allow direct observation of multiple electrons generated by a single photon The new technique involves monitoring photocurrent transients in specially engineered photodetectors that provide very high temporal resolution of only 50 picoseconds. September 11, 2015 Andrew Fidler of Los Alamos National Laboratory examines an ultrafast photodetector used to measure quantum dot carrier multiplication in real time.

  7. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    SciTech Connect (OSTI)

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip; Pettitt, Bernard M.

    2013-12-03

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

  8. Morphological changes in ultrafast laser ablation plumes with varying spot size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; Phillips, M. C.

    2015-06-04

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 ?m. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmoreclearly show that the morphological changes in the plume with spot size are independent of laser pulse width.less

  9. Ultrafast Structural Rearrangements in the MLCT Excited State...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Structural Rearrangements in the MLCT Excited State for Copper(I) ... previous laser-initiated time-resolved x-ray absorption spectroscopy (LITR-XAS) results. ...

  10. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based ...

  11. Ultrafast kinetics subsequent to shock compression in an oxygen...

    Office of Scientific and Technical Information (OSTI)

    to shock compression in an oxygen-balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock ...

  12. Ultrafast Laser Diagnostics for Studies of Shock Initiation in...

    Office of Scientific and Technical Information (OSTI)

    Studies of Shock Initiation in Energetic Materials. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Studies of Shock Initiation in Energetic Materials. ...

  13. Ultrafast kinetics subsequent to shock in an unreacted, oxygen...

    Office of Scientific and Technical Information (OSTI)

    shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock in an ...

  14. Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen...

    Office of Scientific and Technical Information (OSTI)

    Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide Citation Details In-Document Search Title: Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide ...

  15. Ultrafast Probes for Dirac Materials (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Subject: Materials Science(36) Material Science; topological insulators, ultrafast spectroscopy, graphene Word Cloud More Like This Full Text File size NAView Full Text View Full ...

  16. Prospects for Electron Imaging with Ultrafast Time Resolution...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution....

  17. New Algorithm Enables Faster Simulations of Ultrafast Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm Enables Faster Simulations of Ultrafast Processes New Algorithm Enables Faster ... Academy of Sciences, have developed a new real-time time-dependent density function ...

  18. Ultrafast Structural Rearrangements in the MLCT Excited State...

    Office of Scientific and Technical Information (OSTI)

    Copper(I) bis-Phenanthrolines in Solution Ultrafast excited state structural ... Resource Type: Journal Article Resource Relation: Journal Name: Journal of the American Chemical ...

  19. Ultra-fast framing camera tube

    DOE Patents [OSTI]

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  20. Quantum Transport Effects and Coherent Ultrafast Multidimensional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy of Light Harvesting Photosynthetic Complexes | MIT-Harvard Center for Excitonics Transport Effects and Coherent Ultrafast Multidimensional Spectroscopy of Light Harvesting Photosynthetic Complexes March 16, 2010 at 3pm/36-428 Shaul Mukamel Department of Chemistry, University of California, Irvine shaul_001 abstract: The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. Whether quantum effects persist in the energy transport is

  1. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  2. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  3. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Welch, David A.; Woehl, Taylor J.; Park, Chiwoo; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-11-20

    We discuss optimization of colloidal nanoparticle synthesis techniques, which requires an understanding of underlying particle growth mechanisms. Nonclassical growth mechanisms are particularly important as they affect nanoparticle size and shape distributions, which in turn influence functional properties. For example, preferential attachment of nanoparticles is known to lead to the formation of mesocrystals, although the formation mechanism is currently not well-understood. Here we employ in situ liquid cell scanning transmission electron microscopy and steered molecular dynamics (SMD) simulations to demonstrate that the experimentally observed preference for end-to-end attachment of silver nanorods is a result of weaker solvation forces occurring at rodmore » ends. In conclusion, SMD reveals that when the side of a nanorod approaches another rod, perturbation in the surface-bound water at the nanorod surface creates significant energy barriers to attachment. Additionally, rod morphology (i.e., facet shape) effects can explain the majority of the side attachment effects that are observed experimentally.« less

  4. Structural and thermodynamic properties of the CmIII ion solvated by water and methanol

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; Clark, Aurora E.

    2016-04-27

    The geometric and electronic structures of the 9-coordinate Cm3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shown tomore » be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less

  5. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformations in Superionic Nanocrystals Print A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other. Discovered by Michael Faraday almost 200 years ago, superionic materials today hold promise for use in

  6. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    SciTech Connect (OSTI)

    Hajari, Timir; Vegt, Nico F. A. van der

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  7. Ultrafast band engineering and transient spin currents in antiferromagnetic oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-29

    Here, we report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed inmore » classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.« less

  8. Calculation of the Gibbs Free Energy of Solvation and Dissociation of HCl in Water via Monte Carlo Simulations and Continuum Solvation Models

    SciTech Connect (OSTI)

    McGrath, Matthew; Kuo, I-F W.; Ngouana, Brice F.; Ghogomu, Julius N.; Mundy, Christopher J.; Marenich, Aleksandr; Cramer, Christopher J.; Truhlar, Donald G.; Siepmann, Joern I.

    2013-08-28

    The free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation quantum chemical approach at four temperatures between T = 300 and 450 K. The free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either Kohn-Sham density functional theory or a molecular mechanics force field to determine the system’s potential energy. The latter free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation free energies agree very well with available experimental data. CJM was supported by the US Department of Energy,Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI

    SciTech Connect (OSTI)

    McOwen, Dennis W.; Delp, Samuel A.; Paillard, Elie; Herriot, Cristelle; Han, Sang D.; Boyle, Paul D.; Sommer, Roger D.; Henderson, Wesley A.

    2014-04-17

    Lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) and lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI) are two salts proposed for lithium battery electrolyte applications, but little is known about the manner in which the DCTA- and TDI- anions coordinate Li+ cations. To explore this in-depth, crystal structures are reported here for two solvates with LiDCTA: (G2)1:LiDCTA and (G1)1:LiDCTA with diglyme and monoglyme, respectively, and seven solvates with LiTDI: (G1)2:LiTDI, (G2)2:LiTDI, (G3)1:LiTDI, (THF)1:LiTDI, (EC)1:LiTDI, (PC)1:LiTDI and (DMC)1/2:LiTDI with monoglyme, diglyme, triglyme, tetrahydrofuran, ethylene carbonate, propylene carbonate and dimethyl carbonate, respectively. These latter solvate structures are compared with the previously reported acetonitrile (AN)2:LiTDI structure. The solvates indicate that the LiTDI salt is much less associated than the LiDCTA salt and that the ions in LiTDI, when aggregated in solvates, have a very similar TDI-...Li+ cation mode of coordination through both the anion ring and cyano nitrogen atoms. Such coordination facilitates the formation of polymeric ion aggregates, instead of dimers. Insight into such ion speciation is instrumental for understanding the electrolyte properties of aprotic solvent mixtures with these salts.

  10. Differential ultrafast all-optical switching of the resonances of a micropillar cavity

    SciTech Connect (OSTI)

    Thyrrestrup, Henri Yce, Emre; Ctistis, Georgios; Vos, Willem L.; Claudon, Julien; Grard, Jean-Michel

    2014-09-15

    We perform frequency- and time-resolved all-optical switching of a GaAs-AlAs micropillar cavity using an ultrafast pump-probe setup. The switching is achieved by two-photon excitation of free carriers. We track the cavity resonances in time with a high frequency resolution. The pillar modes exhibit simultaneous frequency shifts, albeit with markedly different maximum switching amplitudes and relaxation dynamics. These differences stem from the non-uniformity of the free carrier density in the micropillar, and are well understood by taking into account the spatial distribution of injected free carriers, their spatial diffusion and surface recombination at micropillar sidewalls.

  11. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    SciTech Connect (OSTI)

    Schmidt, Christian B. Priyadarshi, Shekhar; Bieler, Mark; Tarasenko, Sergey A.

    2015-04-06

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which is the inverse spin Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  12. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect (OSTI)

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16?nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ?2.5?eV and ?3.5?eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (540 ps), medium (?200 ps), and slow (??3?ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ?10% of photoexcited carriers exist for at least 3?ns. This work illustrates that TR spectroscopy can be performed on thin (<20?nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  13. Solvation of molecules in superfluid helium enhances the interaction induced localization effect

    SciTech Connect (OSTI)

    Walewski, ?ukasz Forbert, Harald; Marx, Dominik

    2014-04-14

    Atomic nuclei become delocalized at low temperatures as a result of quantum effects, whereas they are point-like in the high temperature (classical) limit. For non-interacting nuclei, the delocalization upon lowering the temperature is quantitatively described in terms of the thermal de Broglie wavelength of free particles. Clearly, light non-interacting nuclei the proton being a prominent one are much more delocalized at low temperatures compared to heavy nuclei, such as non-interacting oxygen having water in mind. However, strong interactions due to chemical bonding in conjunction with ultra-low temperatures characteristic to superfluid helium nanodroplets change this common picture substantially for nuclei in molecules or clusters. It turns out that protons shared in hydrogen bonds undergo an extreme interaction induced localization at temperatures on the order of 1 K, which compresses the protonic spatial distributions to the size of the much heavier donor or acceptor atoms, such as O or Cl nuclei, corresponding to about 0.1% of the volume occupied by a non-interacting proton at the same temperature. Moreover, applying our recently developed hybrid ab initio path integral molecular dynamics/bosonic path integral Monte Carlo quantum simulation technique to a HCl/water cluster, HCl(H{sub 2}O){sub 4}, we find that helium solvation has a significant additional localizing effect of up to about 30% in volume. In particular, the solvent-induced excess localization is the stronger the lesser the given nucleus is already localized in the gas phase reference situation.

  14. Apparatus and method for characterizing ultrafast polarization varying optical pulses

    DOE Patents [OSTI]

    Smirl, Arthur; Trebino, Rick P.

    1999-08-10

    Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques.

  15. Ultra-Fast Quantum Efficiency Solar Cell Test - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultra-Fast Quantum Efficiency Solar Cell Test National Renewable Energy Laboratory Contact NREL About This Technology Real-Time QE quickly measures how each solar cell responds to ...

  16. Pulse radiolysis studies of solvated electrons in supercritical ethane with methanol as cosolvent.

    SciTech Connect (OSTI)

    Dimitrijevic, N. M.; Takahashi, K.; Bartels, D. M.; Jonah, C. D.; Chemistry

    2001-08-02

    Pulse radiolysis has been used to study the solvated electron in supercritical ethane with methanol as a cosolvent. These measurements give information about the liquid structure of the cosolvent in these systems. The results show that at temperatures below 110 {sup o}C, there are high local concentrations of alcohol molecules (clusters), which are capable of solvating an electron. The agglomeration number of methanol clusters depends on mole fraction of alcohol at a fixed temperature. Addition of salts increases the size of methanol clusters.

  17. New Algorithm Enables Faster Simulations of Ultrafast Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm Enables Faster Simulations of Ultrafast Processes New Algorithm Enables Faster Simulations of Ultrafast Processes Opens the Door for Real-Time Simulations in Atomic-Level Materials Research February 20, 2015 Contact: Rachel Berkowitz, 510-486-7254, rberkowitz@lbl.gov femtosecondalgorithm copy Model of ion (Cl) collision with atomically thin semiconductor (MoSe2). Collision region is shown in blue and zoomed in; red points show initial positions of Cl. The simulation calculates the

  18. Ultrafast all-optical manipulation of interfacial magnetoelectric coupling

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Ultrafast all-optical manipulation of interfacial magnetoelectric coupling Citation Details In-Document Search Title: Ultrafast all-optical manipulation of interfacial magnetoelectric coupling Authors: Sheu, Yu-Miin [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2014-04-24 OSTI Identifier: 1129830 Report Number(s): LA-UR-14-22829 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos

  19. Plasmas, Dielectrics and the Ultrafast: First Science and Operational

    Office of Scientific and Technical Information (OSTI)

    Experience at FACET (Conference) | SciTech Connect Conference: Plasmas, Dielectrics and the Ultrafast: First Science and Operational Experience at FACET Citation Details In-Document Search Title: Plasmas, Dielectrics and the Ultrafast: First Science and Operational Experience at FACET FACET (Facility for Advanced Accelerator and Experimental Tests) is an accelerator R&D test facility that has been recently constructed at SLAC National Accelerator Laboratory. The facility provides 20 GeV,

  20. An ultrafast silicon nanoplasmonic ballistic triode

    SciTech Connect (OSTI)

    Greig, S. R. Elezzabi, A. Y.

    2014-12-15

    A nanoscale three terminal silicon based nanoplasmonic triode is proposed as a nanometer transistor. The device is suitable for monolithic integration with complementary-metal-oxide-semiconductor technology. Due to the highly spatially inhomogeneous, highly confined nanoplasmonic mode, electrons generated through two-photon absorption in the silicon are ponderomotively accelerated towards the copper anode producing an output current. Application of a negative grid voltage allows for control of the output current. The nanoplasmonic triode is able to achieve output current as high as 628?mA/?m on an ultrafast timescale of 150 fs in a compact footprint of 0.07??m{sup 2}. Reduction of the plasmonic field strength allows for a CMOS compatible current of 11.7?mA/?m. The results demonstrate the potential for the compact optical control of current useful for applications in high-speed, high current switching, and amplification.

  1. Solvation Phenomena in Dilute Solutions: Formal, Experimental Evidence, and Modeling Implications

    SciTech Connect (OSTI)

    Chialvo, Ariel A

    2013-01-01

    We review the fundamentals underlying a general molecular-based formalism for the microscopic interpretation of the solvation phenomena involving sparingly soluble solutes in compressible media, an approach that hinges around the unambiguous splitting of the species correlation function integrals into short-(finite) and long-ranged (diverging) contributions at infinite dilution, where this condition is taken as the reference system for the derivation of composition expansions. Then, we invoke the formalism (a) to illustrate the well-behaved nature of the solvation contributions to the mechanical partial molecular properties of solutes at infinite dilution, (b) to guide the development of, and provide molecular-based support to, the macroscopic modeling of high-temperature dilute aqueous-electrolyte solutions, (c) to study solvation effects on the kinetic rate constants of reactions in near-critical solvents in an attempt to understand from a microscopic perspective the macroscopic evidence regarding the thermodynamic pressure effects, and (d) to interpret the microscopic mechanism behind synergistic solvation effects involving either co-solutes or co-solvents, and provide a molecular argument on the unsuitability of the van der Waals one-fluid (vdW-1f) mixing rules for the 2 description of weakly attractive solutes in compressible solvents. Finally, we develop thermodynamically consistent perturbation expansions, around the infinite dilution reference, for the species residual properties in binary and ternary mixtures, and discuss the theoretical and modeling implications behind ad hoc first-order truncated expansions.

  2. Solvation and Acid Strength Effects on Catalysis by Faujasite Zeolites

    SciTech Connect (OSTI)

    Gounder, Rajamani P.; Jones, Andrew J.; Carr, Robert T.; Iglesia, Enrique

    2012-02-01

    Kinetic, spectroscopic, and chemical titration data indicate that differences in monomolecular isobutane cracking and dehydrogenation and methanol dehydration turnover rates (per H+) among FAU zeolites treated thermally with steam (H-USY) and then chemically with ammonium hexafluorosilicate (CDHUSY) predominantly reflect differences in the size and solvating properties of their supercage voids rather than differences in acid strength. The number of protons on a given sample was measured consistently by titrations with Na+, with CH3 groups via reactions of dimethyl ether, and with 2,6-di-tert-butylpyridine during methanol dehydration catalysis; these titration values were also supported by commensurate changes in acidic OH infrared band areas upon exposure to titrant molecules. The number of protons, taken as the average of the three titration methods, was significantly smaller than the number of framework Al atoms (Alf) obtained from X-ray diffraction and 27Al magic angle spinning nuclear magnetic resonance spectroscopy on H-USY (0.35 H+/Alf) and CD-HUSY (0.69 H+/Alf). These data demonstrate that the ubiquitous use of Alf sites as structural proxies for active H+ sites in zeolites can be imprecise, apparently because distorted Al structures that are not associated with acidic protons are sometimes detected as Alf sites. Monomolecular isobutane cracking and dehydrogenation rate constants, normalized non-rigorously by the number of Alf species, decreased with increasing Na+ content on both H-USY and CD-HUSY samples and became undetectable at sub-stoichiometric exchange levels (0.32 and 0.72 Na+/Alf ratios, respectively), an unexpected finding attributed incorrectly in previous studies to the presence of minority ‘‘super-acidic’’ sites. These rate constants, when normalized rigorously by the number of residual H+ sites were independent of Na+ content on both H-USY and CD-HUSY samples, reflecting the stoichiometric replacement of protons that are uniform in

  3. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Design for Efficiency » Ultra-Efficient Home Design Ultra-Efficient Home Design All Kaupuni Village homes in Oahu, Hawaii, incorporate energy efficiency and renewable energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. All Kaupuni Village homes in Oahu, Hawaii, incorporate energy efficiency and renewable energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. Ultra-efficient home design combines

  4. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core...

  5. Ultrafast laser-driven proton sources and dynamic proton imaging...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 43 PARTICLE ACCELERATORS; ACCELERATION; ELECTRIC FIELDS; ELECTRONS; EVOLUTION; EXPANSION; FOILS; ION ...

  6. Ultrafast myoglobin structural dynamics observed with an X-ray...

    Office of Scientific and Technical Information (OSTI)

    Univ. of Palermo (Italy). Dept. of Physics. Univ. of Grenoble Alpes and Institute of Structural Biology (France) SLAC National Accelerator Laboratory, Menlo Park, CA (Untied ...

  7. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Swedish Research Council, Swedish National Supercomputer Center, Center for Parallel Computers (Sweden), German Federal Ministry of Education and Research. Operation of the...

  8. In the OSTI Collections: Ultrafast Processes | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Ultrafast Processes Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Examples of ultrafast chemical and electronic processes Further examples of electronic processes Chemical reactions from shock waves Ultrafast instruments References Research Organizations Reports available through OSTI's SciTech Connect Patent available through OSTI's DOepatents Additional References Because the atoms

  9. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  10. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    SciTech Connect (OSTI)

    Grazioli, C.; Gauthier, D.; Ivanov, R.; De Ninno, G.; Elettra Sincrotrone Trieste, Trieste ; Callegari, C.; Spezzani, C.; Ciavardini, A.; Coreno, M.; Institute of Inorganic Methodologies and Plasmas , Montelibretti, Roma ; Frassetto, F.; Miotti, P.; Poletto, L.; Golob, D.; Kivimäki, A.; Mahieu, B.; Service des Photons Atomes et Molécules, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, Bâtiment 522, 91191 Gif-sur-Yvette ; Bučar, B.; Merhar, M.; Polo, E.; Ressel, B.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.

  11. Dynamic

    Office of Legacy Management (LM)

    Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, ... AND STATIC RESPONSE 'OF THE GOVERNMENT OIL SHALE MINE A T RIFLE, COLORADO, T O THE, ...

  12. Ultrafast spin tunneling and injection in coupled nanostructures of InGaAs quantum dots and quantum well

    SciTech Connect (OSTI)

    Yang, Xiao-Jie Kiba, Takayuki; Yamamura, Takafumi; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro

    2014-01-06

    We investigate the electron-spin injection dynamics via tunneling from an In{sub 0.1}Ga{sub 0.9}As quantum well (QW) to In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) in coupled QW-QDs nanostructures. These coupled nanostructures demonstrate ultrafast (5 to 20 ps) spin injection into the QDs. The degree of spin polarization up to 45% is obtained in the QDs after the injection, essentially depending on the injection time. The spin injection and conservation are enhanced with thinner barriers due to the stronger electronic coupling between the QW and QDs.

  13. Apparatus and method for characterizing ultrafast polarization varying optical pulses

    DOE Patents [OSTI]

    Smirl, A.; Trebino, R.P.

    1999-08-10

    Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques. 2 figs.

  14. Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers

    SciTech Connect (OSTI)

    Cotoros, Ingrid A.

    2008-12-12

    The field of spintronics offers perspectives for seamless integration of coupled and inter-tunable electrical and magnetic properties in a single device. For integration of the spin degree of freedom with current electronic technology, new semiconductors are needed that show electrically-tunable magnetic properties at room temperature and above. Dilute magnetic semiconductors derived from III-V compounds, like GaMnAs and InMnAs, show coupled and tunable magnetic, transport, and optical properties, due to the fact that their ferromagnetism is hole-mediated. These unconventional materials are ideal systems for manipulating the magnetic order by changing the carrier polarization, population density, and energy band distribution of the complementary subsystem of holes. This is the main theme we cover in this thesis. In particular, we develop a unique setup by use of ultraviolet pump, near-infrared probe femtosecond laser pulses, that allows for magneto-optical Kerr effect (MOKE) spectroscopy experiments. We photo-excite transient carriers in our samples, and measure the induced transient magnetization dynamics. One set of experiments performed allowed us to observe for the first time enhancement of the ferromagnetic order in GaMnAs, on an ultrafast time scale of hundreds of picoseconds. The corresponding transient increase of Curie temperature (Tc, the temperature above which a ferromagnetic material loses its permanent magnetism) of about 1 K for our experimental conditions is a very promising result for potential spintronics applications, especially since it is seconded by observation of an ultrafast ferromagnetic to paramagnetic phase transition above Tc. In a different set of experiments, we"write" the magnetization in a particular orientation in the sample plane. Using an ultrafast scheme, we alter the distribution of holes in the system and detect signatures of the particular memory state in the subsequent magnetization dynamics, with unprecedented hundreds of

  15. Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories

    SciTech Connect (OSTI)

    Petit, Andrew S.; Subotnik, Joseph E.

    2014-10-21

    We report a surface hopping approach for modeling the full time- and frequency-resolved differential absorbance spectra (beyond the inhomogenous limit) obtained in ultrafast pump-probe experiments. In our approach, we combine dynamical information obtained from ensembles of classical trajectories propagated on the ground and on the excited potential energy surfaces to directly calculate optical response functions and hence spectral lineshapes. We demonstrate that our method is exact for the model problem of two shifted harmonic potentials with identical harmonic frequencies in the absence of electronic relaxation. We then consider a model three state system with electronic relaxation and show that our method is able to capture the effects of nonadiabatic excited state dynamics on the time-dependent differential absorbance spectra. Furthermore, by comparing our spectra against those spectra calculated with either an (1) inhomogenous expression, (2) ground-state Kubo theory, or (3) excited-state Kubo theory, we show that including dynamical information from both the ground and excited potential energy surfaces significantly improves the reliability of the semiclassical approximations. As such, our surface hopping method should find immediate use in modeling the time-dependent differential abosrbance spectra of ultrafast pump-probe experiments.

  16. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate

    SciTech Connect (OSTI)

    Allen, Joshua L.; Borodin, Oleg; Seo, D. M.; Henderson, Wesley A.

    2014-12-01

    Combined computational/Raman spectroscopic analyses of ethylene carbonate (EC) and propylene carbonate (PC) solvation interactions with lithium salts are reported. It is proposed that previously reported Raman analyses of (EC)n-LiX mixtures have utilized faulty assumptions. In the present studies, density functional theory (DFT) calculations have provided corrections in terms of both the scaling factors for the solvent's Raman band intensity variations and information about band overlap. By accounting for these factors, the solvation numbers obtained from two different EC solvent bands are in excellent agreement with one another. The same analysis for PC, however, was found to be quite challenging. Commercially available PC is a racemic mixture of (S)- and (R)-PC isomers. Based upon the quantum chemistry calculations, each of these solvent isomers may exist as multiple conformers due to a low energy barrier for ring inversion, making deconvolution of the Raman bands daunting and inherently prone to significant error. Thus, Raman spectroscopy is able to accurately determine the extent of the EC...Li+ cation solvation interactions using the provided methodology, but a similar analysis of PC...Li+ cation solvation results in a significant underestimation of the actual solvation numbers.

  17. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  18. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  19. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  20. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Wednesday, 26 March 2008 00:00 Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the

  1. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  2. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  3. Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Injection Process and Diesel Sprays Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process and Diesel Sprays 2005 Diesel Engine Emissions ...

  4. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    SciTech Connect (OSTI)

    Machesky, Michael L.; Predota, M.; Wesolowski, David J

    2008-11-01

    The detailed solvation structure at the (110) surface of rutile ({alpha}-TiO{sub 2}) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 {angstrom} of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 {+-} 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH{sub znpc} values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH{sub znpc} value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 {+-} 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic

  5. Development and application of QM/MM methods to study the solvation effects and surfaces

    SciTech Connect (OSTI)

    Dibya, Pooja Arora

    2010-05-16

    Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize the computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work

  6. Ultrafast electron transport across nano gaps in nanowire circuits

    SciTech Connect (OSTI)

    Potma, Eric O.

    2015-07-31

    In this Program we aim for a closer look at electron transfer through single molecules. To achieve this, we use ultrafast laser pulses to time stamp an electron tunneling event in a molecule that is connected between two metallic electrodes, while reading out the electron current. A key aspect of this project is the use of metallic substrates with plasmonic activity to efficiently manipulate the tunneling probability. The first Phase of this program is concerned with developing highly sensitive tools for the ultrafast optical manipulation of tethered molecules through the evanescent surface field of plasmonic substrates. The second Phase of the program aims to use these tools for exercising control over the electron tunneling probability.

  7. Ultrafast Nanoplasmonics: Toward Coherently Controlled Chemistry at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-space Limit | MIT-Harvard Center for Excitonics Ultrafast Nanoplasmonics: Toward Coherently Controlled Chemistry at the Time-space Limit November 3, 2015 at 4:30 PM/ RLE Allen 36-462* Tamar Seideman Department of Chemistry, Northwestern University, Illinois seideman Electronics has long reached the molecular scale; not only do single-molecule junctions exhibit interesting conduction behaviors that have no analog in macroscopic electronics, they can also be tailored to induce a variety

  8. New 'Molecular Movie' Reveals Ultrafast Chemistry in Motion

    SciTech Connect (OSTI)

    Minitti, Michael

    2015-06-22

    Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.

  9. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect (OSTI)

    Hastings, J.B.; Rudakov, F.M.; Dowell, D.H.; Schmerge, J.F.; Cardoza, J.D.; Castro, J.M.; Gierman, S.M.; Loos, H.; Weber, P.M.; /Brown U.

    2006-10-24

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  10. Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced

    Office of Scientific and Technical Information (OSTI)

    mixture of nitromethane and hydrogen peroxide (Conference) | SciTech Connect kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Citation Details In-Document Search Title: Ultrafast kinetics subsequent to shock in an unreacted, oxygen balanced mixture of nitromethane and hydrogen peroxide Authors: Armstrong, M R ; Zaug, J M ; Grant, C D ; Crowhurst, J C ; Bastea, S Publication Date: 2014-06-24 OSTI Identifier: 1149544 Report Number(s):

  11. Advanced Instrumentation for Ultrafast Science at the LCLS

    SciTech Connect (OSTI)

    Berrah, Nora

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  12. Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Henderson, Wesley

    2014-08-29

    The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the electrolyte physicochemical and electrochemical properties which govern (in part) battery performance. Lithium battery electrolytes remain a poorly understood and hardly studied topic relative to the research devoted to battery electrodes. This is due to the fact that it is the electrodes which determine the energy (capacity) of the battery. The electrolyte, however, plays a crucial role in the practical energy density, power, low and/or high temperature performance, lifetime, safety, etc. which is achievable. The development within this project of a "looking glass" into the molecular interactions (i.e., solution structure) in bulk electrolytes through a synergistic experimental approach involving three research thrusts complements work by other researchers to optimize multi-solvent electrolytes and efforts to understand/control the electrode-electrolyte interfaces, thereby enabling the rational design of electrolytes for a wide variety of battery chemistries and applications (electrolytes-on-demand). The three research thrusts pursued include: (1) conduction of an in-depth analysis of the thermal phase behavior of diverse solvent-LiX mixtures, (2) exploration of the ionic association/solvate formation behavior of select LiX salts with a wide variety of solvents, and (3) linking structure to properties-determination of electrolyte physicochemical and electrochemical properties for comparison with the ionic association and phase behavior.

  13. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone ofmore » only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.« less

  14. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension

    SciTech Connect (OSTI)

    Wang, Yingwei; Huang, Guanghui; Chen, Jiazhang; Xiao, Si He, Jun; Mu, Haoran; Bao, Qiaoliang; Lin, Shenghuang

    2015-08-31

    As a new type of two-dimensional crystal material, black phosphorus (BP) exhibits excellent electronics and optical performance. Herein, we focus on carrier relaxation dynamics and nonlinear optical properties of BP suspension. Atomic force microscopy, transmission electron microscopy, and optical transmission spectrum are employed to characterize the structure and linear optical properties of the BP. Additionally, pump-probe experiments at wavelength of 1550 nm were carried out to study the carrier dynamics in BP suspension, and ultrafast recovery time was observed (τ{sub s} = 24 ± 2 fs). Furthermore, we demonstrate the saturable absorption signals by open aperture Z-scan experiments at wavelengths of 1550 nm, 532 nm, and 680 nm. The results indicate that BP has broadband saturable absorption properties and the nonlinear absorption coefficients were determined to be β{sub 2} = −0.20 ± 0.08 × 10{sup −3 }cm/GW (532 nm), β{sub 2} = −0.12 ± 0.05 × 10{sup −3 }cm/GW (680 nm), and β{sub 2} = −0.15 ± 0.09 × 10{sup −3 }cm/GW (1550 nm)

  15. Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale

    SciTech Connect (OSTI)

    Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; Strachan, Alejandro

    2015-06-13

    We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone of only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.

  16. Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model

    SciTech Connect (OSTI)

    Nakai, Hiromi; Ishikawa, Atsushi

    2014-11-07

    We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vapor–liquid equilibration of water and ethanol, and dissolution of gaseous CO{sub 2} in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.

  17. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  18. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  19. Driving magnetic order in a manganite by ultrafast lattice excitation.

    SciTech Connect (OSTI)

    Forst, M.; Tobey, R. I.; Wall, S.; Bromberger, H.; Khanna, V.; Cavalieri, A. L.; Chuang, Y.-D.; Lee, W. S.; Moore, R.; Schlotter, W. F.; Turner, J. J.; Krupin, O.; Trigo, M.; Zheng, H.; Mitchell, J. F.; Dhesi, S. S.; Hill, J. P.; Cavalleri, A.

    2011-01-01

    Femtosecond midinfrared pulses are used to directly excite the lattice of the single-layer manganite La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. Magnetic and orbital orders, as measured by femtosecond resonant soft x-ray diffraction with an x-ray free-electron laser, are reduced within a few picoseconds. This effect is interpreted as a displacive exchange quench, a prompt shift in the equilibrium value of the magnetic- and orbital-order parameters after the lattice has been distorted. Control of magnetism through ultrafast lattice excitation may be of use for high-speed optomagnetism.

  20. Ultrafast laser control of backward superfluorescence towards standoff sensing

    SciTech Connect (OSTI)

    Ariunbold, Gombojav O.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2014-01-13

    We study infrared backward cooperative emission in a rubidium vapor induced by ultrafast two-photon optical excitations. The laser coherent control of the backward emission is demonstrated by using a pair of 100 fs pulses with a variable time delay. The temporal variation (quantum beat) of the backward beam intensity due to interference of atomic transitions in the rubidium atomic level system 5S-5P-5D is produced and controlled. Based on the obtained experimental results, we discuss possible applications of the developed approach for creation of an effective “guide star” in the sodium atomic layer in the upper atmosphere (mesosphere)

  1. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOE Patents [OSTI]

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  2. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOE Patents [OSTI]

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  3. Ultrafast terahertz Faraday rotation in graphene

    SciTech Connect (OSTI)

    Heyman, J. N.; Foo Kune, R. F.; Alebachew, B. A.; Nguyen, M. D.; Robinson, J. T.

    2014-12-07

    Terahertz (THz) Faraday rotation measurements were performed to investigate carrier dynamics in p-type Chemical vapor deposition (CVD) graphene. We used static and time-resolved polarization-sensitive THz transmission measurements in a magnetic field to probe free carriers in GaAs, InP, and Graphene. Static measurements probe the equilibrium carrier density and momentum scattering rate. Time-resolved (optical pump/THz probe) measurements probe the change in these quantities following photoexcitation. In a typical CVD graphene sample, we found that 0.5 ps following photoexcitation with 1 × 10{sup 13} photons/cm{sup 2} pulses at 800 nm the effective hole scattering time decreased from 37 fs to 34.5 fs, while the carrier concentration increased from 2.0 × 10{sup 12} cm{sup −2} to 2.04 × 10{sup 12} cm{sup −2}, leading to a transient decrease in the conductivity of the film.

  4. Ultrafast pulse radiolysis using a terawatt laser wakefield accelerator

    SciTech Connect (OSTI)

    Oulianov, Dmitri A.; Crowell, Robert A.; Gosztola, David J.; Shkrob, Ilya A.; Korovyanko, Oleg J.; Rey-de-Castro, Roberto C.

    2007-03-01

    We report ultrafast pulse radiolysis transient absorption (TA) spectroscopy measurements from the Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC subpicosecond pulses of multi-mega-electron-volt electrons at 10 Hz using laser wakefield acceleration. The system has been specifically optimized for kinetic TA measurements in a pump-probe fashion. This requires averaging over many shots which necessitates stable, reliable generation of electron pulses. The latter were used to generate excess electrons in pulse radiolysis of liquid water and concentrated solutions of perchloric acid. The hydronium ions in the acidic solutions react with the hydrated electrons resulting in the rapid decay of the transient absorbance at 800 nm on the picosecond time scale. Normalization of the TA signal leads to an improvement in the signal to noise ratio by a factor of 5 to 6. Due the pointing instability of the laser this improvement was limited to a 5 to 10 min acquisition period, requiring periodic recalibration and realignment. Time resolution, defined by the rise time of TA signal from hydrated electron in pulse radiolysis of liquid water, of a few picoseconds, has been demonstrated. The current time resolution is determined primarily by the physical dimensions of the sample and the detection sensitivity. Subpicosecond time resolution can be achieved by using thinner samples, more sensitive detection techniques, and improved electron beam quality.

  5. Quantum Hooke's Law to classify pulse laser induced ultrafast melting

    SciTech Connect (OSTI)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a super pressing state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  6. Quantum Hooke's Law to classify pulse laser induced ultrafast melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes ofmore » materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.« less

  7. UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-01-01

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

  8. High-Energy and Ultrafast X-Ray Imaging Technologies and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MaRIE High-energy and Ultrafast X-Ray Imaging Technologies and Applications Date : August 2-3, 2016 Hotel venue: Hilton Santa Fe at Buffalo Thunder The goal of this workshop is to gather leading experts in the fields related to ultrafast high-energy photon imaging and prioritize the path forward for ultrafast hard x-ray imaging technology development, identify important applications in the next 5-10 years, and establish foundations for near-term R&D collaboration. This workshop is one in a

  9. High-energy and Ultrafast X-Ray Imaging Technologies and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August » High-energy and Ultrafast X-Ray Imaging Technologies and Applications High-energy and Ultrafast X-Ray Imaging Technologies and Applications WHEN: Aug 02, 2016 8:00 AM - Aug 03, 2016 5:00 PM WHERE: Hilton Santa Fe at Buffalo Thunder CONTACT: Zhehui (Jeff) Wang (505) 665-5353 CATEGORY: Community Science TYPE: Conference INTERNAL: Calendar Login Event Description The goal of this workshop is to gather leading experts in the fields related to ultrafast high-energy photon imaging and

  10. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  11. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other ...

  12. Ultrafast spin exchange-coupling torque via photo-excited charge...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes In this study, optical control of spin is of central importance in the research of ...

  13. Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials ... Resource Relation: Journal Name: Appl. Phys. Lett.; Journal Volume: 104; Journal Issue: 25 Research ...

  14. Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel Injection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process and Diesel Sprays | Department of Energy Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process and Diesel Sprays Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process and Diesel Sprays 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_wang.pdf (980 KB) More Documents & Publications Fuel Injection and Spray Research Using X-Ray Diagnostics Fuel Injection and Spray Research Using

  15. Ultrafast Probes for Dirac Materials (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Probes for Dirac Materials Citation Details In-Document Search Title: Ultrafast Probes for Dirac Materials Authors: Yarotski, Dmitry Anatolievitch [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-03-12 OSTI Identifier: 1172825 Report Number(s): LA-UR-15-21802 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: UCRP Country of Publication: United

  16. Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials Citation Details In-Document Search Title: Ultrafast Terahertz-Induced Response of GeSbTe Phase-Change Materials Authors: Shu, Michael J. ; Zalden, Peter ; Chen, Frank ; Weems, Ben ; Chatzakis, Ioannis ; Xiong, Feng ; Jeyasingh, Rakesh ; Hoffmann, Matthias C. ; Pop, Eric ; Wong, H.-S.Philip ; Wuttig, Matthias ; Lindenberg, Aaron M. Publication Date: 2014-07-08 OSTI

  17. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect (OSTI)

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  18. Ultrafast transient grating radiation to optical image converter

    DOE Patents [OSTI]

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  19. Ultrafast laser diagnostics to investigate initiation fundamentals in energetic materials.

    SciTech Connect (OSTI)

    Farrow, Darcie; Jilek, Brook Anton; Kohl, Ian Thomas; Kearney, Sean Patrick

    2013-08-01

    We present the results of a two year early career LDRD project, which has focused on the development of ultrafast diagnostics to measure temperature, pressure and chemical change during the shock initiation of energetic materials. We compare two single-shot versions of femtosecond rotational CARS to measure nitrogen temperature: chirped-probe-pulse and ps/fs hybrid CARS thermometry. The applicability of measurements to the combustion of energetic materials will be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary results from Al and PETN thin films. Agreement between our results and previous work will be discussed.

  20. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    SciTech Connect (OSTI)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X.; Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D.

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  1. Mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models

    SciTech Connect (OSTI)

    Corcelli, S.A.; Kress, J.D.; Pratt, L.R.

    1995-08-07

    This paper develops and characterizes mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models. We give an example, the Ca{sup ++}{hor_ellipsis}Cl{sup {minus}} pair potential of mean force in aqueous solution, for which a direct solution at thermal accuracy is difficult and, thus for which mixed direct-iterative methods seem necessary to obtain the required high resolution. For the simplest such formulations, Gauss-Seidel iteration diverges in rare cases. This difficulty is analyzed by obtaining the eigenvalues and the spectral radius of the non-symmetric iteration matrix. This establishes that those divergences are due to inaccuracies of the asymptotic approximations used in evaluation of the matrix elements corresponding to accidental close encounters of boundary elements on different atomic spheres. The spectral radii are then greater than one for those diverging cases. This problem is cured by checking for boundary element pairs closer than the typical spatial extent of the boundary elements and for those cases performing an ``in-line`` Monte Carlo integration to evaluate the required matrix elements. These difficulties are not expected and have not been observed for the thoroughly coarsened equations obtained when only a direct solution is sought. Finally, we give an example application of hybrid quantum-classical methods to deprotonation of orthosilicic acid in water.

  2. The cavity electromagnetic field within the polarizable continuum model of solvation

    SciTech Connect (OSTI)

    Pipolo, Silvio; Department of Physics, University of Modena and Reggio Emilia, Modena ; Corni, Stefano; Cammi, Roberto

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  3. Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes

    SciTech Connect (OSTI)

    Seo, D. M.; Boyle, Paul D.; Allen, Joshua L.; Han, Sang D.; Jonsson, Erlendur; Johansson, Patrik; Henderson, Wesley A.

    2014-07-21

    Crystal structures have been determined for both LiBF4 and HBF4 solvates—(acetonitrile)2:LiBF4, (ethylene glycol diethyl ether)1:LiBF4, (diethylene glycol diethyl ether)1:LiBF4, (tetrahydrofuran)1:LiBF4, (methyl methoxyacetate)1:LiBF4, (suc-cinonitrile)1:LiBF4, (N,N,N',N",N"-pentamethyldiethylenetriamine)1:HBF4, (N,N,N',N'-tetramethylethylenediamine)3/2:HBF4 and (phenanthroline)2:HBF4. These, as well as other known LiBF4 solvate structures, have been characterized by Raman vibrational spectroscopy to unambiguously assign the anion Raman band positions to specific forms of BF4-...Li+ cation coordination. In addition, complementary DFT calculations of BF4-...Li+ cation complexes have provided additional insight into the challenges associated with accurately interpreting the anion interactions from experimental Raman spectra. This information provides a crucial tool for the characterization of the ionic association interactions within electrolytes.

  4. Ultrafast Multiphoton Pump-probe Photoemission Excitation Pathways in Rutile TiO2(110)

    SciTech Connect (OSTI)

    Argondizzo, Adam; Cui, Xuefeng; Wang, Cong; Sun, Huijuan; Shang, Honghui; Zhao, Jin; Petek, Hrvoje

    2015-04-27

    We investigate the spectroscopy and photoinduced electron dynamics within the conduction band of reduced rutile TiO2(110) surface by multiphoton photoemission (mPP) spectroscopy with wavelength tunable ultrafast (!20 fs) laser pulse excitation. Tuning the mPP photon excitation energy between 2.9 and 4.6 eV reveals a nearly degenerate pair of new unoccupied states located at 2.73 ± 0.05 and 2.85 ± 0.05 eV above the Fermi level, which can be analyzed through the polarization and sample azimuthal orientation dependence of the mPP spectra. Based on the calculated electronic structure and optical transition moments, as well as related spectroscopic evidence, we assign these resonances to transitions between Ti 3d bands of nominally t2g and eg symmetry, which are split by crystal field. The initial states for the optical transition are the reduced Ti3+ states of t2g symmetry populated by formation oxygen vacancy defects, which exist within the band gap of TiO2. Furthermore,we studied the electron dynamics within the conduction band of TiO2 by three-dimensional time-resolved pump-probe interferometric mPP measurements. The spectroscopic and time-resolved studies reveal competition between 2PP and 3PP processes where the t2g-eg transitions in the 2PP process saturate, and are overtaken by the 3PP process initiated by the band-gap excitation from the valence band of TiO2.

  5. Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kunnus, K.; Josefsson, I.; Rajkovic, I.; Schreck, S.; Quevedo, W.; Beye, M.; Weniger, C.; Grübel, S.; Scholz, M.; Nordlund, D.; et al

    2016-02-09

    We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the 1A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from 1B2 tomore » 3B2 is rationalized by the proposed 1B2 → 1A1 → 3B2 mechanism. Ultrafast ligation of the 1B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the 3B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via 1B2 → 1A1 → 1A' Fe(CO)4EtOH pathway and the time scale of the 1A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. In conclusion, our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.« less

  6. Ultrafast photo-induced nuclear relaxation of a conformationally disordered conjugated polymer probed with transient absorption and femtosecond stimulated Raman spectroscopies

    SciTech Connect (OSTI)

    Yu, Wenjian; Donohoo-Vallett, Paul J.; Zhou, Jiawang; Bragg, Arthur E.

    2014-07-28

    A combination of transient absorption (TAS) and femtosecond stimulated Raman (FSRS) spectroscopies were used to interrogate the photo-induced nuclear relaxation dynamics of poly(3-cyclohexyl,4-methylthiophene) (PCMT). The large difference in inter-ring dihedral angles of ground and excited-state PCMT make it an ideal candidate for studying large-amplitude vibrational relaxation associated with exciton trapping. Spectral shifting in the S{sub 1} TA spectra on sub-ps timescales (110 ± 20 and 800 ± 100 fs) is similar to spectroscopic signatures of excited-state relaxation observed with related photoexcited conjugated polymers and which have been attributed to exciton localization and a combination of resonant energy transfer and torsional relaxation, respectively. Measurements made with both techniques reveal fast PCMT S{sub 1} decay and triplet formation (τ{sub S1} = 25–32 ps), which is similar to the excited-state dynamics of short oligothiophenes and highly twisted polyconjugated molecules. On ultrafast timescales FSRS of S{sub 1} PCMT offers a new perspective on the nuclear dynamics that underlie localization of excitons in photoexcited conjugated polymers: Spectral dynamics in the C=C stretching region (1400–1600 cm{sup −1}) include a red-shift of the in-phase C=C stretching frequency, as well as a change in the relative intensity of in-phase and out-of-phase stretch intensities on a timescale of ∼100 fs. Both changes indicate an ultrafast vibrational distortion that increases the conjugation length in the region of the localized excitation and are consistent with exciton self-localization or trapping. Wavelength-dependent excited-state FSRS measurements further demonstrate that the C=C stretching frequency provides a useful spectroscopic handle for interrogating the degree of delocalization in excited conjugated polymers given the selectivity achieved via resonance enhancement.

  7. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Peter Pronko

    2004-12-13

    This project involved a systematic study to apply newly discovered isotopic enrichment effects in laser ablation plumes to the fabrication of isotopically engineered thin films, superlattices, and nanostructures. The approach to this program involved using ultrafast lasers as a method for generating ablated plasmas that have preferentially structured isotopic content in the body of the ablation plasma plumes. In examining these results we have attempted to interpret the observations in terms of a plasma centrifuge process that is driven by the internal electro-magnetic fields of the plasma itself. The research plan involved studying the following phenomena in regard to the ablation plume and the isotopic mass distribution within it: (1) Test basic equations of steady state centrifugal motion in the ablation plasma. (2) Investigate angular distribution of ions in the ablation plasmas. (3) Examine interactions of plasma ions with self-generated magnetic fields. (3) Investigate ion to neutral ratios in the ablation plasmas. (5) Test concepts of plasma pumping. (6) Fabricate isotopically enriched nanostructures.

  8. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    SciTech Connect (OSTI)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  9. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2008-08-11

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  10. Coherent orbital waves during an Ultrafast Photo-induced Isulator-metal Transition in a magnetoresistive manganite

    SciTech Connect (OSTI)

    ULTRAS-INFM-CNR Dipartimento di Fisica, Politecnico di Milano, Italy; Department of Physics - Cavalleri Group, Clarendon Laboratory, University of Oxford, U.K.; Correlated Electron Research Center, Tsukuba, Japan; Schoenlein, Robert William; Polli, D.; Rini, M.; Wall, S.; Schoenlein, R.W.; Tomioka, Y.; Tokura, Y.; Cerullo, G.; Cavalleri, A.

    2007-06-01

    Photo-excitation can drive strongly correlated electron insulators into competing conducting phases1,2, resulting in giant and ultrafast changes of their electronic and magnetic properties. The underlying non-equilibrium dynamics involve many degrees of freedom at once, whereby sufficiently short optical pulses can trigger the corresponding collective modes of the solid along temporally coherent pathways. The characteristic frequencies of these modes range between the few GHz of acoustic vibrations3 to the tens or even hundreds of THz for purely electronic excitations. Virtually all experiments so far have used 100 fs or longer pulses, detecting only comparatively slow lattice dynamics4,5. Here, we use sub-10-fs optical pulses to study the photo-induced insulator-metal transition in the magneto-resistive manganite Pr0.7Ca0.3MnO3. At room temperature, we find that the time-dependent pathway towards the metallic phase is accompanied by coherent 31 THz oscillations of the optical reflectivity, significantly faster than all lattice vibrations. These high-frequency oscillations are suggestive of coherent orbital waves6,7, crystal-field excitations triggered here by impulsive stimulated Raman scattering. Orbital waves are likely to be initially localized to the small polarons of this room-temperature manganite, coupling to other degrees of freedom at longer times, as photo-domains coalesce into a metallic phase.