Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lab-based Ultrafast Molecular Structure  

SciTech Connect

The proliferation of various laser-driven approaches to sub-picosecond hard X-ray and short-wavelength radiation generation in the past few decades has opened many avenues for the laboratory-based development of traditionally facility-based short wavelength ultrafast molecular structure science. Together with the introduction of microcalorimeter detection schemes, this opens the floodgates to widespread, decentralized implementation of what were until recently specialist short wavelength techniques. A parallel situation exists for the contemporary adoption of sub-wavelength resolution optical microscopies. In what follows, a few ultrafast molecular structure developments and their rationale are briefly recounted.

Fullagar, Wilfred [Division of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden); Monash Centre for Synchrotron Science / Monash School of Physics / Centre of Excellence for Coherent X-ray Science, Monash University, Clayton, VIC 3800 (Australia); Uhlig, Jens; Gador, Niklas; Maasilta, Ilari; Sundstroem, Villy [Division of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden); Kinnuen, Kimmo [Division of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden); Nanoscience Center, P.O.Box 35, FI-40014 University of Jyvaeskylae (Finland); Wahlstroem, Claes-Goeran [Division of Atomic Physics, Lund Institute of Technology, P.O. Box 118, SE-22100 Lund (Sweden)

2010-06-23T23:59:59.000Z

2

Precise and ultrafast molecular sieving through graphene oxide membranes  

E-Print Network (OSTI)

There has been intense interest in filtration and separation properties of graphene-based materials that can have well-defined nanometer pores and exhibit low frictional water flow inside them. Here we investigate molecular permeation through graphene oxide laminates. They are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves blocking all solutes with hydrated radii larger than 4.5A. Smaller ions permeate through the membranes with little impedance, many orders of magnitude faster than the diffusion mechanism can account for. We explain this behavior by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The ultrafast separation of small salts is attributed to an 'ion sponge' effect that results in highly concentrated salt solutions inside graphene capillaries.

R. K. Joshi; P. Carbone; F. C. Wang; V. G. Kravets; Y. Su; I. V. Grigorieva; H. A. Wu; A. K. Geim; R. R. Nair

2014-01-14T23:59:59.000Z

3

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical Exchange Spectroscopy  

E-Print Network (OSTI)

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution

Fayer, Michael D.

4

Ultrafast molecular imaging by laser-induced electron diffraction  

SciTech Connect

We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO{sub 2} molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

Peters, M. [Universite Paris-Sud, Institut des Sciences Moleculaires d'Orsay (CNRS), F-91405 Orsay (France); Departement de Chimie, Universite Laval, Quebec, Quebec G1K 7P4 (Canada); Nguyen-Dang, T. T. [Departement de Chimie, Universite Laval, Quebec, Quebec G1K 7P4 (Canada); Cornaggia, C. [CEA IRAMIS, SPAM, Saclay, Batiment 522, F-91191 Gif-sur-Yvette (France); Saugout, S.; Charron, E.; Keller, A.; Atabek, O. [Universite Paris-Sud, Institut des Sciences Moleculaires d'Orsay (CNRS), F-91405 Orsay (France)

2011-05-15T23:59:59.000Z

5

Modified ultrafast thermometer UFT-M and temperature measurements during Physics of Stratocumulus Top (POST)  

E-Print Network (OSTI)

al. : Modified ultrafast thermometer UFT-M and temperatureR. : A new ultrafast thermometer for airborne measurementsof some airborne thermometers in clouds, J. Atmos. Ocean.

Kumala, W.; Haman, K. E; Kopec, M. K; Khelif, D.; Malinowski, S. P

2013-01-01T23:59:59.000Z

6

Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.  

SciTech Connect

We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

Kearney, Sean P.; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

2014-11-01T23:59:59.000Z

7

Circularly Polarized X Rays: Another Probe of Ultrafast Molecular Decay Dynamics  

SciTech Connect

Dissociative nuclear motion in core-excited molecular states leads to a splitting of the fragment Auger lines: the Auger-Doppler effect. We present here for the first time experimental evidence for an Auger-Doppler effect following F1s{yields}a{sub 1g}* inner-shell excitation by circularly polarized x rays in SF{sub 6}. In spite of a uniform distribution of the dissociating S-F bonds near the polarization plane of the light, the intersection between the subpopulation of molecules selected by the core excitation with the cone of dissociation induces a strong anisotropy in the distribution of the S-F bonds that contributes to the scattering profile measured in the polarization plane.

Travnikova, Oksana; Lindblad, Andreas; Nicolas, Christophe; Soederstroem, Johan; Kimberg, Victor; Miron, Catalin [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette Cedex (France); Liu Jicai; Gel'mukhanov, Faris [Department of Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden)

2010-12-03T23:59:59.000Z

8

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Ultrafast Core-Hole Induced Dynamics in Water Ultrafast Core-Hole Induced Dynamics in Water Print Wednesday, 22 February 2006 00:00 A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

9

Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces Title Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces Publication Type Journal Article Year of Publication 2012 Authors Zormpa, Vasileia, Jaroslaw Syzdek, Xianglei Mao, Richard E. Russo, and Robert Kostecki Journal Applied Physics Letters Volume 100 Issue 23 Date Published 05-2012 ISSN 0003-6951 Keywords electrochemical electrodes, graphite, high-speed optical techniques, laser beam effects, organic compounds, pyrolysis, solid electrolytes Abstract Direct chemical analysis of electrode/electrolyte interfaces can provide critical information on surface phenomena that define and control the performance of Li-based battery systems. In this work, we introduce the use of ex situ femtosecond laser induced breakdown spectroscopy to probe compositional variations within the solid electrolyte interphase (SEI) layer. Nanometer-scale depth resolution was achieved for elemental and molecular depth profiling of SEI layers formed on highly oriented pyrolytic graphite electrodes in an organic carbonate-based electrolyte. This work demonstrates the unique ability of ultrafast laser spectroscopy as a highly versatile, light element-sensitive technique for direct chemical analysis of interfacial layers in electrochemical energy storage systems.

10

Distribution Category: Atomic, Molecular, and Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Atomic, Molecular, and Chemical Physics (UC-411) ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, TIlinois 60439 ANLI APSILS-151 RESULTS OF DESIGN CALCULATIONS FOR THE MODULATOR OF THE CROSSED FIELD UNDULATOR DEVICE by Roland S8:voy Advanced Photon Source August 1990 Work sponsored by ~--~,P:a7te~n7t~C~le-.a-re-d--b\-!------ Pen"" .... + D - CII, epartrnent, AND R':-lr-!, ("'1:' ' "'"",,, l... ,r:.. ,'\')k. . f\UTHOF?IZED BY 1l;J6r1l11Cal Publications Ser " O(;ite~ ~ 'vjces Technicallnf ~avld R .* ·i;;~rln - ormatIon Services, ANL Uo So DEPARTMENT OF ENERGY Office of Energy Research 1 Abstract: The modulator in the crossed field undulator device is used to shift the

11

Ultrafast Laser Facility | Photosynthetic Antenna Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Laser Facility Ultrafast Laser Facility Click for an Overview of the Ultrafast Laser Facility The PARC Ultrafast Laser Facility, under the direction of Associate Director...

12

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

13

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

14

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

15

Optical Probing of the Ultrafast Charge Carrier Motion Dynamics in Organic Solar Cells  

Science Journals Connector (OSTI)

We demonstrate application of the electric field-induced second harmonic generation as a probe of ultrafast electric field dynamics in thin molecular film, used for investigation of...

Gulbinas, Vidmantas

16

May 3, 2010 10:13 Molecular Physics QTP2 Molecular Physics  

E-Print Network (OSTI)

contains certain non-linear terms, and it was argued by Brueckner [3] that these terms must cancel for physical reasons. This led to the linked-diagram or linked-cluster expan- sion, which Brueckner proved book by Grant [5]. The Brueckner-Goldstone scheme was primarily used in nuclear physics. In the 1960's

Lindgren, Ingvar

17

Applied Statistical Physics Molecular Engineering Conference Puerto Vallarta, Mexico, 24-29 August 2003  

E-Print Network (OSTI)

of the sessions: Complex Fluids: Equilibrium and Dynamics, Nano-biotechnology, Nanoscience, Quantum EngineeringFOREWORD Applied Statistical Physics Molecular Engineering Conference Puerto Vallarta, Mexico, 24, RS, Brazil The Second International Conference on `Applied Statistical Physics: Molecular Engineering

Barbosa, Marcia C. B.

18

Ultrafast studies of solution dynamics  

SciTech Connect

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Fast chemical dynamics generally must be initiated photochemically. This limits the applicability of modern laser methods for following the structural changes that occur during chemical and biological reactions to those systems that have an electronic chromophore that has a significant yield of photoproduct when excited. This project has developed a new and entirely general approach to ultrafast initiation of reactions in solution: laser-induced temperature jump (T-jump). The results open entire new fields of study of ultrafast molecular dynamics in solution. The authors have demonstrated the T-jump technique on time scales of 50 ps and longer, and have applied it to study of the fast events in protein folding. They find that a general lifetime of alpha-helix formation is ca 100 ns, and that tertiary folds (in apomyoglobin) form in ca 100 {mu}s.

Woodruff, W.H.; Dyer, R.B. [Los Alamos National Lab., NM (United States); Callender, R.H. [City Univ. of New York, NY (United States). Dept. of Physics

1997-10-01T23:59:59.000Z

19

Optical Detection in Ultrafast Short Wavelength Science  

SciTech Connect

A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

Fullagar, Wilfred K.; Hall, Chris J. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria, 3010 (Australia)

2010-06-23T23:59:59.000Z

20

Single-molecule orientational wave packet in ultrafast optical polarization  

SciTech Connect

The explicit derivation of the ultrafast optical polarization of a single molecule is presented. It is shown that an orientational wave packet carried by the excited molecular electron can provide a sharp definition for the space configuration of the laser-molecule interaction.

Mainos, C. [Laboratoire de Physique des Lasers, Universite Paris 13 Av. J.B. Clement, 93430 Villetaneuse (France)

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Plasmonic enhanced ultrafast switch.  

SciTech Connect

Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

Subramania,Ganapathi Subramanian; Reno, John Louis; Passmore, Brandon Scott; Harris, Tom.; Shaner, Eric Arthur; Barrick, Todd A.

2009-09-01T23:59:59.000Z

22

PHYSICS OF CHEMORECEPTION HOWARD C. BERG AND EDWARD M. PURCELL, Department ofMolecular,  

E-Print Network (OSTI)

PHYSICS OF CHEMORECEPTION HOWARD C. BERG AND EDWARD M. PURCELL, Department ofMolecular, Cellular, and Developmental Biology, University ofColorado, Boulder, Colorado 80309 and the Department ofPhysics, Harvard. In these circumstances, what are the physical limitations on the cell's ability to sense and respond to changes in its

Voigt, Chris

23

Ultrafast thermalization of photoexcited carriers in polar semiconductors  

Science Journals Connector (OSTI)

We present a combined experimental and theoretical study of ultrafast thermalization of high-energy carriers photogenerated by femtosecond laser excitation in GaAs and InP. Luminescence up-conversion is used to monitor the spectral and temporal evolution of the carrier distribution with a time resolution of about 100 fs. A rapid redistribution of electrons and holes over a wide energy range is found within the first 100 fs after excitation. The experimental results are analyzed by Monte Carlo simulations including a molecular-dynamics scheme to describe the carrier kinetics. We show that the Coulomb interaction among carriers is responsible for the initial ultrafast thermalization.

Lucio Rota; Paolo Lugli; Thomas Elsaesser; Jagdeep Shah

1993-02-15T23:59:59.000Z

24

MOLECULAR PHYSICS, 2000, VOL. 98, NO. 16, 1043 1050 Reminiscences at the end of the Century  

E-Print Network (OSTI)

MOLECULAR PHYSICS, 2000, VOL. 98, NO. 16, 1043± 1050 Reminiscences at the end of the Century of them again. After several months in a refugee camp in Ger- many, our family got permission to immigrate

Simaan, Nabil

25

Knot and Conformal Field Theory Approach in Molecular and Nuclear Physics  

Science Journals Connector (OSTI)

......Field Theory Approach in Molecular and Nuclear Physics Syurei Iwao Department of...problem of dissociation (binding) energy for the molecules (nuclei) is discussed...13) Ring P. , Schuck P., The Nuclear Many-Body Problem (1980) : Springer......

Syurei Iwao

1990-03-01T23:59:59.000Z

26

Hue Sun Chan Departments of Biochemistry, of Molecular Genetics, and of Physics  

E-Print Network (OSTI)

Hue Sun Chan Departments of Biochemistry, of Molecular Genetics, and of Physics University. --Hue Sun Chan, University of Toronto #12;Experimental criteria from: calorimetry: HvH/Hcal 1 chevron

Chan, Hue Sun

27

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

28

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Print Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

29

Ultrafast electron beam imaging of femtosecond laser-induced plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast electron beam imaging of femtosecond laser-induced plasma Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Title Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Publication Type Journal Article Year of Publication 2010 Authors Li, Junjie, Xuan Wang, Zhaoyang Chen, Richard Clinite, Samuel S. Mao, Pengfei Zhu, Zhengming Sheng, Jie Zhang, and Jianming Cao Journal Journal of Applied Physics Volume 107 Issue 8 Date Published 03/2010 Keywords copper, electron beam applications, high-speed optical techniques, laser ablation, plasma diagnostics, plasma production by laser Abstract Plasma dynamics in the early stage of laser ablation of a copper target are investigated in real time by making ultrafast electron shadow images and electron deflectometry measurements. These complementary techniques provide both a global view and a local perspective of the associated transient electric field and charge expansion dynamics. The results reveal that the charge cloud above the target surface is composed predominantly of thermally ejected electrons and that it is self-expanding, with a fast front-layer speed exceeding 107 m/s. The average electric field strength of the charge cloud induced by a pump fluence of 2.2 J/cm2 is estimated to be ∼ 2.4×105 V/m.

30

MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897 905 Dynamics and hydrogen bonding in liquid ethanol  

E-Print Network (OSTI)

MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897± 905 Dynamics and hydrogen bonding in liquid ethanol L of liquid ethanol at three temperatures have been carried out. The hydrogen bonding states of ethanol measurements of the frequency-dependent dielectric permittivity of liquid ethanol. 1. Introduction A detailed

Saiz, Leonor

31

Ultrafast Graphene Oxide Humidity Sensors  

Science Journals Connector (OSTI)

Ultrafast Graphene Oxide Humidity Sensors ... Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. ... Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (?30 ms response and recovery times). ...

Stefano Borini; Richard White; Di Wei; Michael Astley; Samiul Haque; Elisabetta Spigone; Nadine Harris; Jani Kivioja; Tapani Ryhnen

2013-11-09T23:59:59.000Z

32

NANO EXPRESS Open Access Ultrafast nano-oscillators based on interlayer-  

E-Print Network (OSTI)

NANO EXPRESS Open Access Ultrafast nano-oscillators based on interlayer- bridged carbon nanoscrolls nano-oscillators based on carbon nanoscrolls (CNSs) using molecular dynamics simulations. Initiated of gigahertz. We demonstrate an effective strategy to reduce the dissipation of the CNS-based nano

Li, Teng

33

Ultrafast x-ray diffraction for measurements of structural dynamics in shocked metals  

SciTech Connect

An experiment on structural dynamics at the ultrafast time scale in shocked metal samples is presented. The technique development of an ultrafast x-ray diffractometer to generate 'molecular movies' is described. Preliminary results of static x-ray measurements of thin unshocked Ga samples are presented. Initial experiments use 200-300 mJ of a 100fs Ti:Sapphire laser to excite K-alpha x-ray emission in an aluminum wire. The x-ray emission is relayed using a spherical crystal to the sample target. Plans for experiments using Cu K-alpha emission will also be described.

Workman, J. B. (Jonathan B.); Keiter, P. A. (Paul A.); Kyrala, George A.; Roberts, J. P. (Jeffrey); Taylor, Antoinette J.,; Funk, D. J. (David J.)

2002-01-01T23:59:59.000Z

34

Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse  

E-Print Network (OSTI)

Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse Xiaofang Wang filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, Me-intensity lasers has made it pos- sible to study extreme physics on a tabletop. Among the studies, the generation

Umstadter, Donald

35

Ultrafast pulsed laser utilizing broad bandwidth laser glass  

DOE Patents (OSTI)

An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

Payne, S.A.; Hayden, J.S.

1997-09-02T23:59:59.000Z

36

4th-International Symposium on Ultrafast Surface Science - Final Report  

SciTech Connect

The 4-th International Symposium on Ultrafast Surface Dynamics (UDS4) was held at the Telluride Summer Research Center on June 22-27, 2003. The International Organizing Committee consisting of Hrvoje Petek (USA), Xiaoyang Zhu (USA), Pedro Echenique (Spain) and Maki Kawai (Japan) brought together a total of 51 participants 16 of whom were from Europe, 10 from Japan, and 25 from the USA. The focus of the conference was on ultrafast electron or light induced processes at well-defined surfaces. Ultrafast surface dynamics concerns the transfer of charge and energy at solid surfaces on the femtosecond time scale. These processes govern rates of fundamental steps in surface reactions, interfacial electron transfer in molecular electronics, and relaxation in spin transport. Recent developments in femtosecond laser technology make it possible to measure by a variety of nonlinear optical techniques directly in the time domain the microscopic rates underlying these interfacial processes. Parallel progress in scanning probe microscopy makes it possible at a single molecular level to perform the vibrational and electronic spectroscopy measurements, to induce reactions with tunneling electrons, and to observe their outcome. There is no doubt that successful development in the field of ultrafast surface dynamics will contribute to many important disciplines.

Hrvoje Petek

2005-01-26T23:59:59.000Z

37

Ultrafast X-Ray Sources and Science  

Science Journals Connector (OSTI)

X-ray science is entering the ultrafast and ultraintense era - spurred by developments in coherent, short-wavelength sources that range from tabletop to accelerator-based. These...

Young, Linda

38

Ultrafast superconductor digital electronics: RSFQ technology roadmap  

Science Journals Connector (OSTI)

This paper gives a brief review of the Rapid Single-Flux-Quantum (RSFQ) logic family which leads the race toward practical ultrafast superconductor digital electronics, with an attempt to sketch a roadmap for t...

Konstantin K. Likharev

1996-01-01T23:59:59.000Z

39

An ultrafast carbon nanotube terahertz polarisation modulator  

SciTech Connect

We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B., E-mail: m.johnston@physics.ox.ac.uk [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

2014-05-28T23:59:59.000Z

40

Mehak Mehta November 21st Role of water on molecular mobility and physical stability of amorphous state  

E-Print Network (OSTI)

Mehak Mehta November 21st 2013 Role of water on molecular mobility and physical stability of amorphous state The chemical instability of pharmaceuticals can often be predicted based on accelerated the glass transition temperature (Tg), i.e. in the glassy state. Thus, from a practical stand point

Thomas, David D.

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

42

Double Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation  

E-Print Network (OSTI)

mode-locking. The concentric tube arrangement makes DWNTs an interesting class of nanomaterials, with a wide-ranging potential applications, including in (opto)electronics.52-54 Of particular interest relevant to this work, DWNTs also exhibit ultrafast... .; Ferrari, A. C., in Molecular- and Nano-Tubes, (Eds: Hayden, O., Nielsch, K.), Springer US, 2011. [43] Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photon. 2010, 4, 611-622. [44] Boyd, R. W., Nonlinear...

Hasan, Tawfique; Sun, Zhipei; Tan, PingHeng; Popa, Daniel; Flahaut, Emmanuel; Kelleher, Edmund J. R.; Bonaccorso, Francesco; Wang, Fengqiu; Jiang, Zhe; Torrisi, Felice; Privitera, Giulia; Nicolosi, Valeria; Ferrari, Andrea C.

2014-04-15T23:59:59.000Z

43

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

44

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 37 (2004) R57R88 PII: S0953-4075(04)63251-2  

E-Print Network (OSTI)

computation and others. It is interesting to note that the idea of building ion traps grew out of molecular the development of electric and magnetic multipole fields to focus neutral particles [2­4] in two of the high-energy storage rings used in high-energy particle physics, in particular LEAR [8], and use mainly

Zajfman, Daniel

45

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics1354608000000PhysicsSome of these resources are LANL-only and will require Remote Access.No Physics Some of these resources are LANL-only and will require Remote...

46

Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers  

E-Print Network (OSTI)

Magneto-Optics in Nickel: Magnetism or Optics? Phys. Rev.Ultrafast Control of Magnetism in FerromagneticFall 2008 Ultrafast Control of Magnetism in Ferromagnetic

Cotoros, Ingrid A.

2009-01-01T23:59:59.000Z

47

Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process and Diesel Sprays Ultrafast X-ray Phase-Enhanced Microimaging for Visualizing Fuel Injection...

48

Environmental Research Division: fundamental molecular physics and chemistry. Annual report, January-December 1983. Part I  

SciTech Connect

Research progress is reported in the following areas: (1) photoionization of radicals or excited states; (2) molecular spectroscopy by resonant multiphoton ionization; (3) studies conducted with the synchrotron radiation facility at the National Bureau of Standards; (4) theoretical studies on molecular photoabsorption; (5) analysis of photoabsorption spectra of open-shell atoms; (6) the electron energy-loss spectra of molecules; and (7) cross sections and stopping powers. Items have been individually abstracted for the data base. (ACR)

Not Available

1985-03-01T23:59:59.000Z

49

Ultrafast THz Studies of Few-Layer Epitaxial Graphene  

Science Journals Connector (OSTI)

We report the broadband optical conductivity and ultrafast THz dynamics of few-layer epitaxial graphene, revealing electrodynamics consistent with a dense Dirac electron plasma and a...

Choi, Hyunyong; Borondics, Ferenc; Siegel, David A; Zhou, Shuyun; Martin, Michael C; Lanzara, Alessandra; Kaindl, Robert A

50

Ultrafast nuclear spin polarization for isotopes with large nuclear spin  

Science Journals Connector (OSTI)

We theoretically investigate the temporal dynamics of nuclear spin induced by short laser pulses. To realize ultrafast nuclear spin polarization, we coherently excite the hyperfine...

Nakajima, Takashi

2009-01-01T23:59:59.000Z

51

Which physics determines the location of the mean molecular weight minimum in red giants?  

Science Journals Connector (OSTI)

......research-article Article Which physics determines the location...Astronomy and Theoretical Physics, Lund Observatory...and nuclear reaction rates. The changes in the...thermohaline mixing, the rate of mixing has a very...and the burning shell passes through the composition......

Ross P. Church; John Lattanzio; George Angelou; Christopher A. Tout; Richard J. Stancliffe

2014-01-01T23:59:59.000Z

52

Laser cooling with ultrafast pulse trains  

E-Print Network (OSTI)

We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires vacuum-ultraviolet laser light, while multielectron atoms need laser light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and carbon appears feasible, and extension of the technique to molecules may be possible.

David Kielpinski

2003-06-14T23:59:59.000Z

53

Ultrafast Structural Dynamics in Combustion Relevant Model Systems  

SciTech Connect

The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecules structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecules structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electrons orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecules time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or e

Weber, Peter M. [Brown University

2014-03-31T23:59:59.000Z

54

Optical coherence and beamspread in ultrafast-laser pulsetrain-burst hole drilling  

E-Print Network (OSTI)

of microfluidics, fuel injectors, etc.). Ultrafast lasers do a particularly good job for many special materials

Marjoribanks, Robin S.

55

Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry  

SciTech Connect

Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base. (GHT)

Not Available

1981-09-01T23:59:59.000Z

56

Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1  

SciTech Connect

This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

Not Available

1983-12-01T23:59:59.000Z

57

Signal processing for molecular and cellular biological physics: an emerging field  

Science Journals Connector (OSTI)

...running at high imaging frame rates (1kHz or more). The resulting...microscope, often at high frame rates of up to 1 kHz. The goal is...extensive use in biological physics experiments [2,17,22...changes in a noise-free signal pass through the filter unaltered...

2013-01-01T23:59:59.000Z

58

Femtosecond laser studies of ultrafast intramolecular processes  

SciTech Connect

The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

59

Photonic spike processing: ultrafast laser neurons and an integrated photonic network  

E-Print Network (OSTI)

The marriage of two vibrant fields---photonics and neuromorphic processing---is fundamentally enabled by the strong analogies within the underlying physics between the dynamics of biological neurons and lasers, both of which can be understood within the framework of nonlinear dynamical systems theory. Whereas neuromorphic engineering exploits the biophysics of neuronal computation algorithms to provide a wide range of computing and signal processing applications, photonics offer an alternative approach to neuromorphic systems by exploiting the high speed, high bandwidth, and low crosstalk available to photonic interconnects which potentially grants the capacity for complex, ultrafast categorization and decision-making. Here we highlight some recent progress on this exciting field.

Shastri, Bhavin J; Nahmias, Mitchell A; Prucnal, Paul R

2014-01-01T23:59:59.000Z

60

Apparatus and method for characterizing ultrafast polarization varying optical pulses  

DOE Patents (OSTI)

Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques.

Smirl, Arthur (1020 Cherry La. Northwest, Iowa City, IA 52240); Trebino, Rick P. (425 Mulqueeny St., Livermore, CA 94550)

1999-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Source for Ultrafast Continuum Infrared and Terahertz Radiation  

E-Print Network (OSTI)

A compact and stable method for generating high-intensity linearly polarized continuum mid-IR and terahertz light using ultrafast femtosecond (fs) laser pulses is demonstrated. Continuous light generation from <400cm?1 ...

Petersen, Poul B.

62

Ultrafast nonlinear optical properties of passive and active semiconductor devices  

E-Print Network (OSTI)

Nonlinear optical properties and ultrafast carrier dynamics of slab-coupled optical waveguide amplifiers, silicon nanowaveguides, and III-V semiconductor saturable Bragg reflectors are studied. The limits imposed by two ...

Motamedi, Ali Reza

2011-01-01T23:59:59.000Z

63

Ultrafast Biodiesel Production Using Ultrasound in Batch and Continuous Reactors  

Science Journals Connector (OSTI)

Ultrafast Biodiesel Production Using Ultrasound in Batch and Continuous Reactors ... Amongst many resources, availability and cost economy are the major factors affecting the large scale prodn. of the biodiesels. ...

D. C. Boffito; S. Mansi; J.-M. Leveque; C. Pirola; C. L. Bianchi; G. S. Patience

2013-08-23T23:59:59.000Z

64

Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental  

E-Print Network (OSTI)

1 Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental Health and Safety using the following reference materials: I. American National Standards for Safe Use of Lasers - ANSI Z

Huennekens, John

65

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A'Hearn, Michael F. - Department of Astronomy, University of Maryland at College Park Aalberts, Daniel P. - Department of Physics,...

66

Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS)  

E-Print Network (OSTI)

: ultrafast x-rays, x-ray absorption spectroscopy, terawatt lasers, ultrafast reaction dynamics, atomic motion atomic motion by scrutinizing the changes in x- ray absorption spectra during reactions. FirstUltrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS) Guangjun

Guo, Ting

67

Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes  

E-Print Network (OSTI)

metallic nanotubes . . . . . . . . . . . . . . . . . Carbon2 Carbon Nanotubes Physical and ElectronicStructure of Carbon Nanotubes . . . . . . . . . .

Graham, Matthew Werden

2010-01-01T23:59:59.000Z

68

Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes  

E-Print Network (OSTI)

2 Carbon Nanotubes Physical andElectronic Structure of Carbon Nanotubes . . . . . . . . . .Photophysics in Semiconducting Carbon Nanotubes . . . . .

Graham, Matthew Werden

2010-01-01T23:59:59.000Z

69

Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation  

E-Print Network (OSTI)

In organic photovoltaics, the mechanism by which free electrons and holes are generated overcoming the Coulomb attraction is a currently much debated topic. To elucidate this mechanism at a molecular level, we carried out a combined electronic structure and quantum dynamical analysis that captures the elementary events from the exciton dissociation to the free carrier generation at polymer/fullerene donor-acceptor heterojunctions. Our calculations show that experimentally observed efficient charge separations can be explained by a combination of two effects: First, the delocalization of charges which substantially reduces the Coulomb barrier, and second, the vibronically hot nature of the charge transfer state which promotes charge dissociation beyond the barrier. These effects facilitate an ultrafast charge separation even at low-band-offset heterojunctions.

Tamura, Hiroyuki

2013-01-01T23:59:59.000Z

70

Optical Damage Threshold of Silicon for Ultrafast Infrared Pulses  

SciTech Connect

While silicon has several properties making it an attractive material for structure-based laser-driven acceleration, its optical damage threshold, a key parameter for high-gradient acceleration, has been unknown. Here we present measurements of the optical damage threshold of crystalline silicon for ultrafast pulses in the mid-infrared. The wavelengths tested span a range from the telecommunications band at 1550 nm extending longer toward the two-photon absorption threshold at around 2200 nm. We discuss the prevailing theories of ultrafast optical breakdown, describe the experimental setup and preliminary results, and propose a relevant performance parameter for candidate accelerator structures.

Cowan, B.; /SLAC

2006-09-07T23:59:59.000Z

71

Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials  

SciTech Connect

Ultrafast dynamic ellipsometry is used to measure the material motion and changes in the optical refractive index of laser shock compressed materials. This diagnostic has shown us that the ultrafast laser driven shocks are the same as shocks on longer timescales and larger length scales. We have added spectroscopic diagnostics of infrared absorption, ultra-violet - visible transient absorption, and femtosecond stimulated Raman scattering to begin probing the initiation chemistry that occurs in shock reactive materials. We have also used the femtosecond stimulated Raman scattering to measure the vibrational temperature of materials using the Stokes gain to anti-Stokes loss ratio.

Bolme, Cynthia A [Los Alamos National Laboratory; Mc Grane, Shawn D [Los Alamos National Laboratory; Dang, Nhan C [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S. [Los Alamos National Laboratory

2011-01-20T23:59:59.000Z

72

Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong  

E-Print Network (OSTI)

ultrafast hydrogen migration.7,8 The 38 fs 800 nm pump pulse produced methanol monocation, and a probe pulseMolecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS

Schlegel, H. Bernhard

73

The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies  

E-Print Network (OSTI)

[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frdric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovi?, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

2012-01-01T23:59:59.000Z

74

Ultrafast Digital Electronics: Optimizing the speed of a  

E-Print Network (OSTI)

Ultrafast Digital Electronics: Optimizing the speed of a Josephson junction J. K. Freericks and P of Naval Research Preprint: cond-mat/0001269 J. K. Freericks, Georgetown University, Josephson Junction symmetry (examples include YBCO and BSCCO). J. K. Freericks, Georgetown University, Josephson Junction talk

Freericks, Jim

75

Ultra-Fast Photodiodes for Terahertz Generation E. Rouvalis1  

E-Print Network (OSTI)

Ultra-Fast Photodiodes for Terahertz Generation E. Rouvalis1 , C. C. Renaud1 and A. J. Seeds1 1 Photodiode is realised as a broadband and high-efficiency photomixer while the frequency response advantage-power photomixers is essential. 2. Travelling-Wave Uni-Travelling Carrier Photodiode (TW-UTC-PD). Bandwidth

Haddadi, Hamed

76

Ultrafast Digital Electronics: Optimizing the speed of a  

E-Print Network (OSTI)

Ultrafast Digital Electronics: Optimizing the speed of a Josephson junction J. K. Freericks and P, Georgetown University, Josephson Junction talk, 2000 #12;Josephson Tunnel Junctions · A Superconductor to "punch-through"). J. K. Freericks, Georgetown University, Josephson Junction talk, 2000 S I S I I V V Ic

Freericks, Jim

77

Ultrafast photochemistry of methyl hydroperoxide on ice particles  

E-Print Network (OSTI)

Ultrafast photochemistry of methyl hydroperoxide on ice particles M. A. Kambouresa , S. AOOH, on water clusters produces a surprisingly wide range of products on a subpicosecond time scale | photodissociation Photoinduced processes at surfaces of water or ice are of interest in atmospheric chemistry

Nizkorodov, Sergey

78

5D Data Storage by Ultrafast Laser Nanostructuring in Glass  

E-Print Network (OSTI)

5D Data Storage by Ultrafast Laser Nanostructuring in Glass Jingyu Zhang* , Mindaugas Gecevicius-assembled form birefringence and retrieved in glass opening the era of unlimited lifetime data storage. © 2013 laser writing in glass were proposed for the polarization multiplexed optical memory, where

Anderson, Jim

79

Ultrafast Spin Avalanches in Crystals of Nanomagnets in Terms of Magnetic Detonation  

Science Journals Connector (OSTI)

Recent experiments [W. Decelle etal., Phys. Rev. Lett. 102, 027203 (2009)] have discovered ultrafast propagation of spin avalanches in crystals of nanomagnets, which is 3 orders of magnitude faster than the traditionally studied magnetic deflagration. The new regime has been hypothetically identified as magnetic detonation. Here we demonstrate unequivocally the possibility of magnetic detonation in the crystals, as a front consisting of a leading shock and a zone of Zeeman energy release. We study the key features of the process and find that the magnetic detonation speed only slightly exceeds the sound speed in agreement with the experimental observations. For combustion science, our results provide a unique physical example of extremely weak detonation.

M. Modestov; V. Bychkov; M. Marklund

2011-11-11T23:59:59.000Z

80

Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates  

E-Print Network (OSTI)

One of the pivotal questions in the physics of high-temperature superconductors is whether the low-energy dynamics of the charge carriers is mediated by bosons with a characteristic timescale. This issue has remained elusive since electronic correlations are expected to dramatically speed up the electron-boson scattering processes, confining them to the very femtosecond timescale that is hard to access even with state-of-the-art ultrafast techniques. Here we simultaneously push the time resolution and the frequency range of transient reflectivity measurements up to an unprecedented level that enables us to directly observe the 16 fs build-up of the effective electron-boson interaction in hole-doped copper oxides. This extremely fast timescale is in agreement with numerical calculations based on the t-J model and the repulsive Hubbard model, in which the relaxation of the photo-excited charges is achieved via inelastic scattering with short-range antiferromagnetic excitations.

Conte, S Dal; Gole, D; Mierzejewski, M; Soavi, G; Peli, S; Banfi, F; Ferrini, G; Comin, R; Ludbrook, B M; Chauviere, L; Zhigadlo, N D; Eisaki, H; Greven, M; Lupi, S; Damascelli, A; Brida, D; Capone, M; Bon?a, J; Cerullo, G; Giannetti, C

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PHYSICAL REVIEW A 83, 063419 (2011) Electromagnetically induced transparency in an open V-type molecular system  

E-Print Network (OSTI)

for Theoretical Physics (NITheP) Stellenbosch 7600, South Africa 3 Department of Physics, 16 Memorial Drive East theoretical model we employ the density matrix formalism, as well as perturbative methods for obtaining-type system is of special interest because no population trapping is involved. Thus, such a system can be used

Huennekens, John

82

PolymerGraphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

PolymerGraphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries ... Lithium battery; cathode; polymer; graphene; nanocomposite ...

Zhiping Song; Terrence Xu; Mikhail L. Gordin; Ying-Bing Jiang; In-Tae Bae; Qiangfeng Xiao; Hui Zhan; Jun Liu; Donghai Wang

2012-03-26T23:59:59.000Z

83

Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms  

Science Journals Connector (OSTI)

We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laserVECSELs), to be used for nonlinear microscopy. The SDL is...

Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J; Sdmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I C O; Artigas, David; Loza-Alvarez, Pablo

2011-01-01T23:59:59.000Z

84

High-Throughput Microfluidics and Ultrafast Optics for in vivo Compound/Genetic Discoveries  

Science Journals Connector (OSTI)

We developed microfluidic and ultrafast optical technologies that enable high-throughput whole-animal neural regeneration studies. These technologies allow automated and rapid...

Rohde, Chris; Gilleland, Cody; Samara, Chrysanthi; Yanik, Mehmet F

85

E-Print Network 3.0 - all-optical ultrafast muon Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

not been reported because of silicon's weak ultrafast nonlinearity. We have demonstrated intensity Source: Hochberg, Michael - Department of Electrical Engineering, University of...

86

Ultrafast dynamics of excitons in tetracene single crystals  

SciTech Connect

Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S{sub n} on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S{sub 1} on a 40 ps timescale. The high energy Davydov component of the S{sub 1} exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

Birech, Zephania; Schwoerer, Heinrich, E-mail: heso@sun.ac.za [Laser Research Institute, Stellenbosch University, Stellenbosch 7600 (South Africa)] [Laser Research Institute, Stellenbosch University, Stellenbosch 7600 (South Africa); Schwoerer, Markus [Department of Physics, University of Bayreuth, Bayreuth (Germany)] [Department of Physics, University of Bayreuth, Bayreuth (Germany); Schmeiler, Teresa; Pflaum, Jens [Experimental Physics VI, University of Wrzburg and Bavarian Center for Applied Energy Research, Wrzburg (Germany)] [Experimental Physics VI, University of Wrzburg and Bavarian Center for Applied Energy Research, Wrzburg (Germany)

2014-03-21T23:59:59.000Z

87

PHYSICAL REVIEW B 85, 205440 (2012) Inelastic neutron scattering investigations of the quantum molecular dynamics of a H2 molecule  

E-Print Network (OSTI)

PHYSICAL REVIEW B 85, 205440 (2012) Inelastic neutron scattering investigations of the quantum transfer arising from the neutron scattering event has also been investigated. The -dependence spectra investigations using infrared (IR),3,13­15 inelastic neutron scattering (INS),3,16,17 and nuclear magnetic

Turro, Nicholas J.

88

Physics high-ranking Journals (category 2) Advances in Physics  

E-Print Network (OSTI)

Physics high-ranking Journals (category 2) Advances in Physics Annual Review of Astronomy and Astrophysics Annual Review of Nuclear and Particle Science Applied Physics Letters Astronomy & Astrophysics Astronomy and Astrophysics Review Astrophysical Journal European Physical Journal D. Atomic, Molecular

89

Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}  

SciTech Connect

We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

2012-12-01T23:59:59.000Z

90

A pulsed electron gun for ultrafast electron diffraction at surfaces A. Janzen,a  

E-Print Network (OSTI)

A pulsed electron gun for ultrafast electron diffraction at surfaces A. Janzen,a B. Krenzer, O The construction of a pulsed electron gun for ultrafast reflection high-energy electron diffraction experiments describe the construction of an elec- tron gun used in RHEED experiments at crystal surfaces

von der Linde, D.

91

HARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE  

E-Print Network (OSTI)

-electron laser (FEL) beamlines which use the har- monic cascade approach to produce coherent XUV & soft X-ray for an integrated system of ultrafast x-ray techniques and lasers, using laser-seeded harmonic cascade FEL's, rfHARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE J. Corlett, W. Fawley

Wurtele, Jonathan

92

Ultrafast dynamics of the laser-induced solid-to-liquid phase transition in aluminum  

E-Print Network (OSTI)

Ultrafast dynamics of the laser-induced solid-to-liquid phase transition in aluminum A thesis dynamics of the laser-induced solid-to-liquid phase transition in aluminum Eric Mazur Maria Kandyla Abstract This dissertation reports the ultrafast dynamics of aluminum during the solid-to- liquid phase

Mazur, Eric

93

An Ultra-Fast and Provably CMA Resistant Digital Signature Scheme  

E-Print Network (OSTI)

MQQ-SIG An Ultra-Fast and Provably CMA Resistant Digital Signature Scheme Danilo Gligoroski1 , Rune, Macedonia smile@ii.edu.mk Abstract. We present MQQ-SIG, a signature scheme based on "Mul- tivariate: Public Key Cryptography, Ultra-Fast Public Key Cryptog- raphy, Multivariate Quadratic Polynomials

Paris-Sud XI, Université de

94

Spatially resolved physical conditions of molecular gas and potential star formation tracers in M83, revealed by the Herschel SPIRE FTS  

E-Print Network (OSTI)

Since the launch of the Herschel Space Observatory, our understanding about the photo-dissociation regions (PDR) has taken a step forward. In the bandwidth of the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) on board Herschel, ten CO rotational transitions, including J=4-3 to J=13-12, and three fine structure lines, including [CI] 609, [CI] 370, and [NII] 250 micron, are covered. In this paper, I present our findings from the FTS observations at the nuclear region of M83, based on the spatially resolved physical parameters derived from the CO spectral line energy distribution (SLED) map and the comparisons with the dust properties and star-formation tracers. I will discuss (1) the potential of using [NII] 250 and [CI] 370 micron as star-formation tracers; (2) the reliability of tracing molecular gas with CO; (3) the excitation mechanisms of warm CO; (4) the possibility of studying stellar feedback by tracing the thermal pressure of molecular gas in the nuclear ...

Wu, Ronin; Galliano, Frdric; Wilson, Christine D; Kamenetzky, Julia; Lee, Min-Young; Schirm, Maximilien; Hony, Sacha; Lebouteiller, Vianney; Spinoglio, Luigi; Cormier, Diane; Glenn, Jason; Maloney, Philip R; Pereira-Santaella, Miguel; Rmy-Ruyer, Aurlie; Baes, Martin; Boselli, Alexandro; Bournaud, Frdric; De Looze, Ilse; Hughes, Thomas M; Panuzzo, Pasquale; Rangwala, Naseem

2014-01-01T23:59:59.000Z

95

Nonadiabatic Molecular Dynamics Simulations of the Energy Transfer between Building Blocks in a Phenylene Ethynylene Dendrimer  

E-Print Network (OSTI)

Nonadiabatic Molecular Dynamics Simulations of the Energy Transfer between Building Blocks E. Roitberg*, UniVersidad Nacional de Quilmes, Roque Saenz Pen~a 352, B1876BXD Bernal, Argentina, 2009 The ultrafast dynamics of electronic and vibrational energy transfer between two- and three

Tretiak, Sergei

96

Optical Damage Threshold of Silicon for Ultrafast Infrared Pulses  

SciTech Connect

We present measurements of the optical damage threshold of crystalline silicon in air for ultrafast pulses in the near infrared. The wavelengths tested span a range from the telecommunications band at 1550 nm, extending to 2260 nm. We discuss the motivation for the measurements and give theoretical context. We then describe the experimental setup, diagnostics, and procedure. The results show a breakdown threshold of 0.2J/cm{sup 2} at 1550 nm and 1.06 ps FWHM pulse duration, and a weak dependence on wavelength.

Cowan, Benjamin M.; /Tech-X, Boulder /SLAC

2007-11-28T23:59:59.000Z

97

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

98

Ultrafast population dynamics in electrically modulated terahertz quantum cascade lasers  

Science Journals Connector (OSTI)

The ultrafast population dynamics in electrically modulated three-well terahertz quantum cascade lasers (QCLs) is studied by using the self-consistent BlochPoisson equations. In the modulation process, the non-equilibrium oscillations of the population inversion are found before the population equilibrium recovers. The equilibrium formation time increases nonlinearly with the period number. This phenomenon stems from the non-uniform distribution of the electric potential. In different periods, different responses to the electrical modulation are also explored. An in-depth understanding of electron transport in the cascade structure is obtained. Finally, we demonstrate the feasibility of a modulation frequency up to gigahertz in terahertz QCLs.

F Wang; X G Guo; C Wang; J C Cao

2013-01-01T23:59:59.000Z

99

Prospects for all-optical ultrafast muon acceleration  

E-Print Network (OSTI)

A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum has been recently proposed [F. Peano et al., New J. Phys. 10 033028 (2008)], wherein two counterpropagating laser beams with variable frequencies drive a beat-wave structure with variable phase velocity, leading to particle trapping and acceleration. The technique allows for fine control over the energy distribution and the total charge of the accelerated beam, to be obtained via tuning of the frequency variation. Here, the theoretical bases of the acceleration scheme are described, and the possibility of applications to ultrafast muon acceleration and to the prompt extraction of cold-muon beams is discussed.

Peano, F; Mulas, R; Coppa, G; Bingham, R; Silva, L O

2008-01-01T23:59:59.000Z

100

Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible  

SciTech Connect

The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a non-focusing optoacoustic microscope instrument (POAM), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (SOAM) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide computational models of the focusing of multi-GHz acoustic waves to the nanometer scale and innovated a series fabrication approaches for a new type of broadband high-frequency acoustic focusing microscope objective by applying methods on nanoimprinting and focused-ion beam techniques. In the following, the Phase I and Phase II instrument development is reported as Section II. The first segment of this section describes the POAM instrument and its development, while including much of the underlying ultrafast acoustic physics which is common to all of our work for this grant. Then, the science and engineering of the SOAM instrument is described, including the methods of fabricating new types of acoustic microlenses. The results section is followed by reports on publications (Section III), Participants (Section IV), and statement of full use of the allocated grant funds (Section V).

Nurmikko, Arto; Humphrey, Maris

2014-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Melting processes of oligomeric ? and ? isotactic polypropylene crystals at ultrafast heating rates  

SciTech Connect

The melting behaviors of ? (stable) and ? (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of ?- and ?-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for ?- and ?-iPP are significantly different. The apparent melting points of ?- and ?-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of ?-iPP crystal is always higher than that of ?-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect ?- and ?-iPP crystals are finally predicted and it shows a good agreement with experimental result.

Ji, Xiaojing [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)] [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)] [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [School of Material, Tianjin University, Tianjin 300072 (China)] [School of Material, Tianjin University, Tianjin 300072 (China)

2014-02-07T23:59:59.000Z

102

Ultrafast carrier dynamics in semiconductor quantum dots  

Science Journals Connector (OSTI)

The dynamics of band-edge photoluminescence (PL) in CdS nanocrystals (NCs) dispersed in a glass matrix are studied with the femtosecond up-conversion technique. The time-resolved PL spectra exhibit several discrete features (three of them are in the NC energy band gap) which are not pronounced in a cw PL spectrum. The initial stage of a PL decay is governed by a depopulation of the lowest extended states due to carrier trapping (localization) on the time scale of 1 ps. The low-energy bands originating from the extended-to-localized state transitions exhibit extremely fast buildup dynamics (rise time is 400700 fs) which is explained by the preexisting occupation of the localized states. 1996 The American Physical Society.

V. Klimov; P. Haring Bolivar; H. Kurz

1996-01-15T23:59:59.000Z

103

Time-Resolved Molecular Frame Dynamics of Fixed-in-Space CS2 Molecules  

SciTech Connect

Random orientation of molecules within a sample leads to blurred observationsof chemical reactions studied from the laboratory perspective. Methodsdeveloped for the dynamic imaging of molecular structures and processesstruggle with this, as measurements are optimally made in the molecular frame.Here we uselaser alignment to transiently fix CS2 molecules in space longenough to elucidate, in the molecular reference frame, details of ultrafast electronic vibrationaldynamics during a photochemical reaction. These three-dimensional photoelectron imaging results, combined with ongoing efforts in molecular alignment and orientation, presage a wide range of insights obtainable fromtime-resolved studies in the molecular frame.

Bisgaard, Christer; Clarkin, Owen; Wu, Guorong; Lee, Anthony; Gessner, Oliver; Hayden, Carl; Stolow, Albert

2009-04-02T23:59:59.000Z

104

THE BOLOCAM GALACTIC PLANE SURVEY. III. CHARACTERIZING PHYSICAL PROPERTIES OF MASSIVE STAR-FORMING REGIONS IN THE GEMINI OB1 MOLECULAR CLOUD  

SciTech Connect

We present the 1.1 mm Bolocam Galactic Plane Survey (BGPS) observations of the Gemini OB1 molecular cloud complex, and targeted NH{sub 3} observations of the BGPS sources. When paired with molecular spectroscopy of a dense gas tracer, millimeter observations yield physical properties such as masses, radii, mean densities, kinetic temperatures, and line widths. We detect 34 distinct BGPS sources above 5{sigma} = 0.37 Jy beam{sup -1} with corresponding 5{sigma} detections in the NH{sub 3}(1,1) transition. Eight of the objects show water maser emission (20%). We find a mean millimeter source FWHM of 1.12 pc and a mean gas kinetic temperature of 20 K for the sample of 34 BGPS sources with detections in the NH{sub 3}(1,1) line. The observed NH{sub 3} line widths are dominated by non-thermal motions, typically found to be a few times the thermal sound speed expected for the derived kinetic temperature. We calculate the mass for each source from the millimeter flux assuming the sources are isothermal and find a mean isothermal mass within a 120'' aperture of 230 {+-} 180 M{sub sun}. We find a total mass of 8400 M{sub sun} for all BGPS sources in the Gemini OB1 molecular cloud, representing 6.5% of the cloud mass. By comparing the millimeter isothermal mass to the virial mass calculated from the NH{sub 3} line widths within a radius equal to the millimeter source size, we find a mean virial parameter (M{sub vir}/M {sub iso}) of 1.0 {+-} 0.9 for the sample. We find mean values for the distributions of column densities of 1.0 x 10{sup 22} cm{sup -2} for H{sub 2}, and 3.0 x 10{sup 14} cm{sup -2} for NH{sub 3}, giving a mean NH{sub 3} abundance of 3.0 x 10{sup -8} relative to H{sub 2}. We find volume-averaged densities on the order of 10{sup 3}-10{sup 4} cm{sup -3}. The sizes and densities suggest that in the Gem OB1 region the BGPS is detecting the clumps from which stellar clusters form, rather than smaller, higher density cores where single stars or small multiple systems form.

Dunham, Miranda K.; Evans, Neal J.; Harvey, Paul; Merello, Manuel [Department of Astronomy, The University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Rosolowsky, Erik [University of British Columbia, Okanagan, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Cyganowski, Claudia J. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Aguirre, James [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Stringfellow, Guy S. [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Bradley, Eric Todd [Department of Physics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2385 (United States); Dowell, Darren [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Drosback, Meredith [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Schlingman, Wayne; Shirley, Yancy L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Walawender, Josh [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Williams, Jonathan P., E-mail: nordhaus@astro.as.utexas.ed [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

2010-07-10T23:59:59.000Z

105

Ultrafast dynamics of electrons at interfaces  

SciTech Connect

Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. For Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure information. In this case, the quantum well states examined are derived from the Xenon conduction band. Measurements of the energies as a function of coverage yield the dispersion along the axis perpendicular to the surface while angle-resolved two-photon photoemission measurements yield information about dispersion along the surface parallel. The relative importance of the image potential and the overlayer band structure also depends on the quantum number and energy of the state. Some members of the image series may have an energy which is in an energy gap of the layer material, therefore such states may tend to remain physically outside the layer and retain much of their image character even at higher coverages. This is the case for the n = 1 image state of the Xe/Ag(111) system. The energies of image states which are excluded from the layer have a complex dependence on the thickness of the layer and its dielectric constant. The population decay kinetics of excited electronic states of the layer were also determined. Lifetimes are reported for the first three excited states for 1-6 atomic layers of Xe on Ag(111). As the image states evolve into quantum well states with increasing coverage, the lifetimes undergo an oscillation which marks a change in the spatial extent of the state. For example, the n = 2 quantum well state decreases substantially at 3-5 layers as the electron probability density in the layer increases. The lifetime data are modeled by extending the two-band nearly-free-electron approximation to account for the insulating Xe layer.

McNeill, Jason D.

1999-05-03T23:59:59.000Z

106

Electron Pulse Compression with a Practical Reflectron Design for Ultrafast Electron Diffraction  

E-Print Network (OSTI)

Ultrafast electron diffraction (UED) is a powerful method for studying time-resolved structural changes. Currently, space-charge-induced temporal broadening prevents obtaining high-brightness electron pulses with sub-100 ...

Wang, Yihua

107

Ultrafast all-optical switching with low saturation energy via intersubband transitions in  

E-Print Network (OSTI)

, and H. Ishikawa, "Low-saturation-energy-driven ultrafast all-optical switching operation in (CdS. Cho, "Intersubband absorption at ~ 1.55 m in well- and modulation-doped GaN/AlGaN multiple quantum

Paiella, Roberto

108

Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?  

E-Print Network (OSTI)

Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy, United States b Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States c Department of Chemistry, Stanford University, Stanford, CA 94305, United States Received

Fayer, Michael D.

109

Collective Hydrogen Bond Reorganization in Water Studied with Temperature-Dependent Ultrafast Infrared Spectroscopy  

E-Print Network (OSTI)

We use temperature-dependent ultrafast infrared spectroscopy of dilute HOD in H2O to study the picosecond reorganization of the hydrogen bond network of liquid water. Temperature-dependent two-dimensional infrared (2D IR), ...

Nicodemus, Rebecca A.

110

Ultrafast laser inscription of bistable and reversible waveguides in strontium barium niobate crystals  

E-Print Network (OSTI)

Ultrafast laser inscription of bistable and reversible waveguides in strontium barium niobate optical channel waveguides in strontium barium niobate nonlinear ferroelectric crystals by direct for the fabrication of optical buried waveguides. This would be especially relevant in the ferroelectric strontium

111

Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates  

Science Journals Connector (OSTI)

Flexible graphene-based lithium ion batteries with ultrafast charge and...and flexible lithium ion battery made from graphene foam, a three-dimensional...and flexible lithium ion battery made from graphene foam, a three-dimensional...

Na Li; Zongping Chen; Wencai Ren; Feng Li; Hui-Ming Cheng

2012-01-01T23:59:59.000Z

112

Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes  

E-Print Network (OSTI)

Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional, USA (Received 24 February 2003; published 3 December 2003) Hydrogen bond dynamics are explicated hydrogen bonded network are measured with ultrashort (

Fayer, Michael D.

113

Studies of third-order nonlinearities in materials and devices for ultrafast lasers  

E-Print Network (OSTI)

Recent developments in telecommunications, frequency metrology, and medical imaging have motivated research in ultrafast optics. Demand exists for broadband components and sources as well as highly nonlinear fibers and ...

Gopinath, Juliet Tara, 1976-

2005-01-01T23:59:59.000Z

114

Simulation of ultrafast heating induced structural dynamics using a one-dimensional spring model  

Science Journals Connector (OSTI)

We developed a one-dimensional spring model to study the dynamics of lattice motion upon ultrafast laser heating. Using this model, we simulated atomic positions as a function of time in a free-standing thin monoatomic metal film as well as in a thin film on a substrate. In particular, we studied how the electronic thermal stress influences lattice expansion after the ultrafast laser heating. The simulation results agree very well with experimental data obtained with femtosecond electron diffraction.

Junjie Li; Rick Clinite; Xuan Wang; Jianming Cao

2009-07-22T23:59:59.000Z

115

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

116

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

117

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

118

A minute-continuous-wave-stabilized picosecond supercontinuum source for ultrafast serial time-encoded amplified microscopy (STEAM)  

Science Journals Connector (OSTI)

A stabilized picosecond supercontinuum source, by a minute continuous-wave trigger, is utilized to improve the ultrafast imaging quality of serial time-encoded amplified microscopy...

Zhang, Chi; Qiu, Yi; Xu, Jianbing; Wong, Kenneth K Y; Tsia, Kevin K

119

Time-Resolved Measurements of Near-Infrared Pulse Induced Ultrafast Optical Modulation of Quantum Cascade Lasers  

Science Journals Connector (OSTI)

We temporally resolve ultrafast modulation of quantum cascade lasers (QCLs) using a near-infrared pump mid-infrared probe technique. We compare interband and intersubband transition...

Cai, Hong; Liu, Sheng; Lalanne, Elaine; Guo, Dingkai; Chen, Xing; Wang, Xiaojun; Choa, Fow-Sen; Johnson, Anthony M

120

Ultrafast transient grating radiation to optical image converter  

DOE Patents (OSTI)

A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

2014-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials  

SciTech Connect

Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

122

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofabrication Nanofabrication Our facility strives to gain insight into fundamental nanofabrication processes, as well as the generation of structures that control light, electron, or energy flow, and how those, and other, nanoscale structures interact with light on ultrafast time scales. Measuring plasmonic structures High yield and performance optical transformers are fabricated by nanoimprint lithography for near-field probe and ultra-resolution sub-surface imaging (a). The new ultrafast laser lab uses second harmonic generation imaging to probe the plasmonic enhancement frequency response of these and other photonic and plasmonic structures. Integrating multi-modal optical devices A new analytical device has been developed that uses a fluidic channel to deliver a specific target to a plasmonic hot spot created by a nanoantenna

123

PHYSICAL REVIEW B 84, 115421 (2011) Efficient terahertz emission from InAs nanowires  

E-Print Network (OSTI)

PHYSICAL REVIEW B 84, 115421 (2011) Efficient terahertz emission from InAs nanowires Denis V, University of New Mexico, Albuquerque, NM 87131, USA 2 Sandia National Laboratories, Albuquerque, NM 87185 measurements of electronic transport on individual nanowires, ultrafast terahertz spectroscopy, and theoretical

Sheik-Bahae, Mansoor

124

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

125

Observation of off-Hugoniot shocked states with ultrafast time resolution  

SciTech Connect

We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments, and the observation of ultrafast dynamics in shocked materials. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa.

Armstrong, M; Crowhurst, J; Bastea, S; Zaug, J

2010-02-23T23:59:59.000Z

126

Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect

The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

Anna Lee Tonkovich

2008-08-11T23:59:59.000Z

127

Ultra-Fast Pump-Probe Detection Using Plasmas  

SciTech Connect

The temporal resolution of pump-flash interactions in the femtosecond-attosecond (fs-as) regime is limited by the characteristic time constants of the excited states in the detector material. If the relaxation time constant is appreciably longer that the time interval between the pump and probe signals the response of the detector material to the probe represents a temporal convolution with the pump and probe responses, setting a lower limit on the resolution to which the interval between the two pulses can be measured. In most of the solid state ultrafast detection schemes that are being considered for the ultrashort pulse x-ray sources under current development at SLAC and elsewhere the characteristic time constants are related to the bound states of the atoms comprising the material or to the relaxation times of phase transitions or charge carrier populations of the lattice, setting a probable lower limit on the attainable resolution on the order of {approx}0.1 ps. In this paper we consider a novel detection principle based on the excitation of specially prepared unbound states in an ionized plasma with high pump and probe fields, and estimate its potential for extending the lower limit of resolution into the attosecond (as) regime.

Tatchyn, R.; /SLAC

2006-02-17T23:59:59.000Z

128

LANL | Physics | Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Leaders in nuclear physics Physics Division scientists and engineers play an important role in the Laboratory's Nuclear Physics program, funded by the Department of Energy's Office...

129

Ultra-Fast Fluorescence Imaging in Vivo with Conjugated Polymer Fluorophores in the Second Near-Infrared Window  

E-Print Network (OSTI)

In vivo fluorescence imaging in the second near-infrared window (1.0-1.7 microns) can afford deep tissue penetration and high spatial resolution, owing to the reduced scattering of long-wavelength photons. Here, we synthesize a series of low-bandgap donor/acceptor copolymers with tunable emission wavelengths of 1050-1350 nm in this window. Non-covalent functionalization with phospholipid-polyethylene glycol results in water-soluble and biocompatible polymeric nanoparticles, allowing for live cell molecular imaging at > 1000 nm with polymer fluorophores for the first time. Importantly, the high quantum yield of the polymer allows for in vivo, deep-tissue and ultrafast imaging of mouse arterial blood flow with an unprecedented frame rate of > 25 frames per second. The high time resolution results in spatially and time resolved imaging of the blood flow pattern in cardiogram waveform over a single cardiac cycle (~ 200 ms) of a mouse, which has not been observed with fluorescence imaging in this window before.

Hong, Guosong; Antaris, Alexander L; Diao, Shuo; Wu, Di; Cheng, Kai; Zhang, Xiaodong; Chen, Changxin; Liu, Bo; He, Yuehui; Wu, Justin Z; Yuan, Jun; Zhang, Bo; Tao, Zhimin; Fukunaga, Chihiro; Dai, Hongjie

2014-01-01T23:59:59.000Z

130

APPLIED PHYSICS APPLIED PHYSICS  

E-Print Network (OSTI)

MSc APPLIED PHYSICS #12;MSc APPLIED PHYSICS This taught Masters course is based on the strong research in Applied Physics in the University's Department of Physics. The department has an impressive photonics and quantum optics, Physics and the Life Sciences, and solid state physics. The knowledge gained

Mottram, Nigel

131

Laser pulse control of ultrafast heterogeneous electron transfer: A computational study  

E-Print Network (OSTI)

Laser pulse control of ultrafast heterogeneous electron transfer: A computational study Luxia Wang, Germany Received 31 March 2004; accepted 30 July 2004 Laser pulse control of the photoinduced 90 fs charge in which way the charge injection time can be changed by tailored laser pulses. In a second step a pump

Röder, Beate

132

Single ultrafast diffusive conduction based optoelectronic switch for multi-channel operation  

E-Print Network (OSTI)

Single ultrafast diffusive conduction based optoelectronic switch for multi-channel operation Fatih to multi-channel operation, including Green's function diffusive conduction solution and crosstalk conduction based optoelectronic switches that accommodate >100 optical channels (with 2,000mm-2 channel

Miller, David A. B.

133

Ultrafast deflection of spatial solitons in AlxGa1-xAs slab waveguides  

E-Print Network (OSTI)

laser pulse. A separate ultrashort pump pulse is focused onto the top of the waveguide, introducing cladding, both with x=0.24. The pulses used to generate and steer the solitons are obtained from an ultrafast laser system: a 250 kHz optical parametric amplifi

Van Driel, Henry M.

134

Internal friction in the ultrafast folding of the tryptophan cage q Linlin Qiu 1  

E-Print Network (OSTI)

Internal friction in the ultrafast folding of the tryptophan cage q Linlin Qiu 1 , Stephen J. Hagen is a diffusional process, and the speed of folding is controlled by the frictional forces that act important source of friction in folding reactions. By contrast, our studies of the folding dynamics

Hagen, Stephen J.

135

Ultrafast Microwave Hydrothermal Synthesis of BiFeO3 Nanoplates Riad Nechache,  

E-Print Network (OSTI)

hydrothermal processes while requiring significantly less time and energy. In addition, we show that microwaveUltrafast Microwave Hydrothermal Synthesis of BiFeO3 Nanoplates Shun Li, Riad Nechache,§ Ivan and very rapid (1­2 min) microwave-assisted hydrothermal approach. We show that the microwave treatment

136

Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics  

E-Print Network (OSTI)

Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics Chien details the development of an integrated AC electro-osmotic (ACEO) microfluidic pump for dilute (100 mM) biological solutions in separate microfluidic devices, with potential applications in portable

Bazant, Martin Z.

137

Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR)  

E-Print Network (OSTI)

Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR RECEIVED ON FEBRUARY 3, 2009 C O N S P E C T U S Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species

Fayer, Michael D.

138

Water at the Surfaces of Aligned Phospholipid Multibilayer Model Membranes Probed with Ultrafast Vibrational  

E-Print Network (OSTI)

Water at the Surfaces of Aligned Phospholipid Multibilayer Model Membranes Probed with Ultrafast@stanford.edu Abstract: The dynamics of water at the surface of artificial membranes composed of aligned multibilayers pump-probe spectroscopy. The experiments are performed at various hydration levels, x ) 2 - 16 water

Fayer, Michael D.

139

Optical Deflection and Temporal Characterization of an Ultrafast Laser-Produced Electron Beam  

E-Print Network (OSTI)

Optical Deflection and Temporal Characterization of an Ultrafast Laser-Produced Electron Beam show that the optical pulse with a0 0:5 imparts momentum to the electron beam, causing it to deflect optically driven x-ray sources based on nonlinear Thomson scattering [3­5]. A finite optical pulse imparts

Umstadter, Donald

140

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

See the Foundry's full equipment list See the Foundry's full equipment list Nanofabrication Capabilities & Tools Major Capabilities: Instruments and Labs Zeiss Crossbeam 1540 EsB The Molecular Foundry Zeiss Cross-beam is one of the most versatile lithographic and inspection tools allowing fabrication of complex prototypes for nanoelectronics, nano-optical antenna, modifying scanning probe tips, rapid electrical contacting and many other applications. The 1500XB Cross Beam combines the Gemini field emission column (FESEM) with the Orsay Physics focused ion beam (FIB). In addition, the instrument offers a multi-channel gas injection system to allow ion and electron beam induced deposition (IBID and EBID) and chemically assisted ion beam etching (CAIBE). The tool can be used for lithographic patterning of materials or

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultrafast gigantic photo-response in (EDO-TTF)2PF6 initiated by 10-fs laser pulses  

E-Print Network (OSTI)

Ultrafast gigantic photo-response in (EDO- TTF) 2 PF 6JItatani@lbl.gov Abstract. We photo-exited a charge- orderedfs optical pulses. The photo-induced metallic phase appeared

Itatani, J.

2006-01-01T23:59:59.000Z

142

Ultrafast Photocurrent Measurement of the Escape Time of Electrons and Holes from Carbon Nanotube p-i-n Photodiodes  

E-Print Network (OSTI)

Ultrafast photocurrent measurements are performed on individual carbon nanotube p-i-n photodiodes. The photocurrent response to subpicosecond pulses separated by a variable time delay ?t shows strong photocurrent suppression ...

Gabor, Nathaniel M.

143

Probing Ion Channel Conformational Dynamics Using Simultaneous Single-Molecule Ultrafast Spectroscopy and Patch-Champ Electric Recording  

SciTech Connect

A new approach to probing single-molecule ion channel kinetics and conformational dynamics, patch-clamp confocal fluorescence microscopy (PCCFM), uses simultaneous ultrafast fluorescence spectroscopy and single-channel electric current recording.

Harms, Gregory S.; Orr, Galya; Lu, H Peter

2004-03-08T23:59:59.000Z

144

Ultrafast Optical Packet Switching over Arbitrary Physical Topologies using the Manhattan Street Network  

E-Print Network (OSTI)

Komolafe,O. Harle,D. Cotter,D. Proceedings of the 2001 IEEE International Conference on Communications (ICC) IEEE

Komolafe, O.

145

Particle beam dynamics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle beam dynamics Particle beam dynamics Subscribe to RSS - Particle beam dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Ronald C Davidson Ronald Davidson heads PPPL research on charged particle beam dynamics and

146

Ultrafast resolution of tunneling delay time ALEXANDRA S. LANDSMAN,,  

E-Print Network (OSTI)

laser physics; (020.4180) Multiphoton processes; (240.7040) Tunneling. http://dx.doi.org/10.1364/OPTICA Vol. 1, No. 5 / November 2014 / Optica 343 #12;Observable 1 is the polarization axis

Keller, Ursula

147

Princeton Plasma Physics Lab - Particle beam dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

particle-beam-dynamics The study of particle-beam-dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

148

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

The Molecular Foundry The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Building 67 Berkeley, CA 94720 Screen reader users: click here for plain HTML Go to Google Maps Home Molecular Foundry, Berkeley, CA Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. Molecular Foundry, Berkeley, CA A Molecular Foundry 67 Cyclotron Rd, Berkeley, CA ‎ foundry.lbl.gov 3 reviews · "Berkeley Lab. About the Foundry. What is the Molecular Foundry? Research Themes; Foundry Careers; Media Gallery; Other User Facilities external link; Contact Us" - lbl.gov Directions Search nearby more See all 14 results for Molecular Foundry, Berkeley, CA

149

The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments); EFree Staff

2011-11-02T23:59:59.000Z

150

The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

SciTech Connect

'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments) [Director, Center for Energy Frontier Research in Extreme Environments; EFree Staff

2011-05-01T23:59:59.000Z

151

Ultrafast laser based coherent control methods for explosives detection  

SciTech Connect

The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

Moore, David Steven [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

152

DEPARTMENT OF PHYSICS Physics 21900  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 21900 Physics for Architecture Students Designation suggested material: Giancoli, Physics, Principles with Applications (6th ed.) (required), Prentice Hall Giancoli, Physics, Principles with Applications, Student Guide (6th ed.) (optional), Prentice Hall Course

Lombardi, John R.

153

DEPARTMENT OF PHYSICS Physics 20300  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 20300 General Physics Designation: Required Undergraduate Catalog description: For majors in the life sciences (biology, medicine, dentistry, psychology, physical therapy) and for liberal arts students. Fundamental ideas and laws of physics from mechanics to modern

Lombardi, John R.

154

Physics Division annual review, April 1, 1991--March 31, 1992  

SciTech Connect

This report contains brief discusses on topics in the following areas: Research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research.

Henning, W.F.

1992-08-01T23:59:59.000Z

155

CSD: Research Programs: Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics LBL Logo A-Z CSD Research Highlights CSD Directory Chemical Sciences Division A-Z Index Phone Book Search Berkeley Lab INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH PROGRAMS Atomic, Molecular & Optical Sciences Catalytic Science Chemical Physics The Glenn T. Seaborg Center (GTSC) STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD > Research Programs > Chemical Physics The Chemical Physics Program of the Chemical Science Division of LBNL is concerned with the development of both experimental and theoretical methodologies for studying molecular structure and dynamical processes at the most fundamental level, and with the application of these to specific

156

Microsoft PowerPoint - WishartUltrafastAccelFinal.ppt [Read-Only]  

NLE Websites -- All DOE Office Websites (Extended Search)

June 25-28, 2004 Chemistry Department Brookhaven National Laboratory LEAF LEAF Office of Basic Energy Sciences U.S. Department of Energy Advanced Energy Systems 2 Tabata Meeting and Satellite Symposia March 10 and 11, 2000 "New Applications and Facilities of Radiation on Radiation Chemistry, Material Science, And Radiation Biology for Future Radiation Science and Technology" Osaka University Institute of Scientific and Industrial Research, Osaka March 13 - 17, 2000 "International Symposium on Prospects for Application of Radiation Towards the 21st Century" Waseda University, Tokyo March 20, 2000 "Development of Ultrafast Detection Systems for Radiation Chemistry" Univ. of Tokyo Nuclear Engineering Research Laboratory in Tokai-Mura The Brookhaven LEAF

157

Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering  

SciTech Connect

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

2009-12-11T23:59:59.000Z

158

PolymerGraphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

SciTech Connect

Electroactive polymers are a new generation of 'green' cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in-situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging - the composite can deliver more than 100 mAh/g within just a few seconds.

Song, Zhiping; Xu, Terrence (Tianren) [Tianren; Gordin, Mikhail; Jiang, Yingbing; Bae, In-Tae; Xiao, Qiangfeng; Zhan, Hui; Liu, Jun; Wang, Donghai

2012-05-09T23:59:59.000Z

159

Differential ultrafast all-optical switching of the resonances of a micropillar cavity  

SciTech Connect

We perform frequency- and time-resolved all-optical switching of a GaAs-AlAs micropillar cavity using an ultrafast pump-probe setup. The switching is achieved by two-photon excitation of free carriers. We track the cavity resonances in time with a high frequency resolution. The pillar modes exhibit simultaneous frequency shifts, albeit with markedly different maximum switching amplitudes and relaxation dynamics. These differences stem from the non-uniformity of the free carrier density in the micropillar, and are well understood by taking into account the spatial distribution of injected free carriers, their spatial diffusion and surface recombination at micropillar sidewalls.

Thyrrestrup, Henri, E-mail: h.t.nielsen@utwente.nl; Yce, Emre; Ctistis, Georgios; Vos, Willem L. [Complex Photonic Systems (COPS), MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Claudon, Julien; Grard, Jean-Michel, E-mail: jean-michel.gerard@cea.fr [University Grenoble Alpes, INAC-SP2M, Nanophysics and Semiconductors Lab, F-38000 Grenoble (France); CEA, INAC-SP2M, Nanophysics and Semiconductors Lab, F-38000 Grenoble (France)

2014-09-15T23:59:59.000Z

160

Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions  

E-Print Network (OSTI)

We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which we believe is the inverse Spin-Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

Schmidt, Christian B; Tarasenko, Sergey A; Bieler, Mark

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams  

SciTech Connect

We use ultrafast pump-probe spectroscopy to study the mechanical vibrations in the time domain of doubly clamped silicon nitride beams. Beams with two different clamping conditions are investigated. Finite element method calculations are performed to analyse the mode spectra of both structures. By calculating the strain integral on the surface of the resonators, we are able to reproduce the effect of the detection mechanism and identify all the measured modes. We show that our spectroscopy technique combined with our modelling tools allow the investigation of several different modes in the super high frequency range (3-30?GHz) and above, bringing more information about the vibration modes of nanomechanical resonators.

Ristow, Oliver; Merklein, Moritz; Grossmann, Martin; Hettich, Mike; Schubert, Martin; Bruchhausen, Axel; Scheer, Elke; Dekorsy, Thomas; Barretto, Elaine C. S., E-mail: elaine.barretto@uni-konstanz.de [Department of Physics and Center of Applied Photonics, University of Konstanz, D-78457 Konstanz (Germany)] [Department of Physics and Center of Applied Photonics, University of Konstanz, D-78457 Konstanz (Germany); Grebing, Jochen; Erbe, Artur [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion-Beam Physics and Materials Research, D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion-Beam Physics and Materials Research, D-01328 Dresden (Germany); Mounier, Denis [IMMM, UMR-CNRS 6283, ENSIM, PRES UNAM, Universit du Maine, 72085 Le Mans (France)] [IMMM, UMR-CNRS 6283, ENSIM, PRES UNAM, Universit du Maine, 72085 Le Mans (France); Gusev, Vitalyi [LAUM, UMR-CNRS 6613, PRES UNAM, Universit du Maine, 72085 Le Mans (France)] [LAUM, UMR-CNRS 6613, PRES UNAM, Universit du Maine, 72085 Le Mans (France)

2013-12-02T23:59:59.000Z

162

Processing and thermal properties of molecularly oriented polymers  

E-Print Network (OSTI)

High molecular weight polymers that are linear in molecular construction can be oriented such that some of their physical properties in the oriented direction are enhanced. For over 50 years polymer orientation and processing ...

Skow, Erik (Erik Dean)

2007-01-01T23:59:59.000Z

163

Ultrafast Spectroscopic Study on Caffeine Mediated Dissociation of Mutagenic Ethidium from Synthetic DNA and Various Cell Nuclei  

Science Journals Connector (OSTI)

Ultrafast Spectroscopic Study on Caffeine Mediated Dissociation of Mutagenic Ethidium from Synthetic DNA and Various Cell Nuclei ... (10) The purified (reverse-phase cartridge) synthetic DNA oligonucleotides of 12 bases (dodecamer) with sequence CGCGAATTCGCG were obtained from TriLink. ... In Figure 1a,b steady-state and time-resolved studies on the Et intercalated to the synthetic DNA are presented. ...

Soma Banerjee; Debajit Bhowmik; Pramod Kumar Verma; Rajib Kumar Mitra; Anirban Sidhhanta; Gautam Basu; Samir Kumar Pal

2011-10-27T23:59:59.000Z

164

Free electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: a first-principles study  

E-Print Network (OSTI)

Free electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium CEA-DIF, 91297 Arpajon, France (Dated: April 3, 2014) The electronic behavior of various solid metals modelled based on the free electron classical theory, the free electron number is a key parameter. However

Paris-Sud XI, Université de

165

Ultrafast Microfluidic Mixer and Freeze-Quenching Yu Lin, Gary J. Gerfen, Denis L. Rousseau, and Syun-Ru Yeh*  

E-Print Network (OSTI)

Ultrafast Microfluidic Mixer and Freeze-Quenching Device Yu Lin, Gary J. Gerfen, Denis L. Rousseau fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer. The mixed-solution jet, with a cross section of 10 µm ? 100 µm, exits from the microfluidic silicon mixer

Yeh, Syun-Ru

166

Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed by Ultrafast Infrared Spectroscopy  

E-Print Network (OSTI)

Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching

van Stokkum, Ivo

167

Ultrafast intramolecular relaxation dynamics of Mg- and Zn-bacteriochlorophyll a  

SciTech Connect

Ultrafast excited-state dynamics of the photosynthetic pigment (Mg-)bacteriochlorophyll a and its Zn-substituted form were investigated by steady-state absorption/fluorescence and femtosecond pump-probe spectroscopic measurements. The obtained steady-state absorption and fluorescence spectra of bacteriochlorophyll a in solution showed that the central metal compound significantly affects the energy of the Q{sub x} state, but has almost no effect on the Q{sub y} state. Photo-induced absorption spectra were recorded upon excitation of Mg- and Zn-bacteriochlorophyll a into either their Q{sub x} or Q{sub y} state. By comparing the kinetic traces of transient absorption, ground-state beaching, and stimulated emission after excitation to the Q{sub x} or Q{sub y} state, we showed that the Q{sub x} state was substantially incorporated in the ultrafast excited-state dynamics of bacteriochlorophyll a. Based on these observations, the lifetime of the Q{sub x} state was determined to be 50 and 70 fs for Mg- and Zn-bacteriochlorophyll a, respectively, indicating that the lifetime was influenced by the central metal atom due to the change of the energy gap between the Q{sub x} and Q{sub y} states.

Kosumi, Daisuke [Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nakagawa, Katsunori; Sakai, Shunsuke [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nagaoka, Yuya; Maruta, Satoshi; Sugisaki, Mitsuru [CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Dewa, Takehisa [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); PRESTO/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nango, Mamoru [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Hashimoto, Hideki [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

2013-07-21T23:59:59.000Z

168

Molecular Physics 2012, 110, iFirst  

E-Print Network (OSTI)

at high temperatures as in furnaces and atmospheric plasmas. A review on the topic can be found and requires a simple acquisition system capable of digitizing data at a sampling rate of 10­100 MHz

Maier, John Paul

169

Molecular Epidemiology of Physical Activity and Cancer  

Science Journals Connector (OSTI)

...prevention programs are palatable and sustainable in the community and thus likely to be...without undue fatigue, and with ample energy to enjoy leisure-time pursuits and...produced by skeletal muscles that results in energy expenditure (56). Thus, the use of...

Andrew Rundle

2005-01-01T23:59:59.000Z

170

Frontiers for Discovery in High Energy Density Physics  

SciTech Connect

The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

2004-07-20T23:59:59.000Z

171

Molecular biochemistry  

Science Journals Connector (OSTI)

... THIS text forms a very readable handbook which outlines the ... which outlines the fundamentals of electrostatic and dielectric theory on the one hand and of chemical bonding and molecular ...

B. Jennings

1978-09-07T23:59:59.000Z

172

@Why Physics Comprehensive Physics Major.  

E-Print Network (OSTI)

@Why Physics Comprehensive Physics Major. From the basic laws of physics to the resulting emergent behavior, physics studies what the universe is made of and how it works. As a Physics major that surrounds us, to the structure and evolution of the entire universe. We offer three degrees in Physics

Yoo, S. J. Ben

173

How to Calculate Molecular Column Density  

E-Print Network (OSTI)

The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is con...

Mangum, Jeffrey G

2015-01-01T23:59:59.000Z

174

Ultrafast gigantic photo-response in charge-ordered organic salt (EDO-TTF)2PF6 on 10-fs time scales  

E-Print Network (OSTI)

Ultrafast Gigantic Photo-Response in Charge- Ordered OrganicThe initial dynamics of photo-induced phase transition inobserved sub- 20-fs gigantic photo-responses (|?R/R|>100%)

Itatani, J.

2010-01-01T23:59:59.000Z

175

Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers  

SciTech Connect

The field of spintronics offers perspectives for seamless integration of coupled and inter-tunable electrical and magnetic properties in a single device. For integration of the spin degree of freedom with current electronic technology, new semiconductors are needed that show electrically-tunable magnetic properties at room temperature and above. Dilute magnetic semiconductors derived from III-V compounds, like GaMnAs and InMnAs, show coupled and tunable magnetic, transport, and optical properties, due to the fact that their ferromagnetism is hole-mediated. These unconventional materials are ideal systems for manipulating the magnetic order by changing the carrier polarization, population density, and energy band distribution of the complementary subsystem of holes. This is the main theme we cover in this thesis. In particular, we develop a unique setup by use of ultraviolet pump, near-infrared probe femtosecond laser pulses, that allows for magneto-optical Kerr effect (MOKE) spectroscopy experiments. We photo-excite transient carriers in our samples, and measure the induced transient magnetization dynamics. One set of experiments performed allowed us to observe for the first time enhancement of the ferromagnetic order in GaMnAs, on an ultrafast time scale of hundreds of picoseconds. The corresponding transient increase of Curie temperature (Tc, the temperature above which a ferromagnetic material loses its permanent magnetism) of about 1 K for our experimental conditions is a very promising result for potential spintronics applications, especially since it is seconded by observation of an ultrafast ferromagnetic to paramagnetic phase transition above Tc. In a different set of experiments, we"write" the magnetization in a particular orientation in the sample plane. Using an ultrafast scheme, we alter the distribution of holes in the system and detect signatures of the particular memory state in the subsequent magnetization dynamics, with unprecedented hundreds of femtosecond detection speed. The femtosecond cooperative magnetic phenomena presented here further our understanding of Mn-hole correlations in III-V dilute magnetic semiconductors, and may well represent universal principles of a large class of carrier-mediated ferromagnetic materials. Thus they offer perspectives for future terahertz (1012 Hz) speed"spintronic" functional devices.

Cotoros, Ingrid A.

2008-12-12T23:59:59.000Z

176

physics.illinois.edu The University of Illinois  

E-Print Network (OSTI)

.edu Illinois Physics REU Condensed matter physics Atomic & molecular optics Biophysics High Energy Physicsphysics.illinois.edu The University of Illinois Physics REU Program Kevin Pitts Department of Physics 13-Nov-13 1 http://physics.illinois.edu/undergrad/reu/ Contact/follow me! Email: kpitts@illinois

Ha, Taekjip

177

Molecular Foundry  

NLE Websites -- All DOE Office Websites

Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE About the Foundry What is the Molecular Foundry? Research Themes Foundry Careers Media Gallery Other User Facilities external link Contact Us Go News & Highlights Users People Facilities Imaging and Manipulation Nanofabrication Theory Inorganic Biological Organic NCEM external link Seminars & Events Publications The Molecular Foundry is a Department of Energy-funded nanoscience research facility that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. Call for Proposals: The next deadline for standard proposals is Through March 31, 2014 Find out more information about becoming a Molecular Foundry facilities User. 2013 Annual User Meeting Postponed - Date TBD

178

DEPARTMENT OF PHYSICS Physics 32300  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 32300 Quantum Mechanics for Engineers Designation: required for Physics majors in the Applied Physics Option Undergraduate Catalog description: Basic experiments, wave: Physics 20700 and 20800, Math 39100 and Math 39200 Textbook and other suggested material: Scherrer

Lombardi, John R.

179

DEPARTMENT OF PHYSICS Physics 42200  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 42200 Biophysics Designation: Undergraduate Catalog and membranes. In depth study of the physical basis of selected systems including vision, nerve transmission. Prerequisites: Prereq.: 1 yr. of Math, 1 yr. of Physics (elective for Physics Majors and Biomedical Engineering

Lombardi, John R.

180

Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in  

NLE Websites -- All DOE Office Websites (Extended Search)

The Electronic Origin of Photoinduced Strain The Electronic Origin of Photoinduced Strain Modifying Proteins to Combat Disease Higher Temperature at the Earth's Core Clues about Rheumatoid Arthritis Damage Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in Ruthenium Complexes FEBRUARY 8, 2013 Bookmark and Share Copyright © 2012 Elsevier B.V. All rights reserved. Exciting the atoms or molecules of a substance via the use of visible light, or photoexcitation, can play a significant role in a range of energy-conversion processes, such as natural photosynthesis (oxygen from water) and manmade solar cells (electricity from sunlight). But a better

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Precision lifetime measurements of a single trapped ion with ultrafast laser pulses  

SciTech Connect

We report precision measurements of the excited state lifetime of the 5p {sup 2}P{sub 1/2} and 5p {sup 2}P{sub 3/2} levels of a single trapped Cd{sup +} ion. Combining ion trap and ultrafast laser technologies, the ion is excited with picosecond laser pulses from a mode-locked laser and the distribution of arrival times of spontaneously emitted photons is recorded. The resulting lifetimes are 3.148{+-}0.011 ns and 2.647{+-}0.010 ns for {sup 2}P{sub 1/2} and {sup 2}P{sub 3/2} respectively. With a total uncertainty of under 0.4%, these are among the most precise measurements of any atomic state lifetimes to date.

Moehring, D. L.; Blinov, B. B.; Gidley, D. W.; Kohn, R. N. Jr.; Madsen, M. J.; Sanderson, T. D.; Vallery, R. S.; Monroe, C. [FOCUS Center and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

2006-02-15T23:59:59.000Z

182

Ultrafast electronic read-out of diamond NV centers coupled to graphene  

E-Print Network (OSTI)

Nonradiative transfer processes are often regarded as loss channels for an optical emitter1, since they are inherently difficult to be experimentally accessed. Recently, it has been shown that emitters, such as fluorophores and nitrogen vacancy centers in diamond, can exhibit a strong nonradiative energy transfer to graphene. So far, the energy of the transferred electronic excitations has been considered to be lost within the electron bath of the graphene. Here, we demonstrate that the trans-ferred excitations can be read-out by detecting corresponding currents with picosecond time resolution. We electrically detect the spin of nitrogen vacancy centers in diamond electronically and con-trol the nonradiative transfer to graphene by electron spin resonance. Our results open the avenue for incorporating nitrogen vacancy centers as spin qubits into ultrafast electronic circuits and for harvesting non-radiative transfer processes electronically.

Brenneis, Andreas; Seifert, Max; Karl, Helmut; Brandt, Martin S; Huebl, Hans; Garrido, Jose A; Koppens, Frank H L; Holleitner, Alexander W

2014-01-01T23:59:59.000Z

183

Efficient terahertz-wave generation and its ultrafast optical modulation in charge ordered organic ferroelectrics  

SciTech Connect

Efficient terahertz (THz) wave generation in strongly correlated organic compounds ?-(ET){sub 2}I{sub 3} and ??-(ET){sub 2}IBr{sub 2} (ET:bis(ethylenedithio)-tetrathiafulvalene) was demonstrated. The spontaneous polarization induced by charge ordering or electronic ferroelectricity was revealed to trigger the THz-wave generation via optical rectification; the estimated 2nd-order nonlinear optical susceptibility for ?-(ET){sub 2}I{sub 3} is over 70 times larger than that for prototypical THz-source ZnTe. Ultrafast (<1 ps) and sensitive (?40%) photoresponse of the THz wave was observed for ?-(ET){sub 2}I{sub 3}, which is attributable to photoinduced quenching of the polarization accompanied by insulator(ferroelectric)-to-metal transition. Modulation of the THz wave was observed for ??-(ET){sub 2}IBr{sub 2} upon the poling procedure, indicating the alignment of polar domains.

Itoh, Hirotake, E-mail: hiroitoh@m.tohoku.ac.jp; Iwai, Shinichiro, E-mail: s-iwai@m.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); JST, CREST, Sendai 980-8578 (Japan); Itoh, Keisuke; Goto, Kazuki [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Yamamoto, Kaoru [Department of Applied Physics, Okayama University of Science, Okayama 700-0005 (Japan); Yakushi, Kyuya [Toyota Physical and Chemical Research Institute, Nagakute 480-1192 (Japan)

2014-04-28T23:59:59.000Z

184

Phonon-Assisted Ultrafast Charge Separation in a Realistic PCBM Aggregate  

E-Print Network (OSTI)

Organic solar cells must separate strongly bound electron-hole pairs into free charges. This is achieved at interfaces between electron donor and acceptor organic semiconductors. The most popular electron acceptor is the fullerene derivative PCBM. Electron-hole separation has been observed on femtosecond timescales, which is incompatible with conventional Marcus theories of organic transport. In this work we show that ultrafast charge transport in PCBM arises from its broad range of electronic eigenstates, provided by the presence of three closely spaced delocalised bands near the LUMO level. Vibrational fluctuations enable rapid transitions between these bands, which drives an electron transport of $\\sim$3 nm within 100 fs. All this is demonstrated within a realistic tight binding Hamiltonian containing transfer integrals no larger than 8 meV.

Samuel L. Smith; Alex W. Chin

2014-06-25T23:59:59.000Z

185

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

SciTech Connect

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

186

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

high energy physics frontiers as defined by the Department of Energy's Office of High Energy Physics. Exploring the intensity frontier On the trail of one of the greatest...

187

Frequency modulated few-cycle optical pulse trains induced controllable ultrafast coherent population oscillations in three-level atomic systems  

E-Print Network (OSTI)

We report a study on the ultrafast coherent population oscillations (UCPO) in two level atoms induced by the frequency modulated few-cycle optical pulse train. The phenomenon of UCPO is investigated by numerically solving the optical Bloch equations beyond the rotating wave approximation. We demonstrate that the quantum state of the atoms and the frequency of UCPO may be controlled by controlling the number of pulses in the pulse trains and the pulse repetition time respectively. Moreover, the robustness of the population inversion against the variation of the laser pulse parameters is also investigated. The proposed scheme may be useful for the creation of atoms in selected quantum state for desired time duration and may have potential applications in ultrafast optical switching.

Parvendra Kumar; Amarendra K. Sarma

2012-11-16T23:59:59.000Z

188

Molecular nanostructure and nanotechnology  

Science Journals Connector (OSTI)

...Molecular nanostructure and nanotechnology compiled and edited by Chunli...Molecular nanostructure and nanotechnology Chunli Bai 1 Chen Wang 2...Molecular nanostructure and nanotechnology . This Theme Issue exemplifies...

2013-01-01T23:59:59.000Z

189

Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs  

SciTech Connect

Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations.

Lee, Chao-Kuei, E-mail: chuckcklee@yahoo.com [Department of Photonics, National Sun-Yat-Sen University, Kaohsiung 80400, Taiwan (China); Lin, Yuan-Yao [Department of Electrical Engineering, Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30010, Taiwan (China); Lin, Sung-Hui [Department of Photonics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lin, Gong-Ru [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan (China); Pan, Ci-Ling [Department of Photonics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Physics, National Tsing Hwa University, Hsinchu 30010, Taiwan (China)

2014-04-28T23:59:59.000Z

190

Molecular handling of photosynthetic proteins for molecular assembly construction  

Science Journals Connector (OSTI)

Methods of constructing proteins were examined with special reference to the molecular assembly using photosynthetic \\{RCs\\} as membrane proteins. Molecular assemblies at the interfaces were studied by LB films, adsorption to the surface and reconstitution into liposomes and bilayer lipid membranes. The applications of biological specific ligands (recognition and binding), combinatorial chemical method, 2-D and 3-D order array assemblies and modification of protein molecules to make fusion proteins, as well as physical methods of manipulation of molecules by AFM tips and electric fields were reviewed.

Jun Miyake; Masayuki Hara

1997-01-01T23:59:59.000Z

191

DEPARTMENT OF PHYSICS Physics 35400  

E-Print Network (OSTI)

DEPARTMENT OF PHYSICS Syllabus Physics 35400 Electricity and Magnetism II Designation potentials and radiation, special relativity. 3 HR./WK.; 3 CR. Prerequisites: Prereq.: Physics 35300; pre- or coreq.: Math 39200 (required for Physics majors, except those in the Biomedical Option). Textbook

Lombardi, John R.

192

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

See the Foundry's full equipment list See the Foundry's full equipment list Organic and Macromolecular Synthesis Capabilities & Tools Major Instruments and Capabilities AB SCIEX TF4800 MALDI TOF-TOF Mass Spectrometer This instrument is the tandem time-of-flight mass spectrometer systems, providing the excellent level of molecular mass coverage in the range of molecular masses 500 and 150,000 Da, high throughput, and confidence in both qualitative and quantitative analyses. The analyzer combines all of the advantages of MALDI in a flexible, easy-to-use, ultra-high-performance mass spectrometer with all the advanced capabilities of software. On-axis laser provides high sensitivity to identify and quantitate low-abundance compounds in complex samples. High-resolution precursor ion selection lets

193

Physics Division: Subatomic Physics Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Subatomic Physics Subatomic Physics Physics home » Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic Physics, P-25 CONTACTS Group Leader Jon Kapustinsky (Acting) Deputy Group Leader Andy Saunders Office Administration Irene Martinez Miquela Sanchez Group Office (505) 667-6941 Physics Links Jobs in Physics Human Resources Working at Los Alamos Los Alamos resources Who we are, what we do We conduct basic research in nuclear and particle physics, applying this expertise to solve problems of national importance. By pushing the limits of our understanding of the smallest building blocks of matter through diverse experiments probing aspects of subatomic reactions, we aim to provide a more thorough understanding of the basic

194

Volume 134, number 3 CHEMICAL PHYSICS LETTERS 27 February 1987 ULTRAFAST OPTICAL DEPHASING IN A LOW-TEMPERATURE ORGANIC GLASS  

E-Print Network (OSTI)

-TEMPERATURE ORGANIC GLASS C.A. WALSH, M. BERG, L.R. NARASIMHAN, Karl A. LITTAU and M.D. FAYER Department of Chemistry The optical dephasing of pentacene in an o-terphenyl glass at 1.5 K is examined with picosecond photon echo measurements on glass-chromophore systems in which the homogeneous 7'*are two to three orders of magnitude

Fayer, Michael D.

195

Molecular Science Computing | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Capabilities Molecular Science Computing Overview Cell Isolation and Systems Analysis Deposition and Microfabrication Mass Spectrometry Microscopy Molecular Science...

196

Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Planetary Physics Some of the most intriguing NIF experiments test the physics believed to determine the structures of planets down to their cores, both in our solar system and...

197

Ultrafast vectorial and scalar dynamics of ionic clusters: Azobenzene solvated by oxygen  

SciTech Connect

The ultrafast dynamics of clusters of trans-azobenzene anion (A{sup -}) solvated by oxygen molecules was investigated using femtosecond time-resolved photoelectron spectroscopy. The time scale for stripping off all oxygen molecules from A{sup -} was determined by monitoring in real time the transient of the A{sup -} rise, following an 800 nm excitation of A{sup -} (O{sub 2}){sub n}, where n=1-4. A careful analysis of the time-dependent photoelectron spectra strongly suggests that for n>1 a quasi-O{sub 4} core is formed and that the dissociation occurs by a bond cleavage between A{sup -} and conglomerated (O{sub 2}){sub n} rather than a stepwise evaporation of O{sub 2}. With time and energy resolutions, we were able to capture the photoelectron signatures of transient species which instantaneously rise (<100 fs) then decay. The transient species are assigned as charge-transfer complexes: A{center_dot}O{sub 2}{sup -} for A{sup -}O{sub 2} and A{center_dot}O{sub 4}{sup -}{center_dot}(O{sub 2}){sub n-2} for A{sup -}(O{sub 2}){sub n}, where n=2-4. Subsequent to an ultrafast electron recombination, A{sup -} rises with two distinct time scales: a subpicosecond component reflecting a direct bond rupture of the A{sup -}-(O{sub 2}){sub n} nuclear coordinate and a slower component (1.6-36 ps, increasing with n) attributed to an indirect channel exhibiting a quasistatistical behavior. The photodetachment transients exhibit a change in the transition dipole direction as a function of time delay. Rotational dephasing occurs on a time scale of 2-3 ps, with a change in the sign of the transient anisotropy between A{sup -}O{sub 2} and the larger clusters. This behavior is a key indicator of an evolving cluster structure and is successfully modeled by calculations based on the structures and inertial motion of the parent clusters.

Paik, D. Hern; Baskin, J. Spencer; Kim, Nam Joon; Zewail, Ahmed H. [Laboratory for Molecular Sciences, California Institute of Technology, Pasadena, California 91125 and Physical Biology Center for Ultrafast Science and Technology, California Institute of Technology, Pasadena, California 91125 (United States)

2006-10-07T23:59:59.000Z

198

Electroweak Physics  

E-Print Network (OSTI)

Work on electroweak precision calculations and event generators for electroweak physics studies at current and future colliders is summarized.

W. Hollik

2005-01-26T23:59:59.000Z

199

Physics and Astronomy Department Strategic Plan March 1, 2011  

E-Print Network (OSTI)

Physics and Astronomy Department Strategic Plan March 1, 2011 Executive Summary The Department of Physics & Astronomy performs world-class research and provides state-of-the-art training for students in astronomy, astrophysics, and gravitational physics; atomic/molecular/optical physics, quantum optics

Harms, Kyle E.

200

May 2, 2014 Molecular Physics QCHEM4 To appear in Molecular Physics  

E-Print Network (OSTI)

`ele Laurentb,cm , Keith V. Lawlerc,cn , Sergey V. Levchenkob,co , Ching Yeh Lind , Fenglai Liua , Ester , Christopher F. Williamsg , Vitalii Vanovschib , Sine Yeganehw , Shane R. Yostc,w , Zhi-Qiang Youas,g , Igor. Chipmanag , Christopher J. Cramerab , William A. Goddard IIIah , Mark S. Gordonai , Warren J. Hehrey

Krylov, Anna I.

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Physics PhD Mentors at CCNY, 2014 (Please also see faculty and staff profiles on the Physics website)  

E-Print Network (OSTI)

Physics PhD Mentors at CCNY, 2014 (Please also see faculty and staff profiles on the Physics molecular biological physics; electron and proton transfer reactions; solar energy Koder, Ronald koder@sci.ccny.c uny.edu http://web.sci.ccny.cuny.edu/~koder/koder.ht ml experimental biological physics; de novo #12

Lombardi, John R.

202

Gas-Phase Molecular Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Phase Molecular Dynamics Gas-Phase Molecular Dynamics The Gas-Phase Molecular Dynamics Group is dedicated to developing and applying spectroscopic and theoretical tools to challenging problems in chemical physics related to reactivity, structure, dynamics and kinetics of transient species. Recent theoretical work has included advances in exact variational solution of vibrational quantum dynamics, suitable for up to five atoms in systems where large amplitude motion or multiple strongly coupled modes make simpler approximations inadequate. Other theoretical work, illustrated below, applied direct dynamics, quantum force trajectory calculations to investigate a series of reactions of the HOCO radical. The potential energy surface for the OH + CO/ H + CO2 reaction, showing two barriers (TS1 and TS2) and the deep HOCO well along the minimum energy pathway. The inset figure shows the experimental and calculated reactivity of HOCO with selected collision partners. See J.S. Francisco, J.T. Muckerman and H.-G. Yu, "HOCO radical chemistry,"

203

Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals  

SciTech Connect

White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals.

Bowers, Michael J [Vanderbilt University; McBride, James [Vanderbilt University; Garrett, Maria Danielle [Vanderbilt University; Sammons, Jessica A. [Vanderbilt University; Dukes, Albert [Vanderbilt University; Schreuder, Michael A. [Vanderbilt University; Watt, Tony L. [Vanderbilt University; Lupini, Andrew R [ORNL; Pennycook, Stephen J [ORNL; Rosenthal, Sandra [Vanderbilt University

2009-01-01T23:59:59.000Z

204

Ultrafast ignition with relativistic shock waves induced by high power lasers  

E-Print Network (OSTI)

In this paper we consider laser intensities larger than $10^{16} W/cm^2$ where the ablation pressure is negligible in comparison with the radiation pressure. The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer (DL). This DL is accelerated into the target, like a piston that pushes the matter in such a way that a shock wave is created. Here we discuss two novel ideas. First is the transition domain between the relativistic and non-relativistic laser induced shock waves. Our solution is based on relativistic hydrodynamics also for the above transition domain. The relativistic shock wave parameters, such as compression, pressure, shock wave and particle flow velocities, sound velocity and rarefaction wave velocity in the compressed target, and the temperature are calculated. Secondly, we would like to use this transition domain for shock wave induced ultrafast ignition of a pre-compressed target. The laser parameters...

Eliezer, Shalom; Pinhasi, Shirly Vinikman; Raicher, Erez; Val, Jos Maria Martinez

2014-01-01T23:59:59.000Z

205

Sandia National Laboratories: Careers: Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Water droplets photo Physicists from all research backgrounds are helping Sandia solve the world's toughest challenges. There is no "typical" career for a physicist at Sandia. Instead, Sandia offers physicists a multitude of opportunities to participate in multidisciplinary teams on projects ranging from groundbreaking fundamental research to influential national security applications. Whatever the project, physicists are making important contributions to Sandia's missions in stockpile stewardship, homeland and port security, and energy security. For example, some physicists are investigating basic research topics from atomic/molecular dynamics to antineutrinos. Others are applying physics principles to fieldable commercial devices, such as airport sensors and

206

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory of Nanostructured Materials Theory of Nanostructured Materials The Theory of Nanostructured Materials Facility at the Molecular Foundry is focused on expanding our understanding of materials at the nanoscale. Our research connects the structural and dynamical properties of materials to their functions, such as electrical conductivity and storage, light-harvesting for electricity and fuel, or gas separation and sequestration. We develop and employ a broad range of tools, including advanced electronic-structure theory, excited-state methods, model Hamiltonians, and statistical mechanical models. This combination of approaches reveals how materials behave at the nanoscale, in pursuit of materials and devices that meet global energy and sustainability needs. Electronic structure of complex materials and interfaces for energy

207

Physics Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

as Institute of Physics Fellow January 18, 2011 LOS ALAMOS, New Mexico, January 18, 2011-Alan Bishop, Los Alamos National Laboratory's associate director for theory, simulation,...

208

Modeling Molecular Dynamics from Simulations  

SciTech Connect

Many important processes in biology occur at the molecular scale. A detailed understanding of these processes can lead to significant advances in the medical and life sciences. For example, many diseases are caused by protein aggregation or misfolding. One approach to studying these systems is to use physically-based computational simulations to model the interactions and movement of the molecules. While molecular simulations are computationally expensive, it is now possible to simulate many independent molecular dynamics trajectories in a parallel fashion by using super- or distributed- computing methods such as Folding@Home or Blue Gene. The analysis of these large, high-dimensional data sets presents new computational challenges. In this seminar, I will discuss a novel approach to analyzing large ensembles of molecular dynamics trajectories to generate a compact model of the dynamics. This model groups conformations into discrete states and describes the dynamics as Markovian, or history-independent, transitions between the states. I will discuss why the Markovian state model (MSM) is suitable for macromolecular dynamics, and how it can be used to answer many interesting and relevant questions about the molecular system. I will also discuss many of the computational and statistical challenges in building such a model, such as how to appropriately cluster conformations, determine the statistical reliability, and efficiently design new simulations.

Hinrichs, Nina Singhal (University of Chicago) [University of Chicago

2009-01-28T23:59:59.000Z

209

Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate  

SciTech Connect

We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d'Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

2013-02-11T23:59:59.000Z

210

Molecular Science Computing | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Science Computing Overview Cell Isolation and Systems Analysis Deposition and Microfabrication Mass Spectrometry Microscopy Molecular Science Computing NMR and EPR...

211

Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning  

SciTech Connect

High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10??m or smaller defects on a moving target at 20?m/s within a scan width of 25?mm at a scan rate of 90.9?MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

Yazaki, Akio [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Yokohama Research Laboratory, Hitachi, Ltd., Kanagawa 244-0817 (Japan); Kim, Chanju [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Chan, Jacky [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Mahjoubfar, Ata [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Goda, Keisuke, E-mail: goda@chem.s.u-tokyo.ac.jp [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Watanabe, Masahiro [Yokohama Research Laboratory, Hitachi, Ltd., Kanagawa 244-0817 (Japan); Jalali, Bahram [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095 (United States)

2014-06-23T23:59:59.000Z

212

Ultrafast terahertz-induced response of GeSbTe phase-change materials Michael J. Shu,1,2,a)  

E-Print Network (OSTI)

Ultrafast terahertz-induced response of GeSbTe phase-change materials Michael J. Shu,1,2,a) Peter-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub of these materials is important for predicting the field-driven heating and phase-change behavior. However

213

Ultrafast Infrared Heating Laser Pulse-Induced Micellization Kinetics of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) in  

E-Print Network (OSTI)

Ultrafast Infrared Heating Laser Pulse-Induced Micellization Kinetics of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) in Water Xiaodong Ye, Yijie Lu, Shilin Liu,*, Guangzhao Zhang, and Chi Wu-induced micellization of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronic PE10300) triblock

Liu, Shilin

214

Ultrafast and quantitative X-tomography and simulation of hollow-cone gasoline direct-injection sprays.  

SciTech Connect

Gasoline direct injection (GDI) has the potential to greatly improve internal combustion engine performance through precise control of the injection rate, timing, and combustion of the fuel. A thorough characterization of the hydrodynamics of fuel injection has to come from a precise, quantitative analysis of the sprays, especially in the near-nozzle region. A lack of knowledge of the fuel-spray dynamics has severely limited computational modeling of the sprays and design of improved injection systems. Previously, the structure and dynamics of highly transient fuel sprays have never been visualized or reconstructed in three dimensions (3D) due to numerous technical difficulties. By using an ultrafast x-ray detector and intense monochromatic x-ray beams from synchrotron radiation, the fine structures and dynamics of 1-ms GDI fuel sprays from an outwardly opening nozzle were elucidated by a newly developed, ultrafast, microsecond computed microtomography (CT) technique. In a time-resolved manner, many detailed features associated with the transient fuel flows are readily observable in the quantitatively reconstructed 3D fuel spray density distribution as a result of the quantitative CT technique. More importantly, a computational fluid dynamics (CFD) simulation based on the Taylor analogy breakup (TAB) model has also been performed using the boundary and initial conditions obtained from the experiment data. The experimental and numerical results are in good agreement quantitatively. These results not only reveal the characteristics of the GDI fuel sprays with unprecedented detail, but will also facilitate realistic computational fluid dynamic simulations in highly transient, multiphase systems.

Liu, X.; Im, K-S; Wang, Y.; Wang, J.; Tate, M.W.; Ercan, A.; Schuette, D.R.; Gruner, S.M. (X-Ray Science Division); (Cornell Univ.)

2007-01-01T23:59:59.000Z

215

EMSL - physics  

NLE Websites -- All DOE Office Websites (Extended Search)

physics en 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOxCeO2. http:www.emsl.pnl.govemslwebpublications15n2-formation-and-fast-oxygen-i...

216

Flavor Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Flavor Physics and CP Violation Conference, Bled, 2007 1 The Search for e Oscillations at MiniBooNE H. A. Tanaka, for the MiniBooNE collaboration Department of...

217

Physical Scientist  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of...

218

Physical Scientist  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will serve as the Senior Headquarters (HQ) Physical Scientist for the Carbon Storage Program. The Carbon Storage Program focuses on the development of...

219

Physics Based on Physical Monism  

E-Print Network (OSTI)

Based on a physical monism, which holds that the matter and space are classified by not a difference of their kind but a difference of magnitude of their density, I derive the most fundamental equation of motion, which is capable of providing a deeper physical understanding than the known physics. For example, this equation answers to the substantive reason of movement, and Newton's second law, which has been regarded as the definition of force, is derived in a substantive level from this equation. Further, the relativistic energy-mass formula is generalized to include the potential energy term, and the Lorentz force and Maxwell equations are newly derived.

Seong-Dong Kim

2005-09-08T23:59:59.000Z

220

Book Review of Handbook of Molecular Force Spectroscopy  

Science Journals Connector (OSTI)

The measurement of forces at the molecular level is an active and exciting area of research that has found application in a diverse range of disciplines, including chemistry, biology, and physics. ... In conclusion, Noys Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. ...

Matthew F. Paige

2008-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Molecular CP-violating magnetic moment Andrei Derevianko1  

E-Print Network (OSTI)

Molecular CP-violating magnetic moment Andrei Derevianko1 and M. G. Kozlov2 1 Department of Physics Received 26 April 2005; published 6 October 2005 A concept of CP-violating T,P-odd permanent molecular magnetic moments CP is introduced. We relate the moments to the electric dipole moment of electron e

Kozlov, Mikhail G

222

Molecular surgical synthesis of H2@C60: recollections  

Science Journals Connector (OSTI)

...surgery|molecular hydrogen|endohedral fullerene...containing molecular hydrogen, H2@C60, made by...methodology for the production of endohedral fullerene...hard-to-control physical methods such as arc discharge...even for a pressurized hydrogen molecule to go through...

2013-01-01T23:59:59.000Z

223

Molecular hydrogen in Lyman alpha emitters  

Science Journals Connector (OSTI)

......undamped by neutral hydrogen. The main features...calculated including dust production due to SNe II, assuming...to which the neutral hydrogen fraction of at z (5...2011a). 3MOLECULAR HYDROGEN PHYSICS H2 can be formed in galaxies by two main methods: the first, and rather......

Livia Vallini; Pratika Dayal; Andrea Ferrara

2012-04-21T23:59:59.000Z

224

Molecular Dynamics Simulations of Supported Pt Nanoclusters  

E-Print Network (OSTI)

¤Introduction and Background ¤Constructing a Physical Model ¤Details of the Simulation ¤Results and Conclusions · Petroleum reformation · Gasification of biomass for biofuels #12;Previous Investigation of NanoclustersMolecular Dynamics Simulations of Supported Pt Nanoclusters Jeffrey Moore #12;A Brief Outline

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

225

Hypersonic Molecular Shocks in Star Forming Regions  

E-Print Network (OSTI)

Much emission from star forming regions is from shock-excited gas. Shocks in molecular clouds are still not fully understood, as magnetic fields, dust and chemistry all play significant roles. I review the history, physics and current work in understanding these shocks, and in their possible use as diagnostics of local conditions.

Brand, P W J L

2006-01-01T23:59:59.000Z

226

Hypersonic Molecular Shocks in Star Forming Regions  

E-Print Network (OSTI)

Much emission from star forming regions is from shock-excited gas. Shocks in molecular clouds are still not fully understood, as magnetic fields, dust and chemistry all play significant roles. I review the history, physics and current work in understanding these shocks, and in their possible use as diagnostics of local conditions.

Peter W. J. L. Brand

2006-09-08T23:59:59.000Z

227

Asymptotic Analysis of Cooperative Molecular Motor System  

E-Print Network (OSTI)

Polytechnic Institute 3Duke University 4University of Florida 5Pennsylvania State University May 17, 2011 Work Biological engines which catabolize ATP (fuel) to do useful work in a biological cell. Molecular pumps of ATP (fuel) to activate chemically-driven steps physical search for binding sites We will focus

Durrett, Richard

228

Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes  

SciTech Connect

Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by in homogeneous broadening and as such, are quite sensitive to diagonal energy disorder. The experimental anisotropies exhibit strong oscillations with {approximately}220 fs period for certain wavelengths in one-color absorption difference experiments. The oscillations only appear when the laser pulse spectrum overlaps both of the lowest-energy groups of exciton levels clustered near 815 and 825 nm. Results suggest that the oscillations stem from quantum beating between exciton levels, rather than from coherent nuclear motion.

Buck, D.R.

2000-09-12T23:59:59.000Z

229

REVIEW OF PARTICLE PHYSICS  

E-Print Network (OSTI)

ONLINE PARTICLE PHYSICS INFORMATION 1.3. Particle Physics Information Platforms . . . . . . . . .14. Particle Physics Education and Outreach

Beringer, Juerg

2013-01-01T23:59:59.000Z

230

Review of Particle Physics  

E-Print Network (OSTI)

11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

231

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook  

E-Print Network (OSTI)

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook Edition 1.4 2007/2008 Contents 1 Introduction 7 1.1 Physics at Lancaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Organisation of Physics Teaching 15 2.1 Departmental Committees

Low, Robert

232

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook  

E-Print Network (OSTI)

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook For 3rd & 4th Year Students on Old . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Points of contact within the Physics Department . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Physics at Lancaster 18 2.1 Pastoral Care and Development

Low, Robert

233

Physical Protection  

Directives, Delegations, and Requirements

This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

2009-07-23T23:59:59.000Z

234

Physics Handbook  

Science Journals Connector (OSTI)

... mechanics, acoustics, optics, heat, electricity, magnetism and electro-magnetism, atomic and nuclear physics, and strength of materials, 120 to 128. Decimal numbers denote the sections and ... they should be recommended to use it with care and only in conjunction with other handbooks and encyclopaedias. The trouble is that too much has been attempted-a dictionary, ...

S. WEINTROUB

1968-10-19T23:59:59.000Z

235

Ultrafast single-electron transfer in coupled quantum dots driven by a few-cycle chirped pulse  

SciTech Connect

We theoretically study the ultrafast transfer of a single electron between the ground states of a coupled double quantum dot (QD) structure driven by a nonlinear chirped few-cycle laser pulse. A time-dependent Schrdinger equation without the rotating wave approximation is solved numerically. We demonstrate numerically the possibility to have a complete transfer of a single electron by choosing appropriate values of chirped rate parameters and the intensity of the pulse. Even in the presence of the spontaneous emission and dephasing processes of the QD system, high-efficiency coherent transfer of a single electron can be obtained in a wide range of the pulse parameters. Our results illustrate the potential to utilize few-cycle pulses for the excitation in coupled quantum dot systems through the nonlinear chirp parameter control, as well as a guidance in the design of experimental implementation.

Yang, Wen-Xing, E-mail: wenxingyang2@126.com [Department of Physics, Southeast University, Nanjing 210096 (China); Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Chen, Ai-Xi [Department of Applied Physics, School of Basic Science, East China Jiaotong University, Nanchang 330013 (China); Bai, Yanfeng [Department of Physics, Southeast University, Nanjing 210096 (China); Lee, Ray-Kuang [Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

2014-04-14T23:59:59.000Z

236

Cost effective nanostructured copper substrates prepared with ultrafast laser pulses for explosives detection using surface enhanced Raman scattering  

SciTech Connect

Ultrafast laser pulses induced surface nanostructures were fabricated on a copper (Cu) target through ablation in acetone, dichloromethane, acetonitrile, and chloroform. Surface morphological information accomplished from the field emission scanning electron microscopic data demonstrated the diversities of ablation mechanism in each case. Fabricated Cu substrates were utilized exultantly to investigate the surface plasmon (localized and propagating) mediated enhancements of different analytes using surface enhance Raman scattering (SERS) studies. Multiple utility of these substrates were efficiently demonstrated by collecting the SERS data of Rhodamine 6G molecule and two different secondary explosive molecules such as 5-amino-3-nitro-l,2,4-triazole and trinitrotoluene on different days which were weeks apart. We achieved significant enhancement factors of >10{sup 5} through an easily adoptable cleaning procedure.

Hamad, Syed [School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Podagatlapalli, G. Krishna; Soma, Venugopal Rao, E-mail: svrsp@uohyd.ernet.in, E-mail: soma-venu@yahoo.com [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Mohiddon, Md. Ahamad [Center for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India)

2014-06-30T23:59:59.000Z

237

Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots  

SciTech Connect

We report facile preparation of water dispersible CuS quantum dots (24 nm) and nanoparticles (511 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

Mary, K. A. Ann; Unnikrishnan, N. V., E-mail: nvu100@yahoo.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

2014-07-01T23:59:59.000Z

238

System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally  

DOE Patents (OSTI)

In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

Heebner, John E. (Livermore, CA)

2010-08-03T23:59:59.000Z

239

JOURNAL OF COMPUTATIONAL PHYSICS 132, 157166 (1997) ARTICLE NO. CP965604  

E-Print Network (OSTI)

JOURNAL OF COMPUTATIONAL PHYSICS 132, 157­166 (1997) ARTICLE NO. CP965604 A Generalized Particle). Then, if xp j there exists one and only one point tion in plasma physics, astrophysics, and molecular

Frey, Pascal

240

Progress at LAMPF (Los Alamos Meson Physics Facility), January--December 1989  

SciTech Connect

This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production.

Poelakker, K. (ed.)

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The effect of cluster formation on mass separation in binary molecular beams  

E-Print Network (OSTI)

The effect of cluster formation on mass separation in binary molecular beams Wei Li,a) M. J composition of a skimmed supersonic binary molecular beam originally consisting of a 20% neon/80% xenon. © 2000 American Institute of Physics. S0021-9606 00 01806-7 I. INTRODUCTION Supersonic molecular beam

Sibener, Steven

242

EMSL - Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

computing Resources and Techniques Molecular Science Computing - Sophisticated and integrated computational capabilities, including scientific consultants, software, Cascade...

243

Molecular vibration demonstrations  

Science Journals Connector (OSTI)

Molecular vibration demonstrations ... Two dynamic models that illustrate the normal-mode vibrations of the water and benzene molecules. ...

George Turrell; Robert Demol

1987-01-01T23:59:59.000Z

244

Experiments in Physics Physics 1291  

E-Print Network (OSTI)

of the Laboratory The laboratory experiments described in this manual are an important part of your physics course-3 Velocity, Acceleration, and g 35 1-4 Projectile Motion and Conservation of Energy 45 1-5 Conservation. Whenever possible, the material will have been discussed in lecture before you come to the laboratory

Columbia University

245

Experiments in Physics Physics 1291  

E-Print Network (OSTI)

and Conservation of Energy 97 1-9 Standing Waves 105 1-10 Specific Heat and Mechanical Equivalent of Heat 115 #12;#12;Introduction 1-0 General Instructions 1 Purpose of the Laboratory The laboratory experiments described in this manual are an important part of your physics course. Most of the experiments are designed to illustrate

Columbia University

246

Experiments in Physics Physics 1291  

E-Print Network (OSTI)

The laboratory experiments described in this manual are an important part of your physics course. Most-8 Projectile Motion and Conservation of Energy 97 1-9 Standing Waves 105 1-10 Specific Heat and Mechanical Equivalent of Heat 115 #12;#12;Introduction 1-0 General Instructions 1 Purpose of the Laboratory

Columbia University

247

Of Physics & Astronomy. MEDICAL PHYSICS  

E-Print Network (OSTI)

, Department of Cardiovascular Science: Academic contact: Dr John Fenner, O-floor, Room OU142 (Hallamshire of the University, and 0114 2713687 from outside, email j.w.fenner@sheffield.ac.uk Medical Physics office contact JWF - Dr John Fenner, Undergrad course director, RHH, O floor, OU142, Tel x 13687, j.w.fenner

Crowther, Paul

248

Physics Folklore  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Folklore Physics Folklore By Lynne Zielinski       Sometime after World War II physicists began to change their way of giving names to theoretical ideas. Before then, new ideas were given titles such as "special relativity theory" or "neutrons." A precursor of the new kinds of names came in 1953 when Murray Gell-Mann and Kazuhiko Hishijima decided to name one of the properties of subatomic particles "strangeness." Gell-Mann accelerated the trend in 1961 by calling his group-theoretic way of explaining the properties of particles "The Eightfold Way." Gell-Mann's crazy names finally reached the consciousness of the general public in 1964 when he described the particles involved in the next stage of his thinking as "quarks." p. 508, source B

249

Low-Temperature Ultrafast Mobility in Systems with Long-Range Repulsive Interactions: M. Hupalo,1  

E-Print Network (OSTI)

and that this is one of the best realizations of an outstanding prediction in theoretical physics, i.e., the ``devil's staircase'' (DS) [1]. As predicted 25 years ago in systems with long-range (LR) repulsive interactions

Zaluska-Kotur, Magdalena

250

Physical Protection  

Directives, Delegations, and Requirements

Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

2005-08-26T23:59:59.000Z

251

Physical Protection  

Directives, Delegations, and Requirements

This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

2005-08-26T23:59:59.000Z

252

Physical Society's Handbook of Scientific Instruments and Apparatus  

Science Journals Connector (OSTI)

... developmental biology, earth sciences, environmental biology, engineering sciences, mathematical sciences, molecular biology, physics, psychobiology, regulatory biology and systematic biology. Tenure of the grants ranges from one ... to five years, with an average length of 2 -2 years.

1954-04-03T23:59:59.000Z

253

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS  

E-Print Network (OSTI)

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS Updated: 7 Medina BIOLOGICAL SCIENCES Ecology and Evolutionary Biology (EEB) Molecular, Cell and Developmental Biology (MCD) Health Sciences MBRS/MARC/CAMP Pat Gross Laura Brogan Deb Millward CHEMISTRY & BIOCHEMISTRY

California at Santa Cruz, University of

254

Molecular Hydrogen Emission from Protoplanetary Disks  

E-Print Network (OSTI)

We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from protoplanetary disks, both in the ultraviolet (UV) and the near-infrared, but only if the central star has a strong UV excess radiation.

H. Nomura; T. J. Millar

2005-05-06T23:59:59.000Z

255

Physics and Astronomy Engineering/Physics Concentration  

E-Print Network (OSTI)

Physics and Astronomy Engineering/Physics Concentration Strongly recommended courses Credits Term Electromagnetic Fields & Waves 3 PHY 3230 Thermal Physics 3 PHY 4020 Computational Methods in Physics.) taken Grade PHY 4620 Optics 4 PHY 3211 Modern Physics II 3 PHY 4730 Analog Circuits 3 PHY 4640 Quantum

Thaxton, Christopher S.

256

Physics and Astronomy Radiation Safety Physics Concentration  

E-Print Network (OSTI)

Physics and Astronomy Radiation Safety Physics Concentration Strongly recommended courses Credits Environucleonics Lab 1 PHY 3211 Modern Physics II 3 PHY 3230 Thermal Physics 3 PHY 4330 Digital Electronics 3 PHY 4820 Medical Physics 3 CHE 1101 Intro. Chemistry I 3 CHE 1110 Intro. Chemistry I Lab 1 CHE 1102 Intro

Thaxton, Christopher S.

257

PHYSICS OF BURNING PHYSICS INACCESSIBLE TO  

E-Print Network (OSTI)

PHYSICS OF BURNING PLASMAS: PHYSICS INACCESSIBLE TO PRESENT FACILITIES FIRE Physics Workshop May 2000 F. Perkins and N. Sauthoff Princeton Plasma Physics Laboratory FIRE Workshop 1 May 2000 #12;OUTLINE · Introduction · Three Classes of Burning Plasma Physics inaccessable to contemporary tokamak

258

Department of Physics Department of Physics  

E-Print Network (OSTI)

Department of Physics Department of Physics Life Sciences Building 3101 S. Dearborn St. Chicago, IL 60616 312.567.3480 www.iit.edu/csl/physics Chair: Grant Bunder The Department of Physics offers B.S., M.S., and Ph.D. degrees in physics. Within the department, there are many opportunities for interdisciplinary

Heller, Barbara

259

314 Department of Physics Department of Physics  

E-Print Network (OSTI)

314 Department of Physics Department of Physics Physics, one of the basic sciences, has its origin led to the detailed understanding of a remarkable variety of physical phenomena. Our knowledge now comprehension of the physical world forms an impressive part of the intellectual and cultural heritage of our

Nagle, John F.

260

Physics (Phys) (Department of Physics and Engineering)  

E-Print Network (OSTI)

229Physics Physics (Phys) (Department of Physics and Engineering) McCormick Foundation PROFESSORSILU INSTRUCTOR CUMMING VISITING PROFESSOR BOLLER MAJORS A major in physics leading to a Bachelor of Science degree requires completion of 50 credits including the following: 1. Physics 111, 112, 113, 114, 210, 215

Dresden, Gregory

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Department of Physics Department of Physics  

E-Print Network (OSTI)

Department of Physics Department of Physics Life Sciences Building 3101 S. Dearborn St. Chicago, IL 60616 312.567.3480 www.iit.edu/csl/physics Chair: Christopher White The Department of Physics offers B.S., M.S., and Ph.D. degrees in physics. Within the department, there are many opportunities

Heller, Barbara

262

Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)  

SciTech Connect

Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

2013-08-28T23:59:59.000Z

263

Physics Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Applications Technetium-99m radioisotope generator developed at Brookhaven. Numerous physics-related programs at Brookhaven have yielded major advances in medicine and various technologies. Brookhaven's nuclear medicine program, which began in the 1950s, uses the Brookhaven Linac Isotope Producer to make radioisotopes for nuclear medicine diagnostics and treatment throughout the world. Today, more than 85 percent of all imaging examinations worldwide use one of the radioisotopes developed at Brookhaven. At Brookhaven's Center for Translational Neuroimaging, researchers can peer into a living brain through the use of various imaging modalities, including positron emission tomography (PET), magnetic resonance imaging (MRI), and optical imaging. Such research has led to a new understanding of

264

Kaon physics  

E-Print Network (OSTI)

At present, the main topics addressed by kaon physics are the unitarity test of CKM matrix via precision measurements of the Cabibbo angle as well as precision tests of discrete symmetries: in particular, study of possible CPT violations in a model-independent way through the Bell-Steinberger relation, or through the measurement of charge asymmetries. Other interesting topics are related to the test of predictions from chiral perturbation theory. Also status and prospects of the $K^\\pm \\to \\pi^\\pm\

B. Sciascia

2006-10-14T23:59:59.000Z

265

The distribution of cosmic-ray ionization rates in diffuse molecular clouds as probed by H3+  

Science Journals Connector (OSTI)

...Chemistry, astronomy and physics of H3+ organized and...cosmic-ray ionization rates in diffuse molecular...jhu.edu Department of Physics and Astronomy, Johns...assume that the ionization rate does not pass below some value set...

2012-01-01T23:59:59.000Z

266

Physics Topics - MST - UW Plasma Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Topics UW Madison Madison Symmetric Torus Physics Topics MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST...

267

Condensed Phase and Interfacial Molecular Sciences | U.S. DOE Office of  

Office of Science (SC) Website

Condensed Phase and Interfacial Molecular Sciences Condensed Phase and Interfacial Molecular Sciences Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Condensed Phase and Interfacial Molecular Sciences Print Text Size: A A A RSS Feeds FeedbackShare Page Condensed Phase and Interfacial Molecular Science (CPIMS) research emphasizes molecular understanding of chemical, physical, and electron-driven processes in aqueous media and at interfaces. Studies of reaction dynamics at well-characterized metal and metal-oxide surfaces and clusters lead to the development of theories on the molecular origins of

268

Particle Physics Booklet 2008  

E-Print Network (OSTI)

212 25. Accelerator physics of colliders ? 26. High-energythe full Review. PARTICLE PHYSICS BOOKLET TABLE OF CONTENTSrev. ) Summary Tables of Particle Physics Gauge and Higgs

et al., C. Amsler

2008-01-01T23:59:59.000Z

269

Center for Beam Physics  

E-Print Network (OSTI)

for Heavy Ion Fusion," Research Trends in Physics, La JollaInternational School of Physics, New York, New York (1992),Professor and Chairman Physics Department University of

Chattopadhyay, S.

2010-01-01T23:59:59.000Z

270

Engineering Molecular Transformations  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Molecular Transformations for Sustainable Energy Conversion Matthew Neurock* Departments of Chemical Engineering and Chemistry, UniVersity of Virginia, CharlottesVille,...

271

Accelerated Molecular Dynamics Methods  

Energy.gov (U.S. Department of Energy (DOE))

This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

272

Physics Illinois Undergraduate Programs  

E-Print Network (OSTI)

Physics Illinois Undergraduate Programs Department of Physics College of Engineering University to undergraduate education. Over the last 15 years, in collaboration with our nationally recognized Physics Education Research Group, our faculty has reinvented the way undergraduate physics courses are taught

Gilbert, Matthew

273

Physics 6321 Coastal oceanography  

E-Print Network (OSTI)

Physics 6321 Coastal oceanography · Instructor: Dr. Iakov Afanassiev · Office: Physics C-4065 · email: yakov@physics.mun.ca · Course Times: TBD Room TBD · Office Hours: unlimited · Web Page: http://www.physics

deYoung, Brad

274

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

275

People's Physics Book The People's Physics Book  

E-Print Network (OSTI)

#12;People's Physics Book The People's Physics Book Authors James H. Dann, Ph.D. James J. Dann. All rights reserved. Textbook Website http://scipp.ucsc.edu/outreach/index2.html #12;People's Physics) "Each discovery, each advance, each increase in the sum of human riches, owes its being to the physical

California at Santa Cruz, University of

276

Physics Procedia 00 (2013) 16 Physics Procedia  

E-Print Network (OSTI)

Physics Procedia 00 (2013) 1­6 Physics Procedia Educating the next generation of Computational Physicists Joan Adler Physics Department, Technion -IIT, Haifa, Israel, 32000 Abstract Many "senior" Computational Physics researchers began their careers perched on of the other vertices of the Landau triangle

Adler, Joan

277

People's Physics Book The People's Physics Book  

E-Print Network (OSTI)

People's Physics Book The People's Physics Book Authors James H. Dann, Ph.D. James J. Dann. All rights reserved. Textbook Website http://scipp.ucsc.edu/outreach/index2.html #12;People's Physics) "Each discovery, each advance, each increase in the sum of human riches, owes its being to the physical

California at Santa Cruz, University of

278

Physics and Astronomy Chemical Physics Concentration  

E-Print Network (OSTI)

Physics and Astronomy Chemical Physics Concentration Strongly recommended courses Credits Term Dept Fields & Waves 3 PHY 3230 Thermal Physics 3 PHY 4640 Quantum Mechanics 3 PHY 4020 Computational Methods in Physics & Engineering 3 PHY 4330 Digital Electronics 3 CHE 1101 Intro. Chemistry I 3 CHE 1110 Intro

Thaxton, Christopher S.

279

Physics Procedia 00 (2013) 15 Physics Procedia  

E-Print Network (OSTI)

Physics Procedia 00 (2013) 1­5 Physics Procedia Educating the next generation of Computational Physicists Joan Adler Physics Department, Technion -IIT, Haifa, Israel, 32000 Abstract Many "senior" Computational Physics researchers began their careers perched on of the other vertices of the Landau triangle

Adler, Joan

280

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook  

E-Print Network (OSTI)

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook For 4th Year Students only on Old Regulations Old Edition 1.1 2012/2013 1 #12;Contents 1 Introduction 6 1.1 Points of contact within the Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Physics at Lancaster 15 2.1 Pastoral Care and Development

Low, Robert

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook  

E-Print Network (OSTI)

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook For 1st & 2nd Year Students on New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Points of contact within the Physics Department . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 #12;2 Physics at Lancaster 26 2.1 Pastoral Care and Development

Low, Robert

282

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook  

E-Print Network (OSTI)

DEPARTMENT of PHYSICS Physics Undergraduate Courses Handbook For 1st , 2nd & 3rd Year Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Points of contact within the Physics Department . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 #12;2 Physics at Lancaster 26 2.1 Pastoral Care and Development

Low, Robert

283

Nobel Prize in Physics 1943  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 The prize was reserved and awarded in 1944 "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton" Otto Stern Button USA Button born 1888 (Sorau, then Germany), died 1969 Button CA - Carnegie Institute of Technology (Carnegie Mellon University), Pittsburgh, Pennsylvania, USA Button AA - University of Frankfurt am Main, Frankfurt, Germany & University of Rostock, Rostock, Germany & University of Hamburg, Hamburg, Germany Button WA - University of Frankfurt am Main & University of Rostock & University of Hamburg Button Additional Information *Explanation of CA, AA & WA* Additional Information: Nobel e-Museum Prize in Physics 1943 Swiss Nobels: Otto Stern Carnegie Mellon Nobel Laureates

284

The origin of ultra-fast outflows in AGN: Monte-Carlo simulations of the wind in PDS 456  

E-Print Network (OSTI)

Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3-D Monte-Carlo code for radiation transport. The code only handles highly ionised ions, but the data show the ionisation state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass loss rate in the wind is around 30% of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contributio...

Hagino, Kouichi; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

2014-01-01T23:59:59.000Z

285

In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching  

SciTech Connect

All-optical switching has myriad applications in optoelectronics, optical communications, and quantum information technology. To achieve ultrafast optical switching in a compact yet versatile setup, we demonstrate distinct sets of two-dimensional (2D) broadband up-converted multicolor arrays (BUMAs) in a thin type-I ?-barium-borate crystal with two noncollinear near-IR femtosecond pulses at various phase-matching conditions. The unique interaction mechanism is revealed as quadratic spatial solitons (QSSs)-coupled cascaded four-wave mixing (CFWM), corroborated by numerical calculations of the governing phase-matching conditions. Broad and continuous spectral-spatial tunability of the 2D BUMAs are achieved by varying the time delay between the two incident pulses that undergo CFWM interaction, rooted in the chirped nature of the weak white light and the QSSs generation of the intense fundamental beam. The control of 2D BUMAs is accomplished via seeding a weak second-harmonic pulse in situ to suppress the 2D arrays with polarization dependence on the femtosecond timescale that matches the control pulse duration of ?35 fs. A potential application is proposed on femtosecond all-optical switching in an integrated wavelength-time division multiplexing device.

Liu, Weimin; Wang, Liang; Fang, Chong, E-mail: Chong.Fang@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

2014-03-17T23:59:59.000Z

286

Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing  

SciTech Connect

The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boron combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: We study microstructures and properties in low-carbon Al-killed enamel steel. Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. Manganese improves hydrogen trapping ability but decrease deep-drawing ability. Boron improves both hydrogen trapping ability and deep-drawing ability. Both excellent mechanical properties and fish-scale resistance can be matched.

Dong, Futao, E-mail: dongft@sina.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China)

2013-10-15T23:59:59.000Z

287

Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives  

SciTech Connect

We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, sample quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.

Whitley, Von H [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Eakins, Dan E [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

288

Hydroxide Hydrogen Bonding: Probing the Solvation Structure through Ultrafast Time Domain Raman Spectroscopy  

Science Journals Connector (OSTI)

(6-8) It has also been supported by neutron scattering experiments that suggest coordination numbers between 3.5 and 5.(9, 10) In addition, CarParrinello molecular dynamics (CPMD) calculations support the hypercoordination picture, suggesting a concentration and counterion-dependent distribution of 35 water molecules bonded to the hydroxide oxygen. ... (20, 30) The 15 fs pulses were generated by a Kerr-lens mode-locked Ti:Sapphire laser with center wavelength of 800 nm, an 80 nm bandwidth, and an 800 mW average power. ... energy structure on the potential energy surface, because the water drifts to become attached to one of the first solvation shell waters. ...

Ismael A. Heisler; Kamila Mazur; Stephen R. Meech

2011-04-27T23:59:59.000Z

289

Publications, Oxide Molecular Beam Epitaxy Group, Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications In Press M. P. M. Dean, G. Dellea, R. S. Springell, F. Yakhou-Harris, K. Kummer, N. B. Brookes, X. Liu, Y. Sun, J. Strle, T. Schmitt, L. Braicovich, G. Ghiringhelli, I. Bozovic and J. P. Hill. "Persistence of magnetic excitations in La2-xSrxCuOP4 from the undoped insulator to the heavily overdoped non-superconducting metal." Nature Materials (Submitted 2013). In press. J. Wu, O. Pelleg, G. Logvenov, A. T. Bollinger, Y. Sun, G. S. Boebinger, M. Vanevic, Z. Radovic and I. Bozovic. "Anomalous (in)dependence of interface superconductivity on carrier density." Nature Materials (Submitted 2012). In press. G. Dubuis, A. T. Bollinger, D. Pavuna and I. Bozovic. "On Field Effect Studies and Superconductor-Insulator Transition in High-Tc Cuprates."

290

Laboratories, Oxide Molecular Beam Epitaxy Group, Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories: Photo Tour Laboratories: Photo Tour MBE Laboratory MBE Laboratory MBE Chamber MBE Chamber Temperature Controllers MBE Computers and Servers Pneumatic Hoses Transport between MBE Laboratory and Nano-Lithography Laboratory Backside of MBE chamber during growth, lit by Nano-Lithography Laboratory Nano-Lithography Laboratory Processing Chamber Laminar Flow Hood Mask Aligner Profilometer Probe Station Wire Bonder X-Ray Diffraction and Chemistry Laboratory X-Ray Diffraction System X-Ray Diffraction System X-Ray Diffraction System Chemistry Laboratory Chemistry Laboratory Mutual Inductance, Transport and Field Effect Laboratory Field Effect Measurement system Liquid Helium-4 Dipstick for Mutual Inductance Transport Measurement System COMBI Hall Effect, COMBI Transport and Mutual Inductance Measurements Laboratory

291

Computational challenges in atomic, molecular and optical physics  

Science Journals Connector (OSTI)

...Issue New science from high-performance computing organized by Richard Catlow...few-body systems where use of high-performance computing (HPC) is currently making...bose-einstein condensation|high-performance computing| Computational challenges...

2002-01-01T23:59:59.000Z

292

Molecular Imaging: Physics and Bioapplications of Quantum Dots  

E-Print Network (OSTI)

, the Fermi-Dirac statistics defines the occupancy of each state and, in particular, which energy levels the tech- niques used to interface these inorganic materials to the bio- logical world. It concludes numbers of extremely closely spaced electronic energy levels, E, that, in effect, blend together to form

Michalet, Xavier

293

Computational challenges in atomic, molecular and optical physics  

Science Journals Connector (OSTI)

...laboratory experiments on a xenon cluster (of approx- imately...occurred with highly charged xenon ions (up to Xe40+ ) emitted...to breathing and quadrupole oscillations have been studied as a function...surements for scissors-mode oscillation (Marago et al. 2000) and...

2002-01-01T23:59:59.000Z

294

Insuperable difficulties: Einstein's statistical road to molecular physics  

E-Print Network (OSTI)

for History and Foundations of Science, Utrecht University, PO Box 80.000, 3508 TA Utrecht, the Netherlands­1904. In these papers, Einstein developed the foundations of a theoretical program that he applied to concrete problems

Seevinck, Michiel

295

Spectroscopy of complex molecular systems: Physics on an exciton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jasper Knoester Zernike Institute for Advanced Materials, University of Groningen, Netherlands jknoester Abstract: The concept of excitons, collective excited states, is...

296

Molecular Science Computing Policies | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Microfabrication Mass Spectrometry Microscopy Molecular Science Computing NMR and EPR Spectroscopy and Diffraction Subsurface Flow and Transport Molecular Science Computing...

297

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Electron Trapping by Molecular Vibration Print Wednesday, 27 April 2005 00:00 In photoelectron spectroscopy experiments performed at the...

298

Molecular heat pump  

E-Print Network (OSTI)

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

299

Physics & Astronomy Degree options  

E-Print Network (OSTI)

148 Physics & Astronomy Degree options BSc (Single Honours Degrees) Astrophysics Physics MPhys AND HL7 in Mathematics Physics and Astronomy (Gateway and International Gateway) Entry For UK students. Physics&Astronomy Subject enquiries Dr Kenny Wood E: physics@st-andrews.ac.uk Features * The nature

Brierley, Andrew

300

B Physics (Experiment)  

E-Print Network (OSTI)

In past few years the flavor physics made important transition from the work on confirmation the standard model of particle physics to the phase of search for effects of a new physics beyond standard model. In this paper we review current state of the physics of b-hadrons with emphasis on results with a sensitivity to new physics.

Michal Kreps

2010-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Physics Resources for Teachers  

E-Print Network (OSTI)

Physics Resources for Teachers University of Wisconsin ­ Madison Department of Physics 1150 University Ave. Madison, WI 53706 wonders@physics.wisc.edu (608) 262-2927 Plasma Physics Web Resources Center Plasma Physics Lab http://science-education.pppl.gov/ Coalition for Plasma Science http

Collar, Juan I.

302

Department of Physics High Energy Physics Group  

E-Print Network (OSTI)

Department of Physics High Energy Physics Group Electrical Engineer (Job ref: 0004) The High Energy and experience. A job description and an application form can be obtained from http

303

Structural Molecular Biology, SSRL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Small Angle X-ray Scattering Workshop The SSRL Structural Molecular Biology Group hosted a 3-day comprehensive workshop on the use of non-crystalline small-angle...

304

1. Physical constants 1 1. PHYSICAL CONSTANTS  

E-Print Network (OSTI)

1. Physical constants 1 1. PHYSICAL CONSTANTS Table 1.1. Reviewed 2011 by P.J. Mohr (NIST). Mainly in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; the corresponding also P.J. Mohr and D.B. Newell, "Resource Letter FC-1: The Physics of Fundamental Constants," Am. J

305

Physics 4: Introductory Physics Electromagnetism and Light  

E-Print Network (OSTI)

Physics 4: Introductory Physics Electromagnetism and Light Professor Jeffrey D. Richman Department: Electromagnetism and Light Welcome to Physics 4! What is your goal in life? If it is to become an engineer or to pursue a career in science, this is a key class for you. Understanding electromagnetism and light

Fygenson, Deborah Kuchnir

306

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines  

E-Print Network (OSTI)

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines running title: Channel Capacity of Molecular Machines Thomas D. Schneider version = 5.76 of ccmm.tex 2004 Feb 3 Version 5.67 was submitted 1990 December 5 Schneider, T. D. (1991). Theory of molecular machines. I. Channel capacity

Schneider, Thomas D.

307

Lowx physics  

Science Journals Connector (OSTI)

...experiment led to the concept of the nuclear atom (Geiger & Marsden 1909...stronger y dependence at the cost of involving derivatives of r...collider physics. Cambridge Mono- graphs on Particle Physics, Nuclear Physics and Cosmology, vol...

2001-01-01T23:59:59.000Z

308

High Energy Physics Division, ANL Lattice QCD  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum chromodynamics(QCD) de- scribes Hadrons and their strong inter- actions. Hadrons consist of quarks held together by gluons. Lattice QCD is QCD on a 4-dimensional (space-time) lattice. Allows numerical simulation of the functional integrals which define this quantum field theory, and non-perturbative QCD calculations. Physics - properties of hadrons (masses, etc.), hadronic matrix elements (HEP), hadronic matter at finite temperature and/or densities (RHIC, early universe, neutron stars). 2 Computational Methods * Functional integral is mapped to the partition function for a classical sys- tem. Molecular-dynamics methods are used to calculate the observables for this classical system.

309

Investigation of ultrafast photothermal surface expansion and diffusivity in GaAs via laser-induced dynamic gratings  

SciTech Connect

This thesis details the first direct ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples over a wide range of temperatures. By utilizing a 90 fs ultraviolet probe with visible excitation beams, the effects of interband saturation and carrier dynamics become negligible; thus lattice expansion due to heating and subsequent contraction caused by cooling provided the dominant influence on the probe. At room temperature a rise due to thermal expansion was observed, corresponding to a maximum net displacement of {approximately} 1 {Angstrom} at 32 ps. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, thus allowing a determination of the rate of expansion as well as the surface thermal diffusivity, D{sub S}. By varying the fringe spacing of the grating, this technique has the potential to separate the signal contributions to the expansion of the lattice in the perpendicular and parallel directions. In the data presented here a large fringe spacing was used, thus the dominant contribution to the rising edge of the signal was expansion perpendicular to the surface. Comparison of he results with a straightforward thermal model yields good agreement over a range of temperatures (20--300{degrees}K). Values for D{sub S} in GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, D{sub S} were determined to be up to an order of magnitude slower than the bulk diffusivity due to increased phonon boundary scattering. The applicability and advantages of the TG technique for studying photothermal and photoacoustic phenomena are discussed.

Pennington, D.M.

1992-04-01T23:59:59.000Z

310

Antibiotic assisted molecular ion transport across a membrane in real time  

E-Print Network (OSTI)

Antibiotic assisted molecular ion transport across a membrane in real time Jian Liu, Xiaoming Shang of various chemical and physical phenomena as well as applications such as solar energy conversion, catalysis

Eisenthal, Kenneth B.

311

Saturday Morning Physics - Talks  

NLE Websites -- All DOE Office Websites (Extended Search)

are now asking. pdf print version (pdf) Further information online Contemporary Physics Education Project The Particle Adventure Particle Physics - Education and Outreach...

312

B Physics: Theory Overview  

E-Print Network (OSTI)

This is an overview of B physics that can be done at the LHC with the purpose of searching for new physics.

David London

2012-07-19T23:59:59.000Z

313

Project X: Physics Opportunities  

E-Print Network (OSTI)

Part 2 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physics. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, hadron structure, hadron spectroscopy, and lattice-QCD calculations. Part 1 is available as arXiv:1306.5022 [physics.acc-ph] and Part 3 is available as arXiv:1306.5024 [physics.acc-ph].

Andreas S. Kronfeld; Robert S. Tschirhart; Usama Al-Binni; Wolfgang Altmannshofer; Charles Ankenbrandt; Kaladi Babu; Sunanda Banerjee; Matthew Bass; Brian Batell; David V. Baxter; Zurab Berezhiani; Marc Bergevin; Robert Bernstein; Sudeb Bhattacharya; Mary Bishai; Thomas Blum; S. Alex Bogacz; Stephen J. Brice; Joachim Brod; Alan Bross; Michael Buchoff; Thomas W. Burgess; Marcela Carena; Luis A. Castellanos; Subhasis Chattopadhyay; Mu-Chun Chen; Daniel Cherdack; Norman H. Christ; Tim Chupp; Vincenzo Cirigliano; Pilar Coloma; Christopher E. Coppola; Ramanath Cowsik; J. Allen Crabtree; Andr de Gouva; Jean-Pierre Delahaye; Dmitri Denisov; Patrick deNiverville; Ranjan Dharmapalan; Alexander Dolgov; Georgi Dvali; Estia Eichten; Jrgen Engelfried; Phillip D. Ferguson; Tony Gabriel; Avraham Gal; Franz Gallmeier; Kenneth S. Ganezer; Susan Gardner; Douglas Glenzinski; Stephen Godfrey; Elena S. Golubeva; Stefania Gori; Van B. Graves; Geoffrey Greene; Cory L. Griffard; Ulrich Haisch; Thomas Handler; Brandon Hartfiel; Athanasios Hatzikoutelis; Ayman Hawari; Lawrence Heilbronn; James E. Hill; Patrick Huber; David E. Jaffe; Christian Johnson; Yuri Kamyshkov; Daniel M. Kaplan; Boris Kerbikov; Brendan Kiburg; Harold G. Kirk; Andreas Klein; Kyle Knoepfel; Boris Kopeliovich; Vladimir Kopeliovich; Joachim Kopp; Wolfgang Korsch; Graham Kribs; Ronald Lipton; Chen-Yu Liu; Wolfgang Lorenzon; Zheng-Tian Lu; Naomi C. R. Makins; David McKeen; Geoffrey Mills; Michael Mocko; Rabindra Mohapatra; Nikolai V. Mokhov; Guenter Muhrer; Pieter Mumm; David Neuffer; Lev Okun; Mark A. Palmer; Robert Palmer; Robert W. Pattie Jr.; David G. Phillips II; Kevin Pitts; Maxim Pospelov; Vitaly S. Pronskikh; Chris Quigg; Erik Ramberg; Amlan Ray; Paul E. Reimer; David G. Richards; Adam Ritz; Amit Roy; Arthur Ruggles; Robert Ryne; Utpal Sarkar; Andy Saunders; Yannis K. Semertzidis; Anatoly Serebrov; Hirohiko Shimizu; Arindam K. Sikdar; Robert Shrock; Pavel V. Snopok; William M. Snow; Aria Soha; Stefan Spanier; Sergei Striganov; Zhaowen Tang; Lawrence Townsend; Jon Urheim; Arkady Vainshtein; Richard Van de Water; Ruth S. Van de Water; Richard J. Van Kooten; Bernard Wehring; Lisa Whitehead; Robert J. Wilson; Elizabeth Worcester; William C. Wester III; Albert R. Young; Geralyn Zeller

2013-06-20T23:59:59.000Z

314

Office of Physical Protection  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

315

ORISE: Health physics services  

NLE Websites -- All DOE Office Websites (Extended Search)

Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas...

316

Carl A. Gagliardi PHYSICS  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Society Joseph B. Natowitz CHEMISTRY Heavy-ion reaction dynamics and thermodynamics - ACS Award in Nuclear Chemistry - Fellow, American Physical Society Ralf Rapp...

317

CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CHEMISTRY DEPARTMENT ORGANIZATION CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics Associate Laboratory Director Berndt Mueller Basic Energy Sciences (BES) Associate Laboratory Director James Misewich Financial Support Angela Wefer Department Chair Alexander L. Harris Gregory Hall, Deputy Chair Jean Petterson, Sr. Administrative Assistant Quality Assurance Rep. Charles Gortakowski *Assoc. Laser Safety Officer (Jack Preses) Berndt Mueller Training Coordinator/ Records Management (Linda Sallustio) Dept. Systems Support & Cyber Security POC Mahendra Kahanda Berndt Mueller Basic Energy Sciences (BES) Nuclear & Particle Physics Neutrino & Nuclear Chemistry Minfang Yeh Gas-Phase Molecular Dynamics Gregory Hall Electron and Photo-

318

Atomic Physics and Thermonuclear Fusion Research  

Science Journals Connector (OSTI)

Presently thermonuclear fusion research is faced with a number of atomic and molecular physics problems depending on the type of high-temperature plasma investigated. The present article discusses some particular atomic physics aspects in connection with magnetically confined plasmas (Tokamaks, Stellarators): (1) rate equations for density, momentum and energy with application to plasmas; (2) initial phase of Tokamak plasmas; (3) influence of impurity radiation on operating conditions of fusion plasmas in general and on Tokamak plasmas in particular; (4) influence of atomic elementary reactions on thermodynamic plasma properties; (5) level structures of highly ionized atoms; (6) spectroscopic diagnostic problems.

H W Drawin

1981-01-01T23:59:59.000Z

319

SUPPORTING INFORMATION Molecular Characterization of Organosulfates in Organic  

E-Print Network (OSTI)

of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan collected on the roof of building of the department of Environmental Science & Engineering, Fudan University, USA c Physical Sciences Division, d William R. Wiley Environmental Molecular Sciences Laboratory

Nizkorodov, Sergey

320

Theoretical Determination of the Dissociation Energy of Molecular Hydrogen  

E-Print Network (OSTI)

Theoretical Determination of the Dissociation Energy of Molecular Hydrogen Konrad Piszczatowski and Computational Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway, Department Physics, University of Warsaw, Hoza 69, 00-681 Warsaw, Poland Abstract The dissociation energy

Pachucki, Krzysztof

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Physics of Life: one molecule at a time  

E-Print Network (OSTI)

The esteemed physicist Erwin Schroedinger, whose name is associated with the most notorious equation of quantum mechanics, also wrote a brief essay entitled 'What is Life?', asking: 'How can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?' The 60+ years following this seminal work have seen enormous developments in our understanding of biology on the molecular scale, physics playing a key role in solving many central problems through the development and application of new physical science techniques, biophysical analysis and rigorous intellectual insight. The early days of single molecule biophysics research was centred around molecular motors and biopolymers, largely divorced from a real physiological context. The new generation of single molecule bioscience investigations has much greater scope, involving robust methods for understanding molecular level details of the most fundamental biological processes in far more r...

Leake, M C

2012-01-01T23:59:59.000Z

322

Physical Biosciences | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Physical Biosciences Physical Biosciences Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Physical Biosciences Print Text Size: A A A RSS Feeds FeedbackShare Page This research area combines experimental and computational tools from the physical sciences with biochemistry and molecular biology. A fundamental understanding of the complex processes that convert and store energy in living systems is sought. Research supported includes studies that investigate the mechanisms by which energy transduction systems are assembled and maintained, the processes that regulate energy-relevant

323

PHYSICS 106 Summer 2011  

E-Print Network (OSTI)

PHYSICS 106 Summer 2011 Instructor: Stephanie Magleby (sam25@physics.byu.edu) Office Hours: MWF 2 -3 pm, N311 ESC Office Phone (physics): 422-7056 Office Phone (engineering): 422-8319 TA: Corbin Jacobs [corbinjacobs@gmail.com] Email Corbin with any reading quiz questions or Mastering Physics issues

Hart, Gus

324

Aspects of Unparticle Physics  

E-Print Network (OSTI)

We review some theoretical and experimental issues in unparticle physics, focusing mainly on collider signatures.

Arvind Rajaraman

2008-09-29T23:59:59.000Z

325

Fundamentals of Plasma Physics  

E-Print Network (OSTI)

Fundamentals of Plasma Physics James D. Callen University of Wisconsin, Madison June 28, 2006 #12;PREFACE Plasma physics is a relatively new branch of physics that became a mature science over the last half of the 20th century. It builds on the fundamental areas of classical physics: mechanics

Callen, James D.

326

HNCO in molecular clouds  

SciTech Connect

In a survey of 18 molecular clouds, HNCO J/sub K/-1K1..-->..J'/sub K/'-1K'1 = 5/sub 05/..-->..4/sub 05/ and 4/sub 04/..-->..3/sub 03/ emission was etected in seven clouds, and possibly in one other. Emission in these transitions originates in high-density regions (n> or approx. =10/sup 6/ cm/sup -3/). The molecule's excitation requirements allow us to derive limits to excitation temperatures an optical depths. We discuss the possibility of clumping with respect to the beam and compare our results with data from other molecular species. The HNCO emission from Sgr A is an ordder of magnitude larger than the other detected sources as is the ratio ..delta..T +- /sub A/(HNCO 5/sub 05/..-->..4/sub 04/)/..delta..T +- /sub A/(C/sup 18/O 1..-->..0). HNCO is probably a constituent of most molecular clouds.

Jackson, J.M.; Armstrong, J.T.; Barrett, A.H.

1984-05-15T23:59:59.000Z

327

Hydrogen bond rearrangements and the motion of charge defects in water viewed using multidimensional ultrafast infrared spectroscopy  

E-Print Network (OSTI)

Compared with other molecular liquids, water is highly structured due to its ability to form up to four hydrogen bonds to its nearest neighbors, resulting in a tetrahedral network of molecules. However, this network is ...

Roberts, Sean T. (Sean Thomas)

2010-01-01T23:59:59.000Z

328

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

쭺-¶ 쭺-¶ Particle Physics Education Sites ¡]¥H¤U¬°¥~¤åºô¯¸¡^ quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top Introduction: The Particle Adventure - an interactive tour of particle physics for everyone: the basics of theory and experiment. Virtual Visitor Center of the Stanford Linear Accelerator Center. Guided Tour of Fermilab, - overviews of several aspects of Particle Physics. Also check out Particle Physics concepts. Probing Particles - a comprehensive and straight-forward introduction to particle physics. Big Bang Science - approaches particle physics starting from the theoretical origin of the universe.

329

The molecular universe  

Science Journals Connector (OSTI)

......astrochemistry. Molecules play a fundamental role in many regions...astronomical chemical engine would simply grind to...the difference between diesel and petrol engines...need a vast supply of fundamental data on atomic, molecular...come. Molecules play a fundamental role in many regions......

Helen J Fraser; Martin R S McCoustra; David A Williams

2002-04-01T23:59:59.000Z

330

POLYMERSYNTHESIS& MOLECULAR/SOLUTION  

E-Print Network (OSTI)

/POSTDOC 404 GRAD/POSTDOC 405 GRAD 406 DARKENEDROOM 419A MOLECULAR BIOLOGY 419 HOTLAB 422BA MICROBIOLOGY 422B memory Sachin Mali and Eric Ouellette, Ph.D. students (Gilbert Lab): Demo of Instron and research explanation Shiril Sivan, Ph.D. student (Gilbert Lab): Demonstration of Hirox microscope, and imaging

Mather, Patrick T.

331

Molecular Squares as Molecular Sieves: Size-Selective Transport Through  

E-Print Network (OSTI)

Molecular Squares as Molecular Sieves: Size-Selective Transport Through Porous-Membrane squaresº: cyclic structures typically featuring metal-ion cor- ners and difunctional bridging ligands processes: size-selective molecular transport from a guest-containing solution to one initially free

332

Physics | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics ORNL Physics More Science Home | Science & Discovery | More Science | Physics SHARE Physics Bottom view of the 25 million volt tandem electrostatic accelerator of the Holifield Heavy Ion Research Facility. Physics researchers at ORNL seek to answer fascinating questions about our Universe: What are the nuclear reactions that drive stellar explosions? How does nuclear matter organize itself? What are the properties of nuclear interactions? Why is there more matter than antimatter in the universe? Is the neutrino its own antiparticle? What are the properties of matter that existed just after the Big Bang? Our research staff address these questions by developing experimental techniques and detector systems, performing experiments at national and

333

Molecular Gas in Early-type Galaxies  

E-Print Network (OSTI)

toward the center (first seen in the molecular gas in A+3.4 Molecular Gas Mass . . . . . . .of the molecular gas . . . . . . . . . . 2.4.3 Mass of

Alatalo, Katherine Anne

2012-01-01T23:59:59.000Z

334

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular Interactions  

E-Print Network (OSTI)

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular and physical chemistry Course description and rationale CHE685 is a graduate-level organic chemistry course. These two courses focus on physical organic chemistry, which deals with the structure and reactivity

Mather, Patrick T.

335

LINKER-FREE MOLECULAR WIRES  

Science Journals Connector (OSTI)

STRINGING CONJUGATED organic compounds between two electrodes via direct metal-carbon bonds rather than via linking groups will likely change the way molecular electronic circuits are wired. Although circuits made of molecular building blocks are not ...

LAUREN WOLF

2011-10-17T23:59:59.000Z

336

Cavity-enhanced field-free molecular alignment at high repetition rate  

E-Print Network (OSTI)

Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers to studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order hamonic generation with aligned molecules in a gas jet at 154 MHz repetition rate using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the int...

Benko, Craig; Allison, Thomas K; Labaye, Franois; Ye, Jun

2015-01-01T23:59:59.000Z

337

Viscosity-average molecular weight  

Science Journals Connector (OSTI)

n .... An averaged molecular weight for high polymers that relates most closely to measurements of dilute-solution viscosities ...

2007-01-01T23:59:59.000Z

338

Skipping toward Personalized Molecular Medicine  

Science Journals Connector (OSTI)

"Personalized molecular medicine." As with other catchy terms for big ideas, such as "reversing global warming" and "renewable energy," the concept of personalized molecular medicine is certainly important, but the path to achieving it is far from clear. When such phrases are considered, definitions... Personalized molecular medicine. As with other catchy terms for big ideas, such as reversing global warming and renewable energy, the concept of personalized molecular medicine is certainly important, but the path to achieving it is far from clear. ...

Hoffman E.P.

2007-12-27T23:59:59.000Z

339

Committee on Atomic, Molecular, and Optical Sciences (CAMOS)  

SciTech Connect

The Committee on Atomic, Molecular, and Optical Sciences is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences -- National Research Council. The atomic, molecular, and optical (AMO) sciences represent a broad and diverse field in which much of the research is carried out by small groups. These groups generally have not operated in concert with each other and, prior to the establishment of CAMOS, there was no single committee or organization that accepted the responsibility of monitoring the continuing development and assessing the general public health of the field as a whole. CAMOS has accepted this responsibility and currently provides a focus for the AMO community that is unique and essential. The membership of CAMOS is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include atomic physics, molecular science, and optics. A special effort has been made to include a balanced representation from the three subfields. (A roster is attached.) CAMOS has conducted a number of studies related to the health of atomic and molecular science and is well prepared to response to requests for studies on specific issues. This report brief reviews the committee work of progress.

Not Available

1992-01-01T23:59:59.000Z

340

Probing new physics with flavor physics (and probing flavor physics with new physics)  

E-Print Network (OSTI)

This is a written version of a series of lectures aimed at graduate students and postdoctoral fellows in particle theory/string theory/particle experiment familiar with the basics of the Standard Model. We begin with an overview of flavor physics and its implications for new physics. We emphasize the "new physics flavor puzzle". Then, we give four specific examples of flavor measurements and the lessons that have been (or can be) drawn from them: (i) Charm physics: lessons for supersymmetry from the upper bound on $\\Delta m_D$. (ii) Bottom physics: model independent lessons on the KM mechanism and on new physics in neutral B mixing from $S_{\\psi K_S}$. (iii) Top physics and beyond: testing minimal flavor violation at the LHC. (iv) Neutrino physics: interpreting the data on neutrino masses and mixing within flavor models.

Yosef Nir

2007-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Physics Flash Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Links Jobs in Physics Human Resources Working at Los Alamos Los Alamos resources To read past issues, please see the: 2012 archive page 2011 archive page December 2013 | In...

342

Elementary Reactor Physics  

Science Journals Connector (OSTI)

... THERE are few subjects which have developed at the rate at which reactor physics and ... physics and reactor theory have done. This, of course, is largely due to the circumstances in ...

J. F. HILL

1962-02-10T23:59:59.000Z

343

Physics, complexity and causality  

Science Journals Connector (OSTI)

... physics theory that explains the nature of, or even the existence of, football matches, teapots, or jumbo-jet aircraft. The human mind is physically based, but there is ...

George F. R. Ellis

2005-06-08T23:59:59.000Z

344

Physics 151 Lecture 1 Physics 207: Lecture 1, Pg 1  

E-Print Network (OSTI)

Page 1 Physics 151 ­ Lecture 1 Physics 207: Lecture 1, Pg 1 Physics 207, Sections: 301/601Physics 207, Sections: 301/601 ­­ 314/614314/614 General Physics IGeneral Physics I MichaelMichael Winokur of the courseScope of the course Begin chapter 1Begin chapter 1 Homepage:Homepage: http://romano.physics

Winokur, Michael

345

NEWTON's Molecular Biology References  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology References Molecular Biology References Do you have a great reference link? Please click our Ideas page. Featured Reference Links: The Vitual Museum of Bacteria The Vitual Museum of Bacteria Visit the virtual museum of bacteria to learn more about bacteria and germs! This site brings together many links on bacteria, bacteriology, and related topics available on the web. It also provides crystal-clear information about many aspects of bacteria. The American Society of Cell Biology Cell Biology Educational Resources This site, sponsered by the American Society of Cell Biology, provides additional web links to everything from, general educational sites, to biology course materials, to teaching tools and more. National Center for Biotechnology Information National Center for Biotechnology Information

346

Physical Probability Patrick Maher  

E-Print Network (OSTI)

Physical Probability Patrick Maher University of Illinois at Urbana-Champaign October 13, 2007 ABSTRACT. By "physical probability" I mean the empirical concept of probability in or- dinary language-extreme physical probabilities are compatible with determin- ism. Two principles, called specification

Fitelson, Branden

347

Whither Nuclear Physics ?  

E-Print Network (OSTI)

Nuclear Physics has had its ups and downs. However in recent years, bucked up by some new and often puzzling data, it has become a potentially very rich field. We review some of these exciting developments in a few important sectors of nuclear physics. Emphasis shall be on the study of exotic nuclei and the new physics that these nuclei are teaching us.

Syed Afsar Abbas

2008-01-07T23:59:59.000Z

348

in Condensed Matter Physics  

E-Print Network (OSTI)

Master in Condensed Matter Physics ­ Master académique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics · introduce you to current research topics

van der Torre, Leon

349

PHYSICS, QUALITATIVE BIBLIOGRAPHY  

E-Print Network (OSTI)

PHYSICS, QUALITATIVE C BIBLIOGRAPHY D. G. Bobrow and R J. Hayes, eds., Artif. Intell. 24," in Gentner and Stevens, 1983, pp. 155--190. J. de Kleer and J. S. Brown "A Qualitative Physics Based.J., 1983. P. Hayes, "The Naive Physics Manifesto," in Hobbs and Moore, 1985, pp 1--36 J R Hobbs and R C

de Kleer, Johan

350

B Physics at LHCb  

E-Print Network (OSTI)

LHCb is a dedicated detector for b physics at the LHC. In this article we present a concise review of the detector design and performance together with the main physics goals and their relevance for a precise test of the Standard Model and search of New Physics beyond it.

Monica Pepe Altarelli; Frederic Teubert

2008-02-13T23:59:59.000Z

351

Nuclear Physics with trapped  

E-Print Network (OSTI)

Nuclear Physics with trapped atoms and ions #12;2/2/2013Dan Melconian #12;2/2/2013Dan Melconian Outline · Scope and applications of nuclear physics precision frontier compliments LHC properties and aquifers in the Sahara #12;2/2/2013Dan Melconian What is Nuclear Physics? · Began with the study

Boas, Harold P.

352

Molecular-beam scattering  

SciTech Connect

The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

Vernon, M.F.

1983-07-01T23:59:59.000Z

353

Particle Physics, Nuclear Physics and Nuclear Energy  

Science Journals Connector (OSTI)

Particle physics is a frontier subject which studies the smallest constituents of matter and the laws governing their interactions. It plays an important role in studying the origin and evolution of the univer...

Hesheng Chen

2011-01-01T23:59:59.000Z

354

Physics of Cancer | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2014, 9:30am to 11:00am Science On Saturday MBG Auditorium Physics of Cancer Professor Wolfgang Losert, Associate Professor, and Director, Partnership for Cancer Technology...

355

Physics Division annual review, 1 April 1987--31 March 1988  

SciTech Connect

This paper contains a description of the research project at Argonne National Laboratory over the past year (4/11/87--3/31/88). The major sections of this report in nuclear physics are: research at ATLAS; operation and development of TLAS: medium-energy nuclear physics and weak interactions; and theoretical nuclei physics. The major sections in atomic physics are: high-resolution laser-rf spectroscopy with beams of atoms, molecules and ions; beam-foil research, ion-beam laser interactions, and collision dynamics of heavy ions; interactions of fast atomic and molecular ions with solid and gaseous target; theoretical atomic physics; atomic physics at ATLAS; atomic physics using a synchrotron light source; and molecular structures and dynamics from coulomb-explosion measurements. (LSP)

Not Available

1988-06-01T23:59:59.000Z

356

Physics at Strathclyde N. Langford  

E-Print Network (OSTI)

#12;Physics at Strathclyde N. Langford Department of Physics University of Strathclyde #12 and Misconceptions o "There's no money in physics" o "I like the idea of a physics degree but what actual jobs do physics degree is great ­ if you want to teach physics" Untrue Physics leads to engineering NO

Mottram, Nigel

357

A compact molecular beam machine  

SciTech Connect

We have developed a compact, low cost, modular, crossed molecular beam machine. The new apparatus utilizes several technological advancements in molecular beams valves, ion detection, and vacuum pumping to reduce the size, cost, and complexity of a molecular beam apparatus. We apply these simplifications to construct a linear molecular beam machine as well as a crossed-atomic and molecular beam machine. The new apparatus measures almost 50 cm in length, with a total laboratory footprint less than 0.25 m{sup 2} for the crossed-atomic and molecular beam machine. We demonstrate the performance of the apparatus by measuring the rotational temperature of nitric oxide from three common molecular beam valves and by observing collisional energy transfer in nitric oxide from a collision with argon.

Jansen, Paul [Vrije Universiteit, 1081 HV Amsterdam (Netherlands); Chandler, David W.; Strecker, Kevin E. [Sandia National Laboratories, Livermore, California 94551 (United States)

2009-08-15T23:59:59.000Z

358

Prospective virtual screening with Ultrafast Shape Recognition: the identification of novel inhibitors of arylamine N-acetyltransferases  

Science Journals Connector (OSTI)

...active molecules in the public domain thanks to programs...the US NIH Molecular Libraries Initiative (Kaiser 2008...large and fast growing public databases such as ZINC...regions of the chemical space, the widespread application...all moments with linear space dimension, typically...

2010-01-01T23:59:59.000Z

359

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS  

E-Print Network (OSTI)

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS Updated: 11 & ASTROPHYSICS UCO/LICK OBSERVATORY Kristin Mott Laura Brogan Leticia Medina BIOLOGICAL SCIENCES Ecology and Evolutionary Biology (EEB) Molecular, Cell and Developmental Biology (MCD) Health Sciences MBRS/MARC/CAMP Pat

California at Santa Cruz, University of

360

Faculty Position Therapeutic Medical Physics  

E-Print Network (OSTI)

spectroscopy, fluoroscopy, ultrasound, digital radiography, and nuclear medicine. The Colorado State University of subjects in Radiation Therapy Physics, Medical Imaging Physics, and Radiological Physics and Dosimetry

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ph.D. Physics Program Ph.D. in Physics  

E-Print Network (OSTI)

Ph.D. Physics Program Ph.D. in Physics Department(s) Physics and Astronomy College Sciences Program Assessment Coordinator Michael Pravica pravica@physics.unlv.edu 895-1723 Five-Year Implementation Dates (2010 for physics at the graduate level 4. understand statistical physics at the graduate level 5. perform

Hemmers, Oliver

362

THE PHYSICS MAJOR (Physics and Astronomy & Astrophysics Streams)  

E-Print Network (OSTI)

THE PHYSICS MAJOR (Physics and Astronomy & Astrophysics Streams) Overview: Physics examines, to the behaviour of matter on the subatomic scale - and everything in between. Studying Physics at UWA gives you access to the frontiers of modern physics, built on the pillars of quantum physics and relativity. You

Tobar, Michael

363

Ultrafast Photoluminescence from Graphene  

Science Journals Connector (OSTI)

Since graphene has no band gap, photoluminescence is not expected from relaxed charge carriers. We have, however, observed significant light emission from graphene under excitation by ultrashort (30-fs) laser pulses. Light emission was found to occur across the visible spectral range (1.73.5eV), with emitted photon energies exceeding that of the excitation laser (1.5eV). The emission exhibits a nonlinear dependence on the laser fluence. In two-pulse correlation measurements, a dominant relaxation time of tens of femtoseconds is observed. A two-temperature model describing the electrons and their interaction with strongly coupled optical phonons can account for the experimental observations.

Chun Hung Lui (???); Kin Fai Mak; Jie Shan; Tony F. Heinz

2010-09-16T23:59:59.000Z

364

Ultrafast neutron detector  

DOE Patents (OSTI)

A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

Wang, C.L.

1985-06-19T23:59:59.000Z

365

Ultrafast neutron detector  

DOE Patents (OSTI)

The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

Wang, Ching L. (Livermore, CA)

1987-01-01T23:59:59.000Z

366

ORISE: Health physics services  

NLE Websites -- All DOE Office Websites (Extended Search)

Health physics services Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning (D&D) projects across the United States. Our health physics services include: Environmental survey Applied health physics projects We work with government agencies and organizations to identify, measure and assess the presence of radiological materials during the D&D process. ORISE

367

Heteropolymer freezing and design: Towards physical models of protein folding  

SciTech Connect

Protein folding has become one of the most actively studied problems in modern molecular biophysics. Approaches to the problem combine ideas from the physics of disordered systems, polymer physics, and molecular biology. Much can be learned from the statistical properties of model heteropolymers, the chain molecules having different monomers in irregular sequences. Even in highly evolved proteins, there is a strong random element in the sequences, which gives rise to a statistical ensemble of sequences for a given folded shape. Simple analytic models give rise to phase transitions between random, glassy, and folded states, depending on the temperature T and the design temperature T{sup des} of the ensemble of sequences. Besides considering the analytic results obtainable in a random-energy model and in the Flory mean-field model of polymers, the article reports on confirming numerical simulations. (c) 2000 The American Physical Society.

Pande, Vijay S. [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States)] [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States); Grosberg, Alexander Yu. [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)] [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Tanaka, Toyoichi [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2000-01-01T23:59:59.000Z

368

physics_fest_map  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Fest in CEBAF Center * The Physics Fest runs from 10:00 AM to 12:00 noon * Buses drop-off and pick-up students in the CEBAF Center circle * Buses remaining on-site will be directed to parking areas by Jefferson Lab security * Private vehicles may park in any non-reserved/non-restricted space in any of the regular parking lots * The CEBAF Center receptionist can be reached at (757) 269-7100

369

Symmetries in physics  

E-Print Network (OSTI)

The concept of symmetries in physics is briefly reviewed. In the first part of these lecture notes, some of the basic mathematical tools needed for the understanding of symmetries in nature are presented, namely group theory, Lie groups and Lie algebras, and Noether's theorem. In the second part, some applications of symmetries in physics are discussed, ranging from isospin and flavor symmetry to more recent developments involving the interacting boson model and its extension to supersymmetries in nuclear physics.

Roelof Bijker

2005-09-02T23:59:59.000Z

370

Traffic of Molecular Motors  

E-Print Network (OSTI)

Molecular motors perform active movements along cytoskeletal filaments and drive the traffic of organelles and other cargo particles in cells. In contrast to the macroscopic traffic of cars, however, the traffic of molecular motors is characterized by a finite walking distance (or run length) after which a motor unbinds from the filament along which it moves. Unbound motors perform Brownian motion in the surrounding aqueous solution until they rebind to a filament. We use variants of driven lattice gas models to describe the interplay of their active movements, the unbound diffusion, and the binding/unbinding dynamics. If the motor concentration is large, motor-motor interactions become important and lead to a variety of cooperative traffic phenomena such as traffic jams on the filaments, boundary-induced phase transitions, and spontaneous symmetry breaking in systems with two species of motors. If the filament is surrounded by a large reservoir of motors, the jam length, i.e., the extension of the traffic jams is of the order of the walking distance. Much longer jams can be found in confined geometries such as tube-like compartments.

Stefan Klumpp; Melanie J. I. Mller; Reinhard Lipowsky

2005-12-06T23:59:59.000Z

371

American Physical Society awards  

NLE Websites -- All DOE Office Websites (Extended Search)

for 2012 are: * William Anderson, Weapons Experiments division's Shock and Detonation Physics group, for significant contributions to the field of dynamic material...

372

Physical Protection Program Manual  

Directives, Delegations, and Requirements

Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

2002-12-23T23:59:59.000Z

373

Internships for Physics Majors  

Energy.gov (U.S. Department of Energy (DOE))

Fermilab's IPM program offers ten-week summer internships to outstanding undergraduate physics majors. This program has been developed to familiarize students with opportunities at the frontiers of...

374

Physics at LHC  

E-Print Network (OSTI)

The prospects for physics at the LHC are discussed, starting with the foretaste, preparation (and perhaps scoop) provided by the Tevatron, in particular, and then continuing through the successive phases of LHC operation. These include the start-up phase, the early physics runs, the possible search for new physics in double diffraction, the continuation to nominal LHC running, and the possible upgrade of the LHC luminosity. Emphasis is placed on the prospects for Higgs physics and the search for supersymmetry. The progress and discoveries of the LHC will set the time-scale and agenda for the major future accelerator projects that will follow it.

John Ellis

2006-11-17T23:59:59.000Z

375

Cosmology and New Physics  

E-Print Network (OSTI)

A comparison of the standard models in particle physics and in cosmology demonstrates that they are not compatible, though both are well established. Basics of modern cosmology are briefly reviewed. It is argued that the measurements of the main cosmological parameters are achieved through many independent physical phenomena and this minimizes possible interpretation errors. It is shown that astronomy demands new physics beyond the frameworks of the (minimal) standard model in particle physics. More revolutionary modifications of the basic principles of the theory are also discussed.

A. D. Dolgov

2006-06-21T23:59:59.000Z

376

Nuclear Physics: Experiment Research  

NLE Websites -- All DOE Office Websites (Extended Search)

search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to...

377

Nuclear Physics from QCD  

E-Print Network (OSTI)

Effective field theories provide a bridge between QCD and nuclear physics. I discuss light nuclei from this perspective, emphasizing the role of fine-tuning.

U. van Kolck

2008-12-20T23:59:59.000Z

378

Nuclear Physics Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Data Acquisition Group Detector & Imaging Group Electronics Group User Liaison Nuclear Physics Program HALL A Hall A wide shot of detectors Scientists from across the...

379

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

380

Advances in Physical Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2011, Article ID 907129, 18 pages doi:10.11552011907129 Review Article Contrast and Synergy between...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Los Alamos Lab: Los Alamos Molecular Recognition Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Molecular Recognition Alliance: LAMRA Los Alamos Molecular Recognition Alliance: LAMRA Home About Us Partner Divisions Bioscience Division Chemistry Division International and Applied Technology Materials Physics Applications Division Theoretical Division Researchers Customize Affinity Reagents to Recognize Diseases and Biothreat Agents Novel affinity reagents are essential in the chemical and biological detection that is at the heart of the Los Alamos National Laboratory's mission in threat reduction, as well as being at the interface between many fundamental and applied Los Alamos research programs. Affinity reagent technologies at LANL are among the most advanced worldwide, with a wide range of different technologies focused on molecular recognition and the generation of affinity reagents both developed and under development. These include different affinity reagents (antibodies, fluorescent proteins, peptides, peptoids, carbohydrates, and oligonucleotides), and different selection and screening systems.

382

Handbook 2014 Department of Physics  

E-Print Network (OSTI)

Research Handbook 2014 Department of Physics S12 M01, 2 Science Drive 3, Singapore 117551 Tel: (65) 6516 2604 Fax: 6777 6126 www.physics.nus.edu.sg #12;research handbook 2014 department of physics #12;T;Profile of Faculty Members department of physics #12;7 ­ Physics Research Handbook Links »www.physics

Chaudhuri, Sanjay

383

Mysteries of 'molecular machines' revealed  

NLE Websites -- All DOE Office Websites (Extended Search)

companies and researchers to see the detailed inner workings of molecular machines. January 15, 2015 A picture of a membrane protein called cysZ determined with Phenix...

384

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

385

Optical Modulation of Molecular Conductance  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Modulation of Molecular Conductance Authors: Battacharyya, S., Kibel, A., Kodis, G., Liddell, P. A., Gervaldo, M., Gust, D., and Lindsay, S. Title: Optical Modulation of...

386

Collective coordinates for nuclear spectral densities in energy transfer and femtosecond spectroscopy of molecular aggregates  

E-Print Network (OSTI)

Collective coordinates for nuclear spectral densities in energy transfer and femtosecond collective nuclear coordinates necessary to represent a given set of spectral densities is obtained coordinates phase space. The signatures of excitonic and nuclear motions in ultrafast fluorescence

Mukamel, Shaul

387

DOCTORAL PROGRAMME MATHEMATICS AND PHYSICS, Subprogramme PHYSICS,  

E-Print Network (OSTI)

of safety analysis and development of safety culture. Selected chapters on nuclear and reactor physics doc Safety Administration, Agency for Radioactive Waste Management and other organisations in the nuclear area. The nuclear Engineering module treats nuclear technology, operation, nuclear safety, reactor

?umer, Slobodan

388

Physics 141 & Physics 153 Laboratory Schedule -Physics 141 & 153 -Spring 2008  

E-Print Network (OSTI)

Physics 141 & Physics 153 i Laboratory Schedule - Physics 141 & 153 - Spring 2008 Monday Tuesday ­ No Labs! #12;Physics 141 & Physics 153 ii Lab Instructor Information Name: Office: Phone: Email: Mailbox: · Write your lab instructor's name on it · Give it to Theresa Sis, Main Physics Office, 116 Brace Lab

Farritor, Shane

389

Physics Physics Annual Review, 1 April 1981-31 March 1982  

SciTech Connect

In medium-energy pion physics, considerable progress has been made in understanding the propagation and absorption of pions (deltas) in the nuclear medium. An experiment to study neutrino oscillations is being planned at LAMPF with substantial involvement from Argonne. A major effort is being devoted to the scientific and technical considerations involved in proposing to build a multi-GeV C.W. electron accelerator: GEM at Argonne. In heavy-ion physics, the superconducting linac booster is being used with increasing scientific profit. Construction of the ATLAS facility began in FY 1982 and all progress has been on schedule. The importance of the time component of the weak axial-vector current has been studied through the ..beta.. decay of /sup 16/N. A precision measurement is under way of the /sup 7/Be(p,..gamma..) cross section, one of the key components in the solar neutrino anomaly. In nuclear theory, the coupled-channel code for treating heavy-ion inelastic scattering was completed and application to particular experiments began. Nuclear structure theory was applied to interpret decays of high-spin states and inelastic pion scattering. Results of particular interest were obtained in the nuclear force program where the inclusion of 3-body forces led to simultaneous improvement in the binding of /sup 3/He and /sup 4/He and saturation of nuclear matter. The atomic physics research consists of six experimental programs as follows: (1) dissociation and other interactions of energetic molecular ions in solid and gaseous targets; (2) electron spectroscopy with fast atomic and molecular-ion beams; (3) beam-foil research and collision dynamics of heavy ions; (4) photoionization-photoelectron research; (5) high-resolution, laser-rf spectroscopy with atomic and molecular beams; and (6) theoretical atomic physics. (WHK)

Not Available

1982-12-01T23:59:59.000Z

390

Physics centre threatened  

Science Journals Connector (OSTI)

... Washington. Fusion research at the Prince-ton Plasma Physics Laboratory (PPPL), one of the principal US fusion research centres, would be shut down for ... Experimental Reac-tor, to which the United States is a sub-scriber, and on PPPL's new project, the Tokamak Physics Experiment. The TFTR (Tokamak Fusion Test Reactor) ...

Traci Watson

1992-12-10T23:59:59.000Z

391

Noncommutative Two Time Physics  

E-Print Network (OSTI)

We present a classical formalism describing two-time physics with Abelian canonical gauge field backgrounds. The formalism can be used as a starting point for the construction of an interacting quantized two-time physics theory in a noncommutative soace-time.

W. Chagas-Filho

2006-04-03T23:59:59.000Z

392

Physics of Binary Information  

E-Print Network (OSTI)

Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

Walter Smilga

2005-05-05T23:59:59.000Z

393

January 2010 Physics 3300  

E-Print Network (OSTI)

the large scale currents work as they do? Why is the ocean stratified? How long does it take water to move Current measurements 8) Wind Driven Ocean Circulation Sverdrup, Munk and Stommel Western Boundary Currents to Physical Oceanography deals with the physics of the processes in the ocean, providing an integrating view

deYoung, Brad

394

Conference on Industrial Physics  

Science Journals Connector (OSTI)

... THE first Conference on Industrial Physics to be held in Great Britain took place in Manchester under the ... auspices of the Institute of Physics on March 28-30. The subject chosen for the Conference was Vacuum Devices in Research and Industry, and its chief object was to ...

HERBERT R. LANG

1935-04-06T23:59:59.000Z

395

Nuclear physics and cosmology  

SciTech Connect

There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

Coc, Alain [Centre de Sciences Nuclaires et de Sciences de la Matire (CSNSM), CNRS/IN2P3, Universit Paris Sud 11, UMR 8609, Btiment 104, F-91405 Orsay Campus (France)

2014-05-09T23:59:59.000Z

396

Lowx physics  

Science Journals Connector (OSTI)

...experiment led to the concept of the nuclear atom (Geiger & Marsden 1909...for the experiments and the accelerator inherent in reducing either...the quantum numbers of the vacuum, Phil. Trans. R. Soc...graphs on Particle Physics, Nuclear Physics and Cosmology, vol...

2001-01-01T23:59:59.000Z

397

SC e-journals, Physics  

Office of Scientific and Technical Information (OSTI)

Physics Physics ACS Nano Acta Materialia Adsorption Advanced Composite Materials Advances in Condensed Matter Physics - OAJ Advances in Acoustics and Vibration - OAJ Advances in High Energy Physics - OAJ Advances in Materials Science and Engineering - OAJ Advances in Mathematical Physics - OAJ Advances in Optical Technologies - OAJ Advances in Optics and Photonics Advances in Tribology - OAJ American Journal of Physics, The Annalen der Physik Annales Henri Poincare Annals of Global Analysis and Geometry Annals of Nuclear Energy Annals of Physics Annual Review of Biophysics Annual Review of Fluid Mechanics Annual Review of Nuclear and Particle Science Annual Review of Physical Chemistry Applied Optics Applied Physics A Applied Physics Letters Applied Psychophysiology and Biofeedback

398

LANL | Physics | LDRD  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation in experimental physical sciences Innovation in experimental physical sciences The Laboratory Directed Research and Development Program is the premier source of internally directed research and development funding at Los Alamos National Laboratory. Physics Division, as the major source of innovation in experimental physical science at Los Alamos, actively competes in most of the Directed Research Grand Challenges and the Exploratory Research categories. We have research in the Grand Challenges of Beyond The Standard Model, Complex Biological Systems, Information Science and Technology, Nuclear Performance, and Sensing and Measurement Science for Global Security. We are also funded to do research in the categories of Biological, Biochemical, and Cognitive Sciences, Computational Physics, Applied math and Knowledge Sciences,

399

UNIRIB: Physics Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Topics Physics Topics Research Capitalizing on the strengths of nine collaborating research universities and the world-class equipment available at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL), the University Radioactive Ion Beam (UNIRIB) consortium is conducting research at the forefront of nuclear physics. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), brings together researchers from around the world to study the short-lived, exotic nuclei that are involved in astrophysical processes. UNIRIB researchers participate in many of the nuclear physics experiments carried out at HRIBF. UNIRIB researchers are presently leading the following physics topics. To view these files, you will need the Adobe Reader, which is available free

400

Subsurface Science (The Molecular Environmental Science Group) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Subsurface Science Subsurface Science BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne arrow Subsurface Science The Molecular Environmental Science Group (MESG) The MESG is part of the Biosciences Division at Argonne National Laboratory. One of the main foci during the creation and growth of the MESG has been the development of an internationally recognized integrated multidisciplinary scientific team focused on the investigation of fundamental biogeochemical questions. Presently, expertise that is represented by members of the MES Group includes x-ray Physics, Environmental Chemistry, Environmental Microbiology, (Bio)geochemistry, and radiolimnology. Additional expertise in electron microscopy, x-ray microscopy, Microbial Ecology, and Bioinformatics often is provided by collaborations with scientists outside of our group.

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Molecular Cause for One Form of Deafness | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Theory is Watertight Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles A Key Step in Repairing DNA Double-Strand Breaks An X-ray Rainbow An Insulating Breakthrough Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A Molecular Cause for One Form of Deafness FEBRUARY 12, 2007 Bookmark and Share Gerard Wong, a professor of materials science and engineering, of physics, and of bioengineering at Illinois, and colleagues have found an underlying molecular cause for one form of deafness, while exploring the physics of hearing. (Photo by L. Brian Stauffer) Scientists exploring the physics of hearing have found an underlying molecular cause for one form of deafness, and a conceptual connection

402

REVIEW ARTICLE Taming molecular beams  

E-Print Network (OSTI)

REVIEW ARTICLE Taming molecular beams The motion of neutral molecules in a beam can be manipulated time-varying fields can be used to decelerate or accelerate beams of molecules to any desired velocity. We review the possibilities that this molecular-beam technology offers, ranging from ultrahigh

Loss, Daniel

403

Fermi molecular dynamics  

SciTech Connect

classical many body models supplemented by repulsive momentum-dependent potentials to simulate the Pauli and Heisenberg principles have been use with some success for nuclear and atomic bound state and collision problems. They are capable of describing mean ground state properties, hydrodynamics, shocks (if warranted by the physics), viscosity, correlations, clustering, fragmentation, etc. We have become interested in the Feldmeier Gaussian packet formulation since it is based on a variational principle using trial wave functions. We discuss some limitations of the model and discuss further directions of investigation.

Wilets, L.; Beck, W.

1991-01-01T23:59:59.000Z

404

Degradation of a Water-Soluble Polymer:? Molecular Weight Changes and Chain Scission Characteristics  

Science Journals Connector (OSTI)

Computer simulations in conjunction with molecular weight distributions, obtained from gel permeation chromatography (GPC), are used to obtain physical insights on the mechanisms of degradation of guar galactomannan, a naturally occuring polysaccharide. ... 11,12 Guar is used extensively in industry due to its excellent viscosifying properties, natural abundance, and low cost. ... High molecular weight polymer chains degrade to smaller sizes upon exposure to ultrasound radiation. ...

Akash Tayal; Saad A. Khan

2000-11-30T23:59:59.000Z

405

M.S. Physics Program M.S. in Physics  

E-Print Network (OSTI)

M.S. Physics Program M.S. in Physics Department(s) Physics and Astronomy College Sciences 1 for later reference. 1. understanding of a variety of fields of physics at the graduate level 2. performance of a physics research project suitable for a masters thesis 3. ability to communicate scientific research

Hemmers, Oliver

406

Alignment of Dust in Molecular Clouds  

E-Print Network (OSTI)

Polarimetry is one of the most informative techniques of studying magnetic fields in molecular clouds. How reliable the interpretation of the polarization maps in terms of magnetic fields is the issue that the grain alignment theory addresses. We show that grain alignment involves several processes acting simultaneously, but on different time-scales. We explain that rotating dust grains get substantial magnetic moment that allows them precess fast about magnetic field lines. As the result, grains preserve their orientation to magnetic field when the magnetic field direction fluctuates. We point out to the importance of internal alignment, i.e. the process forces grain axes to be aligned in respect to the grain angular momentum. We show that subtle quantum effects, in particular relaxation related to nuclear magnetic moments of atoms composing the grain, brings to live complex grain motions, e.g. flips. These flips substantially alter the dynamics of grain and limit the applicability of earlier theories that did not account for them. We also briefly review basic physical processes involved in the alignment of grain angular momentum in respect to interstellar magnetic field. We claim that the bulk of existing observational data is consistent with the radiative torque alignment mechanism. In particular, we show that large grains that are known to exist in the cores of molecular clouds may be aligned by the attenuated external interstellar radiation field.

A. Lazarian; J. Cho

2004-08-10T23:59:59.000Z

407

Toward a constructive physics  

SciTech Connect

We argue that the discretization of physics which has occurred thanks to the advent of quantum mechanics has replaced the continuum standards of time, length and mass which brought physics to maturity by counting. The (arbitrary in the sense of conventional dimensional analysis) standards have been replaced by three dimensional constants: the limiting velocity c, the unit of action h, and either a reference mass (eg m/sub p/) or a coupling constant (eg G related to the mass scale by hc/(2..pi..Gm/sub p//sup 2/) approx. = 1.7 x 10/sup 38/). Once these physical and experimental reference standards are accepted, the conventional approach is to connect physics to mathematics by means of dimensionless ratios. But these standards now rest on counting rather than ratios, and allow us to think of a fourth dimensionless mathematical concept, which is counting integers. According to constructive mathematics, counting has to be understood before engaging in the practice of mathematics in order to avoid redundancy. In its strict form constructive mathematics allows no completed infinities, and must provide finite algorithms for the computation of any acceptable concept. This finite requirement in constructive mathematics is in keeping with the practice of physics when that practice is restricted to hypotheses which are testable in a finite time. In this paper we attempt to outline a program for physics which will meet these rigid criteria while preserving, in so far as possible, the successes that conventional physics has already achieved.

Noyes, H.P.; Gefwert, C.; Manthey, M.J.

1983-06-01T23:59:59.000Z

408

LANL | Physics | Quantum Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Breakthrough quantum information Breakthrough quantum information science and technology Physics Division's quantum information science and technology capability supports present and future Laboratory missions in cyber-security, sensing, nonproliferation, information science, and materials. Collaborating with researchers throughout Los Alamos and leading institutions in the nation, Physics Division scientists are involved in projects in quantum communications, including quantum key distribution and quantum-enabled security and networking, and in quantum cold-atom physics. Recent fundamental science results include the ability to "paint" potentials that can trap Bose-Einstein condensates into geometric forms, such as the toroidal ring of clusters, the density of which is measured in

409

Top Physics at ATLAS  

E-Print Network (OSTI)

The Large Hadron Collider LHC is a top quark factory: due to its high design luminosity, LHC will produce about 200 millions of top quarks per year of operation. The large amount of data will allow to study with great precision the properties of the top quark, most notably cross-section, mass and spin. The Top Physics Working Group has been set up at the ATLAS experiment, to evaluate the precision reach of physics measurements in the top sector, and to study the systematic effects of the ATLAS detector on such measurements. This reports give an overview of the main activities of the ATLAS Top Physics Working Group in 2004.

Marcello Barisonzi

2005-08-02T23:59:59.000Z

410

Top Physics at CDF  

SciTech Connect

We present the recent results of top-quark physics using up to 6 fb{sup -1} of p{bar p} collisions at a center of mass energy of {radical}s = 1.96 TeV analyzed by the CDF collaboration. Thanks to this large data sample, precision top quark measurements are now a reality at the Tevatron. Further, several new physics signals could appear in this large dataset. We will present the latest measurements of top quark intrinsic properties as well as direct searches for new physics in the top sector.

Moon, Chang-Seong

2011-06-01T23:59:59.000Z

411

Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE  

E-Print Network (OSTI)

Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE TOPIC READINGS 1 and probability theory can be found in Chapter 16 of Mathematical Methods in the Physical Sciences, by Mary L

California at Santa Cruz, University of

412

Physics Topics - Rotating Wall Machine - UW Plasma Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Topics UW Madison Line Tied Reconnection Experiment Physics Topics LTRX HomeResearch MissionLTRX DevicePhysics TopicsDiagnosticsLTRX GalleryLTRX People CPLA Home Directory...

413

PHYSICS WITH AND PHYSICS OF COLLIDING ELECTRON BEAMS  

E-Print Network (OSTI)

contributed so much to the physics of colliding beams, theyto reap so little from the physics with colliding beams.Conference on High-Energy Physics, Vienna" September 1968 (

Pellegrini, Claudio

2008-01-01T23:59:59.000Z

414

PHYSICS & ASTRONOMY GRADUATE STUDENT HANDBOOK DEPARTMENT OF PHYSICS & ASTRONOMY  

E-Print Network (OSTI)

PHYSICS & ASTRONOMY GRADUATE STUDENT HANDBOOK DEPARTMENT OF PHYSICS & ASTRONOMY UNIVERSITY OF UTAH Fall 2012 Version 2012 .................................................................................... 11 3.1. Ph.D. in Physics 12 3.1.1. Astronomy & Astrophysics

Tipple, Brett

415

429Nuclear Instruments and Methods in Physics Research B14 (1986) 429-435 North-Holland, Amsterdam  

E-Print Network (OSTI)

Section III. molecular ion ejection SPU'ITERING OF BIOMOLECULES BY FAST HEAVY IONS B. SUNDQVIST, A. HEDIN-751 21 U~~sa~a, Sweden R.E. JOHNSON Department of Nuclear Engineering and Engineering Physics, Unroersity of Virginia, Charlottesville, USA The ejection of large intact molecular ions from a sample

Johnson, Robert E.

416

Nanostructured Silicon Membranes for Control of Molecular Transport  

SciTech Connect

A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure of the pores. Here, a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore-sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating.

Srijanto, Bernadeta R [ORNL] [ORNL; Retterer, Scott T [ORNL] [ORNL; Fowlkes, Jason Davidson [ORNL] [ORNL; Doktycz, Mitchel John [ORNL] [ORNL

2010-01-01T23:59:59.000Z

417

LHC Physics Center | (none)  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Center Physics Center Fermilab Home Visit LPC Physics Programs LPC Guest and Visitors HATS@LPC, Workshops and CMSDAS Jet-Substructure HATS CMS Data Analysis School 2013 CMS Data Analysis School 2012 CMS Data Analysis School 2011 EJTERM (CMS Data Analysis School 2010) Confronting Theory with Experiment: November 2011 Standard Model Benchmarks at the Tevatron and LHC Standard Model Benchmarks at High-Energy Hadron Colliders GED workshop 20-22 Aug, 2012 Topic of the Week Upcoming Past Speakers Archive Program Info LPC Physics Forum LPC Snowmass Efforts The INFIERI Project Fellows LPC Fellows Program Newsletter - LPC Fellows LPC Fellows - 2014 LPC Fellows - 2013 LPC Fellows - 2012 LPC Fellows - 2011 Community Faces of the LPC LPC Fellows - Current LPC Coffee Hour Calendar LPC Conf. Room Calendar

418

Courses on Beam Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Physics Beam Physics The following is an incomplete listing of course available for beam physics. United States Particle Accelerator School The US Particle Accelerator School provides educational programs in the field of beams and their associated accelerator technologies not otherwise available to the community of science and technology. Joint Universities Accelerator School Each year JUAS provides a foundation course on accelerator physics and associated technologies. The US-CERN-Japan-Russia Joint Accelerator School The purpose of the US-CERN-Japan-Russia joint school is to better our relations by working together on an advanced topical course every two years, alternating between the U.S., western Europe, Japan and Russia. The last set of courses focused on the frontiers of accelerator technology in

419

Physical process Mechanical mechanisms  

E-Print Network (OSTI)

1 Physical process Generation · Mechanical mechanisms F = m·a · Electric/Magnetic mechanisms F ­ Quadrupoles......shear stress fluctuations ­ High order poles...... phys. interpretation difficult Governing

Berlin,Technische Universität

420

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

States Naval Academy hartley@usna.edu Mark Riley Florida State University mriley@physics.fsu.edu Alan Wuosmaa (chair) University of Connecticut alan.wuosmaa@uconn.edu The...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Introduction to flavor physics  

E-Print Network (OSTI)

This set of lectures covers the very basics of flavor physics and are aimed to be an entry point to the subject. A lot of problems are provided in the hope of making the manuscript a self study guide.

Yuval Grossman

2010-06-17T23:59:59.000Z

422

Review of Particle Physics  

Science Journals Connector (OSTI)

This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 1600 new measurements from 550 papers, we list, evaluate, and average measured properties of gauge bosons, leptons...

1998-01-01T23:59:59.000Z

423

Current Physics Information  

Science Journals Connector (OSTI)

...MARKS, R.H., MAY CONV NAT MICR AS ( 1971 ). ROBERTS, L.G., AFIPS C P 36 : 543 ( 1970 ). ZIMAN, J.M., INFORMATION, COMMUNICATION, KNOWLEDGE, NATURE 224 : 318 ( 1969 ). Current physics information. | A new concept in science...

H. William Koch

1971-11-26T23:59:59.000Z

424

Nuclear Physics | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal PAC Review Scheduling Processes top-right bottom-left-corner bottom-right-corner Nuclear Physics Scientists from across the country and around the world use the Thomas...

425

ENVIRONMENTAL PHYSICS METHODS  

E-Print Network (OSTI)

of Physics Reader: Árpád Zoltán Kiss Professor Emeritus, Hungarian Academy of Sciences, Institute of Nuclear, dosimetry, ionizing radiation, radon, gamma- spectroscopy, positron emission tomography. SUMMARY

Horváth, Ákos

426

Physical Protection Program  

Directives, Delegations, and Requirements

Establishes Department of Energy management objectives, requirements and responsibilities for the physical protection of safeguards and security interests. Cancels DOE 5632.1C. Canceled by DOE O 470.4.

2002-12-23T23:59:59.000Z

427

Director, Physics Research Division  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy, Office of Science, Office of the Deputy Director for Science Programs, Office of Nuclear Physics is seeking a motivated and highly qualified individual to service as the...

428

B Physics at LHC  

E-Print Network (OSTI)

Three experiments, among the LHC project, are getting ready to explore the b quark flavour sector. While ATLAS and CMS are general purpose experiments, where the study of B mesons is going to proceed in parallel with the Higgs boson and supersymmetry searches, the LHCb experiment is devoted to B physics studies. The key parameters entering the physics analyses and the performances achieved in all the three experiments are presented. Given the large B physics program foreseen in the LHC experiments, the studies reported in this paper have been selected as those with higher likelihood to provide solid and interesting new results on Standard Model validation and New Physics processes search with early data.

A. Sarti

2008-09-02T23:59:59.000Z

429

Physical chemistry - Thermodynamics  

Science Journals Connector (OSTI)

Physical chemistry - Thermodynamics ... A style of question that allows the instructor of thermodynamics to cover a wide range of material at varying levels of achievement in a reasonable period of time. ... Thermodynamics ...

Jack Richlin

1982-01-01T23:59:59.000Z

430

Furth Plasma Physics Libary  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Hours Online Access Directions Contacts Hours Online Access Directions QuickFind Main Catalog Databases PPPL Publications & Reports/PPLcat Plasma Physics E-Journals clear Click arrows to scroll for more clear Plasma Physics Colloquia The Global Carbon Cycle and Earth's Climate - January 15, 2014 Addressing Big Data Challenges in Simulation-based Science - January 22, 2014 "The Usefulness of Useless Knowledge?: The History of the Institute for Advanced Study - January 29, 2014 PM-S-1 PDF PM-S-2 PDF PM-S-3 PDF PM-S-4 PDF PM-S-5 PDF PM-S-6 PDF See All Library History Intro 950 1960-1970 1980 1990 2000 Quick Order Article Express Borrow Direct Interlibrary Loan PPL Book Request More Resources and Services Search & Find Articles & Databases - Plasma Physics, Physics, Engineering & Technology,

431

Physics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics Physics Physics On January 13, 2012, Lawrence Berkeley National Laboratory senior scientist Dr. Saul Perlmutter spoke with Energy Department staff about his research that earned him a 2011 Nobel Prize in Physics. Featured Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab In Dark Energy science, scientists have found flaws in accepted theories using them to build even better models of how nature actually works. Higgs Boson May Be Within Sight

 Physicists from the European Organization for Nuclear Research (CERN)

432

Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application  

Science Journals Connector (OSTI)

Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200nmmin?1 for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. JV curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UVvis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

S M Mahpeykar; J Koohsorkhi; H Ghafoori-fard

2012-01-01T23:59:59.000Z

433

Gravitation Physics at BGPL  

E-Print Network (OSTI)

We report progress on a program of gravitational physics experiments using cryogenic torsion pendula undergoing large-amplitude torsion oscillation. This program includes tests of the gravitational inverse square law and of the weak equivalence principle. Here we describe our ongoing search for inverse-square-law violation at a strength down to $10^{-5}$ of standard gravity. The low-vibration environment provided by the Battelle Gravitation Physics Laboratory (BGPL) is uniquely suited to this study.

P. E. Boynton; R. M. Bonicalzi; A. M. Kalet; A. M. Kleczewski; J. K. Lingwood; K. J. McKenney; M. W. Moore; J. H. Steffen; E. C. Berg; W. D. Cross; R. D. Newman; R. E. Gephart

2006-09-21T23:59:59.000Z

434

Electroweak physics and physics beyond the Standard Model  

E-Print Network (OSTI)

We summarize the recent results on electroweak physics and physics beyond the Standard Model that have been presented at the XIV International Workshop on Deep Inelastic Scattering 2006.

L. Bellagamba; E. Sauvan; H. Spiesberger

2006-07-25T23:59:59.000Z

435

The Institute of Physics and the Physical Society  

Science Journals Connector (OSTI)

... transfer of the assets of the Society to the newly amalgamated body, the Institute of Physics and the Physical Society, were unanimously carried.

1960-11-05T23:59:59.000Z

436

Accelerated Molecular Dynamics Simulation of Thermal Desorption.  

E-Print Network (OSTI)

??Desorption is a process ubiquitous in phenomena involving surfaces. However, it has rarely been simulated on the molecular level. Molecular dynamics simulation can provide the (more)

Becker, Kelly

2008-01-01T23:59:59.000Z

437

2010 Atomic & Molecular Interactions Gordon Research Conference  

SciTech Connect

The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

Todd Martinez

2010-07-23T23:59:59.000Z

438

Molecular Modeling at Plastic Recycling  

Science Journals Connector (OSTI)

The possibility to model the new materials from recycled post industrial polymer rejects by molecular modeling methods was investigated by comparison of the results obtained from the simulation process and the experiments.

Laura Martinelli; Sabino Sinesi; Alessio Baron Toaldo; Maurizio Fermeglia; Paola Posocco; Tomasz Szczurek; Marek Kozlowski

2007-01-01T23:59:59.000Z

439

Molecular Imaging Applications in Nanomedicine  

Science Journals Connector (OSTI)

The purpose of this article is to explore how molecular imaging techniques can be used as useful adjunts in the development of nanomedicine and in personalizing treatment of patients....

King C.P. Li; Sunil D. Pandit; Samira Guccione

2004-06-01T23:59:59.000Z

440

Steric effects in molecular adsorption  

SciTech Connect

The results of a molecular beam surface scattering experiment with preferentially orientated NO on Ag(111) are given. In adsorption molecules oriented with the O end towards the surface have a larger trapping probability.

Tenner, M.G.; Kuipers, E.W.; Kleyn, A.W.; Stolte, S.

1988-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ORISE: Applied health physics projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support...

442

Stellarators | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

in stellarators By John Greenwald Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute of Plasma Physics...

443

Electronic structure, molecular orientation, charge transfer dynamics and solar cells performance in donor/acceptor copolymers and fullerene: Experimental and theoretical approaches  

SciTech Connect

By combining experimental and theoretical approaches, the electronic structure, molecular orientation, charge transfer dynamics and solar cell performance in donor/acceptor copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl) benzo-2,1,3-thiadiazole] (PSiF-DBT) films and blended with 6,6.-phenyl-C 61-butyric acid methyl ester (PSiF-DBT:PCBM) were investigated. Good agreement between experimental and theoretical PSiF-DBT UV-Vis absorption spectrum is observed and the main molecular orbitals contributing to the spectrum were determined using DFT single point calculations. Non-coplanar configuration was determined by geometric optimization calculation in isolated PSiF-DBT pentamer and corroborated by angular variation of the sulphur 1s near-edge X-ray absorption fine structure (NEXAFS) spectra. Edge-on and plane-on molecular orientations were obtained for thiophene and benzothiadiazole units, respectively. A power conversion efficiency up to 1.58%, open circuit voltage of 0.51 V, short circuit current of 8.71 mA/cm{sup 2} and a fill factor of 35% was obtained using blended PSiF-DBT:PCBM as active layer in a bulk heterojunction solar cell. Ultrafast electron dynamics in the low-femtosecond regime was evaluated by resonant Auger spectroscopy using the core-hole clock methodology around sulphur 1s absorption edge. Electron delocalization times for PSiF-DBT and PSiF-DBT:PCBM polymeric films were derived for selected excitation energies corresponding to the main transitions in the sulphur 1s NEXAFS spectra. The mixture of PSiF-DBT with PCBM improves the charge transfer process involving the ?* molecular orbital of the thiophene units.

Garcia-Basabe, Y.; Borges, B. G. A. L.; Rocco, M. L. M., E-mail: lsroman@fisica.ufpr.br, E-mail: luiza@iq.ufrj.br [Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909 (Brazil); Marchiori, C. F. N.; Yamamoto, N. A. D.; Koehler, M.; Roman, L. S., E-mail: lsroman@fisica.ufpr.br, E-mail: luiza@iq.ufrj.br [Departament of Physics, Federal University of Paran, Curitiba 81531-990 (Brazil); Macedo, A. G. [Departament of Physics, Technological Federal University of Paran, Curitiba 80230-901 (Brazil)

2014-04-07T23:59:59.000Z

444

Physics 122 Fundamentals of Physics II Syllabus for Fall 2012  

E-Print Network (OSTI)

Physics 122 ­ Fundamentals of Physics II Syllabus for Fall 2012 Course description The second of a two-semester series in general physics. The course is a continuation of PHYS 121, and covers waves, electricity and magnetism, optics, and modern physics. This survey course, together with PHYS 121, generally

Lathrop, Daniel P.

445

Review for Physics in Perspective The Philosophy of Physics  

E-Print Network (OSTI)

Review for Physics in Perspective The Philosophy of Physics Roberto Torretti, The Philosophy of Physics. Cambridge: Cambridge University Press, 1999, xvi + 512 pages. US$ ??. ISBN: 0 521 56259 7 (cloth This is an excellent book, by a very distinguished historian and philosopher of physics. Roberto Torretti

Cheng, Eugenia

446

PHYSICS 9005B: MATHEMATICAL METHODS OF PHYSICS JANUARY 2012  

E-Print Network (OSTI)

PHYSICS 9005B: MATHEMATICAL METHODS OF PHYSICS JANUARY 2012 Instructor: S. R. Valluri, P&A 112, 661 background and interest in Mathematics are encouraged to take this course Course Website: http://publish.uwo.ca/~valluri/physics major topics relevant for physics and engineering will be covered. Complex Variables: Analytic

Lennard, William N.

447

Physical Earth Science Is Physical Earth Science right for me?  

E-Print Network (OSTI)

Physical Earth Science Is Physical Earth Science right for me? If you are interested in learning a Physical Earth Science degree. The skills you will gain are wide-ranging and will provide a good basis for employment in almost any sector. Are all Physical Earth Science degrees the same? Universities do not have

Harman, Neal.A.

448

PHYSICS 237 SPRING 2006 Nuclear and Elementary Particle Physics  

E-Print Network (OSTI)

. K. Robinson Data Reduction and Error Analysis for the Physical Sciences QA278 .B48 2003 J. M. BlattPHYSICS 237 SPRING 2006 Nuclear and Elementary Particle Physics BOOKS ON RESERVE IN CRERAR LIBRARY 1987 K. S. Krane Introductory Nuclear Physics QC777.K730 1988 Useful references P. R. Bevington and D

449

Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator  

E-Print Network (OSTI)

The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diff?use supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon t...

Alonso, J R; Bergevin, M; Bernstein, A; Bignell, L; Blucher, E; Calaprice, F; Conrad, J M; Descamps, F B; Diwan, M V; Dwyer, D A; Dye, S T; Elagin, A; Feng, P; Grant, C; Grullon, S; Hans, S; Jaffe, D E; Kettell, S H; Klein, J R; Lande, K; Learned, J G; Luk, K B; Maricic, J; Marleau, P; Mastbaum, A; McDonough, W F; Oberauer, L; Gann, G D Orebi; Rosero, R; Rountree, S D; Sanchez, M C; Shaevitz, M H; Shokair, T M; Smy, M B; Strait, M; Svoboda, R; Tolich, N; Vagins, M R; van Bibber, K A; Viren, B; Vogelaar, R B; Wetstein, M J; Winslow, L; Wonsak, B; Worcester, E T; Wurm, M; Yeh, M; Zhang, C

2014-01-01T23:59:59.000Z

450

Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator  

E-Print Network (OSTI)

The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS.

J. R. Alonso; N. Barros; M. Bergevin; A. Bernstein; L. Bignell; E. Blucher; F. Calaprice; J. M. Conrad; F. B. Descamps; M. V. Diwan; D. A. Dwyer; S. T. Dye; A. Elagin; P. Feng; C. Grant; S. Grullon; S. Hans; D. E. Jaffe; S. H. Kettell; J. R. Klein; K. Lande; J. G. Learned; K. B. Luk; J. Maricic; P. Marleau; A. Mastbaum; W. F. McDonough; L. Oberauer; G. D. Orebi Gann; R. Rosero; S. D. Rountree; M. C. Sanchez; M. H. Shaevitz; T. M. Shokair; M. B. Smy; A. Stahl; M. Strait; R. Svoboda; N. Tolich; M. R. Vagins; K. A. van Bibber; B. Viren; R. B. Vogelaar; M. J. Wetstein; L. Winslow; B. Wonsak; E. T. Worcester; M. Wurm; M. Yeh; C. Zhang

2014-10-24T23:59:59.000Z

451

Brookhaven High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

452

LANL | Physics | Active Interrogation  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Division activities in standoff active-interrogation for detecting Physics Division activities in standoff active-interrogation for detecting terrorist nuclear devices, 2011 Detonation of a terrorist nuclear device in a major city would have severe economic, psychological and cultural consequences. To help prevent the fulfillment of such a threat, Physics Division has been exploring techniques by which highly-enriched uranium could be detected before reaching its intended target. We have focused on the use of high-energy protons and negative-muons because of their ability to probe deeply into structures and shielding that would surround the uranium, and their capability to stimulate radiation signatures indicating 235U. Our experimental studies for standoff active-interrogation are enabled by the 800-MeV proton beam at the Los Alamos Neutron Science Center, which

453

The Axiomatisation of Physics  

E-Print Network (OSTI)

Analysing Quantum Measurement requires analysing the physics of amplification since amplification of phenomena from one scale to another scale is essential to measurement. There still remains the task of working this into an axiomatic logical structure, what should be the foundational status of the concepts of measurement and probability. We argue that the concept of physical probability is a multi-scale phenomenon and as such, can be explicitly defined in terms of more fundamental physical concepts. Thus Quantum Mechanics can be given a logically unexceptionable axiomatisation. We introduce a new definition of macroscopic observable which implements Bohr's insight that the observables of a measurement apparatus are classical in nature. In particular, we obtain the usual non-abelian observables as limits of abelian, classical, observables. This is the essential step in Hilbert's Sixth Problem.

Joseph F. Johnson

2007-05-17T23:59:59.000Z

454

Lectures on LHC Physics  

E-Print Network (OSTI)

With the discovery of the Higgs boson the LHC experiments have closed the most important gap in our understanding of fundamental interactions. We now know that the interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is valid to arbitrarily high energy scales and do not require an ultraviolet completion. In these notes I cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: many facets of Higgs physics, QCD as it is relevant for LHC measurements, and standard phenomenological background knowledge. The lectures should put young graduate students into a position to really follow advanced writeups and first research papers. In that sense they can serve as a starting point for a research project in LHC physics. With this new, significantly expanded version I am confident that also some more senior colleagues will find them useful and interesting.

Tilman Plehn

2014-02-17T23:59:59.000Z

455

Argonne Physics Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RBW RBW Robert B. Wiringa (the guy on the right) phone: 630/252-6134 FAX: 630/252-6008 e-mail: wiringa@anl.gov Biographical sketch 1972 B.S., Rensselaer Polytechnic Institute 1974 M.S., University of Illinois at Urbana-Champaign 1978 Ph.D., University of Illinois at Urbana-Champaign 1978-80 Research Associate, Los Alamos Scientific Laboratory 1981-83 Research Associate, Argonne National Laboratory 1983-87 Assistant Physicist, Argonne National Laboratory 1987-99 Physicist, Argonne National Laboratory 2000- Senior Physicist, Argonne National Laboratory Visiting appointments 1993 Visiting Associate & Lecturer, California Institute of Technology Honors, Organizations, Committees, etc. 1994-2001 Chief, Theory Group, Physics Division, Argonne National Laboratory 1997-2000 Webmaster, Division of Nuclear Physics, American Physical

456

The Extreme Physics Explorer  

E-Print Network (OSTI)

Some tests of fundamental physics - the equation of state at supra-nuclear densities, the metric in strong gravity, the effect of magnetic fields above the quantum critical value - can only be measured using compact astrophysical objects: neutron stars and black holes. The Extreme Physics Explorer is a modest sized (~500 kg) mission that would carry a high resolution (R ~300) X-ray spectrometer and a sensitive X-ray polarimeter, both with high time resolution (~5 ?s) capability, at the focus of a large area (~5 sq.m), low resolution (HPD~1 arcmin) X-ray mirror. This instrumentation would enable new classes of tests of fundamental physics using neutron stars and black holes as cosmic laboratories.

Martin Elvis

2006-08-25T23:59:59.000Z

457

Tuning Structural and Mechanical Properties of Two-Dimensional Molecular Crystals: The Roles of Carbon Side Chains  

SciTech Connect

A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular system to address this issue. Eight molecular configurations with different molecular coverage are identified by scanning tunneling microscopy. Theoretical calculations reveal quantitatively the roles of different molecule-molecule and molecule-substrate interactions and predict the observed sequence of configurations. Remarkably, we find that a single Young's modulus applies for all configurations, the magnitude of which is controlled by side chain length, suggesting a versatile avenue for tuning not only the physical and chemical properties of molecular films but also their elastic properties.

Cun, Huanyao (HY) [Institute of Physics, Chinese Academy of Science; Wang, Yeliang (YL) [Institute of Physics, Chinese Academy of Science; Du, S X [Chinese Academy of Sciences; Zhang, Lei [Institute of Physics, Chinese Academy of Science; Zhang, Lizhi [Institute of Physics, Chinese Academy of Science; Yang, Bing [Institute of Physics, Chinese Academy of Science; He, Xiaobo [Institute of Physics, Chinese Academy of Science; Wang, Yue [Jilin University, Changchun; Zhu, Xueyan [Chinese Academy of Sciences; Yuan, Quanzi [Chinese Academy of Sciences; Zhao, Ya-Pu [Chinese Academy of Sciences; Ouyang, Min [University of Maryland; Hofer, Werner A. [University of Liverpool; Pennycook, Stephen J [ORNL; Gao, Hong-jun [Institute of Physics, Chinese Academy of Science

2012-01-01T23:59:59.000Z

458

The Physics of Life: one molecule at a time  

E-Print Network (OSTI)

The esteemed physicist Erwin Schroedinger, whose name is associated with the most notorious equation of quantum mechanics, also wrote a brief essay entitled 'What is Life?', asking: 'How can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?' The 60+ years following this seminal work have seen enormous developments in our understanding of biology on the molecular scale, physics playing a key role in solving many central problems through the development and application of new physical science techniques, biophysical analysis and rigorous intellectual insight. The early days of single molecule biophysics research was centred around molecular motors and biopolymers, largely divorced from a real physiological context. The new generation of single molecule bioscience investigations has much greater scope, involving robust methods for understanding molecular level details of the most fundamental biological processes in far more realistic, and technically challenging, physiological contexts, emerging into a new field of 'single molecule cellular biophysics'. Here, I outline how this new field has evolved, discuss the key active areas of current research, and speculate on where this may all lead in the near future.

M. C. Leake

2012-11-19T23:59:59.000Z

459

Physics 105 Handbook of Instructions  

E-Print Network (OSTI)

1 Physics 105 Handbook of Instructions Spring 2010 M.J. Madsen Wabash College, Crawfordsville the physical world and can be summa- rized by the following steps: 1. You will be presented a variety of "myths" or stories about some physical situation. 2. You will do background research into the physics models

Madsen, Martin John

460

PHYSICAL THERAPY PROGRAM STUDENT HANDBOOK  

E-Print Network (OSTI)

UTEP PHYSICAL THERAPY PROGRAM STUDENT HANDBOOK DPT Class of 2012 Summer 2010 Information herein;3 INTRODUCTION Dear Class of 2012, Welcome to the UTEP's Physical Therapy Program inaugural Doctor of Physical Therapy class. Your perseverance has paid off as you begin you academic career as a Student Physical

Ward, Karen

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SELECTED RECENT PUBLICATIONS: Nanoindentation of Silicon Nitride: A Multi-million Atom Molecular Dynamics Study, P.  

E-Print Network (OSTI)

, and G. Z. Voyiadjis, Phys. Rev. Lett. 87, 086104 (2001). · Linear-scaling Density-functional-theory). · Hybrid Finite-element/Molecular-dynamics/Electronic-density-functional Approach to Materials Simulations). SELECTED BOOKS: · High Performance Computing and its Applications in the Physical Sciences, (1993), World

Southern California, University of

462

Promise and challenge of high-performance computing, with examples from molecular modelling  

Science Journals Connector (OSTI)

...of chemical processes, e.g. by...physical, chemical and biological...modelling and simulation in science...programs such as MatLab) in the first...educational process will it be...and molecular processes that will be...Division of Chemical Sciences...little.pdf. Bailey...

2002-01-01T23:59:59.000Z

463

vation process, on a molecular layer basis, holds the possibility for many exciting future  

E-Print Network (OSTI)

. Sci. 381, 190 (1997). 15. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL of Energy (DOE) Basic Energy Sciences, and performed at the Wiley Environmental Molecular Sciences Laboratory, spon- sored by the DOE Office of Biological and Environmen- tal Research. Pacific Northwest

Sachs, Julian P.

464

Self-assembly of polyhedral shells: A molecular dynamics study D. C. Rapaport*  

E-Print Network (OSTI)

Self-assembly of polyhedral shells: A molecular dynamics study D. C. Rapaport* Physics Department) The use of reduced models for investigating the self-assembly dynamics underlying protein shell formation in spherical viruses is described. The spontaneous self-assembly of these polyhedral, supramolecular structures

Rapaport, Dennis C.

465

Status of Spin Physics  

E-Print Network (OSTI)

Fundamental spin physics has made striking progresses in the last years; new ideas, experiments and data interpretations have been proposed and keep emerging. A review of some of the most important issues in the spin structure of nucleons is made and prospects for the future are discussed.

Mauro Anselmino

2001-07-09T23:59:59.000Z

466

Space Plasma Physics  

Science Journals Connector (OSTI)

...W.D., BEAM-PLASMA DISCHARGE - BUILDUP...DURING ELECTRON BEAM-PLASMA INTERACTIONS, GEOPHYSICAL...ELECTRON-BEAM IN THE ATMOSPHERE, PLANETARY AND SPACE...1980 ). Space plasma physics: electron...regula' occurred at large pitch angles. Note...in quite different areas. (i) There is...

KLAUS WILHELM; WOLFGANG STDEMANN; WILLIBALD RIEDLER

1984-07-13T23:59:59.000Z

467

Physics Teachers Workshop  

ScienceCinema (OSTI)

INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne;

2013-05-28T23:59:59.000Z

468

Photon Physics in ALICE  

E-Print Network (OSTI)

We give an overview of photon physics which will be studied by the ALICE experiment in proton-proton and heavy ion collisions at LHC. We compare properties of ALICE photon detectors and estimate their ability to measure neutral meson and direct photon spectra as well as gamma-hadron and gamma-jet correlations in pp and Pb+Pb collisions.

D. Peressounko; Y. Kharlov; for the ALICE collaboration

2009-07-16T23:59:59.000Z

469

New Physics at CDF  

E-Print Network (OSTI)

We present the current status of searches for physics beyond the Standard Model at the Tevatron 1.96-TeV proton-antiproton collider using data collected with the CDF experiment. We cover searches for supersymmetry, extra dimensions and new gauge bosons.

Melisa Rossi

2010-06-06T23:59:59.000Z

470

Physical Processes in Stars  

Science Journals Connector (OSTI)

... : Structure and Evolution of the Stars (Princeton University Press, 1958), by M. Schwarzschild, and Physical Processes in Stellar Interiors (Israel Program for Scientific Translations, 1962), ... the years 1954-57 and there are only a few references of later date than Schwarzschild's book.

R. J. TAYLER

1964-12-05T23:59:59.000Z

471

Handbook of Reactor Physics  

Science Journals Connector (OSTI)

... THIS handbook is one volume in a series sponsored by the United States Atomic Energy Commission with ... data and reference information in the field of reactors. The volume is devoted to reactor physics and radiation shielding, the latter subject occupying approximately a quarter of the book.

PETER W. MUMMERY

1956-08-25T23:59:59.000Z

472

The truth about physics  

Science Journals Connector (OSTI)

... almost all of us to learn enough about our physical world to understand the environmental consequences of our greed or the beauty of the science our acquisitiveness exploits. Fewer still ... the Universe. The deduction requires additional postulates, and the demonstration of their counter-intuitive consequences requires mathematics.

J. L. Heilbron

1992-11-19T23:59:59.000Z

473

Reprint from "PLASMA PHYSICS  

E-Print Network (OSTI)

ATOMIC ENERGY AGENCY VIENNA, 1983 Link: http://charles.karney.info/biblio/white83.html #12;CONFINEMENTIN. ALBERT, C.F.F. KARNEY Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, United motion. Of course a stochastic field has no such coordinates, but the systems of interest for confinement

Karney, Charles

474

Institute for Molecular Engineering doubles size of founding faculty with  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Giulia Galli is another joint appointment to Argonne and the University of Chicago's Institute for Molecular Engineering. Galli creates computational methods to design new materials for more efficient energy generation and to simulate the behavior of water. Click to enlarge. Giulia Galli is another joint appointment to Argonne and the University of Chicago's Institute for Molecular Engineering. Galli creates computational methods to design new materials for more efficient energy generation and to simulate the behavior of water. Click to enlarge. Cleland specializes in quantum computing, quantum communication and quantum sensors, all of which depend upon harnessing the peculiar properties of quantum mechanics, the physics that dominates the atomic world and has recently been shown to apply to macroscopic mechanical objects as well as electrical circuits. Pictured above is a quantum machine. Click to enlarge.

475

Rack-and-pinion effects in molecular rolling friction  

E-Print Network (OSTI)

Rolling lubrication with spherical molecules working as 'nanobearings' has failed experimentally so far, without a full understanding of the physics involved and of the reasons why. Past model simulations and common sense have shown that molecules can only roll when they are not too closely packed to jam. The same type of model simulations now shows in addition that molecular rolling friction can develop deep minima once the molecule's peripheral 'pitch' can match the substrate periodicity, much as ordinary cogwheels do in a rack-and-pinion system. When the pinion-rack matching is bad, the driven molecular rolling becomes discontinuous and noisy, whence energy is dissipated and friction is large. This suggests experiments to be conducted by varying the rack-and-pinion matching. That could be pursued not only by changing molecules and substrates, but also by applying different sliding directions within the same system, or by applying pressure, to change the effective matching.

Oleg M. Braun; Erio Tosatti

2008-09-05T23:59:59.000Z

476

First-principles simulation of molecular dissociation-recombination equilibrium  

SciTech Connect

For the first time, the equilibrium composition of chemical dissociation-recombination reaction is simulated from first-principles, only. Furthermore, beyond the conventional ab initio Born-Oppenheimer quantum chemistry the effects from the thermal and quantum equilibrium dynamics of nuclei are consistently included, as well as, the nonadiabatic coupling between the electrons and the nuclei. This has been accomplished by the path integral Monte Carlo simulations for full NVT quantum statistics of the H{sub 3}{sup +} ion. The molecular total energy, partition function, free energy, entropy, and heat capacity are evaluated in a large temperature range: from below room temperature to temperatures relevant for planetary atmospheric physics. Temperature and density dependent reaction balance of the molecular ion and its fragments above 4000 K is presented, and also the density dependence of thermal ionization above 10 000 K is demonstrated.

Kylaenpaeae, Ilkka; Rantala, Tapio T. [Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

2011-09-14T23:59:59.000Z

477

MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES  

SciTech Connect

We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast- to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a 'wet merger' rather than a 'dry merger'. We compare the physical properties from our simulated disks (e.g., size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

Xu, X.; Walker, C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Narayanan, D., E-mail: xxu@as.arizona.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 51, Cambridge, MA 02138 (United States)

2010-10-01T23:59:59.000Z

478

The Entire Molecular Biology Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Archives Molecular Biology Archives Molecular Biology, Since May 2000 Table of Contents: Blood pH and Oxygen DNA Extraction Flesh Eating Bacteria Amino Acid Differences Lyme Disease Effects Vinegar and Alcohol Mosquito and Blood Caffeine and Smoking Bread Mold and pH Hemocyanin and Hemerythrin Hodospin Man-made Bacteria Pregnancy Tips mRNA Killing Bacteria Gram Stain Milk Bacteria Denatured Protein Pseudmands Bacteria Nucleotide Order Bacteria Resistance Albinism Genes DNA Healing Re-constitution of Proteins H. pylori and Multiple sclerosis Smallest Organism Sugars and Fats Bacteria Systematics Slow Regeneration Media Cultures Butter and Bacteria AIDS and Survival in Air Cell Intelligence Giardia gingivalis Meat Bacteria Pus and Immune Cells Chalones Culture of T. ferrooxisans Amphibian E. coli

479

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

480

Atomic, Molecular & Optical Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Sciences Atomic, Molecular and Optical Sciences The goal of the program is to understand the structure and dynamics of atoms and molecules using photons and ions as probes. The current program is focussed on studying inner-shell photo-ionization and photo-excitation of atoms and molecules, molecular orientation effects in slow collisions, slowing and cooling molecules, and X-ray photo-excitation of laser-dressed atoms. The experimental and theoretical efforts are designed to break new ground and to provide basic knowledge that is central to the programmatic goals of the Department of Energy (DOE). Unique LBNL facilities such as the Advanced Light Source (ALS), the ECR ion sources at the 88-inch cyclotron, and the National Energy Research Scientific Computing Center (NERSC) are

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

482

Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals  

Science Journals Connector (OSTI)

...axial symmetry order Cn represented with a heavy line with the enclosure formed by their close...Nano & Molecular Medicine, University of Missouri-Columbia...20 g of a 60% dispersion in mineral oil) in 500 mL of 1,2-dimethoxyethane...

Steven D. Karlen; Horacio Reyes; R. E. Taylor; Saeed I. Khan; M. Frederick Hawthorne; Miguel A. Garcia-Garibay

2010-01-01T23:59:59.000Z

483

5.76 Molecular Spectra and Molecular Structure, Spring 1996  

E-Print Network (OSTI)

Surveys modern research topics in physical chemistry. Introduction to four or five research areas of current interest. Topics vary from year to year and may include the following: advanced statistical and quantum mechanics, ...

Field, Robert W.

484

ls1 mardyn: The massively parallel molecular dynamics code for large systems  

E-Print Network (OSTI)

The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures, and currently holds the world record for the largest molecular simulation with over four trillion particles. It enables the application of pair potentials to length and time scales which were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multi-center rigid potential models based on Lennard-Jones sites, point charges and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, e.g. for fluids at interfaces, as well as non-equilibrium molecular dynamics simulation of heat and mass transfer.

Christoph Niethammer; Stefan Becker; Martin Bernreuther; Martin Buchholz; Wolfgang Eckhardt; Alexander Heinecke; Stephan Werth; Hans-Joachim Bungartz; Colin W. Glass; Hans Hasse; Jadran Vrabec; Martin Horsch

2014-08-20T23:59:59.000Z

485

Particle Physics News  

NLE Websites -- All DOE Office Websites (Extended Search)

previous page previous page August 8, 2001 A STRIKING DIFFERENCE FOUND BETWEEN MATTER AND ANTIMATTER. The BaBar and Belle experiments have found a fundamental difference between the behavior of matter and antimatter. Understanding the tiny differences between the laws of physics for matter and for antimatter may yield important clues about why the Universe contains far more matter than antimatter. News Stories SLAC story KEK story American Institute of Physics story Background Graphics (B Factory, BaBar Image, BaBar Photo, SLAC Images, Belle Detector Photo, KEK Site) August 8, 2001 A SOLUTION TO THE 30-YEAR OLD SOLAR NEUTRINO MYSTERY. Sudbury Neutrino Observatory (SNO) results show the solution to the puzzle of the missing solar neutrinos lies not with the Sun, but with the neutrinos, which change

486

RHIC | Spin Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Spin Physics Spin Physics RHIC is the world's only machine capable of colliding high-energy beams of polarized protons, and is a unique tool for exploring the puzzle of the proton's 'missing' spin. In addition to colliding heavy ions, RHIC is able to collide single protons. While these collisions don't produce quark-gluon plasma, they're interesting to physicists for other reasons. Scientists want to know more about a property of particles called 'spin'. Spin is the direction a particle is spinning around an axis as it travels -- just like the Earth spins on its axis as it travels around the sun. Each proton has a specific spin, which helps give it a characteristic magnetic property. spin In this picture of a proton-proton collision, the spin of the particles is shown as arrows circling the spherical particles. The red and green

487

Physics as Information Processing  

SciTech Connect

I review some recent advances in foundational research at Pavia QUIT group. The general idea is that there is only Quantum Theory without quantization rules, and the whole Physics - including space-time and relativity - is emergent from the quantum-information processing. And since Quantum Theory itself is axiomatized solely on informational principles, the whole Physics must be reformulated in information-theoretical terms: this is the It from bit of J. A. Wheeler.The review is divided into four parts: a) the informational axiomatization of Quantum Theory; b) how space-time and relativistic covariance emerge from quantum computation; c) what is the information-theoretical meaning of inertial mass and of ({h_bar}/2{pi}), and how the quantum field emerges; d) an observational consequence of the new quantum field theory: a mass-dependent refraction index of vacuum. I will conclude with the research lines that will follow in the immediate future.

D'Ariano, Giacomo Mauro [QUIT Group, Dipartimento di Fisica 'A. Volta', 27100 Pavia (Italy) and Istituto Nazionale di Fisica Nucleare, Gruppo IV, Sezione di Pavia (Italy)

2011-03-28T23:59:59.000Z

488

Physics as Information Processing  

E-Print Network (OSTI)

I review some recent advances in foundational research at Pavia QUIT group. The general idea is that there is only Quantum Theory without quantization rules, and the whole Physics---including space-time and relativity--is emergent from the quantum-information processing. And since Quantum Theory itself is axiomatized solely on informational principles, the whole Physics must be reformulated in information-theoretical terms: this is the "It from Bit of J. A. Wheeler. The review is divided into four parts: a) the informational axiomatization of Quantum Theory; b) how space-time and relativistic covariance emerge from quantum computation; c) what is the information-theoretical meaning of inertial mass and of $\\hbar$, and how the quantum field emerges; d) an observational consequence of the new quantum field theory: a mass-dependent refraction index of vacuum. I will conclude with the research lines that will follow in the immediate future.

Giacomo Mauro D'Ariano

2010-12-02T23:59:59.000Z

489

Physics from information  

E-Print Network (OSTI)

This is an ongoing review on my conjecture that information processing at causal horizons is the key ingredient of all physics. Assuming that information is fundamental and the information propagates with finite velocity, one can find that main physical laws such as Newton's second law and Einstein equation simply describe the energy-information relation (dE=TdS) for matter or space time crossing a causal horizon with temperature T for observers. Quantum mechanics arises from ignorance of the observers about matter crossing the horizon, which explains why superluminal communication is impossible even with quantum entanglement. This approach also explains the origin of Jacobson's thermodynamic formalism of Einstein gravity and Verlinde's entropic gravity. When applied to a cosmic causal horizon, the conjecture reproduces the observed dark energy and demands the zero cosmological constant.

Lee, Jae-Weon

2010-01-01T23:59:59.000Z

490

Top physics at CDF  

SciTech Connect

We report on top physics results using a 100 pb{sup -1} data sample of p{bar p} collisions at {radical}s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). We have identified top signals in a variety of decay channels, and used these channels to extract a measurement of the top mass and production cross section. A subset of the data (67 pb{sup -1}) is used to determine M{sub top} = 176 {+-} 8(stat) {+-} 10(syst) and {sigma}(tt) = 7.6 {sub -2.0}{sup +2.4} pb. We present studies of the kinematics of t{bar t} events and extract the first direct measurement of V{sub tb}. Finally, we indicate prospects for future study of top physics at the Tevatron.

Hughes, R.E. [Univ. of Rochester, NY (United States)

1997-01-01T23:59:59.000Z

491

New physics at the LHC.  

SciTech Connect

With the LHC up and running, the focus of experimental and theoretical high energy physics will soon turn to an interpretation of LHC data in terms of the physics of electroweak symmetry breaking and the TeV scale. We present here a broad review of models for new TeV-scale physics and their LHC signatures. In addition, we discuss possible new physics signatures and describe how they can be linked to specific models of physics beyond the Standard Model. Finally, we illustrate how the LHC era could culminate in a detailed understanding of the underlying principles of TeV-scale physics.

Morrissey, D. E.; Plehn, T.; Tait, T. M. P. (High Energy Physics); (TRIUMF); (Harvard Univ); (Univ. of Heidelberg); (Univ. of California at Irvine); (Northwestern Univ.)

2012-01-01T23:59:59.000Z

492

Electroweak Physics and Searches for New Physics at HERA  

E-Print Network (OSTI)

Recent results from the H1 and ZEUS experiments are reported on electroweak physics and on searches for new physics. All results are in good agreement with the Standard Model.

U. Schneekloth

2010-01-13T23:59:59.000Z

493

Nuclear Physics Review  

SciTech Connect

Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

Walker-Loud, Andre

2014-11-01T23:59:59.000Z

494

Physics of supernovae  

SciTech Connect

Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

Woosley, S.E.; Weaver, T.A.

1985-12-13T23:59:59.000Z

495

Jet and Photon Physics  

E-Print Network (OSTI)

Jet production in proton-proton collisions is one of the main phenomenological predictions of QCD. The ATLAS and CMS Collaborations have performed measurements of several jet observables at the LHC and compared their results to theoretical predictions and event generators. Useful physics input for the determination of the parton distribution functions and the strong coupling constant is provided. Photon production measurements represent another important test of QCD and show strong sensitivity to higher-order corrections.

Peruzzi, Marco

2014-01-01T23:59:59.000Z

496

Jet and photon physics  

E-Print Network (OSTI)

Jet production in proton-proton collisions is one of the main phenomenological predictions of QCD. The ATLAS and CMS Collaborations have performed measurements of several jet observables at the LHC and compared their results to theoretical predictions and event generators. Useful physics input for the determination of the parton distribution functions and the strong coupling constant is provided. Photon production measurements represent another important test of QCD and show strong sensitivity to higher-order corrections.

Marco Peruzzi; for the ATLAS; CMS Collaborations

2014-09-30T23:59:59.000Z

497

Letter to the Editors of Physics Today  

SciTech Connect

Two points in our recent article on Edward Teller's scientific life (Physics Today, August 2004, page 45) require correction. In our description of Teller's students, we incorrectly stated that Arthur Kantrowitz's thesis was on the generation of hypersonic molecular beams. Actually, his thesis was on heat capacity lags in gas dynamics. Kantrowitz's invention of high intensity sources for molecular beams came later in his career. Maurice Goldhaber has emphasized that the situation with respect to possible nuclear resonances in ({gamma},n) or ({gamma},fission) reactions was quite unclear at the time of George C. Baldwin and G. Stanley Klaiber's papers on these reactions. This was because the rapid rise of their yield to a prominent peak with increasing energy, followed by a slower fall off was then thought to have been due to the competition between the rapidly rising density of nuclear states and the eventual domination of other reaction channels at higher energies. Goldhaber realized, however, that there could be an analogy between a possible collective nuclear resonance and the restrahl resonance (essentially the transverse optical phonon mode) in polar crystals. Goldhaber sought out Teller because of his paper with Russell Lyddane and Robert Sachs, relating the restrahl frequency to the asymptotic behavior of the crystal's dielectric function. Goldhaber and Teller, in their paper together, went on to predict universal, giant photo-nuclear resonances.

Libby, S B; Weiss, M S

2004-11-11T23:59:59.000Z

498

Physics as Information Theory  

SciTech Connect

The experience from Quantum Information of the last twenty years has lead theorists to look at Quantum Theory and the whole of Physics from a different angle. A new information-theoretic paradigm is emerging, long time ago prophesied by John Archibald Wheeler with his popular coinage 'It from bit'. Theoretical groups are now addressing the problem of deriving Quantum Theory from informational principles, and similar lines are investigated in new approaches to Quantum Gravity. In my talk I will review some recent advances on these lines. The general idea synthesizing the new paradigm is that there is only Quantum Theory (without quantization rules): the whole Physics--including space-time and relativity--is emergent from quantum-information processing. And, since Quantum Theory itself is made with purely informational principles, the whole Physics must be reformulated in information-theoretical terms. The review is divided into the following parts: (a) The informational axiomatization of Quantum Theory; (b) How space-time and relativistic covariance emerge from the quantum computation; (c) What is the information-theoretical meaning of inertial mass and Planck constant, and how the quantum field emerges; (d) Observational consequences: mass-dependent refraction index of vacuum. I then conclude with some possible future research lines.

D'Ariano, Giacomo Mauro (University of Pavia) [University of Pavia

2010-10-20T23:59:59.000Z

499

Evidence for Complex Molecular Architectures for Solvent-Extracted Lignins  

SciTech Connect

Lignin, an abundant, naturally occurring biopolymer, is often considered 'waste' and used as a simple fuel source in the paper-making process. However, lignin has emerged as a promising renewable resource for engineering materials, such as carbon fibers. Unfortunately, the molecular architecture of lignin (in vivo and extracted) is still elusive, with numerous conflicting reports in the literature, and knowledge of this structure is extremely important, not only for materials technologies, but also for production of biofuels such as cellulosic ethanol due to biomass recalcitrance. As such, the molecular structures of solvent-extracted (sulfur-free) lignins, which have been modified using various acyl chlorides, have been probed using small-angle X-ray (SAXS) and neutron (SANS) scattering in tetrahydrofuran (THF) solution along with hydrodynamic characterization using dilute solution viscometry and gel permeation chromatography (GPC) in THF. Mass spectrometry shows an absolute molecular weight {approx}18-30 kDa ({approx}80-140 monomers), while GPC shows a relative molecular weight {approx}3 kDa. A linear styrene oligomer (2.5 kDa) was also analyzed in THF using SANS. Results clearly show that lignin molecular architectures are somewhat rigid and complex, ranging from nanogels to hyperbranched macromolecules, not linear oligomers or physical assemblies of oligomers, which is consistent with previously proposed delignification (extraction) mechanisms. Future characterization using the methods discussed here can be used to guide extraction processes as well as genetic engineering technologies to convert lignin into value added materials with the potential for high positive impact on global sustainability.

Rials, Timothy G [ORNL; Urban, Volker S [ORNL; Langan, Paul [Los Alamos National Laboratory (LANL)

2012-01-01T23:59:59.000Z

500

Molecular dynamics simulation of hydrogen diffusion in titanium  

National Nuclear Security Administration (NNSA)

9: Computation Physics 9: Computation Physics Atomistic Simulation of Hydrogen Diffusion in Titanium. Alexandr S. Rokhmanenkov, Alexey Yu. Kuksin, and Vladimir V. Stegailov All-Russia Research Institute of Automatics, Moscow 125412, Russia rohmanenkov@gmail.com Summary Study of the behavior of hydrogen in metals and alloys. The study is based on classical molecular dynamics (MD) and density functional theory (DFT) calculations. Study of the behavior of hydrogen in metals and alloys is of great importance due to the practical uses of hydrogen-metal systems for absorption of nuclear radiation, in neutron sources, for storage of hydrogen, or as catalyzers. This work is devoted to atomistic simulation of hydrogen diffusion in titanium hydrides and the effect of stresses and lattice defects on diffusivity.