Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Atomic and Molecular Physics  

Science Conference Proceedings (OSTI)

... DG, * SRD 105 Physic Laboratory's Elemental ... Nuclear Physics SRD 144 Atomic Weights & ... Physical Constants SRD 121 Fundamental Physical ...

2012-10-10T23:59:59.000Z

2

NIST Quantum Physics Division - 2005-2007: Strategic Focus ...  

Science Conference Proceedings (OSTI)

... Third. Ultrafast Science - to advance ultrafast science. Fourth. Biophysics - to apply cutting edge measurement science to biological physics. ...

3

Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets  

SciTech Connect

The ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets are studied with time-resolved extreme ultraviolet ion imaging spectroscopy. At excitation energies of 23.6 {+-} 0.2 eV, Rydberg atoms in n= 3 and n= 4 states are ejected on different time scales and with significantly different kinetic energy distributions. Specifically, n= 3 Rydberg atoms are ejected with kinetic energies as high as 0.85 eV, but their appearance is delayed by approximately 200 fs. In contrast, n= 4 Rydberg atoms appear within the time resolution of the experiment with considerably lower kinetic energies. Major features in the Rydberg atom kinetic energy distributions for both principal quantum numbers can be described within a simple elastic scattering model of localized perturbed atomic Rydberg atoms that are expelled from the droplet due to their repulsive interaction with the surrounding helium bath. Time-dependent kinetic energy distributions of He{sub 2}{sup +} and He{sub 3}{sup +} ions are presented that support the formation of molecular ions in an indirect droplet ionization process and the ejection of neutral Rydberg dimers on a similar time scale as the n= 3 Rydberg atoms.

Buenermann, Oliver; Kornilov, Oleg; Neumark, Daniel M. [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Haxton, Daniel J.; Gessner, Oliver [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

2012-12-07T23:59:59.000Z

4

Distribution Category: Atomic, Molecular, and Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Atomic, Molecular, and Chemical Physics (UC-411) ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, TIlinois 60439 ANLI APSILS-151 RESULTS OF DESIGN CALCULATIONS FOR THE MODULATOR OF THE CROSSED FIELD UNDULATOR DEVICE by Roland S8:voy Advanced Photon Source August 1990 Work sponsored by ~--~,P:a7te~n7t~C~le-.a-re-d--b\-!------ Pen"" .... + D - CII, epartrnent, AND R':-lr-!, ("'1:' ' "'"",,, l... ,r:.. ,'\')k. . f\UTHOF?IZED BY 1l;J6r1l11Cal Publications Ser " O(;ite~ ~ 'vjces Technicallnf ~avld R .* ·i;;~rln - ormatIon Services, ANL Uo So DEPARTMENT OF ENERGY Office of Energy Research 1 Abstract: The modulator in the crossed field undulator device is used to shift the

5

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Ultrafast Core-Hole Induced Dynamics in Water Ultrafast Core-Hole Induced Dynamics in Water Print Wednesday, 22 February 2006 00:00 A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

6

Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces Title Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces Publication Type Journal Article Year of Publication 2012 Authors Zormpa, Vasileia, Jaroslaw Syzdek, Xianglei Mao, Richard E. Russo, and Robert Kostecki Journal Applied Physics Letters Volume 100 Issue 23 Date Published 05-2012 ISSN 0003-6951 Keywords electrochemical electrodes, graphite, high-speed optical techniques, laser beam effects, organic compounds, pyrolysis, solid electrolytes Abstract Direct chemical analysis of electrode/electrolyte interfaces can provide critical information on surface phenomena that define and control the performance of Li-based battery systems. In this work, we introduce the use of ex situ femtosecond laser induced breakdown spectroscopy to probe compositional variations within the solid electrolyte interphase (SEI) layer. Nanometer-scale depth resolution was achieved for elemental and molecular depth profiling of SEI layers formed on highly oriented pyrolytic graphite electrodes in an organic carbonate-based electrolyte. This work demonstrates the unique ability of ultrafast laser spectroscopy as a highly versatile, light element-sensitive technique for direct chemical analysis of interfacial layers in electrochemical energy storage systems.

7

Atomic, Molecular and Optical Physics Group | Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Physics homeimg We seek a predictive understanding of intense x-ray and optical interactions with matter. We study new phenomena induced by intense...

8

Time-frequency resolved ultrafast spectroscopy techniques using wavelet analysis  

E-Print Network (OSTI)

New experimental techniques based on non-linear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet 'complete' spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport.

Javier Prior; Enrique Castro; Alex W. Chin; Javier Almeida; Susana F. Huelga; Martin B. Plenio

2013-08-21T23:59:59.000Z

9

Molecular Physics Division 1993 - Technical Highlights  

Science Conference Proceedings (OSTI)

... Institute of Applied Physics, Russia, W. Stahl ... and compressibility factors for gases of varying ... Potentials of interest for natural gas transport include ...

10

Institute for Molecular Physics at the University of Maryland  

E-Print Network (OSTI)

The Institute for Physical Science and Technology at the University of Maryland was founded in 1976 from a merger of the Institute for Fluid Dynamics and Applied Mathematics (IFDAM) and the Institute for Molecular Physics (IMP), which were established at the College Park Campus after World War II to enhance the expertise of the University of Maryland in some areas of science and technology of interest to the US Department of Defense. Here I try to reconstruct the history of the Institute for Molecular Physics at the University of Maryland.

Sengers, Jan V

2013-01-01T23:59:59.000Z

11

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

12

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

13

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental challenge for the radiation chemistry community to unravel the early time dynamics of electronically excited states in water because their short (femtosecond) time scales are difficult to access directly with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation dynamics of liquid water can be successfully probed with x-ray emission spectroscopy.

14

Chemical Physics Portal  

Science Conference Proceedings (OSTI)

... spectroscopy. Ultrafast lasers are used to … more. >> see all Chemical Physics programs and projects ... *. Bookmark and Share. ...

2010-10-01T23:59:59.000Z

15

Relativistic ultrafast rendering using time-of-flight imaging  

Science Conference Proceedings (OSTI)

We capture ultrafast movies of light in motion and synthesize physically valid visualizations. The effective exposure time for each frame is under two picoseconds (ps). Capturing a 2D video with this time resolution is highly challenging, given the low ... Keywords: relativistic effects, streak sensor, time-resolved imaging, ultrafast optics

Andreas Velten; Di Wu; Adrian Jarabo; Belen Masia; Christopher Barsi; Everett Lawson; Chinmaya Joshi; Diego Gutierrez; Moungi G. Bawendi; Ramesh Raskar

2012-08-01T23:59:59.000Z

16

October 23, 2012 13:0 Molecular Physics Roughsurfacepaper Molecular Physics  

E-Print Network (OSTI)

[4]. Further manipulations, such as optical molecular centrifuge [5] and alignment- dependent strong]. Laser control of the gas-surface scattering process was achieved using multiphoton ionization

Manson, Joseph R.

17

Ultrafast Accelerators for Pulse Radiolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

in this area agreed that it would be useful to organize a specialist's conference on ultrafast accelerators for pulse radiolysis, to discuss the common experiences and problems...

18

Plasmonic enhanced ultrafast switch.  

Science Conference Proceedings (OSTI)

Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

Subramania,Ganapathi Subramanian; Reno, John Louis; Passmore, Brandon Scott; Harris, Tom.; Shaner, Eric Arthur; Barrick, Todd A.

2009-09-01T23:59:59.000Z

19

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

20

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Print Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been developed here provide the ability to control and probe atomic and molecular processes with unprecedented precision. In particular, the spectral resolution, brightness, broad tunability, and polarization control generate novel avenues for the study of tailored states, inner-shell processes, and nonperturbative electron interactions. Driven by the high brightness of the ALS, a whole new world of vacuum ultraviolet (VUV) and soft x-ray physics has emerged through the development of combined techniques to excite, select, and probe atoms, molecules, and clusters.

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ultrafast scanning probe microscopy  

DOE Patents (OSTI)

An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

1995-01-01T23:59:59.000Z

22

Ultrafast scanning probe microscopy  

DOE Patents (OSTI)

An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

1995-05-16T23:59:59.000Z

23

Ultrafast electron beam imaging of femtosecond laser-induced plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast electron beam imaging of femtosecond laser-induced plasma Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Title Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Publication Type Journal Article Year of Publication 2010 Authors Li, Junjie, Xuan Wang, Zhaoyang Chen, Richard Clinite, Samuel S. Mao, Pengfei Zhu, Zhengming Sheng, Jie Zhang, and Jianming Cao Journal Journal of Applied Physics Volume 107 Issue 8 Date Published 03/2010 Keywords copper, electron beam applications, high-speed optical techniques, laser ablation, plasma diagnostics, plasma production by laser Abstract Plasma dynamics in the early stage of laser ablation of a copper target are investigated in real time by making ultrafast electron shadow images and electron deflectometry measurements. These complementary techniques provide both a global view and a local perspective of the associated transient electric field and charge expansion dynamics. The results reveal that the charge cloud above the target surface is composed predominantly of thermally ejected electrons and that it is self-expanding, with a fast front-layer speed exceeding 107 m/s. The average electric field strength of the charge cloud induced by a pump fluence of 2.2 J/cm2 is estimated to be ∼ 2.4×105 V/m.

24

Anomalous Adsorption of Ultrafast Laser Irradiation in Glass ...  

Science Conference Proceedings (OSTI)

Presentation Title, Anomalous Adsorption of Ultrafast Laser Irradiation in Glass ... and is driven by the stress induced by absorption of ultrafast light in glass.

25

Laser wavelength effects in ultrafast near-field laser nanostructuring...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Title Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Publication Type...

26

Ultrafast Dynamics of Pyrrolidinium Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Dynamics of Pyrrolidinium Cation Ionic Liquids Hideaki Shirota, Alison M. Funston, James F. Wishart, Edward W. Castner, Jr. J. Chem. Phys. 122, 184512 (2005). Find paper...

27

Microsoft Word - Ultrafast symposium agenda7.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Wishart, BNL 8:55 Design and construction of ultrafast pulse radiolysis system using laser photocathode rf-gun combined with fs laser, University of Tokyo, Yusa Muroya,...

28

DNA Repair Protein Caught in the Act of Molecular Theft | Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Molecular Fossil Ultrafast Imaging of Electron Waves in Graphene When Size Matters: Yttrium Oxide Breaking Down Under Pressure Breakthrough in Nanocrystals' Growth A Boring...

29

NANO EXPRESS Open Access Ultrafast nano-oscillators based on interlayer-  

E-Print Network (OSTI)

NANO EXPRESS Open Access Ultrafast nano-oscillators based on interlayer- bridged carbon nanoscrolls nano-oscillators based on carbon nanoscrolls (CNSs) using molecular dynamics simulations. Initiated of gigahertz. We demonstrate an effective strategy to reduce the dissipation of the CNS-based nano

Li, Teng

30

Ultrafast pulsed laser utilizing broad bandwidth laser glass  

DOE Patents (OSTI)

An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

Payne, S.A.; Hayden, J.S.

1997-09-02T23:59:59.000Z

31

Ultrafast pulsed laser utilizing broad bandwidth laser glass  

DOE Patents (OSTI)

An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

Payne, Stephen A. (Castro Valley, CA); Hayden, Joseph S. (Clarks Summit, PA)

1997-01-01T23:59:59.000Z

32

4th-International Symposium on Ultrafast Surface Science - Final Report  

SciTech Connect

The 4-th International Symposium on Ultrafast Surface Dynamics (UDS4) was held at the Telluride Summer Research Center on June 22-27, 2003. The International Organizing Committee consisting of Hrvoje Petek (USA), Xiaoyang Zhu (USA), Pedro Echenique (Spain) and Maki Kawai (Japan) brought together a total of 51 participants 16 of whom were from Europe, 10 from Japan, and 25 from the USA. The focus of the conference was on ultrafast electron or light induced processes at well-defined surfaces. Ultrafast surface dynamics concerns the transfer of charge and energy at solid surfaces on the femtosecond time scale. These processes govern rates of fundamental steps in surface reactions, interfacial electron transfer in molecular electronics, and relaxation in spin transport. Recent developments in femtosecond laser technology make it possible to measure by a variety of nonlinear optical techniques directly in the time domain the microscopic rates underlying these interfacial processes. Parallel progress in scanning probe microscopy makes it possible at a single molecular level to perform the vibrational and electronic spectroscopy measurements, to induce reactions with tunneling electrons, and to observe their outcome. There is no doubt that successful development in the field of ultrafast surface dynamics will contribute to many important disciplines.

Hrvoje Petek

2005-01-26T23:59:59.000Z

33

NIST Quantum Physics Division - 2005-2007: Strategic Focus ...  

Science Conference Proceedings (OSTI)

... Third. Ultrafast Science - to advance ultrafast science. ... Ultrafast Science: to advance ultrafast science. INTENDED OUTCOME AND BACKGROUND. ...

34

Multibounce light transport analysis using ultrafast imaging for material acquisition  

E-Print Network (OSTI)

This thesis introduces a novel framework for analysis of multibounce light transport using time-of-flight imaging for the applications of ultrafast reflectance acquisition and imaging through scattering media. Using ultrafast ...

Naik, Nikhil, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

35

SLIDER - Rapid Optical Deflector for Recording Ultrafast Signals  

home \\ technologies \\ slider. Technologies: Ready-to-Sign Licenses: Software: Patents: SLIDER - Rapid Optical Deflector for Recording Ultrafast Signals. Contact.

36

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

37

Molecular hydrogen in damped Ly-alpha systems: clues to interstellar physics at high-redshift  

E-Print Network (OSTI)

In order to interpret H2 (molecular hydrogen) quasar absorption line observations of damped Ly-alpha systems (DLAs) and sub-DLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of gas by using H2 data. Using H2 excitation data for DLA with H2 detections, we derive a gas density 1.5 gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and sub-DLAs with H2 fractions less than ~ 10^-6 are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction (gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase and the large variations of H2 abundance for \\kappa > 1/30. We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.

H. Hirashita; A. Ferrara

2004-11-10T23:59:59.000Z

38

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

39

Two New Types of Ultrafast Aircraft Thermometer  

Science Conference Proceedings (OSTI)

A new version of an ultrafast aircraft resistance thermometer (UFT-F) with a time constant of the order 10?4 s,for use in both cloudy and cloudless air, is described. It evolved from an earlier version (UFT-S). Its sensing element is similar to ...

Krzysztof E. Haman; Szymon P. Malinowski; Bo?ena D. Stru?; Reinhold Busen; Andrzej Stefko

2001-02-01T23:59:59.000Z

40

The Effects of Interfaces on the Ultrafast Irradiation of Thin Films  

Science Conference Proceedings (OSTI)

Presentation Title, The Effects of Interfaces on the Ultrafast Irradiation of Thin Films ... Abstract Scope, The ultrafast laser irradiation of bulk materials is a ...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ultrafast thin-film laser-induced breakdown spectroscopy of doped...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast thin-film laser-induced breakdown spectroscopy of doped oxides Title Ultrafast thin-film laser-induced breakdown spectroscopy of doped oxides Publication Type Journal...

42

Environmental Research Division: fundamental molecular physics and chemistry. Annual report, January-December 1983. Part I  

SciTech Connect

Research progress is reported in the following areas: (1) photoionization of radicals or excited states; (2) molecular spectroscopy by resonant multiphoton ionization; (3) studies conducted with the synchrotron radiation facility at the National Bureau of Standards; (4) theoretical studies on molecular photoabsorption; (5) analysis of photoabsorption spectra of open-shell atoms; (6) the electron energy-loss spectra of molecules; and (7) cross sections and stopping powers. Items have been individually abstracted for the data base. (ACR)

Not Available

1985-03-01T23:59:59.000Z

43

Effects of Ultrafast Laser Micromachining on Structure and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Effects of Ultrafast Laser Micromachining on Structure and Mechanical Properties of 316 LVM Stainless Steel. Author(s), Hossein Lavvafi, ...

44

Ultra-Fast Calorimetry for Studies of Crystallization in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ultra-Fast Calorimetry for Studies of Crystallization in Chalcogenides for Phase-Change Memory. Author(s), A. L. Greer. On-Site Speaker ...

45

INTERNATIONAL SYMPOSIUM ON ULTRAFAST ACCELERATORS FOR PULSE RADIOLYSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

and poster set-up 8:20 Introductory remarks (J. F. Wishart, J. R. Miller) Session I: Ultrafast radiolysis facilities: Photocathode systems (Including accelerator system designs...

46

Probing surface chemistry using 'Operando' and 'Ultrafast' soft...  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing surface chemistry using 'Operando' and 'Ultrafast' soft x-ray spectroscopies Wednesday, December 18, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Hirohito...

47

Argonne CNM Highlight: Award for Ultrafast Imaging of Solar Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

CNM's Nanophotonics Group and Argonne Chemical Sciences and Engineering's (CSE's) Photosynthesis Group, presented her poster, "Ultrafast Imaging of Solar Energy Flow in...

48

Probing Ultrafast Solvation Dynamics with High Repetition-Rate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights rss feed Probing Ultrafast Solvation Dynamics with High Repetition-Rate LaserX-ray Methodologies FEBRUARY 11, 2012 Bookmark and Share X-ray absorption, emission...

49

Ultra-fast framing camera tube  

DOE Patents (OSTI)

An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

Kalibjian, Ralph (1051 Batavia Ave., Livermore, CA 94550)

1981-01-01T23:59:59.000Z

50

Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1  

Science Conference Proceedings (OSTI)

This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

Not Available

1983-12-01T23:59:59.000Z

51

Observing Structure and Motion in Molecules with Ultrafast Strong Field and Short Wavelength Laser Radiation  

SciTech Connect

The term "molecular movie" has come to describe efforts to track and record Angstrom-scale coherent atomic and electronic motion in a molecule. The relevant time scales for this range cover several orders of magnitude, from sub-femtosecond motion associated with electron-electron correlations, to 100-fs internal vibrations, to multi-picosecond motion associated with the dispersion and quantum revivals of molecular reorientation. Conventional methods of cinematography do not work well in this ultrafast and ultrasmall regime, but stroboscopic "pump and probe" techniques can reveal this motion with high fidelity. This talk will describe some of the methods and recent progress in exciting and controlling this motion, using both laboratory lasers and the SLAC Linac Coherent Light Source x-ray free electron laser, and will further try to relate the date to the goal of molecular movies.

Bucksbaum, Philip H

2011-04-13T23:59:59.000Z

52

Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

e-prints - see the 'hep' sections CERN Document Server Over a million records on high-energy physics (HEP) from CERN INSPIRE HEP papers updated daily (a collaboration of CERN,...

53

Resource Letter: Bio-molecular Nano-machines: where Physics, Chemistry, Biology and Technology meet  

E-Print Network (OSTI)

Cell is the structural and functional unit of life. This Resource Letter serves as a guide to the literature on nano-machines which drive not only intracellular movements, but also motility of the cell. These machines are usually proteins or macromolecular assemblies which require appropriate fuel for their operations. Although, traditionally, these machines were subjects of investigation in biology and biochemistry, increasing use of the concepts and techniques of physics in recent years have contributed to the quantitative understanding of the fundamental principles underlying their operational mechanisms. The possibility of exploiting these principles for the design and control of artificial nano-machines has opened up a new frontier in the bottom-up approach to nano-technology.

Debashish Chowdhury

2008-07-17T23:59:59.000Z

54

Apparatus and method for characterizing ultrafast polarization varying optical pulses  

DOE Patents (OSTI)

Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques.

Smirl, Arthur (1020 Cherry La. Northwest, Iowa City, IA 52240); Trebino, Rick P. (425 Mulqueeny St., Livermore, CA 94550)

1999-08-10T23:59:59.000Z

55

Nucleation and Growth Observed by Ultrafast SAXS and WAXS  

Science Conference Proceedings (OSTI)

To access these early stages of particle formation we have undertaken ultrafast SAXS and WAXS measurements in the free jet at the exit of a micro-T-mixer ...

56

Ultrafast nonlinear optical properties of passive and active semiconductor devices  

E-Print Network (OSTI)

Nonlinear optical properties and ultrafast carrier dynamics of slab-coupled optical waveguide amplifiers, silicon nanowaveguides, and III-V semiconductor saturable Bragg reflectors are studied. The limits imposed by two ...

Motamedi, Ali Reza

2011-01-01T23:59:59.000Z

57

Ultrafast Imaging of Electron Waves in Graphene | Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

| Subscribe to APS Science Highlights rss feed Ultrafast Imaging of Electron Waves in Graphene NOVEMBER 9, 2010 Bookmark and Share A frame from one of the electron-motion movies...

58

High-performance laser processing using manipulated ultrafast laser pulses  

Science Conference Proceedings (OSTI)

We employ manipulated ultrafast laser pulses to realize microprocessing with high-performance. Efficient microwelding of glass substrates by irradiation by a double-pulse train of ultrafast laser pulses is demonstrated. The bonding strength of two photostructurable glass substrates welded by double-pulse irradiation was evaluated to be 22.9 MPa, which is approximately 22% greater than that of a sample prepared by conventional irradiation by a single pulse train. Additionally, the fabrication of hollow microfluidic channels with a circular cross-sectional shape embedded in fused silica is realized by spatiotemporally focusing the ultrafast laser beam. We show both theoretically and experimentally that the spatiotemporal focusing of ultrafast laser beam allows for the creation of a three-dimensionally symmetric spherical peak intensity distribution at the focal spot.

Sugioka, Koji; Cheng Ya; Xu Zhizhan; Hanada, Yasutaka; Midorikawa, Katsumi [RIKEN - Advanced Science Institute, Wako, Saitama 351-0198 (Japan); State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (China); RIKEN - Advanced Science Institute, Wako, Saitama 351-0198 (Japan)

2012-07-30T23:59:59.000Z

59

Ultrafast optical pulse manipulation in three dimensional-resolved microscope imaging and microfabrication  

E-Print Network (OSTI)

The availability of lasers with femtosecond, ultrafast light pulses provides new opportunities and challenges in instrument design. This thesis addresses three aspects of utilizing ultrafast light pulses in two-photon ...

Kim, Daekeun, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

60

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall...  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Wednesday, 26...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An ultrafast x-ray detector system at an elliptically polarizing undulator beamline  

E-Print Network (OSTI)

has been developed at the ALS for the study of ultrafastAdvanced Light Source (ALS). A streak camera is a detector2 Experimental setup The ALS ultrafast x-ray detector system

2008-01-01T23:59:59.000Z

62

Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials  

E-Print Network (OSTI)

EM) and PL Measurements……….472 Femtosecond Laser System andlaser System and Transient Absorption Measurements UltrafastSystem: Ultrafast transient bleach measurements were conducted using an amplified femtosecond Ti-sapphire laser

Wheeler, Damon Andreas

2013-01-01T23:59:59.000Z

63

Ultrafast effective multi-level atom method for primordial hydrogen recombination  

E-Print Network (OSTI)

Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effectiv...

Ali-Haïmoud, Yacine

2010-01-01T23:59:59.000Z

64

Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation  

E-Print Network (OSTI)

In organic photovoltaics, the mechanism by which free electrons and holes are generated overcoming the Coulomb attraction is a currently much debated topic. To elucidate this mechanism at a molecular level, we carried out a combined electronic structure and quantum dynamical analysis that captures the elementary events from the exciton dissociation to the free carrier generation at polymer/fullerene donor-acceptor heterojunctions. Our calculations show that experimentally observed efficient charge separations can be explained by a combination of two effects: First, the delocalization of charges which substantially reduces the Coulomb barrier, and second, the vibronically hot nature of the charge transfer state which promotes charge dissociation beyond the barrier. These effects facilitate an ultrafast charge separation even at low-band-offset heterojunctions.

Tamura, Hiroyuki

2013-01-01T23:59:59.000Z

65

Apparatus and method for characterizing ultrafast polarization varying optical pulses  

DOE Patents (OSTI)

Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques. 2 figs.

Smirl, A.; Trebino, R.P.

1999-08-10T23:59:59.000Z

66

Ultrafast X-ray and 2-dimensional UV Spectroscopy of TiO2 ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ultrafast X-ray and 2-dimensional UV Spectroscopy of TiO2 Nanoparticles. Author(s), Majed Chergui. On-Site Speaker (Planned), Majed ...

67

Magnetismo Molecular (Molecular Magentism)  

SciTech Connect

The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

2010-07-01T23:59:59.000Z

68

The Bolocam Galactic Plane Survey -- III. Characterizing Physical Properties of Massive Star-Forming Regions in the Gemini OB1 Molecular Cloud  

E-Print Network (OSTI)

We present the 1.1 millimeter Bolocam Galactic Plane Survey (BGPS) observations of the Gemini OB1 molecular cloud complex, and targeted ammonia observations of the BGPS sources. When paired with molecular spectroscopy of a dense gas tracer, millimeter observations yield physical properties such as masses, radii, mean densities, kinetic temperatures and line widths. We detect 34 distinct BGPS sources above 5-sigma=0.37 Jy/beam with corresponding 5-sigma detections in the ammonia (1,1) transition. Eight of the objects show water maser emission (20%). We find a mean millimeter source FWHM of 1.12 pc, and a mean kinetic temperature of 20 K for the sample of 34 BGPS sources. The observed ammonia line widths are dominated by non-thermal motions, typically found to be a few times the thermal sound speed expected for the derived kinetic temperature. We calculate the mass for each source from the millimeter flux assuming the sources are isothermal and find a mean isothermal mass within a 120" aperture of 230 +/- 180 s...

Dunham, Miranda K; Evans, Neal J; Cyganowski, Claudia J; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Dowell, Darren; Drosback, Meredith; Ginsburg, Adam; Glenn, Jason; Harvey, Paul; Merello, Manuel; Schlingman, Wayne; Shirley, Yancy L; Stringfellow, Guy S; Walawender, Josh; Williams, Jonathan P

2010-01-01T23:59:59.000Z

69

NIST Quantum Physics Division - 2004: Strategic Focus 1  

Science Conference Proceedings (OSTI)

... Third. Ultrafast Science - to advance ultrafast science. Fourth. Biophysics - to investigate biological systems at the single-molecule level. ...

70

Rise time measurement for ultrafast X-ray pulses  

Science Conference Proceedings (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

2005-04-05T23:59:59.000Z

71

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

72

Development of ZnO:Ga as an Ultrafast Scintillator  

DOE Green Energy (OSTI)

We report on several methods for synthesizing the ultra-fast scintillator ZnO(Ga), and measurements of the resulting products. This material has characteristics that make it an excellent alpha detector for tagging the time and direction of individual neutrons produced by t-d and d-d neutron generators (associated particle imaging). The intensity and decay time are strongly dependent on the method used for dopant incorporation. We compare samples made by diffusion of Ga metal to samples made by solid state reaction between ZnO and Ga2O3 followed by reduction in hydrogen. The latter is much more successful and has a pure, strong near-band-edge fluorescence and an ultra-fast decay time of the x-ray-excited luminescence. The luminescence increases dramatically as the temperature is reduced to 10K. We also present results of an alternate low-temperature synthesis that produces luminescent particles with a more uniform size distribution. We examine possible mechanisms for the bright near-band-edge scintillation and favor the explanation that it is due to the recombination of Ga3+ donor electrons with ionization holes trapped on H+ ion acceptors.

Bourret-Courchesne, E.D.; Derenzo, S.E.; Weber, M.J.

2008-12-10T23:59:59.000Z

73

Atomic Resolution Coherent Diffractive Imaging and Ultrafast Science  

Science Conference Proceedings (OSTI)

A major scientific challenge is determining the 3-D atomic structure of small nanostructures, including single molecules. Coherent diffractive imaging (CDI) is a promising approach. Recent progress has demonstrated coherent diffraction patterns can be recorded from individual nanostructures and phased to reconstruct their structure. However, overcoming the dose limit imposed by radiation damage is a major obstacle toward the full potential of CDI. One approach is to use ultrafast x-ray or electron pulses. In electron diffraction, amplitudes recorded in a diffraction pattern are unperturbed by lens aberrations, defocus, and other microscope resolution-limiting factors. Sub-A signals are available beyond the information limit of direct imaging. Significant contrast improvement is obtained compared to high-resolution electron micrographs. progress has also been made in developing time-resolved electron diffraction and imaging for the study of ultrafast dynamic processes in materials. This talk will cover these crosscutting issues and the convergence of electron and x-ray diffraction techniques toward structure determination of single molecules.

Zuo, Jian-min [University of Illinois

2011-01-12T23:59:59.000Z

74

THE BOLOCAM GALACTIC PLANE SURVEY. III. CHARACTERIZING PHYSICAL PROPERTIES OF MASSIVE STAR-FORMING REGIONS IN THE GEMINI OB1 MOLECULAR CLOUD  

SciTech Connect

We present the 1.1 mm Bolocam Galactic Plane Survey (BGPS) observations of the Gemini OB1 molecular cloud complex, and targeted NH{sub 3} observations of the BGPS sources. When paired with molecular spectroscopy of a dense gas tracer, millimeter observations yield physical properties such as masses, radii, mean densities, kinetic temperatures, and line widths. We detect 34 distinct BGPS sources above 5{sigma} = 0.37 Jy beam{sup -1} with corresponding 5{sigma} detections in the NH{sub 3}(1,1) transition. Eight of the objects show water maser emission (20%). We find a mean millimeter source FWHM of 1.12 pc and a mean gas kinetic temperature of 20 K for the sample of 34 BGPS sources with detections in the NH{sub 3}(1,1) line. The observed NH{sub 3} line widths are dominated by non-thermal motions, typically found to be a few times the thermal sound speed expected for the derived kinetic temperature. We calculate the mass for each source from the millimeter flux assuming the sources are isothermal and find a mean isothermal mass within a 120'' aperture of 230 {+-} 180 M{sub sun}. We find a total mass of 8400 M{sub sun} for all BGPS sources in the Gemini OB1 molecular cloud, representing 6.5% of the cloud mass. By comparing the millimeter isothermal mass to the virial mass calculated from the NH{sub 3} line widths within a radius equal to the millimeter source size, we find a mean virial parameter (M{sub vir}/M {sub iso}) of 1.0 {+-} 0.9 for the sample. We find mean values for the distributions of column densities of 1.0 x 10{sup 22} cm{sup -2} for H{sub 2}, and 3.0 x 10{sup 14} cm{sup -2} for NH{sub 3}, giving a mean NH{sub 3} abundance of 3.0 x 10{sup -8} relative to H{sub 2}. We find volume-averaged densities on the order of 10{sup 3}-10{sup 4} cm{sup -3}. The sizes and densities suggest that in the Gem OB1 region the BGPS is detecting the clumps from which stellar clusters form, rather than smaller, higher density cores where single stars or small multiple systems form.

Dunham, Miranda K.; Evans, Neal J.; Harvey, Paul; Merello, Manuel [Department of Astronomy, The University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Rosolowsky, Erik [University of British Columbia, Okanagan, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Cyganowski, Claudia J. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Aguirre, James [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Stringfellow, Guy S. [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Bradley, Eric Todd [Department of Physics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2385 (United States); Dowell, Darren [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Drosback, Meredith [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Schlingman, Wayne; Shirley, Yancy L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Walawender, Josh [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Williams, Jonathan P., E-mail: nordhaus@astro.as.utexas.ed [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

2010-07-10T23:59:59.000Z

75

Ultrafast dynamics of electrons at interfaces  

Science Conference Proceedings (OSTI)

Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. For Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure information. In this case, the quantum well states examined are derived from the Xenon conduction band. Measurements of the energies as a function of coverage yield the dispersion along the axis perpendicular to the surface while angle-resolved two-photon photoemission measurements yield information about dispersion along the surface parallel. The relative importance of the image potential and the overlayer band structure also depends on the quantum number and energy of the state. Some members of the image series may have an energy which is in an energy gap of the layer material, therefore such states may tend to remain physically outside the layer and retain much of their image character even at higher coverages. This is the case for the n = 1 image state of the Xe/Ag(111) system. The energies of image states which are excluded from the layer have a complex dependence on the thickness of the layer and its dielectric constant. The population decay kinetics of excited electronic states of the layer were also determined. Lifetimes are reported for the first three excited states for 1-6 atomic layers of Xe on Ag(111). As the image states evolve into quantum well states with increasing coverage, the lifetimes undergo an oscillation which marks a change in the spatial extent of the state. For example, the n = 2 quantum well state decreases substantially at 3-5 layers as the electron probability density in the layer increases. The lifetime data are modeled by extending the two-band nearly-free-electron approximation to account for the insulating Xe layer.

McNeill, Jason D.

1999-05-03T23:59:59.000Z

76

Cd1-xMnxTe semimagnetic semiconductors for ultrafast spintronics and magnetooptics  

Science Conference Proceedings (OSTI)

We present ultrafast optical characterization of Cd1-xMnxTe single crystals with high (x>0.5-Mn) concentration, studied by magnetooptical sampling and time-resolved magnetization modulation spectroscopy. We have demonstrated that ...

R. Rey-de-Castro; Daozhi Wang; A. Verevkin; A. Mycielski; R. Sobolewski

2005-01-01T23:59:59.000Z

77

Studies of third-order nonlinearities in materials and devices for ultrafast lasers  

E-Print Network (OSTI)

Recent developments in telecommunications, frequency metrology, and medical imaging have motivated research in ultrafast optics. Demand exists for broadband components and sources as well as highly nonlinear fibers and ...

Gopinath, Juliet Tara, 1976-

2005-01-01T23:59:59.000Z

78

Electromagnetically-driven ultra-fast tool servos for diamond turning  

E-Print Network (OSTI)

This thesis presents the design, implementation, and control of a new class of fast tool servos (FTS). The primary thesis contributions include the design and experimental demonstration of: novel ultra-fast electromagnetic ...

Lu, Xiaodong, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

79

Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas  

DOE Green Energy (OSTI)

Many-body systems in nature exhibit complexity and self-organization arising from seemingly simple laws. The long-range Coulomb interaction between electrical charges generates a plethora of bound states in matter, ranging from the hydrogen atom to complex biochemical structures. Semiconductors form an ideal laboratory for studying many-body interactions of quasi-particles among themselves and with lattice vibrations and light. Oppositely charged electron and hole quasi-particles can coexist in an ionized but correlated plasma, or form bound hydrogen-like pairs called excitons which strongly affect physical properties. The pathways between such states however remain elusive in near-visible optical experiments that detect a subset of excitons with vanishing center-of-mass momenta. In contrast, transitions between internal exciton levels which occur in the far-infrared at terahertz (10 s) frequencies are in dependent of this restriction suggesting their use as a novel pro be of pair dynamics. Here, we employ an ultrafast terahertz probe to directly investigate the dynamical interplay of optically-generated excitons and unbound electron-hole pairs in GaAs quantum wells. Our observations witness an unexpected quasi-instantaneous excitonic enhancement, reveal formation of insulating excitons on a hundred picosecond timescale and manifest conditions under which excitonic populations prevail.

Kaindl, Robert A.; Carnahan, Marc A.; Hagele, Daniel; Lovenich, Reinhold; Chemla, Daniel S.

2003-04-10T23:59:59.000Z

80

Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report  

SciTech Connect

This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

2012-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

82

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

83

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into  

NLE Websites -- All DOE Office Websites (Extended Search)

The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve the ultrafast details of the dynamical processes. ALS researchers are taking the second path but adding a spatial resolution capability; that is, they are developing a high-speed x-ray streak camera with high spatial resolution to watch, in real time, the motion of the atoms in materials. So far, a temporal resolution of 233 fs and a spatial resolution of 10 mm have been demonstrated. This is the first time that such a high temporal resolution has been combined with high spatial resolution in a streak camera.

84

Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials  

SciTech Connect

Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

85

Ultrafast three-dimensional x-ray computed tomography  

SciTech Connect

X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s{sup -1}. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

Bieberle, Martina; Barthel, Frank; Hampel, Uwe [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Menz, Hans-Juergen; Mayer, Hans-Georg [Institute of Nuclear Technology and Energy Systems, University of Stuttgart, 70569 Stuttgart (Germany)

2011-01-17T23:59:59.000Z

86

Ultrafast laser ablation of gold thin film targets  

Science Conference Proceedings (OSTI)

Ultrafast laser ablation of a gold thin film is studied and compared with that of a bulk target, with particular emphasis given to the process of nanoparticles generation. The process is carried out in a condition where a single laser shot removes all the irradiated film spot. The experimental results evidence interesting differences and, in particular, a reduction of the nanoparticles size, and a narrowing of a factor two of their size distribution in the case of ablation of a thin film target, a feature which we relate to a more uniform heating of the target material. We thus show that ultrashort laser ablation of thin films provides a promising way of controlling plume features and nanoparticles size.

Amoruso, S.; Ausanio, G.; Bruzzese, R. [Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Nedyalkov, N. N.; Atanasov, P. A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boulevard, Sofia 1784 (Bulgaria); Wang, X. [CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy)

2011-12-15T23:59:59.000Z

87

Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots  

SciTech Connect

Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

Klimov, V.; McBranch, D.; Schwarz, C.

1998-08-10T23:59:59.000Z

88

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofabrication Nanofabrication Our facility strives to gain insight into fundamental nanofabrication processes, as well as the generation of structures that control light, electron, or energy flow, and how those, and other, nanoscale structures interact with light on ultrafast time scales. Measuring plasmonic structures High yield and performance optical transformers are fabricated by nanoimprint lithography for near-field probe and ultra-resolution sub-surface imaging (a). The new ultrafast laser lab uses second harmonic generation imaging to probe the plasmonic enhancement frequency response of these and other photonic and plasmonic structures. Integrating multi-modal optical devices A new analytical device has been developed that uses a fluidic channel to deliver a specific target to a plasmonic hot spot created by a nanoantenna

89

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

90

Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

Anna Lee Tonkovich

2008-08-11T23:59:59.000Z

91

Ultrafast x-ray diagnostics for laser fusion experiments  

SciTech Connect

Temporally, spectrally, and spatially resolved x-ray emission diagnostics are important tools in the study of the heating and compression of laser fusion targets by sub-nanosecond laser pulses. The use of the Livermore 15 psec resolution x-ray streak camera to make such measurements is reviewed. Temporal histories of spectrally resolved x-ray emission in the 1 to 10 keV range have been obtained. These data have served to further define the x-ray streak camera as a quantative diagnostic tool and have also provided data relating to the absorption and compression phases of laser heating. The x-ray streak camera has been used in conjunction with a specially designed pinhole imaging system to temporally record images of laser compressed targets with a spatial resolution of approximately 6 ..mu..m. Implosion characteristics are presented for experiments with glass microshell targets. The concept, development, and testing of an ultrafast framing camera for full two-dimensional time resolved imaging is discussed. A prototype camera, based on the image dissection-restoration concept, has achieved an approximately 200 psec frame period with a resolution of 50 ..mu..m.

Coleman, L.W.

1976-08-16T23:59:59.000Z

92

Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography  

E-Print Network (OSTI)

Long-lived exciton coherences have been recently observed in photosynthetic complexes via ultrafast spectroscopy, opening exciting possibilities for the study and design of coherent exciton transport. Yet, ambiguity in the spectroscopic signals has led to arguments for interpreting them in terms of the exciton dynamics, demanding more stringent tests. We propose a novel strategy, Quantum Process Tomography (QPT) for ultrafast spectroscopy, to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature. The protocol calls for eight transient grating experiments with varied pulse spectra. Our analysis reveals unidirectional energy transfer from the outer to the inner wall excitons, absence of nonsecular processes, and an unexpected coherence between those two states lasting about 150 femtoseconds, indicating weak electronic coupling between the walls. Our work constitutes the first experimental QPT in a 'warm' and complex system, and provides an elegant scheme to maximize information from ultrafast spectroscopy experiments.

Joel Yuen-Zhou; Dylan H. Arias; Dorthe M. Eisele; Colby P. Steiner; Jacob J. Krich; Moungi Bawendi; Keith A. Nelson; Alán Aspuru-Guzik

2013-08-19T23:59:59.000Z

93

Ultrafast time dynamics studies of periodic lattices with free electron laser radiation  

Science Conference Proceedings (OSTI)

It has been proposed that radiation from free electron laser (FEL) at Hamburg (FLASH) can be used for ultrafast time-resolved x-ray diffraction experiments based on the near-infrared (NIR) pump/FEL probe scheme. Here, investigation probing the ultrafast structural dynamics of periodic nano-crystalline organic matter (silver behenate) with such a scheme is reported. Excitation with a femtosecond NIR laser leads to an ultrafast lattice modification which time evolution has been studied through the scattering of vacuum ultraviolet FEL pulses. The found effect last for 6 ps and underpins the possibility for studying nanoperiodic dynamics down to the FEL source time resolution. Furthermore, the possibility of extending the use of silver behenate (AgBh) as a wavelength and temporal calibration tool for experiments with soft x-ray/FEL sources is suggested.

Quevedo, W.; Busse, G.; Hallmann, J.; More, R.; Petri, M.; Rajkovic, I. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Krasniqi, F.; Rudenko, A. [Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany); Tschentscher, T. [European XFEL GmbH, Albert-Einstein-Ring 19, 22671 Hamburg (Germany); Stojanovic, N.; Duesterer, S.; Treusch, R.; Tolkiehn, M. [HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Techert, S. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany)

2012-11-01T23:59:59.000Z

94

Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials  

E-Print Network (OSTI)

A class of chalcogenide alloy materials that shows significant changes in optical properties upon an amorphous-to-crystalline phase transition has lead to development of large data capacities in modern optical data storage. Among chalcogenide phase-change materials, Ge2Sb2Te5 (GST) is most widely used because of its reliability. We use a pair of femtosecond light pulses to demonstrate the ultrafast optical manipulation of atomic arrangements from tetrahedral (amorphous) to octahedral (crystalline) Ge-coordination in GST superlattices. Depending on the parameters of the second pump-pulse, ultrafast nonthermal phase-change occurred within only few-cycles (~ 1 ps) of the coherent motion corresponding to a GeTe4 local vibration. Using the ultrafast switch in chalcogenide alloy memory could lead to a major paradigm shift in memory devices beyond the current generation of silicon-based flash-memory.

Makino, Kotaro; Hase, Muneaki

2011-01-01T23:59:59.000Z

95

Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes inGaMnAs  

SciTech Connect

We report on the observation of ultrafast photo-enhanced ferromagnetism in GaMnAs. It is manifested as a transient magnetization increase on a 100-ps time scale, after an initial sub-ps demagnetization. The dynamic magnetization enhancement exhibits a maximum below the Curie temperature {Tc} and dominates the demagnetization component when approaching {Tc}. We attribute the observed ultrafast collective ordering to the p-d exchange interaction between photoexcited holes and Mn spins, leading to a correlation-induced peak around 20K and a transient increase in {Tc}.

Wang, J.; Cotoros, I.; Dani, K.M.; Liu, X.; Furdyna, J.K.; Chemla, D.S.

2007-02-17T23:59:59.000Z

96

Experimental demonstration of high quality MeV ultrafast electron diffraction  

SciTech Connect

The simulation optimization and an experimental demonstration of improved performances of mega-electron-volt ultrafast electron diffraction (MeV UED) are reported in this paper. Using ultrashort high quality electron pulses from an S-band photocathode rf gun and a polycrystalline aluminum foil as the sample, we experimentally demonstrated an improved spatial resolution of MeV UED, in which the Debye-Scherrer rings of the (111) and (200) planes were clearly resolved. This result showed that MeV UED is capable to achieve an atomic level spatial resolution and a -100 fs temporal resolution simultaneously, and will be a unique tool for ultrafast structural dynamics studies.

Li, R.; Tang, C., Du, Y., Huang, W., Du, Q., Shi, J., Yan, L., Wang, X.

2009-08-18T23:59:59.000Z

97

Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches  

DOE Green Energy (OSTI)

Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

Wasielewski, M.R.

1992-01-01T23:59:59.000Z

98

Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches  

DOE Green Energy (OSTI)

Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

Wasielewski, M.R.

1992-08-01T23:59:59.000Z

99

Ultrafast Core-Hole Induced Dynamics in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

molecular level, you will find a surprisingly turbulent, dynamic universe. The water molecules constantly form and break bonds under the influence of several weak interactions,...

100

Turbulent molecular clouds  

E-Print Network (OSTI)

Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star--formation rates.

Hennebelle, Patrick

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Population-split genetic algorithm for retrieval of ultrafast laser parameters  

Science Conference Proceedings (OSTI)

Authors modify the traditional or standard genetic algorithm by splitting the initial population. This crucial step is an imitation of sexual and asexual reproduction mechanism in the life cycle of many plants or animals. Asexual reproduction shall happen ... Keywords: frequency resolved optical gating, genetic algorithm, pulse retrieving, ultrafast lasers

S. F. Shu; C. L. Pan; C. T. Sun

2003-09-01T23:59:59.000Z

102

Simulations of ultra-fast precessional switching of AFC thin film storage media  

Science Conference Proceedings (OSTI)

Micromagnetic simulations of the application of perpendicular field pulses to in-plane antiferromagnetically coupled (AFC) thin film disk media have been performed. Starting from a thermally relaxed state, application of a perpendicular field pulse to ... Keywords: Antiferromagnetically coupled media, Magnetic recording, Micromagnetic simulation, Ultrafast magnetization reversal

James J. Jin; David McA. McKirdy; Jim J. Miles; Roy W. Chantrell

2006-11-01T23:59:59.000Z

103

A graph theoretic approach to ultrafast information distribution: Borel Cayley graph resizing algorithm  

Science Conference Proceedings (OSTI)

A graph theoretic approach is proposed to formulate communication graphs that enable ultrafast information distribution. In our earlier work, we reported that Borel Cayley graph (BCG) is a promising candidate as a logical topology for fast information ... Keywords: Borel Cayley graph, Cayley graph, Graph theory, Interconnection networks, Network modeling

Jaewook Yu; Eric Noel; K. Wendy Tang

2010-11-01T23:59:59.000Z

104

Ultrafast tracking electronics for the ATLAS trigger at the CERN Large Hadron Collider  

E-Print Network (OSTI)

FTK Ultrafast tracking electronics for the ATLAS trigger at the CERN Large Hadron Collider Italy challenge at a hadron collider is determining what a new phenomenon is. Higgs, SUSY, KK excitations, Z of decay products multiple decay modes couplings to other particles · For each of these, large samples

105

Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation  

E-Print Network (OSTI)

and injection currents have been generated in bulk GaAs and strained GaAs quantum wells QWs , respectivelyUltrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz; published online 18 November 2005 Shift and injection currents are generated in the wurtzite semiconductors

Van Driel, Henry M.

106

Theoretical and Experimental Characterization of the Ultrafast Aircraft Thermometer: Reduction of Aerodynamic Disturbances and Signal Processing  

Science Conference Proceedings (OSTI)

The ultrafast aircraft thermometer, built for measuring temperature in clouds at flight speeds up to 100 m?s?1, employs a 2.5-?m-thick platinum-coated tungsten wire as a sensing element. When temperature increases, the wire resistance increases. ...

Bogdan Rosa; Konrad Bajer; Krzysztof E. Haman; Tomasz Szoplik

2005-07-01T23:59:59.000Z

107

DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES  

SciTech Connect

In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

Sterling Backus

2012-05-14T23:59:59.000Z

108

Physics Division annual report - 1998  

Science Conference Proceedings (OSTI)

Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

NONE

1999-09-07T23:59:59.000Z

109

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

See the Foundry's full equipment list See the Foundry's full equipment list Nanofabrication Capabilities & Tools Major Capabilities: Instruments and Labs Zeiss Crossbeam 1540 EsB The Molecular Foundry Zeiss Cross-beam is one of the most versatile lithographic and inspection tools allowing fabrication of complex prototypes for nanoelectronics, nano-optical antenna, modifying scanning probe tips, rapid electrical contacting and many other applications. The 1500XB Cross Beam combines the Gemini field emission column (FESEM) with the Orsay Physics focused ion beam (FIB). In addition, the instrument offers a multi-channel gas injection system to allow ion and electron beam induced deposition (IBID and EBID) and chemically assisted ion beam etching (CAIBE). The tool can be used for lithographic patterning of materials or

110

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

Anna Lee Tonkovich

2004-07-01T23:59:59.000Z

111

Particle beam dynamics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle beam dynamics Particle beam dynamics Subscribe to RSS - Particle beam dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Ronald C Davidson Ronald Davidson heads PPPL research on charged particle beam dynamics and

112

NIST Quantum Physics Division 2001 - Program Directions  

Science Conference Proceedings (OSTI)

... Recent work addresses the creation, utilization, and study of "ultrafast" laser pulses, which can be applied to investigations of semiconductor ...

113

NIST Quantum Physics Division 2000 - Current Directions  

Science Conference Proceedings (OSTI)

... Recent work addresses the creation, utilization, and study of "ultrafast" laser pulses, which can be applied to investigations of semiconductor ...

114

NIST Quantum Physics Division 1999 - Current Directions  

Science Conference Proceedings (OSTI)

... Recent work addresses the creation, utilization, and study of "ultrafast" laser pulses, which can be applied to investigations of semiconductor ...

115

Time-domain sampling of x-ray pulses using an ultrafast sample response  

Science Conference Proceedings (OSTI)

We employ the ultrafast response of a 15.4 nm thin SrRuO{sub 3} layer grown epitaxially on a SrTiO{sub 3} substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.

Gaal, P.; Shayduk, R. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schick, D.; Herzog, M.; Bojahr, A.; Goldshteyn, J.; Navirian, H. A.; Leitenberger, W. [Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Vrejoiu, I. [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Khakhulin, D.; Wulff, M. [European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble (France); Bargheer, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

2012-12-10T23:59:59.000Z

116

Ultrafast Dynamic Metallization of Dielectric Nanofilms by Strong Single-Cycle Optical Fields  

E-Print Network (OSTI)

We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a field less or on the order of 1 V/Angstrom causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in plasmonic oscillations of polarization and a significant population of the conduction band evolving on a femtosecond time scale. These phenomena are due a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.

Durach, Maxim; Kling, Matthias F; Stockman, Mark I

2011-01-01T23:59:59.000Z

117

Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells  

Science Conference Proceedings (OSTI)

The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

1995-12-01T23:59:59.000Z

118

DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging  

SciTech Connect

A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools.

Barhen, J.; Protopopescu, V.; Reister, D.

1999-07-10T23:59:59.000Z

119

A recirculating linac-based facility for ultrafast X-ray science  

SciTech Connect

We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac, in particular the incorporation of EUV and soft x-ray production. The project has been named LUX - Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10 s fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short-pulse photon production in the 1-10 keV range. High-brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free-electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by four passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

Corlett, J.N; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Placidi, M.; Pirkl, W.; Parmigiani, F.

2003-05-06T23:59:59.000Z

120

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

The People of the Molecular Foundry In addition to state-of-the-art instrumentation, Users at the Molecular Foundry benefit from the unique in-house expertise of its researchers....

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Princeton Plasma Physics Lab - Particle beam dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

particle-beam-dynamics The study of particle-beam-dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

122

Ultra-fast outflows (aka UFOs) from AGNs and QSOs  

E-Print Network (OSTI)

During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

Cappi, M; Giustini, M

2013-01-01T23:59:59.000Z

123

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

The Molecular Foundry The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Building 67 Berkeley, CA 94720 Screen reader users: click here for plain HTML Go to Google Maps Home Molecular Foundry, Berkeley, CA Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. Molecular Foundry, Berkeley, CA A Molecular Foundry 67 Cyclotron Rd, Berkeley, CA ‎ foundry.lbl.gov 3 reviews · "Berkeley Lab. About the Foundry. What is the Molecular Foundry? Research Themes; Foundry Careers; Media Gallery; Other User Facilities external link; Contact Us" - lbl.gov Directions Search nearby more See all 14 results for Molecular Foundry, Berkeley, CA

124

Molecular Clouds and Millimetre Michael Burton  

E-Print Network (OSTI)

Molecular Clouds and Millimetre Astronomy Michael Burton School of Physics, University of New South of the Astronomical Society of Australia July 21, 1995 Abstract A condensed summary of molecular cloud astrophysics is presented. Some examples of the power of combining near--IR and mm molecular line observations are given

Burton, Michael

125

The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments); EFree Staff

2011-05-01T23:59:59.000Z

126

Physics Division annual review, April 1, 1988--March 31, 1989  

Science Conference Proceedings (OSTI)

This document discusses the following main topics: Research at Atlas; Operation and Development of Atlas; Medium-Energy Nuclear Physics and Weak Interactions; Theoretical Nuclear Physics; Interactions of Fast Atomic and Molecular Ions with Solid and Gaseous Targets; Atomic Physics at Synchrotron Light Sources; Atomic Physics at Atlas and the ECR Source; Theoretical Atomic Physics; High-Resolution Laser-rf Spectroscopy of Atomic and Molecular Beams; and Fast Ion-Beam/Laser Studies of Atomic and Molecular Structure.

Thayer, K.J. (ed.)

1989-08-01T23:59:59.000Z

127

Ultrafast laser based coherent control methods for explosives detection  

SciTech Connect

The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

Moore, David Steven [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

128

Physics Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Find people (by last name) Go Advanced search Physics Home High Energy & Nuclear Physics Directorate Research Current Research Areas BNL Physics Timeline Administrative...

129

BABAR Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics A BABAR event display. BABAR physics results span a broad range of topics, including B, charm, and tau physics; CP violation; precision CKM measurements; charmonium and...

130

painless physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART...

131

Microsoft PowerPoint - WishartUltrafastAccelFinal.ppt [Read-Only]  

NLE Websites -- All DOE Office Websites (Extended Search)

June 25-28, 2004 Chemistry Department Brookhaven National Laboratory LEAF LEAF Office of Basic Energy Sciences U.S. Department of Energy Advanced Energy Systems 2 Tabata Meeting and Satellite Symposia March 10 and 11, 2000 "New Applications and Facilities of Radiation on Radiation Chemistry, Material Science, And Radiation Biology for Future Radiation Science and Technology" Osaka University Institute of Scientific and Industrial Research, Osaka March 13 - 17, 2000 "International Symposium on Prospects for Application of Radiation Towards the 21st Century" Waseda University, Tokyo March 20, 2000 "Development of Ultrafast Detection Systems for Radiation Chemistry" Univ. of Tokyo Nuclear Engineering Research Laboratory in Tokai-Mura The Brookhaven LEAF

132

Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend  

SciTech Connect

Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

2013-07-28T23:59:59.000Z

133

Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

Science Conference Proceedings (OSTI)

Electroactive polymers are a new generation of 'green' cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in-situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging - the composite can deliver more than 100 mAh/g within just a few seconds.

Song, Zhiping; Xu, Terrence (Tianren); Gordin, Mikhail; Jiang, Yingbing; Bae, In-Tae; Xiao, Qiangfeng; Zhan, Hui; Liu, Jun; Wang, Donghai

2012-05-09T23:59:59.000Z

134

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINARS ARCHIVE The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars...

135

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

EVENTS ARCHIVE The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars...

136

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

efficient energy storage and conversion. Electron donors and acceptors at interfaces Molecular level design and synthesis has created tailor-made electron donors and acceptors...

137

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers Information about current openings at the Molecular Foundry and complete application information is available from LBNL Human Resources. Please follow the application...

138

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future, Atom by Atom Organized into six interdependent research Facilities, The Molecular Foundry, along with Berkeley Lab's additional User programs and affiliated research...

139

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign-Up (Resource Database) Weekly Seminars Users' Executive Committee (UEC) The Molecular Foundry Users' Association is composed of all Foundry Users. Upon beginning work on...

140

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Code of Conduct Conflict Resolution Beginning your project Access to the Molecular Foundry is free of charge for approved, non-proprietary research. (Proprietary...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINARS The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars occur on...

142

Ultrafast structural dynamics and isomerization in Rydberg-exited Quadricyclane  

SciTech Connect

The quadricyclane - norbornadiene system is an important model for the isomerization dynamics between highly strained molecules. In a breakthrough observation for a polyatomic molecular system of that complexity, we follow the photoionization from Rydberg states in the time-domain to derive a measure for the time-dependent structural dynamics and the time-evolving structural dispersion even while the molecule is crossing electronic surfaces. The photoexcitation to the 3s and 3p Rydberg states deposits significant amounts of energy into vibrational motions. We observe the formation and evolution of the vibrational wavepacket on the Rydberg surface and the internal conversion from the 3p Rydberg states to the 3s state. In that state, quadricyclane isomerizes to norbornadiene with a time constant of {tau}{sub 2} = 136(45) fs. The lifetime of the 3p Rydberg state in quadricyclane is {tau}{sub 1} = 320(31) and the lifetime of the 3s Rydberg state in norbornadiene is {tau}{sub 3} = 394(32).

Rudakov, Fedor M [ORNL

2012-01-01T23:59:59.000Z

143

Explosive photodissociation of methane induced by ultrafast intense laser  

SciTech Connect

A new type of molecular fragmentation induced by femtosecond intense laser at the intensity of 2x10{sup 14} W/cm{sup 2} is reported. For the parent molecule of methane, ethylene, n-butane, and 1-butene, fluorescence from H (n=3{yields}2), CH (A {sup 2}{delta}, B {sup 2}{sigma}{sup -}, and C {sup 2}{sigma}{sup +}{yields}X {sup 2}{pi}), or C{sub 2} (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) is observed in the spectrum. It shows that the fragmentation is a universal property of neutral molecule in the intense laser field. Unlike breaking only one or two chemical bonds in conventional UV photodissociation, the fragmentation caused by the intense laser undergoes vigorous changes, breaking most of the bonds in the molecule, like an explosion. The fragments are neutral species and cannot be produced through Coulomb explosion of multiply charged ion. The laser power dependence of CH (A{yields}X) emission of methane on a log-log scale has a slope of 10{+-}1. The fragmentation is thus explained as multiple channel dissociation of the superexcited state of parent molecule, which is created by multiphoton excitation.

Kong Fanao; Luo Qi; Xu Huailiang; Sharifi, Mehdi; Song Di; Chin, See Leang [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Department of Physics, Engineering Physics and Optics, Laval University, Quebec G1K 7P4, Canada and Center for Optics, Photonics, and Laser, Laval University, Quebec G1K 7P4 (Canada); Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Department of Physics, Engineering Physics and Optics, Laval University, Quebec G1K 7P4 (Canada) and Center for Optics, Photonics, and Laser, Laval University, Quebec G1K 7P4 (Canada)

2006-10-07T23:59:59.000Z

144

CSD: Research Programs: Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics LBL Logo A-Z CSD Research Highlights CSD Directory Chemical Sciences Division A-Z Index Phone Book Search Berkeley Lab INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH PROGRAMS Atomic, Molecular & Optical Sciences Catalytic Science Chemical Physics The Glenn T. Seaborg Center (GTSC) STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD > Research Programs > Chemical Physics The Chemical Physics Program of the Chemical Science Division of LBNL is concerned with the development of both experimental and theoretical methodologies for studying molecular structure and dynamical processes at the most fundamental level, and with the application of these to specific

145

A Molecular Fossil | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Imaging of Electron Waves in Graphene When Size Matters: Yttrium Oxide Breaking Down Under Pressure Breakthrough in Nanocrystals' Growth A Boring Material "Stretched"...

146

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring high energy physics Physics Division scientists and engineers investigate the field of high energy physics through experiments that strengthen our fundamental...

147

H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors  

DOE Patents (OSTI)

An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

Liu, Ping (Denver, CO); Tracy, C. Edwin (Golden, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

2011-03-22T23:59:59.000Z

148

Ultrafast intramolecular relaxation dynamics of Mg- and Zn-bacteriochlorophyll a  

SciTech Connect

Ultrafast excited-state dynamics of the photosynthetic pigment (Mg-)bacteriochlorophyll a and its Zn-substituted form were investigated by steady-state absorption/fluorescence and femtosecond pump-probe spectroscopic measurements. The obtained steady-state absorption and fluorescence spectra of bacteriochlorophyll a in solution showed that the central metal compound significantly affects the energy of the Q{sub x} state, but has almost no effect on the Q{sub y} state. Photo-induced absorption spectra were recorded upon excitation of Mg- and Zn-bacteriochlorophyll a into either their Q{sub x} or Q{sub y} state. By comparing the kinetic traces of transient absorption, ground-state beaching, and stimulated emission after excitation to the Q{sub x} or Q{sub y} state, we showed that the Q{sub x} state was substantially incorporated in the ultrafast excited-state dynamics of bacteriochlorophyll a. Based on these observations, the lifetime of the Q{sub x} state was determined to be 50 and 70 fs for Mg- and Zn-bacteriochlorophyll a, respectively, indicating that the lifetime was influenced by the central metal atom due to the change of the energy gap between the Q{sub x} and Q{sub y} states.

Kosumi, Daisuke [Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nakagawa, Katsunori; Sakai, Shunsuke [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nagaoka, Yuya; Maruta, Satoshi; Sugisaki, Mitsuru [CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Dewa, Takehisa [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); PRESTO/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nango, Mamoru [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Hashimoto, Hideki [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

2013-07-21T23:59:59.000Z

149

Molecular Physics Division 1994 - Technical Highlights  

Science Conference Proceedings (OSTI)

... The 14 N nuclear quadruple hyperfine structure ... with calculations using RRKM statistical rate theory. ... forces, or vibrational energy transfer may be ...

150

.NC STATE Physics. www.physics.ncsu.edu NORTH CAROLINA STATE UNIVERSITY  

E-Print Network (OSTI)

Astrophysics, Atomic, Biophysics, Computational, Materials, Molecular, Nanoscale, Nuclear, Optics, Particle Carolina State University is located in Raleigh, the capital city of North Carolina and one corner covers most areas of forefront physics research Experimental: Atomic Physics and Quantum Optics

151

Nonlinear Ultrafast Spectroscopy of Electron and Energy Transfer in Molecule Complexes  

DOE Green Energy (OSTI)

The proposed research program will focus on the development of a unified dynamical theoretical framework for calculating the optical response of molecular assemblies and applying it towards studying the interplay of energy and charge transfer in artificial chromophore-aggregate complexes. Applications will be made to poly (p phenylene vinylene), (PPV) oligomers, several families of stilbenoid aggregates with stacking through a cyclophane group, coupled porphyrin arrays, and energy funneling in phenylacetylene dendrimers. The approach is based on formulating the problem using the density- matrix and developing Liouville-space techniques which provide physical insight and are particularly suitable for computing both coherent and incoherent transport. A physical picture based on collective electronic normal modes which represent the dynamics of the optically-driven reduced single electron density matrix will be established. Femtosecond signals and optical properties will be directly related to the motions of electron-hole pairs in real space, completely avoiding the calculation of many-electron excited-state wavefunctions, thus, considerably reducing computational effort. Vibrational and solvent effects will be incorporated. Guidelines for the synthesis of new donor/bridge/acceptor molecules with desired properties such as carrier transport, optical response time scales and fluorescence quantum yields will be developed. The analogy with Thz emission spectroscopy which probes charge carrier dynamic is in semiconductor superlattices will be explored. A systematic procedure for identifying the electronic coherence sizes which control the transport and optical properties will be developed. Localization of electronic transition density matrices of large molecules will be used to break the description of their optical response into coupled chromophores. The proposal is divided into four parts: (i) Collective-Oscillator Representation of Electronic Excitations in Molecular Assemblies; (ii) Nonlinear Optical Spectroscopy of Coupled Chromophores; (iii) Long-Range Electron Transfer and Transport in Solvents with Complex Spectral Densities; (iv) Probing Exciton-Migration by Coherent Femtosecond Spectroscopies.

Mukamel, Shaul

2006-02-09T23:59:59.000Z

152

Molecular nanocomposites.  

Science Conference Proceedings (OSTI)

The goals of this project are to understand the fundamental principles that govern the formation and function of novel nanoscale and nanocomposite materials. Specific scientific issues being addressed include: design and synthesis of complex molecular precursors with controlled architectures, controlled synthesis of nanoclusters and nanoparticles, development of robust two or three-dimensionally ordered nanocomposite materials with integrated functionalities that can respond to internal or external stimuli through specific molecular interactions or phase transitions, fundamental understanding of molecular self-assembly mechanisms on multiple length scales, and fundamental understanding of transport, electronic, optical, magnetic, catalytic and photocatalytic properties derived from the nanoscale phenomena and unique surface and interfacial chemistry for DOE's energy mission.

Voigt, James A.

2010-03-01T23:59:59.000Z

153

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

is equipped with a variety of tools to aid in work with biomolecules, microbes, molecular biology techniques and cell culture. These tools include: a BioFlo fermentor (14 L),...

154

Introduction to Accelerated Molecular Dynamics  

SciTech Connect

Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

Perez, Danny [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

155

Introduction to Accelerated Molecular Dynamics  

SciTech Connect

Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

Perez, Danny [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

156

Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers  

SciTech Connect

The field of spintronics offers perspectives for seamless integration of coupled and inter-tunable electrical and magnetic properties in a single device. For integration of the spin degree of freedom with current electronic technology, new semiconductors are needed that show electrically-tunable magnetic properties at room temperature and above. Dilute magnetic semiconductors derived from III-V compounds, like GaMnAs and InMnAs, show coupled and tunable magnetic, transport, and optical properties, due to the fact that their ferromagnetism is hole-mediated. These unconventional materials are ideal systems for manipulating the magnetic order by changing the carrier polarization, population density, and energy band distribution of the complementary subsystem of holes. This is the main theme we cover in this thesis. In particular, we develop a unique setup by use of ultraviolet pump, near-infrared probe femtosecond laser pulses, that allows for magneto-optical Kerr effect (MOKE) spectroscopy experiments. We photo-excite transient carriers in our samples, and measure the induced transient magnetization dynamics. One set of experiments performed allowed us to observe for the first time enhancement of the ferromagnetic order in GaMnAs, on an ultrafast time scale of hundreds of picoseconds. The corresponding transient increase of Curie temperature (Tc, the temperature above which a ferromagnetic material loses its permanent magnetism) of about 1 K for our experimental conditions is a very promising result for potential spintronics applications, especially since it is seconded by observation of an ultrafast ferromagnetic to paramagnetic phase transition above Tc. In a different set of experiments, we"write" the magnetization in a particular orientation in the sample plane. Using an ultrafast scheme, we alter the distribution of holes in the system and detect signatures of the particular memory state in the subsequent magnetization dynamics, with unprecedented hundreds of femtosecond detection speed. The femtosecond cooperative magnetic phenomena presented here further our understanding of Mn-hole correlations in III-V dilute magnetic semiconductors, and may well represent universal principles of a large class of carrier-mediated ferromagnetic materials. Thus they offer perspectives for future terahertz (1012 Hz) speed"spintronic" functional devices.

Cotoros, Ingrid A.

2008-12-12T23:59:59.000Z

157

NIST Quantum Physics Division 1999 - Future Directions  

Science Conference Proceedings (OSTI)

... Phase Control of Ultrafast Optical Pulses. In general, the phase velocity and group velocity inside a modelocked laser are not equal. ...

158

Molecular fountain.  

SciTech Connect

A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

Strecker, Kevin E.; Chandler, David W.

2009-09-01T23:59:59.000Z

159

Condensed Phase and Interfacial Molecular Sciences | U.S. DOE...  

Office of Science (SC) Website

(CPIMS) research emphasizes molecular understanding of chemical, physical, and electron-driven processes in aqueous media and at interfaces. Studies of reaction dynamics at...

160

Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in  

NLE Websites -- All DOE Office Websites (Extended Search)

The Electronic Origin of Photoinduced Strain The Electronic Origin of Photoinduced Strain Modifying Proteins to Combat Disease Higher Temperature at the Earth's Core Clues about Rheumatoid Arthritis Damage Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in Ruthenium Complexes FEBRUARY 8, 2013 Bookmark and Share Copyright © 2012 Elsevier B.V. All rights reserved. Exciting the atoms or molecules of a substance via the use of visible light, or photoexcitation, can play a significant role in a range of energy-conversion processes, such as natural photosynthesis (oxygen from water) and manmade solar cells (electricity from sunlight). But a better

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An ultrafast angle-resolved photoemission apparatus for measuring complex materials  

Science Conference Proceedings (OSTI)

We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 A{sup -1}, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

Smallwood, Christopher L.; Lanzara, Alessandra [Department of Physics, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jozwiak, Christopher [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Zhang Wentao [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2012-12-15T23:59:59.000Z

162

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

Science Conference Proceedings (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

163

Molecular Foundry  

NLE Websites -- All DOE Office Websites

Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE About the Foundry What is the Molecular Foundry? Research Themes Foundry Careers Media Gallery Other User Facilities external link Contact Us Go News & Highlights Users People Facilities Imaging and Manipulation Nanofabrication Theory Inorganic Biological Organic NCEM external link Seminars & Events Publications The Molecular Foundry is a Department of Energy-funded nanoscience research facility that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. Call for Proposals: The next deadline for standard proposals is Through March 31, 2014 Find out more information about becoming a Molecular Foundry facilities User. 2013 Annual User Meeting Postponed - Date TBD

164

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, P.V.

1995-11-28T23:59:59.000Z

165

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, Patrick V. (Joilet, IL)

1995-01-01T23:59:59.000Z

166

Extended Field of View Soft X-Ray Fourier Transform Holography: Toward Imaging Ultrafast Evolution in a Single Shot  

Science Conference Proceedings (OSTI)

Panoramic full-field imaging is demonstrated by applying spatial multiplexing to Fourier transform holography. Multiple object and reference waves extend the effective field of view for lensless imaging without compromising the spatial resolution. In this way, local regions of interest distributed throughout a sample can be simultaneously imaged with high spatial resolution. A method is proposed for capturing multiple ultrafast images of a sample with a single x-ray pulse.

Schlotter, W.F.; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL; Luening, J.; /Paris, Lab Chim. Quantique /SOLEIL, Saint-Aubin /BESSY, Berlin; Rick, R.; Chen, K.; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL; Scherz, A.; /SLAC, SSRL; Eisebitt, S.; Guenther, C.M.; Eberhardt, W.; /BESSY, Berlin; Hellwig, O.; /Hitachi Global Stor. Tech., San Jose; Stohr, J.; /SLAC, SSRL

2009-04-29T23:59:59.000Z

167

Physics Division: Subatomic Physics Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Subatomic Physics Subatomic Physics Physics home » Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic Physics, P-25 CONTACTS Group Leader Jon Kapustinsky (Acting) Deputy Group Leader Andy Saunders Office Administration Irene Martinez Miquela Sanchez Group Office (505) 667-6941 Physics Links Jobs in Physics Human Resources Working at Los Alamos Los Alamos resources Who we are, what we do We conduct basic research in nuclear and particle physics, applying this expertise to solve problems of national importance. By pushing the limits of our understanding of the smallest building blocks of matter through diverse experiments probing aspects of subatomic reactions, we aim to provide a more thorough understanding of the basic

168

Development of laser-plasma diagnostics using ultrafast atomic-scale dynamics. 96-ERD-046 final report  

Science Conference Proceedings (OSTI)

Ultrashort laser pulse systems allow examination of intense, ultrafast laser-plasma interactions. More specifically, intense laser irradiation can induce short xuv/x-ray bursts from the surface of condensed phase targets. Ultrafast xuv/x-ray detection is needed to understand laser-plasma interactions in this dynamic regime. Support of the Stockpile Stewardship and Management Program requires this critical understanding. Our effort here has been to extend understanding of atomic-scale dynamics in such environments with the goal of developing next generation ultrafast xuv/x-ray diagnostics where the sensors will be the atoms and ions themselves and the time resolution will approach that of the induced atomic transitions ({approx} a few femtoseconds). Pivotal contributions to the rapidly developing field of highly nonperturbative interactions of ultrashort pulse lasers with atoms/ions have been made at this laboratory. In the visible/infrared wavelength regions the temporal and spectral content of ultrashort laser pulses are now reliably monitored within a single pulse using frequency resolved optical gating (FROG) which is based on rapid nonlinear optical processes such as the Kerr effect. New applications of this basic concept are still being developed. Corresponding detection for the xuv/x-ray wavelengths does not exist and is urgently needed in many laboratory programs. The FROG technique cannot be applied in the xuv/x-ray region. Current x-ray streak camera technology is limited to {approx}0.5 picosecond resolution.

Bolton, P.R.; Kulander, K.C. [Lawrence Livermore National Lab., CA (United States); Boreham, B.W. [Central Queensland Univ., Rockhampton, QLD (Australia). Dept. of Applied Physics

1997-03-01T23:59:59.000Z

169

NEWTON's Molecular Biology Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Videos Do you have a great molecular biology video? Please click our Ideas page. Featured Videos: University of Berkeley - Molecular Biology Lectures University...

170

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

See the Foundry's full equipment list See the Foundry's full equipment list Organic and Macromolecular Synthesis Capabilities & Tools Major Instruments and Capabilities AB SCIEX TF4800 MALDI TOF-TOF Mass Spectrometer This instrument is the tandem time-of-flight mass spectrometer systems, providing the excellent level of molecular mass coverage in the range of molecular masses 500 and 150,000 Da, high throughput, and confidence in both qualitative and quantitative analyses. The analyzer combines all of the advantages of MALDI in a flexible, easy-to-use, ultra-high-performance mass spectrometer with all the advanced capabilities of software. On-axis laser provides high sensitivity to identify and quantitate low-abundance compounds in complex samples. High-resolution precursor ion selection lets

171

Electroweak Physics  

E-Print Network (OSTI)

Work on electroweak precision calculations and event generators for electroweak physics studies at current and future colliders is summarized.

W. Hollik

2005-01-26T23:59:59.000Z

172

Quantum physics meets biology  

E-Print Network (OSTI)

Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

Markus Arndt; Thomas Juffmann; Vlatko Vedral

2009-11-01T23:59:59.000Z

173

Ultrafast Laser Induced Thermo-Elasto-Visco-Plastodynamics in Single Crystalline Silicon  

E-Print Network (OSTI)

A comprehensive model for describing the fundamental mechanism dictating the interaction of ultrafast laser pulse with single crystalline silicon wafer is formulated. The need for establishing the feasibility of employing lasers of subpicosecond pulse width in Laser Induced Stress Waves Thermometry (LISWT) for single crystalline silicon processing motivated the work. The model formulation developed is of a hyperbolic type capable of characterizing non-thermal melting and thermo-elastoviscoplastic deformation as functions of laser input parameters and ambient temperature. A plastic constitutive law is followed to describe the complex elasto-viscoplastic responses in silicon undergoing Rapid Thermal Processing (RTP) annealing at elevated temperatures. A system of nine first-order hyperbolic equations applicable to describing 3-D elasto-viscoplastic wave motions in silicon is developed. The group velocities of certain selected frequency components are shown to be viable thermal indicators, thus establishing the feasibility of exploiting nanosecond laser induced propagating stress waves for the high-resolution thermal profiling of silicon wafers. Femtosecond laser induced transport dynamics in silicon is formulated based on the relaxation-time approximation of the Boltzmann equation. Temperature-dependent multi-phonons, free-carrier absorptions, and the recombination and impact ionization processes governing the laser model and carrier numbers are considered using a set of balance equations. The balance equation of lattice energy and equations of motion of both parabolic and hyperbolic types are derived to describe the complex thermo-elastoplastodynamic behaviors of the material in response to ultrafast laser pulsing. The solution strategy implemented includes a multi-time scale axisymmetric model of finite geometry and a staggered-grid finite difference scheme that allows both velocity and stress be simultaneously determined without having to solve for displacements. Transport phenomena initiated by femtosecond pulses including the spatial and temporal evolutions of electron and lattice temperatures, along with electron-hole carrier density, are found to be functions of laser fluence and pulse width. The femtosecond laser heating model that admits hyperbolic energy transport is shown to remedy the dilemma that thermal disturbances propagate with infinite speed. Non-thermal melting fluence is examined favorably against published experimental data. That it is feasible to explore femtosecond laser induced displacement and stress components for 1K resolution thermal profiling is one of the conclusions reached.

Qi, Xuele

2009-12-01T23:59:59.000Z

174

The Role of XAFS in Advancing the Frontiers of Molecular  

E-Print Network (OSTI)

The Role of XAFS in Advancing the Frontiers of Molecular Environmental Science Donald L. Sparks S information on the molecular aspects and interactions of a compounds No direct electronic information Magnetic under high vacuum (ex-situ) #12;#12;Molecular Environmental Science Study of the chemical and physical

Sparks, Donald L.

175

Molecular Electronics Michael Zwolak and Massimiliano Di Ventra  

E-Print Network (OSTI)

Molecular Electronics Michael Zwolak and Massimiliano Di Ventra Department of Physics, Virginia) are fast approaching. Alternative technologies are thus being investigated. Molecular electronics is one of these alternatives. Molecular electronics can be loosely defined as a subfield of nanotechnology that envisions

Zwolak, Michael

176

Molecular Phylogeny Reconstruction  

E-Print Network (OSTI)

Molecular Phylogeny Reconstruction Sudhir Kumar, Arizona State University, Tempe, Arizona, USA Alan Filipski, Arizona State University, Tempe, Arizona, USA Molecular phylogenetics deals with the inference molecular data. By modelling patterns of molecular change in protein and deoxyribonucleic acid (DNA

Kumar, Sudhir

177

Ultrafast nanolaser device for detecting cancer in a single live cell.  

Science Conference Proceedings (OSTI)

Emerging BioMicroNanotechnologies have the potential to provide accurate, realtime, high throughput screening of live tumor cells without invasive chemical reagents when coupled with ultrafast laser methods. These optically based methods are critical to advancing early detection, diagnosis, and treatment of disease. The first year goals of this project are to develop a laser-based imaging system integrated with an in- vitro, live-cell, micro-culture to study mammalian cells under controlled conditions. In the second year, the system will be used to elucidate the morphology and distribution of mitochondria in the normal cell respiration state and in the disease state for normal and disease states of the cell. In this work we designed and built an in-vitro, live-cell culture microsystem to study mammalian cells under controlled conditions of pH, temp, CO2, Ox, humidity, on engineered material surfaces. We demonstrated viability of cell culture in the microsystem by showing that cells retain healthy growth rates, exhibit normal morphology, and grow to confluence without blebbing or other adverse influences of the material surfaces. We also demonstrated the feasibility of integrating the culture microsystem with laser-imaging and performed nanolaser flow spectrocytometry to carry out analysis of the cells isolated mitochondria.

Gourley, Paul Lee; McDonald, Anthony Eugene

2007-11-01T23:59:59.000Z

178

Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery  

E-Print Network (OSTI)

This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ~100 m/s can be observed between the 'fast' and 'slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the 'fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization b...

Sedarsky, David

2013-01-01T23:59:59.000Z

179

From Molecular Computing to Molecular Programming  

E-Print Network (OSTI)

From Molecular Computing to Molecular Programming Masami Hagiya Graduate School of Science of the Japanese Molecular Computer Project, and foresee the future of the #12;eld. In addition to describing the major achievements of the project, Suyama's Dynamic Programming Molecular Computer and Sakamoto

Hagiya, Masami

180

2012 ATOMIC AND MOLECULAR INTERACTIONS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 15-20, 2012  

SciTech Connect

At the 2012 Atomic and Molecular Interactions Gordon Conference, there will be talks in several broadly defined and partially overlapping areas: ? Intramolecular and single-collision reaction dynamics; ? Photophysics and photochemistry of excited states; ? Clusters, aerosols and solvation; ? Interactions at interfaces; ? Conformations and folding of large molecules; ? Interactions under extreme conditions of temperature and pressure. The theme of the Gordon Research Seminar on Atomic & Molecular Interactions, in keeping with the tradition of the Atomic and Molecular Interactions Gordon Research Conference, is far-reaching and involves fundamental research in the gas and condensed phases along with application of these ideas to practical chemical fields. The oral presentations, which will contain a combination of both experiment and theory, will focus on four broad categories: ? Ultrafast Phenomena; ? Excited States, Photoelectrons, and Photoions; ? Chemical Reaction Dynamics; ? Biomolecules and Clusters.

Zwier, Timothy

2012-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Physics Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

to help students develop a deeper understanding of the concepts of force and motion. Physics of Sports Grades 4-12 Additional Information Fermilab scientists guide a discussion...

182

B physics  

SciTech Connect

We review B physics and the motivation for studying B decays, including CP-violating effects in the B meson system. 33 refs., 20 figs.

Gilman, F.J.

1987-12-01T23:59:59.000Z

183

Sandia National Laboratories: Careers: Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Water droplets photo Physicists from all research backgrounds are helping Sandia solve the world's toughest challenges. There is no "typical" career for a physicist at Sandia. Instead, Sandia offers physicists a multitude of opportunities to participate in multidisciplinary teams on projects ranging from groundbreaking fundamental research to influential national security applications. Whatever the project, physicists are making important contributions to Sandia's missions in stockpile stewardship, homeland and port security, and energy security. For example, some physicists are investigating basic research topics from atomic/molecular dynamics to antineutrinos. Others are applying physics principles to fieldable commercial devices, such as airport sensors and

184

Radiation Physics Portal  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Portal. Radiation Physics Portal. ... more. >> see all Radiation Physics programs and projects ... ...

2013-08-08T23:59:59.000Z

185

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory of Nanostructured Materials Theory of Nanostructured Materials The Theory of Nanostructured Materials Facility at the Molecular Foundry is focused on expanding our understanding of materials at the nanoscale. Our research connects the structural and dynamical properties of materials to their functions, such as electrical conductivity and storage, light-harvesting for electricity and fuel, or gas separation and sequestration. We develop and employ a broad range of tools, including advanced electronic-structure theory, excited-state methods, model Hamiltonians, and statistical mechanical models. This combination of approaches reveals how materials behave at the nanoscale, in pursuit of materials and devices that meet global energy and sustainability needs. Electronic structure of complex materials and interfaces for energy

186

Molecular Dynamics Simulation on the Surface Melting and ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Thermal and non-thermal ultra-fast laser induced surface melting and nanojoining of Ag nanoparticles and nanowires were investigated ...

187

Gas-Phase Molecular Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Phase Molecular Dynamics Gas-Phase Molecular Dynamics The Gas-Phase Molecular Dynamics Group is dedicated to developing and applying spectroscopic and theoretical tools to challenging problems in chemical physics related to reactivity, structure, dynamics and kinetics of transient species. Recent theoretical work has included advances in exact variational solution of vibrational quantum dynamics, suitable for up to five atoms in systems where large amplitude motion or multiple strongly coupled modes make simpler approximations inadequate. Other theoretical work, illustrated below, applied direct dynamics, quantum force trajectory calculations to investigate a series of reactions of the HOCO radical. The potential energy surface for the OH + CO/ H + CO2 reaction, showing two barriers (TS1 and TS2) and the deep HOCO well along the minimum energy pathway. The inset figure shows the experimental and calculated reactivity of HOCO with selected collision partners. See J.S. Francisco, J.T. Muckerman and H.-G. Yu, "HOCO radical chemistry,"

188

Molecular separation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

Villa-Aleman, Eliel (3108 Roses Run, Aiken, SC 29803)

1996-01-01T23:59:59.000Z

189

NEWTON's Physics Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Videos Do you have a great physics video? Please click our Ideas page. Featured Videos: How Stuff Works Videos - Physics How Stuff Works Videos - Physics The Physics...

190

Gas Phase Molecular Dynamics  

Science Conference Proceedings (OSTI)

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule.

Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

1999-05-21T23:59:59.000Z

191

GAS PHASE MOLECULAR DYNAMICS  

SciTech Connect

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution, high-sensitivity, laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule. The work of group members Fockenberg and Muckerman is described in separate abstracts of this volume.

SEARS,T.J.; HALL,G.E.; PRESES,J.M.; WESTON,R.E.,JR.

1999-06-09T23:59:59.000Z

192

Molecular Biology DEGREE PROGRAMME  

E-Print Network (OSTI)

BSc (Hons) Molecular Biology DEGREE PROGRAMME GUIDE 2013-2014 #12;BSc (Hons) Molecular Biology - Year 2 - Year 3 - Year 4 Introduction Molecular biology aims to understand living systems by focusing on the molecular components upon which they are built. Molecular biology is one of great successes of 20th century

Siddharthan, Advaith

193

Towards understanding initiation reactions of explosives via ultrafast laser quantum control  

SciTech Connect

Optimal control can be utilized to control the initiation reaction of explosives, where time dependent phase shaped electric fields drive the chemical systems towards a desired state. For quantum controlled initiation (QCI) of explosives a pulse is created which seeks to achieve initiation by employing shaped ultraviolet light. QCI will enhance the understanding of energetic material reactions by yielding insight into the characteristics, such as critical 'hot spot' size and reaction dynamics, necessary for initiation. Quantum control experiments require the ability to: (1) phase and amplitude shape an ultrafast laser pulse, (2) measure the effect of pulse shape, and (3) optimize the desired outcome. Pulse shaping is performed with a 4-focal length dispersed fused silica acousto-optic modulator (AOM) at 400 nm in the ultraviolet (UV). Transient absorption spectroscopy is used to measure the pulse shape effects. Both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex are used to search for the optimal pulse shape. Hexanitroazobenzene (HNAB), Trinitroanaline (TNA) and Diaminoazozyfurazan (DAAF) are excited to the first electronic state with 400 nm light. Our initiation experiments are studying the effect of phase shaped 400 nm pulses on HNAB, TNA and DAAF. Novel transient absorption spectra for each material have been obtained and note worthy regions further investigated with single parameter control (second order spectral phase and energy). Many systems have simple intensity control such as that shown by DAAF. TNA and HNAB have spectral features that are not single parameter driven and are being further investigated with complex control.

Greenfield, Margo T [Los Alamos National Laboratory; Mc Grane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Scharff, R. Jason [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

194

Physics Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2nd Workshop on Physics with a high intensity proton source, January 25-26 (Friday-Saturday), 2008 organized by Fermilab UEC and Fermilab Fermilab Home | Fermilab at Work |...

195

Physics Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3rd Workshop on Physics with a high intensity proton source, June 5-6 (Thursday-Friday), 2008 organized by Fermilab UEC and Fermilab Fermilab Home | Fermilab at Work | Fermilab...

196

Physics Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

to help students develop a deeper understanding of the concepts of force and motion. Physics of Sports Grades 4-12 Fermilab scientists guide a discussion and exploration of the...

197

Physics Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1st Workshop on Physics with a high intensity proton source, November 16-17 (Friday-Saturday), 2007 organized by Fermilab UEC and Fermilab Fermilab Home | Fermilab at Work |...

198

Physics Based on Physical Monism  

E-Print Network (OSTI)

Based on a physical monism, which holds that the matter and space are classified by not a difference of their kind but a difference of magnitude of their density, I derive the most fundamental equation of motion, which is capable of providing a deeper physical understanding than the known physics. For example, this equation answers to the substantive reason of movement, and Newton's second law, which has been regarded as the definition of force, is derived in a substantive level from this equation. Further, the relativistic energy-mass formula is generalized to include the potential energy term, and the Lorentz force and Maxwell equations are newly derived.

Seong-Dong Kim

2005-09-08T23:59:59.000Z

199

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar "Tuning Phonons in Molecular...

200

NEWTON's Molecular Biology Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Archive: Loading Most Recent Molecular Biology Questions: Cytoplasm pH DNA Extract and Cold Alcohol Albino Gene Loci Male Development Candy and Bacteria Revisited...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Physics Division annual report, April 1, 1993--March 31, 1994  

Science Conference Proceedings (OSTI)

This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

Thayer, K.J. [ed.; Henning, W.F.

1994-08-01T23:59:59.000Z

202

Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching  

E-Print Network (OSTI)

Rearrangements of the hydrogen bond network of liquid water are believed to involve rapid and concerted hydrogen bond switching events, during which a hydrogen bond donor molecule undergoes large angle molecular reorientation ...

Ramasesha, Krupa

203

Ultrafast dynamics of excitons and charges in organic materials and semiconductor nanocrystals  

E-Print Network (OSTI)

and electronic properties that are of interest for applications in e.g. solar cells, photodiodes, light- emitting diodes, field-effect transistors and nanoscale molecular electronics. We studied the mechanism of charge

Schuster, Assaf

204

Review of Particle Physics  

E-Print Network (OSTI)

11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

205

NEWTON's Physics References  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics References Do you have a great physics reference link? Please click our Ideas page. Featured Reference Links: Physics Links Physics Links from AAPT See the American...

206

Physics Folklore  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Folklore Physics Folklore By Lynne Zielinski       Sometime after World War II physicists began to change their way of giving names to theoretical ideas. Before then, new ideas were given titles such as "special relativity theory" or "neutrons." A precursor of the new kinds of names came in 1953 when Murray Gell-Mann and Kazuhiko Hishijima decided to name one of the properties of subatomic particles "strangeness." Gell-Mann accelerated the trend in 1961 by calling his group-theoretic way of explaining the properties of particles "The Eightfold Way." Gell-Mann's crazy names finally reached the consciousness of the general public in 1964 when he described the particles involved in the next stage of his thinking as "quarks." p. 508, source B

207

Applications of Ultrafast Terahertz Pulses for Intra-ExcitonicSpectroscopy of Quasi-2D Electron-Hole Gases  

Science Conference Proceedings (OSTI)

Excitons are of fundamental interest and of importance foropto-electronic applications of bulk and nano-structured semiconductors.This paper discusses the utilization of ultrafast terahertz (THz) pulsesfor the study of characteristic low-energy excitations of photoexcitedquasi 2D electron-hole (e-h) gases. Optical-pump THz-probe spectroscopyat 250-kHz repetition rate is employed to detect characteristic THzsignatures of excitons and unbound e-h pairs in GaAs quantum wells.Exciton and free-carrier densities are extracted from the data using atwo-component model. We report the detailed THz response and pairdensities for different photoexcitation energies resonant to heavy-holeexcitons, light-hole excitons, or the continuum of unbound pairs. Suchexperiments can provide quantitative insights into wavelength, time, andtemperature dependence of the low-energy response and composition ofoptically excited e-h gases in low-dimensionalsemiconductors.

Kaindl, Robert A.; Carnahan, Marc A.; Hagele, Daniel; Chemla, D.S.

2006-09-02T23:59:59.000Z

208

System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally  

DOE Patents (OSTI)

In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

Heebner, John E. (Livermore, CA)

2010-08-03T23:59:59.000Z

209

NIST Physical Constants  

Science Conference Proceedings (OSTI)

Fundamental Physical Constants. ... Values of Fundamental Physical Constants. ... Searchable Bibliography of Fundamental Constants. ...

2010-10-05T23:59:59.000Z

210

Physics Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Applications Technetium-99m radioisotope generator developed at Brookhaven. Numerous physics-related programs at Brookhaven have yielded major advances in medicine and various technologies. Brookhaven's nuclear medicine program, which began in the 1950s, uses the Brookhaven Linac Isotope Producer to make radioisotopes for nuclear medicine diagnostics and treatment throughout the world. Today, more than 85 percent of all imaging examinations worldwide use one of the radioisotopes developed at Brookhaven. At Brookhaven's Center for Translational Neuroimaging, researchers can peer into a living brain through the use of various imaging modalities, including positron emission tomography (PET), magnetic resonance imaging (MRI), and optical imaging. Such research has led to a new understanding of

211

Using the economics of platforms to understand the broadband-based market formation in the New Zealand Ultra-Fast Broadband Network  

Science Conference Proceedings (OSTI)

The government of New Zealand is currently building a nation-wide fibre-optics network, a project known as the Ultra-Fast Broadband (UFB) initiative. The UFB network will cover 75 percent of New Zealanders over 10 years and will cost NZD $1.5 billion ... Keywords: Cross-network effects, Layer-1 services, New Zealand broadband national initiative, Open access platform, Price structure, Two-sided platforms, Wholesale layer-2 services

Fernando BeltráN

2012-10-01T23:59:59.000Z

212

REVIEW ARTICLE Molecular Anions  

E-Print Network (OSTI)

REVIEW ARTICLE Molecular Anions Jack Simons Chemistry Department, Henry Eyring Center ReceiVed: February 28, 2008 The experimental and theoretical study of molecular anions has undergone on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now

Simons, Jack

213

Molecular Cell Short Article  

E-Print Network (OSTI)

Molecular Cell Short Article Nucleosome Organization Affects the Sensitivity of Gene Expression to Promoter Mutations Gil Hornung,1 Moshe Oren,2 and Naama Barkai1,* 1Department of Molecular Genetics 2Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel *Correspondence: naama

Barkai, Naama

214

Progress at LAMPF (Los Alamos Meson Physics Facility), January--December 1989  

Science Conference Proceedings (OSTI)

This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production.

Poelakker, K. (ed.)

1990-12-01T23:59:59.000Z

215

Shape resonances in molecular fields  

SciTech Connect

A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by X-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field.

Dehmer, J.L.

1984-01-01T23:59:59.000Z

216

Shape resonances in molecular fields  

SciTech Connect

A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field.

Dehmer, J.L.

1984-01-01T23:59:59.000Z

217

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites -...

218

Center for Beam Physics  

E-Print Network (OSTI)

for Heavy Ion Fusion," Research Trends in Physics, La JollaInternational School of Physics, New York, New York (1992),Professor and Chairman Physics Department University of

Chattopadhyay, S.

2010-01-01T23:59:59.000Z

219

Forward physics with CMS  

E-Print Network (OSTI)

The physics potential of the forward physics project at CMS is very rich. Some of the diffraction and low-x physics channels are briefly discussed.

Marek Tasevsky

2004-08-22T23:59:59.000Z

220

Particle Physics Booklet 2008  

E-Print Network (OSTI)

212 25. Accelerator physics of colliders ? 26. High-energythe full Review. PARTICLE PHYSICS BOOKLET TABLE OF CONTENTSrev. ) Summary Tables of Particle Physics Gauge and Higgs

et al., C. Amsler

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Molecular Hydrogen Emission from Protoplanetary Disks  

E-Print Network (OSTI)

We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from protoplanetary disks, both in the ultraviolet (UV) and the near-infrared, but only if the central star has a strong UV excess radiation.

H. Nomura; T. J. Millar

2005-05-06T23:59:59.000Z

222

http://www.soken.ac.jp/ School of Physical Sciences  

E-Print Network (OSTI)

http://www.soken.ac.jp/ 2012 2013 School of Physical Sciences Department of Structural Molecular Science Department of Functional Molecular Science Department of Astronomical Science Department of Fusion Science Department of Space and Astronautical Science School of High Energy Accelerator Science Department

Kinosita Jr., Kazuhiko

223

http://www.soken.ac.jp/ School of Physical Sciences  

E-Print Network (OSTI)

20132013 20142014 & http://www.soken.ac.jp/ School of Physical Sciences Department of Structural Molecular Science Department of Functional Molecular Science Department of Astronomical Science Department of Fusion Science Department of Space and Astronautical Science School of High Energy Accelerator Science

Kinosita Jr., Kazuhiko

224

Educational Physics Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Games Do you have a great physics game? Please click our Ideas page. Featured Games: Nobel Prize - Physics Games Section Nobel Prize - Physics Games Section Nobelprize.org,...

225

Electron-nuclear correlations for photo-induced dynamics in molecular dimers  

E-Print Network (OSTI)

Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by the dynamic reorganization of inter- and intra- molecular nuclear configuration modeled by a quantized nuclear degree of freedom [Cina et. al, J. Chem Phys. {118}, 46 (2003)]. The dynamics of the electronic population and nuclear coherence is analyzed by solving the chain of coupled differential equations for %mean coordinate, population inversion, electron-vibrational correlation, etc. [Prezhdo, Pereverzev, J. Chem. Phys. {113} 6557 (2000)]. Intriguing results are obtained in the approximation of a small change of the nuclear equilibrium upon photoexcitation. In the limiting case of resonance between the electronic energy gap and the frequency of the nuclear mode these results are justified by comparison to the exactly solvable Jaynes-Cummings model. It is found that the photoinduced processes in the model dimer are arranged according to their time scales: (i) fast scale of nuclear motion, (ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electron-nuclear correlation, (iii) slow scale of electronic population approach to the quasi-equilibrium distribution, decay of electron-nuclear correlation, and decrease of the amplitude of mean coordinate oscillation. The latter processes are accompanied by a noticeable growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. The demonstrated quantum relaxation features of the photoinduced vibronic dynamics in molecular dimers are obtained by a simple method, applicable to systems with many degrees of freedom.

Dmitri S. Kilin; Yuri V. Pereversev; Oleg V. Prezhdo

2004-03-13T23:59:59.000Z

226

Physics 5794 Computational Physics Syllabus Spring 2003  

E-Print Network (OSTI)

Physics 5794 ­ Computational Physics Syllabus ­ Spring 2003 Instructor: Massimiliano Di Ventra, by H. Gould and J. Tobochnik (Addison Wesley). Computational Physics, by S.E. Koonin, D.C. Meredith 3:30 ­ 4:45 p.m., Torgensen 2050. Course Content: The majority of problems encountered in Physics

Di Ventra, Massimiliano

227

Quantum Physics Division Homepage  

Science Conference Proceedings (OSTI)

... Contact. Physical Measurement Laboratory Quantum Physics Division General Information: 303-735-1985 Telephone 303-492-5235 Facsimile. ...

2013-06-28T23:59:59.000Z

228

Quantum Physics Theory  

Science Conference Proceedings (OSTI)

Quantum Physics Theory. Summary: Theoretical work ... constant. The database is available at http://physics.nist.gov/hdel. Precise ...

2010-10-05T23:59:59.000Z

229

NIST Nuclear Physics Data  

Science Conference Proceedings (OSTI)

Nuclear Physics Data. Radionuclide Half-Life Measurements Made at NIST; Atomic Weights and Isotopic Compositions. ... Physical Reference Data. ...

2010-10-05T23:59:59.000Z

230

Quantum Physics Portal  

Science Conference Proceedings (OSTI)

... for Science and Technology (CODATA) issues recommended values of the fundamental physical constants ... see all Quantum Physics programs and ...

2013-03-07T23:59:59.000Z

231

Radiation Physics Division  

Science Conference Proceedings (OSTI)

... The Radiation Physics Division, part of the Physical Measurement Laboratory ... the measurement standards for ionizing radiations and radioactivity ...

2013-09-05T23:59:59.000Z

232

NIST: Physical Measurement Laboratory - Research ...  

Science Conference Proceedings (OSTI)

... Fellowships: SURFing the Physical Measurement Laboratory ... Optical, Radiation, and Chemical Physics. ... involves PML's Quantum Physics Division. ...

2010-10-05T23:59:59.000Z

233

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Masthead A-Z Index Berkeley Lab masthead Phone Book Jobs Search The Molecular Foundry Home DOE - Office of Science ABOUT US FACILITIESCAPABILITIES RESEARCH BECOMING A USER...

234

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar "Atomic Structure and Applications...

235

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar Mineralization at the Organic...

236

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar "What Happens to Crystals When...

237

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Brett Helms, Berkeley Lab Title: Building Our Understanding of Nanocrystal Surface Structure Using Heterometallic Molecular Beacons Location: 67-3111 Chemla room View the Foundry...

238

A Molecular Simulation Study  

Science Conference Proceedings (OSTI)

Presentation Title, Enhanced CO2 Adsorption in Ti-exchanged Zirconium Organic Frameworks – A Molecular Simulation Study. Author(s), Ravichandar Babarao ...

239

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Seminar Schedule Abstract: The intriguing prospects of molecular electronics, nanotechnology, biomaterials, and the aim to close the gap between synthetic and biological...

240

Educational Molecular Biology Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Games Do you have a great game? Please click our Ideas page. Featured Games: Biology Games fom biologyjunction.com Biology Games fom biologyjunction.com...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Homogeneous Non-Equilibrium Molecular Dynamics Methods for Calculating the Heat Transport Coefficient of Solids and Mixtures  

E-Print Network (OSTI)

of flexible molecules - Butane. Molecular Physics, 81(6):in polyatomic fluids: n-Butane as an illustration. Chemicalfor two models of liquid Butane. Chemical Physics, 198(1-2):

Mandadapu, Kranthi Kiran

2011-01-01T23:59:59.000Z

242

Nobel Prize in Physics 1943  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 The prize was reserved and awarded in 1944 "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton" Otto Stern Button USA Button born 1888 (Sorau, then Germany), died 1969 Button CA - Carnegie Institute of Technology (Carnegie Mellon University), Pittsburgh, Pennsylvania, USA Button AA - University of Frankfurt am Main, Frankfurt, Germany & University of Rostock, Rostock, Germany & University of Hamburg, Hamburg, Germany Button WA - University of Frankfurt am Main & University of Rostock & University of Hamburg Button Additional Information *Explanation of CA, AA & WA* Additional Information: Nobel e-Museum Prize in Physics 1943 Swiss Nobels: Otto Stern Carnegie Mellon Nobel Laureates

243

Proton- and x-ray beams generated by ultra-fast CO(2) lasers for medical applications  

DOE Green Energy (OSTI)

Recent progress in using picosecond CO{sub 2} lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle-sources. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO{sub 2} laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO{sub 2} laser to sub-PW peak power. This planned improvement includes optimizing the 10-{mu}m ultra-short pulse generation, assuring higher amplification in the CO{sub 2} gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO{sub 2} lasers in medicine and other areas.

Pogorelsky, I.; Polyanskiy, M.; Yakimenko, V.; Ben-Zvi, I.; Shkolnikov, P. Najmudin, Z.; Palmer, C.A.J.; Dover, N.P.; Oliva, P; Carpinelli, M.

2011-07-01T23:59:59.000Z

244

Ultrafast Supercontinuum Spectroscopy of Carrier Multiplication and Biexcitonic Effects in Excited States of PbS Quantum Dots  

SciTech Connect

We examine the population dynamics of multiple excitons in PbS quantum dots using spectrally resolved ultrafast supercontinuum transient absorption (SC-TA) measurements. We simultaneously probe the first three excitonic transitions. The transient spectra show the presence of bleaching of absorption for the 1S{sub h}-1S{sub e} transition, as well as transients associated with the 1P{sub h}-1P{sub e} transition. We examine signatures of carrier multiplication (multiple excitons arising from a single absorbed photon) from analysis of the bleaching features in the limit of low absorbed photon numbers (

Sfeir M. Y.; Gesuele, F.; Koh, W.-K.; Murray, C.B.; Heinz, T.F.; Wong, C.W.

2012-06-01T23:59:59.000Z

245

Condensed Phase and Interfacial Molecular Sciences | U.S. DOE Office of  

Office of Science (SC) Website

Condensed Phase and Interfacial Molecular Sciences Condensed Phase and Interfacial Molecular Sciences Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Condensed Phase and Interfacial Molecular Sciences Print Text Size: A A A RSS Feeds FeedbackShare Page Condensed Phase and Interfacial Molecular Science (CPIMS) research emphasizes molecular understanding of chemical, physical, and electron-driven processes in aqueous media and at interfaces. Studies of reaction dynamics at well-characterized metal and metal-oxide surfaces and clusters lead to the development of theories on the molecular origins of

246

Physics Dept. Seminars and Colloquia  

NLE Websites -- All DOE Office Websites (Extended Search)

Categories Nuclear Physics Seminars HETBNL Lunch Time Talks Nuclear Physics & RIKEN Theory Seminars High-Energy Physics & RIKEN Theory Seminars Particle Physics Seminars Physics...

247

Publications, Oxide Molecular Beam Epitaxy Group, Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications In Press M. P. M. Dean, G. Dellea, R. S. Springell, F. Yakhou-Harris, K. Kummer, N. B. Brookes, X. Liu, Y. Sun, J. Strle, T. Schmitt, L. Braicovich, G. Ghiringhelli, I. Bozovic and J. P. Hill. "Persistence of magnetic excitations in La2-xSrxCuOP4 from the undoped insulator to the heavily overdoped non-superconducting metal." Nature Materials (Submitted 2013). In press. J. Wu, O. Pelleg, G. Logvenov, A. T. Bollinger, Y. Sun, G. S. Boebinger, M. Vanevic, Z. Radovic and I. Bozovic. "Anomalous (in)dependence of interface superconductivity on carrier density." Nature Materials (Submitted 2012). In press. G. Dubuis, A. T. Bollinger, D. Pavuna and I. Bozovic. "On Field Effect Studies and Superconductor-Insulator Transition in High-Tc Cuprates."

248

Laboratories, Oxide Molecular Beam Epitaxy Group, Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories: Photo Tour Laboratories: Photo Tour MBE Laboratory MBE Laboratory MBE Chamber MBE Chamber Temperature Controllers MBE Computers and Servers Pneumatic Hoses Transport between MBE Laboratory and Nano-Lithography Laboratory Backside of MBE chamber during growth, lit by Nano-Lithography Laboratory Nano-Lithography Laboratory Processing Chamber Laminar Flow Hood Mask Aligner Profilometer Probe Station Wire Bonder X-Ray Diffraction and Chemistry Laboratory X-Ray Diffraction System X-Ray Diffraction System X-Ray Diffraction System Chemistry Laboratory Chemistry Laboratory Mutual Inductance, Transport and Field Effect Laboratory Field Effect Measurement system Liquid Helium-4 Dipstick for Mutual Inductance Transport Measurement System COMBI Hall Effect, COMBI Transport and Mutual Inductance Measurements Laboratory

249

James R. Macdonald Lab: Atomic, Molecular and Optical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

R. Macdonald Laboratory KSU About Us AMO @ JRM Experimental Theoretical Education Facilities KLS Tandem Linac (Retired) Cryebis ECR Source MOT LUMOS UNFO Computing Photo...

250

Oxide Molecular Beam Epitaxy Group, Condensed Matter Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

(right) and U.S. Under Secretary of Science Raymond L. Orbach (middle) visiting the MBE lab, 2 June 2006. Left: Ivan Bozovic. Back row: BNL Director Sam Aronson (right) and...

251

Optical manipulation of ultrafast electron and nuclear motion on metal surfaces  

SciTech Connect

We study the unoccupied electronic structure and dynamics of chemisorbed atoms and molecules on metal surfaces by time resolved two-photon photoemission (TR-2PP). spectroscopy, low temperature scanning tunneling microscopy (LT-STM), and theory. Our research concerns simple atomic adsorbates such as alkali and alkaline earth atoms, which provide fundamentally important models for adsorbate-surface interactions, and more complex adsorbates such as fullerenes on noble metals, which illustrate emergent interfacial properties that derive from intrinsic molecular attributes, and moleculemolecule and molecule-surface interactions. Our goal is to understand how these interactions contribute to formation of the interfacial electronic structure, and how thus formed electronic properties affect interfacial phenomena of importance to energy transduction and storage. Moreover, we explore how the interfacial electronic excitation drives dynamical phenomena such as charge transfer and surface femtochemistry.

Petek, Hrvoje

2009-12-02T23:59:59.000Z

252

Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives  

SciTech Connect

We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, sample quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.

Whitley, Von H [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Eakins, Dan E [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

253

Molecular models for explosives  

Science Conference Proceedings (OSTI)

Any fundamental understanding of detonations and explosives' behavior requires as a starting point a knowledge of molecular properties. Indeed, there is a sizable literature concerning observed decomposition kinetics, x-ray crystal structures, heats of formation, etc. for explosives. As a result of this extensive experimental work, a large and ever increasing number of observed properties of explosives are available. Given sufficient data, models for the prediction of molecular properties can be developed and calibrated. Nevertheless, many desirable molecular properties can be obtained with considerable effort and, in many cases, experimental measurements are not possible for practical reasons; e.g., bond dissociation energies are very difficult to obtain for explosives. Consequently, theoretical methods for obtaining these properties are quite desirable. In addition, it is oftentimes desired to estimate the properties of unknown molecules. Consequently, methods for the estimation of molecular properties, which might seem quite crude by other standards, can be of considerable practical value. We present in this paper some of our recent efforts at extending and developing molecular models for explosives. These efforts fall into three main areas: Estimation of crystal densities of organic nitrates and perchlorates by an entirely empirical group additivity method; calculation of molecular heats of formation and bond dissociation energies (BDE's) by a semi-empirical molecular orbital method (AM1); and the electronic structure of nitrobenzene as obtained from non-empirical (sometimes called ab initio molecular orbital calculations. 10 refs.

Ritchie, J.P.; Bachrach, S.M.

1987-01-01T23:59:59.000Z

254

B Physics (Experiment)  

E-Print Network (OSTI)

In past few years the flavor physics made important transition from the work on confirmation the standard model of particle physics to the phase of search for effects of a new physics beyond standard model. In this paper we review current state of the physics of b-hadrons with emphasis on results with a sensitivity to new physics.

Michal Kreps

2010-08-02T23:59:59.000Z

255

Physics Division annual review, April 1, 1992--March 31, 1993  

SciTech Connect

This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation.

Thayer, K.J. [ed.

1993-08-01T23:59:59.000Z

256

Molecular Statics and Molecular Dynamics Simulations of the ...  

Science Conference Proceedings (OSTI)

Presentation Title, Molecular Statics and Molecular Dynamics Simulations of the Critical Stress for Motion of a/3 Screw Dislocations in a-Ti at Low ...

257

Amusement Park Physics!  

NLE Websites -- All DOE Office Websites (Extended Search)

Amusement Park Physics If you have an idea for a great field trip, please click our Ideas page Amusement Park Physics, or Physics Day, is a program which seeks to teach students...

258

Modeling laser wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames  

Science Conference Proceedings (OSTI)

The development of new laser systems at the 10 Petawatt range will push laser wakefield accelerators to novel regimes, for which theoretical scalings predict the possibility to accelerate electron bunches up to tens of GeVs in meter-scale plasmas. Numerical simulations will play a crucial role in testing, probing, and optimizing the physical parameters and the setup of future experiments. Fully kinetic simulations are computationally very demanding, pushing the limits of today's supercomputers. In this paper, the recent developments in the OSIRIS framework [R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002)] are described, in particular the boosted frame scheme, which leads to a dramatic change in the computational resources required to model laser wakefield accelerators. Results from one-to-one modeling of the next generation of laser systems are discussed, including the confirmation of electron bunch acceleration to the energy frontier.

Martins, S. F.; Fonseca, R. A.; Vieira, J.; Silva, L. O. [GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, Lisbon (Portugal); Lu, W.; Mori, W. B. [University of California Los Angeles, Los Angeles, California 90095 (United States)

2010-05-15T23:59:59.000Z

259

Laser Ablation: Fundamentals and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

90 This seminar will include both experimental and theoretical topics of ultrafast laser ablation. In the first part, fundamental physics of ultrafast laser-material...

260

NIST: Physics Lab News  

Science Conference Proceedings (OSTI)

Dr. John (Jan) L. Hall shares the 2005 Nobel Prize in Physics. "... ... Physics Laboratory articles from NIST News Sources. Technology at a Glance. ...

2010-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Brookhaven Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Physics While the field of physics generally strives to find compact and universal explanations for how the components of our universe interact, chemistry is traditionally...

262

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

(or 630-252-1911 on cell phones) Safety Aspects of radiation safety at ATLAS: Health Physics Coverage at ATLAS is provided by Argonne National Laboratory. Health Physics...

263

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 12-14 September 2006 Tuesday, 12 September Room 2-160, Bldg. 510 (Physics) 0900...

264

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Directorate Nuclear and Particle Physics (NPP) at BNL comprises the Collider-Accelerator Department (including the NASA Space Radiation Laboratory,...

265

ORISE: Health physics services  

NLE Websites -- All DOE Office Websites (Extended Search)

Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas...

266

Physics at COSY  

E-Print Network (OSTI)

The COSY accelerator in J\\'ulich is presented together with its internal and external detectors. The physics programme performed recently is discussed with emphasis on strangeness physics.

H. Machner

2004-11-21T23:59:59.000Z

267

Elasticity in physics - CECM  

E-Print Network (OSTI)

Dec 24, 2003 ... Elasticity as a mathematical concept finds its origin in mechanical physics. Mechanical physics describes macroscopic features of the universe, ...

268

Radiation Physics Events  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Events. Radiation Physics Events. (showing 1 - 3 of 3). CIRMS 2012 Start Date: 10/22/2012 ...

2011-12-01T23:59:59.000Z

269

ORISE: Health physics training  

NLE Websites -- All DOE Office Websites (Extended Search)

surveys Health physics services Radiochemical analyses Health physics training How ORISE is Making a Difference Overview Environmental characterization at ORNL a...

270

Principles of Reactor Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Physics M A Smith Argonne National Laboratory Nuclear Engineering Division Phone: 630-252-9747, Email: masmith@anl.gov Abstract: Nuclear reactor physics deals with...

271

A Molecular Dynamics  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

272

A Molecular Dynamic Study  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

273

Shock and Detonation Physics at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

2012-08-22T23:59:59.000Z

274

High Energy Physics Division, ANL Lattice QCD  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum chromodynamics(QCD) de- scribes Hadrons and their strong inter- actions. Hadrons consist of quarks held together by gluons. Lattice QCD is QCD on a 4-dimensional (space-time) lattice. Allows numerical simulation of the functional integrals which define this quantum field theory, and non-perturbative QCD calculations. Physics - properties of hadrons (masses, etc.), hadronic matrix elements (HEP), hadronic matter at finite temperature and/or densities (RHIC, early universe, neutron stars). 2 Computational Methods * Functional integral is mapped to the partition function for a classical sys- tem. Molecular-dynamics methods are used to calculate the observables for this classical system.

275

NIST Quantum Physics Division Staff  

Science Conference Proceedings (OSTI)

Quantum Physics Division. Staff. Name, Position, Phone. ... Physics Laboratory. Quantum Physics Division. Thomas O'Brian, Acting Chief. ...

2013-09-10T23:59:59.000Z

276

Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams  

Science Conference Proceedings (OSTI)

Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase below 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.

Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi; Hemsing, Erik; Marcus, Gabriel; Marinelli, Agostino; Musumeci, Pietro; O'Shea, Brendan; O'Shea, Finn; Pellegrini, Claudio; Schiller, David; Travish, Gil; /UCLA; Bucksbaum, Philip; Hogan, Mark; Krejcik, Patrick; /SLAC; Ferrario, Massimo; /INFN, Rome; Full, Steven; /Penn State U.; Muggli, Patric; /Southern California U.

2012-06-22T23:59:59.000Z

277

Molecular Programming Pseudo-code Representation to Molecular Electronics  

E-Print Network (OSTI)

This research paper is proposing the idea of pseudo code representation to molecular programming used in designing molecular electronics devices. Already the schematic representation of logical gates like AND, OR, NOT etc.from molecular diodes or resonant tunneling diode are available. This paper is setting a generic pseudo code model so that various logic gates can be formulated. These molecular diodes have designed from organic molecules or Bio-molecules. Our focus is on to give a scenario of molecular computation through molecular programming. We have restricted our study to molecular rectifying diode and logic device as AND gate from organic molecules only.

Pradhan, Manas Ranjan

2010-01-01T23:59:59.000Z

278

Argonne TDC: Physical Sciences  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

279

Physics Department Safety & Training Office  

NLE Websites -- All DOE Office Websites (Extended Search)

number (631) 344-3456 and follow the automated instructions. High Energy Physics Nuclear Physics Condensed Matter Physics The Physics Safety and Training office hosts Group...

280

CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CHEMISTRY DEPARTMENT ORGANIZATION CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics Associate Laboratory Director Berndt Mueller Basic Energy Sciences (BES) Associate Laboratory Director James Misewich Financial Support Angela Wefer Department Chair Alexander L. Harris Gregory Hall, Deputy Chair Jean Petterson, Sr. Administrative Assistant Quality Assurance Rep. Charles Gortakowski *Assoc. Laser Safety Officer (Jack Preses) Berndt Mueller Training Coordinator/ Records Management (Linda Sallustio) Dept. Systems Support & Cyber Security POC Mahendra Kahanda Berndt Mueller Basic Energy Sciences (BES) Nuclear & Particle Physics Neutrino & Nuclear Chemistry Minfang Yeh Gas-Phase Molecular Dynamics Gregory Hall Electron and Photo-

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Detection of bacterial endospores by means of ultrafast coherent raman spectroscopy  

E-Print Network (OSTI)

This work is devoted to formulation and development of a laser spectroscopic technique for rapid detection of biohazards, such as Bacillus anthracis spores. Coherent anti-Stokes Raman scattering (CARS) is used as an underlying process for active retrieval of species-specific characteristics of an analyte. Vibrational modes of constituent molecules are Raman-excited by a pair of ultrashort, femtosecond laser pulses, and then probed through inelastic scattering of a third, time-delayed laser field. We first employ the already known time-resolved CARS technique. We apply it to the spectroscopy of easy-to-handle methanol-water mixtures, and then continue building our expertise on solutions of dipicolinic acid (DPA) and its salts, which happen to be marker molecules for bacterial spores. Various acquisition schemes are evaluated, and the preference is given to multi-channel frequency-resolved detection, when the whole CARS spectrum is recorded as a function of the probe pulse delay. We demonstrate a simple detection algorithm that manages to differentiate DPA solution from common interferents. We investigate experimentally the advantages and disadvantages of near-resonant probing of the excited molecular coherence, and finally observe the indicative backscattered CARS signal from DPA and NaDPA powders. The possibility of selective Raman excitation via pulse shaping of the preparation pulses is also demonstrated. The analysis of time-resolved CARS experiments on powders and B. subtilis spores, a harmless surrogate for B. anthracis, facilitates the formulation of a new approach, where we take full advantage of the multi-channel frequency-resolved acquisition and spectrally discriminate the Raman-resonant CARS signal from the background due to other instantaneous four-wave mixing (FWM) processes. Using narrowband probing, we decrease the magnitude of the nonresonant FWM, which is further suppressed by the timing of the laser pulses. The devised technique, referred to as hybrid CARS, leads to a single-shot detection of as few as 104 bacterial spores, bringing CARS spectroscopy to the forefront of potential candidates for real-time biohazard detection. It also gives promise to many other applications of CARS, hindered so far by the presence of the overwhelming nonresonant FWM background, mentioned above.

Pestov, Dmitry Sergeyevich

2008-05-01T23:59:59.000Z

282

Molecular mechanism of gas adsorption into ionic liquids: A molecular dynamics study  

Science Conference Proceedings (OSTI)

Room temperature ionic liquids (RTILs) have been shown to be versatile and tunable solvents that can be used in many chemical applications. In this study, we developed a dynamical, molecular-scale picture of the gas dissolution and interfacial processes in RTILs using molecular simulations. These simulations can provide the free energies associated with transporting a gas solute across various RTIL interfaces and physical insights into the interfacial properties and transport molecular mechanism of gas sorption processes. For CO2 sorption, the features in the potential of mean force (PMF) of CO2 using both polarizable and non-polarizable force fields are similar qualitatively. However, we observed some quantitative differences, and we describe the causes of these differences in this paper. We also show the significant impact of ionic-liquid chemical structures on the gas sorption process, and we discuss their influence on the H2O transport mechanism.

Dang, Liem X.; Chang, Tsun-Mei

2012-01-19T23:59:59.000Z

283

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

쭺-¶ 쭺-¶ Particle Physics Education Sites ¡]¥H¤U¬°¥~¤åºô¯¸¡^ quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top Introduction: The Particle Adventure - an interactive tour of particle physics for everyone: the basics of theory and experiment. Virtual Visitor Center of the Stanford Linear Accelerator Center. Guided Tour of Fermilab, - overviews of several aspects of Particle Physics. Also check out Particle Physics concepts. Probing Particles - a comprehensive and straight-forward introduction to particle physics. Big Bang Science - approaches particle physics starting from the theoretical origin of the universe.

284

Soft Molecular Computing Computer Science  

E-Print Network (OSTI)

Soft Molecular Computing Max Garzon Computer Science The University of Memphis Memphis, TN 38152@memphis.edu Abstract Molecular computing (MC) utilizes the complex interaction of biomolecules and molecular biology for computational purposes. Five years later, substantial obstacles remain to bring the potential of molecular

Deaton, Russell J.

285

Giant Molecular Magnetocapacitance  

Science Conference Proceedings (OSTI)

Capacitance of a nanoscale system is usually thought of having two contributions, a classical electrostatic contribution and a quantum contribution dependent on the density of states and/or molecular orbitals close to the Fermi energy. In this letter we demonstrate that in molecular nano-magnets and other magnetic nanoscale systems, the quantum part of the capacitance becomes spin-dependent, and is tunable by an external magnetic field. This molecular magnetocapacitance can be realized using single molecule nano-magnets and/or other nano-structures that have antiferromagnetic ground states. As a proof of principle, first-principles calculation of the nano-magnet [Mn3O(sao)3(O2CMe)(H2O)(py)3] shows that the charging energy of the high-spin state is 260 meV lower than that of the low-spin state, yielding a 6% difference in capacitance. A magnetic field of ~40T can switch the spin state, thus changing the molecular capacitance. A smaller switching field may be achieved using nanostructures with a larger moment. Molecular magnetocapacitance may lead to revolutionary device designs, e.g., by exploiting the Coulomb blockade magnetoresistance whereby a small change in capacitance can lead to a huge change in resistance.

Wu, Yuning [University of Florida, Gainesville; Zhang, Xiaoguang [ORNL; Cheng, Hai-Ping [University of Florida

2013-01-01T23:59:59.000Z

286

People's Physics Book The People's Physics Book  

E-Print Network (OSTI)

People's Physics Book The People's Physics Book Authors James H. Dann, Ph.D. James J. Dann Book "Give me matter and motion, and I will construct the universe." ­ Rene Descartes (1640) "One ought) Dedication of the book is to two physicists who gave us particular inspiration. Their contributions

California at Santa Cruz, University of

287

Hydrogen bond rearrangements and the motion of charge defects in water viewed using multidimensional ultrafast infrared spectroscopy  

E-Print Network (OSTI)

Compared with other molecular liquids, water is highly structured due to its ability to form up to four hydrogen bonds to its nearest neighbors, resulting in a tetrahedral network of molecules. However, this network is ...

Roberts, Sean T. (Sean Thomas)

2010-01-01T23:59:59.000Z

288

Physical Biosciences | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Physical Biosciences Physical Biosciences Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Physical Biosciences Print Text Size: A A A RSS Feeds FeedbackShare Page This research area combines experimental and computational tools from the physical sciences with biochemistry and molecular biology. A fundamental understanding of the complex processes that convert and store energy in living systems is sought. Research supported includes studies that investigate the mechanisms by which energy transduction systems are assembled and maintained, the processes that regulate energy-relevant

289

Molecular Dynamics Simulations of Microscale Fluid Transport  

E-Print Network (OSTI)

Recent advances in micro-science and technology, like Micro-ElectroMechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these nonequilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and address both scaling and modeling issues...

C. C. Wong; A. R. Lopez; M.J. Stevens; S. J. Plimpton; Category Uc; Like Micro-electro

1998-01-01T23:59:59.000Z

290

Substructured multibody molecular dynamics.  

SciTech Connect

We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

2006-11-01T23:59:59.000Z

291

Physics | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics ORNL Physics More Science Home | Science & Discovery | More Science | Physics SHARE Physics Bottom view of the 25 million volt tandem electrostatic accelerator of the Holifield Heavy Ion Research Facility. Physics researchers at ORNL seek to answer fascinating questions about our Universe: What are the nuclear reactions that drive stellar explosions? How does nuclear matter organize itself? What are the properties of nuclear interactions? Why is there more matter than antimatter in the universe? Is the neutrino its own antiparticle? What are the properties of matter that existed just after the Big Bang? Our research staff address these questions by developing experimental techniques and detector systems, performing experiments at national and

292

Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic (AFM)/ferroelectric (FE) and ferromagnetic (FM) orders in multiferroic TbMnO3 films, which can guide researchers in creating new kinds of multiferroic materials.  

Science Conference Proceedings (OSTI)

Multiferroic materials have attracted much interest in the past decade, due not only to their novel device applications, but also their manifestations of coupling and interactions between different order parameters (particularly electric polarization and magnetic order). Recently, much attention has been focused on perovskite manganites, RMnO{sub 3} (R = rare earth ions), due to the discovery of a large magnetoelectric effect in these materials. The first member of this family to be discovered was TbMnO{sub 3} (TMO), which is now well established as a typical magnetoelectric multiferroic. Extensive experimental and theoretical studies have already been done on single crystal TMO (SC-TMO). In brief, SC-TMO, with a distorted orthorhombic perovskite structure, has an antiferromagnetic (AFM) phase transition at T{sub N} {approx}40 K with sinusoidally ordered Mn moments. Below T{sub FE} {approx} 28 K, ferroelectric (FE) order develops owing to the appearance of cycloidal spiral spin structure. In contrast, there are relatively few reports describing the properties of TMO thin films (typically grown on SrTiO{sub 3} (STO) substrates). In general, thin films can enable new functionality in materials, as their physical parameters can be changed by modifying their structure via strain imposed by the substrate. Strain in particular has the potential to directly couple FE and FM orders, which is very rare. This could benefit electronic device applications by providing low power consumption, high speed operation, and greater electric/magnetic field controllability. Previous investigations of magnetic properties in TMO films revealed an unexpected ferromagnetic (FM) order, in contrast to SC-TMO. However, several important questions regarding these films are still unanswered for instance: (1) What mechanism induces FM order? (2) Can FM, sinusoidal AFM and spiral AFM (or FE) orders coexist? (3) Can FM order be coupled to FE order? To fully understand these unique materials, experimental techniques capable of dynamically unraveling the interplay between these degrees of freedom on an ultrafast timescale are needed. Here, we use ultrafast optical pump-probe spectroscopy to reveal coexisting coupled magnetic orders in epitaxial TMO thin films grown on (001)-STO, which were not observed in previous work. Our temperature (T)-dependent transient differential reflectivity ({Delta}R/R) measurements show clear signatures of sinusoidal AFM, spiral AFM (FE) and FM phases developing as the film thickness changes. We carry out first-principle density functional theory (DFT) calculations to explain the coupling between AFM/FE and FM orders. These results reveal that the coupling between different magnetic orders observed in our multiferroic TMO thin films may offer greater control of functionality as compared to bulk single crystal multiferroics.

Qi, Jingbo [Los Alamos National Laboratory; Zhu, Jianxin [Los Alamos National Laboratory; Trugman, Stuart A. [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory; Prasankumar, Rohit [Los Alamos National Laboratory

2012-07-06T23:59:59.000Z

293

Molecular gas and star formation in M81  

E-Print Network (OSTI)

We present IRAM 30m observations of the central 1.6 kpc of the spiral M81 galaxy. The molecular gas appears weak and with an unusual excitation physics. We discuss a possible link between low CO emission and weak FUV surface brightness.

Casasola, V; Galletta, G; Bettoni, D

2007-01-01T23:59:59.000Z

294

Molecular gas and star formation in M81  

E-Print Network (OSTI)

We present IRAM 30m observations of the central 1.6 kpc of the spiral M81 galaxy. The molecular gas appears weak and with an unusual excitation physics. We discuss a possible link between low CO emission and weak FUV surface brightness.

V. Casasola; F. Combes; G. Galletta; D. Bettoni

2007-06-26T23:59:59.000Z

295

Time optimization and state-dependent constraints in the quantum optimal control of molecular orientation  

E-Print Network (OSTI)

We apply two recent generalizations of monotonically convergent optimization algorithms to the control of molecular orientation by laser fields. We show how to minimize the control duration by a step-wise optimization and maximize the field-free molecular orientation using state-dependent constraints. We discuss the physical relevance of the different results.

M. Ndong; C. Koch; D. Sugny

2013-08-03T23:59:59.000Z

296

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Chemistry, Adjunct Asst. Professor, Department of Physics, University of Utah, Tuesday, July 27th at 1:30 pm, Bldg. 67-Room 3111 Abstract: The strikingly colorful...

297

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

8-9 May 2008 Thursday, 8 May Room 2-160, Bldg. 510 (Physics) 0830 Executive Session Large Seminar Room, Bldg. 510 (Physics) (talk+questions) 0900 PHENIX FY09 Beam Use Proposal and...

298

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

29-30 March 2007 Thursday, 29 March Room 2-160, Bldg. 510 (Physics) 0900 Executive Session Large Seminar Room, Bldg. 510 (Physics) (talk+questions) 0930 R20 Search for Magnetic...

299

Modeling from Physical Principles  

E-Print Network (OSTI)

This article, on the other hand, shall concentrate on issues relating to modeling the physical plant to be controlled. Modeling physical systems seems to be a straightforward task. Since physical systems and experiments are often reproducible in a reliable fashion, since measurements from physical systems are frequently available in abundance and of high quality, since the meta--laws of physics are mostly well understood, it seems to be a particularly easy task to come up with accurate mathematical descriptions of most physical plants. Yet, there are some typical pitfalls and frequent misconceptions about the modeling of physical systems, especially among control engineers. These shall be illustrated, and a sound methodological basis for modeling from physical principles shall then be created. 2 Common Misconceptions

François E. Cellier; Hilding Elmqvist; Martin Otter

1996-01-01T23:59:59.000Z

300

Probing new physics with flavor physics (and probing flavor physics with new physics)  

E-Print Network (OSTI)

This is a written version of a series of lectures aimed at graduate students and postdoctoral fellows in particle theory/string theory/particle experiment familiar with the basics of the Standard Model. We begin with an overview of flavor physics and its implications for new physics. We emphasize the "new physics flavor puzzle". Then, we give four specific examples of flavor measurements and the lessons that have been (or can be) drawn from them: (i) Charm physics: lessons for supersymmetry from the upper bound on $\\Delta m_D$. (ii) Bottom physics: model independent lessons on the KM mechanism and on new physics in neutral B mixing from $S_{\\psi K_S}$. (iii) Top physics and beyond: testing minimal flavor violation at the LHC. (iv) Neutrino physics: interpreting the data on neutrino masses and mixing within flavor models.

Yosef Nir

2007-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Physics Flash Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Links Jobs in Physics Human Resources Working at Los Alamos Los Alamos resources To read past issues, please see the: 2012 archive page 2011 archive page September 2013 |...

302

Precision Electroweak Physics  

Science Conference Proceedings (OSTI)

The status in electroweak precision physics is reviewed. I present a brief summary of the latest data, global fit results, a few implications for new physics, and an outlook.

Erler, Jens [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico)

2006-09-25T23:59:59.000Z

303

Introduction to Neutrino Physics  

SciTech Connect

I present a basic introduction to the physics of the neutrino, with emphasis on experimental results and developments.

Linares, Edgar Casimiro [Division de Ciencias e Ingenierias Campus Leon, Loma del Bosque 103 Col. Lomas del Campestre, C.P. 37150 Leon (Mexico) and Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Av. Complutense, 22, C.P. 28040, Madrid (Spain)

2009-04-30T23:59:59.000Z

304

NIST: Physics Laboratory Brochure  

Science Conference Proceedings (OSTI)

... measurement methods for determining the structure and function of biological systems, and exploring the mysteries of quantum physics - who are ...

305

Quantum Physics Einstein's Gravity  

E-Print Network (OSTI)

Quantum Physics confronts Einstein's Gravity Matt Visser Physics Department Washington University Saint Louis USA Science Saturdays 13 October 2001 #12; Quantum Physics confronts Einstein's Gravity and with Einstein's theory of gravity (the general relativity) is still the single biggest theoretical problem

Visser, Matt

306

Whither Nuclear Physics ?  

E-Print Network (OSTI)

Nuclear Physics has had its ups and downs. However in recent years, bucked up by some new and often puzzling data, it has become a potentially very rich field. We review some of these exciting developments in a few important sectors of nuclear physics. Emphasis shall be on the study of exotic nuclei and the new physics that these nuclei are teaching us.

Syed Afsar Abbas

2008-01-07T23:59:59.000Z

307

Physics Department Alumni Reunion  

E-Print Network (OSTI)

Physics Department Alumni Reunion September 21-22, 2012 Collegeof Communication (COM) MetcalfScienceCenter (SCI) MetcalfPlaza CommonwealthAvenue PhysicsResearch Building LifeScienceand Engineering Beacon Barabasi (PhD 1994) Distinguished University Professor of Physics, Northeastern University Taming

308

Charm physics: theoretical review  

E-Print Network (OSTI)

We review recent developments in charm physics, focusing on the physics of charmed mesons. We discuss charm spectroscopy, decay constants, as well as searches for new physics with charmed mesons. We discuss D0-anti-D0 mixing and CP-violation in charm decays. We also present the modified Nelson plot of charm mixing predictions.

Alexey A. Petrov

2003-11-28T23:59:59.000Z

309

Nuclear Physics with trapped  

E-Print Network (OSTI)

Nuclear Physics with trapped atoms and ions #12;2/2/2013Dan Melconian #12;2/2/2013Dan Melconian Outline · Scope and applications of nuclear physics precision frontier compliments LHC properties and aquifers in the Sahara #12;2/2/2013Dan Melconian What is Nuclear Physics? · Began with the study

Boas, Harold P.

310

Control physical models  

Science Conference Proceedings (OSTI)

This paper describes design of model physical model of rectification column. Physical model is appointed as a demonstration system control for distillation by means of control system SIMATIC PCS7 from company SIEMENS. The SIMATIC PCS7 Process control ... Keywords: description, distillation, physical model, process control system

Tomáš Dvo?ák; Jan Bílek

2005-03-01T23:59:59.000Z

311

Molecular Pathogenesis of MALT lymphoma  

E-Print Network (OSTI)

underlying the pathogenesis of MALT lymphoma………………………………………………………. 193 7.2.1 Aberrant molecular mechanisms of translocation positive MALT lymphoma……………………………………..………………..…. 194 7.2.2 Aberrant molecular mechanism of translocation negative MALT...

Hamoudi, Rifat A

2010-01-01T23:59:59.000Z

312

Molecular dynamics simulations and drug discovery  

E-Print Network (OSTI)

JE: On the determination of molecular fields. II. From thescalability for parallel molecular dynamics. J Comput PhysKale L, Schulten K: Scalable molecular dynamics with NAMD. J

Durrant, Jacob D; McCammon, J Andrew

2011-01-01T23:59:59.000Z

313

Molecular Gas in Early-type Galaxies  

E-Print Network (OSTI)

toward the center (first seen in the molecular gas in A+The EVLA . . . . . . . . . . . . . . . . 3.3 Molecular LineProfile . . . . . . . . . . . . . . 3.4 Molecular Gas

Alatalo, Katherine Anne

2012-01-01T23:59:59.000Z

314

PIA - Environmental Molecular Sciences Laboratory (EMSL) User...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory...

315

MSD Molecular Materials - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Molecular Materials Molecular Materials Group carries out synthesis and characterization of novel materials whose unique properties originate at the molecular level. Our...

316

Molecular regulators of neurogenesis in Alzheimer's disease  

E-Print Network (OSTI)

and Pike, C. (1993). Molecular cascades in adaptive versusA. , and Saitoh, T. (1997). Molecular mechanisms of synapticBroeckhoven, C. (1998). Molecular genetics of Alzheimer's

Crews, Leslie Anne

2010-01-01T23:59:59.000Z

317

Molecular Biophysics Trainees are supported through the  

E-Print Network (OSTI)

Molecular Biophysics Trainees are supported through the College of Sciences at GeorgiaTech Research StudentsintheMolecularBiophysicstraining programmayconductthesisresearchwithany ofthefacultymemberslistedinthisbrochure. Studentsreceiveastipendsupplementfrom theprogram. InterestedingraduatestudyinMolecular Biophysics

Bennett, Gisele

318

Connecting the Molecular and the Continuum Scales  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecting the Molecular and the Continuum Scales Connecting the Molecular and the Continuum Scales Key Challenges: A molecular-scale understanding of structure and surface...

319

NEWTON's Molecular Biology References  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology References Molecular Biology References Do you have a great reference link? Please click our Ideas page. Featured Reference Links: The Vitual Museum of Bacteria The Vitual Museum of Bacteria Visit the virtual museum of bacteria to learn more about bacteria and germs! This site brings together many links on bacteria, bacteriology, and related topics available on the web. It also provides crystal-clear information about many aspects of bacteria. The American Society of Cell Biology Cell Biology Educational Resources This site, sponsered by the American Society of Cell Biology, provides additional web links to everything from, general educational sites, to biology course materials, to teaching tools and more. National Center for Biotechnology Information National Center for Biotechnology Information

320

Towards Molecular Programming Masami Hagiya  

E-Print Network (OSTI)

Towards Molecular Programming Masami Hagiya JST CREST and Department of Computer Science, Graduate research in the field of DNA and molecular computing by summarizing a recent international confer- ence and biotechnology, and the principles and methods for designing molecular systems with information

Hagiya, Masami

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Molecular Implementation of Combinatory Computing  

E-Print Network (OSTI)

Molecular Implementation of Combinatory Computing for Nanostructure Synthesis and Control: Progress Molecular combinatory computing makes use of a small set of chemical re- actions that together have by several simulated nano-assembly applications, and discuss a possible molecular implementation in terms

MacLennan, Bruce

322

The molecular evolution of development  

E-Print Network (OSTI)

The molecular evolution of development Michael D. Purugganan Summary Morphological differences in understanding the genetic basis behind the evolution of developmental systems. Molecular evolutionary genetics-day attempts to study the evolution of development are centered at the molecular level and exploit

Purugganan, Michael D.

323

Technical Highlights Atomic Physics Division  

Science Conference Proceedings (OSTI)

... Physics Division is to develop and apply atomic physics research methods ... community, and to produce and critically compile physical reference data ...

2013-06-04T23:59:59.000Z

324

NIST Atomic Physics Division - 2002  

Science Conference Proceedings (OSTI)

... produce and critically compile physical reference data ... matter physics, solid-state physics, quantum field ... coefficient that exceeds the classical limit ...

325

Committee on Atomic, Molecular, and Optical Sciences (CAMOS)  

Science Conference Proceedings (OSTI)

The Committee on Atomic, Molecular, and Optical Sciences is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences -- National Research Council. The atomic, molecular, and optical (AMO) sciences represent a broad and diverse field in which much of the research is carried out by small groups. These groups generally have not operated in concert with each other and, prior to the establishment of CAMOS, there was no single committee or organization that accepted the responsibility of monitoring the continuing development and assessing the general public health of the field as a whole. CAMOS has accepted this responsibility and currently provides a focus for the AMO community that is unique and essential. The membership of CAMOS is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include atomic physics, molecular science, and optics. A special effort has been made to include a balanced representation from the three subfields. (A roster is attached.) CAMOS has conducted a number of studies related to the health of atomic and molecular science and is well prepared to response to requests for studies on specific issues. This report brief reviews the committee work of progress.

Not Available

1992-01-01T23:59:59.000Z

326

ORISE: Health physics services  

NLE Websites -- All DOE Office Websites (Extended Search)

Health physics services Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning (D&D) projects across the United States. Our health physics services include: Environmental survey Applied health physics projects We work with government agencies and organizations to identify, measure and assess the presence of radiological materials during the D&D process. ORISE

327

Ultrafast neutron detector  

DOE Patents (OSTI)

A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

Wang, C.L.

1985-06-19T23:59:59.000Z

328

Ultrafast neutron detector  

DOE Patents (OSTI)

The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

Wang, Ching L. (Livermore, CA)

1987-01-01T23:59:59.000Z

329

physics_fest_map  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics Fest in CEBAF Center * The Physics Fest runs from 10:00 AM to 12:00 noon * Buses drop-off and pick-up students in the CEBAF Center circle * Buses remaining on-site will be directed to parking areas by Jefferson Lab security * Private vehicles may park in any non-reserved/non-restricted space in any of the regular parking lots * The CEBAF Center receptionist can be reached at (757) 269-7100

330

Symmetries in physics  

E-Print Network (OSTI)

The concept of symmetries in physics is briefly reviewed. In the first part of these lecture notes, some of the basic mathematical tools needed for the understanding of symmetries in nature are presented, namely group theory, Lie groups and Lie algebras, and Noether's theorem. In the second part, some applications of symmetries in physics are discussed, ranging from isospin and flavor symmetry to more recent developments involving the interacting boson model and its extension to supersymmetries in nuclear physics.

Roelof Bijker

2005-09-02T23:59:59.000Z

331

Physically based virtual painting  

Science Conference Proceedings (OSTI)

Tapping the compelling illusion of physical interaction with paints, brushes, surfaces, color, and light, users express the nuances of their visual and emotional imaginations.

Ming Lin; William Baxter; Vincent Scheib; Jeremy Wendt

2004-08-01T23:59:59.000Z

332

NIST Physical Reference Data  

Science Conference Proceedings (OSTI)

... Nuclear Physics Data. ... database consists of evaluated data for use in total-energy calculations of electronic structure by density-functional theory. ...

2013-06-05T23:59:59.000Z

333

Internships for Physics Majors  

Energy.gov (U.S. Department of Energy (DOE))

Fermilab's IPM program offers ten-week summer internships to outstanding undergraduate physics majors. This program has been developed to familiarize students with opportunities at the frontiers of...

334

Physics Out Loud - Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Previous Video (Neutron) Physics Out Loud Main Index Next Video (Nucleus) Nucleus Niobium The element niobium is often used as a superconductor. Watch as Jefferson Lab...

335

Physics Out Loud - Nucleus  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Previous Video (Niobium) Physics Out Loud Main Index Next Video (Particle Accelerator) Particle Accelerator Nucleus Elena Long, A graduate student at Kent State University,...

336

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Untitled Document Argonne Logo DOE Logo High Energy Physics Division Home Division ES&H Personnel Publications HEP Awards HEP Computing HEP Committees Administration...

337

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

about 4 times better than can be achieved in conventional Si detector arrangements. Physics justification: The main focus of the HELIOS research program is the study of...

338

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Operations personnel, and to various experimental instrument specialists in the Physics Division. The PAC members will review each proposal for scientific merit and...

339

Project X Physics Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

4th Workshop on Physics with a high intensity proton source, November 9-10 (Monday-Tuesday), 2009 Fermilab Home | Fermilab at Work | Fermilab Directorate Home Registration...

340

Physics Out Loud - Gluons  

NLE Websites -- All DOE Office Websites (Extended Search)

Elementary Particles Previous Video (Elementary Particles) Physics Out Loud Main Index Next Video (Hadron) Hadron Gluons Elena Long, A graduate student at Kent State University,...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

LHC Discovers New Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

The newest particle physics instruments for the energy frontier are CERN's Large hadron Collider and its detectors. Physicists look for new science by looking for the...

342

Nuclear Physics Links  

NLE Websites -- All DOE Office Websites (Extended Search)

To Other Interesting Educational Pages Fusion in the Sun Other Berkeley Lab Nuclear Physics Web Pages Table of Isotopes Animated Glossary Viewing the Periodic Table of Elements...

343

Physics Out Loud - Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter Previous Video (Matter) Physics Out Loud Main Index Next Video (Niobium) Niobium Neutron Karl Slifer, a physicist based at the University of New Hampshire and who conducts...

344

Physics Out Loud - Cryomodule  

NLE Websites -- All DOE Office Websites (Extended Search)

Cross Section Previous Video (Cross Section) Physics Out Loud Main Index Next Video (Detector) Detector Cryomodule Charlie Reece, an accelerator technology scientist, reveals the...

345

Physics Out Loud - Proton  

NLE Websites -- All DOE Office Websites (Extended Search)

Photomultiplier Tube Previous Video (Photomultiplier Tube) Physics Out Loud Main Index Next Video (Quantum Chromodynamics (QCD)) Quantum Chromodynamics (QCD) Proton Learn about the...

346

Brookhaven Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Nuclear Physics Historically, nuclear physicists have studied the structure, characteristics, and behavior of the atomic nucleus and the nature of the nuclear force....

347

Physics Out Loud - Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Previous Video (Laser) Physics Out Loud Main Index Next Video (Neutron) Neutron Matter David Lawrence, a Jefferson Lab physicist, discusses matter...

348

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

at RHIC or the AGS should be submitted to the Associate Laboratory Director for Nuclear and Particle Physics, presently Steve Vigdor, Bldg. 510F, Brookhaven National...

349

Physics Out Loud  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab scientists and other experts explain some of the common words and terms used in nuclear physics research. Baryon Baryon Cerenkov Light Cerenkov Light Cross Section Cross...

350

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Agenda Presentations Reference Materials Participants Organizing Committee Logistics Nuclear Physics (NP) Overview Published Reports Case Study FAQs NERSC HPC Achievement Awards...

351

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting June 15-16, 2009 Agenda Reference Documents Letter to Barbara Jacak and Nu Xu (129...

352

Physics Out Loud - Baryon  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facility Previous Video (User Facility) Physics Out Loud Main Index Next Video (Cerenkov Light) Cerenkov Light Baryon David Lawrence, a physicist, describes the class of...

353

Physics Out Loud - Detector  

NLE Websites -- All DOE Office Websites (Extended Search)

Cryomodule Previous Video (Cryomodule) Physics Out Loud Main Index Next Video (Electromagnetic Force) Electromagnetic Force Detector Elena Long, a graduate student at Kent State...

354

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 7-8 June 2012 Agenda Related Documents: PHENIX Beam Use Proposal, STAR Beam Use...

355

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

...T. Kirk 10:15 am Coffee Break 10:30 am Physics Department Overview (see note above)...S. Aronson 11:00 am...

356

Review of Particle Physics  

E-Print Network (OSTI)

Studies for Nuclear Physics CEBAF Je?erson Lab—Thomas Je?by CLAS and PrimEx at CEBAF, and by PANDA at GSI. Recently,

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

357

Physics Out Loud - Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Scattering Previous Video (Electron Scattering) Physics Out Loud Main Index Next Video (Elementary Particles) Elementary Particles Electrons David Lawrence, a physicist,...

358

Nuclear Physics from QCD  

E-Print Network (OSTI)

Effective field theories provide a bridge between QCD and nuclear physics. I discuss light nuclei from this perspective, emphasizing the role of fine-tuning.

U. van Kolck

2008-12-20T23:59:59.000Z

359

Degeneracy in physics - CECM  

E-Print Network (OSTI)

Dec 24, 2003 ... Degeneracy in physics. In simple terms, it is understood that a statistical system at equilibrium tends towards its most probable state.

360

Physical Characteristics of Children  

Science Conference Proceedings (OSTI)

... rigid platform constructed of a light weight aluminum ... Physical Growth of Alabama White Girls Attending ... Society of Mechanical Engineers, Paper no. ...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New Journal of Physics  

Science Conference Proceedings (OSTI)

... 4, Janus H Wesenberg2 and Dietrich Leibfried3 1 Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland 2 ...

2012-03-05T23:59:59.000Z

362

COURSE NOTES: Physical Metallurgy  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Citation: Bhadeshia, H.K.D.H., "Physical Metallurgy." Department of Materials Science and Metallurgy. 2006. University of Cambridge.

363

Physics of Complex Plasmas.  

E-Print Network (OSTI)

??Physics of complex plasmas is a wide and varied field. In the context of this PhD thesis I present the major results from my research… (more)

Sütterlin, Robert

2010-01-01T23:59:59.000Z

364

Physics Out Loud - Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Previous Video (Hybrid Meson) Physics Out Loud Main Index Next Video (Matter) Matter Laser Learn all about different types of lasers with Jefferson Lab's Michelle Shinn, a...

365

CHEMISTRY 213B: Introductory Physical Chemistry I. General Information  

E-Print Network (OSTI)

and applications 9.4 Lecture 21. Chemical equilibrium 11 February 25 - March 1: STUDY BREAK Lecture 22. Chemical Chemistry. Supplementary Texts 1. P. A. Rock, Chemical Thermodynamics. 2. Gordon M. Barrow, Physical of gases 2 Lecture 3. Empirical properties of liquids and solids 5 Lecture 4. Molecular basis: Kinetic

Ronis, David M.

366

Molecular conformations, interactions, and properties associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors Molecular conformations, interactions, and...

367

Molecular quantum mechanical observers, symmetry, and string theory  

E-Print Network (OSTI)

The paper \\cite{Dance0601} tentatively suggested a physical picture that might underlie string theories. The string parameters $\\tau $ and $\\sigma_i $ were interpreted as spacetime dimensions which a simple quantum mechanical observer can observe, while symmetries of the relevant observer states could limit the observability of other dimensions. An atomic observer was the focus of the discussion. The present paper extends the discussion of\\cite{Dance0601} to molecular observers, including the nature of some common molecular bonds and their symmetries.

M. Dance

2010-11-29T23:59:59.000Z

368

Physical Metallurgy and Alloy Development  

Science Conference Proceedings (OSTI)

FORUMS > PHYSICAL METALLURGY AND ALLOY DEVELOPMENT ... A TMS Knowledge Packet on the Physical Metallurgy of Solders and Solder Interfaces

369

A combined reaction class approach with integrated molecular orbital+molecular orbital (IMOMO) methodology: A practical tool for kinetic modeling  

SciTech Connect

We present a new practical computational methodology for predicting thermal rate constants of reactions involving large molecules or a large number of elementary reactions in the same class. This methodology combines the integrated molecular orbital+molecular orbital (IMOMO) approach with our recently proposed reaction class models for tunneling. With the new methodology, we show that it is possible to significantly reduce the computational cost by several orders of magnitude while compromising the accuracy in the predicted rate constants by less than 40% over a wide range of temperatures. Another important result is that the computational cost increases only slightly as the system size increases. (c) 2000 American Institute of Physics.

Truong, Thanh N. [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States); Maity, Dilip K. [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States); Truong, Thanh-Thai T. [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States)

2000-01-01T23:59:59.000Z

370

Physics at TESLA  

E-Print Network (OSTI)

The physics at a 500-800 GeV electron positron linear collider, TESLA, is reviewed. The machine parameters that impact directly on the physics are discussed and a few key performance goals for a detector at TESLA are given. Emphasis is placed on precision measurements in the Higgs and top sectors and on extrapolation to high energy scales in the supersymmetric scenario.

Grahame A. Blair

2001-04-25T23:59:59.000Z

371

Noncommutative Two Time Physics  

E-Print Network (OSTI)

We present a classical formalism describing two-time physics with Abelian canonical gauge field backgrounds. The formalism can be used as a starting point for the construction of an interacting quantized two-time physics theory in a noncommutative soace-time.

W. Chagas-Filho

2006-04-03T23:59:59.000Z

372

Hadronic Physics: an Outlook  

Science Conference Proceedings (OSTI)

A brief outlook, in two senses, is presented for hadronic physics. The likely near term future for experiment and lattice effort is sketched and I speculate on future directions in theory. I also look out at other fields, presenting a short review of QCD ideas in ''Beyond the Standard Model'' physics.

Swanson, Eric S. [Dept of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA 15260 (United States)

2010-08-05T23:59:59.000Z

373

Physics of Binary Information  

E-Print Network (OSTI)

Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

Walter Smilga

2005-05-05T23:59:59.000Z

374

LANL | Physics | LDRD  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation in experimental physical sciences Innovation in experimental physical sciences The Laboratory Directed Research and Development Program is the premier source of internally directed research and development funding at Los Alamos National Laboratory. Physics Division, as the major source of innovation in experimental physical science at Los Alamos, actively competes in most of the Directed Research Grand Challenges and the Exploratory Research categories. We have research in the Grand Challenges of Beyond The Standard Model, Complex Biological Systems, Information Science and Technology, Nuclear Performance, and Sensing and Measurement Science for Global Security. We are also funded to do research in the categories of Biological, Biochemical, and Cognitive Sciences, Computational Physics, Applied math and Knowledge Sciences,

375

UNIRIB: Physics Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Topics Physics Topics Research Capitalizing on the strengths of nine collaborating research universities and the world-class equipment available at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL), the University Radioactive Ion Beam (UNIRIB) consortium is conducting research at the forefront of nuclear physics. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), brings together researchers from around the world to study the short-lived, exotic nuclei that are involved in astrophysical processes. UNIRIB researchers participate in many of the nuclear physics experiments carried out at HRIBF. UNIRIB researchers are presently leading the following physics topics. To view these files, you will need the Adobe Reader, which is available free

376

Assessment of Molecular Modeling & Simulation  

Science Conference Proceedings (OSTI)

This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

None

2002-01-03T23:59:59.000Z

377

SC e-journals, Physics  

Office of Scientific and Technical Information (OSTI)

Physics Physics ACS Nano Acta Materialia Adsorption Advanced Composite Materials Advances in Condensed Matter Physics - OAJ Advances in Acoustics and Vibration - OAJ Advances in High Energy Physics - OAJ Advances in Materials Science and Engineering - OAJ Advances in Mathematical Physics - OAJ Advances in Optical Technologies - OAJ Advances in Optics and Photonics Advances in Tribology - OAJ American Journal of Physics, The Annalen der Physik Annales Henri Poincare Annals of Global Analysis and Geometry Annals of Nuclear Energy Annals of Physics Annual Review of Biophysics Annual Review of Fluid Mechanics Annual Review of Nuclear and Particle Science Annual Review of Physical Chemistry Applied Optics Applied Physics A Applied Physics Letters Applied Psychophysiology and Biofeedback

378

Physics Division: Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Division Physics home Physics Division Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...

379

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

understand complex chemical systems at the molecular level by coupling the power of advanced computational chemistry techniques with existing and rapidly evolving...

380

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Chinook Supercomputer MSC User Policies Molecular Science Software Suite Graphics and Visualization Lab MSC Information MSC Research Meet the MSC Staff Related EMSL...

382

LAMMPS Molecular Dynamics Simulator - TMS  

Science Conference Proceedings (OSTI)

Nov 8, 2007 ... LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, ...

383

Theoretical Physics Division annual report, January--December 1975. Volume 1  

DOE Green Energy (OSTI)

Discussions of theoretical work during this period are reported for the following general areas: (1) atomic, molecular, and nuclear physics, (2) laser fusion, propagation, and effects, (3) pulsed power and plasma physics, (4) energy and the environment, and (5) related research. (MOW)

Wainwright, T.; Tarter, B.

1976-01-20T23:59:59.000Z

384

First 2D Pictures of a 'Frequency Comb' Transform It into a ...  

Science Conference Proceedings (OSTI)

... of molecular iodine, each taken under different experimental conditions using a NIST frequency brush created with an ultrafast visible laser. ...

2010-10-05T23:59:59.000Z

385

Physics 142 Lab Syllabus Physics 142 -Spring 2008 Laboratory Schedule  

E-Print Network (OSTI)

Materials 1. Physics 142 Laboratory Manual, Spring 2008, distributed by the University Bookstore, City of Physics 141. Electricity, magnetism, optics, relativity, atomic and nuclear physics. Lab fee required for basic physics concepts in electricity and magnetism, optics, atomic physics, and radiation. 3. Develop

Farritor, Shane

386

Molecular beam kinetics  

SciTech Connect

The design of a crossed molecular beam ''supermachine'' for neutral-- neutral collisions is discussed. The universal electron bombardment ionizer, mass filter, and ion detection system of the detector, the supersonic nozzle sources, the differential pumping arrangement for the sources and detector, the time-of-flight detection of scattered products, and the overall configuration of the apparatus are described. The elastic scattering of two systems, CH$sub 4$ + Ar and NH$sub 3$ + Ar, has been measured using the supermachine with two supersonic nozzle sources. The rainbow structure and the interference oscillations are seen in each system. The best fit to the data was found using a Morse--Spline--Van der Waals (MSV) potential. The three potential parameters epsilon, r/sub m/, and $beta$ were found to be 2.20(+-0.04) x 10$sup -14$ ergs, 3.82(+-0.04)A, and 7.05 +- 0.20 for CH$sub 4$ + Ar, and 2.21(+-0.04) x 10$sup - 14$ ergs 3.93 (+-0.05)A, and 8.45 +- 0.30 for NH$sub 3$ + Ar. A new phenomenon in crossed molecular beams of condensation of a molecule on a cluster to form a complex was observed. A bromine molecule condensed on clusters of chlorine (Cl$sub 2$)/sub chi/ and ammonia (NH$sub 3$)/sub chi/. The value of chi for measurements in these experiments ranges from 7 to 40 for chlorine clusters and from 10 to 70 ammonia clusters. (auth)

Behrens, R. Jr.

1975-11-01T23:59:59.000Z

387

LANL | Physics | Quantum Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Breakthrough quantum information Breakthrough quantum information science and technology Physics Division's quantum information science and technology capability supports present and future Laboratory missions in cyber-security, sensing, nonproliferation, information science, and materials. Collaborating with researchers throughout Los Alamos and leading institutions in the nation, Physics Division scientists are involved in projects in quantum communications, including quantum key distribution and quantum-enabled security and networking, and in quantum cold-atom physics. Recent fundamental science results include the ability to "paint" potentials that can trap Bose-Einstein condensates into geometric forms, such as the toroidal ring of clusters, the density of which is measured in

388

Top Physics at CDF  

Science Conference Proceedings (OSTI)

We present the recent results of top-quark physics using up to 6 fb{sup -1} of p{bar p} collisions at a center of mass energy of {radical}s = 1.96 TeV analyzed by the CDF collaboration. Thanks to this large data sample, precision top quark measurements are now a reality at the Tevatron. Further, several new physics signals could appear in this large dataset. We will present the latest measurements of top quark intrinsic properties as well as direct searches for new physics in the top sector.

Moon, Chang-Seong

2011-06-01T23:59:59.000Z

389

Los Alamos Lab: Los Alamos Molecular Recognition Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Molecular Recognition Alliance: LAMRA Los Alamos Molecular Recognition Alliance: LAMRA Home About Us Partner Divisions Bioscience Division Chemistry Division International and Applied Technology Materials Physics Applications Division Theoretical Division Researchers Customize Affinity Reagents to Recognize Diseases and Biothreat Agents Novel affinity reagents are essential in the chemical and biological detection that is at the heart of the Los Alamos National Laboratory's mission in threat reduction, as well as being at the interface between many fundamental and applied Los Alamos research programs. Affinity reagent technologies at LANL are among the most advanced worldwide, with a wide range of different technologies focused on molecular recognition and the generation of affinity reagents both developed and under development. These include different affinity reagents (antibodies, fluorescent proteins, peptides, peptoids, carbohydrates, and oligonucleotides), and different selection and screening systems.

390

LHC Physics Center | (none)  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Center Physics Center Fermilab Home Visit LPC Physics Programs LPC Guest and Visitors HATS@LPC, Workshops and CMSDAS Jet-Substructure HATS CMS Data Analysis School 2013 CMS Data Analysis School 2012 CMS Data Analysis School 2011 EJTERM (CMS Data Analysis School 2010) Confronting Theory with Experiment: November 2011 Standard Model Benchmarks at the Tevatron and LHC Standard Model Benchmarks at High-Energy Hadron Colliders GED workshop 20-22 Aug, 2012 Topic of the Week Upcoming Past Speakers Archive Program Info LPC Physics Forum LPC Snowmass Efforts The INFIERI Project Fellows LPC Fellows Program Newsletter - LPC Fellows LPC Fellows - 2014 LPC Fellows - 2013 LPC Fellows - 2012 LPC Fellows - 2011 Community Faces of the LPC LPC Fellows - Current LPC Coffee Hour Calendar LPC Conf. Room Calendar

391

Courses on Beam Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Physics Beam Physics The following is an incomplete listing of course available for beam physics. United States Particle Accelerator School The US Particle Accelerator School provides educational programs in the field of beams and their associated accelerator technologies not otherwise available to the community of science and technology. Joint Universities Accelerator School Each year JUAS provides a foundation course on accelerator physics and associated technologies. The US-CERN-Japan-Russia Joint Accelerator School The purpose of the US-CERN-Japan-Russia joint school is to better our relations by working together on an advanced topical course every two years, alternating between the U.S., western Europe, Japan and Russia. The last set of courses focused on the frontiers of accelerator technology in

392

Furth Plasma Physics Libary  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Hours Online Access Directions Contacts Hours Online Access Directions QuickFind Main Catalog Databases PPPL Publications & Reports/PPLcat Plasma Physics E-Journals clear Click arrows to scroll for more clear Plasma Physics Colloquia The Global Carbon Cycle and Earth's Climate - January 15, 2014 Addressing Big Data Challenges in Simulation-based Science - January 22, 2014 "The Usefulness of Useless Knowledge?: The History of the Institute for Advanced Study - January 29, 2014 PM-S-1 PDF PM-S-2 PDF PM-S-3 PDF PM-S-4 PDF PM-S-5 PDF PM-S-6 PDF See All Library History Intro 950 1960-1970 1980 1990 2000 Quick Order Article Express Borrow Direct Interlibrary Loan PPL Book Request More Resources and Services Search & Find Articles & Databases - Plasma Physics, Physics, Engineering & Technology,

393

Physics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics Physics Physics On January 13, 2012, Lawrence Berkeley National Laboratory senior scientist Dr. Saul Perlmutter spoke with Energy Department staff about his research that earned him a 2011 Nobel Prize in Physics. Featured Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab In Dark Energy science, scientists have found flaws in accepted theories using them to build even better models of how nature actually works. Higgs Boson May Be Within Sight

 Physicists from the European Organization for Nuclear Research (CERN)

394

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA DOE Annual High Energy Physics Program Review Brookhaven National Laboratory 17-19 April 2006 Monday, April 17 - Berkner Hall 15:00 Executive Session - Berkner B 16:30 Tour...

395

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

High Energy Physics Review, 22-23 April 2004 Click on an agenda item below to access a PDF version of the speaker's slides. NOTE: If your browser displays a blank page for any...

396

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

States Naval Academy hartley@usna.edu Mark Riley Florida State University mriley@physics.fsu.edu Alan Wuosmaa (chair) Western Michigan University alan.wuosmaa@wmich.edu The...

397

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

are nearing completion. In addition, the role of ATLAS for the low-energy nuclear physics community needs to be revisited in light of the decision to site the Facility for...

398

Particle Physics Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is A Particle Physics Experiment? The word "experiment" often makes people envision a scientist in white lab coat and goggles walking into the lab, pouring some test tubes...

399

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

the policy and procedures related to access to the ATLAS Facility. 2.0 POLICY It is Physics Division policy that access to the ATLAS Facility is restricted to persons who are...

400

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA Brookhaven National Laboratory High Energy and Nuclear Physics Program Advisory Committee Meeting 23-24 March 2006 Thursday, 23 March Executive Session Room 2-160, Bldg. 510...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Program Advisory Committee Meeting 21-22 June 2010 Agenda Submitted Proposals STAR Beam Use Proposal PHENIX Beam Use Proposal LoI: Feasibility Test of...

402

Physics Out Loud - Hadron  

NLE Websites -- All DOE Office Websites (Extended Search)

Gluons Previous Video (Gluons) Physics Out Loud Main Index Next Video (Hybrid Meson) Hybrid Meson Hadron David Lawrence, a physicist, uses a little Greek in his description of a...

403

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

of detector ops. Plans for future running; how will VTX be exploited to deliver physics? B. Jacak (25+15) 10:30 Break 10:45 STAR New results and accomplishments Plans for...

404

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspective...T. Kirk 30 +10 9:40 am RHIC Experiments: Physics Department Perspective.....T. Ludlam 25+10 10:15 am Coffee Break 10:30 am CA-D...

405

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

- P. Chaudhari 09:15 am BNL Overview and Future Directions - S. Aronson 10:00 am Physics Department Overview - S. Dawson 10:30 am Coffee Break 10:45 am Overview of U.S. ATLAS...

406

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual DOENuclear Physics Review of RHIC Science and Technology July 6-8, 2005 Berkner Hall, BNL Agenda Wednesday, July 6 Berkner Room B 8:00 am DOE Executive Session 8:45 am...

407

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE RHIC Facility Operations Review, 28-30 June 2010. Annual DOE Review of High Energy Physics Science & Technology, 19-21 May 2010 Report of 2010 ATLAS Project Manager's Review,...

408

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Agenda Brookhaven Nuclear and Particle Physics Program Advisory Committee Meeting 6-8 June 2011 Reference Documents PAC Recommendations, 21-22 June 2010 Charge to PAC for...

409

Nuclear Physics Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion in the Sun Quark Matter 2004 Teacher Workshop - There are a number of presentations at a high school level which show the field of high energy nuclear physics - the search...

410

Review of Particle Physics  

E-Print Network (OSTI)

on High-Energy Physics, Tbilisi 1976 ; J.D. Bjorken, Phys.Fundamental Research TBIL Tbilisi State University TELA Tel-Fukushima, Japan Genova, Italy Tbilisi, Republic of Georgia

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

411

Top quark physics: Overview  

SciTech Connect

In this presentation I will primarily focus on top quark physics but I will include a discussion of the W-boson mass and the possibility of discovering a light Higgs boson via associated production at the Tevatron.

Parke, S.

1998-01-01T23:59:59.000Z

412

Physics of adherent cells  

E-Print Network (OSTI)

One of the most unique physical features of cell adhesion to external surfaces is the active generation of mechanical force at the cell-material interface. This includes pulling forces generated by contractile polymer bundles and networks, and pushing forces generated by the polymerization of polymer networks. These forces are transmitted to the substrate mainly by focal adhesions, which are large, yet highly dynamic adhesion clusters. Tissue cells use these forces to sense the physical properties of their environment and to communicate with each other. The effect of forces is intricately linked to the material properties of cells and their physical environment. Here a review is given of recent progress in our understanding of the role of forces in cell adhesion from the viewpoint of theoretical soft matter physics and in close relation to the relevant experiments.

Schwarz, Ulrich S

2013-01-01T23:59:59.000Z

413

Open Source Physics  

E-Print Network (OSTI)

Open Source Physics (Brown, 2012; Christian, 2010; Esquembre, 2012; Hwang, 2010) empowers teachers and students to create and use these free tools with the associated intellectual property rights given to customise (Wee & Mak, 2009) the computer models/tools to suit their teaching and learning needs. Open Source Physics (OSP) focuses on design of computer models, such as Easy Java Simulations (EJS) and the use of video modeling and analysis (Tracker). They allow students to investigate, explore and analyse data which is either real or simulated. The OSP approach helps users overcome barriers in creating, using and scaling up meaningful ICT use in education. In Singapore, teachers and students have created or customised existing computer models to design and re-purpose EJS models to suit their context and learning needs. Tracker tools allow students to analyse different aspects of a physics phenomena to deepen their understanding of abstract physics concepts. Using Tracker, students record the motion of ob...

Wee, Loo Kang

2013-01-01T23:59:59.000Z

414

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Program Advisory Committee Meeting 3-5 November 2005 RHIC Mid-Term Strategic Plan: 2006-2011 (Interim Report) Beam Use Proposals BRAHMS PHENIX STAR Agenda Thursday, 3...

415

On ENSO Physics  

Science Conference Proceedings (OSTI)

Two extended integrations of general circulation models (GCMs) are examined to determine the physical processes operating during an ENSO cycle. The first integration is from the Hamburg version of the ECMWF T21 atmospheric model forced with ...

T. P. Barnett; M. Latif; E. Kirk; E. Roeckner

1991-05-01T23:59:59.000Z

416

Higgs and Electroweak Physics  

E-Print Network (OSTI)

This lecture discusses the Higgs boson sector of the SM and the MSSM, including their connection to electroweak precision physics and the searches for SM and SUSY Higgs bosons at the LHC.

Heinemeyer, S

2009-01-01T23:59:59.000Z

417

Description of the programs and facilities of the Physics Division  

SciTech Connect

The major emphasis of our experimental nuclear physics research is in Heavy-Ion Physics, centered at the recently completed ATLAS facility. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. In addition, the Division has strong programs in Medium-Energy Physics and in Weak-Interaction Physics as well as in accelerator development. Our nuclear theory research spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national scale. The Atomic Physics program, the largest of which is accelerator-based, primarily uses ATLAS, a 5-MV Dynamitron accelerator and a highly stable 150-kV accelerator. A synchrotron-based atomic physics program has recently been initiated with current research with the National Synchrotron Light Source in preparation for a program at the Advanced Photon Source, at Argonne. The principal interests of the Atomic Physics program are in the interactions of fast atomic and molecular ions with solids and gases and in the laser spectroscopy of exotic species. The program is currently being expanded to take advantage of the unique research opportunities in synchrotron-based research that will present themselves when the Advanced Photon Source comes on line at Argonne. These topics are discussed briefly in this report.

Not Available

1992-10-01T23:59:59.000Z

418

Neutrino Oscillation Physics  

Science Conference Proceedings (OSTI)

To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

Kayser, Boris

2012-06-01T23:59:59.000Z

419

PHYSICS WITH AND PHYSICS OF COLLIDING ELECTRON BEAMS  

E-Print Network (OSTI)

contributed so much to the physics of colliding beams, theyto reap so little from the physics with colliding beams.Conference on High-Energy Physics, Vienna" September 1968 (

Pellegrini, Claudio

2008-01-01T23:59:59.000Z

420

Women in Physics | Status of Women in Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

in Physics Report on women in physics by country A report on the status of women in physics in 65 countries written by 2008 participants of the 3rd ICWIP, which was held in Korea...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fluctuations in molecular dynamics simulations  

Science Conference Proceedings (OSTI)

Statistical fluctuations of a system about its equilibrium state, monitored in a molecular dynamics simulation, are an effective means of computing the thermodynamic and kinetic properties of interfaces in metals and alloys. In this work, three applications ... Keywords: Fluctuations, Grain boundaries, Interfaces, Interfacial free energy, Mobility, Molecular dynamics

J. J. Hoyt; Z. T. Trautt; M. Upmanyu

2010-03-01T23:59:59.000Z

422

PERSPECTIVES OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

The organizers of this meeting have asked me to present perspectives of nuclear physics. This means to identify the areas where nuclear physics will be expanding in the next future. In six chapters a short overview of these areas will be given, where I expect that nuclear physics will develop quite fast: (1) Quantum Chromodynamics and effective field theories in the confinement region. (2) Nuclear structure at the limits. (3) High energy heavy ion collisions. (4) Nuclear astrophysics. (5) Neutrino physics. (6) Test of physics beyond the standard model by rare processes. After a survey over these six points I will pick out a few topics where I will go more in details. There is no time to give for all six points detailed examples. I shall discuss the following examples of the six topics mentionned above: (1) The perturbative chiral quark model and the nucleon ?-term. (2) VAMPIR (Variation After Mean field Projection In Realistic model spaces and with realistic forces) as an example of the nuclear structure renaissance. (3) Measurement of important astrophysical nuclear reactions in the Gamow peak. (4) The solar neutrino problem. As examples for testing new physics beyond the standard model by rare processes I had prepared to speak about the measurement of the electric neutron dipole moment and of the neutrinoless double beta decay. But the time is limited and so I have to skip these points, although they are extremely interesting.

Amand Faessler

2002-01-01T23:59:59.000Z

423

Subsurface Science (The Molecular Environmental Science Group) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Subsurface Science Subsurface Science BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne arrow Subsurface Science The Molecular Environmental Science Group (MESG) The MESG is part of the Biosciences Division at Argonne National Laboratory. One of the main foci during the creation and growth of the MESG has been the development of an internationally recognized integrated multidisciplinary scientific team focused on the investigation of fundamental biogeochemical questions. Presently, expertise that is represented by members of the MES Group includes x-ray Physics, Environmental Chemistry, Environmental Microbiology, (Bio)geochemistry, and radiolimnology. Additional expertise in electron microscopy, x-ray microscopy, Microbial Ecology, and Bioinformatics often is provided by collaborations with scientists outside of our group.

424

Monatomic-Molecular Transition in Expanded Rubidium  

Science Conference Proceedings (OSTI)

S(Q,{omega}) for liquid rubidium measured along the liquid vapor coexistence line exhibits monatomic behavior from normal density down to twice the critical density. At this density we observe excitations characteristic of a harmonic oscillator. We interpret this as evidence for the passage of the fluid from a monatomic to a molecular state. First principle total energy calculations for lattices of ribidium at 0K predict that expansion favors spin pairing and leads to a lattice of dimers with an increase in vibron energy with decreasing density. The excellent agreement of the calculated vibron energy with the experimental result provides theoretical support for the appearance of molecules. {copyright} {ital 1997} {ital The American Physical Society}

Pilgrim, W.; Ross, M.; Hensel, F. [Institute of Physical Chemistry and Materials Science Centre, Philipps-University of Marburg, 35032 Marburg (Germany); Ross, M.; Yang, L. [Lawrence Livermore National Laboratory, University of California, Livermore, California 944551 (United States)

1997-05-01T23:59:59.000Z

425

The Physics of Music and the Music of Physics  

Science Conference Proceedings (OSTI)

... in life without caring about the underlying physics, they become even more beautiful when we dive into their simple physical and mathematical ...

2010-10-05T23:59:59.000Z

426

Department of Physics & Astronomy Experimental Particle Physics Group  

E-Print Network (OSTI)

Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University mrad. The upstream detector, RICH1, uses aerogel and C 4 F 10 radiators to identify particles

Glasgow, University of

427

Excited state carrier dynamics in CdS{sub x}Se{sub 1-x} semisconductor alloys as studied by ultrafast fluorescence spectroscopy  

Science Conference Proceedings (OSTI)

This dissertation discusses studies of the electron-hole pair dynamics of CdS{sub x}Se{sub 1-x} semiconductor alloys for the entire compositional range from x = 1 to x = 0 as examined by the ultrafast fluorescence techniques of time correlated single photon counting and fluorescence upconversion. Specifically, samples with x = 1, .75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective emission maximum which varies according to {lambda} = 718nm - 210x nm. The decays of these samples were found to obey a Kohlrausch distribution, exp [(t/{tau}){sup {beta}}], with the exponent 3 in the range .5-.7 for the alloys. These results are in agreement with those expected for localization due to local potential variations resulting from the random distribution of sulfur and selenium atoms on the element VI A sub-lattice. This localization can be understood in terms of Anderson localization of the holes in states whose energy distribution tails into the forbidden energy band-gap. Because these states have energy dependent lifetimes, the carriers can decay via many parallel channels. This distribution of channels is the ultimate source of the Kohlrausch form of the fluorescence decays.

Gadd, S.E.

1995-08-01T23:59:59.000Z

428

Evidence for ultra-fast outflows in radio-quiet AGNs: II - detailed photo-ionization modeling of Fe K-shell absorption lines  

E-Print Network (OSTI)

X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blueshifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\sim100,000km/s (\\sim0.3c), with a peak and mean value of \\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6erg s^{-1} cm, with a mean value of log\\xi 4.2 erg s^{-1} cm. The associated column densities are also large, in the range N_H\\sim10^{22}-10^{24...

Tombesi, F; Reeves, J N; Palumbo, G G C; Braito, V; Dadina, M

2011-01-01T23:59:59.000Z

429

Flavor physics and CP violation  

E-Print Network (OSTI)

Lectures on flavor physics presented at the 2012 CERN HEP Summer School. Content: 1) flavor physics within the Standard Model, 2) phenomenology of B and D decays, 3) flavor physics beyond the Standard Model.

Gino Isidori

2013-02-04T23:59:59.000Z

430

A Molecular Cause for One Form of Deafness | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Theory is Watertight Water Theory is Watertight Nanowire Micronetworks from Carbon-Black Nanoparticles A Key Step in Repairing DNA Double-Strand Breaks An X-ray Rainbow An Insulating Breakthrough Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A Molecular Cause for One Form of Deafness FEBRUARY 12, 2007 Bookmark and Share Gerard Wong, a professor of materials science and engineering, of physics, and of bioengineering at Illinois, and colleagues have found an underlying molecular cause for one form of deafness, while exploring the physics of hearing. (Photo by L. Brian Stauffer) Scientists exploring the physics of hearing have found an underlying molecular cause for one form of deafness, and a conceptual connection

431

NIST: Physics Lab - General Interest  

Science Conference Proceedings (OSTI)

... Exhibits from the Physical Measurement Laboratory. in the NIST Virtual Museum. ... NIST's David Wineland shared the 2012 Nobel Prize in Physics. ...

2012-11-05T23:59:59.000Z

432

Topics in Modern Physics Sampler  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics in Modern Physics Teacher Resource Book Sampler Ed Home - Sampler Index Download the revised Topics in Modern Physics Teacher Resource Book. This volume contains some but...

433

Physics of Sports for Scientists  

NLE Websites -- All DOE Office Websites (Extended Search)

of Sport for Scientists Materials Dave Harding's Presentation (5.2 Mbytes), The Physics of Sports & Handout for Reaction Time Activity Bran Wijngaarden's Presentation, The Physics...

434

NIST Standard Reference Databases: Physics  

Science Conference Proceedings (OSTI)

... SRD 119 Photoionization of CO2 (ARPES), Online, DG, * Nuclear Physics SRD 144 ... Half-Life Measurements Online, DG, * Physical Constants SRD ...

2012-10-15T23:59:59.000Z

435

Electron Physics Group Staff Page  

Science Conference Proceedings (OSTI)

... Electron Physics Group Staff. ... Jabez McClelland, Group Leader Jabez McClelland is the Group Leader of the CNST Electron Physics Group. ...

2013-07-26T23:59:59.000Z

436

Physics Dept. Seminars and Colloquia  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2013 Physics Colloquium "Heretical Ideas that led to the Search for the Higgs Boson" Gerald Guralnik, Brown University Thursday, October 10, 2013 Particle Physics...

437

BNL | Physics of the Universe  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Capabilities Facilities Physics of the Universe image Exploring the Frontiers of Energy, Intensity and the Cosmos Brookhaven leads high-energyparticle physics experiments...

438

The Physics of Language - CECM  

E-Print Network (OSTI)

Dec 24, 2003 ... The Physics of Language. ... Next: Dynamics of Change in Up: The Physics of Language: Previous: Head-last; right brain, head-first; ...

439

Online Particle Physics Information - Scope  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC Online Particle Physics Information PDG Scope of this Guide While a substantial amount of particle physics information is Internet accessible, most listings do not provide...

440

Online Particle Physics Information - Directories  

NLE Websites -- All DOE Office Websites (Extended Search)

Institutions HEP and Astrophysics Institutions SPIRES database of over 6,500 high-energy physics and astropartcle physics institutes, laboratories, and university departments...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nuclear & Particle Physics, Astrophysics, Cosmology  

NLE Websites -- All DOE Office Websites (Extended Search)

reality environment. Nuclear and particle physics, applied physics Animation of new reactor concept for deep space exploration 4:32 Animation of new reactor concept for deep...

442

Perspectives of Nuclear Physics  

E-Print Network (OSTI)

The organizers of this meeting have asked me to present perspectives of nuclear physics. This means to identify the areas where nuclear physics will be expanding in the next future. In six chapters a short overview of these areas will be given, where I expect that nuclear physics willdevelop quite fast: A. Quantum Chromodynamics and effective field theories in the confinement region; B. Nuclear structure at the limits; C. High energy heavy ion collisions; D. Nuclear astrophysics; E. Neutrino physics; F. Test of physics beyond the standard model by rare processes. After a survey over these six points I will pick out a few topics where I will go more in details. There is no time to give for all six points detailed examples. I shall discuss the following examples of the six topics mentionned above: 1. The perturbative chiral quark model and the nucleon $\\Sigma$-term, 2. VAMPIR (Variation After Mean field Projection In Realistic model spaces and with realistic forces) as an example of the nuclear structure renais...

Faessler, A

2002-01-01T23:59:59.000Z

443

Molecular probe technology detects bacteria without culture  

E-Print Network (OSTI)

clinical samples, the molecular probes for L. brevis werepublished the design of our molecular probes (Figure 1a) and3, “1“, a majority of the molecular probes for that genome

2012-01-01T23:59:59.000Z

444

Brookhaven High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

445

LANL | Physics | Active Interrogation  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Division activities in standoff active-interrogation for detecting Physics Division activities in standoff active-interrogation for detecting terrorist nuclear devices, 2011 Detonation of a terrorist nuclear device in a major city would have severe economic, psychological and cultural consequences. To help prevent the fulfillment of such a threat, Physics Division has been exploring techniques by which highly-enriched uranium could be detected before reaching its intended target. We have focused on the use of high-energy protons and negative-muons because of their ability to probe deeply into structures and shielding that would surround the uranium, and their capability to stimulate radiation signatures indicating 235U. Our experimental studies for standoff active-interrogation are enabled by the 800-MeV proton beam at the Los Alamos Neutron Science Center, which

446

Argonne Physics Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RBW RBW Robert B. Wiringa (the guy on the right) phone: 630/252-6134 FAX: 630/252-6008 e-mail: wiringa@anl.gov Biographical sketch 1972 B.S., Rensselaer Polytechnic Institute 1974 M.S., University of Illinois at Urbana-Champaign 1978 Ph.D., University of Illinois at Urbana-Champaign 1978-80 Research Associate, Los Alamos Scientific Laboratory 1981-83 Research Associate, Argonne National Laboratory 1983-87 Assistant Physicist, Argonne National Laboratory 1987-99 Physicist, Argonne National Laboratory 2000- Senior Physicist, Argonne National Laboratory Visiting appointments 1993 Visiting Associate & Lecturer, California Institute of Technology Honors, Organizations, Committees, etc. 1994-2001 Chief, Theory Group, Physics Division, Argonne National Laboratory 1997-2000 Webmaster, Division of Nuclear Physics, American Physical

447

Outlook on Neutrino Physics  

E-Print Network (OSTI)

Some of the hot topics in neutrino physics are discussed, with particular emphasis on neutrino oscillations. After proposing credibility criteria for assessing various claimed effects, particular stress is laid on the solar neutrino deficit, which seems unlikely to have an astrophysical explanation. Comments are also made on the possibility of atmospheric neutrino oscillations and on the LSND experiment, as well as cosmological aspects of neutrinos and neutralinos. Several of the central issues in neutrino physics may be resolved by the new generation of experiments now underway, such as CHORUS, NOMAD and Superkamiokande, and in preparation, such as SNO and a new round of accelerator- and reactor-based neutrino-oscillation experiments. At the end, there is a brief review of ways in which present and future CERN experiments may be able to contribute to answering outstanding questions in neutrino physics.

John Ellis

1996-11-29T23:59:59.000Z

448

Statistical Physics of Citations  

SciTech Connect

This talk will begin with basic empirical facts about the network of scientific citations, based on the entire corpus of Physical Review publications from the past 110 years. Intriguingly, the evolution of citations appears to be described by linear preferential attachment. A master equation approach will be developed to characterize this popularity-driven network. One basic attribute is the citation distribution of the network, namely, the probability that a publication has a given number of citations. The conditions that give rise to exponential, power-law, or more singular citation distributions will be elucidated. Comparison between the theory and the citation data of Physical Review will be made. Finally, the Google page-rank algorithm will be used to uncover hidden gems within Physical Review publications.

Redner, Sidney (Boston University)

2005-09-28T23:59:59.000Z

449

Physics 5556 Solid State Physics, Part II Syllabus Spring 2002  

E-Print Network (OSTI)

Physics 5556­ Solid State Physics, Part II Syllabus ­ Spring 2002 Instructor: Massimiliano Di subjects. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Thermal Physics" · Madelung, "Introduction to Solid-State Theory" · Bassani and Pastori Parravicini

Di Ventra, Massimiliano

450

Physics 5555 Solid State Physics, Part I Syllabus Fall 2003  

E-Print Network (OSTI)

Physics 5555­ Solid State Physics, Part I Syllabus ­ Fall 2003 Instructor: Massimiliano Di Ventra. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Principles" · Harrison, "Solid State Theory" · Kittel, "Quantum Theory of Solids" · Kittel and Kroemer, "Thermal Physics

Di Ventra, Massimiliano

451

Physics 5555 Solid State Physics, Part I Syllabus Fall 2001  

E-Print Network (OSTI)

Physics 5555­ Solid State Physics, Part I Syllabus ­ Fall 2001 Instructor: Massimiliano Di Ventra. The following sources are the most used: · Ashcroft and Mermin, "Solid State Physics" · Ziman, "Principles" · Harrison, "Solid State Theory" · Kittel, "Quantum Theory of Solids" · Kittel and Kroemer, "Thermal Physics

Di Ventra, Massimiliano

452

PHYSICS 9005B: MATHEMATICAL METHODS OF PHYSICS JANUARY 2012  

E-Print Network (OSTI)

PHYSICS 9005B: MATHEMATICAL METHODS OF PHYSICS JANUARY 2012 Instructor: S. R. Valluri, P&A 112, 661 background and interest in Mathematics are encouraged to take this course Course Website: http://publish.uwo.ca/~valluri/physics major topics relevant for physics and engineering will be covered. Complex Variables: Analytic

Lennard, William N.

453

Radio Frequency Phototube, Optical Clock and Precise Measurements in Nuclear Physics  

E-Print Network (OSTI)

Recently a new experimental program of novel systematic studies of light hypernuclei using pionic decay was established at JLab (Study of Light Hypernuclei by Pionic Decay at JLab, JLab Experiment PR-08-012). The highlights of the proposed program include high precision measurements of binding energies of hypernuclei by using a high resolution pion spectrometer, HpiS. The average values of binding energies will be determined within an accuracy of ~10 keV or better. Therefore, the crucial point of this program is an absolute calibration of the HpiS with accuracy 10E-4 or better. The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of an optical clock or femtosecond optical frequency comb (OFC) generator, with a regular comb of sharp lines with well defined frequencies. Combination of this technique with a recently developed radio frequency (RF) phototube results in a new tool for precision time measurement. We are proposing a new time-of-flight (TOF) system based on an RF phototube and OFC technique. The proposed TOF system achieves 10 fs instability level and opens new possibilities for precise measurements in nuclear physics such as an absolute calibration of magnetic spectrometers within accuracy 10E-4 - 10E-5.

Amur Margaryan

2009-10-16T23:59:59.000Z

454

Engineering Physics: Challenge Yourself! Presented by  

E-Print Network (OSTI)

Physics One of: Physics of Nuclear Reactors Fluid Mechanics Laser Optics Advanced Mechanics Surface Physics Laboratory Electromagnetic Theory Introduction to Quantum Mechanics Quantum Physics of Atoms Advanced Laboratory and Design Project Engineering Physics Thesis One of: Solid State Physics Nuclear

Graham, Nick

455

American Physical Society  

E-Print Network (OSTI)

Founded in 1899, the American Physical Society (APS) is the largest organization of professional physicists in the United States. Its 46,000 members are drawn from universities, industry and national laboratories. The APS is one of the premier publishers of international physics research, maintaining print and on-line publications, as well as electronically searchable archives dating back to 1893. For more than forty years, APS has also devoted resources and expertise to a number of public policy areas, including education, energy, innovation and competitiveness, national

Cherry Murray; Curtis Callan; Leo Kadanoff; Judy Franz; Executive Officer; Joseph Serene; Gene Sprouse; How America; Can Look

2010-01-01T23:59:59.000Z

456

2010 Atomic & Molecular Interactions Gordon Research Conference  

SciTech Connect

The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

Todd Martinez

2010-07-23T23:59:59.000Z

457

Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron  

SciTech Connect

Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

2010-03-14T23:59:59.000Z

458

Molecular Dynamics Simulation of Thermoset Fracture with ...  

Science Conference Proceedings (OSTI)

The effects of resin chain extensibility and dilution on fracture behavior are studied by testing a variety of molecular systems. The molecular bases for precursors ...

459

Apparatus for molecular weight separation  

DOE Patents (OSTI)

The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

Smith, Richard D. (Richland, WA); Liu, Chuanliang (Haverhill, MA)

2001-01-01T23:59:59.000Z

460

Molecular Bond: EMSL's bimonthly newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Email not displaying correctly? View it on the website. The Molecular Bond newsletter banner December 2013 Allison A. Campbell, EMSL Director I'm pleased to share with you the...

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Journals Acoustical Physics  

E-Print Network (OSTI)

of Atmospheric and Oceanic Technology Journal of Atmospheric and Solar-Terrestrial Physics Journal of Atmospheric Measurement Science and Technology Monthly Weather Review Natural Hazards Review Natural History Nature Nature Water Resources Research Weather Forecasting More Information For more information, contact: Yvonne

Colorado at Boulder, University of

462

Operational health physics training  

SciTech Connect

The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

NONE

1992-06-01T23:59:59.000Z

463

Physics 302 Laboratory Syllabus  

E-Print Network (OSTI)

fundamental measuring instruments b)Compute the value of physical quantities not directly measurable from measurements taken of fundamental quantities. c) Use the PC to construct graphs and perform statistical for some. Write reports and essays Each student must read the Student Handbook and Catalog for specific

Noakes, David R.

464

Photon Physics in ALICE  

E-Print Network (OSTI)

We give an overview of photon physics which will be studied by the ALICE experiment in proton-proton and heavy ion collisions at LHC. We compare properties of ALICE photon detectors and estimate their ability to measure neutral meson and direct photon spectra as well as gamma-hadron and gamma-jet correlations in pp and Pb+Pb collisions.

D. Peressounko; Y. Kharlov; for the ALICE collaboration

2009-07-16T23:59:59.000Z

465

Quantum Complexity and Fundamental Physics  

Science Conference Proceedings (OSTI)

Quantum Complexity and Fundamental Physics. Scott Aaronson Computer Science and Artificial Intelligence Laboratory ...

2010-10-05T23:59:59.000Z

466

NIST Quantum Physics Division - 2001  

Science Conference Proceedings (OSTI)

"Technical Activities 2001" - Table of Contents, Division home page. Quantum Physics Division. Division Overview | Program ...

467

NIST Quantum Physics Division - 1999  

Science Conference Proceedings (OSTI)

TECHNICAL ACTIVITIES 1999 - NISTIR 6438 QUANTUM PHYSICS DIVISION. Fermi surface. Absorption images of the ...

468

Theoretical Physics in Cellular Biology  

E-Print Network (OSTI)

Theoretical Physics in Cellular Biology: Some Illustrative Case Studies Living matter obeys the laws of physics, and the principles and methods of theoretical physics ought to find useful application observation, I will describe a few specific instances where approaches inspired by theoretical physics allow

469

Theoretical Perspective of Charm Physics  

E-Print Network (OSTI)

A perspective on charm physics, emphasizing recent developments, future prospects, and the interplay with lattice QCD.

Kronfeld, Andreas S

2013-01-01T23:59:59.000Z

470

NIST MIRF - Accelerator Radiation Physics  

Science Conference Proceedings (OSTI)

Accelerator Radiation Physics. Medium-energy accelerators are under investigation for production of channeling radiation ...

471

Quantum gloves: Physics and Information  

E-Print Network (OSTI)

The slogan information is physical has been so successful that it led to some excess. Classical and quantum information can be thought of independently of any physical implementation. Pure information tasks can be realized using such abstract c- and qu-bits, but physical tasks require appropriate physical realizations of c- or qu-bits. As illustration we consider the problem of communicating chirality.

N. Gisin

2004-08-14T23:59:59.000Z

472

Using Quantum Coherence to Enhance Gain in Atomic Physics  

E-Print Network (OSTI)

Quantum coherence and interference effects in atomic and molecular physics has been extensively studied due to intriguing counterintuitive physics and potential important applications. Here we present one such application of using quantum coherence to generate and enhance gain in extreme ultra-violet(XUV)(@58.4nm in Helium) and infra-red(@794.76nm in Rubidium) regime of electromagnetic radiation. We show that using moderate external coherent drive, a substantial enhancement in the energy of the lasing pulse can be achieved under optimal conditions. We also discuss the role of coherence. The present paper is intended to be pedagogical on this subject of coherence-enhanced lasing.

Pankaj K. Jha

2013-01-28T23:59:59.000Z

473

Physics Division annual review, 1 April 1980-31 March 1981  

SciTech Connect

Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; accelerator operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)

Not Available

1982-06-01T23:59:59.000Z

474

Visualization for the Physical Sciences  

Science Conference Proceedings (OSTI)

Close collaboration with other scientific fields is an important goal for the visualization community. Yet engaging in a scientific collaboration can be challenging. The physical sciences, namely astronomy, chemistry, earth sciences and physics, exhibit ... Keywords: I.3.8 [Computer Graphics]: Applications–Visualization, I.6.6 [Simulation and Modeling]: Symulation Output Analysis–Visualization, J.2 [Physical Sciences and Engineering]: Astronomy–Visualization, J.2 [Physical Sciences and Engineering]: Chemistry–Visualization, J.2 [Physical Sciences and Engineering]: Earth and atmospheric sciences–Visualization, J.2 [Physical Sciences and Engineering]: Physics–Visualization

Dan R. Lip?a; Robert S. Laramee; Simon J. Cox; Jonathan C. Roberts; Rick Walker; Michelle A. Borkin; Hanspeter Pfister

2012-12-01T23:59:59.000Z

475

Molecular Weight & Energy Transport 7 September 2011  

E-Print Network (OSTI)

Molecular Weight & Energy Transport 7 September 2011 Goals · Review mean molecular weight · Practice working with diffusion Mean Molecular Weight 1. We will frequently use µ, µe, and µI (the mean molecular weight per particle, per free electron, and per ion, respectively). Let's practice computing

Militzer, Burkhard

476

Molecular Nanosprings for Protein-Based Nanorobotics  

E-Print Network (OSTI)

Molecular Nanosprings for Protein-Based Nanorobotics Mustapha Hamdi 1 , Antoine Ferreira 1 antoine.ferreira@ensi-bourges.fr , mavro@coe.neu.edu This paper presents a molecular mechanics study using a molecular dynamics software (NAMD2) for characterization of molecular elastic joints for bio nanorobotic

Mavroidis, Constantinos

477

Molecular image resolution in electron microscopy  

Science Conference Proceedings (OSTI)

In order to determine the ultimate molecular resolution attainable with a conventional electron microscope

Natsu Uyeda; Takashi Kobayashi; Eiji Suito; Yoshiyasu Harada

1972-01-01T23:59:59.000Z

478

Particle Physics News  

NLE Websites -- All DOE Office Websites (Extended Search)

previous page previous page August 8, 2001 A STRIKING DIFFERENCE FOUND BETWEEN MATTER AND ANTIMATTER. The BaBar and Belle experiments have found a fundamental difference between the behavior of matter and antimatter. Understanding the tiny differences between the laws of physics for matter and for antimatter may yield important clues about why the Universe contains far more matter than antimatter. News Stories SLAC story KEK story American Institute of Physics story Background Graphics (B Factory, BaBar Image, BaBar Photo, SLAC Images, Belle Detector Photo, KEK Site) August 8, 2001 A SOLUTION TO THE 30-YEAR OLD SOLAR NEUTRINO MYSTERY. Sudbury Neutrino Observatory (SNO) results show the solution to the puzzle of the missing solar neutrinos lies not with the Sun, but with the neutrinos, which change

479

RHIC | Spin Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Spin Physics Spin Physics RHIC is the world's only machine capable of colliding high-energy beams of polarized protons, and is a unique tool for exploring the puzzle of the proton's 'missing' spin. In addition to colliding heavy ions, RHIC is able to collide single protons. While these collisions don't produce quark-gluon plasma, they're interesting to physicists for other reasons. Scientists want to know more about a property of particles called 'spin'. Spin is the direction a particle is spinning around an axis as it travels -- just like the Earth spins on its axis as it travels around the sun. Each proton has a specific spin, which helps give it a characteristic magnetic property. spin In this picture of a proton-proton collision, the spin of the particles is shown as arrows circling the spherical particles. The red and green

480

$?$ condensation and physical parameters  

E-Print Network (OSTI)

Recently we showed how a non-local Nambu-Jona-Lasinio model comes out from QCD in the low-energy limit. In this way, it is possible to fix all the free parameters of the model with physical ones. We use this approach to derive a local limit to the Nambu-Jona-Lasinio model with the parameters those obtained from QCD in order to fix the physical parameters of $\\rho$ condensation. $\\rho$ condensation is a consequence of the highly non-trivial behavior of the QCD vacuum in presence a very strong magnetic field giving rising to superconductive behavior in quark matter. Determination of the proper parameters for this state can be an important helpful guide to identify it experimentally.

Marco Frasca

2013-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "ultrafast physics molecular" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Aspects of Hadron Physics  

E-Print Network (OSTI)

Detailed investigations of the structure of hadrons are essential for understanding how matter is constructed from the quarks and gluons of Quantum chromodynamics (QCD), and amongst the questions posed to modern hadron physics, three stand out. What is the rigorous, quantitative mechanism responsible for confinement? What is the connection between confinement and dynamical chiral symmetry breaking? And are these phenomena together sufficient to explain the origin of more than 98% of the mass of the observable universe? Such questions may only be answered using the full machinery of nonperturbative relativistic quantum field theory. This contribution provides a perspective on progress toward answering these key questions. In so doing it will provide an overview of the contemporary application of Dyson-Schwinger equations in Hadron Physics. The presentation assumes that the reader is familiar with the concepts and notation of relativistic quantum mechanics, with the functional integral formulation of quantum field theory and with regularisation and renormalisation in its perturbative formulation.

C. D. Roberts; M. S. Bhagwat; S. V. Wright; A. Holl

2008-02-01T23:59:59.000Z

482

Princeton Plasma Physics Laboratory:  

SciTech Connect

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

483

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Quantum Physics; Quantum Communications; Ultrafast Photon Detector; Nam. ...

484

Physics opportunities with PILAC  

SciTech Connect

In the Long Range Plan prepared in 1989 for nuclear science in the 1990's, this nation's ability to maintain nuclear science at the intellectual cutting edge'' was addressed. In this document a number of facilities designed to do this were cited, including the CEBAF electron accelerator and the RHIC heavy ion accelerator. Beyond these facilities the Report noted the scientific opportunities available with a high intensity hadron facility and emphasized the importance of studies of the strong force which determines nuclear dynamics. My object in this brief survey is to discuss the physics research available in this area based on a relatively modest--at least by current standards--upgrade of the Los Alamos Meson Physics Facility, which will provide an important new tool for hadronic studies: that is PILAC, a source of pions with momenta in excess of 1 GeV/c. With PILAC a host of new opportunities for physics with pions free of the dominance of the P{sub 33} resonance is available.

Chrien, R.E.

1991-01-01T23:59:59.000Z

485

Emergency Response Health Physics  

Science Conference Proceedings (OSTI)

Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

Mena, RaJah [National Security Technologies, LLC, Remote Sensing Laboratory–Nellis; Pemberton, Wendy [National Security Technologies, LLC, Remote Sensing Laboratory–Nellis; Beal, William [Remote Sensing Laboratory at Andrews

2012-05-01T23:59:59.000Z

486

Physical Parameterizations We'll discuss the following physical  

E-Print Network (OSTI)

tracer advection) ¡ Generation of liquid and ice phases of water ¡ Interactions with PBL, radiation schemes (continued): ¡ Bulk microphysics parameterizations: ÷ Transferring among phases (ePhysical Parameterizations We'll discuss the following physical parameterizations: ¡ Radiative

Frierson, Dargan

487

Electroweak Physics and Searches for New Physics at HERA  

E-Print Network (OSTI)

Recent results from the H1 and ZEUS experiments are reported on electroweak physics and on searches for new physics. All results are in good agreement with the Standard Model.

U. Schneekloth

2010-01-13T23:59:59.000Z

488

Department of Physics & Astronomy Experimental Particle Physics Group  

E-Print Network (OSTI)

Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University indices (silica aerogel for low momentum tracks, gaseous C 4 F 10 for intermediate momentum and CF 4 gas

Glasgow, University of

489

Molecular arrangement in water: random but not quite.  

DOE Green Energy (OSTI)

Water defines life on Earth from the cellular to the terrestrial level. Yet the molecular level arrangement in water is not well understood, posing problems in comprehending its very special chemical, physical and biological properties. Here we present high-resolution x-ray diffraction data for water clearly showing that its molecular arrangement exhibits specific correlations that are consistent with the presence of rings of H{sub 2}O molecules linked together by hydrogen bonds into tetrahedral-like units from a continuous network. This level of molecular arrangement complexity is beyond what a simple 'two-state' model of water (Bernal and Fowler 1933 J. Chem. Phys.1 515-48) could explain. It may not be explained by the recently put forward 'chains-clusters of completely uncorrelated molecules' model (Wernet et al 2004 Science 304 995-9) either. Rather it indicates that water is homogeneous down to the molecular level where different water molecules form tetrahedral units of different perfection and/or participate in rings of different sizes, thus experiencing different local environments. The local diversity of this tetrahedral network coupled to the flexibility of the hydrogen bonds that hold it together may explain well the rich phase diagram of water and why it responds non-uniformly to external stimuli such as, for example, temperature and pressure.

Petkov, V.; Ren, Y.; Suchomel, M. R. (X-Ray Science Division); (Central Michigan University)

2012-01-01T23:59:59.000Z

490

NIST Physics Laboratory: Technical Activities 2001  

Science Conference Proceedings (OSTI)

... atomic physics, optical technology, ionizing radiation measurements, time and frequency measurements, quantum physics, fundamental constants ...

491

NIST Physics Laboratory: Technical Activities 2002  

Science Conference Proceedings (OSTI)

... atomic physics, optical technology, ionizing radiation measurements, time and frequency measurements, quantum physics, fundamental constants ...

492

MASTER OF SCIENCE IN MOLECULAR BIOTECHNOLOGY The Master of Science program in molecular  

E-Print Network (OSTI)

MASTER OF SCIENCE IN MOLECULAR BIOTECHNOLOGY The Master of Science program in molecular at the University of Kansas Medical Center. Molecular Biotechnology Molecular Biotechnology involves the use and development of laboratory tech- niques to study and modify nucleic acids and proteins. Molecular biotechnology

Peterson, Blake R.

493

A Molecular Based Model for Polymer Viscoelasticity: Intra-and Inter-Molecular  

E-Print Network (OSTI)

A Molecular Based Model for Polymer Viscoelasticity: Intra- and Inter-Molecular Variability H viscoelasticity based on a stick-slip continuum molecular-based model. The model developed is a continuum tube-system is composed of long molecular chains. The dynamics of these molecular chains are developed by modeling them

494

EI7157_Molecular_Electronics.xls Allgemeine Daten  

E-Print Network (OSTI)

EI7157_Molecular_Electronics.xls Allgemeine Daten: Modulnummer: EI7157 Modulbezeichnung (dt.): Molecular Electronics Modulbezeichnung (en.): Molecular Electronics Modulniveau: MSc Kürzel: Untertitel7157_Molecular_Electronics.xls Beschreibung: Inhalt: Introduction to organic chemistry. Molecular

Kuehnlenz, Kolja

495

The Entire Molecular Biology Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Archives Molecular Biology Archives Molecular Biology, Since May 2000 Table of Contents: Blood pH and Oxygen DNA Extraction Flesh Eating Bacteria Amino Acid Differences Lyme Disease Effects Vinegar and Alcohol Mosquito and Blood Caffeine and Smoking Bread Mold and pH Hemocyanin and Hemerythrin Hodospin Man-made Bacteria Pregnancy Tips mRNA Killing Bacteria Gram Stain Milk Bacteria Denatured Protein Pseudmands Bacteria Nucleotide Order Bacteria Resistance Albinism Genes DNA Healing Re-constitution of Proteins H. pylori and Multiple sclerosis Smallest Organism Sugars and Fats Bacteria Systematics Slow Regeneration Media Cultures Butter and Bacteria AIDS and Survival in Air Cell Intelligence Giardia gingivalis Meat Bacteria Pus and Immune Cells Chalones Culture of T. ferrooxisans Amphibian E. coli

496

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

497

Atomic, Molecular & Optical Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Sciences Atomic, Molecular and Optical Sciences The goal of the program is to understand the structure and dynamics of atoms and molecules using photons and ions as probes. The current program is focussed on studying inner-shell photo-ionization and photo-excitation of atoms and molecules, molecular orientation effects in slow collisions, slowing and cooling molecules, and X-ray photo-excitation of laser-dressed atoms. The experimental and theoretical efforts are designed to break new ground and to provide basic knowledge that is central to the programmatic goals of the Department of Energy (DOE). Unique LBNL facilities such as the Advanced Light Source (ALS), the ECR ion sources at the 88-inch cyclotron, and the National Energy Research Scientific Computing Center (NERSC) are

498

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

499

Ab-Initio Molecular Dynamics  

E-Print Network (OSTI)

Computer simulations and molecular dynamics in particular, is a very powerful method to provide detailed and essentially exact informations of classical many-body problems. With the advent of \\textit{ab-initio} molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as well as novel hybrid scheme that unifies best of either approach are discussed. The predictive power is demonstrated by a series of applications ranging from insulators to semiconductors and even metals in condensed phases.

Kühne, Thomas D

2012-01-01T23:59:59.000Z

500

Institute for Molecular Engineering doubles size of founding faculty with  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Giulia Galli is another joint appointment to Argonne and the University of Chicago's Institute for Molecular Engineering. Galli creates computational methods to design new materials for more efficient energy generation and to simulate the behavior of water. Click to enlarge. Giulia Galli is another joint appointment to Argonne and the University of Chicago's Institute for Molecular Engineering. Galli creates computational methods to design new materials for more efficient energy generation and to simulate the behavior of water. Click to enlarge. Cleland specializes in quantum computing, quantum communication and quantum sensors, all of which depend upon harnessing the peculiar properties of quantum mechanics, the physics that dominates the atomic world and has recently been shown to apply to macroscopic mechanical objects as well as electrical circuits. Pictured above is a quantum machine. Click to enlarge.