National Library of Energy BETA

Sample records for ultra-thin laptops tablets

  1. Ultra Thin Quantum Well Materials

    SciTech Connect (OSTI)

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

  2. Ultra-thin microporous/hybrid materials

    DOE Patents [OSTI]

    Jiang, Ying-Bing; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  3. Simulation and optimization of ultra thin photovoltaics.

    SciTech Connect (OSTI)

    Cruz-Campa, Jose Luis

    2010-12-01

    Sandia National Laboratories (SNL) conducts pioneering research and development in Micro-Electro-Mechanical Systems (MEMS) and solar cell research. This dissertation project combines these two areas to create ultra-thin small-form-factor crystalline silicon (c-Si) solar cells. These miniature solar cells create a new class of photovoltaics with potentially novel applications and benefits such as dramatic reductions in cost, weight and material usage. At the beginning of the project, unusually low efficiencies were obtained in the research group. The intention of this research was thus to investigate the main causes of the low efficiencies through simulation, design, fabrication, and characterization. Commercial simulation tools were used to find the main causes of low efficiency. Once the causes were identified, the results were used to create improved designs and build new devices. In the simulations, parameters were varied to see the effect on the performance. The researched parameters were: resistance, wafer lifetime, contact separation, implant characteristics (size, dosage, energy, ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. Out of these parameters, it was revealed that a high quality surface passivation was the most important for obtaining higher performing cells. Therefore, several approaches for enhancing the passivation were tried, characterized, and tested on cells. In addition, a methodology to contact and test the performance of all the cells presented in the dissertation under calibrated light was created. Also, next generation cells that could incorporate all the optimized layers including the passivation was designed, built, and tested. In conclusion, through this investigation, solar cells that incorporate optimized designs and passivation schemes for ultrathin solar cells were created for the first time. Through the application of the methods discussed in this document, the efficiency of the solar cells increased from below 1% to 15% in Microsystems Enabled Photovoltaic (MEPV) devices.

  4. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  5. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  6. CES | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  7. home automation | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  8. electronics | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  9. Chemical surface deposition of ultra-thin semiconductors

    DOE Patents [OSTI]

    McCandless, Brian E. (243 W. Main St., Elkton, MD 21921); Shafarman, William N. (1905 N. Van Buren St., Wilmington, DE 19802)

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  10. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    SciTech Connect (OSTI)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}? plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}? plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50?nm) tungsten film could be determined.

  11. Las Vegas | OpenEI Community

    Open Energy Info (EERE)

    show. The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression....

  12. The Consumer Electronics Show round-up | OpenEI Community

    Open Energy Info (EERE)

    The highlights of this year's show were OLED TVs, ultra-thin laptops, tablets, and smartphones. However, a few smart grid-related technologies were making an impression. There...

  13. Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity

    DOE Patents [OSTI]

    Werner, Thomas R. (Argonne, IL); Falco, Charles M. (Tucson, AZ); Schuller, Ivan K. (Woodridge, IL)

    1984-01-01

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  14. Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

    SciTech Connect (OSTI)

    Middey, S.; Rivero, P.; Meyers, D.; Kareev, M.; Liu, X.; Cao, Y.; Freeland, J. W.; Barraza-Lopez, S.; Chakhalian, J.

    2014-10-29

    We address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO3 on the band insulator SrTiO3 along the pseudo cubic [111] direction. While in general the metallic LaNiO3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, and synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La2Ni2O5 (Ni2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO3/SrTiO3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.

  15. Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middey, S.; Rivero, P.; Meyers, D.; Kareev, M.; Liu, X.; Cao, Y.; Freeland, J. W.; Barraza-Lopez, S.; Chakhalian, J.

    2014-10-29

    We address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO3 on the band insulator SrTiO3 along the pseudo cubic [111] direction. While in general the metallic LaNiO3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, and synchrotron based resonant X-ray spectroscopy revealmorethe formation of a chemical phase La2Ni2O5 (Ni2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO3/SrTiO3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.less

  16. Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Rizk, Ayman; Nayfeh, Ammar; Okyay, Ali K.; UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara

    2013-11-15

    A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO{sub 2} layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (V{sub t}) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V V{sub t} shift, the memory with CrO{sub 2} layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO{sub 2} layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics.

  17. Mobile Devices (phones and tablets)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mobile Devices (phones and tablets)

  18. Spectral photoresponse of ZnSe/GaAs(001) heterostructures with CdSe ultra-thin quantum well insertions

    SciTech Connect (OSTI)

    Valverde-Chvez, D. A.; Sutara, F.; Hernndez-Caldern, I.

    2014-05-15

    We present a study of the spectral photoresponse (SPR) of ZnSe/GaAs(001) heterostructures for different ZnSe film thickness with and without CdSe ultra-thin quantum well (UTQW) insertions. We observe a significant increase of the SPR of heterostructures containing 3 monolayer thick CdSe UTQW insertions; these results encourage their use in photodetectors and solar cells.

  19. Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity

    DOE Patents [OSTI]

    Werner, T.R.; Falco, C.M.; Schuller, I.K.

    1982-08-31

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  20. Ordered Mesoporous CMK-5 Carbon with Ultra-Thin Pore Walls and Highly Dispersed Nickel Nanoparticles

    SciTech Connect (OSTI)

    Fulvio, Pawquale F; Liang, Chengdu; Dai, Sheng; Jaroniec, Mietek

    2009-01-01

    Ordered mesoporous CMK-5 carbons with ultra-thin carbon pore walls and highly dispersed Ni nanoparticles have been successfully prepared by using two different SBA-15 silicas as hard templates and 2, 3-di-hydroxynaphtalene (DHN) as a carbon precursor. The nickel precursor was a concentrated nickel nitrate hexahydrate [Ni(NO3)2.6H2O] solution in isopropanol added to the carbon-silica nanocomposites prior to thermal treatments. The samples studied were analyzed by thermogravimetry (TG), nitrogen adsorption at -196 C, powder X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (STEM) and in situ electron diffraction X-ray spectroscopy (EDX). While TG revealed carbon contents lower than 30 wt%, nitrogen adsorption provided information about homogeneity of carbon thin film deposited onto mesopore walls of ordered silica templates, SBA-15. The templates, carbon-silica nanocomposites and carbon inverse replicas with nickel nanoparticles exhibited uniform pores, high surface areas and large pore volumes. Graphitic carbon was identified by the presence of a characteristic G band on Raman spectra, whereas the diffraction peak attributed to the stacking of graphene planes was not observed by powder XRD.The presence of ordered domains in the carbon materials studied was confirmed by small angle XRD and STEM imaging. In addition, the STEM images revealed that the nickel nanoparticles were uniform in size, ~3nm, and were homogeneously dispersed within ordered tubular carbon walls. A few larger clusters of nickel, ~60nm, present on the external surface, were identified by powder XRD as metallic Ni. The in situ EDX revealed that the small nanoparticles were largely composed of Ni with traces of NiO. Similar nanoparticles dispersions have been reported only for Ni-containing multi-walled carbon nanotubes (CNTs), whereas previously reported ordered mesoporous carbons possessed larger Ni/NiO nanoparticles within CMK-3 nanostructure.

  1. An ultra-thin diamond membrane as a transmission particle detector and vacuum window for external microbeams

    SciTech Connect (OSTI)

    Grilj, V.; Skukan, N.; Jaki?, M.; Pomorski, M.; Kada, W.; Iwamoto, N.; Kamiya, T.; Ohshima, T.

    2013-12-09

    Several applications of external microbeam techniques demand a very accurate and controlled dose delivery. To satisfy these requirements when post-sample ion detection is not feasible, we constructed a transmission single-ion detector based on an ultra-thin diamond membrane. The negligible intrinsic noise provides an excellent signal-to-noise ratio and enables a hit-detection efficiency of close to 100%, even for energetic protons, while the small thickness of the membrane limits beam spreading. Moreover, because of the superb mechanical stiffness of diamond, this membrane can simultaneously serve as a vacuum window and allow the extraction of an ion microbeam into the atmosphere.

  2. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    SciTech Connect (OSTI)

    Bouchard, Frdric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded space for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ?. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ?=2q? per photon. We experimentally demonstrate ? values ranging from 1 to 25 with conversion efficiencies of 8.6%??0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  3. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    SciTech Connect (OSTI)

    Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Zhang, Yong-Hang; Landini, Barbara; Campman, Ken

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300?nm thick GaAs absorber, combined with a 5??m thick Al{sub 0.52}In{sub 0.48}P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00?V, short-circuit current densities (J{sub sc}) up to 24.5?mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6?mA/cm{sup 2} and 20.7%, respectively.

  4. Ultra-thin L1{sub 0}-FePt for perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves

    SciTech Connect (OSTI)

    Ho, Pin; Chow, Gan Moog; Chen, Jing-Sheng, E-mail: msecj@nus.edu.sg [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Han, Guchang [Data Storage Institute, Agency of Science, Technology and Research (A-STAR), Singapore 117608 (Singapore); He, Kaihua [School of Mathematics and Physics, China University of Geosciences, Wuhan 430074 (China)

    2014-05-07

    Perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves (PSVs) with ultra-thin L1{sub 0}-FePt alloy free layer possessing high anisotropy and thermal stability have been fabricated and studied. The thickness of the L1{sub 0}-FePt layer was varied between 2 and 4?nm. The PSV became increasingly decoupled with reduced L1{sub 0}-FePt thickness due to the larger difference between the coercivity of the L1{sub 0}-FePt and [Co/Pd]{sub 30} films. The PSV with an ultra-thin L1{sub 0}-FePt free layer of 2?nm displayed a high K{sub u} of 2.21??10{sup 7}?ergs/cm{sup 3}, high thermal stability of 84 and a largest giant magnetoresistance of 0.54%.

  5. Structural characterization and comparison of iridium, platinum and gold/palladium ultra-thin film coatings for STM of biomolecules

    SciTech Connect (OSTI)

    Sebring, R.; Arendt, P.; Imai, B.; Bradbury, E.M.; Gatewood, J. [Los Alamos National Lab., NM (United States); Panitz, J. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Yau, P. [Univ. of California, Davis, CA (United States)

    1997-10-30

    Scanning tunneling microscopy (STM) is capable of atomic resolution and is ideally suited for imaging surfaces with uniform work function. A biological sample on a conducting substrate in air does not meet this criteria and requires a conductive coating for stable and reproducible STM imaging. In this paper, the authors describe the STM and transmission electron microscopy (TEM) characterization of ultra-thin ion-beam sputtered films of iridium and cathode sputtered gold/palladium and platinum films on highly ordered pyrolytic graphite (HOPG) which were developed for use as biomolecule coatings. The goals were the development of metal coatings sufficiently thin and fine grained that 15--20 {angstrom} features of biological molecules could be resolved using STM, and the development of a substrate/coating system which would allow complementary TEM information to be obtained for films and biological molecules. The authors demonstrate in this paper that ion-beam sputtered iridium on highly ordered pyrolytic graphite (HOPG) has met both these goals. The ion-beam sputtered iridium produced a very fine grained (< 10 {angstrom}) continuous film at 5--6 {angstrom} thickness suitable for stable air STM imaging. In comparison, cathode sputtered platinum produced 16 {angstrom} grains with the thinnest continuous film at 15 {angstrom} thickness, and the sputtered gold/palladium produced 25 {angstrom} grains with the thinnest continuous film at 18 {angstrom} thickness.

  6. Fiber optic spectrochemical emission sensor: Detection of volatile chlorinated compounds in air and water using ultra-thin membranes

    SciTech Connect (OSTI)

    Anheier, N.C. Jr.; Olsen, K.B.; Osantowski, R.E.; Evans, J.C. Jr.; Griffin, J.W.

    1993-05-01

    Prior work on the fiber optic spectrochemical emission sensor called HaloSnif{trademark} has been extended to include an ultra-thin membrane which allows passage of volatile organic chlorinated compounds (VOCl). The membrane has been demonstrated to exclude H{sub 2}O during VOCl monitoring. The system is capable of measuring VOCl in gas-phase samples or aqueous solutions over a wide linear dynamic range. The lower limit of detection for trichloroethylene (TCE), perchloroethylene (PCE), carbon tetrachloride (CCl{sub 4}), and other related compounds in the gas-phase is 1 to 5 ppm{sub v/v}, and in the aqueous-phase is 5 to 10 mg/L. Waste site characterization and remediation activities often require chemical analysis in the vadose zone and in groundwater. These analyses are typically performed in analytical laboratories using widely accepted standardized methods such as gas chromatography, gas chromatography/mass spectrometry. The new developments with HaloSnif provide rapid field screening which can augment the standardized methods.

  7. General method for simultaneous optimization of light trapping and carrier collection in an ultra-thin film organic photovoltaic cell

    SciTech Connect (OSTI)

    Tsai, Cheng-Chia Grote, Richard R.; Beck, Jonathan H.; Kymissis, Ioannis; Osgood, Richard M.; Englund, Dirk

    2014-07-14

    We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach is applied here to a ultra-thin film solar cell with a SubPc/C{sub 60} photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980?mA/cm{sup 2} for 30?nm and 45?nm SubPc/C{sub 60} heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30?nm thick cell, but only of 32% for a 45?nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.

  8. Enhancement of spin-Seebeck effect by inserting ultra-thin Fe{sub 70}Cu{sub 30} interlayer

    SciTech Connect (OSTI)

    Kikuchi, D.; Ishida, M.; Murakami, T.; Uchida, K.; Qiu, Z.; Saitoh, E.

    2015-02-23

    We report the longitudinal spin-Seebeck effects (LSSEs) for Pt/Fe{sub 70}Cu{sub 30}/BiY{sub 2}Fe{sub 5}O{sub 12} (BiYIG) and Pt/BiYIG devices. The LSSE voltage was found to be enhanced by inserting an ultra-thin Fe{sub 70}Cu{sub 30} interlayer. This enhancement decays sharply with increasing the Fe{sub 70}Cu{sub 30} thickness, suggesting that it is not due to bulk phenomena, such as a superposition of conventional thermoelectric effects, but due to interface effects related to the Fe{sub 70}Cu{sub 30} interlayer. Combined with control experiments using Pt/Fe{sub 70}Cu{sub 30} devices, we conclude that the enhancement of the LSSE voltage in the Pt/Fe{sub 70}Cu{sub 30}/BiYIG devices is attributed to the improvement of the spin-mixing conductance at the Pt/BiYIG interfaces.

  9. Hadron-therapy beam monitoring: Towards a new generation of ultra-thin p-type silicon strip detectors

    SciTech Connect (OSTI)

    Bouterfa, M.; Aouadi, K.; Bertrand, D.; Olbrechts, B.; Delamare, R.; Raskin, J. P.; Gil, E. C.; Flandre, D.

    2011-07-01

    Hadron-therapy has gained increasing interest for cancer treatment especially within the last decade. System commissioning and quality assurance procedures impose to monitor the particle beam using 2D dose measurements. Nowadays, several monitoring systems exist for hadron-therapy but all show a relatively high influence on the beam properties: indeed, most devices consist of several layers of materials that degrade the beam through scattering and energy losses. For precise treatment purposes, ultra-thin silicon strip detectors are investigated in order to reduce this beam scattering. We assess the beam size increase provoked by the Multiple Coulomb Scattering when passing through Si, to derive a target thickness. Monte-Carlo based simulations show a characteristic scattering opening angle lower than 1 mrad for thicknesses below 20 {mu}m. We then evaluated the fabrication process feasibility. We successfully thinned down silicon wafers to thicknesses lower than 10 {mu}m over areas of several cm{sup 2}. Strip detectors are presently being processed and they will tentatively be thinned down to 20 {mu}m. Moreover, two-dimensional TCAD simulations were carried out to investigate the beam detector performances on p-type Si substrates. Additionally, thick and thin substrates have been compared thanks to electrical simulations. Reducing the pitch between the strips increases breakdown voltage, whereas leakage current is quite insensitive to strips geometrical configuration. The samples are to be characterized as soon as possible in one of the IBA hadron-therapy facilities. For hadron-therapy, this would represent a considerable step forward in terms of treatment precision. (authors)

  10. Solid State eBurner for Supplying Power to Laptops, Cellphones...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Solid State eBurner for Supplying Power to Laptops, Cellphones Oak Ridge National Laboratory...

  11. Tuning of in-plane optical anisotropy by inserting ultra-thin InAs layer at interfaces in (001)-grown GaAs/AlGaAs quantum wells

    SciTech Connect (OSTI)

    Yu, J. L.; Cheng, S. Y.; Lai, Y. F.; Zheng, Q.

    2015-01-07

    The in-plane optical anisotropy (IPOA) in (001)-grown GaAs/AlGaAs quantum wells (QWs) with different well widths varying from 2?nm to 8?nm has been studied by reflectance difference spectroscopy. Ultra-thin InAs layers with thickness ranging from 0.5 monolayer (ML) to 1.5 ML have been inserted at GaAs/AlGaAs interfaces to tune the asymmetry in the QWs. It is demonstrated that the IPOA can be accurately tailored by the thickness of the inserted ultra-thin InAs layer at the interfaces. Strain-induced IPOA has also been extracted by using a stress apparatus. We find that the intensity of the strain-induced IPOA decreases with the thickness of the inserted InAs layer, while that of the interface-induced IPOA increases with the thickness of the InAs layer. Theoretical calculations based on 6 band k ? p theory have been carried out, and good agreements with experimental results are obtained. Our results demonstrate that, the IPOA of the QWs can be greatly and effectively tuned by inserting an ultra-thin InAs layer with different thicknesses at the interfaces of QWs, which does not significantly influence the transition energies and the transition probability of QWs.

  12. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructure on Si(111)

    SciTech Connect (OSTI)

    Chowdhury, Subhra; Biswas, Dhrubes

    2015-02-23

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600?nm, 400?nm, and 200?nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5?nm, In{sub 0.17}Al{sub 0.83}N1.25?nm, GaN1.5?nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10?}cm{sup ?2} to 10{sup 8?}cm{sup ?2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure. Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89?nm, 1.2?nm, and 1.45?nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.

  13. Preventing Laptop Fires and Thermal Runaway | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Preventing Laptop Fires and Thermal Runaway Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 12.05.12 Stories of Discovery & Innovation: Preventing Laptop Fires and Thermal Runaway Print Text Size: A A A Subscribe FeedbackShare Page Researchers point to "self-healing" materials as a potential means of improving lithium ion battery safety.

  14. Direct real space observation of magneto-electronic inhomogeneity in ultra-thin film La{sub 0.5}Sr{sub 0.5}CoO{sub 3??} on SrTiO{sub 3}(001)

    SciTech Connect (OSTI)

    Kelly, S.; Galli, F.; Aarts, J. E-mail: aarts@physics.leidenuniv.nl; Bose, Shameek; Sharma, M.; Leighton, C. E-mail: aarts@physics.leidenuniv.nl

    2014-09-15

    Recent magnetotransport and neutron scattering measurements implicate interfacial magneto-electronic phase separation as the origin of the degradation in transport and magnetism in ultra-thin film La{sub 1?x}Sr{sub x}CoO{sub 3} on SrTiO{sub 3}(001). Here, using low temperature scanning tunneling microscopy and spectroscopy the first direct, real space observation of this nanoscopic electronic inhomogeneity is provided. Films of thickness 12.4?nm (32 unit cells) are found to exhibit spatially uniform conductance, in stark contrast to 4.7?nm (12 unit cell) films that display rich variations in conductance, and thus local density of states. The electronic heterogeneity occurs across a hierarchy of length scales (550?nm), with complex correlations with both topography and applied magnetic fields. These results thus provide a direct observation of magneto-electronic inhomogeneity in SrTiO{sub 3}(001)/La{sub 0.5}Sr{sub 0.5}CoO{sub 3} at thicknesses below 67?nm, in good agreement with less direct techniques.

  15. U-228: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis PROBLEM: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities PLATFORM: Adobe Flash Player versions included with BlackBerry PlayBook tablet software versions...

  16. V-069: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple Vulnerabilities V-069: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple Vulnerabilities January 15, 2013 -...

  17. M-16-02, Category Management Policy 15-1: Improving the Acquisition and Management of Common Information Technology: Laptops and Desktops

    Energy Savers [EERE]

    OFFICE OF MANAGEMENT AND BUDGET WASHINGTON , D. C . 2.0503 October 16, 2015 M-16-02 MEMORANDUM FOR THE HEADS OF DEPARTMENTS AND AGENCIES FROM: Anne E. Rung Administrator t Tony Scott United State SUBJECT: Category Management Policy 15-1: Improving the Acquisition and Management of Common Information Technology: Laptops and Desktops The Federal Government spends over $50 billion a year on hardware, software, telecommunications, IT security, and IT professional services through tens ofthousands

  18. Neutron detectors comprising ultra-thin layers of boron powder

    DOE Patents [OSTI]

    Wang, Zhehul; Morris, Christopher

    2013-07-23

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  19. Lithium battery electrodes with ultra-thin alumina coatings

    DOE Patents [OSTI]

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  20. Radiation tolerance of ultra-thin Formvar films (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Here, we study 110-nm-thin free-standing polyvinyl formal (Formvar) films irradiated at room temperature with 1-5 keV electrons or 3 MeV alpha particles. We measure mechanical ...

  1. Ultra-Thin Antifouling Surface Treatments for Industrial Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sankar Sambasivan ATFI Founder, President & CEO www.afinet.com U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective Problem Statement *Fouling of heat exchangers is a serious problem in various energy intensive industries causing significant energy and productivity loss Challenges *Identifying surface treatment that is durable in high

  2. V-158: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities have been reported in BlackBerry Tablet OS, which can be exploited by malicious people to bypass certain security restrictions and compromise a user's system.

  3. Lignin Based Carbon Materials for Energy Storage Applications...

    Office of Scientific and Technical Information (OSTI)

    electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. ...

  4. PROHIBITED PURCHASES for the Ames Laboratory Purchase Card

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have been determined to be prohibited: Equipment Computing Devices (e.g. desktop, laptop, tablets, thin clients, mini-PCs) Servers Copiers Monitors Printers...

  5. AVAILABLE ONLINE AT: INITIATED BY:

    Broader source: Energy.gov (indexed) [DOE]

    medium. Examples include but are not limited to mobile phones, smart phones, tablet computers, laptops, mobile Wi-Fi hotspots, mobile printers, mobile point-of-sale devices,...

  6. Enhancing through thickness thermal conductivity of ultra-thin composite laminates. Final report

    SciTech Connect (OSTI)

    Ramani, K.; Vaidyanathan, A.

    1994-12-31

    The materials used in electronic applications have specific requirements for stiffness, thermal conductivity, and electromagnetic shielding making the choice of materials used very important. Electronic components are very sensitive to heat, hence the heat dissipation or cooling of the various components is necessary to prevent failure. Thus, any material used in the electronic industry must have a high thermal conductivity in addition to a specified thermal expansion, stiffness and strength properties. The purpose of this project was to design and manufacture composite panels which would conduct heat from an electronic chip attached to the top surface to a cooling liquid flowing at its lower surface. To maximize the heat conducted from the chip to the cooling liquid, the composite must have a high through thickness thermal conductivity. Further, design restrictions on the thickness of the composite panel had to be taken into account. It was found that the presence of excess resin adversely affects the conductivity of a woven fabric composite due to which the through thickness conductivity of the 400 {micro}m thick panel was better than the 500 {micro}m thick panel. The through thickness conductivity of the panel with short fibers alone was better than that of the woven cloth panel. The finite element model developed for a priori prediction of the through thickness thermal conductivity of the composite panels is a very powerful tool that can save enormous prototyping times an associates coats.

  7. Characterization of Chemical Speciation in Ultra Thin Uranium Oxide Films by Neutron Reflectometry

    SciTech Connect (OSTI)

    Wang, Peng

    2012-06-20

    Motivation for this project is due to more than 17 kg of HEU and 400 g of Pu have been interdicted through an international effort to control nuclear smuggling. Nuclear forensics - Detection and analysis of nuclear materials recovered from either the capture of unused materials or from the radioactive debris following a nuclear explosion or activities, which can contribute significantly for national security. Develop new nuclear forensic methods can be applied to: (a) Environmental swipes, (b) Small particulates, and (c) Thin films. Conclusions of the project are: (1) A unique approach: Neutron Reflectometry + Surface Enhanced Raman Spectroscopy; and (2) Detection of chemical speciation with {angstrom}-level resolution.

  8. MoS{sub 2} functionalization for ultra-thin atomic layer deposited dielectrics

    SciTech Connect (OSTI)

    Azcatl, Angelica; McDonnell, Stephen; Santosh, K.C.; Peng, Xin; Dong, Hong; Qin, Xiaoye; Addou, Rafik; Lu, Ning; Kim, Moon J.; Cho, Kyeongjae; Wallace, Robert M.; Mordi, Greg I.; Kim, Jiyoung

    2014-03-17

    The effect of room temperature ultraviolet-ozone (UV-O{sub 3}) exposure of MoS{sub 2} on the uniformity of subsequent atomic layer deposition of Al{sub 2}O{sub 3} is investigated. It is found that a UV-O{sub 3} pre-treatment removes adsorbed carbon contamination from the MoS{sub 2} surface and also functionalizes the MoS{sub 2} surface through the formation of a weak sulfur-oxygen bond without any evidence of molybdenum-sulfur bond disruption. This is supported by first principles density functional theory calculations which show that oxygen bonded to a surface sulfur atom while the sulfur is simultaneously back-bonded to three molybdenum atoms is a thermodynamically favorable configuration. The adsorbed oxygen increases the reactivity of MoS{sub 2} surface and provides nucleation sites for atomic layer deposition of Al{sub 2}O{sub 3}. The enhanced nucleation is found to be dependent on the thin film deposition temperature.

  9. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides

    SciTech Connect (OSTI)

    Ceschia, M.; Paccagnella, A.; Cester, A.; Scarpa, A.; Ghidini, G.

    1998-12-01

    Low-field leakage current has been measured in thin oxides after exposure to ionizing radiation. This Radiation Induced Leakage Current (RILC) can be described as an inelastic tunneling process mediated by neutral traps in the oxide, with an energy loss of about 1 eV. The neutral trap distribution is influenced by the oxide field applied during irradiation, thus indicating that the precursors of the neutral defects are charged, likely being defects associated to trapped holes. The maximum leakage current is found under zero-field condition during irradiation, and it rapidly decreases as the field is enhanced, due to a displacement of the defect distribution across the oxide towards the cathodic interface. The RILC kinetics are linear with the cumulative dose, in contrast with the power law found on electrically stressed devices.

  10. Ionizing radiation induced leakage current on ultra-thin gate oxides

    SciTech Connect (OSTI)

    Scarpa, A.; Paccagnella, A.; Montera, F.; Ghibaudo, G.; Pananakakis, G.; Fuochi, P.G.

    1997-12-01

    MOS capacitors with a 4.4 nm thick gate oxide have been exposed to {gamma} radiation from a Co{sup 60} source. As a result, the authors have measured a stable leakage current at fields lower than those required for Fowler-Nordheim tunneling. This Radiation Induced Leakage Current (RILC) is similar to the usual Stress Induced Leakage Currents (SILC) observed after electrical stresses of MOS devices. They have verified that these two currents share the same dependence on the oxide field, and the RILC contribution can be normalized to an equivalent injected charge for Constant Current Stresses. They have also considered the dependence of the RILC from the cumulative radiation dose, and from the applied bias during irradiation, suggesting a correlation between RILC and the distribution of trapped holes and neutral levels in the oxide layer.

  11. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark (Raleigh, NC); Bharathan, Jayesh (Cary, NC); Haberern, Kevin (Cary, NC); Bergmann, Michael (Chapel Hill, NC); Emerson, David (Chapel Hill, NC); Ibbetson, James (Santa Barbara, CA); Li, Ting (Ventura, CA)

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  12. In-silico investigation of Rayleigh instability in ultra-thin copper nanowire in premelting regime

    SciTech Connect (OSTI)

    Dutta, Amlan; Chatterjee, Swastika; Raychaudhuri, A. K.; Moitra, Amitava; Saha-Dasgupta, T.

    2014-06-28

    Motivated by the recent experimental reports, we explore the formation of Rayleigh-like instability in metallic nanowires during the solid state annealing, a concept originally introduced for liquid columns. Our molecular dynamics study using realistic interatomic potential reveals instability induced pattern formation at temperatures even below the melting temperature of the wire, in accordance with the experimental observations. We find that this is driven by the surface diffusion, which causes plastic slips in the system initiating necking in the nanowire. We further find the surface dominated mass-transport is of subdiffusive nature with time exponent less than unity. Our study provides an atomistic perspective of the instability formation in nanostructured solid phase.

  13. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  14. Dispelling a Misconception About Mg-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Designs October 16, 2014 Contact: Lynn Yarris, lcyarris@lbl.gov, +1 510.486.5375 Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a...

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispelling a Misconception About Mg-Ion Batteries Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices....

  16. Access Your Files | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apps. It can be used on many operating systems and devices, including desktop and laptop computers, tablets, and smartphones. Accounts All full- or part-time regular employees are...

  17. Non-H[sub 2]Se, ultra-thin CIS devices. [CuInSe[sub 2

    SciTech Connect (OSTI)

    Delahoy, A.E.; Britt, J.; Kiss, Z. )

    1993-02-01

    This report describes work done during Phase I of a 3-phase, cost- shared contract. Objective of the subcontract is to demonstrate 12% total-area efficiency copper indium diselenide (CIS) solar cells and 50-W CIS modules average at least 8 W/ft[sup 2] in the third year. At the end of Phase I, EPV delivered to NREL a 1.1 cm[sup 2] CIS cell with an active area efficiency of 10.5%. the corresponding total-area efficiency is 7.9%.

  18. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    DOE Patents [OSTI]

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  19. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO); Mascarenhas, Angelo (Lakewood, CO)

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  20. Could 135,000 Laptops Help Solve the Energy Challenge?

    Broader source: Energy.gov [DOE]

    Department of Energy Supercomputers to Pursue Breakthroughs in Biofuels, Nuclear Power, Medicine, Climate Change and Fundamental Research

  1. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  2. Non-H{sub 2}Se, ultra-thin CIS devices. Annual subcontract report, 10 March 1992--9 November 1992

    SciTech Connect (OSTI)

    Delahoy, A.E.; Britt, J.; Kiss, Z.

    1993-02-01

    This report describes work done during Phase I of a 3-phase, cost- shared contract. Objective of the subcontract is to demonstrate 12% total-area efficiency copper indium diselenide (CIS) solar cells and 50-W CIS modules average at least 8 W/ft{sup 2} in the third year. At the end of Phase I, EPV delivered to NREL a 1.1 cm{sup 2} CIS cell with an active area efficiency of 10.5%. the corresponding total-area efficiency is 7.9%.

  3. Non-H{sub 2}Se, ultra-thin CuInSe{sub 2} devices. Annual subcontract report, November 10, 1992--November 9, 1993

    SciTech Connect (OSTI)

    Delahoy, A.E.; Britt, J.; Faras, F.; Kiss, Z.

    1994-09-01

    This report describes advances made during Phase II (November 10, 1992-November 9, 1993) of a three-phase, cost-shared subcontract whose ultimate goal is the demonstration of thin film CuInSe{sub 2} photovoltaic modules prepared by methods adaptable to safe, high yield, high volume manufacturing. At the end of Phase I, EPV became one of the first groups to clear the 10% efficiency barrier for CIS cells prepared by non-H{sub 2}Se selenization. During Phase II a total area efficiency of 12.5% was achieved for a 1 cm{sup 2} cell. The key achievement of Phase II was the production of square foot CIS modules without the use of H{sub 2}Se. This is seen as a crucial step towards the commercialization of CIS. Using a novel interconnect technology, EPV delivered an 8.0% aperture area efficiency mini-module and a 6.2% aperture area efficiency 720 cm{sub 2} module to NREL. On the processing side, advances were made in precursor formation and the selenization profile, both of which contributed to higher quality CIS. The higher band gap quaternary chalcopyrite material CuIn(S{sub x}, Se{sub 1{minus}X}){sub 2} was prepared and 8% cells were fabricated using this material. Device analysis revealed a correlation between long wavelength quantum efficiency and the CIS Cu/In ratio. Temperature dependent studies highlighted the need for high V{sub OC} devices to minimize the impact of the voltage drop at operating temperature. Numerical modeling of module performance was performed in order to identify the correct ZnO sheet resistance for modules. Efforts in Phase III will focus on increase of module efficiency to 9-10%, initiation of an outdoor testing program, preparation of completely uniform CIS plates using second generation selenization equipment, and exploration of alternative precursors for CIS formation.

  4. Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition

    DOE Patents [OSTI]

    Jiang, Ying-Bing (Albuquerque, NM); Cecchi, Joseph L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM)

    2011-05-24

    Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

  5. Dispelling a Misconception About Mg-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispelling a Misconception About Mg-Ion Batteries Dispelling a Misconception About Mg-Ion Batteries Simulations Run at NERSC Provide a Path to Better Designs October 16, 2014 Contact: Lynn Yarris, lcyarris@lbl.gov, +1 510.486.5375 Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries with significant increases in energy density, reductions in

  6. Advanced Lighting Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appliances & Lighting We're developing cutting-edge appliances and innovative lighting to make life easier, reduce costs and increase energy efficiency. Home > Innovation > Appliances & Lighting A Quirky Idea: Turning Patents Into Consumer Products In April 2013, GE and Quirky announced a partnership that introduces a whole new way of inventing. We teamed up with Quirky, the... Read More » GE's Dual Piezoelectric Cooling Jets (DCJ) Are Cool and Quiet Ultrathin tablets and laptops

  7. Resistive switching in ultra-thin La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrRuO{sub 3} superlattices

    SciTech Connect (OSTI)

    Jammalamadaka, S. Narayana; Vanacken, Johan; Moshchalkov, V. V.

    2014-07-21

    Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macroscopic world. Here, we report the study of the resistive switching characteristics of a hybrid structure made out of a superlattice with ultrathin layers of two ferromagnetic metallic oxides, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and SrRuO{sub 3} (SRO). Bipolar resistive switching memory effects are measured on these LSMO/SRO superlattices, and the observed switching is explainable by ohmic and space charge-limited conduction laws. It is evident from the endurance characteristics that the on/off memory window of the cell is greater than 14, which indicates that this cell can reliably distinguish the stored information between high and low resistance states. The findings may pave a way to the construction of devices based on nonvolatile resistive memory effects.

  8. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    SciTech Connect (OSTI)

    Retamal, Mara J. Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G.; Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas; Busch, Mark; Huber, Patrick

    2014-09-14

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (?25 ) and DPPC (?60 ) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  9. Could 135,000 Laptops Help Solve the Energy Challenge? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    blood vessels to better predict and understand the rupture of aneurysms, sickle cell anemia and cerebral malaria. Simulating Large Regional Earthquakes Principal Investigator:...

  10. Preventing Laptop Fires and Thermal Runaway | U.S. DOE Office...

    Office of Science (SC) Website

    This work, featured in the Office of Science's Stories of Discovery & Innovation, was supported in part by the Center for Electrical Energy Storage (CEES), an EFRC led by Michael ...

  11. Preventing Laptop Fires and "Thermal Runaway" | U.S. DOE Office...

    Office of Science (SC) Website

    ... Ultimately such a failure can trigger a chain reaction whereby successive cells in the battery burst into ever hotter flames. (If you poke around the web, it's easy to find some ...

  12. Cool and Quiet DCJ | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dual Piezoelectric Cooling Jets (DCJ) Are Cool and Quiet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE's Dual Piezoelectric Cooling Jets (DCJ) Are Cool and Quiet Ultrathin tablets and laptops are the norm these days but researchers from GE have pioneered a technical breakthrough called DCJ that will enable even

  13. A I K E N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation to Keep the Country Charged AIKEN, S.C. (April 1, 2014) - It's a first-world problem needing a high-tech solution - how to keep portable electronic and communications devices charged for longer periods of time and for less money. The need to charge phones, tablets, and laptop computers is a constant battle. The Savannah River National Laboratory (SRNL) is helping conquer that challenge through the use of hydrogen. By combining a small fuel cell with a hydrogen storage device, power

  14. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    images of these ultra-thin nanosheets for the first time. By combining atomic force microscopy with infrared synchrotron light, ALS researchers from Berkeley Lab and the...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter Results Filter by Subject materials science (21) engineering (19) plasma physics ... 2010 Radiation tolerance of ultra-thin Formvar films Stadermann, M. ; Kucheyev, S. O. ; ...

  16. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanowire Single Photon Detector (SNSPD) and superconducting Transition-Edge Sensor (TES). An SSPD is an ultra-thin, ultra-narrow (nm scale) superconducting meander that is...

  17. Lorenzo Maserati | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    design consists of ultra thin MOF coatings on polymer supports that allow for high permeability while maintaining high gas selectivity. My efforts span membrane fabrication and...

  18. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were never imagined before." Examples include ultra-thin lenses, ultra-efficient cell phone antennas, and ways to keep satellites cool and photovoltaics more efficient. A recent...

  19. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopic images of these ultra-thin nanosheets for the first time. By combining atomic force microscopy with infrared synchrotron light, ALS researchers from Berkeley Lab...

  20. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  1. World record neutron beam at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  2. Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Los Angeles (UCLA), has developed the Micro Power Source, a system that integrates a lithium-ion- based solid electrolyte battery with an ultra- thin PV cell, producing a...

  3. DuPont Technology Breaks Away From Glass

    Broader source: Energy.gov [DOE]

    Delaware-based DuPont is working to develop ultra-thin moisture protective films for photovoltaic panels — so thin they’re about 1,000 times thinner than a human hair.

  4. Reduction of aspirin-induced fecal blood loss with low-dose misoprostol tablets in man

    SciTech Connect (OSTI)

    Cohen, M.M.; Clark, L.; Armstrong, L.; D'Souza, J.

    1985-07-01

    Misoprostol (SC-29333), a synthetic prostaglandin E1 methyl ester analog, was given simultaneously with acetylsalicylic acid in a double-blind, placebo-controlled randomized prospective study of 32 healthy human male subjects. Fecal blood loss was measured for eight days using the /sup 51/Cr-labeled red blood cell technique. Aspirin (650 mg qid) and misoprostol (25 micrograms qid) or placebo were given during days 3, 4, and 5. There was a significant (P less than 0.05) increase in median blood loss (modified Friedman test) from 0.81 to 6.05 ml/day in the aspirin with placebo group (N = 16). Median blood loss was increased (from 0.75 to 3.75 ml/day) in the aspirin with misoprostol group (N = 16), but this was significantly less (Mann-Whitney U test, P less than 0.01) than the placebo group. Mean serum salicylate concentrations in the placebo and misoprostol groups were similar (7.8 and 6.8 micrograms/ml, respectively). There were no significant changes in laboratory values in any of the subjects studied, nor were any major side-effects encountered. This study demonstrates that oral misoprostol reduces aspirin-induced gastrointestinal bleeding even when administered simultaneously and at a dose level below its threshold for significant acid inhibition. This indicates a potential role for misoprostol in the prevention of gastric mucosal damage in selected patients.

  5. Instructions for Using Virtual Private Network (VPN)

    Broader source: Energy.gov [DOE]

    Virtual Private Network (VPN) provides access to network drives and is recommended for use only from a EITS provided laptop.

  6. Hardware Architecture for Measurements for 50-V Battery Modules

    SciTech Connect (OSTI)

    Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

    2012-06-01

    Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

  7. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect (OSTI)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  8. Greenbutton datacustodian documentation | OpenEI Community

    Open Energy Info (EERE)

    Greenbutton datacustodian documentation Home > Groups > Green Button Applications Hi, I was able to bring up the greenbutton datacustodian project on my laptop at localhost:8080...

  9. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Broader source: Energy.gov (indexed) [DOE]

    phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop...

  10. EERE Success Story-Nationwide: New Efficiency Standards for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External power supplies convert household electric current from wall outlets into lower voltage current, and are used in many consumer products, including cell phones, laptop ...

  11. U.S. Department of Energy Collegiate Wind Competition 2016 Rules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... from an engineering perspective in response to marketing and performance requirements. ... A laptop computer will be provided for digital presentations (please bring necessary files ...

  12. UniBatt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: 29500 Product: Start-up company specializing in the development of innovative batteries for mobile electronic devices such as: laptops, cellular phones, PDAs, etc....

  13. Princeton Plasma Physics Lab - Lithium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so...

  14. E One Moli Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Tainan, Taiwan Sector: Vehicles Product: They make rechargeable Lithium Ion batteries for cell phones, laptop computers, higher-power batteries for power...

  15. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extremely fast, and with current computing power reconstructions can even be done on a laptop computer. The detector currently being used is unable to capture all necessary...

  16. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals for beam time User publications database Guest logistics and parking Loan of laptop, stealth phone and projector Logisitics for the annual users' meeting ALS Experiment...

  17. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RFID Nuclear engineer Yung Liu, with Argonne National Laboratory examines data on his laptop from the radio frequency identification device developed at the laboratory. The...

  18. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIMFR (normal incidence multifilter radiometer). The solar tracker was connected to a laptop computer in the ARM instrument shelter and changes in heading were entered Tenth ARM...

  19. TotalView | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can significantly improve the GUI response. Download the RDC and install it on your laptop or workstation: http:www.roguewave.comproductstotalviewremote-display-client.aspx...

  20. Boston Power | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Zip: 01581 3961 Sector: Vehicles Product: Start-up developing a battery for laptop computers and electric vehicles. Coordinates: 42.283096, -71.600318...

  1. The Sandia Cooler - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency Applications and Industries Laptops High performance "gaming" PCs Home video game boxes Various other electronic devices LED Lighting HVAC Automotive Large Appliances...

  2. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional...

  3. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is...

  4. Breakthrough Los Alamos software is available for licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos software is available for licensing Sequedex speeds detection of diseases and cancer-treatment targets February 1, 2015 Thanks to the new technology, laptop computers can...

  5. Research Support Facility (RSF): Leadership in Building Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    open windows when conditions permit, allowing for natural ventilation and improved indoor air quality. Highly efficient laptop computers, monitors, and all-in-one printfaxscan...

  6. National Atmospheric Release Advisory Center | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ... links using the internet, and using web tools implemented by NARAC. Emergency ... website by using a standard web browser run on standard desktop and laptop computers. ...

  7. Microsoft Word - Final Report 01-02-08.doc

    Broader source: Energy.gov (indexed) [DOE]

    Department's Oak Ridge National Laboratory (ORNL) had brought an unclassified laptop computer into a Y-12 Limited Area without following proper protocols; Imnediately thereafter,...

  8. U.S. Department of Energy, Office of Legacy Management Post Competitio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LM's carbon footprint by switching desktop computers to laptops with docking stations. ... Goal 4 FY2015 6. Complete analysis of LM management of ongoing mission ...

  9. Microsoft Word - DOE_LM_HPOFINAL6.19.12.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LM's carbon footprint by switching desktop computers to laptops with docking stations. ... Goal 4 FY2015 6. Complete analysis of LM management of ongoing mission ...

  10. Systems and methods for producing low work function electrodes

    DOE Patents [OSTI]

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Kahn, Antoine; Meyer, Jens; Shim, Jae Won; Marder, Seth R.

    2015-07-07

    According to an exemplary embodiment of the invention, systems and methods are provided for producing low work function electrodes. According to an exemplary embodiment, a method is provided for reducing a work function of an electrode. The method includes applying, to at least a portion of the electrode, a solution comprising a Lewis basic oligomer or polymer; and based at least in part on applying the solution, forming an ultra-thin layer on a surface of the electrode, wherein the ultra-thin layer reduces the work function associated with the electrode by greater than 0.5 eV. According to another exemplary embodiment of the invention, a device is provided. The device includes a semiconductor; at least one electrode disposed adjacent to the semiconductor and configured to transport electrons in or out of the semiconductor.

  11. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  12. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  13. Method for fabricating pixelated silicon device cells

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  14. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  15. NREL-Energy Assessment Training Course | Open Energy Information

    Open Energy Info (EERE)

    are asked to bring a laptop, a calculator and a notebook. Attendees are asked to have Microsoft Excel, Word, and eQuest, (a free energy modeling software program) loaded onto their...

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  17. The future of batteries: Q&A with the director of the national...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Now, the laboratory's semiannual science magazine. Everywhere you look, you see lithium-ion batteries. They're in your laptop, your cell phone, your power tools, maybe...

  18. Git

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you are about to create and any other "clones" of it you have, perhaps on your laptop. Call the repository you are about to create the SG-repository, for "Science Gateway...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to operate the ARM site on Manus Island. After a short demonstration of the kiosk on a laptop computer by ARM Education and Outreach director Andrea Maestas, the gathering then...

  20. Other Matters - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    109); no coins necessary. Top What kind of internet access is there? Should I bring my laptop? Wi-Fi is free for a guest's first seven days on campus; lecture notes will be...

  1. ARM - Education Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Those who visited the poster and kiosk were able to go through the kiosk software at a laptop to go through the kiosk software and gave their suggestions on how to make it better....

  2. Sector4 FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data home? I hear a horn coming from 4-ID-A; whats going on? How can I print from my laptop? After you leave: Posted by: Becki Gagnon ( gagnon@aps.anl.gov) Content by: Jonathan...

  3. HyEnergy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Texas Zip: 78730 Product: Developer of the FlatStack Fuel Cell System, a hybrid batteryfuel cell family providing lightweight and low cost power for devices such as laptop...

  4. Boston Power GP Batteries JV | Open Energy Information

    Open Energy Info (EERE)

    Taiwan-based JV that produces Sonata rechargeable Li-ion batteries for laptop computers. References: Boston Power & GP Batteries JV1 This article is a stub. You can help...

  5. NREL: Energy Systems Integration - Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Development Photo of a man working at a laptop in front of laboratory equipment. NREL researchers are tackling a range of energy systems integration challenges to create a...

  6. Sandia National Laboratories: Research: High Consequence, Automation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    than a laptop and a consumer color and depth camera (e.g., the Microsoft Kinect & ASUS sensor). The sensor generates a noisy cloud of 300 thousand 3-D points thirty times per...

  7. Tips: Home Office and Electronics | Department of Energy

    Energy Savers [EERE]

    power con-tinuously, even when the laptop is not plugged into the adapter. Using the power management settings on computers and monitors can cause significant savings. It is a...

  8. The Breakthrough Behind the Chevy Volt Battery

    DOE R&D Accomplishments [OSTI]

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  9. Virtual Private Network (VPN) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructions for using a Cryptocard Download the VPN Client VPN client downloads (login required) Instructions AnyConnect Client For laptop or desktop For mobile devices IpSec ...

  10. Wind for Schools Portal Motion Chart | Open Energy Information

    Open Energy Info (EERE)

    this analytical feature on a browser that has Flash, such as a laptop or desktop computer. Retrieved from "http:en.openei.orgwindex.php?titleWindforSchoolsPortalMotio...

  11. Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits

    SciTech Connect (OSTI)

    Quintana, C. M.; Megrant, A.; Chen, Z.; Dunsworth, A.; Chiaro, B.; Barends, R.; Campbell, B.; Chen, Yu; Hoi, I.-C.; Jeffrey, E.; Kelly, J.; Mutus, J. Y.; O'Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; and others

    2014-08-11

    Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.

  12. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  13. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  14. Magnetron sputtered boron films and Ti/B multilayer structures

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  15. Magnetron sputtered boron films and TI/B multilayer structures

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  16. Iran Thomas Auditorium, 8600

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 16, 2008 11:00 am Iran Thomas Auditorium, 8600 Light refreshments will be served "Quantum growth and related phenomena in metallic thin films" C. K. Shih Department of Physics, University of Texas, Austin CNMS D D I I S S C C O O V V E E R R Y Y SEMINAR SERIES Abstract: In ultra-thin epitaxial metallic films, confinement of electronic states along the vertical direction leads to the formation of quantum well states (QWS). Over the past few years it has been shown that such QWS have

  17. Enzymatically active high-flux selectively gas-permeable membranes

    DOE Patents [OSTI]

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  18. Method for fabricating thin films of pyrolytic carbon

    DOE Patents [OSTI]

    Brassell, Gilbert W. (Lenoir City, TN); Lewis, Jr., John (Oak Ridge, TN); Weber, Gary W. (Amherst, NY)

    1982-01-01

    The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.

  19. Software speeds detection of diseases and cancer-treatment targets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software speeds detection of diseases Software speeds detection of diseases and cancer-treatment targets The Lab has released an updated version of software that is now capable of identifying DNA from viruses and all parts of the Tree of Life. December 1, 2014 With Sequedex, a laptop computer can analyze DNA sequences faster than any current DNA sequencer can create them. With Sequedex, a laptop computer can analyze DNA sequences faster than any current DNA sequencer can create them. Contact

  20. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures

    SciTech Connect (OSTI)

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; Nan, Tianxiang; Chen, Xing; Mahalingam, Krishnamurthy; Sun, Nian X.; Brown, Gail J.

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning in ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.

  1. Highly Charged Ion (HCI) Modified Tunnel Junctions

    SciTech Connect (OSTI)

    Pomeroy, J. M.; Grube, H. [Atomic Physics Division, National Institute of Standards and Technology (NIST) 100 Bureau Dr., MS 8423, Gaithersburg, MD 20899-8423 (United States)

    2009-03-10

    The neutralization energy carried by highly charged ions (HCIs) provides an alternative method for localizing energy on a target's surface, producing features and modifying surfaces with fluences and kinetic energy damage that are negligible compared to singly ionized atoms. Since each HCI can deposit an enormous amount of energy into a small volume of the surface (e.g., Xe{sup 44+} delivers 51 keV of neutralization energy per HCI), each individual HCI's interaction with the target can produce a nanoscale feature. Many studies of HCI-surface features have characterized some basic principles of this unique ion-surface interaction, but the activity reported here has been focused on studying ensembles of HCI features in ultra-thin insulating films by fabricating multi-layer tunnel junction devices. The ultra-thin insulating barriers allow current to flow by tunneling, providing a very sensitive means of detecting changes in the barrier due to highly charged ion irradiation and, conversely, HCI modification provides a method of finely tuning the transparency of the tunnel junctions that spans several orders of magnitude for devices produced from a single process recipe. Systematic variation of junction bias, temperature, magnetic field and other parameters provides determination of the transport mechanism, defect densities, and magnetic properties of these nano-features and this novel approach to device fabrication.

  2. Strain induced Z{sub 2} topological insulating state of ?-As{sub 2}Te{sub 3}

    SciTech Connect (OSTI)

    Pal, Koushik; Waghmare, Umesh V.

    2014-08-11

    Topological insulators are non-trivial quantum states of matter which exhibit a gap in the electronic structure of their bulk form, but a gapless metallic electronic spectrum at the surface. Here, we predict a uniaxial strain induced electronic topological transition (ETT) from a band to topological insulating state in the rhombohedral phase (space group: R3{sup }m) of As{sub 2}Te{sub 3} (?-As{sub 2}Te{sub 3}) through first-principles calculations including spin-orbit coupling within density functional theory. The ETT in ?-As{sub 2}Te{sub 3} is shown to occur at the uniaxial strain ?{sub zz}?=??0.05 (?{sub zz}?=?1.77?GPa), passing through a Weyl metallic state with a single Dirac cone in its electronic structure at the ? point. We demonstrate the ETT through band inversion and reversal of parity of the top of the valence and bottom of the conduction bands leading to change in the ?{sub 2} topological invariant ?{sub 0} from 0 to 1 across the transition. Based on its electronic structure and phonon dispersion, we propose ultra-thin films of As{sub 2}Te{sub 3} to be promising for use in ultra-thin stress sensors, charge pumps, and thermoelectrics.

  3. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; Nan, Tianxiang; Chen, Xing; Mahalingam, Krishnamurthy; Sun, Nian X.; Brown, Gail J.

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning in ultra-thin multiferroic heterostructures, demonstrating great potentialmore » for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less

  4. Introducing a More Responsive Energy.gov

    Broader source: Energy.gov [DOE]

    Energy.gov now features a responsive design that automatically optimizes the browsing experience for smartphones and tablets, and makes it easier to find consumer energy saving information.

  5. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Print The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets,...

  6. September2015News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that our visitors want to use their smart phones and tablets to share spontaneously on social media about their visit," said Linda Deck, the Bradbury's director. Omar Juveland,...

  7. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    All of these insights are now brought to you in enhanced packaging, including responsive design to facilitate use on tablets, smart phones, etc. This enhancement continues ongoing ...

  8. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing...

  9. Green Button Apps | Open Energy Information

    Open Energy Info (EERE)

    new apps for mobile phones, computers, tablets, software programs and more, utilizing data from major utility companies to help consumers and businesses use less energy and...

  10. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such...

  11. Delivering Innovations That Create Jobs: National Lab Ignites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology behind smartphones and tablet computers, new generations of pharmaceuticals and a brand new perspective on how we see our own planet via the Google Earth application. ...

  12. Air-Breathing Fuel Cell Stack - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air-Breathing Fuel Cell Stack Los Alamos National Laboratory Contact LANL About This Technology Air-breathing passive fuel cell stack Air-breathing passive fuel cell stack Technology Marketing SummaryLANL has developed a fuel cell for portable power applications in laptop computers, toys, and other appliances with low-power demand.DescriptionThe increasing number of portable electronic devices on the market today-from laptop computers to remote-controlled toys-is creating a demand for improved,

  13. New Website to Keep Portsmouth, Paducah Site Stakeholders Up to Date |

    Energy Savers [EERE]

    Department of Energy Website to Keep Portsmouth, Paducah Site Stakeholders Up to Date New Website to Keep Portsmouth, Paducah Site Stakeholders Up to Date March 30, 2015 - 12:00pm Addthis A view of PPPO’s retooled website on a smartphone and laptop. A view of PPPO's retooled website on a smartphone and laptop. LEXINGTON, Ky. - The Portsmouth/Paducah Project Office (PPPO) has launched a new website to provide timely and accessible public information about EM's cleanup efforts at the

  14. Computer usage and national energy consumption: Results from a field-metering study

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah; Young, Scott

    2014-12-01

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power of power supplies to computing needs, and improving the efficiency of individual components.

  15. #LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT #LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT June 27, 2012 - 2:31pm Addthis The simple, portable device identifies materials through their characteristic energy signals as unique as fingerprints. The three detectors are housed in a thermos-sized container that is connected to a laptop computer. The device issues a signal turning the laptop display bright red when nuclear material of

  16. Novel Carbon Nanotube-Based Nanostructures for High-Temperature Gas Sensing

    SciTech Connect (OSTI)

    Zhi Chen; Kozo Saito

    2008-08-31

    The primary objective of this research is to examine the feasibility of using vertically aligned multi-wall carbon nanotubes (MWCNTs) as a high temperature sensor material for fossil energy systems where reducing atmospheres are present. In the initial period of research, we fabricated capacitive sensors for hydrogen sensing using vertically aligned MWCNTs. We found that CNT itself is not sensitive to hydrogen. Moreover, with the help of Pd electrodes, hydrogen sensors based on CNTs are very sensitive and fast responsive. However, the Pd-based sensors can not withstand high temperature (T<200 C). In the last year, we successfully fabricated a hydrogen sensor based on an ultra-thin nanoporous titanium oxide (TiO{sub 2}) film supported by an AAO substrate, which can operate at 500 C with hydrogen concentrations in a range from 50 to 500 ppm.

  17. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  18. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  19. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  1. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  2. Magnetron sputtered boron films

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  3. Method of forming biaxially textured alloy substrates and devices thereon

    DOE Patents [OSTI]

    Goyal, Amit (300 Walker Springs Rd., #19E, Knoxville, TN 37923); Specht, Eliot D. (10639 Rivermist La., Knoxville, TN 37922); Kroeger, Donald M. (716 Villa Crest Dr., Knoxville, TN 37923); Paranthaman, Mariappan (1117 Oak Haven Rd., Knoxville, TN 37923)

    2000-01-01

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  4. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  5. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors

    SciTech Connect (OSTI)

    Niu, Wendy Baumberg, Jeremy J.; Eiden, Anna; Vijaya Prakash, G.

    2014-04-28

    Ultra-thin flakes of 2D organic-inorganic perovskite (C{sub 6}H{sub 9}C{sub 2}H{sub 4}NH{sub 3}){sub 2}PbI{sub 4} are produced using micromechanical exfoliation. Mono- and few-layer areas are identified using optical and atomic force microscopy, with an interlayer spacing of 1.6?nm. Refractive indices extracted from the optical spectra reveal a sample thickness dependence due to the charge transfer between organic and inorganic layers. These measurements demonstrate a clear difference in the exciton properties between bulk (>15 layers) and very thin (<8 layer) regions as a result of the structural rearrangement of organic molecules around the inorganic sheets.

  6. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  8. Nonlocal Thermal Transport across Embedded Few-Layer Graphene Sheets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Ying; Huxtable, Scott T; Yang, Bao; Sumpter, Bobby G; Qiao, Rui

    2014-01-01

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. The nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involvingmore » few-layer graphene sheets or other ultra-thin layered materials.« less

  9. Magnetron sputtered boron films

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  10. In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents

    SciTech Connect (OSTI)

    Masuda, Takuya; PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 333-0012 ; Yoshikawa, Hideki; Kobata, Masaaki; Kobayashi, Keisuke; Noguchi, Hidenori; PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 333-0012; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810; International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Tsukuba, Ibaraki 305-0044 ; Kawasaki, Tadahiro; Uosaki, Kohei; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810; International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Tsukuba, Ibaraki 305-0044

    2013-09-09

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  11. Method of forming biaxially textured alloy substrates and devices thereon

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN); Specht, Eliot D. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN)

    1999-01-01

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  12. Inverted GaInP/(In)GaAs/InGaAs Triple-Junction Solar Cells with Low-Stress Metamorphic Bottom Junctions: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Kurtz, S. R.; Wanlass, M. W.; Ward, J. S.; Duda, A.; Friedman, D. J.; Olson, J. M.; McMahon, W. E.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.

    2008-05-01

    We demonstrate high efficiency performance in two ultra-thin, Ge-free III-V semiconductor triple-junction solar cell device designs grown in an inverted configuration. Low-stress metamorphic junctions were engineered to achieve excellent photovoltaic performance with less than 3 x 106 cm-2 threading dislocations. The first design with band gaps of 1.83/1.40/1.00 eV, containing a single metamorphic junction, achieved 33.8% and 39.2% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 131 suns, respectively. The second design with band gaps of 1.83/1.34/0.89 eV, containing two metamorphic junctions achieved 33.2% and 40.1% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 143 suns, respectively.

  13. PNNL: Publications: Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CISCO Phone Screens iPhone 4 & 4S iPhone 5, 5S, & 5C iPhone 6 iPhone 6 Plus Samsung Galaxy S3 Samsung Galaxy S4 & S5 Tablet Wallpaper Tablet Wallpaper iPad 1, 2, & 1st Gen. Mini...

  14. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. California Geothermal Power Plant to Help Meet High Lithium Demand

    Broader source: Energy.gov [DOE]

    Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

  16. Plastic Bags to Batteries: A Green Chemistry Solution

    ScienceCinema (OSTI)

    None

    2013-04-19

    Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue! At Argonne National Laboratory, Vilas Pol has found a way to not only recycle plastic bags--but make them into valuable batteries for cell phones and laptops.

  17. Chapter 5: Increasing Efficiency of Building Systems and Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Other Appliances 1.3 3.4% Desktop PC 0.8 2.1% Dehumidifiers 0.7 1.9% Microwaves 0.7 1.8% Spas 0.5 1.3% Clothes Washers 0.5 1.3% Monitors 0.4 1.2% Network Equip. 0.4 1.0% Laptops ...

  18. Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future

    Broader source: Energy.gov [DOE]

    From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future.

  19. Mobile Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    app for iPhone and iPod. Primo No Yes Non-LANL device must use Library Remote Access. Proquest No Mobile Devices When using a tablet use this site. PubMed PubMed Lite,...

  20. RoboRAVE brings robot fever to Northern New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    also was the first time that students were able to test electronic scoring via their Smartphones or tablets and see their scores in real time. Another first was the a-MAZE-ing...

  1. U-119: Blackberry PlayBook Unspecified WebKit Bug Lets Remote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7.1, and BlackBerry PlayBook tablet software ABSTRACT: A remote user can create HTML that, when loaded by the target user, will execute arbitrary code on the target user's...

  2. Crystal nucleation and near-epitaxial growth in nacre

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal nucleation and near-epitaxial growth in nacre Crystal nucleation and near-epitaxial growth in nacre Print Thursday, 12 December 2013 13:56 Nacre--the iridescent inner lining of many mollusk shells-- has a unique strcuture that is remarkably resistant to fracture. The nacre featured on this cover is from Haliotis laevigata with average layer thickness 470-nm. The colors represent crystal orientationthe crystal lattice tilts across tablets.left stack all tablets are yellow, hence all

  3. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  4. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  5. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  6. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile

  7. Multicore: Fallout from a Computing Evolution

    ScienceCinema (OSTI)

    Yelick, Kathy [Director, NERSC

    2009-09-01

    July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.

  8. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  9. Viz Collab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viz Collab Viz Collab The Collaboration Laboratory offers video teleconferencing, ready-made informative movies, general slide presentations via laptop, and sci-viz collaboration through a cluster. Contact Institute Director Stephan Eidenbenz (505) 667-3742 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email Scientific visualization hardware and software tools enable researchers to better understand large data sets. Complimenting resources in the SCC, the Scientific

  10. Microsoft Word - DOE-ID-12-005 New Mexico.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: Equipment Upgrade for the UNM AGN-201M Reactor - University of New Mexico SECTION B. Project Description The University of New Mexico will acquire a computer and associated hardware to measure control rod scram times, a laptop computer and associated electronics such as MCS and MCA systems for operating a High Purity Germanium detector, a Frisker and micro R meter for personnel protection and radiation surveys, a new interface for the data channel, NCRP reports, and

  11. 2003 CBECS Pre-Test Questionnaire

    Gasoline and Diesel Fuel Update (EIA)

    HOW TO USE THIS QUESTIONNAIRE The 2012 Commercial Buildings Energy Consumption Survey (CBECS) will be conducted using a computer- assisted interview programmed using a software called Blaise. A professional interviewer will administer the questionnaire to the building respondent using a laptop computer. The purpose of this paper representation of the questionnaire is to document the question text, fills, and skip patterns within the 2012 CBECS questionnaire. PLEASE NOTE: All the question fills

  12. Highly Oriented Crystals in Polythiophenes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Oriented Crystals in Polythiophenes Conjugated polymers are being developed as the active semiconductor in devices such as light-emitting diodes, photovoltaic cells, and thin-film transistors (TFTs) for large-area and low-cost electronics. Vacuum deposited amorphous silicon is currently used in the TFTs that drive the active matrix liquid crystal displays (AM-LCDs) on laptops, computer monitors and televisions. TFTs are also used in disposable electronics such as radiofrequency

  13. Inspection Report: IG-0660 | Department of Energy

    Energy Savers [EERE]

    0 Inspection Report: IG-0660 August 30, 2004 Inspection Report on "Internal Controls Over the Accountability of Computers at Sandia National Laboratory, New Mexico The Office of Inspector General initiated an inspection to determine the adequacy of internal controls over the extensive inventory of laptop and desktop computers at Sandia National Laboratory, New Mexico. Computers are used in the full range of operations at Sandia, to include processing classified information. Department of

  14. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond medical information Topic Mixing Science.gov, Coffee, and a Laptop by Cathey Daniels 05 Dec, 2007 in Personal Perspectives Yesterday my son had an emergency appendectomy - these days a pretty routine procedure. But far from routine was the array of drugs offered to get him through the long night ahead. Related Topics: medical information, osti, Science.gov

  15. PNNL: Publications: Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Science as Art Calendar A dozen stunning images depicting basic and applied research at Pacific Northwest National Laboratory are showcased in a 2016 Science as Art collection. Wallpaper calendar and background images for your desktop or laptop The colorful images include close-up views of materials under a microscope and visualized computational modeling results. The images - which showcase everything from bacteria to batteries - are the result of PNNL's diverse research, including

  16. Director's CD-1/Trial CD-2 Review of the MINERvA Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1/Trial CD-2 Review of the MINERvA Project Main INjector ExpeRiment v-A December 13-15, 2005 | Overview | General Reference Material | CD-1/CD-2 Documentation| Link to the Directorate Web Page for this review Review Overview Information Charge to the Committee (pdf) Agenda (pdf - linked to talks) List of Prepared Breakout Talks (pdf) Review Committee (pdf) Video and Phone Connection Numbers (doc) Information for Visitors Bringing Laptops to Fermilab (doc) Final Report - Director's Prelimianary

  17. through Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area schools get new computers through Los Alamos National Laboratory, IBM partnership May 8, 2009 LOS ALAMOS, New Mexico, May 8, 2009-Thanks to a partnership between Los Alamos National Laboratory and IBM, Northern New Mexico schools are recipients of fully loaded desktop and laptop computers. Officials from the Laboratory's Community Programs Office, the Española School Board, and elected officials including Española Mayor Joseph Maestas recently dedicated the technology center at Española

  18. Area schools get new computers through Los Alamos National Laboratory, IBM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership Area schools get new computers Area schools get new computers through Los Alamos National Laboratory, IBM partnership Northern New Mexico schools are recipients of fully loaded desktop and laptop computers. May 8, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  19. N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering every- thing from laptops to hybrid cars. What may not be so well known is the fact that researchers hoping to harness the energy released in fusion reactions also have used lithium to coat the walls of donut-shaped toka- mak reactors. Lithium, it turns out, may help the plasmas fueling fusion reactions to retain heat for longer periods of time. This could improve the chances of

  20. NREL Seeks to Optimize Individual Comfort in Buildings - News Feature |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Seeks to Optimize Individual Comfort in Buildings October 7, 2015 Photo shows two people sitting in a white room, holding smartphones in front of laptops. Scott Jensen and Grace Brown were the first volunteers to take part in testing in NREL's Comfort Suite (C-Suite). Photo by Dennis Schroeder On a typical early fall morning in Golden, Colorado, the temperature outside was about 70 degrees Fahrenheit. Tucked inside a unique structure at the Energy Department's National Renewable Energy

  1. Lithium | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Subscribe to RSS - Lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so well known is the fact that researchers hoping to harness the energy released in fusion reactions also have used lithium to coat the walls of donut-shaped tokamak reactors. Lithium, it turns out, may help the plasmas fueling fusion reactions to retain heat for longer periods of time. This could

  2. Multicore: Fallout From a Computing Evolution (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Yelick, Kathy [Director, NERSC

    2011-04-28

    Summer Lecture Series 2008: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.

  3. NREL: Transportation Research - Power Electronics and Electric Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications and Electric Machines Publications NREL and its partners have produced many papers and presentations related to power electronics and electric machines. For more information about the following publications, contact Sreekant Narumanchi. A photo of a group of researchers sitting around a table with printed publications and laptops. Reports from power electronics and electric machines research are available to the public. Photo by Pat Corkery, NREL Software Spray System Evaluation

  4. Los Alamos STEM Challenge registration due April 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos STEM Challenge registration due April 12 Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Los Alamos STEM Challenge registration due April 12 Submission deadline April 30. April 1, 2013 Two students at work on a laptop Videos, posters, apps and essays are all possible submissions for the upcoming STEM Challenge for students. Contact Editor Linda Anderman Email Community Programs Office

  5. Sandia National Laboratories: Careers: Internships & Co-ops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internships & Co-ops Internships & Co-ops Technical Institute Programs How to Apply Intern Benefits Intern FAQs Fellowships Postdoctoral Positions Campus Recruiting Careers Internships & Co-ops Student working on laptop An exceptional educational experience Receive mentoring, training, and practical work experience in a world-class research environment. Are you interested in applying classroom theory in a real-world work environment? Each year, Sandia welcomes students from around

  6. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) *

  7. Career Map: Buyer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buyer Career Map: Buyer A purchasing manager looks over his notes on a laptop with a binder in front of him. Buyer Position Title Buyer Alternate Title(s) Purchasing Agent, Purchasing Specialist, Commodity Manager, Purchasing Manager Education & Training Level Mid-level, Bachelor's degree preferred Education & Training Level Description Although educational requirements for buyers may vary by the size of the organization and the type of product, all need extensive on-the-job training.

  8. Slide 1

    Energy Savers [EERE]

    PARS IIE CONTROLLED UNCLASSIFIED INFORMATION (CUI) TRAINING Two-Factor Authentication (TFA) Document Marking, Encryption, and Access OVERVIEW - TWO-FACTOR AUTHENTICATION (TFA)  No changes to URL (https://pars2e.doe.gov)  No changes to current username/password  Additional authentication step  Time-based Security Token delivered to registered email, or  Registered equipment (laptop/desktop) with unique IP  No other changes to timeout, password expiration, or account deactivation

  9. Audit Report: IG-0768 | Department of Energy

    Energy Savers [EERE]

    8 Audit Report: IG-0768 June 22, 2007 Facility Contractor Acquisition and Management of Information Technology Hardware The Department of Energy relies heavily on information technology (IT) to accomplish its science, weapons, energy supply and environmental mission objectives. In the past three years, the Department has spent more than $400 million on IT hardware to facilitate these efforts. Items routinely acquired by the Department included desktop and laptop computers and associated

  10. CSAT Course Catalog | Department of Energy

    Energy Savers [EERE]

    Services » Training » Cybersecurity Training Warehouse » DOE Training & Education » CSAT Course Catalog CSAT Course Catalog laptop-1031224_960_720.jpg The Cyber Security Training and Awareness (CSAT) Course Catalog offers: cybersecurity awareness materials cybersecurity training for general users training for personnel with a cybersecurity functional role role-based training modules vendor courses that address core competency knowledge requirements PDF icon CSAT Course Catalog More

  11. Home Office and Electronics | Department of Energy

    Energy Savers [EERE]

    Home Office and Electronics Home Office and Electronics Addthis Keep Your Home Office Efficient with ENERGY STAR. 1 of 2 Keep Your Home Office Efficient with ENERGY STAR. Laptops are far more efficient than desktop computers, especially ENERGY STAR qualified models. Use Smart Power Strips to Save Energy. 2 of 2 Use Smart Power Strips to Save Energy. Many electronics go into standby mode when you turn them off. Reduce wasted (vampire) power by plugging electronics into a smart power strip, which

  12. POLICY FLASH 2016-03 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 POLICY FLASH 2016-03 DATE: October 20, 2015 TO: Procurement Directors/Contracting Officers FROM: Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: OMB Category Management Policy 15-1: Improving the Acquisition and Management of Common Information Technology: Laptops and Desktops SUMMARY: On October 16, 2015, the Office of Management and Budget (OMB) issued the first in a series of information technology (IT) directives to improve

  13. Inspection Report: IG-0597 | Department of Energy

    Office of Environmental Management (EM)

    7 Inspection Report: IG-0597 April 24, 2003 Inspection of Internal Controls Over Personal Computers at Los Alamos National Laboratory Computers are used extensively in the full range of operations at the Los Alamos National Laboratory (LANL), including processing classified national security information. LANL reported an inventory of approximately 5,000 laptop and 30,000 desktop computers at the end of Fiscal Year (FY) 2002. Department of Energy (DOE) and LANL property policies identify

  14. Inspection Report: IG-0656 | Department of Energy

    Office of Environmental Management (EM)

    6 Inspection Report: IG-0656 August 10, 2004 Internal Controls Over Personal Computers at Los Alamos National Laboratory The Office of Inspector General initiated an inspection to determine the adequacy of internal controls over the extensive inventory of laptop computers at Los Alamos National Laboratory (LANL). Computers are used in the full range of operations at LANL, to include processing classified information. Department of Energy (DOE) and LANL property policies identify computers as

  15. Tips: Home Office and Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Office and Electronics Tips: Home Office and Electronics Keep Your Home Office Efficient with ENERGY STAR. 1 of 2 Keep Your Home Office Efficient with ENERGY STAR. Laptops are far more efficient than desktop computers, especially ENERGY STAR qualified models. Use Smart Power Strips to Save Energy. 2 of 2 Use Smart Power Strips to Save Energy. Many electronics go into standby mode when you turn them off. Reduce wasted (vampire) power by plugging electronics into a smart power strip, which

  16. EERE Employment Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employment Benefits EERE Employment Benefits A photo of a young Asian female working on her laptop in an outdoor setting, near an office building. The Office of Energy Efficiency and Renewable Energy (EERE) staffs enjoy all of the great rewards of being a government employee. Learn more at these pages at the Office of Personnel Management website: Benefits for New Federal Employees Retirement Benefits Insurance Programs Work/Life Enrichments

  17. Controlling formation fines at their sources to maintain well productivity

    SciTech Connect (OSTI)

    Nguyen, P.D.; Weaver, J.D.; Rickman, R.D.; Dusterhoft, R.G.; Parker, M.A.

    2007-05-15

    Migration of formation fines has been shown to cause production decline in many wells. Despite the availability of new downhole tools for use in well stimulation and completion, the ability to sustain desired production levels is often plagued with fines migration problems. The solution to this problem is appropriate treatment to mitigate fines migration at its source. This paper describes the use of an ultra-thin tackifying agent (UTTA) for stabilizing fines in high-rate producing or injection wells. This UTTA is applied as part of an initial prepad in fracturing or gravel-packing operations, as a remedial treatment, or as a post-treatment following acid fracturing or matrix acidizing treatments. The primary purpose of UTTA application is to immobilize formation fines so that they will not detach, migrate with flowing fluids, plug the pore channels, and reduce the flow path permeability. Results of laboratory testing indicate that the UTTA system is applicable to most types of formation fines, including coals, sandstones, and carbonates. Once injected into the formation matrix or proppant pack, the UTTA forms a thin film on formation surfaces, encapsulating the fines. Capillary action helps pull the tackifier into the contact points, fixing the particulate in place without plugging the pore throat. The UTTA does not require a shut-in time after its application. The thin film tackifier does not harden, but remains flexible, enhancing the ability of a formation to withstand stress cycling and allowing the formation to handle high shear stress during high flow rates.

  18. Performance of the BL4 Beamline for Surface and Interface Research at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Nakajima, Hideki; Buddhakala, Moragote; Chumpolkulwong, Somchai; Supruangnet, Ratchadapora; Kakizaki, Akito; Songsiriritthigul, Prayoon

    2007-01-19

    The evaluations of the monochromator of the BL4 beamline at the Siam Photon Laboratory were carried out by gas-phase photoionization measurements. The beamline employs a varied-line-spacing plane grating monochromator, which delivers photons with energies between 20-240 eV. The resolving power of the monochromator depends strongly with the alignment of the exit slit. The designed resolving power of 5000 has been achieved. The experimental station of the beamline has been upgraded for surface and interface research. The new experimental station removes the disadvantage and expands the capabilities of the old one in such a way that photoemission experiments using synchrotron light can be performed in parallel with other in situ surface analysis techniques, as well as with preparation of other samples. The new system includes the old photoemission system and a multi-UHV-chamber system. The standard surface-sensitive techniques available in addition to photoemission spectroscopy using synchrotron light are UPS, XPS, AES and LEED. The new experimental station also includes a metal MBE system for preparing samples for the studies of ultra-thin magnetic films and metal-semiconductor interfaces.

  19. Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing

    SciTech Connect (OSTI)

    Rose, Franck Wang, Na; Smith, Robert; Xiao, Qi-Fan; Dai, Qing; Marchon, Bruno; Inaba, Hiroshi; Matsumura, Toru; Saito, Yoko; Matsumoto, Hiroyuki; Mangolini, Filippo; Carpick, Robert W.

    2014-09-28

    We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamond-like carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp clustering rather than hydrogen diffusion in the film.

  20. Catalyzed CO.sub.2-transport membrane on high surface area inorganic support

    DOE Patents [OSTI]

    Liu, Wei

    2014-05-06

    Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

  1. Realization of highly crystallographic three-dimensional nanosheets by a stress-induced oriented-diffusion method

    SciTech Connect (OSTI)

    Gharooni, M.; Hosseini, M.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir; Taghinejad, M.; Taghinejad, H. [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of); Abdi, Y. [Nano-Physics Research Lab, Department of Physics, University of Tehran, Tehran 1439955961 (Iran, Islamic Republic of)

    2014-07-28

    Morphologically controlled nanostructures have been increasingly important because of their strongly shape dependent physical and chemical properties. Formation of nanoscale silicon based structures that employ high levels of strain, intentional, and unintentional twins or grain boundaries can be dramatically different from the commonly conceived bulk processes. We report, realization of highly crystallographic 3D nanosheets with unique morphology and ultra-thin thickness by a stress-induced oriented-diffusion method, based on plasma processing of metal layer deposited on Si substrate and its post deep reactive ion etching. Annealing in plasma ambient creates rod-like metal alloy precursors which induce stress at its interface with Si substrate due to the mismatch of lattice constants. This stress opens facilitated gateways for orientated-diffusion of metal atoms in ?110? directions and leads to formation of NSs (nanosheets) with [111] crystalline essence. Nanosheets are mainly triangular, hexagonal, or pseudo hexagonal in shape and their thicknesses are well controlled from several to tens of nanometers. The structural and morphological evolution of features were investigated in detail using transmission electron microscope, atomic force microscope, scanning electron microscope and possible mechanism is proposed to explain the formation of the thermodynamically unfavorable morphology of nanosheets. Significant photoemission capability of NSs was also demonstrated by photoluminescence spectroscopy.

  2. Toward quantitative modeling of silicon phononic thermocrystals

    SciTech Connect (OSTI)

    Lacatena, V.; Haras, M.; Robillard, J.-F. Dubois, E.; Monfray, S.; Skotnicki, T.

    2015-03-16

    The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.

  3. Effect of Si substrate on interfacial SiO{sub 2} scavenging in HfO{sub 2}/SiO{sub 2}/Si stacks

    SciTech Connect (OSTI)

    Li, Xiuyan, E-mail: xiuyan@adam.t.u-tokyo.ac.jp; Yajima, Takeaki; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan)

    2014-11-03

    The scavenging kinetics of an ultra-thin SiO{sub 2} interface layer (SiO{sub 2}-IL) in an HfO{sub 2}/SiO{sub 2}/Si stack is discussed by focusing on the substrate effect in addition to oxygen diffusion. {sup 18}O tracing experiments demonstrate that the O-atom moves from the SiO{sub 2}-IL to the HfO{sub 2} layer during scavenging. SiO{sub 2}-IL scavenging with various substrates (Si, SiC, and sapphire) has been found to be significantly different, which suggests that the Si in the substrate is also necessary to continuously cause the scavenging. Based on these findings and thermodynamic considerations, a kinetic model where oxygen vacancy (V{sub O}) transferred from the HfO{sub 2} reacts with the SiO{sub 2}, which is in contact with the Si-substrate, is proposed for the SiO{sub 2}-IL scavenging.

  4. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    SciTech Connect (OSTI)

    Kuang, Ping; Lin, Shawn-Yu; Hsieh, Mei-Li

    2015-06-07

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO{sub 2} nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θ{sub CB} ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  5. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  6. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    SciTech Connect (OSTI)

    Fonash, S.J.

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  7. Lightweight photovoltaic module development for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Nowlan, M.J.; Maglitta, J.C.; Lamp, T.R.

    1998-07-01

    Lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Terrestrial crystalline silicon solar cell and module technologies are being applied to minimize module cost, with modifications to improve module specific power (W/kg) and power density (W/m{sup 2}). New module processes are being developed for assembling standard thickness (320 mm) and thin (125 mm) solar cells, thin (50 to 100 mm) encapsulant films, and thin (25 mm) cover films. In comparison, typical terrestrial modules use 300 to 400 mm thick solar cells, 460 mm thick encapsulants, and 3.2 mm thick glass covers. The use of thin, lightweight materials allows the fabrication of modules with specific powers ranging from 120 to 200 W/kg, depending on cell thickness and efficiency, compared to 15 W/kg or less for conventional terrestrial modules. High efficiency designs based on ultra-thin (5 mm) GaAs cells have also been developed, with the potential for achieving substantially higher specific powers. Initial design, development, and module assembly work is completed. Prototype modules were fabricated in sizes up to 45 cm x 99 cm. Module materials and processes are being evaluated through accelerated environmental testing, including thermal cycling, humidity-freeze cycling, mechanical cycling, and exposure to UV and visible light.

  8. Hydrogen Selective Thin Palladium-Copper Composite Membranes on Alumina Supports

    SciTech Connect (OSTI)

    Lim, Hankwon; Oyama, S. Ted

    2011-08-15

    Thin and defect-free PdCu composite membranes with high hydrogen permeances and selectivities were prepared by electroless plating of palladium and copper on porous alumina supports with pore sizes of 5 and 100 nm coated with intermediate layers. The intermediate layers on the 100 nm supports were prepared by the deposition of boehmite sols of different particle sizes, and provided a graded, uniform substrate for the formation of defect-free, ultra-thin palladium composite layers. The dependence of hydrogen flux on pressure difference was studied to understand the dominant mechanism of hydrogen transport through a PdCu composite membrane plated on an alumina support with a pore size of 5 nm. The order in hydrogen pressure was 0.98, and indicated that bulk diffusion through the PdCu layer was fast and the overall process was limited by external mass-transfer or a surface process. Scanning electron microscopy (SEM) images of the PdCu composite membrane showed a uniform substrate created after depositing one intermediate layer on top of the alumina support and a dense PdCu composite layer with no visible defects. Cross-sectional views of the membrane showed that the PdCu composite layer had a top layer thickness of 160 nm (0.16 ?m), which is much thinner than previously reported.

  9. Ultrathin Palladium Membranes Prepared by a Novel Electric Field Assisted Activation

    SciTech Connect (OSTI)

    Yun, Samhun; Ko, Joon Ho; Oyama, S. Ted

    2011-03-01

    Ultra-thin Pd composite membranes with a thickness of 1 ?m were prepared by a novel electric-field assisted activation technique followed by electroless deposition of Pd on a hollow-fiber ?-alumina support. The novel activation method places Pd precursors and a reducing agent on opposite sides of a porous substrate and uses an electric field to cause migration of Pd ions to the outer surface where they are reduced to form seeds in high density in a narrow spatial region. The resulting membranes showed a high hydrogen permeance in the range of 4.05.0 10{sup ?6} mol m{sup ?2} s{sup ?1} Pa{sup ?1} and stable H{sub 2}/N{sub 2} selectivity of 30009000 during stability tests for 150 h at 733 K with H{sub 2} flow. The formation of the thin, defect-less and robust Pd layer can be ascribed to the evenly distributed Pd seeds on the support layer and the enhanced bonding between the Pd layer and the support layer resulting from the strong anchoring of the Pd seeds onto the support in the new activation step.

  10. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.moreFor ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.less

  11. Sink property of metallic glass free surfaces

    SciTech Connect (OSTI)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

  12. Parallel-plate heat pipe apparatus having a shaped wick structure

    DOE Patents [OSTI]

    Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.

    2004-12-07

    A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.

  13. Plug Loads Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings tomore » investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  14. Pointright: a system to redirect mouse and keyboard control among multiple machines

    DOE Patents [OSTI]

    Johanson, Bradley E.; Winograd, Terry A.; Hutchins, Gregory M.

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  15. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  17. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  18. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  19. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  20. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab

  1. TableHC11.12.xls

    Gasoline and Diesel Fuel Update (EIA)

    15.1 5.5 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 5.3 1.6 Use a Personal Computer.............................................. 75.6 13.7 9.8 3.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 7.3 3.1 Laptop Model............................................................. 16.9 3.3 2.6 0.7 Hours Turned on Per Week Less than 2

  2. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  3. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  4. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  5. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  6. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  7. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  8. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  9. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  10. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  11. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  12. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  13. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  14. ParaView Red Blood Cell Tutorial | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ParaView Red Blood Cell Tutorial Goals This tutorial is intended to be a hands-on resource for users interested in learning the basic concepts of ParaView. The examples can easily be run on a laptop, using the example data set provided. Tour of ParaView Show range of visualization methods Walk through various visualization techniques, hopefully illustrate how these can apply to your own data. Feel for ParaView "way" Terminology and step-by-step process peculiar to ParaView, which may

  15. Director's CD-2/CD-3a Review of the MINERnA Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's CD-2/CD-3a Review of the MINERnA Project Main INjector ExpeRiment v-A August 1-3, 2006 | Overview | General Reference Material | CD-2/3a Documentation| Link to the Directorate Web Page for this review Review Overview Information Charge to the Committee (pdf) Agenda (pdf - with links to all of the plenary and breakout sessions) List of Prepared Breakout Talks (pdf) Review Committee (pdf) Video and Phone Connection Numbers Information for Visitors Bringing Laptops to Fermilab (doc)

  16. Overview of LHC physics results at ICHEP

    ScienceCinema (OSTI)

    None

    2011-04-25

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  17. Overview of LHC physics results at ICHEP

    SciTech Connect (OSTI)

    2011-02-25

    This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting inthe "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  18. Computer Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Security All JLF participants must fully comply with all LLNL computer security regulations and procedures. A laptop entering or leaving B-174 for the sole use by a US citizen and so configured, and requiring no IP address, need not be registered for use in the JLF. By September 2009, it is expected that computers for use by Foreign National Investigators will have no special provisions. Notify maricle1@llnl.gov of all other computers entering, leaving, or being moved within B 174. Use

  19. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  20. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  1. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  2. IBM's New Flat Panel Displays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by J. Stöhr (SSRL), M. Samant (IBM), J. Lüning (SSRL) Today's laptop computers utilize flat panel displays where the light transmission from the back to the front of the display is modulated by orientation changes in liquid crystal (LC) molecules. Details are discussed in Ref. 2 below. One of the key steps in the manufacture of the displays is the alignment of the LC molecules in the display. Today this is done by mechanical rubbing of two polymer surfaces and then sandwiching the LC between

  3. Million U.S. Housing Units Total............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Personal Computers Do Not Use a Personal Computer......................... 35.5 3.2 8.3 8.9 7.7 7.5 Use a Personal Computer...................................... 75.6 7.8 17.8 18.4 16.3 15.3 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 6.2 14.3 14.2 12.1 11.9 Laptop Model.................................................... 16.9 1.6 3.5 4.3 4.2 3.4 Hours Turned on Per Week Less than 2 Hours.............................................

  4. Thanks for the New Printer, Santa! Now What Do I Do with the Old One? |

    Energy Savers [EERE]

    Department of Energy Thanks for the New Printer, Santa! Now What Do I Do with the Old One? Thanks for the New Printer, Santa! Now What Do I Do with the Old One? January 4, 2011 - 6:30am Addthis Amy Foster Parish This year for Christmas, Santa was kind enough to bring me a new wireless printer to replace my old one. When I opened the box, you can't imagine my glee. I'm a fan of using my laptop as its name implies, so you'll typically find me typing away with it on my lap while snugly

  5. Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel Cells A fuel cell uses the chemical energy of hydrogen or another fuel to cleanly and efficiently produce electricity. If hydrogen is the fuel, electricity, water, and heat are the only products. Fuel cells are unique in terms of the variety of their potential applications; they can provide power for systems as large as a utility power station and as small as a laptop computer. Why Study Fuel Cells Fuel cells can be used in a wide range of applications, including transportation,

  6. Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation

    SciTech Connect (OSTI)

    Renzas, James R.

    2010-03-08

    It is well known that the activity, selectivity, and deactivation behavior of heterogeneous catalysts are strongly affected by a wide variety of parameters, including but not limited to nanoparticle size, shape, composition, support, pretreatment conditions, oxidation state, and electronic state. Enormous effort has been expended in an attempt to understand the role of these factors on catalytic behavior, but much still remains to be discovered. In this work, we have focused on deepening the present understanding of the role of nanoparticle shape, nanoparticle composition, and hot electrons on heterogeneous catalysis in the oxidation of carbon monoxide by molecular oxygen and nitric oxide. These reactions were chosen because they are important for environmental applications, such as in the catalytic converter, and because there is a wide range of experimental and theoretical insight from previous single crystal work as well as experimental data on nanoparticles obtained using new state-of-the-art techniques that aid greatly in the interpretation of results on complex nanoparticle systems. In particular, the studies presented in this work involve three types of samples: {approx} 6.5 nm Rh nanoparticles of different shapes, {approx} 15 nm Rh1-xPdx core-shell bimetallic polyhedra nanoparticles, and Rh ultra-thin film ({approx} 5 nm) catalytic nanodiodes. The colloidal nanoparticle samples were synthesized using a co-reduction of metal salts in alcohol and supported on silicon wafers using the Langmuir-Blodgett technique. This synthetic strategy enables tremendous control of nanoparticle size, shape, and composition. Nanoparticle shape was controlled through the use of different organic polymer capping layers. Bimetallic core-shell nanoparticles were synthesized by careful choice of metal salt precursors. Rh/TiO{sub x} and Rh/GaN catalytic nanodiodes were fabricated using a variety of thin film device fabrication techniques, including reactive DC magnetron sputtering, electron beam evaporation, and rapid thermal annealing. The combination of these techniques enabled control of catalytic nanodiode morphology, geometry, and electrical properties.

  7. Understanding and Design of Polymer Device Interfaces

    SciTech Connect (OSTI)

    Kahn, Antoine

    2015-10-26

    The research performed under grant DE-FG02-04ER46165 between May 2008 and April 2011 focused on the understanding and control of interfaces of organic semiconductors in general, and polymer interfaces more specifically. This work was a joined effort by three experimentalists and a theoretician. Emphasis was placed on the determination of the electronic structure of these interfaces, i.e. the relative energy position of molecular levels across these interfaces. From these electronic structures depend the injection, extraction and transport of charge carriers into, from and across, respectively, all (opto)electronic devices made of these semiconductors. A significant fraction of our work focused on ways to modify and optimize interfaces, for example via chemical doping of the semiconductors to reduce interface energy barriers or via deposition of ultra-thin work function-reducing polymer or self-assembled monolayers of dipolar molecules. Another significant fraction of our work was devoted to exploring alternate and unconventional interface formation methods, in particular the soft-contact lamination of both metal contacts and polymer overlayers on top of polymer films. These methods allowed us to better understand the impact of hot metal atom evaporation on a soft organic surface, as well as the key mechanisms that control the energetics of polymer/polymer heterojunctions. Finally, a significant fraction of the research was directed to understanding the electronic structure of buried polymer heterojunctions, in particular within donor/acceptor blends of interest in organic photovoltaic applications. The work supported by this grant resulted in 17 publications in some of the best peer-reviewed journals of the field, as well as numerous presentations at US and international conferences.

  8. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  9. Magnetic circular dichroism in x-ray absorption and core-level photoemission

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Gouder, T.H.; Colmenares, C.A.; Pappas, D.P.

    1993-03-17

    Here is reported observation of magnetic circular dichroism in both x-ray absorption and core-level photoemission of ultra thin magnetic films using circularly polarized x-rays. Iron films (1--4 ML) grown on a Cu(001) substrate at 150 K and magnetized perpendicular to the surface show dramatic changes in the L{sub 2,3} branching ratio for different x-ray polarizations. For linearly-polarized x-rays perpendicular to the magnetic axis of the sample the branching ratio was 0.75. For films {ge} 2 ML, this ratio varied from 0.64 to 0.85 for photon spin parallel and anti-parallel, respectively, to the magnetic axis. This effect was observed either by changing the x-ray helicity for a fixed magnetic axis, or by reversing the magnetic axis for a fixed x-ray helicity. Our observation can be analyzed within a simple one-electron picture, if the raw branching ratios are no so that the linear value becomes statistical Furthermore, warming the films to {approximately}300 K eliminated this effect, indicating a loss of magnetization in the film over a temperature range of {approximately}30 K. Finally, reversing the relative orientation of the photon spin and the magnetic axis from parallel to anti-parallel allowed measurement of the exchange splitting of the Fe 2p and 3p core levels which were found to be 0.3 eV and 0.2 eV. respectively. These results are consistent with earlier studies, but the use of off-plane circularly-polarized x-rays from a bending magnet monochromator offers {approximately}2 orders of magnitude greater intensity than typical spin-polarization measurements. Finally, we have performed preliminary x-ray absorption studies of UFe{sub 2}, demonstrating the feasibilty of MCD measurements in 5f as well as 3d materials.

  10. Re-Defining Photovoltaic Efficiency Through Molecule Scale Control. Final Report

    SciTech Connect (OSTI)

    Yardley, James T.

    2015-04-30

    The direct conversion of sunlight into electricity represents one of the most important general means for sustainable energy production. Most modern photovoltaic cells are based on some form of semiconductor material such as silicon that is described by a characteristic energy or ''bandgap''. For solar rays with photon energy lower than the bandgap no absorption occurs and thus no energy is generated. For solar rays with photon energy greater than the bandgap, light may be absorbed to create a pair of electrical charges but only one bandgap of energy is created, leaving any additional energy lost as heat. Thus low bandgap materials can use a great part of the spectrum but can lose much of that energy; high bandgap materials fail to capture much of the spectrum. Thus there is a limit to the efficiency of such a solar cell that turns out to be about 32%. This limit is known as the Shockely-Queisser Limit. The Columbia EFRC program is dedicated to exploration of concepts that in principle can provide for efficiencies beyond this limit. One concept that this EFRC has explored for enhancing the efficiency of solar photovoltaic cells is called Singlet Fission. In this concept the absorption of light rays with photon energy at least twice the value of the basic bandgap for the system can produce two pairs of electrical charge carriers. If properly implemented this in principle can significantly reduce the energy lost as heat and give rise to solar cell efficiencies greater than the Shockley-Queisser limit. The problem is that there are virtually no materials that can undergo this process effectively. We have developed new materials that have demonstrated singlet fission efficiencies of almost 100%. We understand how these materials work and we have learned how to design many more systems in the future. So far we have only demonstrated the basic capability for efficient singlet fission. Much more work will be required to design and engineer specific materials that can be used practically in a solar cell system. In addition much work will be required to envision and demonstrate effective device structures that can utilize this concept. However these discoveries do provide the basis for an entirely new set of opportunities for more efficient solar energy generation moving beyond the Shockley-Queisser limit. A second part of the EFRC research program has been to investigate the material and device properties of an entirely new set of materials based on two-dimensional sheets (ultra-thin) with thicknesses of only one atom, or a single molecule or just a few atoms. These materials can exhibit conducting, insulating, and semiconducting character and thus they can form the basis for entirely new types of electrical devices. Recent fundamental investigations of these materials, at Columbia and elsewhere, demonstrate clearly that the flow of electrical charges in these systems is fundamentally different from the nature of electrical current flow in conventional materials. This fact presents many possibilities for new photovoltaic device concepts. The EFRC research team has achieved world leadership in the creation and understanding of these materials and in developing the fabrication techniques necessary to create useful devices from them. We have developed the basic fabrication methodology to build structures of these materials into complex device structures, layer by layer. Our EFRC research team has pioneered the synthesis and understanding for graphene, perhaps the simplest of these materials. Graphene can function as a highly transparent conducting material, capable of funneling an electrical charge over reasonable distances without significant energy loss. The EFRC program has also pioneered the development of ultra-thin sheets that function in a way analogous to semiconductor materials as well as sheets that act as electrical insulators. These developments therefore enable the construction of solar cells based on totally different physics from conventional cells. Because the electrons in these ultra-thin sheets interact strongly they will exhibit behaviors quite different from conventional materials with potential to operate at efficiencies beyond the Shockley-Queisser limit. In our EFRC program we have laid out many of the fundamental properties of these materials including the development of unique fabrication techniques. We discovered several new effects that demonstrate strong electron coupling. We have demonstrated the first solar cell that can actually generate electrical power at a high basic efficiency from these fundamentally new materials. There is much more science and technology required before these devices can become practical, but there is also very strong activity worldwide to build electronic devices from these materials, thus providing infrastructure and technical capability to develop these concepts.

  11. Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing

    SciTech Connect (OSTI)

    Brian Wells

    2008-11-30

    PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means of accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

  12. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Print The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such battery-operated devices, keeping the power consumption low while continuing to add features is a major challenge. To address this issue, there is a worldwide research effort dedicated to minimizing the energy required to perform computational operations and to

  13. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Print The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such battery-operated devices, keeping the power consumption low while continuing to add features is a major challenge. To address this issue, there is a worldwide research effort dedicated to minimizing the energy required to perform computational operations and to

  14. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Print The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such battery-operated devices, keeping the power consumption low while continuing to add features is a major challenge. To address this issue, there is a worldwide research effort dedicated to minimizing the energy required to perform computational operations and to

  15. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Print The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such battery-operated devices, keeping the power consumption low while continuing to add features is a major challenge. To address this issue, there is a worldwide research effort dedicated to minimizing the energy required to perform computational operations and to

  16. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Print The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such battery-operated devices, keeping the power consumption low while continuing to add features is a major challenge. To address this issue, there is a worldwide research effort dedicated to minimizing the energy required to perform computational operations and to

  17. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Print The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such battery-operated devices, keeping the power consumption low while continuing to add features is a major challenge. To address this issue, there is a worldwide research effort dedicated to minimizing the energy required to perform computational operations and to

  18. Signal Speed in Nanomagnetic Logic Chains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signal Speed in Nanomagnetic Logic Chains Signal Speed in Nanomagnetic Logic Chains Print Wednesday, 30 September 2015 00:00 The miniaturization of computing architectures has paved the way for personal hand-held electronic devices (smartphones, tablets, etc.) that feature extraordinary computing power. For such battery-operated devices, keeping the power consumption low while continuing to add features is a major challenge. To address this issue, there is a worldwide research effort dedicated

  19. ORISE: Enhancing Peer Review Tools and Services to Support DOE Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancing Tools and Services to Support DOE Research Improving a complex peer review process through convenient, real-time data Businessman reading tablet computer When it comes to peer evaluation and merit reviews, information accuracy and the ease-of-access to it are critical to the funding agency. ORISE's independent review specialists are experts in protecting that information and in providing enhanced ways to view the information instantaneously. How ORISE is Making a Difference ORISE

  20. Introducing the new look of "Connections"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introducing the new look of "Connections" Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit "Connections" gets new look and feel based on your feedback Changed to serve you better for mobile and tablet reading. March 1, 2013 Mobile view enhances user experience Responsive mobile view enhances user experience. Contacts Editor Linda Anderman Email Community Programs Office Kurt

  1. Connections: March 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit IN THIS ISSUE Introducing the new look of "Connections" Changed to serve you better for mobile and tablet reading New venture acceleration fund supports regional tribes LANS, LANL fostering economic development for tribes in Northern New Mexico U.S. Senator Heinrich receives Lab briefing Receives updates on science, security

  2. DoD Energy Innovation on Military Installations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DoD Energy Innovation on Military Installations November 5, 2014 Dr. James Galvin Program Manager, ESTCP Energy & Water Program 2 Energy Audit Demonstrations 1. Traditional energy audits are expensive and time consuming. 2. Tablet-based software may improve the quality and reduce the cost of energy audits. 3. An ESTCP demonstration showed that a "touchless" energy audit using Remote Building Analytics requires only about 25% of the time and money of a traditional energy audit.

  3. Sensivitity improvement in low-profile distributed detector systems for tracking sources in transit.

    SciTech Connect (OSTI)

    Vilim, R. B.; Klann, R.; Campos, C.; Medley, T.; Nuclear Engineering Division

    2007-01-01

    The RadTrac real-time detection and tracking software runs on a laptop computer networked to gamma-radiation detectors. A probabilistic estimate for source position is generated by combining measured count rate data with a first-principles stochastic model for the space and time dependence of count rates and knowledge of detector intrinsic efficiency. Recent development work has focused on improving RadTrac sensitivity in low-count rate situations. A method has been developed for processing count rates by energy according to that part of the energy spectrum with the greatest signal-to-noise ratio. In addition a method has been developed that places constraints on the solution that are physically appropriate when count rates approach background. In both instances experiments with a weak source confirmed the uncertainty in estimated position is reduced.

  4. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.« less

  5. D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device

    SciTech Connect (OSTI)

    Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

    1997-09-01

    A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel.

  6. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  7. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  8. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  9. Capabilities, Implementation, and Benchmarking of Shift, a Massively Parallel Monte Carlo Radiation Transport Code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandya, Tara M; Johnson, Seth R; Evans, Thomas M; Davidson, Gregory G; Hamilton, Steven P; Godfrey, Andrew T

    2016-01-01

    This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemorespecific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 R problems. These benchmark and scaling studies show promising results.less

  10. Million U.S. Housing Units Total............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.1 64.1 4.2 1.8 2.3 5.7 Personal Computers Do Not Use a Personal Computer......................... 35.5 20.3 14.8 1.2 0.6 0.9 2.8 Use a Personal Computer...................................... 75.6 57.8 49.2 2.9 1.2 1.4 3.0 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 45.8 38.9 2.2 1.0 1.1 2.6 Laptop Model.................................................... 16.9 12.0 10.3 0.8 0.2 Q 0.4 Hours Turned on Per Week Less than 2

  11. Million U.S. Housing Units Total............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    33.0 8.0 3.4 5.9 14.4 1.2 Personal Computers Do Not Use a Personal Computer......................... 35.5 15.3 3.0 1.9 3.1 6.4 0.8 Use a Personal Computer...................................... 75.6 17.7 5.0 1.6 2.8 8.0 0.4 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 12.8 4.0 1.1 2.0 5.4 0.3 Laptop Model.................................................... 16.9 4.9 1.0 0.4 0.8 2.6 Q Hours Turned on Per Week Less than 2

  12. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was more dynamic than initially hypothesized. These phenomena are believed to be associated with the physical and mechanical properties of the separation material, rather than chemical degradation by flue gas or one of its constituents. Strategies to improve the composite systems via alternate chemistries and processing techniques were only partially successful in creating a more robust system, but the research provided critical insight into the barriers to engineering sophisticated composite systems for gas separation. Promising concepts, including a re-engineering of the separation material with interpenetrating polymer networks were identified which may prove useful to future efforts in this field.

  13. NERSC Releases Mobile Apps to Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Mobile Apps to Users NERSC Releases Mobile Apps to Users Job Status, MOTD and Pilot of VASP Submission Available with More to Come April 23, 2012 In an effort to make NERSC resources more accessible to its users, the facility is rolling out a number of applications that allow researchers to access scientific data on their web browsers, tablets and smart phones. This month, NERSC announced two new applications now available to its users: The NERSC mobile user portal (http://m.nersc.gov)

  14. Feedback Wanted: Help the Energy Department Go Mobile, Open Data! |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Feedback Wanted: Help the Energy Department Go Mobile, Open Data! Feedback Wanted: Help the Energy Department Go Mobile, Open Data! August 13, 2012 - 4:35pm Addthis The Energy Department’s main site, Energy.gov and its contents, are now available on the go. This allows users to access the Energy Departments’ resources over a variety of mobile devices such as smart phones and tablets. The Energy Department's main site, Energy.gov and its contents, are now

  15. Collaboration Leads to State-of-the-Art Energy Auditing Tool: Project Highlights (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet describes the tablet-based simuwatt Audit tool, which uses NREL's advanced energy modeling framework and building energy audit processes, collaboration tools, in-app media, and private company concept3D's geometric capture software combined with real-time connections to large sets of standardized data to perform building energy audits faster than traditional methods. By integrating the NREL Building Component Library, utility rates, weather information, and energy conservation measures, the tool provides investment-grade audits that cost 75% less than traditional audits and stores the data in a consistent and reusable format.

  16. Connecting Tech to Market in New Ways - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two men stand between two cars looking at an electronic tablet. One of the cars is being filled with fuel. NREL engineers Mike Simpson and Tony Markel plug in a Toyota plug-in hybrid electric vehicle as they run a test at the Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL Connecting Tech to Market in New Ways NREL has found the means to reach its goal of growing long-lasting relationships that bring scientific innovation to market. Partnerships established by NREL take many

  17. MESA Sensitive Property.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitive Property MESA 1 BARCODE DESCRIPTION MANUF. MODEL_NO SN COST BLD ROOM INV_DATE 0000030149 TABLET GRAPHIRE4 4X5 WACOM GRAPHIRE WAC-CTE440B 6CZ015783 $99.74 922 3W-12 22-Jul-09 0000040803 COMPUTER, CONVERTABL HEWLETT PACKARD COMPAQ ELITE 8300 MXL23921C0 $779.00 922 2W-7 19-Jul-13 0000040819 COMPUTER, CONVERTABL HEWLETT PACKARD COMPAQ ELITE 8300 MXL23921F3 $779.00 922 313 25-Jul-13 0000040796 COMPUTER, CONVERTABL HEWLETT PACKARD COMPAQ ELITE 8300 MXL23921JR $779.00 922 311 1-Jul-13

  18. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect (OSTI)

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants in terms of performance and economic aspects of the plants. Specifically, simulation and design optimization studies were performed using the developed stand-alone membrane reactor models to identify the membrane selectivity and permeance characteristics necessary to achieve desired targets of CO2 capture and H2 recovery, as well as guide the selection of the optimal reactor design that minimizes the membrane cost as a function of its surface area required. The isothermal membrane reactor model was also integrated into IGCC system models using both the MATLAB and Aspen software platforms and techno-economic analyses of the integrated plants have been carried out to evaluate the feasibility of replacing current technologies for pre-combustion capture by the proposed novel approach in terms of satisfying stream constraints and achieving the DOE target goal of 90% CO2 capture. The results of the performed analyses based on present value of annuity calculations showed break even costs for the membrane reactor within the feasible range for membrane fabrication. However, the predicted membrane performance used in these simulations exceeded the performance achieved experimentally. Therefore, further work is required to improve membrane performance.

  19. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    SciTech Connect (OSTI)

    Rieken, Joel

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O{sub 2}) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. The consolidation of ultra-fine powders (dia. ≤ 5μm) resulted in a significant reduction in dispersoid size and spacing, consistent with initial scanning electron microscopy studies on as-atomized cross-sectioned particles that suggested that these powders solidified above the threshold velocity to effectively solute trap Y within the α-(Fe,Cr) matrix. Interestingly, when the solidification velocity as a function of particle size was extracted from the aforementioned theoretical particle cooling curves, it could be offered as supporting evidence for these microstructure observations. Thermal-mechanical treatments also were used to create and evaluate the stability of a dislocation substructure within these alloys, using microhardness and TEM analysis of the alloy sub-grain and grain structure. Moreover, elevated temperature tensile tests up to 800°C were used to assess the initial mechanical strength of the ODS microstructure.

  20. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect (OSTI)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

  1. Explosive Release Atmospheric Dispersal 3.2

    Energy Science and Technology Software Center (OSTI)

    2001-06-26

    ERAD (Explosive Release Atmospheric Dispersal) is a 3D numerical transport and diffusion model, used to model the consequences associated with the buoyant (or nonbuoyant) dispersal of radioactive material It incorporates an integral plume rise model to simulate the buoyant rise of heated gases following an explosive detonation. treating buoyancy effects from time zero onward, eliminating the need for the stabilized doud assumption, and enabling the penetration of inversions. Modeling of the atmospheric boundary layer usesmore » contemporary parameterization based on scaling theories derived from observational, laboratory and numerical studies. A Monte Carlo stochastic process simulates particle dispersion. Results were validated for both dose and deposition against measurements taken during Operation Roller Coaster (a joint US-UK test performed at NTS). Meteorology is defined using a single vertical sounding containing wind speed and direction and temperature as a function of height. Post processing applies 50-year CEDE DCFs (either ICRP 26 or 60) to determine the contribution of the relevant dose pathways (inhalation, submersion, and ground shine) as well as the total dose received. Dose and deposition contours are overlaid on a fully integrated worldwide GIS and tabulates hearth effects (fatalities and casualties) to resident population. The software runs on a laptop and takes less than 2 minutes to process. The Municipal version of ERAD does not include the ability to model the mitigation effects of aqueous foam.« less

  2. Managing turbine-generator outages by computer

    SciTech Connect (OSTI)

    Reinhart, E.R. [Reinhart and Associates, Inc., Austin, TX (United States)

    1997-09-01

    This article describes software being developed to address the need for computerized planning and documentation programs that can help manage outages. Downsized power-utility companies and the growing demand for independent, competitive engineering and maintenance services have created a need for a computer-assisted planning and technical-direction program for turbine-generator outages. To meet this need, a software tool is now under development that can run on a desktop or laptop personal computer to assist utility personnel and technical directors in outage planning. Total Outage Planning Software (TOPS), which runs on Windows, takes advantage of the mass data storage available with compact-disc technology by archiving the complete outage documentation on CD. Previous outage records can then be indexed, searched, and viewed on a computer with the click of a mouse. Critical-path schedules, parts lists, parts order tracking, work instructions and procedures, custom data sheets, and progress reports can be generated by computer on-site during an outage.

  3. Million U.S. Housing Units Total......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Personal Computers Do Not Use a Personal Computer.................... 35.5 5.7 3.3 4.6 4.7 5.8 5.7 4.0 1.7 Use a Personal Computer................................ 75.6 9.0 4.1 7.9 7.8 13.1 12.9 13.3 7.5 Most-Used Personal Computer Type of PC Desk-top Model........................................... 58.6 6.7 3.5 6.3 6.2 10.3 9.9 10.2 5.6 Laptop Model............................................... 16.9 2.3 0.7 1.7 1.5 2.8 2.9 3.1 1.9 Hours Turned on

  4. Event-by-Event Simulation of Induced Fission

    SciTech Connect (OSTI)

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  5. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL

    SciTech Connect (OSTI)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-06-20

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model 'Enthalpy-based Thermal Evolution of Loops' (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  6. DRIVER TO SUPPORT USE OF NUMERICAL SIMULATION TOOLS

    Energy Science and Technology Software Center (OSTI)

    2001-02-13

    UNIPACK is a computer interface that simplifies and enhances the use of numerical simulation tools to design a primary geometry and/or a forming die for a powder compact and/or to design the pressing process used to shape a powder by compaction. More particularly, it is an interface that utilizes predefined generic geometric configurations to simplify the use of finite element method modeling software to simply and more efficiently design: (1) the shape and size amore » powder compact; (2) a forming die to shape a powder compact; and/or (3) the pressing process used to form a powder compact. UNIPACK is a user interface for a predictive model for powder compaction that incorporates unprecedented flexibility to design powder press tooling and powder pressing processes. UNIPACK works with the Sandia National Laboratories (SNL) Engineering Analysis Cide Access System (SEACAS) to generate a finite element (FE) mesh and automatically perform a FE analysis of powder compaction. UNIPACK was developed to allow a non-expert with minimal training to quickly and easily design/construct a variable dimension component or die in real time on a desktop or laptop personal computer.« less

  7. Automated Auditing Tool for Retrofit Building Projects

    Energy Science and Technology Software Center (OSTI)

    2011-06-23

    Building energy auditors regularly use notepads, physical forms, or simple spreadsheets to inventory energy consuming devices in buildings and audit overall performance. Mobile computing devices such as smart phones or tablet computers with camera inputs may be used to automatically capture relevant information and format audit input in a way that streamlines work flows and reduces the likelihood of error. As an example. an auditor could walk through a space holding a mobile device, whichmore » automatically identifies and appliances, windows, etc. This information would automatically be added to a mobile database associated with the building for later integration with a larger building audit database. The user experience would require little or no manual input, and could integrate with tools to automate used to automate data collection for building energy modeling.« less

  8. Feasibility Study of Implementing a Mobile Collaborative Information Platform for International Safeguards Inspections

    SciTech Connect (OSTI)

    Gastelum, Zoe N.; Gitau, Ernest TN; Doehle, Joel R.; Toomey, Christopher M.

    2014-09-30

    In response to the growing pervasiveness of mobile technologies such as tablets and smartphones, the International Atomic Energy Agency and the U.S. Department of Energy National Laboratories have been exploring the potential use of these platforms for international safeguards activities. Specifically of interest are information systems (software, and accompanying servers and architecture) deployed on mobile devices to increase the situational awareness and productivity of an IAEA safeguards inspector in the field, while simultaneously reducing paperwork and pack weight of safeguards equipment. Exploratory development in this area has been met with skepticism regarding the ability to overcome technology deployment challenges for IAEA safeguards equipment. This report documents research conducted to identify potential challenges for the deployment of a mobile collaborative information system to the IAEA, and proposes strategies to mitigate those challenges.

  9. Mobile Data Collection Applications: A Proof of Concept

    SciTech Connect (OSTI)

    Chang, J

    2006-09-20

    This project's goal is to provide a proof of concept for mobile data collection applications, and identify the best ways such applications could be implemented and used. Such an application should decrease the time and resources users now need to devote to redundant data processes, and provide an easy of locating and retrieving data at a later time. The two types of available mobile devices, Personal Digital Assistants and Tablet Personal Computers, each have their particular strengths that suggest themselves for certain types of applications. As such, parallel data collection applications have been developed, with a common web application for uploading information to the database. While these aspects have been developed and proven, it still remains to refine these applications, develop the tables to hold their data, and field-test with users for their feedback.

  10. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  11. Monitoring of vibrating machinery using artificial neural networks

    SciTech Connect (OSTI)

    Alguindigue, I.E.; Loskiewicz-Buczak, A. . Dept. of Nuclear Engineering); Uhrig, R.E. . Dept. of Nuclear Engineering Oak Ridge National Lab., TN )

    1991-01-01

    The primary source of vibration in complex engineering systems is rotating machinery. Vibration signatures collected from these components render valuable information about the operational state of the system and may be used to perform diagnostics. For example, the low frequency domain contains information about unbalance, misalignment, instability in journal bearing and mechanical looseness; analysis of the medium frequency range can render information about faults in meshing gear teeth; while the high frequency domain will contain information about incipient faults in rolling-element bearings. Trend analysis may be performed by comparing the vibration spectrum for each machine with a reference spectrum and evaluating the vibration magnitude changes at different frequencies. This form of analysis for diagnostics is often performed by maintenance personnel monitoring and recording transducer signals and analyzing the signals to identify the operating condition of the machine. With the advent of portable fast Fourier transform (FFT) analyzers and laptop'' computers, it is possible to collect and analyze vibration data an site and detect incipient failures several weeks or months before repair is necessary. It is often possible to estimate the remaining life of certain systems once a fault has been detected. RMS velocity, acceleration, displacements, peak value, and crest factor readings can be collected from vibration sensors. To exploit all the information embedded in these signals, a robust and advanced analysis technique is required. Our goal is to design a diagnostic system using neural network technology, a system such as this would automate the interpretation of vibration data coming from plant-wide machinery and permit efficient on-line monitoring of these components.

  12. Monitoring of vibrating machinery using artificial neural networks

    SciTech Connect (OSTI)

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E. |

    1991-12-31

    The primary source of vibration in complex engineering systems is rotating machinery. Vibration signatures collected from these components render valuable information about the operational state of the system and may be used to perform diagnostics. For example, the low frequency domain contains information about unbalance, misalignment, instability in journal bearing and mechanical looseness; analysis of the medium frequency range can render information about faults in meshing gear teeth; while the high frequency domain will contain information about incipient faults in rolling-element bearings. Trend analysis may be performed by comparing the vibration spectrum for each machine with a reference spectrum and evaluating the vibration magnitude changes at different frequencies. This form of analysis for diagnostics is often performed by maintenance personnel monitoring and recording transducer signals and analyzing the signals to identify the operating condition of the machine. With the advent of portable fast Fourier transform (FFT) analyzers and ``laptop`` computers, it is possible to collect and analyze vibration data an site and detect incipient failures several weeks or months before repair is necessary. It is often possible to estimate the remaining life of certain systems once a fault has been detected. RMS velocity, acceleration, displacements, peak value, and crest factor readings can be collected from vibration sensors. To exploit all the information embedded in these signals, a robust and advanced analysis technique is required. Our goal is to design a diagnostic system using neural network technology, a system such as this would automate the interpretation of vibration data coming from plant-wide machinery and permit efficient on-line monitoring of these components.

  13. Beyond Commissioning

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas

    2004-08-31

    The emerging practice of building commissioning generally provides energy savings of 10% to, in some cases, more than 60% of a building's energy consumption. Moreover, commissioning ensures that equipment and systems are installed and operate properly, providing occupants with the conditions expected. Without commissioning, new buildings can have incorrect equipment installed, devices like fans installed backwards, and unimplemented control algorithms to mention a few deficiencies sometimes found. Existing buildings can have faulty and failed equipment such as clogged filters and coils, stuck dampers, leaky valves, and imbalanced air distribution, as well as overridden controls, improper set points, and incorrect schedules. Commissioning of new and existing buildings helps prevent and alleviate such problems. Yet only a small fraction of commercial buildings has ever been commissioned, and many buildings that have been commissioned have only a fraction of the recommended actions implemented. Time may change this situation or maybe other changes can accelerate the progress of commissioning. Will commissioning continue in the future as it is performed today or must it change? The authors share a vision for how the functions provided by commissioning could change in the future. The paper delves into the roles of automation technology for functional testing, diagnostics, prognostics, data management, asset tracking, and project management in building commissioning. Methods of delivery explored for these capabilities include laptop-, desktop-, and pda-based tools, web-based services, and ubiquitous embedded networked processing. The authors present a vision for how these technologies could change the practice of commissioning and the impacts this could bring for commercial buildings in the U.S. and throughout the world. Potential impacts on building performance, energy consumption, peak power, and occupant satisfaction are examined.

  14. Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; Lim, Seung-Hwan

    2016-01-01

    The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less

  15. Uncertainty quantification of CO? saturation estimated from electrical resistance tomography data at the Cranfield site

    SciTech Connect (OSTI)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO? saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO? saturation, but we focus on how the ERT observation errors propagate to the estimated CO? saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO? saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO? saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO? saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO? saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO? saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.

  16. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less

  17. Early Market TRL/MRL Analysis

    SciTech Connect (OSTI)

    Ronnebro, Ewa; Stetson, Ned

    2013-12-01

    he focus of this report is TRL/MRL analysis of hydrogen storage; it documents the methodology and results of an effort to identify hydrogen storage technologies technical and manufacturing readiness for early market motive and non-motive applications and to provide a path forward toward commercialization. Motive applications include materials handling equipment (MHE) and ground support equipment (GSE), such as forklifts, tow tractors, and specialty vehicles such as golf carts, lawn mowers and wheel chairs. Non-motive applications are portable, stationary or auxiliary power units (APUs) and include portable laptops, backup power, remote sensor power, and auxiliary power for recreational vehicles, hotels, hospitals, etc. Hydrogen storage technologies assessed include metal hydrides, chemical hydrides, sorbents, gaseous storage, and liquid storage. The assessments are based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies at varying levels of development. The manufacturing status could be established from eight risk elements: Technical Maturity, Design, Materials, Cost & Funding, Process Capability, Personnel, Facilities and Manufacturing Planning. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. This technology readiness assessment (TRA) report documents the process used to conduct the TRA/MRA (technology and manufacturing readiness assessment), reports the TRL and MRL for each assessed technology and provides recommendations based on the findings. To investigate the state of the art and needs to mature the technologies, PNNL prepared a questionnaire to assign TRL and MRL for each hydrogen storage technology. The questionnaire was sent to identified hydrogen storage technology developers and manufacturers who were asked to perform a self-assessment. We included both domestic and international organizations including U.S. national laboratories, U.S. companies, European companies and Japanese companies. PNNL collected the data and performed an analysis to deduce the level of maturity and to provide program recommendations.

  18. Energy Use and Power Levels in New Monitors and Personal Computers

    SciTech Connect (OSTI)

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.

    2002-07-23

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC). Cur rent ENERGY STAR monitor and computer criteria do not specify off or on power, but our results suggest opportunities for saving energy in these modes. Also, significant differences between CRT and LCD technology, and between field-measured and manufacturer-reported power levels reveal the need for standard methods and metrics for measuring and comparing monitor power consumption.

  19. Lessons Learned from the Development of an Example Precision Information Environment for International Safeguards

    SciTech Connect (OSTI)

    Gastelum, Zoe N.; Henry, Michael J.; Burtner, IV, E. R.; Doehle, J. R.; Hampton, S. D.; La Mothe, R. R.; Nordquist, P. L.; Zarzhitsky, D. V.

    2014-12-01

    The International Atomic Energy Agency (IAEA) is interested in increasing capabilities of IAEA safeguards inspectors to access information that would improve their situational awareness on the job. A mobile information platform could potentially provide access to information, analytics, and technical and logistical support to inspectors in the field, as well as providing regular updates to analysts at IAEA Headquarters in Vienna or at satellite offices. To demonstrate the potential capability of such a system, Pacific Northwest National Laboratory (PNNL) implemented a number of example capabilities within a PNNL-developed precision information environment (PIE), and using a tablet as a mobile information platform. PNNLs safeguards proof-of-concept PIE intends to; demonstrate novel applications of mobile information platforms to international safeguards use cases; demonstrate proof-of-principle capability implementation; and provide vision for capabilities that could be implemented. This report documents the lessons learned from this two-year development activity for the Precision Information Environment for International Safeguards (PIE-IS), describing the developed capabilities, technical challenges, and considerations for future development, so that developers working to develop a similar system for the IAEA or other safeguards agencies might benefit from our work.

  20. Final Technical Report. Training in Building Audit Technologies

    SciTech Connect (OSTI)

    Brosemer, Kathleen

    2015-03-27

    In 2011, the Tribe proposed and was awarded the Training in Building Audit Technologies grant from the DOE in the amount of $55,748 to contract for training programs for infrared cameras, blower door technology applications and building systems. The coursework consisted of; Infrared Camera Training: Level I - Thermal Imaging for Energy Audits; Blower Door Analysis and Building-As-A-System Training, Building Performance Institute (BPI) Building Analyst; Building Envelope Training, Building Performance Institute (BPI) Envelope Professional; and Audit/JobFLEX Tablet Software. Competitive procurement of the training contractor resulted in lower costs, allowing the Tribe to request and receive DOE approval to additionally purchase energy audit equipment and contract for residential energy audits of 25 low-income Tribal Housing units. Sault Tribe personnel received field training to supplement the classroom instruction on proper use of the energy audit equipment. Field experience was provided through the second DOE energy audits grant, allowing Sault Tribe personnel to join the contractor, Building Science Academy, in conducting 25 residential energy audits of low-income Tribal Housing units.

  1. Nightmares with Mobile Devices Are Just Around the Corner!

    SciTech Connect (OSTI)

    Kurt Derr

    2007-03-01

    Mobile Devices (MDs) such as Personal Digital Assistants (PDAs), smart phones, handheld personal computers, and Tablet PCs, are proliferating in the marketplace. Cheap and ubiquitous mobile computing devices represent computings fifth wave [1], bringing about new opportunities in the marketplace. As MDs become more powerful and commonplace with ubiquitous connectivity, the line that currently divides these handheld devices from typical network computers will become very unclear. Mobile devices have become integrated into the business processes of both government and commercial institutions. MDs are small, portable, and able to store large amounts of information. The breadth of communication options (infrared, wireless, docking station) for MDs introduces many security risks. Some of the problems associated with MDs are: easy to loose, misplace, or have stolen, potential loss/comprise of company data (user ids, passwords, contacts, sensitive documentation, credit card numbers), increases the opportunity for a backdoor into an enterprises network, lack of authentication and limited logging capability. The use of these devices poses a risk to the security of an organization.

  2. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  3. Electronic Status Board

    Energy Science and Technology Software Center (OSTI)

    2004-06-02

    This software was developed to post real-time process status and building conditions to operators, system engineers, system managers, and all support personnel. Data input is via operator console, strategically located throughout the facility, or by electronic rounds tablet. The system requires a person to log in with a unique user id and password to edit data. Viewing system status does not require log in and can be done from any desktop location running FileMaker. Oncemore » logged into the system, all new records saved are stamped with date, time and user name, and a historical copy is created that can be brought up to review status. There is no limitation to the amount of records that can be saved in the historical databases. The system will flag all out of limit conditions on the screen and enter that record on a turnover summery page which displays only flagged items. System conditions are displayed on a plasma display which scrolls through the various system condition screens. The system also shows floor plans that reflect specific building radiological conditions which aides in pre job briefings to show all hazards to personnel entering specific locations. The input screen is displayed on a second standard computer monitor connected to the input PC. There are several popup screens that require user intervention to ensure that the user wants to edit the data, is editing the appropriate sytem, and if they want to continue to stay logged into the system. Each workstation is connected to a Uninterrupted Power Supply which will shut each system down safely in a power failure. The server is configured to print out current status upon notification from the UPS that power has failed. The system also has a video input card which is connected to a DVD/VCR which shows safety meetings, and images taken from a digital camera used to show specific locations/items for pre-job briefings.« less

  4. The agile alert system for gamma-ray transients

    SciTech Connect (OSTI)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Fioretti, V.; Chen, A. W.; Pittori, C.; Verrecchia, F.; Lucarelli, F.; Santolamazza, P.; Fanari, G.; Giommi, P.; Pellizzoni, A.; and others

    2014-01-20

    In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many ?-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast ?-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for ?-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in ?-ray astrophysics.

  5. Mobile Technology and Social Media in the Clinical Practice of Young Radiation Oncologists: Results of a Comprehensive Nationwide Cross-sectional Study

    SciTech Connect (OSTI)

    Bibault, Jean-Emmanuel; Leroy, Thomas; Blanchard, Pierre; Biau, Julian; Cervellera, Mathilde; Diaz, Olivia; Faivre, Jean Christophe; and others

    2014-09-01

    Purpose: Social media and mobile technology are transforming the way in which young physicians are learning and practicing medicine. The true impact of such technologies has yet to be evaluated. Methods and Materials: We performed a nationwide cross-sectional survey to better assess how young radiation oncologists used these technologies. An online survey was sent out between April 24, 2013, and June 1, 2013. All residents attending the 2013 radiation oncology French summer course were invited to complete the survey. Logistic regressions were performed to assess predictors of use of these tools in the hospital on various clinical endpoints. Results: In all, 131 of 140 (93.6%) French young radiation oncologists answered the survey. Of these individuals, 93% owned a smartphone and 32.8% owned a tablet. The majority (78.6%) of the residents owning a smartphone used it to work in their department. A total of 33.5% had more than 5 medical applications installed. Only 60.3% of the residents verified the validity of the apps that they used. In all, 82.9% of the residents had a social network account. Conclusions: Most of the residents in radiation oncology use their smartphone to work in their department for a wide variety of tasks. However, the residents do not consistently check the validity of the apps that they use. Residents also use social networks, with only a limited impact on their relationship with their patients. Overall, this study highlights the irruption and the risks of new technologies in the clinical practice and raises the question of a possible regulation of their use in the hospital.

  6. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    SciTech Connect (OSTI)

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V.; Sykes, Jenna; Wong, Rebecca K.S.; Dinniwell, Rob E.; Kim, John; Ringash, Jolie; Brierley, James D.; Cummings, Bernard J.; Brade, Anthony; Dawson, Laura A.

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed by lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ?5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ?5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ?10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ?60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.

  7. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance

    SciTech Connect (OSTI)

    Dong, Han; Sharma, Diksha; Badano, Aldo

    2014-12-15

    Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridMANTIS, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webMANTIS and visualMANTIS to facilitate the setup of computational experiments via hybridMANTIS. Methods: The visualization tools visualMANTIS and webMANTIS enable the user to control simulation properties through a user interface. In the case of webMANTIS, control via a web browser allows access through mobile devices such as smartphones or tablets. webMANTIS acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. Results: The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridMANTIS. The users can download the output images and statistics through a zip file for future reference. In addition, webMANTIS provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. Conclusions: The visualization tools visualMANTIS and webMANTIS provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.

  8. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    SciTech Connect (OSTI)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.

  9. Audit Report "Department of Energy Efforts to Manage Information Technology Resources in an Energy-Efficient and Environmentally Responsible Manner"

    SciTech Connect (OSTI)

    2009-05-01

    The American Recovery and Reinvestment Act of 2009 emphasizes energy efficiency and conservation as critical to the Nation's economic vitality; its goal of reducing dependence on foreign energy sources; and, related efforts to improve the environment. The Act highlights the significant use of various forms of energy in the Federal sector and promotes efforts to improve the energy efficiency of Federal operations. One specific area of interest is the increasing demand for Federal sector computing resources and the corresponding increase in energy use, with both cost and environmental implications. The U.S. Environmental Protection Agency reported that, without aggressive conservation measures, data center energy consumption alone is expected to double over the next five years. In our report on Management of the Department's Data Centers at Contractor Sites (DOE/IG-0803, October 2008) we concluded that the Department of Energy had not always improved the efficiency of its contractor data centers even when such modifications were possible and practical. Despite its recognized energy conservation leadership role, the Department had not always taken advantage of opportunities to reduce energy consumption associated with its information technology resources. Nor, had it ensured that resources were managed in a way that minimized impact on the environment. In particular: (1) The seven Federal and contractor sites included in our review had not fully reduced energy consumption through implementation of power management settings on their desktop and laptop computers; and, as a consequence, spent $1.6 million more on energy costs than necessary in Fiscal Year 2008; (2) None of the sites reviewed had taken advantage of opportunities to reduce energy consumption, enhance cyber security, and reduce costs available through the use of techniques, such as 'thin-client computing' in their unclassified environments; and, (3) Sites had not always taken the necessary steps to reduce energy consumption and resource usage of their data centers, such as identifying and monitoring the amount of energy used at their facilities. We concluded that Headquarters programs offices (which are part of the Department of Energy's Common Operating Environment) as well as field sites had not developed and/or implemented policies and procedures necessary to ensure that information technology equipment and supporting infrastructure was operated in an energy-efficient manner and in a way that minimized impact on the environment. For example, although required by the Department, sites had not enabled computer equipment power management features designed to reduce energy consumption. In addition, officials within Headquarters programs and at the sites reviewed had not effectively monitored performance or taken steps to fully evaluate available reductions in energy usage at their facilities. Without improvements, the Department will not be able to take advantage of opportunities to reduce energy consumption and realize cost savings of nearly $23 million over the next five years at just the seven sites reviewed. We noted that the potential for reduced energy consumption at these sites alone was equivalent to the annual power requirements of over 2,400 homes or, alternatively, removing about 3,000 cars from the road each year. Many of the available energy reduction strategies, such as fully utilizing energy-efficient settings on the many computers used by the Department and its contractors, are 'low hanging fruit' in that they will provide immediate tangible energy savings at little or no cost. Others, such as a shift to thin-client computing, an environment that transfers the processing capabilities from an individual's desk to a shared server environment, will require some level of investment which can, based on available literature, be successfully recovered through reduced acquisition and support costs. In our judgment, given its highly visible leadership in energy issues, aggressive action should be taken to make the Department's information technology operati

  10. Optimization Using Metamodeling in the Context of Integrated Computational Materials Engineering (ICME)

    SciTech Connect (OSTI)

    Hammi, Youssef; Horstemeyer, Mark F; Wang, Paul; David, Francis; Carino, Ricolindo

    2013-11-18

    Predictive Design Technologies, LLC (PDT) proposed to employ Integrated Computational Materials Engineering (ICME) tools to help the manufacturing industry in the United States regain the competitive advantage in the global economy. ICME uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. With the advent of accurate modeling and simulation along with significant increases in high performance computing (HPC) power, virtual design and manufacturing using ICME tools provide the means to reduce product development time and cost by alleviating costly trial-and-error physical design iterations while improving overall quality and manufacturing efficiency. To reduce the computational cost necessary for the large-scale HPC simulations and to make the methodology accessible for small and medium-sized manufacturers (SMMs), metamodels are employed. Metamodels are approximate models (functional relationships between input and output variables) that can reduce the simulation times by one to two orders of magnitude. In Phase I, PDT, partnered with Mississippi State University (MSU), demonstrated the feasibility of the proposed methodology by employing MSU?s internal state variable (ISV) plasticity-damage model with the help of metamodels to optimize the microstructure-process-property-cost for tube manufacturing processes used by Plymouth Tube Company (PTC), which involves complicated temperature and mechanical loading histories. PDT quantified the microstructure-property relationships for PTC?s SAE J525 electric resistance-welded cold drawn low carbon hydraulic 1010 steel tube manufacturing processes at seven different material states and calibrated the ISV plasticity material parameters to fit experimental tensile stress-strain curves. PDT successfully performed large scale finite element (FE) simulations in an HPC environment using the ISV plasticity model in Abaqus FE analyses of the tube forming, sizing, drawing, welding, and normalizing processes. The simulation results coupled with the manufacturing cost data were used to develop prototype metamodeling (quick response) codes which could be used to predict and optimize the microstructure-process-property-cost relationships. The developed ICME metamodeling toolkits are flexible enough to be applied to other manufacturing processes (e.g. forging, forming, casting, extrusion, rolling, stamping, and welding/joining) and metamodeling codes can run on laptop computers. Based on the work completed in Phase I, in Phase II, PDT proposes to continue to refine the ISV model by correlating and incorporating the uncertainties in the microstructure, mechanical testing, and modeling. Following the model refinement, FE analyses will be simulated and will provide even more realistic predictions as they include an appropriate window of uncertainty. Using the HPC output (FE analyses) as input, the quick-response metamodel codes will more accurately predict and optimize the microstructure-process-property-cost relationships. Furthermore, PDT propose to employ the ICME metamodeling toolkits to help develop a new tube product using entirely new high strength steel. The modeling of the high strength steel manufacturing process will replace the costly and time consuming trial-and-error methods that were used in the tubing industry previously. This simulation-based process prototyping will greatly benefit our industrial partners by opening up new market spaces due to new products with greater capabilities.

  11. The SNS/HFIR Web Portal System for SANS

    SciTech Connect (OSTI)

    Campbell, Stuart I; Miller, Stephen D; Bilheux, Jean-Christophe; Reuter, Michael A; Peterson, Peter F; Kohl, James Arthur; Trater, James R; Vazhkudai, Sudharshan S; Lynch, Vickie E

    2010-01-01

    In a busy world, continuing with the status-quo, to do things the way we are already familiar, often seems to be the most efficient way to conduct our work. We look for the value-add to decide if investing in a new method is worth the effort. How shall we evaluate if we have reached this tipping point for change? For contemporary researchers, understanding the properties of the data is a good starting point. The new generation of neutron scattering instruments being built are higher resolution and produce one or more orders of magnitude larger data than the previous generation of instruments. For instance, we have grown out of being able to perform some important tasks with our laptops the data are too big and the computations would simply take too long. These large datasets can be problematic as facility users now begin to grapple with many of the same issues faced by more established computing communities. These issues include data access, management, and movement, data format standards, distributed computing, and collaboration among others. The Neutron Science Portal has been architected, designed, and implemented to provide users with an easy-to-use interface for managing and processing data, while also keeping an eye on meeting modern cybersecurity requirements imposed on institutions. The cost of entry for users has been lowered by utilizing a web interface providing access to backend portal resources. Users can browse or search for data which they are allowed to see, data reduction applications can be run without having to load the software, sample activation calculations can be performed for SNS and HFIR beamlines, McStas simulations can be run on TeraGrid and ORNL computers, and advanced analysis applications such as those being produced by the DANSE project can be run. Behind the scenes is a live cataloging system which automatically catalogs and archives experiment data via the data management system, and provides proposal team members access to their experiment data. The complexity of data movement and utilizing distributed computing resources has been taken care on behalf of users. Collaboration is facilitated by providing users a read/writeable common area, shared across all experiment team members. To date, these shared areas are the fastest growing data spaces. The portal currently has over 370 registered users, almost 7TB of experiment and user data, approximately 1,000,000 files cataloged, and had almost 10,000 unique visits last year. Future directions for enhancing portal robustness include examining how to mirror data and portal services, better facilitation of collaborations via virtual organizations, enhancing disconnected service via thick client applications, and better inter-facility connectivity to support cross-cutting research. The portal has established itself in the SNS/HFIR user community, and the development team strives to continue to improve the quality of features and services provided in order to better serve the community.

  12. The SNS/HFIR Web Portal System How Can it Help Me?

    SciTech Connect (OSTI)

    Miller, Stephen D; Geist, Al; Herwig, Kenneth W; Peterson, Peter F; Reuter, Michael A; Ren, Shelly; Bilheux, Jean-Christophe; Campbell, Stuart I; Kohl, James Arthur; Vazhkudai, Sudharshan S; Cobb, John W; Lynch, Vickie E; Chen, Meili; Trater, James R

    2010-01-01

    Abstract. In a busy world, continuing with the status-quo, to do things the way we are already familiar, often seems to be the most efficient way to conduct our work. We look for the value-add to decide if investing in a new method is worth the effort. How shall we evaluate if we have reached this tipping point for change? For contemporary researchers, understanding the properties of the data is a good starting point. The new generation of neutron scattering instruments being built are higher resolution and produce one or more orders of magnitude larger data than the previous generation of instruments. For instance, we have grown out of being able to perform some important tasks with our laptops the data are too big and the computations would simply take too long. These large datasets can be problematic as facility users now begin to grapple with many of the same issues faced by more established computing communities. These issues include data access, management, and movement, data format standards, distributed computing, and collaboration among others. The Neutron Science Portal has been architected, designed, and implemented to provide users with an easy-to-use interface for managing and processing data, while also keeping an eye on meeting modern cybersecurity requirements imposed on institutions. The cost of entry for users has been lowered by utilizing a web interface providing access to backend portal resources. Users can browse or search for data which they are allowed to see, data reduction applications can be run without having to load the software, sample activation calculations can be performed for SNS and HFIR beamlines, McStas simulations can be run on TeraGrid and ORNL computers, and advanced analysis applications such as those being produced by the DANSE project can be run. Behind the scenes is a live cataloging system which automatically catalogs and archives experiment data via the data management system, and provides proposal team members access to their experiment data. The complexity of data movement and utilizing distributed computing resources has been taken care on behalf of users. Collaboration is facilitated by providing users a read/writeable common area, shared across all experiment team members. To date, these shared areas are the fastest growing data spaces. The portal currently has over 370 registered users, almost 5TB of experiment and user data, approximately 660K files cataloged, and had almost 10,000 unique visits last year. Future directions for enhancing portal robustness include examining how to mirror data and portal services, better facilitation of collaborations via virtual organizations, enhancing disconnected service via thick client applications, and better inter-facility connectivity to support cross-cutting research. The portal has established itself in the SNS/HFIR user community, and the development team strives to continue to improve the quality of features and services provided in order to better serve the community.

  13. Community Land Model Version 3.0 (CLM3.0) Developer's Guide

    SciTech Connect (OSTI)

    Hoffman, FM

    2004-12-21

    This document describes the guidelines adopted for software development of the Community Land Model (CLM) and serves as a reference to the entire code base of the released version of the model. The version of the code described here is Version 3.0 which was released in the summer of 2004. This document, the Community Land Model Version 3.0 (CLM3.0) User's Guide (Vertenstein et al., 2004), the Technical Description of the Community Land Model (CLM) (Oleson et al., 2004), and the Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User's Guide (Levis et al., 2004) provide the developer, user, or researcher with details of implementation, instructions for using the model, a scientific description of the model, and a scientific description of the Dynamic Global Vegetation Model integrated with CLM respectively. The CLM is a single column (snow-soil-vegetation) biogeophysical model of the land surface which can be run serially (on a laptop or personal computer) or in parallel (using distributed or shared memory processors or both) on both vector and scalar computer architectures. Written in Fortran 90, CLM can be run offline (i.e., run in isolation using stored atmospheric forcing data), coupled to an atmospheric model (e.g., the Community Atmosphere Model (CAM)), or coupled to a climate system model (e.g., the Community Climate System Model Version 3 (CCSM3)) through a flux coupler (e.g., Coupler 6 (CPL6)). When coupled, CLM exchanges fluxes of energy, water, and momentum with the atmosphere. The horizontal land surface heterogeneity is represented by a nested subgrid hierarchy composed of gridcells, landunits, columns, and plant functional types (PFTs). This hierarchical representation is reflected in the data structures used by the model code. Biophysical processes are simulated for each subgrid unit (landunit, column, and PFT) independently, and prognostic variables are maintained for each subgrid unit. Vertical heterogeneity is represented by a single vegetation layer, 10 layers for soil, and up to five layers for snow, depending on the snow depth. For computational efficiency, gridcells are grouped into ''clumps'' which are divided in cyclic fashion among distributed memory processors. Additional parallel performance is obtained by distributing clumps of gridcells across shared memory processors on computer platforms that support hybrid Message Passing Interface (MPI)/OpenMP operation. Significant modifications to the source code have been made over the last year to support efficient operation on newer vector architectures, specifically the Earth Simulator in Japan and the Cray X1 at Oak Ridge National Laboratory (Homan et al., 2004). These code modifications resulted in performance improvements even on the scalar architectures widely used for running CLM presently. To better support vectorized processing in the code, subgrid units (columns and PFTs) are grouped into ''filters'' based on their process-specific categorization. For example, filters (vectors of integers) referring to all snow, non-snow, lake, non-lake, and soil covered columns and PFTs within each clump are built and maintained when the model is run. Many loops within the scientific subroutines use these filters to indirectly address the process-appropriate subgrid units.

  14. Low-cost flexible packaging for high-power Li-Ion HEV batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Henriksen, G. L.

    2004-06-18

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

  15. Flexible low-cost packaging for lithium ion batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Chaiko, D. J.; Henriksen, G. L.; Chemical Engineering

    2004-01-01

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx}50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

  16. Annual Site Environmental Report: 2009(ASER)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This report provides information about environmental programs during the calendar year of 2009 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2009/2010 (October 2009 through May 2010), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that Worker safety and health are protected, The environment is protected, and Compliance is ensured. Throughout 2009, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423, EO 13514, and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. SLAC's EMS was audited by a review team from the DOE Oak Ridge Office and the DOE SLAC Site Office (SSO) on March 31, 2009. The review team found the EMS to be in substantial conformance with the appropriate EMS requirements. Based on the audit results, SLAC and DOE were able to declare conformance with DOE Order 450.1A ahead of the June 30, 2009 mandated deadline. During 2009, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2009. Hazardous materials field verifications of 36 buildings identified a number of materials that could be removed from inventory due to lack of need or age of the material. In all, 124 chemical containers were removed from inventory. SLAC's chemical purchase approval process was reconfigured to allow for more effective control over purchase of highly toxic materials. One hundred percent of SLAC's purchased desktops, laptops, and monitors were either Silver or Gold level Electronic Product Environmental Assessment Tool (EPEAT) certified in fiscal year (FY) 2009. SLAC continues to make progress on achieving the sustainability goals of EOs 13423 and 13514, which include, but are not limited to reductions in the use of water, energy, and fuel, building to green standards and reductions in greenhouse gas (GHG) emissions. In 2009, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. During calendar year (CY) 2009, SLAC shipped 1324 cubic feet of low-level radioactive waste, legacy waste accounted for 40 percent of the volume, to appropriate treatment and disposal facilities for low-level radioactive waste. Moreover, SLAC continued its efforts in the inventory reduction of materials no longer needed for its mission: returned 28 sealed sources to the manufacturer, transferred additional 3 sources to Los Alamos National La

  17. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    SciTech Connect (OSTI)

    Sun, Haiyan

    2005-05-01

    The case-hardening process modifies the near-surface permeability and conductivity of steel, as can be observed through changes in alternating current potential drop (ACPD) along a rod. In order to evaluate case depth of case hardened steel rods, analytical expressions are derived for the alternating current potential drop on the surface of a homogeneous rod, a two-layered and a three-layered rod. The case-hardened rod is first modeled by a two-layer rod that has a homogeneous substrate with a single, uniformly thick, homogeneous surface layer, in which the conductivity and permeability values differ from those in the substrate. By fitting model results to multi-frequency ACPD experimental data, estimates of conductivity, permeability and case depth are found. Although the estimated case depth by the two-layer model is in reasonable agreement with the effective case depth from the hardness profile, it is consistently higher than the effective case depth. This led to the development of the three-layer model. It is anticipated that the new three-layered model will improve the results and thus makes the ACPD method a novel technique in nondestructive measurement of case depth. Another way to evaluate case depth of a case hardened steel rod is to use induction coils. Integral form solutions for an infinite rod encircled by a coaxial coil are well known, but for a finite length conductor, additional boundary conditions must be satisfied at the ends. In this work, calculations of eddy currents are performed for a two-layer conducting rod of finite length excited by a coaxial circular coil carrying an alternating current. The solution is found using the truncated region eigenfunction expansion (TREE) method. By truncating the solution region to a finite length in the axial direction, the magnetic vector potential can be expressed as a series expansion of orthogonal eigenfunctions instead of as a Fourier integral. Closed-form expressions are derived for the electromagnetic field in the presence of a finite a two-layer rod and a conductive tube. The results are in very good agreement with those obtained by using a 2D finite element code. In the third part, a new probe technology with enhanced flaw detection capability is described. The new probe can reduce inspection time through the use of multiple Hall sensors. A prototype Hall array probe has been built and tested with eight individual Hall sensor ICs and a racetrack coil. Electronic hardware was developed to interface the probes to an oscilloscope or an eddy current instrument. To achieve high spatial resolution and to limit the overall probe size, high-sensitivity Hall sensor arrays were fabricated directly on a wafer using photolithographic techniques and then mounted in their unencapsulated form. The electronic hardware was then updated to interface the new probes to a laptop computer.

  18. Electrorecycling of Critical and Value Metals from Mobile Electronics

    SciTech Connect (OSTI)

    Lister, Tedd E.; Wang, Peming; Anderko, Andre

    2014-09-01

    Mobile electronic devices such as smart phones and tablets are a significant source of valuable metals that should be recycled. Each year over a billion devices are sold world-wide and the average life is only a couple years. Value metals in phones are gold, palladium, silver, copper, cobalt and nickel. Devices now contain increasing amounts of rare earth elements (REE). In recent years the supply chain for REE has moved almost exclusively to China. They are contained in displays, speakers and vibrators within the devices. By US Department of Energy (DOE) classification, specific REEs (Nd, Dy, Eu, Tb and Y) are considered critical while others (Ce, La and Pr) are deemed near critical. Effective recycling schemes should include the recovery of these critical materials. By including more value materials in a recovery scheme, more value can be obtained by product diversification and less waste metals remains to be disposed of. REEs are mined as a group such that when specific elements become critical significantly more ore must be processed to capture the dilute but valuable critical elements. Targeted recycling of items containing the more of the less available critical materials could address their future criticality. This presentation will describe work in developing aqueous electrochemistry-based schemes for recycling metals from scrap mobile electronics. The electrorecycling process generates oxidizing agents at an anode while reducing dissolved metals at the cathode. E vs pH diagrams and metals dissolution experiments are used to assess effectiveness of various solution chemistries. Although several schemes were envisioned, a two stages process has been the focus of work: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using simulated metal mixtures. Both Cu and Ag were recovered at ~ 97% using Fe+3 while leaving Au and Ag intact. REE were extracted from the dissolved mixture using conventional methods. A discussion of future research directions will be discussed.

  19. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    SciTech Connect (OSTI)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. The prototype robot system was built and tested indoors and outdoors, outfitted with a Remote-Field Eddy Current (RFEC) sensor integrated as its main NDE sensor modality. An angled launcher, allowing for live launching and retrieval, was also built to suit custom angled launch-fittings from TDW. The prototype vehicle and launcher systems are shown. The complete system, including the in-pipe robot train, launcher, integrated NDE-sensor and real-time video and control console and NDE-data collection and -processing and real-time display, were demonstrated to all sponsors prior to proceeding into final field-trials--the individual components and setting for said acceptance demonstration are shown. The launcher-tube was also used to verify that the vehicle system is capable of operating in high-pressure environments, and is safely deployable using proper evacuating/purging techniques for operation in the po

  20. Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    SciTech Connect (OSTI)

    Susan Burkett; Hagen Schempf

    2006-01-31

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. CMU has fully designed every module in terms of the mechanical, electrical and software elements (architecture only). Substantial effort has gone into pre-prototyping to uncover mechanical, electrical and software issues for critical elements of the design. Design requirements for sensor-providers were also detailed and finalized and provided to them for inclusion in their designs. CMU is expecting to start 2006 with a detailed design effort for both mechanical and electrical components, followed by procurement and fabrication efforts in late winter/spring 2006. The assembly and integration efforts will occupy all of the spring and summer of 2006. Software development will also be a major effort in 2006, and will result in porting and debugging of code on the module- and train-levels in late summer and Fall of 2006. Final pipe mock-up testing is expected in late fall and early winter 2006 with an acceptance demonstration of the robot train (with a sensor-module mock-up) planned to DoE/NGA towards the end of 2006.

  1. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  2. National Wind Distance Learning Collaborative

    SciTech Connect (OSTI)

    Dr. James B. Beddow

    2013-03-29

    Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

  3. Phase 1 Development Report for the SESSA Toolkit.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Melton, Brad J; Anderson, Robert J.

    2014-09-01

    The Site Exploitation System for Situational Awareness ( SESSA ) tool kit , developed by Sandia National Laboratories (SNL) , is a comprehensive de cision support system for crime scene data acquisition and Sensitive Site Exploitation (SSE). SESSA is an outgrowth of another SNL developed decision support system , the Building R estoration Operations Optimization Model (BROOM), a hardware/software solution for data acquisition, data management, and data analysis. SESSA was designed to meet forensic crime scene needs as defined by the DoD's Military Criminal Investigation Organiza tion (MCIO) . SESSA is a very comprehensive toolki t with a considerable amount of database information managed through a Microsoft SQL (Structured Query Language) database engine, a Geographical Information System (GIS) engine that provides comprehensive m apping capabilities, as well as a an intuitive Graphical User Interface (GUI) . An electronic sketch pad module is included. The system also has the ability to efficiently generate necessary forms for forensic crime scene investigations (e.g., evidence submittal, laboratory requests, and scene notes). SESSA allows the user to capture photos on site, and can read and generate ba rcode labels that limit transcription errors. SESSA runs on PC computers running Windows 7, but is optimized for touch - screen tablet computers running Windows for ease of use at crime scenes and on SSE deployments. A prototype system for 3 - dimensional (3 D) mapping and measur e ments was also developed to complement the SESSA software. The mapping system employs a visual/ depth sensor that captures data to create 3D visualizations of an interior space and to make distance measurements with centimeter - level a ccuracy. Output of this 3D Model Builder module provides a virtual 3D %22walk - through%22 of a crime scene. The 3D mapping system is much less expensive and easier to use than competitive systems. This document covers the basic installation and operation of th e SESSA tool kit in order to give the user enough information to start using the tool kit . SESSA is currently a prototype system and this documentation covers the initial release of the tool kit . Funding for SESSA was provided by the Department of Defense (D oD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL) . ACKNOWLEDGEMENTS The authors wish to acknowledge the funding support for the development of the Site Exploitation System for Situational Awareness (SESSA) toolkit from the Department of Defense (DoD), Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) Rapid Fielding (RF) organization. The project was managed by the Defense Forensic Science Center (DFSC) , formerly known as the U.S. Army Criminal Investigation Laboratory (USACIL). Special thanks to Mr. Garold Warner, of DFSC, who served as the Project Manager. Individuals that worked on the design, functional attributes, algorithm development, system arc hitecture, and software programming include: Robert Knowlton, Brad Melton, Robert Anderson, and Wendy Amai.

  4. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.