Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Tomlinson, Jason; Jensen, Mike

2

ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)  

SciTech Connect (OSTI)

Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Tomlinson, Jason; Jensen, Mike

2012-02-28T23:59:59.000Z

3

Sensitivity of an underwater acoustic array to ultra-high energy neutrinos  

E-Print Network [OSTI]

the maximum energy of protons of cos- mological origin somewhere below 1020 eV, be- cause of the finite (%50Sensitivity of an underwater acoustic array to ultra-high energy neutrinos Nikolai G. Lehtinen the possibility of searching for ultra high energy neutrinos in cosmic rays using acoustic techniques in ocean

Buckingham, Michael

4

Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity  

DOE Patents [OSTI]

A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

2014-04-01T23:59:59.000Z

5

Ultra high vacuum pumping system and high sensitivity helium leak detector  

DOE Patents [OSTI]

An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

Myneni, Ganapati Rao (Yorktown, VA)

1997-01-01T23:59:59.000Z

6

Ultra high vacuum pumping system and high sensitivity helium leak detector  

DOE Patents [OSTI]

An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

Myneni, G.R.

1997-12-30T23:59:59.000Z

7

Multimode laser cooling and ultra-high sensitivity force sensing with nanowires  

E-Print Network [OSTI]

Photo-induced forces can be used to manipulate and cool the mechanical motion of oscillators. When the oscillator is used as a force sensor, such as in atomic force microscopy, active feedback is an enticing route to enhancing measurement performance. Here, we show broadband multimode cooling of $-23$ dB down to a temperature of $8 \\pm 1$~K in the stationary regime. Through the use of periodic quiescence feedback cooling, we show improved signal-to-noise ratios for the measurement of transient signals. We compare the performance of real feedback to numerical post-processing of data and show that both methods produce similar improvements to the signal-to-noise ratio of force measurements. We achieved a room temperature force measurement sensitivity of $< 2\\times10^{-16}$ N with integration time of less than $0.1$ ms. The high precision and fast force microscopy results presented will potentially benefit applications in biosensing, molecular metrology, subsurface imaging and accelerometry.

Hosseini, Mahdi; Slatyer, Harri J; Buchler, Ben C; Lam, Ping Koy

2015-01-01T23:59:59.000Z

8

Singlet-Fission Sensitizers for Ultra-High Efficiency Excitonic Solar Cells: 15 August 2005 - 14 October 2008  

SciTech Connect (OSTI)

We have considered the potential benefits offered by using singlet fission sensitizers in photovoltaic cells and identified two key issues involved in the search for such sensitizers.

Michl, J.

2008-12-01T23:59:59.000Z

9

Ultra High Energy Behaviour  

E-Print Network [OSTI]

We reexamine the behaviour of particles at Ultra Highe energies in the context of the fact that the LHC has already touched an energy of $7 TeV$ and is likely to attain $14 TeV$ by 2013/2014.Consequences like a possible new shortlived interaction within the Compton scale are discussed.

Burra G. Sidharth

2011-03-18T23:59:59.000Z

10

MICS Asia Phase II - Sensitivity to the aerosol module  

E-Print Network [OSTI]

In the framework of the model inter-comparison study - Asia Phase II (MICS2), where eight models are compared over East Asia, this paper studies the influence of different parameterizations used in the aerosol module on the aerosol concentrations of sulfate and nitrate in PM10. An intracomparison of aerosol concentrations is done for March 2001 using different configurations of the aerosol module of one of the model used for the intercomparison. Single modifications of a reference setup for model configurations are performed and compared to a reference case. These modifications concern the size distribution, i.e. the number of sections, and physical processes, i.e. coagulation, condensation/evaporation, cloud chemistry, heterogeneous reactions and sea-salt emissions. Comparing monthly averaged concentrations at different stations, the importance of each parameterization is first assessed. It is found that sulfate concentrations are little sensitive to sea-salt emissions and to whether condensation is computed...

Sartelet, Karine; Sportisse, Bruno

2007-01-01T23:59:59.000Z

11

Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection  

E-Print Network [OSTI]

Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable

12

Sensitive glow discharge ion source for aerosol and gas analysis  

DOE Patents [OSTI]

A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

Reilly, Peter T. A. (Knoxville, TN)

2007-08-14T23:59:59.000Z

13

Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model  

SciTech Connect (OSTI)

Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.

Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

2013-06-05T23:59:59.000Z

14

On Board, In-use Sensitivity Study of an Electrical Aerosol Detector...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

On Board, In-use Sensitivity Study of an Electrical Aerosol Detector (EAD) and Condensation Particle Counter (CPC) for Second by Second Diesel PM Measurements On Board, In-use...

15

Faculty Position in Ultra High Precision Robotics & Manufacturing  

E-Print Network [OSTI]

, manipulation and metrology systems targeting additive manufacturing; ∑ New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

Candea, George

16

Cosmic absorption of ultra high energy particles  

E-Print Network [OSTI]

This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

Ruffini, R; Xue, S -S

2015-01-01T23:59:59.000Z

17

Ultra-high vacuum photoelectron linear accelerator  

DOE Patents [OSTI]

An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

Yu, David U.L.; Luo, Yan

2013-07-16T23:59:59.000Z

18

Astronomy with ultra high-energy particles  

E-Print Network [OSTI]

Recent measurements of the properties of cosmic rays above 10^17 eV are summarized and implications on our contemporary understanding of their origin are discussed. Cosmic rays with energies exceeding 10^20 eV have been measured, they are the highest-energy particles in the Universe. Particles at highest energies are expected to be only marginally deflected by magnetic fields and they should point towards their sources on the sky. Recent results of the Pierre Auger Observatory have opened a new window to the Universe - astronomy with ultra high-energy particles.

Joerg R. Hoerandel

2008-03-20T23:59:59.000Z

19

Direct Aerosol Forcing: Sensitivity to Uncertainty in Measurements of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,PhysicsDileepDirac Charge DynamcsAerosol

20

A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds  

E-Print Network [OSTI]

freezing in a mixed-phase stratiform cloud. Immersion freez- ing is represented using a parameterization, and the larger droplets nucleate into ice particles through the immersion freezing process. In mixed-phaseA Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform

Eloranta, Edwin W.

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The origin of ultra high energy cosmic rays  

E-Print Network [OSTI]

We briefly discuss some open problems and recent developments in the investigation of the origin and propagation of ultra high energy cosmic rays (UHECRs).

Pasquale Blasi

2005-12-16T23:59:59.000Z

22

Multilayer ultra-high-temperature ceramic coatings  

DOE Patents [OSTI]

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

23

Ultra-high resolution computed tomography imaging  

DOE Patents [OSTI]

A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

2002-01-01T23:59:59.000Z

24

Temperature response of the ultra-high throughput mutational spectrometer  

E-Print Network [OSTI]

The Ultra-High Throughput Mutational Spectrometer is an instrument designed to separate mutant from wild type DNA through capillary electrophoresis. Since this technique uses the melting point of the molecule to distinguish ...

Suen, Timothy W. (Timothy Wu)

2005-01-01T23:59:59.000Z

25

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network [OSTI]

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, FranÁois-Xavier

2009-01-01T23:59:59.000Z

26

Ultra-high sensitivity radiation detection apparatus and method  

DOE Patents [OSTI]

A method and apparatus are provided to concentrate and detect very low levels of radioactive noble gases from the atmosphere. More specifically the invention provides a method and apparatus to concentrate xenon, krypton and radon in an organic fluid and to detect these gases by the radioactive emissions.

Gross, Kenneth C. (Bolingbrook, IL); Valentine, John D. (Cincinnati, OH); Markum, Francis (Joliet, IL); Zawadzki, Mary (Rouses Point, NY); Dickerman, Charles (Downers Grove, IL)

1999-01-01T23:59:59.000Z

27

Design Strategies for Ultra-high Efficiency Photovoltaics  

E-Print Network [OSTI]

Design Strategies for Ultra-high Efficiency Photovoltaics Thesis by Emily Cathryn Warmann, who reminds me that this is fun and interesting. iv #12;Abstract While concentrator photovoltaic cells, the over all module efficiency drops to only 34 to 36%. T

Winfree, Erik

28

The Composition of Ultra High Energy Cosmic Rays Through Hybrid  

E-Print Network [OSTI]

nuclei originating outside the Solar System "Ultra High Energy" E > 1017eV First discovered by interact high in the Earth's atmosphere EASs result in billions of secondary particles Fluorescence) Image produced by 16x16 PMT "Cluster Box" 3.3 m diameter mirrors collect light and focus

29

Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: Sensitivity Study  

SciTech Connect (OSTI)

We conducted a sensitivity study to better understand the potential of a new method for retrieving aerosol optical depth (AOD) under partly cloudy conditions. This method exploits reflectance ratios in the visible spectral range and provides an effective way to avoid three-dimensional (3D) cloud effects. The sensitivity study is performed for different observational conditions and random errors in input data. The results of the sensitivity study suggest that this ratio method has the ability to detect clear pixels even in close proximity to clouds. Such detection does not require a statistical analysis of the two-dimensional (2D) horizontal distribution of reflected solar radiation, and thus it could be customized for operational retrievals. In comparison with previously suggested approaches, the ratio method has the capability to increase the "harvest" of clear pixels. Similar to the traditional Independent Pixel Approximation (IPA), the ratio method has a low computational cost for retrieving AOD. In contrast to the IPA method, the ratio method provides much more accurate estimations of the AOD values under broken cloud conditions: pixel-based and domain-averaged estimations of errors in AOD are about 25% and 10%, respectively. Finally, both the ratio-based cloud screening and the accuracy of domain-averaged ratio-based AOD values do not suffer greatly when 5% random errors are introduced in the reflectances.

Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

2009-09-01T23:59:59.000Z

30

Ultra-High Temperature Distributed Wireless Sensors  

SciTech Connect (OSTI)

Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

2013-03-31T23:59:59.000Z

31

E-Print Network 3.0 - advanced ultra-high speed Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

** This paper describes an ultra high-speed... to be considerably small to prevent huge centrifugal force caused by the ultra high-speed rotation. The stator... system. Keywords:...

32

Double Pair Production by Ultra High Energy Cosmic Ray Photons  

E-Print Network [OSTI]

With use of CompHEP package we've made the detailed estimate of the influence of double e+e- pair production by photons (DPP) on the propagation of ultra high energy electromagnetic cascade. We show that in the models in which cosmic ray photons energy reaches few thousand EeV refined DPP analysis may lead to substantial difference in predicted photon spectrum compared to previous rough estimates.

S. V. Demidov; O. E. Kalashev

2008-12-22T23:59:59.000Z

33

Ultra High Energy Cosmic Rays: present status and future prospects  

E-Print Network [OSTI]

Reasons for the current interest in cosmic rays above 10^19 eV are described. The latest results on the energy spectrum, arrival direction distribution and mass composition of cosmic rays are reviewed, including data that were reported after the meeting in Blois in June 2001. The enigma set by the existence of ultra high-energy cosmic rays remains. Ideas proposed to explain it are discussed and progress with the construction of the Pierre Auger Observatory is outlined.

A. A. Watson

2001-12-20T23:59:59.000Z

34

Wide band cryogenic ultra-high vacuum microwave absorber  

DOE Patents [OSTI]

An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

Campisi, Isidoro E. (Newport News, VA)

1992-01-01T23:59:59.000Z

35

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

36

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

37

Wide band cryogenic ultra-high vacuum microwave absorber  

DOE Patents [OSTI]

An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

Campisi, I.E.

1992-05-12T23:59:59.000Z

38

Ultra-high pressure water jet: Baseline report  

SciTech Connect (OSTI)

The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

NONE

1997-07-31T23:59:59.000Z

39

Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies  

E-Print Network [OSTI]

This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape...

Yi, Bingqi

2013-07-09T23:59:59.000Z

40

Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical  

E-Print Network [OSTI]

of aerosol particles and in turn their number concentration and size distribution. Aerosol particles can grow contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode of aerosol number concentration and size distri- bution is important for considerations of the aerosol

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ultra-high pressure water jet: Baseline report; Summary  

SciTech Connect (OSTI)

The Husky{trademark} is an ultra high pressure waterjet cutting tool system. The pump is mounted on a steel tube frame which includes slots for transport by a forklift. The Husky{trademark} features an automatic shutdown for several conditions such as low oil pressure and high oil temperature. Placement of the Husky{trademark} must allow for a three foot clearance on all sides for operation and service access. At maximum continuous operation, the output volume is 7.2 gallons per minute with an output pressure of 40,000 psi. A diesel engine provides power for the system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

NONE

1997-07-31T23:59:59.000Z

42

The Acoustic Detection of Ultra High Energy Neutrinos  

E-Print Network [OSTI]

Attempts have been made to parameterise the thermoacoustic emission of particle cascades induced by EeV neutrinos interacting in the sea. Understanding the characteristic radiation from such an event allows us to predict the pressure pulse observed by underwater acoustic sensors distributed in kilometre scale arrays. We find that detectors encompassing thousands of cubic kilometres are required, with a minimum of 100 hydrophones per kilometre cubed, in order to observe the flux of neutrinos predicted by the attenuation of ultra high energy cosmic rays on cosmic microwave background photons. The pressure threshold of such an array must be in the range 5-10 mPa and the said detector will have to operate for five years or more. Additionally a qualitative analysis of the first acoustic data recorded by the Rona hydrophone array off the north-west coast of Scotland is reported.

J. Perkin

2008-01-07T23:59:59.000Z

43

Ultra-high-speed optical and electronic distributed devices  

SciTech Connect (OSTI)

This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

1995-08-01T23:59:59.000Z

44

17 March 2009 Do some ultra-high-energy cosmic rays originate in  

E-Print Network [OSTI]

17 March 2009 Do some ultra-high-energy cosmic rays originate in higher-dimensional space-time? Abstract I speculate that some ultra-high-energy cosmic rays may originate in another universe in flat (non have needed an initial energy of 500 EeV to arrive at earth with 320 EeV. If it originated farther out

Bryan, Ronald

45

Ultra High-Resolution Global Climate Simulation Project PRINCIPAL INVESTIGATOR: James J. Hack  

E-Print Network [OSTI]

changes in the frequency and intensity of extreme events. This project is developing the scientific a terrestrial carbon modeling capabil- ity. #12;Ultra High-Resolution Global Climate Simulation Project elersUltra High-Resolution Global Climate Simulation Project PRINCIPAL INVESTIGATOR: James J. Hack

46

Table 1. Design specifications of ultra-high speed PM motor. Supply voltage (V) 12  

E-Print Network [OSTI]

) 1500 Rated torque (Nm) 0.0955 Rated speed (r/min) 150,000 Stator Core Permanent Magnet Shaft Coil Analysis of Ultra-High Speed Permanent-Magnet Motor Masaru Kano, and Toshihiko Noguchi Department@vos.nagaokaut.ac.jp Abstract This paper describes a design of an ultra-high speed (UHS) permanent-magnet (PM) synchronous motor

Fujimoto, Hiroshi

47

RAIN AND WIND ESTIMATION FROM SEAWINDS IN HURRICANES AT ULTRA HIGH RESOLUTION  

E-Print Network [OSTI]

function (GMF) which relates wind to backscatter (0 ) is not well understood for extremely high wind speedsRAIN AND WIND ESTIMATION FROM SEAWINDS IN HURRICANES AT ULTRA HIGH RESOLUTION Brent A. Williams method for estimating wind and rain in hurricanes from SeaWinds at ultra-high resolution is developed. We

Long, David G.

48

Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper  

SciTech Connect (OSTI)

The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

Dr. VIjay K. Mathur

2009-04-30T23:59:59.000Z

49

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments  

SciTech Connect (OSTI)

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

2006-08-04T23:59:59.000Z

50

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments  

SciTech Connect (OSTI)

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}z = 20 {mu}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {mu}m / OD = 325 {mu}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

Thompson, M. C. [Lawrence Livermore National Laboratory, Livermore, California, 90095 (United States); Badakov, H.; Rosenzweig, J. B.; Travis, G. [UCLA Department of Physics and Astronomy, Los Angeles, California, 90095 (United States); Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D. [Stanford Linear Accelerator Center, Stanford, California, 94309 (United States); Muggli, P. [University of Southern California Los Angeles, California, 90089 (United States); Scott, A. [UCSB Department of Physics, Santa Barbara, California, 93106 (United States); Yoder, R. [Manhattan College, Riverdale, New York, 10471 (United States)

2006-11-27T23:59:59.000Z

51

Ultra-high-energy debris from the collisional Penrose process  

E-Print Network [OSTI]

Soon after the discovery of the Kerr metric, Penrose realized that superradiance can be exploited to extract energy from black holes. The original idea (involving the breakup of a single particle) yields only modest energy gains. A variant of the Penrose process consists of particle collisions in the ergoregion. The collisional Penrose process has been explored recently in the context of dark matter searches, with the conclusion that the ratio $\\eta$ between the energy of post-collision particles detected at infinity and the energy of the colliding particles should be modest ($\\eta \\lesssim 1.5$). Schnittman has shown that these studies underestimated the maximum efficiency by about one order of magnitude (i.e., $\\eta \\lesssim 15$). In this work we reach an even more striking conclusion: particle collisions in the vicinity of rapidly rotating black holes can result in arbitrarily high efficiencies. The astrophysical likelihood of these events deserves further scrutiny, but our study hints at the tantalizing possibility that the collisional Penrose process may power gamma rays and ultra-high-energy cosmic rays.

Emanuele Berti; Richard Brito; Vitor Cardoso

2014-10-30T23:59:59.000Z

52

Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors  

DOE Patents [OSTI]

An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

Frank, Matthias (Berkeley, CA); Mears, Carl A. (Oakland, CA); Labov, Simon E. (Berkeley, CA); Benner, W. Henry (Danville, CA)

1999-01-01T23:59:59.000Z

53

Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity  

E-Print Network [OSTI]

Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer-grade ultra-high molecular weight polyethylene (UHMWPE) (GUR 1050 resin) were evaluated as a function replacements; Ultra-high molecular weight polyethylene (UHMWPE); Crystallinity; Friction; Wear 1. Introduction

Lin, Zhiqun

54

Advanced Ultra-High Speed Motor for Drilling  

SciTech Connect (OSTI)

Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

Impact Technologies LLC; University of Texas at Arlington

2007-03-31T23:59:59.000Z

55

Improved performance of ultra-high molecular weight polyethylene for orthopedic applications  

E-Print Network [OSTI]

A considerable number of total-joint replacement devices used in orthopedic medicine involve articulation between a metallic alloy and ultra-high molecular weight polyethylene (UHMWPE). Though this polymer has excellent wear resistance, the wear...

Plumlee, Kevin Grant

2009-05-15T23:59:59.000Z

56

Methods for increasing the thermal conductivity of ultra-high molecular weight polyethylene (UHMWPE)  

E-Print Network [OSTI]

A two-part study was conducted to determine methods for producing ultra-high molecular weight polyethylene with high thermal conductivity by way of polymer chain orientation. The first portion of this report surveys current ...

Miler, Josef L

2006-01-01T23:59:59.000Z

57

Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering  

E-Print Network [OSTI]

16. Yu. Shvydíko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

Voronov, Dmitry L.

2010-01-01T23:59:59.000Z

58

Bimodal solar system based on a ultra-high-temperature TEC  

SciTech Connect (OSTI)

The paper considers an ecological, solar, bimodal system with ultra-high temperature thermionic energy converter (TEC). The solar bimodal Space Electric Propulsion System (SEPS) characteristics are presented. {copyright} {ital 1996 American Institute of Physics.}

Ogloblin, B.G.; Kirillov, E.Y.; Klimov, A.V.; Shalaev, A.I.; Shumov, D.P. [Central Design Bureau of Machine Building, Krasnogvardeyskaya Square 3, St. Petersburg, (Russia) 195272; Ender, A.Y.; Kuznetsov, V.I.; Sitnov, V.I. [Ioffe Physico-Technical Institute, Politekhnicheskaya St. 26, St. Petersburg, (Russia) 194021

1996-03-01T23:59:59.000Z

59

Practical limitations of single-span ultra-high performance concrete beams  

E-Print Network [OSTI]

Since its development in the early 1970's, researchers have continued to push the limits of concrete mixtures through the creation of ultra-high performance concretes. The use of this class of materials has allowed designers ...

Abrams, Daniel Scott

2013-01-01T23:59:59.000Z

60

Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds  

SciTech Connect (OSTI)

The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

T. F. Patterson

2004-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A limit on the ultra-high-energy neutrino flux from lunar observations with the Parkes radio telescope  

E-Print Network [OSTI]

We report a limit on the ultra-high-energy neutrino flux based on a non-detection of radio pulses from neutrino-initiated particle cascades in the Moon, in observations with the Parkes radio telescope undertaken as part of the LUNASKA project. Due to the improved sensitivity of these observations, which had an effective duration of 127 hours and a frequency range of 1.2-1.5 GHz, this limit extends to lower neutrino energies than those from previous lunar radio experiments, with a detection threshold below 10^20 eV. The calculation of our limit allows for the possibility of lunar-origin pulses being misidentified as local radio interference, and includes the effect of small-scale lunar surface roughness. The targeting strategy of the observations also allows us to place a directional limit on the neutrino flux from the nearby radio galaxy Centaurus A.

Bray, J D; Roberts, P; Reynolds, J E; James, C W; Phillips, C J; Protheroe, R J; McFadden, R A; Aartsen, M G

2015-01-01T23:59:59.000Z

62

HIGH-ENERGY EMISSION INDUCED BY ULTRA-HIGH-ENERGY PHOTONS AS A PROBE OF ULTRA-HIGH-ENERGY COSMIC-RAY ACCELERATORS EMBEDDED IN THE COSMIC WEB  

SciTech Connect (OSTI)

The photomeson production in ultra-high-energy cosmic-ray (UHECR) accelerators such as {gamma}-ray bursts and active galaxies may lead to ultra-high-energy (UHE) {gamma}-ray emission. We show that the generation of UHE pairs in magnetized structured regions where the sources are embedded is inevitable, and accompanying {approx}> 0.1 TeV synchrotron emission provides an important probe of UHECR acceleration. It would especially be relevant for powerful transient sources, and synchrotron pair echoes may be detected by future CTA via coordinated search for transients of duration {approx}0.1-1 yr for the structured regions of {approx}Mpc. Detections will be useful for knowing structured extragalactic magnetic fields as well as properties of the sources.

Murase, Kohta [Department of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210 (United States)

2012-02-15T23:59:59.000Z

63

Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump  

DOE Patents [OSTI]

An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

Jostlein, Hans

2006-04-04T23:59:59.000Z

64

Roadmap for Ultra-High Energy Cosmic Ray Physics and Astronomy (whitepaper for Snowmass 2013)  

E-Print Network [OSTI]

We summarize the remarkable recent progress in ultra-high energy cosmic ray physics and astronomy enabled by the current generation of cosmic ray observatories. We discuss the primary objectives for future measurements and describe the plans for near-term enhancements of existing experiments as well as the next generation of observatories.

Anchordoqui, Luis A; Krizmanic, John F; Matthews, Jim; Mitchell, John W; Olinto, Angela V; Paul, Thomas C; Sokolsky, Pierre; Thomson, Gordon B; Weiler, Thomas J

2013-01-01T23:59:59.000Z

65

Prediction of Ultra-High Aspect Ratio Nanowires from Self-Assembly  

E-Print Network [OSTI]

Prediction of Ultra-High Aspect Ratio Nanowires from Self-Assembly Zhigang Wu and Jeffrey C to investigate the possible self-assembly of nanoscale objects into ultrahigh aspect ratio chains and wires. Self-assembly17,18 from nanosize building blocks is regarded as one of the most promising methods

Wu, Zhigang

66

Sintering and properties of Ultra High Temperature Ceramics for aerospace applications J.F. Justin  

E-Print Network [OSTI]

thermal shock resistance and makes them ideal for many high-temperature thermal applications : France (2013)" #12;for example, a high thermal conductivity reduces thermal stress within the material-francois.justin@onera.fr ABSTRACT The Ultra High Temperature Ceramics (UHTCs) represent a very interesting family of materials

67

Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment  

E-Print Network [OSTI]

and is in the process of changing from film to digital aerial image acquisition. Cur- rently, only broad land useHierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC, MSC3JER, NMSU, Las Cruces, NM 88003-8003, USA Ultra-high-resolution digital aerial imagery has great

68

Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and  

E-Print Network [OSTI]

Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and infrastructure. The development of ultra-high performance concrete of buildings or structures to dynamic loading and fire. Overview of research program on UHPC or CEP (concrete

Li, Mo

69

Study of Dispersion of Mass Distribution of Ultra-High Energy Cosmic Rays using a Surface Array of Muon and Electromagnetic Detectors  

E-Print Network [OSTI]

We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

VŪcha, Jakub; Nosek, Dalibor; Ebr, Jan

2015-01-01T23:59:59.000Z

70

Limits on the Transient Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts (GRB) Derived from RICE Data  

E-Print Network [OSTI]

We present limits on ultra-high energy (UHE; E(nu)>1 PeV) neutrino fluxes from gamma-ray bursts (GRBs), based on recently presented data, limits, and simulations from the RICE experiment. We use data from five recorded transients with sufficient photon spectral shape and redshift information to derive an expected neutrino flux, assuming that the observed photons are linked to neutrino production through pion decay via the well-known 'Waxman-Bahcall' prescription. Knowing the declination of the observed burst, as well as the RICE sensitivity as a function of polar angle and the previously published non-observation of any neutrino events allows an estimate of the sensitivity to a given neutrino flux. Although several orders of magnitude weaker than the expected fluxes, our GRB neutrino flux limits are nevertheless the first in the PeV--EeV energy regime. For completeness, we also provide a listing of other bursts, recorded at times when the RICE experiment was active, but requiring some assumptions regarding luminosity and redshift to permit estimates of the neutrino flux.

D. Besson; S. Razzaque; J. Adams; P. Harris

2006-07-24T23:59:59.000Z

71

Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves  

SciTech Connect (OSTI)

Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754?MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w???10??, where ? is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

Shilton, Richie J., E-mail: richard.shilton@iit.it [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Travagliati, Marco [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Beltram, Fabio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Cecchini, Marco, E-mail: marco.cecchini@nano.cnr.it [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy)

2014-08-18T23:59:59.000Z

72

Precision optical slit for high heat load or ultra high vacuum  

DOE Patents [OSTI]

This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

1995-01-24T23:59:59.000Z

73

Precision optical slit for high heat load or ultra high vacuum  

DOE Patents [OSTI]

This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

Andresen, Nord C. (Hayward, CA); DiGennaro, Richard S. (Albany, CA); Swain, Thomas L. (Richmond, CA)

1995-01-01T23:59:59.000Z

74

Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load  

DOE Patents [OSTI]

An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

Dunham, M.E.; Hudson, C.L.

1993-05-11T23:59:59.000Z

75

The ultra-high lime with aluminum process for removing chloride from recirculating cooling water  

E-Print Network [OSTI]

THE ULTRA-HIGH LIME WITH ALUMINUM PROCESS FOR REMOVING CHLORIDE FROM RECIRCULATING COOLING WATER A Dissertation by AHMED IBRAHEEM ALI ABDEL-WAHAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...-WAHAB Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Bill Batchelor (Chair of Committee) Robin L. Autenrieth (Member...

Abdel-wahab, Ahmed Ibraheem Ali

2004-09-30T23:59:59.000Z

76

Current non-conservation effects in ultra-high energy neutrino interactions  

E-Print Network [OSTI]

The overall hardness scale of the ultra-high energy neutrino-nucleon interactions is usually estimated as $Q^2\\sim m_W^2$. The effect of non-conservation of weak currents pushes this scale up to the top quark mass squared and changes dynamics of the scattering process. The Double Leading Log Approximation provides simple and numerically accurate formula for the top-bottom contribution to the total cross section $\\sigma^{\

R. Fiore; V. R. Zoller

2010-10-13T23:59:59.000Z

77

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

78

Sensitivity of Tropospheric Chemical Composition to Halogen-Radical Chemistry Using a Fully Coupled Size-Resolved Multiphase Chemistry-Global Climate System: Halogen Distributions, Aerosol Composition, and Sensitivity of Climate-Relevant Gases  

SciTech Connect (OSTI)

Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Researchís Community Atmosphere Model (CAM); v3.6.33). Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permitting the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br- in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx), CH4, and non-methane hydrocarbons (NMHCís) to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values) in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42- processing due to halogens. Significant regional differences were evident: The lifetime of nss-SO42- was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products) were lower by a factor of 5 in simulations that included halogens, versus those without, leading to a 20% reduction in nss-SO42- in the southern hemisphere planetary boundary layer based on median values.

Long, M.; Keene, W. C.; Easter, Richard C.; Sander, Rolf; Liu, Xiaohong; Kerkweg, A.; Erickson, D.

2014-04-07T23:59:59.000Z

79

Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum  

SciTech Connect (OSTI)

A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

Ermolov, A.; Mak, K. F.; Tani, F.; HŲlzer, P.; Travers, J. C. [Max Planck Institute for the Science of Light, GŁnther-Scharowsky-Str. 1, 91058 Erlangen (Germany)] [Max Planck Institute for the Science of Light, GŁnther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Russell, P. St. J. [Max Planck Institute for the Science of Light, GŁnther-Scharowsky-Str. 1, 91058 Erlangen (Germany) [Max Planck Institute for the Science of Light, GŁnther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, GŁnther-Scharowsky-Str. 1, 91058 Erlangen (Germany)

2013-12-23T23:59:59.000Z

80

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network [OSTI]

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

S. Bevan; S. Danaher; J. Perkin; S. Ralph; C. Rhodes; L. Thompson; T. Sloan; D. Waters

2007-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network [OSTI]

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

Bevan, S; Perkin, J; Ralph, S; Rhodes, C; Thompson, L; Sloan, T; Waters, D

2007-01-01T23:59:59.000Z

82

A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions  

E-Print Network [OSTI]

A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.

Scott, R H H

2015-01-01T23:59:59.000Z

83

aerosols | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols aerosols Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

84

Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet  

SciTech Connect (OSTI)

An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Manuilov, V. N. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Radiophysical Department of Nizhny Novgorod State University, 690005, Gagarin av., 23, Nizhny Novgorod (Russian Federation); Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K. [Extreme Energy-Density Research Institute, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka-shi, Niigata 940-2188 (Japan)

2006-01-03T23:59:59.000Z

85

Ultra High Energy Cosmic Rays and Gamma Ray Bursts from Axion Stars  

E-Print Network [OSTI]

We propose a model in which ultra high energy cosmic rays and gamma ray bursts are produced by collisions between neutron stars and axion stars. The acceleration of such a cosmic ray is made by the electric field, $\\sim 10^{15} (B/10^{12} {G}) {eV} {cm}^{-1}$, which is induced in an axion star by relatively strong magnetic field $B>10^{12}$ G of a neutron star. On the other hand, similar collisions generate gamma ray bursts when magnetic field is relatively small, e.g. $\\leq 10^{10}$ G. Assuming that the axion mass is $\\sim 10^{-9}$ eV, we can explain huge energies of the gamma ray bursts $\\sim 10^{54}$ erg as well as the ultra high energies of the cosmic rays $\\sim 10^{20}$ eV. We estimate rate of energy release in the collisions and we find that the rate roughly agrees with observations. In addition, we show that these axion stars are plausible candidates for MACHOs. Since the axion star induces oscillating electric current under the magnetic field, observable monochromatic radiations are emitted.

Aiichi Iwazaki

2000-08-29T23:59:59.000Z

86

Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest ďconventionalĒ cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

Abbasi, R. [Univ. of Utah, Salt Lake City, UT (United States); Takai, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Allen, C. [Univ. of Kansas, Lawrence, KS (United States); Beard, L. [Purdue Univ., West Lafayette, IN (United States); Belz, J. [Univ. of Utah, Salt Lake City, UT (United States); Besson, D. [Univ. of Kansas, Lawrence, KS (United States). Moscow Engineering and Physics Inst. (Russian Federation); Byrne, M. [Univ. of Utah, Salt Lake City, UT (United States); Abou Bakr Othman, M. [Univ. of Utah, Salt Lake City, UT (United States); Farhang-Boroujeny, B. [Univ. of Utah, Salt Lake City, UT (United States); Gardner, A. [Univ. of Utah, Salt Lake City, UT (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT (United States); Hanlon, W. [Univ. of Utah, Salt Lake City, UT (United States); Hanson, J. [Univ. of Kansas, Lawrence, KS (United States); Jayanthmurthy, C. [Univ. of Utah, Salt Lake City, UT (United States); Kunwar, S. [Univ. of Kansas, Lawrence, KS (United States); Larson, S. L. [Utah State Univ., Logan, UT (United States); Myers, I. [Univ. of Utah, Salt Lake City, UT (United States); Prohira, S. [Univ. of Kansas, Lawrence, KS (United States); Ratzlaff, K. [Univ. of Kansas, Lawrence, KS (United States); Sokolsky, P. [Univ. of Utah, Salt Lake City, UT (United States); Thomson, G. B. [Univ. of Utah, Salt Lake City, UT (United States); Von Maluski, D. [Univ. of Utah, Salt Lake City, UT (United States)

2014-12-01T23:59:59.000Z

87

Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background  

E-Print Network [OSTI]

We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

Tomonori Totani

1999-04-13T23:59:59.000Z

88

Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports  

SciTech Connect (OSTI)

We grow ultra-high mass density carbon nanotube forests at 450 įC on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 ?m and a mass density of 1.6 g cm{sup ?3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ?22 k?), suggesting Co-Mo is useful for applications requiring forest growth on conductors.

Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsiť, Lorenzo; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)] [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy) [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, Trieste I-34149 (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)] [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)

2013-08-12T23:59:59.000Z

89

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications  

E-Print Network [OSTI]

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

2013-01-01T23:59:59.000Z

90

Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project  

SciTech Connect (OSTI)

High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

2011-09-01T23:59:59.000Z

91

Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications  

SciTech Connect (OSTI)

We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

Bacrania, Minesh K [Los Alamos National Laboratory; Croce, Mark [Los Alamos National Laboratory; Bond, Evelyn [Los Alamos National Laboratory; Dry, Donald [Los Alamos National Laboratory; Moody, W. Allen [Los Alamos National Laboratory; Lamont, Stephen [Los Alamos National Laboratory; Rabin, Michael [Los Alamos National Laboratory; Rim, Jung [Los Alamos National Laboratory; Smith, Audrey [Los Alamos National Laboratory; Beall, James [NIST-BOULDER; Bennett, Douglas [NIST-BOULDER; Kotsubo, Vincent [NIST-BOULDER; Horansky, Robert [NIST-BOULDER; Hilton, Gene [NIST-BOULDER; Schmidt, Daniel [NIST-BOULDER; Ullom, Joel [NIST-BOULDER; Cantor, Robin [STAR CRYOELECTRONICS

2010-01-01T23:59:59.000Z

92

Ultra High Energy Cosmic Rays: the present position and the need for mass composition measurements  

E-Print Network [OSTI]

The present situation with regard to experimental data on ultra high-energy cosmic rays is briefly reviewed. Whilst detailed knowledge of the shape of the energy spectrum is still lacking, it is clear that events above 10^20 eV do exist. Evidence for clustering of the directions of some of the highest energy events remains controversial. Clearly, more data are needed and these will come from the southern branch of the Pierre Auger Observatory in the next few years. What is evident is that our knowledge of the mass composition of cosmic rays is deficient at all energies above 10^18 eV. It must be improved if we are to discover the origin of the highest energy cosmic rays. The major part of the paper is concerned with this problem: it is argued that there is no compelling evidence to support the common assumption that cosmic rays of the highest energies are protons.

A. A. Watson

2003-12-18T23:59:59.000Z

93

NLO corrections to ultra-high energy neutrino-nucleon scattering, shadowing and small x  

E-Print Network [OSTI]

We reconsider the Standard Model interactions of ultra-high energy neutrinos with matter. The next to leading order QCD corrections are presented for charged-current and neutral-current processes. Contrary to popular expectations, these corrections are found to be quite substantial, especially for very large (anti-) neutrino energies. Hence, they need to be taken into account in any search for new physics effects in high-energy neutrino interactions. In our extrapolation of the parton densities to kinematical regions as yet unexplored directly in terrestrial accelerators, we are guided by double asymptotic scaling in the large Q^2 and small Bjorken x region and to models of saturation in the low Q^2 and low x regime. The sizes of the consequent uncertainties are commented upon. We also briefly discuss some variables which are insensitive to higher order QCD corrections and are hence suitable in any search for new physics.

Rahul Basu; Debajyoti Choudhury; Swapan Majhi

2002-10-22T23:59:59.000Z

94

Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope  

E-Print Network [OSTI]

We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Tele- scopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.

Fujii, T; Bertaina, M; Casolino, M; Dawson, B; Horvath, P; Hrabovsky, M; Jiang, J; Mandat, D; Matalon, A; Matthews, J N; Motloch, P; Palatka, M; Pech, M; Privitera, P; Schovanek, P; Takizawa, Y; Thomas, S B; Travnicek, P; Yamazaki, K

2015-01-01T23:59:59.000Z

95

Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback  

E-Print Network [OSTI]

Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback Lucas- dynamical electronic device. It consists of a transistor-based nonlinearity, commercially of such a device, we explore the dynamics of an electronic circuit that consists of a simple transistor

Illing, Lucas

96

A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5  

SciTech Connect (OSTI)

In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

2013-11-08T23:59:59.000Z

97

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network [OSTI]

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

98

On the ultra high energy cosmic rays and the origin of the cosmic microwave background radiation  

E-Print Network [OSTI]

Some inconsistencies to the assumption of a cosmological origin of the cosmic microwave background CMB, such as the absence of gravitational lensing in the WMAP data, open the doors to some speculations such as a local origin to the CMB. We argue here that this assumption agrees with the absence of the GZK cutoff (at least according to AGASA data) in the energy spectrum of the cosmic ray due to the cosmic interaction with the CMB at $6\\times 10^{19} eV$ or above. Within 50 Mpc from Earth, the matter and light distributions are close to an anisotropic distribution, where the local cluster and local super-clusters of galaxies can be identified. In contrast, the ultra high energy comic rays data is consistent to an almost isotropic distribution, and there is no correlation between their arrival direction and astronomical sources within our local cluster. This means that the events above the GZK cutoff come from distances above 50 Mpc, without an apparent energy loss. This scenario is plausible under the assumption of the CMB concentrated only within 3-4 Mpc from Earth. In other words, the CMB has a local origin linked only to the local super-cluster of galaxies. In addition, the galactic and extragalactic energy spectra index within the energy equipartition theorem strongly constrains the dark matter and dark energy hypothesis, essential in the Big Bang cosmology.

C. E. Navia; C. R. A. Augusto; K. H. Tsui

2007-07-12T23:59:59.000Z

99

Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations  

SciTech Connect (OSTI)

Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath theMoon?s surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequencywindow for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a samplingfrequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, thedetection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit onthe UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A.G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R.G.; al Yahyaoui, R.

2010-04-02T23:59:59.000Z

100

Hadronic Multiparticle Production at Ultra-High Energies and Extensive Air Showers  

E-Print Network [OSTI]

Studies of the nature of cosmic ray particles at the highest energies are based on the measurement of extensive air showers. Most cosmic ray properties can therefore only be obtained from the interpretation of air shower data and are thus depending on predictions of hadronic interaction models at ultra-high energies. We discuss different scenarios of model extrapolations from accelerator data to air shower energies and investigate their impact on the corresponding air shower predictions. To explore the effect of different extrapolations by hadronic interaction models we developed an ad hoc model. This ad hoc model is based on the modification of the output of standard hadronic interaction event generators within the air shower simulation process and allows us to study the impact of changing interaction features on the air shower development. In a systematic study we demonstrate the resulting changes of important air shower observables and also discuss them in terms of the predictions of the Heitler model of air shower cascades. It is found that the results of our ad hoc modifications are, to a large extend, independent of the choice of the underlying hadronic interaction model.

Ralf Ulrich; Ralph Engel; Michael Unger

2010-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under constructi on, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m ...

Halzen, F; Halzen, Francis; Hooper, Dan

2004-01-01T23:59:59.000Z

102

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under construction, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m grid can deliver a d etector that this a factor of 5 larger for horizontal muons at modest cost.

Francis Halzen; Dan Hooper

2003-12-22T23:59:59.000Z

103

Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities  

SciTech Connect (OSTI)

We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

2013-06-01T23:59:59.000Z

104

The Role and Detectability of the Charm Contribution to Ultra High Energy Neutrino Fluxes  

E-Print Network [OSTI]

It is widely believed that charm meson production and decay may play an important role in high energy astrophysical sources of neutrinos, especially those that are baryon-rich, providing an environment conducive to pp interactions. Using slow-jet supernovae (SJS) as an example of such a source, we study the detectability of high-energy neutrinos, paying particular attention to those produced from charmed-mesons. We highlight important distinguishing features in the ultra-high energy neutrino flux which would act as markers for the role of charm in the source. In particular, charm leads to significant event rates at higher energies, after the conventional (pi, K) neutrino fluxes fall off. We calculate event rates both for a nearby single source and for diffuse SJS fluxes for an IceCube-like detector. By comparing muon event rates for the conventional and prompt fluxes in different energy bins, we demonstrate the striking energy dependence in the rates induced by the presence of charm. We also show that it lead...

Gandhi, Raj; Watanabe, Atsushi

2009-01-01T23:59:59.000Z

105

Magnetized Sources of Ultra-high Energy Nuclei and Extragalactic Origin of the Ankle  

E-Print Network [OSTI]

It has recently been suggested that ultra-high energy cosmic rays could have an extragalactic origin down to the "second knee" at ~4x10^{17}eV. In this case the "ankle" or "dip" at ~5x10^{18}eV would be due to pair production of extragalactic protons on the cosmic microwave background which requires an injection spectrum of about E^{-2.6}. It has been pointed out that for injection of a mixed composition of nuclei a harder injection spectrum \\~E^{-2.2} is required to fit the spectra at the highest energies and a galactic component is required in this case to fit the spectrum below the ankle, unless the proton fraction is larger than 85%. Here we perform numerical simulations and find that for sufficiently magnetized sources, observed spectra above 10^{19}eV approach again the case of pure proton injection due to increased path-lengths and more efficient photo-disintegration of nuclei around the sources. This decreases secondary fluxes at a given energy and thus requires injection spectra ~E^{-2.6}, as steep as for pure proton injection. In addition, the ankle may again be sufficiently dominated by protons to be interpreted as a pair production dip.

Guenter Sigl; Eric Armengaud

2005-07-28T23:59:59.000Z

106

The isotropy problem of Sub-ankle Ultra-high energy cosmic rays  

E-Print Network [OSTI]

We study the time dependent propagation of sub-ankle ultra-high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as a) intermittency effects due to the discrete nature of the sources or, with extreme parameters, b) a cancellation of drift current along a current sheet with the outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources dist...

Kumar, Rahul

2013-01-01T23:59:59.000Z

107

TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays  

E-Print Network [OSTI]

Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \\sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \\sim 10^{56} (\\Delta \\Omega / 4 \\pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as $\\gamma \\gtilde 500$. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.

Tomonori Totani

1998-11-25T23:59:59.000Z

108

Are gamma-ray bursts the sources of ultra-high energy cosmic rays?  

E-Print Network [OSTI]

We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.

Philipp Baerwald; Mauricio Bustamante; Walter Winter

2014-07-07T23:59:59.000Z

109

Search for Ultra High-Energy Neutrinos with AMANDA-II  

SciTech Connect (OSTI)

A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E{sup 2} {Phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2}s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} GeV to 10{sup 9} GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

IceCube Collaboration; Klein, Spencer; Ackermann, M.

2007-11-19T23:59:59.000Z

110

Nuclear photonics at ultra-high counting rates and higher multipole excitations  

SciTech Connect (OSTI)

Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhaeuser, R.; Guenther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N. [Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching, Germany and Max-Planck-Institute f. Quantum Optics, Garching (Germany); IFIN-HH, Bucharest-Magurele (Romania); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Max-Planck-Institute f. Quantum Optics, Garching (Germany); Institut Laue-Langevin, Grenoble (France); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Institut f. Kernphysik, Technische Universitaet Darmstadt (Germany)

2012-07-09T23:59:59.000Z

111

HOW MANY ULTRA-HIGH ENERGY COSMIC RAYS COULD WE EXPECT FROM CENTAURUS A?  

SciTech Connect (OSTI)

The Pierre Auger Observatory has associated a few ultra-high energy cosmic rays (UHECRs) with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray, and {gamma}-rays (MeV-TeV) because it is the nearest radio-loud active galactic nucleus. Its spectral energy distribution or spectrum shows two main peaks, the low-energy peak, at an energy of 10{sup -2} eV, and the high-energy peak, at about 150 keV. There is also a faint very high energy (VHE; E {>=} 100 GeV) {gamma}-ray emission fully detected by the High Energy Stereoscopic System experiment. In this work, we describe the entire spectrum: the two main peaks with a synchrotron/synchrotron self-Compton model, and the VHE emission with a hadronic model. We consider p{gamma} and pp interactions. For the p{gamma} interaction, we assume that the target photons are those produced at 150 keV in leptonic processes. On the other hand, for the pp interaction we consider as targets the thermal particle densities in the lobes. Requiring a satisfactory description of the spectra at very high energies with p{gamma} interaction, we obtain an excessive luminosity in UHECRs (even exceeding the Eddington luminosity). However, when considering the pp interaction to describe the {gamma}-spectrum, the number of UHECRs obtained is in agreement with Pierre Auger observations. We also calculate the possible neutrino signal from pp interactions on a Km{sup 3} neutrino telescope using Monte Carlo simulations.

Fraija, N.; Gonzalez, M. M.; Perez, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico); Marinelli, A., E-mail: nifraija@astro.unam.mx, E-mail: magda@astro.unam.mx, E-mail: jguillen@astro.unam.mx, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico)

2012-07-01T23:59:59.000Z

112

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

SciTech Connect (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

113

EMSL - aerosols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-m...

114

System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field Magnetic Resonance Applications  

E-Print Network [OSTI]

System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field identification; parameter optimization; smoothing filters; phase-locked loop; Hurwitz criterion; PID controllers

115

Ultra High p-doping Material Research for GaN Based Light Emitters  

SciTech Connect (OSTI)

The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

Vladimir Dmitriev

2007-06-30T23:59:59.000Z

116

The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection  

E-Print Network [OSTI]

We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

M. Monasor; M. Bohacova; C. Bonifazi; G. Cataldi; S. Chemerisov; J. R. T. De Mello Neto; P. Facal San Luis; B. Fox; P. W. Gorham; C. Hojvat; N. Hollon; R. Meyhandan; L. C. Reyes; B. Rouille D'Orfeuil; E. M. Santos; J. Pochez; P. Privitera; H. Spinka; V. Verzi; C. Williams; J. Zhou

2011-08-31T23:59:59.000Z

117

Point-like gamma ray sources as signatures of distant accelerators of ultra high energy cosmic rays  

E-Print Network [OSTI]

We discuss the possibility of observing distant accelerators of ultra high energy cosmic rays in synchrotron gamma rays. Protons propagating away from their acceleration sites produce extremely energetic electrons during photo-pion interactions with cosmic microwave background photons. If the accelerator is embedded in a magnetized region, these electrons will emit high energy synchrotron radiation. The resulting synchrotron source is expected to be point-like and detectable in the GeV-TeV energy range if the magnetic field is at the nanoGauss level.

S. Gabici; F. A. Aharonian

2005-05-22T23:59:59.000Z

118

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

119

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect (OSTI)

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

120

Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials  

SciTech Connect (OSTI)

Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000√?¬įC [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500√?¬įC due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300√?¬įC. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

Ogale, Amod A

2012-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

On LiF:Mg,Cu,P and LiF:Mg,Ti phosphors high & ultra-high dose features  

E-Print Network [OSTI]

LiF:Mg,Ti and LiF:Mg,Cu,P are well known thermoluminescence (TL) dosimetry materials since many years. A few years ago their properties seemed well known and it was widely believed that they are not suitable for the measurement of doses above the saturation level of the TL signal, which for both materials occur at about 1 kGy. The high-dose high-temperature TL emission of LiF:Mg,Cu,P observed at the IFJ in 2006, which above 30 kGy takes the form of the so-called TL peak B, opened the way to use this material for measuring the dose in the high and ultra-high range, in particular for the monitoring of ionizing radiation around the essential electronic elements of high-energy accelerators, also fission and fusion facilities, as well as for emergency dosimetry. This discovery initiated studies of high and ultra-high dose characteristics of both of these phosphors, which turned out to be significantly different in many aspects. These studies not only strive to refine the method for measuring high doses based on th...

Obryk, Barbara; de Barros, Vinicius S; Guzzo, Pedro L; Bilski, Pawe?

2013-01-01T23:59:59.000Z

122

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

123

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

124

Atmospheric Aerosol Systems | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

125

Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field  

SciTech Connect (OSTI)

Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

2008-07-15T23:59:59.000Z

126

Ultra-High Pressure Driver and Nozzle Survivability in the RDHWT/MARIAH II Hypersonic Wind Tunnel  

SciTech Connect (OSTI)

An ultra-high pressure device provides a high enthalpy (> 2500 kJ/kg), low entropy (< 5 kJ/kg-K) air source for the RDHWT/MARIAH II Program Medium Scale Hypersonic Wind Tunnel. The design uses stagnation conditions of 2300 MPa (330,000 Psi) and 750 K (900 F) in a radial configuration of intensifiers around an axial manifold to deliver pure air at 100 kg/s mass flow rates for run times suitable for aerodynamic, combustion, and test and evaluation applications. Helium injection upstream of the nozzle throat reduces the throat wall recovery temperature to about 1200 K and reduces the oxygen concentration at the nozzle wall.

Costantino, M.; Brown, G.; Raman, K.; Miles, R.; Felderman, J.

2000-06-02T23:59:59.000Z

127

Exploration of coal-based pitch precursors for ultra-high thermal conductivity graphite fibers. Final report  

SciTech Connect (OSTI)

Goal was to explore the utility of coal-based pitch precursors for use in ultra high thermal conductivity carbon (graphite) fibers. From graphite electrode experience, it was established that coal-based pitches tend to form more highly crystalline graphite at lower temperatures. Since the funding was limited to year 1 effort of the 3 year program, the goal was only partially achieved. The coal-base pitches can form large domain mesophase in spite of high N and O contents. The mesophase reactivity test performed on one of the variants of coal-based pitch (DO84) showed that it was not a good candidate for carbon fiber processing. Optimization of WVU`s isotropic pitch process is required to tailor the pitch for carbon fiber processing. The hetero atoms in the coal pitch need to be reduced to improve mesophase formation.

Deshpande, G.V. [Amoco Performance Products, Inc., Alpharetta, GA (United States)

1996-12-27T23:59:59.000Z

128

A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum  

SciTech Connect (OSTI)

We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

Schaefer-Nolte, E.; Wrachtrup, J. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Reinhard, F. [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany)] [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Ternes, M., E-mail: m.ternes@fkf.mpg.de [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Kern, K. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Institut de Physique de la MatiŤre Condenseť, Ecole Polytechnique Fťdťrale de Lausanne, 1015 Lausanne (Switzerland)

2014-01-15T23:59:59.000Z

129

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).

Arnis Judzis; Homer Robertson; Alan Black

2006-06-22T23:59:59.000Z

130

AEROSOL, CLOUDS, AND CLIMATE CHANGE  

SciTech Connect (OSTI)

Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

SCHWARTZ, S.E.

2005-09-01T23:59:59.000Z

131

arXiv:astro-ph/0409377v115Sep2004 The Search for Anisotropy in the Arrival Directions of Ultra-High Energy  

E-Print Network [OSTI]

Center present in its events with energies around 1018 eV [4]. This result seemed to be corroborated predictions mentioned above. Additionally, over the past decade, the search for sources of Ultra-High Energy-High Energy Cosmic Rays Observed by the High Resolution Fly's Eye Detector in Monocular Mode Benjamin T

132

Dynamic tensile fracture of mortar at ultra-high strain-rates  

SciTech Connect (OSTI)

During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 ◊ 10{sup 4} to 4 ◊ 10{sup 4}?s{sup ?1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y. [CEA, DAM, GRAMAT, F-46500 Gramat (France)

2013-12-28T23:59:59.000Z

133

Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer  

SciTech Connect (OSTI)

A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

OíToole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); PeŮa Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Rodionov, A. V.; Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Shaner, M.; Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street Pasadena, California 91105 (United States); Sobacchi, E. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dergachev, V.; DeSalvo, R., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientfica 1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia)

2014-07-15T23:59:59.000Z

134

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

135

Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes  

SciTech Connect (OSTI)

The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

Im, Piljae [ORNL] [ORNL; Hughes, Patrick [ORNL] [ORNL; Liu, Xiaobing [ORNL] [ORNL

2012-01-01T23:59:59.000Z

136

Ultra-high energy cosmic rays, cascade gamma-rays, and high-energy neutrinos from gamma-ray bursts  

E-Print Network [OSTI]

Gamma-ray bursts (GRBs) are sources of energetic, highly variable fluxes of gamma rays, which demonstrates that they are powerful particle accelerators. Besides relativistic electrons, GRBs should also accelerate high-energy hadrons, some of which could escape cooling to produce ultra-high energy cosmic rays (UHECRs). Acceleration of high-energy hadrons in GRB blast waves will be established if high-energy neutrinos produced through photopion interactions in the blast wave are detected from GRBs. Limitations on the energy in nonthermal hadrons and the number of expected neutrinos are imposed by the fluxes from pair-photon cascades initiated in the same processes that produce neutrinos. Only the most powerful bursts at fluence levels >~ 3e-4 erg/cm^2 offer a realistic prospect for detection of >> TeV neutrinos. Detection of high-energy neutrinos is likely if GRB blast waves have large baryon loads and Doppler factors <~ 200. Cascade gamma rays will accompany neutrino production and might already have been detected as anomalous emission components in the spectra of some GRBs. Prospects for detection of GRBs in the Milky Way are also considered.

Charles D. Dermer; Armen Atoyan

2006-06-26T23:59:59.000Z

137

Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces  

SciTech Connect (OSTI)

A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

Wilmsmeyer, Amanda R.; Morris, John R. [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States); Gordon, Wesley O.; Mantooth, Brent A.; Lalain, Teri A. [Research and Technology Directorate, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States)] [Research and Technology Directorate, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States); Davis, Erin Durke [OptiMetrics, Inc., Abingdon, Maryland 21009 (United States)] [OptiMetrics, Inc., Abingdon, Maryland 21009 (United States)

2014-01-15T23:59:59.000Z

138

Ultra-High-Energy Cosmic Rays from a Magnetized Strange Star Central Engine for Gamma-Ray Bursts  

E-Print Network [OSTI]

Ultra-high-energy cosmic rays (UHECRs) have been tried to be related to the most varied and powerful sources known in the universe. Gamma-ray bursts (GRBs) are natural candidates. Here, we argue that cosmic rays can be accelerated by large amplitude electromagnetic waves (LAEMWs) when the MHD approximation of the field in the wind generated by the GRB's magnetized central engine breaks down. The central engine considered here is a strange star born with differential rotation from the accretion induced conversion of a neutron star into a strange star in a low-mass X-ray binary system. The LAEMWs generated this way accelerate light ions to the highest energies $E = q\\eta\\Delta\\Phi_{max}$ with an efficiency $\\eta \\sim 10^{-1}$ that accounts for all plausible energy losses. Alternatively, we also consider the possibility that, once formed, the LAEMWs are unstable to creation of a relativistically strong electromagnetic turbulence due to an overturn instability. Under this assumption, a lower limit to the efficiency of acceleration is estimated to be about $\\eta \\sim 10^{-2.5}$. Due to their age, low mass X-ray binary systems can be located in regions of low interstellar medium density as, e.g., globular clusters or even intergalactic medium in case of high proper motion systems, and cosmic ray energy losses due to proton collisions with photons at the decelerating region are avoided, thus opening the possibility for particles to exploit the full voltage available, well beyond that currently observed.

O. Esquivel; D. Page

2008-04-04T23:59:59.000Z

139

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory  

E-Print Network [OSTI]

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an extensive air shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10^{17} and 10^{19} eV and zenith angles up to 65 degs. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte-Carlo results showing how LTP functions from data are in good agreement with simulations.

The Pierre Auger Collaboration; P. Abreu; M. Aglietta; E. J. Ahn; I. F. M. Albuquerque; D. Allard; I. Allekotte; J. Allen; P. Allison; J. Alvarez Castillo; J. Alvarez-MuŮiz; M. Ambrosio; A. Aminaei; L. Anchordoqui; S. Andringa; T. Anti?i?; A. Anzalone; C. Aramo; E. Arganda; F. Arqueros; H. Asorey; P. Assis; J. Aublin; M. Ave; M. Avenier; G. Avila; T. Bšcker; M. Balzer; K. B. Barber; A. F. Barbosa; R. Bardenet; S. L. C. Barroso; B. Baughman; J. Bšuml; J. J. Beatty; B. R. Becker; K. H. Becker; A. Bellťtoile; J. A. Bellido; S. BenZvi; C. Berat; X. Bertou; P. L. Biermann; P. Billoir; F. Blanco; M. Blanco; C. Bleve; H. BlŁmer; M. BohŠ?ovŠ; D. Boncioli; C. Bonifazi; R. Bonino; N. Borodai; J. Brack; P. Brogueira; W. C. Brown; R. Bruijn; P. Buchholz; A. Bueno; R. E. Burton; K. S. Caballero-Mora; L. Caramete; R. Caruso; A. Castellina; O. Catalano; G. Cataldi; L. Cazon; R. Cester; J. Chauvin; S. H. Cheng; A. Chiavassa; J. A. Chinellato; A. Chou; J. Chudoba; R. W. Clay; M. R. Coluccia; R. ConceiÁ„o; F. Contreras; H. Cook; M. J. Cooper; J. Coppens; A. Cordier; S. Coutu; C. E. Covault; A. Creusot; A. Criss; J. Cronin; A. Curutiu; S. Dagoret-Campagne; R. Dallier; S. Dasso; K. Daumiller; B. R. Dawson; R. M. de Almeida; M. De Domenico; C. De Donato; S. J. de Jong; G. De La Vega; W. J. M. de Mello Junior; J. R. T. de Mello Neto; I. De Mitri; V. de Souza; K. D. de Vries; G. Decerprit; L. del Peral; M. del RŪo; O. Deligny; H. Dembinski; N. Dhital; C. Di Giulio; J. C. Diaz; M. L. DŪaz Castro; P. N. Diep; C. Dobrigkeit; W. Docters; J. C. D'Olivo; P. N. Dong; A. Dorofeev; J. C. dos Anjos; M. T. Dova; D. D'Urso; I. Dutan; J. Ebr; R. Engel; M. Erdmann; C. O. Escobar; J. Espadanal; A. Etchegoyen; P. Facal San Luis; I. Fajardo Tapia; H. Falcke; G. Farrar; A. C. Fauth; N. Fazzini; A. P. Ferguson; A. Ferrero; B. Fick; A. Filevich; A. Filip?i?; S. Fliescher; C. E. Fracchiolla; E. D. Fraenkel; U. FrŲhlich; B. Fuchs; R. Gaior; R. F. Gamarra; S. Gambetta; B. GarcŪa; D. GarcŪa GŠmez; D. Garcia-Pinto; A. Gascon; H. Gemmeke; K. Gesterling; P. L. Ghia; U. Giaccari; M. Giller; H. Glass; M. S. Gold; G. Golup; F. Gomez Albarracin; M. Gůmez Berisso; P. GonÁalves; D. Gonzalez; J. G. Gonzalez; B. Gookin; D. Gůra; A. Gorgi; P. Gouffon; S. R. Gozzini; E. Grashorn; S. Grebe; N. Griffith; M. Grigat; A. F. Grillo; Y. Guardincerri; F. Guarino; G. P. Guedes; A. Guzman; J. D. Hague; P. Hansen; D. Harari; S. Harmsma; J. L. Harton; A. Haungs; T. Hebbeker; D. Heck; A. E. Herve; C. Hojvat; N. Hollon; V. C. Holmes; P. Homola; J. R. HŲrandel; A. Horneffer; M. Hrabovskż; T. Huege; A. Insolia; F. Ionita; A. Italiano; C. Jarne; S. Jiraskova; M. Josebachuili; K. Kadija; K. H. Kampert; P. Karhan; P. Kasper; B. Kťgl; B. Keilhauer; A. Keivani; J. L. Kelley; E. Kemp; R. M. Kieckhafer; H. O. Klages; M. Kleifges; J. Kleinfeller; J. Knapp; D. -H. Koang; K. Kotera; N. Krohm; O. KrŲmer; D. Kruppke-Hansen; F. Kuehn; D. Kuempel; J. K. Kulbartz; N. Kunka; G. La Rosa; C. Lachaud; P. Lautridou; M. S. A. B. Le„o; D. Lebrun; P. Lebrun; M. A. Leigui de Oliveira; A. Lemiere; A. Letessier-Selvon; I. Lhenry-Yvon; K. Link; R. Lůpez; A. Lopez AgŁera; K. Louedec; J. Lozano Bahilo; L. Lu; A. Lucero; M. Ludwig; H. Lyberis; M. C. Maccarone; C. Macolino; S. Maldera; D. Mandat; P. Mantsch; A. G. Mariazzi; J. Marin; V. Marin; I. C. Maris; H. R. Marquez Falcon; G. Marsella; D. Martello; L. Martin; H. Martinez; O. MartŪnez Bravo; H. J. Mathes; J. Matthews; J. A. J. Matthews; G. Matthiae; D. Maurizio; P. O. Mazur; G. Medina-Tanco; M. Melissas; D. Melo; E. Menichetti; A. Menshikov; P. Mertsch; C. Meurer; S. Mi?anovi?; M. I. Micheletti; W. Miller; L. Miramonti; L. Molina-Bueno; S. Mollerach; M. Monasor; D. Monnier Ragaigne; F. Montanet; B. Morales; C. Morello; E. Moreno; J. C. Moreno; C. Morris; M. MostafŠ; C. A. Moura; S. Mueller; M. A. Muller; G. MŁller; M. MŁnchmeyer; R. Mussa; G. Navarra á; J. L. Navarro; S. Navas; P. Necesal; L. Nellen; A. Nelles; J. Neuser; P. T. Nhung; L. Niemietz; N. Nierstenhoefer; D. Nitz; D. Nosek; L. Noěka; M. Nyklicek; J. Oehlschlšger; A. Olinto; P. Oliva; V. M. Olmos-Gilbaja; M. Ortiz; N. Pacheco; D. Pakk Selmi-Dei; M. Palatka; J. Pallotta; N. Palmieri; G. Parente; E. Parizot; A. Parra; R. D. Parsons; S. Pastor; T. Paul; M. Pech; J. P?kala; R. Pelayo; I. M. Pepe; L. Perrone; R. Pesce; E. Petermann; S. Petrera; P. Petrinca; A. Petrolini; Y. Petrov; J. Petrovic; C. Pfendner; N. Phan; R. Piegaia; T. Pierog; P. Pieroni; M. Pimenta; V. Pirronello; M. Platino; V. H. Ponce; M. Pontz; P. Privitera; M. Prouza; E. J. Quel; S. Querchfeld; J. Rautenberg; O. Ravel; D. Ravignani; B. Revenu; J. Ridky; S. Riggi; M. Risse; P. Ristori; H. Rivera; V. Rizi; J. Roberts; C. Robledo; W. Rodrigues de Carvalho; G. Rodriguez; J. Rodriguez Martino; J. Rodriguez Rojo

2011-11-28T23:59:59.000Z

140

Propagation In Matter Of Currents Of Relativistic Electrons Beyond The Alfven Limit, Produced In Ultra-High-Intensity Short-Pulse Laser-Matter Interactions  

SciTech Connect (OSTI)

This paper reports the results of several experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic currents in matter from ultra-high-intensity laser pulse interaction with target. We present our results according to the type of diagnostics used in the experiments: 1) K{alpha} emission and K{alpha} imaging, 2) study of target rear side emission in the visible region, 3) time resolved optical shadowgraphy.

Batani, D.; Manclossi, M. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Baton, S.D.; Amiranoff, F.; Koenig, M.; Gremillet, L.; Popescu, H. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Santos, J.J. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Martinolli, E. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Antonicci, A. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Rousseaux, C.; Rabec Le Gloahec, M. [Commissariat a l'Energie Atomique, Bruyeres-le-Chatel (France); Hall, T. [University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ (United Kingdom); Malka, V. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Cowan, T.E.; Stephens, R. [Inertial Fusion Technology Division, Fusion Group, General Atomics, San Diego, CA (United States); Key, M. [Lawrence Livermore National Laboratory, Livermore CA (United States); King, J.; Freeman, R. [Department of Applied Sciences, University of California Davis, CA 95616 (United States)

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultra High Energy Cosmic Rays, Z-Shower and Neutrino Astronomy by Horizontal-Upward Tau Air-Showers  

E-Print Network [OSTI]

Ultra High Cosmic Rays (UHECR) Astronomy may be correlated to a primary parental Neutrino Astronomy: indeed any far BL Lac Jet or GRB, sources of UHECR, located at cosmic edges, may send its signal, overcoming the severe GZK cut-off, by help of UHE ZeV energetic neutrino primary. These UHE neutrino scattering on relic light ones (spread on wide Hot Local Groups Halos) maybe fine-tuned : E_(nu) =(M_Z)^2/m_(nu) = 4 10^(22) eV *((0.1eV)/m_(nu)), to combine at once the observed light neutrino masses and the UHECR spectra, leading to a relativistic Z-Shower in Hot Dark Halos (e few tens Mpc wide) whose final nuclear component traces the UHECR event on Earth. Therefore UHECR (with no longer volme GZK constrains) may point to far BL Lac sources. This Z-Burst (Z-Shower) model calls for large neutrino fluxes. Even if Nature do not follow the present Z-model, UHECR while being cut-off by Big Bang Radiation, must produce a minimal UHE neutrino flux, the GZK neutrino secondaries. For both reasons such UHE Neutrino Astronomy must be tested on Earth. Lowest High Energy Astronomy is searched by AMANDA, ANTARES underground deterctors by muons tracks. We suggest a complementary higher energy Neutrino Tau Astronomy inducing Horizontal and Upward Tau AirShowers. Possible early evidence of such a New Neutrino UPTAUs (Upward Tau Showers at PeVs energies) Astronomy may be in BATSE records of Upward Terrestrial Gamma Flashes. Future signals must be found in detectors as EUSO, seeking Upward-Horizontal events: indeed even minimal, guaranteed, GZK neutrino fluxes may be better observed if EUSO threshold reaches 10^(19) eV by enlarging its telescope size.

D. Fargion

2003-06-24T23:59:59.000Z

142

Ultra High Energy Fermions  

E-Print Network [OSTI]

The LHC in Geneva is already operating at a total energy of $7 TeV$ and hopefully after a pause in 2012, it will attain its full capacity of $14 TeV$ in 2013. These are the highest energies achieved todate in any accelerator. It is against this backdrop that it is worthwhile to revisit very high energy collisions of Fermions (Cf. also \\cite{bgspp}). We will in fact examine their behaviour at such energies.

Burra G. Sidharth

2015-04-07T23:59:59.000Z

143

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

144

Improved solid aerosol generator  

DOE Patents [OSTI]

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

145

Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters  

SciTech Connect (OSTI)

Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earthís surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

Kravitz, Benjamin S.

2013-02-12T23:59:59.000Z

146

Atomic and molecular interstellar absorption lines toward the high galactic latitude stars HD~141569 and HD~157841 at ultra-high resolution  

E-Print Network [OSTI]

We present ultra-high resolution (0.32 km/s) spectra obtained with the 3.9m Anglo-Australian Telescope (AAT) and Ultra-High-Resolution Facility (UHRF), of interstellar NaI D1, D2, Ca II K, K I and CH absorption toward two high galactic latitude stars HD141569 and HD157841. We have compared our data with 21-cm observations obtained from the Leiden/Dwingeloo HI survey. We derive the velocity structure, column densities of the clouds represented by the various components and identify the clouds with ISM structures seen in the region at other wavelengths. We further derive abundances, linear depletions and H2 fractional abundances for these clouds, wherever possible. Toward HD141569, we detect two components in our UHRF spectra : a weak, broad component at - 15 km/s, seen only in CaII K absorption and another component at 0 km/s, seen in NaI D1, D2, Ca II K, KI and CH absorption. In the case of the HD157841 sightline, a total of 6 components are seen on our UHRF spectra in NaI D1, D2 Ca II K, K I and CH absorption. 2 of these 6 components are seen only in a single species.

M. S. Sahu; J. C. Blades; L. He; D. Hartmann; M. J. Barlow; I. A. Crawford

1998-03-31T23:59:59.000Z

147

Study of impurity distribution in mechanically polished, chemically treated and ultra-high vacuum degassed pure Niobium samples using TOFSIMS technique  

E-Print Network [OSTI]

The performance of Superconducting radio frequency cavities (SCRF) are highly dependent on the surface treatment processes, which in turn is influenced by the chemistry within the penetration depth of Niobium (Nb). The present study analyses various impurities within the RF penetration depth (~50nm) of Nb samples treated by SCRF cavity processing techniques like colloidal silica polishing (simulating centrifugal barrel polishing), buffer chemical polishing (BCP), high pressure rinsing (HPR) and degassing under ultra high vacuum (UHV) condition at 600{\\deg}C for 10hrs. Various modes of Time of flight secondary ion mass spectrometry (TOFSIMS) technique was employed to study the effect of the above treatments on the vast spectrum of impurities that include interstitials, hydrocarbons, oxides, acidic residuals, reaction products and metallic impurities. UHV degassing treatment was the only treatment capable of reducing hydrogen contamination, but, it led to extensive oxygen, carbon and metallic impurities in the ...

Bose, A

2015-01-01T23:59:59.000Z

148

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

149

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Newsom, Rob; Goldsmith, John

150

Modal aerosol dynamics modeling  

SciTech Connect (OSTI)

The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

1991-02-01T23:59:59.000Z

151

Aerosol Cans? -Aerosol cans use a pressurized  

E-Print Network [OSTI]

? - The waste generated in the processing of images/photos contains silver. Silver is a toxic heavy metal the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition of this pamphlet. -Carefully transfer the old paint thinner from the one gallon closable can to the 30 gallon metal

Jia, Songtao

152

A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory  

SciTech Connect (OSTI)

The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE < 1.74 x 10-7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV < E < 1 x 1020 eV.

Abreu, P [LIP, Coimbra; Lisbon, IST; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F.M.; Allard, D

2011-12-30T23:59:59.000Z

153

A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE -7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV 20 eV.

Abreu, P [LIP, Coimbra; Lisbon, IST; Aglietta, M; Ahlers, M; Ahn, E J; Albuquerque, I F.M.; Allard, D

2011-12-30T23:59:59.000Z

154

Aerosol Sampler Operations Manual  

E-Print Network [OSTI]

-1123 Laboratory FAX (916) 752-4107 Standard Operating Procedures Technical Information Document TI 201A #12;TI 201.................................................................................................................................................. 3 1.0 Weekly Maintenance ProceduresIMPROVE Aerosol Sampler Operations Manual February 10, 1997 Air Quality Group Crocker Nuclear

Fischer, Emily V.

155

The PLATO End-to-End CCD Simulator -- Modelling space-based ultra-high precision CCD photometry for the assessment study of the PLATO Mission  

E-Print Network [OSTI]

The PLATO satellite mission project is a next generation ESA Cosmic Vision satellite project dedicated to the detection of exo-planets and to asteroseismology of their host-stars using ultra-high precision photometry. The main goal of the PLATO mission is to provide a full statistical analysis of exo-planetary systems around stars that are bright and close enough for detailed follow-up studies. Many aspects concerning the design trade-off of a space-based instrument and its performance can best be tackled through realistic simulations of the expected observations. The complex interplay of various noise sources in the course of the observations made such simulations an indispensable part of the assessment study of the PLATO Payload Consortium. We created an end-to-end CCD simulation software-tool, dubbed PLATOSim, which simulates photometric time-series of CCD images by including realistic models of the CCD and its electronics, the telescope optics, the stellar field, the pointing uncertainty of the satellite ...

Zima, W; De Ridder, J; Salmon, S; Catala, C; Kjeldsen, H; Aerts, C

2010-01-01T23:59:59.000Z

156

Polarization-dependent all-optical modulator with ultra-high modulation depth based on a stereo graphene-microfiber structure  

E-Print Network [OSTI]

We report an in-line polarization-dependent all-optical fiber modulator based on a stereo graphene-microfiber structure (GMF) by utilizing the lab-on-rod technique. Owing to the unique spring-like geometry, an ultra-long GMF interaction length can be achieved, and an ultra-high modulation depth (MD) of ~7.5 dB and a high modulation efficiency (ME) of ~0.2 dB/mW were demonstrated for one polarization state. The MD and ME are more than one order larger than those of other graphene-waveguide hybrid all-optical modulators. By further optimizing the transferring and cleaning process, the modulator can quickly switch between transparent and opaque states for both the two polarization states with a maximized MD of tens of decibels. This modulator is compatible with current fiber-optic communication systems and may be applied in the near future to meet the impending need for ultrafast optical signal processing.

Xu, Fei; Zheng, Bi-cai; Shao, Guang-hao; Ge, Shi-jun; Lu, Yan-qing

2015-01-01T23:59:59.000Z

157

Super-Penrose collisions are inefficient - a Comment on: Black hole fireworks: ultra-high-energy debris from super-Penrose collisions  

E-Print Network [OSTI]

In a paper posted on the arXiv a few weeks ago Berti, Brito and Cardoso \\cite{Berti+14} suggest that ultra-high-energy particles can emerge from collisions in a black hole's ergosphere. This can happen if the process involves a particle on an outgoing trajectory very close to the black hole. Clearly such a particle cannot emerge from the black hole. It is argued \\cite{Berti+14} that this particle can arise in another collision. Thus the process involves two collisions: one in which an outgoing particle is produced extremely close to the horizon, and a second one in which energy is gained. The real efficiency of this process should take into account, therefore, the energy needed to produce the first particle. We show here that while this process is kinematically possible, it requires a deposition of energy that is divergently large compared with the energy of the escaping particle. Thus, in contradiction to claims of infinitely high efficiencies, the efficiency of the combined process is in fact extremely smal...

Leiderschneider, Elly

2015-01-01T23:59:59.000Z

158

Aerosol products from GOME-2 on Metop-A: development and status report  

E-Print Network [OSTI]

of UV-absorbing aerosols. It is mostly sensitive to desert dust aerosols (DDA) and biomass burning, caused by instrument degradation, had to be removed from the GOME-2 AAI. Figure B. GOME-2 AAI versus degradation Instrument degradation is an annoying phenomenon affecting the AAI. Figure F presents the global

Graaf, Martin de

159

MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4  

SciTech Connect (OSTI)

The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

Kmetyk, L.N.

1991-09-01T23:59:59.000Z

160

aerosol phase function: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERN Preprints Summary: Air fluorescence detectors measure the energy of ultra-high energy cosmic rays by collecting fluorescence light emitted from nitrogen molecules along the...

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

5, 79658026, 2005 Simulating aerosol  

E-Print Network [OSTI]

composition, number concentration, and size distribution of the global submicrometer aerosol. The present, coagulation, condensation, nucleation of sulfuric acid vapor, aerosol chemistry, cloud processing, and sizeACPD 5, 7965­8026, 2005 Simulating aerosol microphysics with ECHAM/MADE A. Lauer et al. Title Page

Paris-Sud XI, Université de

162

Arra: Tas::89 0227::Tas Recovery Act 100g Ftp: An Ultra-High Speed Data Transfer Service Over Next Generation 100 Gigabit Per Second Network  

SciTech Connect (OSTI)

Data-intensive applications, including high energy and nuclear physics, astrophysics, climate modeling, nano-scale materials science, genomics, and financing, are expected to generate exabytes of data over the coming years, which must be transferred, visualized, and analyzed by geographically distributed teams of users. High-performance network capabilities must be available to these users at the application level in a transparent, virtualized manner. Moreover, the application users must have the capability to move large datasets from local and remote locations across network environments to their home institutions. To solve these challenges, the main goal of our project is to design and evaluate high-performance data transfer software to support various data-intensive applications. First, we have designed a middleware software that provides access to Remote Direct Memory Access (RDMA) functionalities. This middleware integrates network access, memory management and multitasking in its core design. We address a number of issues related to its efficient implementation, for instance, explicit buffer management and memory registration, and parallelization of RDMA operations, which are vital to delivering the benefit of RDMA to the applications. Built on top of this middleware, an implementation and experimental evaluation of the RDMA-based FTP software, RFTP, is described and evaluated. This application has been implemented by our team to exploit the full capabilities of advanced RDMA mechanisms for ultra-high speed bulk data transfer applications on Energy Sciences Network (ESnet). Second, we designed our data transfer software to optimize TCP/IP based data transfer performance such that RFTP can be fully compatible with todayís Internet. Our kernel optimization techniques with Linux system calls sendfile and splice, can reduce data copy cost. In this report, we summarize the technical challenges of our project, the primary software design methods, the major project milestones achieved, as well as the testbed evaluation work and demonstrations during our project life time.

YU, DANTONG [Brookhaven National Lab/Stony Brook University; Jin, Shudong [Stony Brook University

2014-03-01T23:59:59.000Z

163

Aerosol engineering: design and stability of aerosol reactors  

SciTech Connect (OSTI)

A theoretical study of the performance of aerosol reactors is presented. The goals of this study are (1) to identify the appropriate reactor types (batch, CSTR, and tubular) for production of aerosol with specific properties (for example, uniform size particles, high aerosol surface area, etc.) and (2) to investigate the effect of various process parameters on product aerosol characteristics and on the stability of operation of aerosol reactors. In all the reactors considered, the aerosol dynamics were detemined by chemical reaction, nucleation, and aerosol growth in the free molecule regime in the absence of coagulation at isothermal conditions. Formulation of the aerosol dynamics in terms of moments of the aerosol size distribution facilitated the numerical solution of the resulting systems of ordinary or partial differential equations. The stability characteristics of a continuous stirred tank aerosol reactor (CSTAR) were investigated since experimental data in the literature indicate that under certain conditions this reactor exhibits oscillatory behavior with respect to product aerosol concentration and size distribution.

Pratsinis, S.E.

1985-01-01T23:59:59.000Z

164

Highly stable aerosol generator  

DOE Patents [OSTI]

An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

DeFord, H.S.; Clark, M.L.

1981-11-03T23:59:59.000Z

165

Electrostatics and radioactive aerosol behavior  

SciTech Connect (OSTI)

Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

Clement, C.F.

1994-12-31T23:59:59.000Z

166

aerosols and climate : uncertainties  

E-Print Network [OSTI]

contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

167

MELCOR 1.8.2 assessment: Aerosol experiments ABCOVE AB5, AB6, AB7, and LACE LA2  

SciTech Connect (OSTI)

The MELCOR computer code has been used to model four of the large-scale aerosol behavior experiments conducted in the Containment System Test Facility (CSTF) vessel. Tests AB5, AB6 and AB7 of the ABCOVE program simulate the dry aerosol conditions during a hypothetical severe accident in an LMFBR. Test LA2 of the LACE program simulates aerosol behavior in a condensing steam environment during a postulated severe accident in an LWR with failure to isolate the containment. The comparison of code results to experimental data show that MELCOR is able to correctly predict most of the thermal-hydraulic results in the four tests. MELCOR predicts reasonably well the dry aerosol behavior of the ABCOVE tests, but significant disagreements are found in the aerosol behavior modelling for the LA2 experiment. These results tend to support some of the concerns about the MELCOR modelling of steam condensation onto aerosols expressed in previous works. During these analyses, a limitation in the MELCOR input was detected for the specification of the aerosol parameters for more than one component. A Latin Hypercube Sampling (LHS) sensitivity study of the aerosol dynamic constants is presented for test AB6. The study shows the importance of the aerosol shape factors in the aerosol deposition behavior, and reveals that MELCOR input/output processing is highly labor intensive for uncertainty and sensitivity analyses based on LHS.

Souto, F.J.; Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Kmetyk, L.N. [Sandia National Labs., Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

168

Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America  

E-Print Network [OSTI]

The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\\tau_{\\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean $\\tau_{\\rm a}(3.5~{\\rm km})\\sim 0.04$ - and shows a seasonal trend with a winter minimum - $\\tau_{\\rm a}(3.5~{\\rm km})\\sim 0.03$ -, and a summer maximum - $\\tau_{\\rm a}(3.5~{\\rm km})\\sim 0.06$ -, and an unexpected increase from August to September - $\\tau_{\\rm a}(3.5~{\\rm km})\\sim 0.055$). We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from t...

Curci, Gabriele

2014-01-01T23:59:59.000Z

169

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

170

Experimental study of nuclear workplace aerosol samplers  

E-Print Network [OSTI]

LITERATURE REVIEW Aerosol Losses in an Inlet . Aerosol Losses in a Transport System Aerosol Losses in CAMs Critical Flow Venturi 8 13 15 16 EXPERIMENT PROCEDURE 18 CAM Evaluation Consideration FAS Evaluation Consideration Test Protocol Mixing... Chamber Setup High Speed Aerosol Wind Tunnel Setup Low Speed Aerosol Wind Tunnel Setup Critical Flow Venturi 18 19 21 22 24 25 27 RESULTS AND DISCUSSION Page 28 Aerosol Penetration through Transport Systems and CAM Areal Uniformity Deposits...

Parulian, Antony

2012-06-07T23:59:59.000Z

171

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

172

Nonequilibrium Atmospheric Secondary Organic Aerosol Formation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Formation and Growth. Abstract: Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA)...

173

Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change  

E-Print Network [OSTI]

The sensitivity of secondary organic aerosol (SOA) concentration to changes in climate and emissions is investigated using a coupled global atmosphere-land model driven by the year 2100 IPCC A1B scenario predictions. The ...

Heald, C. L.; Henze, D. K.; Horowitz, L. W.; Feddema, Johannes J.; Lamarque, J. F.; Guenther, A.; Hess, P. G.; Vitt, F.; Seinfeld, J. H.; Goldstein, A. H.; Fung, I.

2008-03-01T23:59:59.000Z

174

6, 75197562, 2006 Simulating aerosol  

E-Print Network [OSTI]

, particle number concentration and aerosol size-distribution. The model takes into account sulfate (SO4. This model system enables explicit simulations of the particle number concentration and size-distribution of aerosol dynamical processes (nucleation, condensation, coagulation) is evaluated by comparison

Paris-Sud XI, Université de

175

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Sensitivity of stratospheric geoengineering with black1  

E-Print Network [OSTI]

geoengineering with black1 carbon to aerosol size and altitude of injection2 Ben Kravitz, 1 Alan Robock, 2 Drew T KRAVITZ ET AL.: BC GEOENGINEERING SENSITIVITY Abstract. Simulations of stratospheric geoengineering GEOENGINEERING SENSITIVITY X - 3 studies involving sulfate aerosols, black carbon geoengineering likely carries16

Robock, Alan

176

The Nearby Supernova Factory Ozone + Aerosol + Rayleigh  

E-Print Network [OSTI]

Rayleigh + Aerosol Extinction monitor filter Auxiliary Camera CCD Spectrograph picko ff mirror Umbra

177

aerosol particles collected: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saller 2002-05-07 6 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles Materials Science Websites Summary: being clouds...

178

Mexico City Aerosol Analysis during MILAGRO using High Resolution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Abstract: Submicron aerosol was analyzed during...

179

Mexico City Aerosol Analysis during MILAGRO using High Resolution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Abstract: Submicron aerosol was analyzed during...

180

AERONET: The Aerosol Robotic Network  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

SciTech Connect (OSTI)

Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other models as well (cf. Jacobson, 2002) but the relative impacts on convective and stratiform processes were not separated. Other changes to atmospheric stability and thermodynamical quantities due to aerosol absorption are also known to be important in modifying cloud macro/micro properties. Linkages between convection and boreal biomass burning can also impact the upper troposphere and lower stratosphere, radiation and cloud microphysical properties via transport of tropospheric aerosols to the lower stratosphere during extreme convection (Fromm and Servranckx 2003). Relevant questions regarding the impact of biomass aerosols on convective cloud properties include the effects of vertical transport of aerosols, spatial and temporal distribution of rainfall, vertical shift in latent heat release, phase shift of precipitation, circulation and their impacts on radiation. Over land surfaces, a decrease in surface shortwave radiation ({approx} 3-6 W m{sup -2} per decade) has been observed between 1960 to 1990, whereas, increases of 0.4 K in land temperature during the same period that occurred have resulted in speculations that evaporation and precipitation should also have decreased (Wild et al. 2004). However, precipitation records for the same period over land do not indicate any significant trend (Beck et al. 2005). The changes in precipitation are thought to be related to increased moisture advection from the oceans (Wild et al. 2004), which may well have some contributions from aerosol-radiation-convection coupling that could modify circulation patterns and hence moisture advection in specific regions. Other important aspects of aerosol effects, besides the direct, semi-direct, microphysical and thermodynamical impacts include alteration of surface albedos, especially snow and ice covered surfaces, due to absorbing aerosols. These effects are uncertain (Jacobson, 2004) but may produce as much as 0.3 W m{sup -2} forcing in the Northern hemisphere that could contribute to melting of ice and permafrost and change in the length of the season (e.g. early arrival of Spring

Menon, Surabi; Del Genio, Anthony D.

2007-09-03T23:59:59.000Z

182

Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing  

SciTech Connect (OSTI)

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2012-07-25T23:59:59.000Z

183

8, 68456901, 2008 Aerosol optical  

E-Print Network [OSTI]

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance, Germany 2 Helmholtz Center Munich, German Research Center for Environmental Health, Institute

Paris-Sud XI, Université de

184

Asthmatic responses to airborne acid aerosols  

SciTech Connect (OSTI)

Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. (California Department of Health Services, Berkeley (USA))

1991-06-01T23:59:59.000Z

185

Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations  

SciTech Connect (OSTI)

Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N Ė tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

2014-09-23T23:59:59.000Z

186

Aerosols and clouds in chemical transport models and climate models.  

SciTech Connect (OSTI)

Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

Lohmann,U.; Schwartz, S. E.

2008-03-02T23:59:59.000Z

187

A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered¬ČPNGExperience hands-onASTROPHYSICSHe ő≤- DecayBenew double-foil

188

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network [OSTI]

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

189

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source type and mechanism information for the four aerosol samples gathered from the Caribbean, the Sea of Japan, and New Jersey. One way to gauge an aerosol's ability to stay...

190

6, 93519388, 2006 Aerosol-cloud  

E-Print Network [OSTI]

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

191

BUSINESS SENSITIVE  

Broader source: Energy.gov (indexed) [DOE]

that this action supports), is as follows: (State the following in bullet format BUSINESS SENSITIVE Funding is being provided for Notice Number (fill-in), entitled ("provide...

192

Observations of the first aerosol indirect effect in shallow cumuli  

SciTech Connect (OSTI)

Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

2011-02-08T23:59:59.000Z

193

Review of models applicable to accident aerosols  

SciTech Connect (OSTI)

Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

Glissmeyer, J.A.

1983-07-01T23:59:59.000Z

194

ANALYSIS OF 5 YEARS SCIAMACHY ABSORBING AEROSOL INDEX DATA L. G. Tilstra1,2  

E-Print Network [OSTI]

institutes. The AAI in general is determined from the reflectance at two wavelengths in the UV, and is highly sensitive to er- rors in the absolute radiometric calibration. We apply a degradation correction. Key words: SCIAMACHY; Absorbing Aerosol Index; calibration; degradation. 1. INTRODUCTION OF RESIDUE

Tilstra, Gijsbert

195

Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories  

SciTech Connect (OSTI)

An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 {mu}m in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab.

Gelbard, F. [Sandia National Labs., Albuquerque, NM (USA)

1989-01-01T23:59:59.000Z

196

Stratospheric Aerosol Geoengineering ALAN ROBOCK  

E-Print Network [OSTI]

Stratospheric Aerosol Geoengineering ALAN ROBOCK ABSTRACT In response to global warming, one suggested geoengineering response involves creating a cloud of particles in the stratosphere to reflect some, the volcano analog also warns against geoengineering because of responses such as ozone depletion, regional

Robock, Alan

197

Sensitive Species  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants and animals not protected by the federal Endangered Species Act or the Migratory Bird Treaty Act, but are protected on state or local levels. The Sensitive Species Best...

198

Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model  

SciTech Connect (OSTI)

A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

2014-01-29T23:59:59.000Z

199

DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?  

E-Print Network [OSTI]

BALANCE Global and annual average energy fluxes in watts per square meter Schwartz, 1996, modified from;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS

Schwartz, Stephen E.

200

Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites  

E-Print Network [OSTI]

Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites M I Mishchenko1 instruments suitable for aerosol remote sensing and give examples of aerosol retrievals obtained forcing directly by absorbing and reflecting sunlight, thereby cooling or heating the atmosphere

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects  

SciTech Connect (OSTI)

To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

2013-06-05T23:59:59.000Z

202

Optimization of aerosol penetration through transport lines  

E-Print Network [OSTI]

will be minimum and -' he penetration of aerosols through the transport system will be maximal. It is the purpose of the study reported herein to experimentally investigate the optimization of aerosol penetration through transport systems and to obtain a... numbers less than 869, bounded the use of this model to Reynolds numbers less than or equal to 1100. 19 IV. SUNNARY OF WORK AND EXPERINENTAL NETHODOLOGY The purpose of the study reported herein was to further analyze the optimization of aerosol...

Wong Luque, Fermin Samuel

1992-01-01T23:59:59.000Z

203

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network [OSTI]

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

204

Researchers Model Impact of Aerosols Over California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu,...

205

Separating Cloud Forming Nuclei from Interstitial Aerosol  

SciTech Connect (OSTI)

It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

Kulkarni, Gourihar R.

2012-09-12T23:59:59.000Z

206

Indirect and Semi-Direct Aerosol Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October? 2. To what extent do the different properties of the Arctic aerosol during April produce differences in clouds? * Do the more polluted conditions during April in the...

207

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect (OSTI)

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry‚??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth‚??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

208

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

209

aerosol ratio program: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contribute a major portion of atmospheric aerosol mass loading 5. The estimated global annual Liou, K. N. 2 Studying Clouds and Aerosols with Lidar Depolarization Ratio and...

210

Reduction in biomass burning aerosol light absorption upon humidificat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

211

aerosol optical thickness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

212

aerosol black carbon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

213

aerosols iii morphologic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences Websites Summary: of aerosols. Keywords: metal waste recycling; aerosols; fire hazard; explosion hazard. 1. OVERVIEW ProductsRisks generated by the treatment of...

214

The Indirect and Semi-Direct Aerosol Campaign  

ScienceCinema (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-06-12T23:59:59.000Z

215

ambient ultrafine aerosols: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer...

216

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

217

Synergy between Secondary Organic Aerosols and Long Range Transport...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between Secondary Organic Aerosols and Long Range Transport of Polycyclic Aromatic Hydrocarbons. Synergy between Secondary Organic Aerosols and Long Range Transport of Polycyclic...

218

acid aerosol exposure: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nenes, Athanasios 8 Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia Geosciences Websites Summary: Neutralization of soil aerosol and...

219

Aerosol Composition and Source Apportionment in the Mexico City...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Composition and Source Apportionment in the Mexico City Metropolitan Area with PIXEPESASTIM and Multivariate Analysis. Aerosol Composition and Source Apportionment in the...

220

Molecular Chemistry of Organic Aerosols Through the Application...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

aerosol samples collected: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

elements analysis of aerosol samples from some CiteSeer Summary: Aerosols deposits on filters from ten Romanian towns with different kinds and levels of industrial development...

222

Optical, physical, and chemical properties of springtime aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

223

aerosol particles emitted: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols scatter and absorb solar, estimates of the impact of aerosols on visibility, the solar radiation balance, and crop production is presented. 1. INTRODUCTION The attenuation...

224

aerosolized pentamidine effect: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

225

aerosols radioactifs artificiels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

226

aerosol particle analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: data analysis algorithm is presented. Our earlier algorithm assumed a monomodal aerosol size distribution, while the new algorithm allows us to partition the aerosol...

227

aerosol research study: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in atmospheric thermal structure, burning, bio-sources changes? 12;Aerosol microphysics: size distribution, mixing state, morphology, shape 9 Aerosol Science and Technology,...

228

Building America Webinar: Sealing of Home Enclosures with Aerosol...  

Energy Savers [EERE]

Sealing of Home Enclosures with Aerosol Particles Building America Webinar: Sealing of Home Enclosures with Aerosol Particles This webinar was presented by research team Building...

229

The dependence of ice microphysics on aerosol concentration in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. The dependence of ice microphysics on aerosol...

230

Variable Selection for Ultra High Dimensional Data  

E-Print Network [OSTI]

of the proposed approach have been made with the penalized likelihood approaches, such as Lasso, elastic net, SIS and ISIS. The numerical results show that the proposed approach generally outperforms the penalized likelihood approaches. The models selected...

Song, Qifan

2014-05-29T23:59:59.000Z

231

Ultra High Mass Range Mass Spectrometer System  

DOE Patents [OSTI]

Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

Reilly, Peter T. A. [Knoxville, TN

2005-12-06T23:59:59.000Z

232

Ultra high frequency imaging acoustic microscope  

DOE Patents [OSTI]

An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

Deason, Vance A.; Telschow, Kenneth L.

2006-05-23T23:59:59.000Z

233

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq. -Udhaya Energyfor Low Carbon

234

Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions  

SciTech Connect (OSTI)

Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near-surface NO{sub x} concentrations by a factor of 2-5. These results suggest the importance of using the more accurate hybrid dynamical method in the estimates of both aerosol forcing and tropospheric ozone chemistry.

Joyce E. Penner

2005-03-14T23:59:59.000Z

235

Characterization of aerosols produced by surgical procedures  

SciTech Connect (OSTI)

In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

236

Impact of Aerosols on Tropical Cyclones: An Investigation Using Convection-permitting Model Simulation  

SciTech Connect (OSTI)

The role of aerosols effect on two tropical cyclones over Bay of Bengal are investigated using a convection permitting model with two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the TCs are hardly affected by the changing aerosol types, but the intensity exhibits significant sensitivity due to the change in aerosol contribution. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level which, in turn, forces the lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to other two perturbations of aerosol. All these studies show the robustness of the concept of TC weakening by storm ingestion of high concentrations of CCN. The consistency of these model results gives us confidence in stating there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian sub-continent, this study suggests pollution may be weakening TCs over the Bay of Bengal.

Hazra, Anupam; Mukhopadhyay, P.; Taraphdar, Sourav; Chen, J. P.; Cotton, William R.

2013-07-16T23:59:59.000Z

237

ENCAPSULATION EFFECTS ON CARBONACEOUS AEROSOL LIGHT ABSORPTION  

E-Print Network [OSTI]

ENCAPSULATION EFFECTS ON CARBONACEOUS AEROSOL LIGHT ABSORPTION Arthur Sedlacek, Brookhaven National of aerosol absorption on direct radiative forcing is still an active area of research, in part, because. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry

238

2, 12871315, 2002 Aerosol sources and  

E-Print Network [OSTI]

in climate variability and climate change studies (IPCC, 2001). Radiative forcing of natural and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime J aerosol sources in the Eastern Mediterranean5 Basin could be investigated at this location since the site

Paris-Sud XI, Université de

239

6, 1217912197, 2006 Aerosol formation in  

E-Print Network [OSTI]

troposphere and lower stratosphere. The model implements a first order scheme for resolving the aerosol size distribution within its geometric size10 sections, which efficiently suppresses numerical diffusion. We operate removes freshly nucleated particles by coagulation. The observation of high ultrafine aerosol

Paris-Sud XI, Université de

240

6, 32653319, 2006 Study aerosol with  

E-Print Network [OSTI]

ACPD 6, 3265­3319, 2006 Study aerosol with two emission inventories and time factors A. de Meij et in Europe to two different emission inventories and temporal distribution of emissions A. de Meij 1 , M Study aerosol with two emission inventories and time factors A. de Meij et al. Title Page Abstract

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report  

SciTech Connect (OSTI)

This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

None

2013-10-18T23:59:59.000Z

242

AEROSOL PARTICLE COLLECTOR DESIGN STUDY  

SciTech Connect (OSTI)

A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

Lee, S; Richard Dimenna, R

2007-09-27T23:59:59.000Z

243

ARM - Field Campaign - Aerosol IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered¬ČPNGExperience4AJ01)3, 2010SeptemberInfrared SpectralgovCampaignsAerosol IOP

244

Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis  

SciTech Connect (OSTI)

Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

Zahn, S.G.

1993-12-01T23:59:59.000Z

245

Global observations of desert dust and biomass burning aerosols  

E-Print Network [OSTI]

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

246

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

247

The behavior of constant rate aerosol reactors  

SciTech Connect (OSTI)

An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. The particle sizes of interest range from less than 10 angstrom (molecular clusters) to 10 ..mu..m. Such reactors may be operated to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol. Aerosol reactors can be characterized by three temporal or spatial zones or regions of operation for batch and flow reactors, respectively. In zone I, chemical reaction results in the formation of condensable molecular products which nucleate and form very high concentrations of small particles. The number density depends on the concentration of preexisting aerosol. Zone II is a transition region in which the aerosol number concentration levels off as a result of hetergeneous condensation by the stable aerosol. In zone III coagulation becomes sufficiently rapid to reduce the particle number concentration. There may be a zone IV in which agglomerates form.

Friedlander, S.K.

1982-01-01T23:59:59.000Z

248

CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan  

SciTech Connect (OSTI)

Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-05-27T23:59:59.000Z

249

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

250

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

251

Southern hemisphere tropospheric aerosol microphysics  

SciTech Connect (OSTI)

Aerosol particle size distribution data have been obtained in the southern hemisphere from approximately 4{degree}S to 44{degree}S and between ground level and 6 km, in the vicinity of eastern Australia. The relative shape of the free-tropospheric size distribution for particles with radii larger than approximately 0.04 {mu}m was found to be remarkably stable with time, altitude, and location for the autumn-winter periods considered. This was despite some large concentration changes which were found to be typical of the southeastern Australian coastal region. The majority of free-troposphere large particles were found to have sulfuric acid or lightly ammoniated sulfate morphology. Large particles in the boundary layer almost exclusively had a sea-salt morphology.

Gras, J.L. (Commonwealth Scientific and Industrial Research Organization, Aspendale (Australia))

1991-03-20T23:59:59.000Z

252

Radiative and climate impacts of absorbing aerosols  

E-Print Network [OSTI]

incident radiation are distinguished, and albedos for oceanOceans using multiple satellite datasets in conjunction with MACR (Monte Carlo Aerosol-Cloud-Radiation)ocean temperature is coupled with the rest of the climate system, the dimming of surface radiation

Zhu, Aihua

2010-01-01T23:59:59.000Z

253

Aerosol remote sensing in polar regions  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of ŇngstrŲm's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winterĖspring and summerĖautumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winterĖspring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ňlesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surfaceĖatmosphere system over polar regions.

Tomasi, C.; Wagener, R.; Kokhanovsky, A. A.; Lupi, A.; Ritter, C.; Smirnov, A.; O Neill, N. T.; Stone, R. S.; Holben, B. N.; Nyeki, S.; Wehrli, C.; Stohl, A.; Mazzola, M.; Lanconelli, C.; Vitale, V.; Stebel, K.; Aaltonen, V.; de Leeuw, G.; Rodriguez, E.; Herber, A. B.; Radionov, V. F.; Zielinski, T.; Petelski, T.; Sakerin, S. M.; Kabanov, D. M.; Xue, Y.; Mei, L.; Istomina, L.; Wagener, R.; McArthur, B.; Sobolewski, P. S.; Kivi, R.; Courcoux, Y.; Larouche, P.; Broccardo, S.; Piketh, S. J.

2015-01-01T23:59:59.000Z

254

Aerosol fabrication methods for monodisperse nanoparticles  

DOE Patents [OSTI]

Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

Jiang, Xingmao; Brinker, C Jeffrey

2014-10-21T23:59:59.000Z

255

Development of plutonium aerosol fractionation system  

E-Print Network [OSTI]

DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

Mekala, Malla R.

1993-01-01T23:59:59.000Z

256

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect (OSTI)

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

257

WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia  

SciTech Connect (OSTI)

This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

2014-08-01T23:59:59.000Z

258

E-Print Network 3.0 - aerosol chemical vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical and microphysical properties influence aerosol optical properties and radiative effects... distribution of aerosol extensive and intensive properties will aid ......

259

Clouds of short-circuited thermionic nanobatteries and promising prospects for development of nanobattery-based aerosol fusion reactors. The preliminary report  

E-Print Network [OSTI]

The physical mechanisms of periodic separation and relaxation of electric charges within aerosol particles possessing the properties the short-circuited batteries can be extremely diverse. With use of appropriate materials and dispersing methods, the electrochemical, thermoelectric, thermionic, pyroelectric, photoelectric, photo electronic emission, or even radionuclide-based emission micro and nano-batteries can be synthesized and be dispersed in the air as clouds self-assembed of the short-circuited aerosol batteries due to the inter-particle electromagnetic dipole-dipole attraction. Intense thermionic emission from ionized hot spots migrating on the relatively cold surface of charged explosive particles, can convert these particles into short-circuited thermionic batteries, turning an aerosol cloud consisting of such unipolar charged, gradually decomposing explosive particles into ball lightning. The slow exothermic decomposition of the highly sensitive explosive aerosol particles, catalyzed by excess ions on their surface, and also ion-catalyzed reactions of slow water vapor induced oxidation of charged combustible aerosol particles underlie two main classes of natural ball lightning. At the same time, the artificially generated clouds consisting of such unipolar charged aerosol nanobatteries, probably, can have some useful applications, not only military ones. In particular, it seems that high-performance pyroelectric fusion reactors could be created on the basis of such ball-shaped aerosol clouds self-assembled of pyroelectric nanocrystals - short-circuited pyroelectric nanobatteries.

Oleg Meshcheryakov

2012-04-13T23:59:59.000Z

260

AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL  

E-Print Network [OSTI]

AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL SPECIATION MONITOR Yin-Nan Lee1 , Fan Mei1 , Stephanie DeJong1 , Anne Jefferson2 1 Atmospheric Sciences Division, Brookhaven National Lab, Upton, NY 2 CIRES, University of Colorado, Boulder, CO

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

262

Linearity of Climate Response to Increases in Black Carbon Aerosols  

SciTech Connect (OSTI)

The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

263

Clouds of short-circuited thermionic nanobatteries and promising prospects for development of nanobattery-based aerosol fusion reactors. The preliminary report  

E-Print Network [OSTI]

The physical mechanisms of periodic separation and relaxation of electric charges within aerosol particles possessing the properties the short-circuited batteries can be extremely diverse. With use of appropriate materials and dispersing methods, the electrochemical, thermoelectric, thermionic, pyroelectric, photoelectric, photo electronic emission, or even radionuclide-based emission micro and nano-batteries can be synthesized and be dispersed in the air as clouds self-assembed of the short-circuited aerosol batteries due to the inter-particle electromagnetic dipole-dipole attraction. Intense thermionic emission from ionized hot spots migrating on the relatively cold surface of charged explosive particles, can convert these particles into short-circuited thermionic batteries, turning an aerosol cloud consisting of such unipolar charged, gradually decomposing explosive particles into ball lightning. The slow exothermic decomposition of the highly sensitive explosive aerosol particles, catalyzed by excess ions...

Meshcheryakov, Oleg

2012-01-01T23:59:59.000Z

264

DOE research on atmospheric aerosols  

SciTech Connect (OSTI)

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

265

Application of computational fluid dynamics to aerosol sampling and concentration  

E-Print Network [OSTI]

An understanding of gas-liquid two-phase interactions, aerosol particle deposition, and heat transfer is needed. Computational Fluid Dynamics (CFD) is becoming a powerful tool to predict aerosol behavior for related design work. In this study...

Hu, Shishan

2009-05-15T23:59:59.000Z

266

Aerosol beam-focus laser-induced plasma spectrometer device  

DOE Patents [OSTI]

An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

Cheng, Meng-Dawn (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

267

aerosol particle penetration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the subsequent aerosol penetration performance through these tubes were conducted for a aerosol particle size range of 5 nm to 20 nm and a flow rate range of 28 Lmin to 169.9...

268

Effects of operating conditions on a heat transfer fluid aerosol  

E-Print Network [OSTI]

of heat transfer fluid aerosols from process leaks. To simulate industrial leaks, aerosol formation from a plain orifice into ambient air is studied by measuring liquid drop sizes and size distributions at various distances from an orifice. Measurements...

Sukmarg, Passaporn

2000-01-01T23:59:59.000Z

269

Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol  

SciTech Connect (OSTI)

We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define ďweakly absorbingĒ as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49Ī0.02) and effective density (1.68Ī0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the retrieved density and refractive index tend to decrease with an increase of the relative humidity.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Shilling, John E.; Flynn, Connor J.; Mei, Fan; Jefferson, Anne

2014-10-01T23:59:59.000Z

270

Observations of Secondary Organic Aerosol Production and Soot Aging under Atmospheric Conditions Using a Novel Environmental Aerosol Chamber  

E-Print Network [OSTI]

of the processes leading to SOA production under ambient gaseous and particulate concentrations as well as the impact these aerosol types have on climate is poorly understood. Although the majority of atmospheric aerosols scatter radiation either directly...

Glen, Crystal

2012-02-14T23:59:59.000Z

271

Project of Aerosol Optical Depth Change in South America  

E-Print Network [OSTI]

AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Paraguay Uruguay #12;Statistics of Aerosol M ean D ec 01 to 06 Mean Month AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela

Frank, Thomas D.

272

Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols  

E-Print Network [OSTI]

aerosols can potentially result in an increase in acid deposition. [4] Acid rain has been studiedSulfuric acid deposition from stratospheric geoengineering with sulfate aerosols Ben Kravitz,1 Alan limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2

Robock, Alan

273

Organic and Inorganic Aerosol Below-Cloud Scavenging by  

E-Print Network [OSTI]

concentrations, with an average gravimetric PM1.0 of 8.2 ( 1.6 ¬Ķg m-3 and an average Fourier transform infrared-rinsing behavior was unaffected by source type. The aerosol OM was hydrophilic throughout the sampling period the description of aerosol lifetimes in global models. Introduction Wet and dry deposition of aerosol particles

Russell, Lynn

274

The sensitivity of the next generation of lunar Cherenkov observations to UHE neutrinos and cosmic rays  

E-Print Network [OSTI]

We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR) and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio signal at Earth from such interactions, expanding on previous work to include interactions in the sub-regolith layer for single dish and multiple telescope systems. For previous experiments at Parkes, Goldstone, and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neutrinos. Our predicted sensitivity for future experiments using the Australia Telescope Compact Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be able to detect the more optimistic UHE neutrino flux predictions, while the Square Kilometre Array (SKA) will also be sensitive to all bar one prediction of a diffuse `cosmogenic', or `GZK', neutrino flux. Current uncertainties concerning the structure and roughness of the lunar surface prevents an accurate calculation of the sensitivity of the lunar Cherenkov technique for UHE cosmic ray astronomy at high frequencies. However, below 200 MHz we find that the proposed SKA low-frequency aperture array should be able to detect events above 56 EeV at a rate about 30 times that of the current Pierre Auger Observatory. This would allow directional analysis of UHE cosmic rays, and investigation of correlations with putative cosmic ray source populations, to be conducted with very high statistics.

C. W. James; R. J. Protheroe

2008-02-25T23:59:59.000Z

275

Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer  

SciTech Connect (OSTI)

During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

2008-06-19T23:59:59.000Z

276

Phase transformation and growth of hygroscopic aerosols  

SciTech Connect (OSTI)

Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

Tang, I.N.

1999-11-01T23:59:59.000Z

277

CADS:Cantera Aerosol Dynamics Simulator.  

SciTech Connect (OSTI)

This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol Dynamics Simulator), which employs a section-based approach for describing the particle size distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas phase species transport and reactions. The method uses a discontinuous Galerkin formulation to represent the particle distributions within each section and to solve for changes to the aerosol particle distributions due to condensation, coagulation, and nucleation processes. CADS conserves particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations. Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application) have been developed with CADS, with the initial emphasis on developing fundamental mechanisms for soot formation within fires. This report also describes the 0-D application, TDcads, which models a time-dependent perfectly stirred reactor.

Moffat, Harry K.

2007-07-01T23:59:59.000Z

278

Characterizing the formation of secondary organic aerosols  

SciTech Connect (OSTI)

Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-02-01T23:59:59.000Z

279

Mapping of soot particles in a weakly sooting diffusion flame by aerosol techniques  

SciTech Connect (OSTI)

The evolution of detailed particle size distributions has been measured along the centerline of an axisymmetric diffusion flame of CH{sub 4} + Ar burning in air at 1 atm. Soot particles with mean diameters of 3--18 nm were observed. Changes in the size distribution exhibited zones where either nucleation, coagulation, or destruction of soot particles dominated. These highly sensitive measurements were made by microprobe sampling with an immediate dilution of 1:400, to quench the aerosol, and by subsequent application of aerosol measurement techniques. In parallel, the yield of photoemitted electrons from size-selected particles was determined. The yield shows a characteristic dependence on location in the flame, indicating changes of the particle`s surface. Multiphoton, time-of-flight mass spectrometry was used to investigate the correlation between polycyclic aromatic hydrocarbons in the flame and enhanced photoemission yield from the soot particles.

Hepp, H.; Siegmann, K. [Federal Inst. of Tech., Zuerich (Switzerland). Lab. for Solid State Physics] [Federal Inst. of Tech., Zuerich (Switzerland). Lab. for Solid State Physics

1998-10-01T23:59:59.000Z

280

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect (OSTI)

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

282

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect (OSTI)

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

283

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

284

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

285

Aerosol Science and Technology, 41:202216, 2007 Copyright c American Association for Aerosol Research  

E-Print Network [OSTI]

processes, such as con- densation, coagulation, gas-to-particle conversion (Reid et al. 1998), and particle Aerosol size distribution is, along with particle refractive in- dex and shape, one of important

286

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry  

E-Print Network [OSTI]

In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

Kroll, Jesse

287

Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols  

SciTech Connect (OSTI)

Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

Smith, Steven J.; Bond, Tami C.

2014-01-20T23:59:59.000Z

288

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect (OSTI)

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

289

Calibration of the On-Line Aerosol Monitor (OLAM) with ammonium chloride and sodium chloride aerosols  

SciTech Connect (OSTI)

The On-Line Aerosol Monitor (OLAM) is a light attenuation device designed and built at the Idaho National Engineering Laboratory (INEL) by EG&G Idaho. Its purpose is to provide an on-line indication of aerosol concentration in the PHEBUS-FP tests. It does this by measuring the attenuation of a light beam across a tube through which an aerosol is flowing. The OLAM does not inherently give an absolute response and must be calibrated. A calibration has been performed at Sandia National Laboratories` (SNL) Sandia Aerosol Research Laboratory (SARL) and the results are described here. Ammonium chloride and sodium chloride calibration aerosols are used for the calibration and the data for the sodium chloride aerosol is well described by a model presented in this report. Detectable instrument response is seen over a range of 0.1 cm{sup 3} of particulate material per m{sup 3} of gas to 10 cm{sup 3} of particulate material per m{sup 3} of gas.

Brockmann, J.E.; Lucero, D.A.; Romero, T. [Sandia National Labs., Albuquerque, NM (United States); Pentecost, G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1993-12-01T23:59:59.000Z

290

A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID  

E-Print Network [OSTI]

In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

Hohaus, T.

291

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect (OSTI)

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 OctĖNov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

292

Attachment of radon progeny to cigarette-smoke aerosols  

SciTech Connect (OSTI)

The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

Biermann, A.H.; Sawyer, S.R.

1995-05-01T23:59:59.000Z

293

Uncertainties and Frontiers in Aerosol Research  

E-Print Network [OSTI]

;Transport Power Industry Biomass burning Residential Human activity Perspective Aerosol Sources (rather than, Mixing, Chemistry, Climate) Climate Effects Resource: AeroCom, an international model intercomparison of fossil fuel (coal, oil, diesel, gasoline), domestic wood burning, forest fires #12;Natural sources

294

Aerosol Spray Synthesis of Porous Molybdenum Sulfide  

E-Print Network [OSTI]

, and colloidal silica, SiO2, was ultrasonically nebulized using a household humidifier; the resulting aerosol in materials science because of their ability to be scaled-up for industrial applications.[2] USP solution, as indicated by Eq. 2. Typically, micron-sized particles are obtained; however, by adding

Suslick, Kenneth S.

295

3, 59195976, 2003 The nitrate aerosol  

E-Print Network [OSTI]

ACPD 3, 5919­5976, 2003 The nitrate aerosol field over Europe M. Schaap et al. Title Page Abstract of Utrecht, Institute of Marine and Atmospheric Science, PO Box 80005, 3508 TA, Utrecht, The Netherlands 2, The Netherlands 3 Netherlands Energy Research Foundation (ECN), PO Box 1, 1755 LE Petten, The Netherlands 4 Joint

Paris-Sud XI, Université de

296

Source Apportionment of Carbonaceous Aerosols using  

E-Print Network [OSTI]

are different than the collection of particles from water Filtration has high efficiency for all sizes Size Condensation Nuclei (CCN) Human health Carbonaceous aerosol implicated as important for toxicity and adverse of particulate matter Again, agreement between these two approaches would give a high level of confidence

Einat, Aharonov

297

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

SciTech Connect (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

298

Total aerosol effect: forcing or radiative flux perturbation?  

SciTech Connect (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

299

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III)  

E-Print Network [OSTI]

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas extinction. We retrieve ozone and nitrogen dioxide number densities and aerosol extinction from transmission), Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III

300

Correction to "Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols"  

E-Print Network [OSTI]

Correction to "Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols (2010), Correction to "Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols from stratospheric geoengineering with sulfate aerosols" (Journal of Geophysical Research, 114, D14109

Robock, Alan

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago  

E-Print Network [OSTI]

possible pollutant sources. Keywords Atmospheric aerosols . Canonical correlation analysis . Chicago air pollution studies involve collection and anal- ysis of atmospheric aerosols and concurrent meteorol- ogy) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations

O'Brien, Timothy E.

302

Aerosol Retrievals from ARM SGP MFRSR Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

Alexandrov, Mikhail

303

Stackable differential mobility analyzer for aerosol measurement  

DOE Patents [OSTI]

A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

Cheng, Meng-Dawn (Oak Ridge, TN); Chen, Da-Ren (Creve Coeur, MO)

2007-05-08T23:59:59.000Z

304

ARM - PI Product - Niamey Aerosol Optical Depths  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethaneProductsCSSEFProductsMerged andAerosol Optical

305

Aerosol Working Group Contributions Accomplishments for 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 Simulation StudiesAerosol

306

TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001  

SciTech Connect (OSTI)

The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

SCHWARTZ,S.E.; LUNN,P.

2001-03-01T23:59:59.000Z

307

aerosol characteristic researching: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as they have significant impacts both on localregional air pollution and global climate. Recent for Aerosol and Cloud Chemistry, Aerodyne Research, Incorporated, Billerica,...

308

aerosol challenge model: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to...

309

Iron Speciation and Mixing in Single Aerosol Particles from the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on...

310

aircraft exhaust aerosol: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Location on a King Air 200 Aircraft:aerosol.atmos.und.edu) Objective A Raytheon Beechcraft King Air 200 aircraft has been used to obtain Condensation Particle...

311

aerosol mass spectrometry: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry MIT - DSpace Summary: Four hydroxynitrates (R(OH)R'ONO2) representative of...

312

aerosol assisted chemical: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Simulating Aerosols Using a Chemical Transport Model with Assimilation of...

313

ambient fine aerosols: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Chemical characterization of the ambient organic aerosol soluble in water:...

314

aerosol chemical characteristion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Simulating Aerosols Using a Chemical Transport Model with Assimilation of...

315

aerosol characterization experiment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 8 Desert dust aerosol age characterized by massage tracking of tracers...

316

aerosol generation characterization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Desert dust aerosol age characterized by massage tracking of tracers...

317

aerosol monitor development: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paris May 2003John Matthews Monitoring the Aerosol Phase Function University of New Mexico 12;AstroParticles & Atmosphere, Paris May 2003John Matthews 12;AstroParticles &...

318

aerosol particle charger: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction The Universal Serial Bus (USB) port Allen, Jont 9 New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry...

319

aerosol mass spectrometer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2004. The concentration of a species Zhang, Qi 8 Development of a thermal desorption chemical ionization mobility mass spectrometer for the speciation of ultrafine aerosols. Open...

320

aerosol particles generated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique University of California eScholarship Repository Summary: Real-...

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

aerosol monitors including: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical ... Ridley, David Andrew 33...

322

aerosol retrieval validation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

off the coast of Chile and Peru, where aerosol-cloud interactions are important to the energy balance (15), and limitations in current observing and modeling capabilities...

323

aerosol detection equipment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel, Rosenfeld 464 Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties Energy Storage, Conversion and Utilization Websites...

324

Aerosol generation and entrainment model for cough simulations.  

E-Print Network [OSTI]

??The airborne transmission of diseases is of great concern to the public health community. The possible spread of infectious disease by aerosols is of particularÖ (more)

Ersahin, Cem.

2007-01-01T23:59:59.000Z

325

atmospheric aerosols basic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of atmospheric aerosol. Aplin, KL 2012-01-01 13 1. Introduction The atmospheric greenhouse effect is the basic mechanism Environmental Sciences and Ecology Websites Summary: 1....

326

Aerosols, Clouds, and Climate Change Stephen E. Schwartz  

E-Print Network [OSTI]

in atmospheric carbon dioxide associated with fossil fuel combustion. Briefly the options are mitigation work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous

Schwartz, Stephen E.

327

Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001  

SciTech Connect (OSTI)

The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

Worsnop, Douglas R.

2001-06-01T23:59:59.000Z

328

E-Print Network 3.0 - administrado como aerosol Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

del ozono estratosfrico, los aerosoles atmosfricos y... a los cambios en las emisiones que los GEI de larga duracin, como el CO2. Los aerosoles antropgenos... ms...

329

E-Print Network 3.0 - aerosol robotic network Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

), AERONET--A federated instrument network and data archive for aerosol characterization, Remote Sens... Period examining aerosol properties and radiative ... Source: Brookhaven...

330

E-Print Network 3.0 - aerosol condensation model Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science Collection: Environmental Sciences and Ecology 8 DETERMINING AEROSOL RADIATIVE FORCING AT ARM SITES Summary: OF AEROSOL DIRECT FORCING By linear model and by...

331

SciTech Connect: Results and code predictions for ABCOVE aerosol...  

Office of Scientific and Technical Information (OSTI)

Results and code predictions for ABCOVE aerosol code validation - Test AB5 Citation Details In-Document Search Title: Results and code predictions for ABCOVE aerosol code...

332

E-Print Network 3.0 - aerosolized polymerized type Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spheric aerosol particles and isolated from fog... in atmospheric aerosol particles and rainwater in the 1980's (Si- moneit, 1980; Likens and ... Source: Ecole Polytechnique,...

333

E-Print Network 3.0 - aerosol radiative forcing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No. DE- Summary: : WHY MEASUREMENTS ALONE CANNOT QUANTIFY AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE Stephen E. Schwartz... of radiative forcing of climate change by aerosols,...

334

E-Print Network 3.0 - aerosols nanometriques application Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is studying how aerosol particles affect everything from Summary: of aerosol particles on climate change, public health, and renewable energy applications. In particular, he......

335

E-Print Network 3.0 - aerosol main physical Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND INTEGRAL AEROSOL PROPERTIES RETRIEVAL FROM RAMAN LIDAR DATA USING PRINCIPLE COMPONENT ANALYSIS Summary: retrievals of physical aerosol parameters from ground-based and...

336

Aerosol-Cloud-Precipitation Interactions in the Trade Wind Boundary Layer.  

E-Print Network [OSTI]

??This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX,Ö (more)

Jung, Eunsil

2012-01-01T23:59:59.000Z

337

E-Print Network 3.0 - aerosol light absorption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND Summary: population centers were used to calculate the aerosol forcing due to light scattering and absorption. Directly... , NY www.bnl.gov ABSTRACT Aerosols influence...

338

Large Aerosols Play Unexpected Role in Ganges Valley | U.S. DOE...  

Office of Science (SC) Website

The data have revealed that large aerosols in this region absorb a greater amount of light than expected. The Science Aerosol particles in the atmosphere may absorb solar...

339

E-Print Network 3.0 - aerosol atmospheric interactions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Climate Summary: order estimates of aerosol-climate interaction But... only Earth System Models can include all... of the interactions (in theory at least) 12;Aerosols <>...

340

E-Print Network 3.0 - atmospheric aerosol size Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for about ten percent of all aerosols in the atmosphere. We... , can actually absorb solar energy and warm the atmosphere. Atmospheric aerosols are very important... by...

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

aerosol source-receptor relationships: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

342

E-Print Network 3.0 - aerosol particle size Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of aerosol over many orders-of-magnitude of particle size range, from subcritical clusters on the molecular... to modeling aerosol dynamics under conditions of new...

343

E-Print Network 3.0 - aerosol load study Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conditions... reserved. Keywords: India; Aerosol loading; Aerosol forcing; MODIS; TOMS; Remote sensing 1. Introduction... heating effect on the earth surface and in turn...

344

E-Print Network 3.0 - analysis od aerosol Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tivanski, Rebecca Hopkins, Yury Desyaterik... of Aerosols 12;Aerosol Transport From Mexico City During MILAGRO T0 T1 T2 Mexico ... Source: Brookhaven National Laboratory,...

345

A new approach to studying aqueous reactions using diffuse reflectance infrared Fourier transform spectrometry: application to the uptake and oxidation of SO2 on OH-processed model sea salt aerosol.  

E-Print Network [OSTI]

Oxygen Services Company Ultra High Purity, 4 99.999%) produced by electric discharge using a commer- cial ozonizer (Polymetrics Ozone Generator,

Shaka', Huda; Robertson, W H; Finlayson-Pitts, Barbara J

2007-01-01T23:59:59.000Z

346

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect (OSTI)

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex Ďreal-worldí aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

347

Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval  

E-Print Network [OSTI]

) of the AVHRR (Advanced Very High Resolution Radiometer) is typically between 0.06 and 0.15, while the RMSE between t = 0.1 and t = 0.8. The Department of Energy research satellite instrument, the Multispectral aerosol radiative forcing are known, the predictions of future global warming may remain unacceptably high

348

Variability of Aerosol Optical Properties from Long-term  

E-Print Network [OSTI]

%) controlled measurements: sp ­ Aerosol total light scattering coefficient at 450, 550, and 700 nm wavelengths automated generation and review of quality control plots · Weekly editing of data by station scientist]. Indirect Forcing Direct Forcing Carbon Dioxide Forcing Total Forcing Importance of Aerosols #12;Direct

Delene, David J.

349

Sulfate Aerosol Geoengineering: The Question of Justice Toby Svoboda1,*  

E-Print Network [OSTI]

Sulfate Aerosol Geoengineering: The Question of Justice Toby Svoboda1,* , Klaus Keller2 , Marlos of geoengineering as a means to address global climate change. This paper focuses on the question of whether a particular form of geoengineering, namely deploying sulfate aerosols in the stratosphere to counteract some

350

An overview of geoengineering of climate using stratospheric sulphate aerosols  

E-Print Network [OSTI]

REVIEW An overview of geoengineering of climate using stratospheric sulphate aerosols BY PHILIP J, MD 21218, USA We provide an overview of geoengineering by stratospheric sulphate aerosols. The state after geoengineering, with some regions experiencing significant changes in temperature or precipitation

Robock, Alan

351

aerosol ratio test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosol ratio test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Effect of mineral dust aerosol...

352

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill  

E-Print Network [OSTI]

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill Nicole ONeill - ATOC 3500 and aerosol composition of air over the Deepwater Horizon oil spill in the Gulf of Mexico. · The lightest chemicals in the oil evaporated within hours, as scientists expected them to do. What they didn't expect

Toohey, Darin W.

353

Spatial and Seasonal Trends in Biogenic Secondary Organic Aerosol  

E-Print Network [OSTI]

Spatial and Seasonal Trends in Biogenic Secondary Organic Aerosol Tracers and Water-Soluble Organic biogenic secondary organic aerosol (SOA) tracers via gas chromatography-mass spectrometry (GC natural and anthropogenic sources and is dominated by terrestrial plant foliage (7). The global

Zheng, Mei

354

CLOUD PHYSICS From aerosol-limited to invigoration  

E-Print Network [OSTI]

CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

Napp, Nils

355

Deposition of Biological Aerosols on HVAC Heat Exchangers  

E-Print Network [OSTI]

LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

356

Climatology of aerosol optical depth in northcentral Oklahoma: 19922008  

E-Print Network [OSTI]

of aerosol models; for identification of aerosols from spe- cific events (e.g., the Central American fires Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most dimming; that is, the decrease in solar radiation reaching Earth's surface. Additionally, the wavelength

357

Absorption cross-section 139 Accumulation mode, of aerosol 146  

E-Print Network [OSTI]

133, 151 residence times 153 size distributions 144 Air composition 2 molecular weight 4, 6 Albedo 122 dioxide Coagulation (aerosol) 146 Column model 32 Conditional unstability 56 Continuity equation 75261 INDEX A Absorption cross-section 139 Accumulation mode, of aerosol 146 Acetaldehyde (CH3CHO

Jacob, Daniel J.

358

Laboratory Measurements of Sea Salt Aerosol Refractive Index  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Complex Refractive Index . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.5 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Sea Salt AerosolsLaboratory Measurements of Sea Salt Aerosol Refractive Index Thesis submitted for the degree

Oxford, University of

359

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol  

E-Print Network [OSTI]

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

Collins, Gary S.

360

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

efficiency in dye-sensitized solar cells based on Tio2Conversion by Dye-Sensitized Photovoltaic cells. InorganicConversion by Dye-Sensitized Photovoltaic Cells. Inorganic

Phuyal, Dibya

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method of dispersing particulate aerosol tracer  

DOE Patents [OSTI]

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

362

Study of Aerosol Indirect Effects in China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide Thin Films.AdministrationAerosol Indirect

363

Aerosol Remote Sealing System - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 Simulation StudiesAerosol Remote Sealing

364

Light Absorption by Secondary Organic Aerosol from ?-Pinene: Effects of Oxidants, Seed Aerosol Acidity, and Relative Humidity  

SciTech Connect (OSTI)

It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOA) generated from ozonolysis or NO3 oxidation of ?-pinene in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532 and 870 nm. Light absorption at 355 and 405 nm was observed by SOA generated from oxidation of ?-pinene in the presence of acidic sulfate seed aerosols, under dry conditions. No absorption was observed when the relative humidity was elevated to greater than 27%, or in the presence of neutral sulfate seed aerosols. The light-absorbing compounds are speculated to be aldol condensation oligomers with organosulfate and organic nitrate groups. The results of this study also indicate that organic nitrates from ?-pinene SOA formed in the presence of neutral sulfate seed aerosols do not appear to absorb near-UV and UV radiation.

Song, Chen; Gyawali, Madhu S.; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

2013-10-25T23:59:59.000Z

365

ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Newsom, Rob; Goldsmith, John

366

ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

367

ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

368

ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

369

spectra from size-resolved particle samples col-lected from the Southeastern Aerosol Visibility  

E-Print Network [OSTI]

and acrolein aerosols. We believe that these transformations are due to acid-catalyzed heterogeneous reac

Bishop, James K.B.

370

Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using  

E-Print Network [OSTI]

the vaporization dynamics of individual aerosol particles, such as thermophoretic forces and vapor expulsion. Since

Hahn, David W.

371

Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones  

E-Print Network [OSTI]

í are conducted under the three aerosol scenarios: 1) the clean case with an aerosol number concentration of 200 cm-1, 2) the polluted case with a number concentration of 1000 cm-1, and 3) the aerosol radiative effects (AR) case with same aerosol concentration...

Lee, Keun-Hee

2012-02-14T23:59:59.000Z

372

Tuned cavity magnetometer sensitivity.  

SciTech Connect (OSTI)

We have developed a high sensitivity (sensitivity levels.

Okandan, Murat; Schwindt, Peter

2009-09-01T23:59:59.000Z

373

CARES Helps Explain Secondary Organic Aerosols  

SciTech Connect (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-03-28T23:59:59.000Z

374

CARES Helps Explain Secondary Organic Aerosols  

ScienceCinema (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-06-02T23:59:59.000Z

375

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect (OSTI)

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the worldís first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STARís spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

376

Particle size distribution of indoor aerosol sources  

SciTech Connect (OSTI)

As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

Shah, K.B.

1990-10-24T23:59:59.000Z

377

Vapor scavenging by atmospheric aerosol particles  

SciTech Connect (OSTI)

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01T23:59:59.000Z

378

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect (OSTI)

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

379

Aerodynamic size associations of natural radioactivity with ambient aerosols  

SciTech Connect (OSTI)

The aerodynamic size of /sup 214/Pb, /sup 212/Pb, /sup 210/Pb, /sup 7/Be, /sup 32/P, /sup 35/S (as SO/sub 4//sup 2 -/), and stable SO/sub 4//sup 2 -/ was measured using cascade impactors. The activity distribution of /sup 212/Pb and /sup 214/Pb, measured by alpha spectroscopy, was largely associated with aerosols smaller than 0.52 ..mu..m. Based on 46 measurements, the activity median aerodynamic diameter of /sup 212/Pb averaged 0.13 ..mu..m (sigma/sub g/ = 2.97), while /sup 214/Pb averaged 0.16 ..mu..m (sigma/sub g/ = 2.86). The larger median size of /sup 214/Pb was attributed to ..cap alpha..-recoil depletion of smaller aerosols following decay of aerosol-associated /sup 218/Po. Subsequent /sup 214/Pb condensation on all aerosols effectively enriches larger aerosols. /sup 212/Pb does not undergo this recoil-driven redistribution. Low-pressure impactor measurements indicated that the mass median aerodynamic diameter of SO/sub 4//sup 2 -/ was about three times larger than the activity median diameter /sup 212/Pb, reflecting differences in atmospheric residence times as well as the differences in surface area and volume distributions of the atmospheric aerosol. Cosmogenic radionuclides, especially /sup 7/Be, were associated with smaller aerosols than SO/sub 4//sup 2 -/ regardless of season, while /sup 210/Pb distributions in summer measurements were similar to sulfate but smaller in winter measurements. Even considering recoil following /sup 214/Po ..cap alpha..-decay, the avervage /sup 210/Pb labeled aerosol grows by about a factor of two during its atmospheric lifetime. The presence of 5 to 10% of the /sup 7/Be on aerosols greater than 1 ..mu..m was indicative of post-condensation growth, probably either in the upper atmosphere or after mixing into the boundary layer.

Bondietti, E.A.; Papastefanou, C.; Rangarajan, C.

1986-04-01T23:59:59.000Z

380

On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location  

E-Print Network [OSTI]

to mitigate global climate change. Citation: Naik, V., D. L. Mauzerall, L. W. Horowitz, M. D. Schwarzkopf, V proposed as a control strategy for mitigating climate change [Jacobson, 2004]. Thorough investigation of the climate forcing response to changes in BB emissions is therefore needed to inform climate change policy

Mauzerall, Denise

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

On Board, In-use Sensitivity Study of an Electrical Aerosol Detector (EAD)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0Highand Condensation

382

Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating theDepartment

383

Criteria pollutant and acid aerosol characterization study, Catano, Puerto Rico  

SciTech Connect (OSTI)

The primary objective of the Catano Criteria Pollutant and Acid Aerosol Characterization Study (CPAACS) was to measure criteria pollutant concentrations and acid aerosol concentrations in and around the Ward of Catano, Puerto Rico, during the summer of 1994. Continuous air sampling for criteria pollutants was performed at three fixed stations and one moobile station that was deployed to four locations. Air samples for acid aerosol analyses and particulate matter measurements were collected at three sites. Semicontinuous sulfate analysis was performed at the primary site. Continuous measurements of wind speed, wind direction, temperature, and relative humidity were also made at each site. The study was conducted from June 1 through September 30, 1994.

Edgerton, E.S.; Harlos, D.P.; Sune, J.M.; Akland, G.G.; Vallero, D.A.

1995-07-01T23:59:59.000Z

384

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols  

SciTech Connect (OSTI)

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from ?-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

2010-05-01T23:59:59.000Z

385

Mexico City Aerosol Analysis During Milagro Using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0) - Part 1: Fine Particle Composition and Organic Source Apportionment.  

E-Print Network [OSTI]

Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive ...

Aiken, A. C.

386

Constrained sensitivity theory  

SciTech Connect (OSTI)

In sensitivity and uncertainty analysis of to-be-built reactors it is customary to use k-reset sensitivity functions - accounting for the combined effects of the change (or uncertainty) in the input data and of the alteration in some design variable applied to maintain criticality. Critical reactors are usually subjected to several constraints, such as power peaking factor and breeding ratio constraints, in addition to the criticality constraint. Perturbation theory formulations which can account, simultaneously, for several constraints both in critical reactors and in source driven systems (such as radiation shields and blankets of fusion devices) are presented. All the sensitivity and uncertainty analyses of source driven systems carried out so far used unconstrained sensitivity functions despite the fact that such systems can be also subjected to a variety of constraints.

Greenspan, E.; Williams, M.L.

1980-01-01T23:59:59.000Z

387

Aerosol mass spectrometry systems and methods  

DOE Patents [OSTI]

A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

Fergenson, David P.; Gard, Eric E.

2013-08-20T23:59:59.000Z

388

Soot particle aerosol dynamics at high pressure  

SciTech Connect (OSTI)

The authors have used detailed calculations to analyze the coagulation dynamics of a soot aerosol at high pressures (20 and 50 atm). They find that the soot size distribution is altered compared to lower-pressure conditions because the mean free path at high pressures is reduced to the point that the particles are similar in size to the mean free path. At lower pressures the form of the size distribution becomes constant (self-preserving) in time, allowing optical measurements to be easily interpreted. However, the authors find that at pressures above about 5 atm the shape of the size distribution continually changes. As a result, proper and accurate interpretation of optical data at high pressures is more difficult than at lower pressures.

Harris, S.J. (General Motors Research Labs., Warren, MI (USA). Physics Dept.); Kennedy, I.M. (California Univ., Davis, CA (USA). Dept. of Mechanical Engineering)

1989-12-01T23:59:59.000Z

389

Diesel Aerosol Sampling in the Atmosphere  

SciTech Connect (OSTI)

The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

2000-06-19T23:59:59.000Z

390

aerosol content monitoring: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rings, Jrg 2008-01-01 6 The impact of aerosols on simulated ocean temperature and heat content in the 20th century Environmental Sciences and Ecology Websites Summary: The...

391

Effects of aerosols on deep convective cumulus clouds  

E-Print Network [OSTI]

This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed...

Fan, Jiwen

2009-05-15T23:59:59.000Z

392

Continuous air monitor for alpha-emitting aerosol particles  

SciTech Connect (OSTI)

A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

McFarland, A.R.; Ortiz, C.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

393

Pressure-flow reducer for aerosol focusing devices  

DOE Patents [OSTI]

A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

Gard, Eric (San Francisco, CA); Riot, Vincent (Oakland, CA); Coffee, Keith (Diablo Grande, CA); Woods, Bruce (Livermore, CA); Tobias, Herbert (Kensington, CA); Birch, Jim (Albany, CA); Weisgraber, Todd (Brentwood, CA)

2008-04-22T23:59:59.000Z

394

Distinguishing Aerosol Impacts on Climate Over the Past Century  

E-Print Network [OSTI]

Figure 8a). The IE cooling increases snow/ice by about 10% (Their cooling e?ect on surface temperatures promotes ice androw), cooling from the aerosol DE increases snow/ice cover

Koch, Dorothy

2009-01-01T23:59:59.000Z

395

A review of Secondary Organic Aerosol (SOA) formation from isoprene  

E-Print Network [OSTI]

Recent field and laboratory evidence indicates that the oxidation of isoprene, (2-methyl-1,3-butadiene, C[subscript 5]H[subscript 8]) forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg ...

Kroll, Jesse

396

atmospheric aerosol limb: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coefficient is 0.5 and then 1.0 2. For the same conditions calculate the H Weber, Rodney 5 Secondary organic aerosol 1. Atmospheric chemical mechanism for production...

397

atmospheric aerosols recorded: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coefficient is 0.5 and then 1.0 2. For the same conditions calculate the H Weber, Rodney 4 Secondary organic aerosol 1. Atmospheric chemical mechanism for production...

398

atmospheric aerosols relation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coefficient is 0.5 and then 1.0 2. For the same conditions calculate the H Weber, Rodney 4 Secondary organic aerosol 1. Atmospheric chemical mechanism for production...

399

aerosol source apportionment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary...

400

aerosolized bacillus anthracis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and remotely sensed aerosol observations. William D. Collins; Phillip J. Rasch; Brian E. Eaton; Boris V. Khattatov; Jean-francois Lamarque; C. Zender 2001-01-01 118 THESE DE...

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Aerosol Optical Depth Value-Added Product Report  

SciTech Connect (OSTI)

This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facilityís ground-based facilities.

Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

2013-03-17T23:59:59.000Z

402

Aerosol-Cloud interactions : a new perspective in precipitation enhancement  

E-Print Network [OSTI]

Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

Gunturu, Udaya Bhaskar

2010-01-01T23:59:59.000Z

403

aerosol optical depths: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AERONET, AVHRR and 3 MODIS 4 A. Hauser, D. Oesch have been used to 9 retrieve the spatial distribution of aerosol optical depth for 10 central Europe. At eight AERONET sites,...

404

aerosol optical depth: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AERONET, AVHRR and 3 MODIS 4 A. Hauser, D. Oesch have been used to 9 retrieve the spatial distribution of aerosol optical depth for 10 central Europe. At eight AERONET sites,...

405

aerosol strong acidity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nucleation theories. Citation: Erupe, M. E., et al Lee, Shan-Hu 12 Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia Geosciences...

406

Results from simulated upper-plenum aerosol transport tests  

SciTech Connect (OSTI)

A series of eight aerosol transport experiments, designated as Aerosol Transport Tests (ATT) A101 through A108, has recently been completed at the Oak Ridge National Laboratory (ORNL). These tests provide a data base for validation of aerosol transport modeling used in the TRAP-MELT2 computer code (Jordan and Kuhlman, 1985), which was developed at Battelle Columbus Laboratories to calculate aerosol/fission-product transport in the reactor coolant system in postulated light-water reactor (LWR) core-melt accidents. Results from tests A103 and A104 have been summarized in a previous paper (Wright and Pattison, 1985a); the present paper discusses results from tests A105 through A108.

Wright, A.L.; Pattison, W.L.

1986-01-01T23:59:59.000Z

407

Thermophoresis and Its Thermal Parameters for Aerosol Collection  

E-Print Network [OSTI]

K/cm (a) Figure 3. (a). Thermophoretic collection ratio vs.Lin, J. , et al. , Thermophoretic deposition of particles inof a plate- to-plate thermophoretic precipitator, Aerosol

Huang, Z.

2008-01-01T23:59:59.000Z

408

aerosol particle deposition: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits...

409

An investigation of aerosol physical properties in Houston, Texas  

E-Print Network [OSTI]

From June through October 2001, three Tandem Differential Mobility Analyzer (TDMA) systems were operated around Houston, Texas, to obtain a large, high-quality dataset in order to explore characteristics of aerosol size distributions...

Gasparini, Roberto

2002-01-01T23:59:59.000Z

410

Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms  

E-Print Network [OSTI]

In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...

Tang, Yingjie

2012-07-16T23:59:59.000Z

411

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect (OSTI)

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

412

Balloon-borne photometric studies of the stratospheric aerosol layer after Mt. Pinatubo eruption  

SciTech Connect (OSTI)

Using Sun-tracking photometers on board balloons, the Pinatubo volcanic aerosol layer has been studied over Hyderabad (17.5 deg N) during October 1991 and April 1992. From the angular distribution of the scattered radiation intensity measurements the aerosol size parameters is derived. Over a decade of aerosol measurements at Hyderabad, aerosol extinction and number density obtained during October 1991 in the stratosphere are found to be the highest ever obtained with a distinct aerosol layer between 16 and 30 km. The derived aerosol size parameter shows layered structures. Analysis of the size parameter obtained during April 1992 indicates formation of aerosols at higher altitudes by coagulation with a subsequent reduction in the aerosol number density. The obtained results are found to agree well with that of an independent lidar measurement made over Ahmedabad (23 deg N) and with the stratospheric aerosol and gas experiment II (SAGE II) results.

Ramachandran, S.; Jayaraman, A.; Acharya, Y.B.; Subbaraya, B.H. [Physical Research Laboratory, Ahmedabad (India)

1994-08-01T23:59:59.000Z

413

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect (OSTI)

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

414

Simulation of aerosol dynamics: a comparative review of mathematical models  

SciTech Connect (OSTI)

Three modeling approaches used are based-continuous, discrete (sectional), and parameterized representations of the aerosol size distribution. Simulations of coagulation and condensation are performed with the three models for clear, hazy, and urban atmospheric conditions. Relative accuracies and computational costs are compared. Reference for the comparison is the continuous approach. The results of the study provide useful information for the selection of an aerosol model, depending on the accuracy requirements and computational constraints associated with a specific application.

Seigneur, C.; Hudischewskyj, A.B.; Seinfeld, J.H.; Whitby, K.T.; Whitby, E.R.

1986-01-01T23:59:59.000Z

415

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particlesí lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

416

Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particlesí lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2007-09-30T23:59:59.000Z

417

The modeling of aerosol dynamics during degraded core events  

SciTech Connect (OSTI)

There is substantial interest in developing simple, yet accurate, models for the prediction of aerosol dynamics during degraded core events. The exact aerosol transport equation is given by {partial derivative}n(v,t)/{partial derivative}t = 1/2 {integral}{sub 0}{sup {infinity}} K(u,v {minus} u)n(u,t)n(v {minus} u,t)du {minus} {integral}{sub 0}{sup {infinity}} K(u,v)n(v,t)n(u,t)du {minus} n(v,t)c(v)/h + n{sub p}(v), where n(v,t) is the particle size density distribution function. The kernel, K(v,u), is related to the frequency of coagulation between aerosol particles of volume u and v, and the quantity c(v) is the deposition velocity. The quantity h is the effective height for deposition of aerosol; it is the volume of the aerosol cloud divided by the projected horizontal area A. Finally, the term n{sub p} (v) is the source rate of aerosol. Evaluation of the above equation is discussed.

Clausse, A.; Lahey, R.T. Jr.

1989-01-01T23:59:59.000Z

418

Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model  

E-Print Network [OSTI]

Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

Steele, Henry Donnan, 1974-

2004-01-01T23:59:59.000Z

419

Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust  

E-Print Network [OSTI]

Response of the Photo-Electric Aerosol Sensor (PAS) to2008 Abstract. A photo-electric aerosol sensor, a diffusionthe measured photo-electric aerosol sensor signal (fA) was

Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J; Sioutas, C.

2008-01-01T23:59:59.000Z

420

Ultra High Energy Cosmic Rays: origin and propagation  

E-Print Network [OSTI]

We discuss the basic difficulties in understanding the origin of the highest energy particles in the Universe - the ultrahigh energy cosmic rays (UHECR). It is difficult to imagine the sources they are accelerated in. Because of the strong attenuation of UHECR on their propagation from the sources to us these sources should be at cosmologically short distance from us but are currently not identified. We also give information of the most recent experimental results including the ones reported at this conference and compare them to models of the UHECR origin.

Todor Stanev

2007-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CLINICAL SCIENCES High-Speed UltraHigh-Resolution Optical  

E-Print Network [OSTI]

in Hydroxychloroquine Retinopathy Julio A. Rodriguez-Padilla, MD; Thomas R. Hedges III, MD; Bryan Monson, BS; Vivek Srinivasan, MS; Maciej Wojtkowski, PhD; Elias Reichel, MD; Jay S. Duker, MD; Joel S. Schuman, MD; James G, Boston, Mass (Drs Rodriguez-Padilla, Hedges, Reichel, and Duker and Mr Monson); Department of Electrical

Srinivasan, Vivek J.

422

Ultra high temperature ceramics for hypersonic vehicle applications.  

SciTech Connect (OSTI)

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

2006-01-01T23:59:59.000Z

423

Raw material preparation for ultra high production rate sintering  

SciTech Connect (OSTI)

An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

Kortmann, H.A.; Ritz, V.J. [Studiengesellschaft fuer Eisenerzaufbereitung, Liebenburg-Othfresen (Germany); Cappel, F.; Weisel, H.; Richter, G. [LURGI AG, Frankfurt (Germany)

1995-12-01T23:59:59.000Z

424

Ultra high vacuum heating and rotating specimen stage  

DOE Patents [OSTI]

A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1{times}10{sup {minus}9} torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating. 5 figs.

Coombs, A.W. III

1995-05-02T23:59:59.000Z

425

Ultra-High Temperature Sensors Based on Optical Property  

SciTech Connect (OSTI)

In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

Nabeel Riza

2008-09-30T23:59:59.000Z

426

New US Ultra High Efficiency R&D Programme  

E-Print Network [OSTI]

Very high efficiency is an important characteristic of the value proposition for solar to electric conversion. High efficiency is the shortest path to cost-effective commercial applications and leads to new high value applications such as portable battery charging. The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications1,2 that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

Allen Barnett Douglas Kirkpatrick

427

Energy spectrum of ultra high energy cosmic rays  

E-Print Network [OSTI]

The construction of the southern site of the Pierre Auger Observatory is almost completed. Three independent measurements of the flux of the cosmic rays with energies larger than 1 EeV have been performed during the construction phase. The surface detector data collected until August 2007 have been used to establish a flux suppression at the highest energies with a 6 sigma significance. The observations of cosmic rays by the fluorescence detector allowed the extension of the energy spectrum to lower energies, where the efficiency of the surface detector is less than 100% and a change in the spectral index is expected.

Ioana C. Maris; for the Pierre Auger Collaboration

2008-08-12T23:59:59.000Z

428

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

10012007 * Project end date: 09302012 * Percent complete: 80% * Development and optimization of catalyst- based aftertreatment systems are inhibited by the lack of...

429

Observations of Ultra-High Energy Cosmic Rays  

E-Print Network [OSTI]

The status of measurements of the arrival directions, mass composition and energy spectrum of cosmic rays above 3 x 10^18 eV (3 EeV) is reviewed using reports presented at the 29th International Cosmic Ray Conference held in Pune, India, in August 2005. The paper is based on a plenary talk given at the TAUP2005 meeting in Zaragoza, 10 - 14 September 2005.

A A Watson

2005-11-29T23:59:59.000Z

430

Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

L. F. Allard Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge, TN 2009 DOE Merit Review Crystal City, MD May 22, 2009 Agreement PM-9105 Project ID:...

431

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

Characterization Dr. Lawrence F. Allard Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge, TN DOE 2010 Vehicle Technologies Annual Merit Review...

432

Precipitation kinetics in ultra-high lime softening  

E-Print Network [OSTI]

. The second model used the crystal growth rate as an alternate measure of supersaturation. The growth rate obtained from a settling procedure correlated well with values for silica removal rates for experiments grouped by pH and recycie conditions... of precipitation processes specific applications to lime soFtening and silica removal can be addressed. Mechanisms oF silica raawal. Many of the processes studied for specific removal of silica From industrial water have relied on adsorption...

Peacock, Edward Dale

1986-01-01T23:59:59.000Z

433

Ultra-high angular resolution by gravitational microlensing  

E-Print Network [OSTI]

The problem of restoration of the source brightness distribution from an analysis of the stellar and AGNs microlensing light curves is investigated. In case of microlensing of stars by a point-mass lens as well as for caustic crossing events for binary lens the problem can be reduced to solution of the Fredholm integral equation of the 1st kind. Concrete form of the kernel of this equation depends on a type of the microlensing event. Assuming the circular symmetry of the stellar disk the search for radial brightness distribution can be carried out in the special compact sets of functions which correspond to the physics of the problem. These sets include the non-negative functions that are not increasing with increasing distance from the center of stellar disk and the upwards convex non-negative functions. The brightness distribution for the AGNs accretion disks is also circularly symmetric, but only in the locally co-moving frame. Therefore, the kernel of integral equation that determined the AGN microlensing light curve must take into account equally with the projection effect on picture plane the influence of relativistic effects. The search for solution of this equation can be carried out in the set of non-negative down convex functions. The results of analysis of microlensing light curves for the red giant MACHO Alert 95-30 and the A6 star MACHO 98-SMC-1 as well as the results of numerical simulations for the AGN microlensing observations are given.

M. B. Bogdanov

2000-09-14T23:59:59.000Z

434

Ultra high performance connectors for power transmission applications  

DOE Patents [OSTI]

Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.

Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao

2014-03-04T23:59:59.000Z

435

Acceleration of ULtra High Energy Cosmic Rays: Cosmic Zevatrons?  

E-Print Network [OSTI]

In this lecture I outline some of the underlying physics issues associated with accelerators plausibly capable of explaining the UHECRs up to ZeV energies. I concentrate on the concentrate on mechanisms and their constraints, but provide a brief background on on observations and the constraints they supply, as well.

T. W. Jones

2002-10-21T23:59:59.000Z

436

Detecting and Blocking Network Attacks at Ultra High Speeds  

SciTech Connect (OSTI)

Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a monitor in front of one of the bank's server farms cannot safely omit a subset of the traffic from analysis. In this environment, Shunting cannot realize its main performance benefits, and the monitoring task likely calls for using custom hardware instead. However, in many other environments we find Shunting holds promise for delivering major performance gains. This arises due to the the widely documented 'heavy tail' nature of most forms of network traffic, which we might express as 'a few of the connections carry just about all the bytes.' The key additional insight is '... and very often for these few large connections, the very beginning of the connection contains nearly all the information of interest from a security analysis perspective.' We argue that this second claim holds because it is at the beginning of connections that authentication exchanges occur, data or file names and types are specified, request and reply status codes conveyed, and encryption is negotiated. Once these occur, we have seen most of the interesting facets of the dialog. Certainly the remainder of the connection might also yield some grist for analysis, but this is generally less likely, and thus if we want to lower analysis load at as small a loss as possible of information relevant to security analysis, we might best do so by skipping the bulk of large connections. In a different context, the 'Time Machine' work by Kornexl and colleagues likewise shows that in some environments we can realize major reductions in the volume of network traffic processed, by limiting the processing to the first 10-20 KB of each connection. As a concrete example, consider an IPS that monitors SSH traffic. When a new SSH connection arrives and the Shunt fails to find an entry for it in any of its tables (per-address, per-port, per-connection), it executes the default action of diverting the connection through the IPS. The IPS analyzes the beginning of the connection in this fashion. As long as it is satisified with the dialog, it reinjects the packets forwarded to it so that the connection can continue. If the connection successfully

Paxson, Vern

2010-11-29T23:59:59.000Z

437

ULTRA HIGH EFFICIENCY ESP DEVELOPMENT FOR AIR TOXICS CONTROL  

SciTech Connect (OSTI)

Because more than 90 percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESPs), retrofitable ESP technologies represent a logical approach towards achieving the Department of Energy's (DOE) goal of a major reduction in fine particulate and mercury emissions (air toxics) from coal based power systems. EPA's recent issuance of significantly tightened ambient air standards for particles smaller than 2.5 {micro}m (PM{sub 2.5}) creates a new urgency for developing cost-effective means to control fine particulate emissions. This challenge is compounded by the on-going switch in the utility industry to low-sulfur Powder River Basin (PRB) coals, that generate higher resistivity and difficult-to-collect fly ash. Particulate emissions can increase by a factor of ten when a utility switches to a low-sulfur coal. Numerous power plants are presently limited in operation by the inability of their ESPs to control opacity at high loads. In Phase I of this program, ABB investigated five technologies to improve the collection of fine particulate and trace metals in ESPs. These included: (1) flue-gas cooling, (2) flue-gas humidification, (3) pulsed energization, (4) wet ESP and precharger modules, and (5) sorbent injection for mercury control. Tests were conducted with an Eastern bituminous coal and a Powder River Basin sub-bituminous low-sulfur coal in an integrated pilot-scale combustor and ESP test facility. The impacts of the different retrofit technologies on ESP performance, individually and in combination, were evaluated indepth through advanced sampling and measurement techniques. In Phase II, the most promising concepts identified from Phase I testing, flue-gas cooling and humidification, pulsed energization, and sorbent injection at low flue-gas temperatures for mercury control, were integrated into a commercially oriented sub-scale system for field testing at Commonwealth Edison's Waukegan Unit No. 8. The main objective of the proposed Phase II testing was to determine longer term ESP performance and mercury capture improvements with the above enhancements for a range of low-sulfur coals currently fired by utilities. Unanticipated cost growth in readying the Pilot Plant for shipment and during slipstream construction at the utility host site resulted in the issuance of a preemptive stop work order from ABB until a detailed technical and budgetary review of the project could be completed. Four program recovery scenarios were developed and presented to the DOE. After careful review of these options, it was decided to terminate the program and although the Pilot Plant installation was essentially completed, no testing was performed. The Pilot Plant was subsequently decommissioned and the host site returned to its preprogram condition.

David K. Anderson

1999-11-01T23:59:59.000Z

438

Ultra-High Intensity Magnetic Field Generation in Dense Plasma  

SciTech Connect (OSTI)

I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-≠?energy-≠? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-≠?energy-≠? density plasma the ideas for steady-≠?state current drive developed for low-≠?energy-≠? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-≠?energy-≠?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

Fisch, Nathaniel J

2014-01-08T23:59:59.000Z

439

Instrument Series: Microscopy Ultra-High Vacuum, Low-  

E-Print Network [OSTI]

techniques) to examine the molecular-level details of heterogeneous catalysis and photocatalysis. Among them range of surface analytical techniques at low temperature ≠ enables ultra-violet/X-ray photoelectron electron diffraction (LEED). In situ sample preparation ≠ offers heating up to 1500 K, cooling down to 50 K

440

Structural Engineering Seminar Series Ultra-High Performance Concrete Construction  

E-Print Network [OSTI]

performance and resistance against environmental degradation. UHPC is defined as a concrete fiber composite for Our Future Infrastructure? by Kay Wille, PhD Assistant Professor, Civil and Environmental Engineering and conference proceedings. It has been used in various forms in structural and architectural elements, as a bond

Kamat, Vineet R.

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Ultra-High Resolution Electron Microscopy for Catalyst Characterization |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONSDepartment

442

Ultra-High Resolution Electron Microscopy for Catalyst Characterization |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONSDepartmentDepartment

443

Ultra-high Resolution Electron Microscopy for Catalyst Characterization |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof EnergyTheTwo New EnergyofDEVELOPMENTEnergy Low Sulfur

444

Ionization monitor with improved ultra-high megohm resistor  

DOE Patents [OSTI]

An ionization monitor measures extremely small currents using a resistor containing a beta emitter to generate ion-pairs which are collected as current when the device is used as a feedback resistor in an electrometer circuit. By varying the amount of beta emitter, the resistance of the resistor may be varied.

Burgess, Edward T. (Carlisle, OH)

1988-11-05T23:59:59.000Z

445

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9Ė12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6Ė12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundanceóin the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

446

Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data  

SciTech Connect (OSTI)

In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9√?¬?√?¬?√?¬?√?¬į√?¬?√?¬?√?¬?√?¬?2.5√?¬?√?¬?√?¬?√?¬į with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1√?¬?√?¬?√?¬?√?¬į x 1√?¬?√?¬?√?¬?√?¬į. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 √?¬?√?¬?√?¬?√?¬Ķm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4√?¬?√?¬?√?¬?√?¬ļ by 5√?¬?√?¬?√?¬?√?¬ļ horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?clean marine√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ě aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses

Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

2012-03-28T23:59:59.000Z

447

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect (OSTI)

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

448

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

by Dye-Sensitized Photovoltaic cells. Inorganic Chemistry,by Dye-Sensitized Photovoltaic Cells. Inorganic ChemistryThe characteristics of a photovoltaic cell. Generally,

Phuyal, Dibya

2012-01-01T23:59:59.000Z

449

Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.  

SciTech Connect (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

2006-10-01T23:59:59.000Z

450

Sensitive hydrogen leak detector  

DOE Patents [OSTI]

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

451

E-Print Network 3.0 - assessing aerosol retention Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sources of aerosol OC and assessing its transformations before... ACPD 8, 6539-6569, 2008 ESI FT-ICR MS characterization of aerosol WSOC A. S. Wozniak et al. Title... .0 License....

452

Investigation of the aerosol-cloud interaction using the WRF framework  

E-Print Network [OSTI]

. Simulations with various aerosol profiles demonstrate that the response of precipitation to the increase of aerosol concentrations is non-monotonic. The maximal cloud cover, core updraft, and maximal vertical velocity exhibit similar responses as precipitation...

Li, Guohui

2009-05-15T23:59:59.000Z

453

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza,  

E-Print Network [OSTI]

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza, , L. Gundersona , M.J. Haya , E. Merinob-density aerosol focusing for 1¬Ķm silica spheres. Preliminary results recover previous findings on aerodynamic

454

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols  

E-Print Network [OSTI]

properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types...

Lee, Yong Seob

2006-08-16T23:59:59.000Z

455

Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA)  

E-Print Network [OSTI]

The climate impact of the seasonality of Biomass Burning emitted Carbonaceous Aerosols (BBCA) is studied using an aerosol-climate model coupled with a slab ocean model in a set of 60-year long simulations, driven by BBCA ...

Jeong, Gill-Ran

456

E-Print Network 3.0 - aerosolized red tide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

characteristics of desert dust and biomass burning aerosols Summary: in the right panel of Fig. 6. The aerosol scenes spectra are drawn in green, the clear sky scenes in...

457

High Flash-point Fluid Flow System Aerosol Flammability Study and Combustion Mechanism Analysis  

E-Print Network [OSTI]

understanding of this combustion process. The potential application of the ignition delay will be beneficial to the mitigation timing and detector sensor setting of facilities to prevent aerosol cloud fires. Finally, the scientific method of aerosol...

Huang, Szu-Ying

2013-12-02T23:59:59.000Z

458

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate  

E-Print Network [OSTI]

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. ...

Rosenfeld, Daniel

459

Mechanisms of aerosol-forced AMOC variability in a state of the art climate model  

E-Print Network [OSTI]

with a new state-of-the-art Earth system model. Anthropogenic aerosols have previously been highlighted anthropogenic aerosols force a strengthening of the AMOC by up to 20% in our state-of-the-art Earth system model

460

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The effects of volcanic aerosols on mid-latitude ozone recovery  

E-Print Network [OSTI]

In this paper, comparisons between the derived Chemistry Climate Model Initiative aerosol data set to balloon sonde measurements of aerosols made in Laramie, Wyoming are made between 1979- 2012. Using the derived CCMI ...

Haskins, Jessica D

2014-01-01T23:59:59.000Z

462

E-Print Network 3.0 - aerosol pool scrubbing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sensing of non-aerosol absorption in cloud free atmosphere Yoram J. Kaufman,1 Summary: Remote sensing of non-aerosol absorption in cloud free atmosphere Yoram J. Kaufman,1 Oleg...

463

Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign  

E-Print Network [OSTI]

In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module ...

Li, Guohui

464

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect (OSTI)

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

465

CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan  

SciTech Connect (OSTI)

The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-07-12T23:59:59.000Z

466

Aerosol Data Sources and Their Roles within PARAGON  

SciTech Connect (OSTI)

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote-sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected in the near future. Emphasis must be given to combining remote sensing, in situ, active and passive observations, and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture having sufficient detail to address current climate-forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal.

Kahn, Ralph A.; Ogren, J. A.; Ackerman, Thomas P.; Bosenberg, Jens; Charlson, Robert J.; Diner, David J.; Holben, B. N.; Menzies, Robert T.; Miller, Mark A.; Seinfeld, John H.

2004-10-01T23:59:59.000Z

467

Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant  

SciTech Connect (OSTI)

This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment ‚?? Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

Weinstein-Lloyd, Judith B

2009-05-04T23:59:59.000Z

468

E-Print Network 3.0 - arctic aerosol burden Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and surface... generally exhibits low aerosol ... Source: National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Atmopsheric Chemistry and...

469

E-Print Network 3.0 - aerosol sellest rgivad Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

470

E-Print Network 3.0 - aerosol biokinetics concentrations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

471

E-Print Network 3.0 - aerosols Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

472

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES  

E-Print Network [OSTI]

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES: WHY ARE THE MODELS SO of Energy under Contract No. DE-AC02-98CH10886. #12;PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW will present a study of the properties of ammoniated sulfate aerosols ((NH4)2SO4, NH4HSO4, and in- between

473

REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS  

E-Print Network [OSTI]

understanding of the key processes that govern the aerosol size distribution: · Gas-to-particle conversion--conversion, suspensions of solid or liquid particles, are an important multi- phase system. Aerosols scatter and absorb retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes

474

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network [OSTI]

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

475

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China  

E-Print Network [OSTI]

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China Xiangao Xia,1 Hongbin Chen,1 Zhanqing Li,1,2 Pucai Wang,1 and Jiankai Wang1 Received 25 May region in northeastern China. Aerosol properties derived from Sun photometer measurements and aerosol

Li, Zhanqing

476

Speciation of Fe in ambient aerosol and cloudwater  

SciTech Connect (OSTI)

Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

Siefert, L. [California Institute of Technology, Pasadena, CA (United States)

1996-08-15T23:59:59.000Z

477

Aerosols and Clouds: In Cahoots to Change Climate  

SciTech Connect (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-03-29T23:59:59.000Z

478

Aerosols and Clouds: In Cahoots to Change Climate  

ScienceCinema (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-06-02T23:59:59.000Z

479

Lognormal Size Distribution Theory for Deposition of Polydisperse Aerosol Particles  

SciTech Connect (OSTI)

The moments method of the lognormal size distribution theory was applied to the deposition equation of a radioactive aerosol within a liquid-metal fast breeder reactor for analysis of postulated accidents. The deposition coefficient of Crump and Seinfeld was utilized to represent the Brownian and turbulent diffusions and the gravitational sedimentation. The deposition equation was converted into a set of three ordinary differential equations. This approach takes the view point that the size distribution of an aerosol is represented by a time-dependent lognormal size distribution function during the deposition process. Numerical calculations have been performed, and the results were found to be in good agreement with the exact solution. The derived model for aerosol deposition is convenient to use in a numerical general dynamic equation solution routine based on the moments method, where nucleation, condensation, coagulation, and deposition need to be solved simultaneously.

Park, S.H.; Lee, K.W. [Kwangju Institute of Science and Technology (Korea, Republic of)

2000-07-15T23:59:59.000Z

480

Distinguishing Aerosol Impacts on Climate Over the Past Century  

SciTech Connect (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

2008-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "ultra-high sensitivity aerosol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol  

SciTech Connect (OSTI)

The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using KŲhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using KŲhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed.