Sample records for ultra-high conductivity umbilicals

  1. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    SciTech Connect (OSTI)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)] [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy) [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, Trieste I-34149 (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)] [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)

    2013-08-12T23:59:59.000Z

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 ?m and a mass density of 1.6 g cm{sup ?3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ?22 k?), suggesting Co-Mo is useful for applications requiring forest growth on conductors.

  2. Ultra High Energy Behaviour

    E-Print Network [OSTI]

    Burra G. Sidharth

    2011-03-18T23:59:59.000Z

    We reexamine the behaviour of particles at Ultra Highe energies in the context of the fact that the LHC has already touched an energy of $7 TeV$ and is likely to attain $14 TeV$ by 2013/2014.Consequences like a possible new shortlived interaction within the Compton scale are discussed.

  3. Ultra High Energy Neutrino Astronomy

    E-Print Network [OSTI]

    V. Berezinsky

    2005-05-11T23:59:59.000Z

    The short review of theoretical aspects of ultra high energy (UHE) neutrinos and superGZK neutrinos. The sources and diffuse fluxes of UHE neutrinos are discussed. Much attention is given to comparison of the cascade and cosmic ray upper bounds for diffuse neutrino fluxes. Cosmogenic neutrinos and neutrinos from the mirror mater are considered as superGZK neutrinos.

  4. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  5. Ultra High Energy Cosmic Rays

    E-Print Network [OSTI]

    Todor Stanev

    2004-11-04T23:59:59.000Z

    We discuss theoretical issues and experimental data that brought the ultra high energy cosmic rays in the list of Nature's greatest puzzles. After many years of research we still do not know how astrophysical acceleration processes can reach energies exceeding 10$^{11}$ GeV. The main alternative {\\em top-down} mechanism postulates the existence of super massive $X$-particles that create a particle spectrum extending down to the observed energy through their decay channels. The propagation of nuclei and photons from their sources to us adds to the puzzle as all particles of these energies interact with the ambient photons, mostly of the microwave background. We also describe briefly the main observational results and give some information on the new experiments that are being built and designed now.

  6. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  7. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07T23:59:59.000Z

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  8. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  9. Cosmic absorption of ultra high energy particles

    E-Print Network [OSTI]

    Ruffini, R; Xue, S -S

    2015-01-01T23:59:59.000Z

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  10. Ultra-high pressure water jet: Baseline report

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  11. Ultra High Energy Cosmic Ray Accelerators

    E-Print Network [OSTI]

    Angela V. Olinto

    1999-11-09T23:59:59.000Z

    The surprising lack of a high energy cutoff in the cosmic ray spectrum at the highest energies together with an apparently isotropic distribution of arrival directions have strongly challenged most models proposed for the acceleration of ultra high energy cosmic rays. Young neutron star winds may be able to explain the mystery. We discuss this recent proposal after summarizing the observational challenge and plausible acceleration sites. Young neutrons star winds differ from alternative models in the predictions for composition, spectrum, and angular distribution which will be tested in future experiments.

  12. Astronomy with ultra high-energy particles

    E-Print Network [OSTI]

    Joerg R. Hoerandel

    2008-03-20T23:59:59.000Z

    Recent measurements of the properties of cosmic rays above 10^17 eV are summarized and implications on our contemporary understanding of their origin are discussed. Cosmic rays with energies exceeding 10^20 eV have been measured, they are the highest-energy particles in the Universe. Particles at highest energies are expected to be only marginally deflected by magnetic fields and they should point towards their sources on the sky. Recent results of the Pierre Auger Observatory have opened a new window to the Universe - astronomy with ultra high-energy particles.

  13. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16T23:59:59.000Z

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  14. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  15. Ultra-high density diffraction grating

    DOE Patents [OSTI]

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11T23:59:59.000Z

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  16. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  17. Multilayer ultra-high-temperature ceramic coatings

    DOE Patents [OSTI]

    Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

    2012-03-20T23:59:59.000Z

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  18. Instrument Series: Microscopy Ultra-High Vacuum, Low-

    E-Print Network [OSTI]

    Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM range of surface analytical techniques at low temperature ­ enables ultra-violet/X-ray photoelectron

  19. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01T23:59:59.000Z

    P. Higginson, et al. , Ultra-High-Contrast Laser Rise-TimeTHE DISSERTATION Ultra-High-Contrast Laser Acceleration ofCALIFORNIA, SAN DIEGO Ultra-High-Contrast Laser Acceleration

  20. Design of wind turbines with Ultra-High Performance Concrete

    E-Print Network [OSTI]

    Jammes, François-Xavier

    2009-01-01T23:59:59.000Z

    Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

  1. A Combined Electrochemical and Ultra-High Vacuum Approach to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous Electrocatalysis Friday, February 24, 2012 - 11:00am SSRL Bldg. 137-322, 3rd floor Conference Room...

  2. Precipitation kinetics in ultra-high lime softening 

    E-Print Network [OSTI]

    Peacock, Edward Dale

    1986-01-01T23:59:59.000Z

    PRECIPITATION KINETICS IN ULTRA-HIGH LIME SOFTENING A Thesis EDWARD DALE PEACOCK Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August l986 Major... Subject: Civil Engineering PRECIPITATION KINETICS IN ULTRA-HIGH LIME SOFTENING A Thesis by EDWARD DALE PEACOCK Approved as to style and content by: Bill Batchelor (Chair of Commi e) T D. eynol s (Member) Michael T. Lo necker (Member) Donald Mc...

  3. Ultra high energy neutrinos: absorption, thermal effects and signatures

    SciTech Connect (OSTI)

    Lunardini, Cecilia; Sabancilar, Eray; Yang, Lili, E-mail: Cecilia.Lunardini@asu.edu, E-mail: Eray.Sabancilar@asu.edu, E-mail: lyang54@asu.edu [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

    2013-08-01T23:59:59.000Z

    We study absorption of ultra high energy neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel. For a hierarchical neutrino mass spectrum (with at least one neutrino with mass below ? 10{sup ?2} eV), thermal effects are important for ultra high energy neutrino sources at z?>16. The neutrino transmission probability shows no more than two separate suppression dips since the two lightest mass eigenstates contribute as a single species when thermal effects are included. Results are applied to a number of models of ultra high energy neutrino emission. Suppression effects are strong for sources that extend beyond z ? 10, which can be realized for certain top down scenarios, such as superheavy dark matter decays, cosmic strings and cosmic necklaces. For these, a broad suppression valley should affect the neutrino spectrum at least in the energy interval 10{sup 12}?10{sup 13} GeV — which therefore is disfavored for ultra high energy neutrino searches — with only a mild dependence on the neutrino mass spectrum and hierarchy. The observation of absorption effects would indicate a population of sources beyond z ? 10, and favor top-down mechanisms; it would also be an interesting probe of the physics of the relic neutrino background in the unexplored redshift interval z ? 10–100.

  4. The Composition of Ultra High Energy Cosmic Rays Through Hybrid

    E-Print Network [OSTI]

    nuclei originating outside the Solar System "Ultra High Energy" E > 1017eV First discovered by interact high in the Earth's atmosphere EASs result in billions of secondary particles Fluorescence) Image produced by 16x16 PMT "Cluster Box" 3.3 m diameter mirrors collect light and focus

  5. AMRIS Update Ultra High Sensitivity NMR: 1-mm HTS

    E-Print Network [OSTI]

    Weston, Ken

    , although they are difficult or impossible to fabricate like standard copper wire, HTS materials can provideAMRIS Update Ultra High Sensitivity NMR: 1-mm HTS Triple Resonance Probe W.W. Brey, NHMFL A and Rich Withers) and others at Conductus developed the first HTS (high temperature superconducting

  6. Design Strategies for Ultra-high Efficiency Photovoltaics

    E-Print Network [OSTI]

    Winfree, Erik

    Design Strategies for Ultra-high Efficiency Photovoltaics Thesis by Emily Cathryn Warmann, who reminds me that this is fun and interesting. iv #12;Abstract While concentrator photovoltaic cells, the over all module efficiency drops to only 34 to 36%. T

  7. Device for wavefront correction in an ultra high power laser

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Comaskey, Brian J. (Walnut Creek, CA); Kuklo, Thomas C. (Oakdale, CA)

    2002-01-01T23:59:59.000Z

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  8. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31T23:59:59.000Z

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  9. The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing This is...

  10. Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency...

    Energy Savers [EERE]

    130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint - 15.1130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint -...

  11. Ultra High Energy Cosmic Rays from Decaying Superheavy Particles

    E-Print Network [OSTI]

    V. Berezinsky

    1998-01-08T23:59:59.000Z

    Decaying superheavy particles can be produced by Topological Defects or, in case they are quasi-stable, as relics from the early Universe. The decays of these particles can be the sources of observed Ultra High Energy Cosmic Rays ($E \\sim 10^{10} - 10^{12} GeV$). The Topological Defects as the UHE CR sources are critically reviewed and cosmic necklaces and monopole-antiminopole pairs are identified as most plausible sources. The relic superheavy particles are shown to be clustering in the halo and their decays produce UHE CR without GZK cutoff. The Lightest Supersymmetric Particles with Ultra High Energies are naturally produced in the cascades accompanying the decays of superheavy particles. These particles are discussed as UHE carriers in the Universe.

  12. POWERWALL: International Workshop on Interactive, Ultra-High-Resolution Displays

    SciTech Connect (OSTI)

    Rooney, Chris; Endert, Alexander; Fekete, Jean-Daniel; Hornbaek, Kasper; North, Chris

    2013-04-27T23:59:59.000Z

    Ultra-high-resolution (Powerwall) displays are becoming increasingly popular due to the ever decreasing cost of hardware. As a result they are appearing more frequently in research institutes, and making the jump out of the lab and into industry. Due to the amount of work in this research area that has been published in CHI over the last few years, we felt that this confernece would be the ideal host for the first opportunity for both academics and practitioners in this field to get together.

  13. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, Isidoro E. (Newport News, VA)

    1992-01-01T23:59:59.000Z

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  14. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01T23:59:59.000Z

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  15. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, I.E.

    1992-05-12T23:59:59.000Z

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  16. Precipitation kinetics in ultra-high lime softening

    E-Print Network [OSTI]

    Peacock, Edward Dale

    1986-01-01T23:59:59.000Z

    was provided by two more tubing pumps. Fluid surfaces were protected from COE contamination by a constant pressure nftrogen blanket. The reactor was operated for a period of time greater than or equal to lD hydraulic retentfon times or 7 times the ratio..., the ultra-high lime process has been proposed as a method to eliminate the constituents of chemical scale which reduce the recycle capacity of water in cooling systems. Reported herein are the results of a bench scale reactor study designed to evaluate...

  17. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04T23:59:59.000Z

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  18. Ultra High Energy Neutrino Signature in Top-Down Scenario

    E-Print Network [OSTI]

    Roberto Aloisio

    2006-12-22T23:59:59.000Z

    Neutrinos are the best candidates to test the extreme Universe and ideas beyond the Standard Model of particle Physics. Once produced, neutrinos do not suffer any kind of attenuation by intervening radiation fields like the Cosmic Microwave Background and are not affected by magnetic fields. In this sense neutrinos are useful messengers from the far and young Universe. In the present paper we will discuss a particular class of sources of Ultra High Energy Cosmic Rays introduced to explain the possible excess of events with energy larger than the Graisen-Zatsepin-Kuzmin cut-off. These sources, collectively called top-down, share a common feature: UHE particles are produced in the decay or annihilation of superheavy, exotic, particles. As we will review in the present paper, the largest fraction of Ultra High Energy particles produced in the top-down scenario are neutrinos. The study of these radiation offers us a unique opportunity to test the exotic mechanisms of the top-down scenario.

  19. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect (OSTI)

    Liu Jiali [Physics department, Kunming University, Kunming, 650214 (China); Tiedt, Douglas [Physics department, South Dakota School of Mines and Technology, Rapid City, SD, 57701-3995 (United States)

    2013-05-23T23:59:59.000Z

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  20. Ultra-high pressure water jet: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The Husky{trademark} is an ultra high pressure waterjet cutting tool system. The pump is mounted on a steel tube frame which includes slots for transport by a forklift. The Husky{trademark} features an automatic shutdown for several conditions such as low oil pressure and high oil temperature. Placement of the Husky{trademark} must allow for a three foot clearance on all sides for operation and service access. At maximum continuous operation, the output volume is 7.2 gallons per minute with an output pressure of 40,000 psi. A diesel engine provides power for the system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  1. Ultra high energy cosmic rays from cosmological relics

    E-Print Network [OSTI]

    V. Berezinsky

    1998-11-17T23:59:59.000Z

    Ultra High Energy Cosmic Rays (UHECR) can be a signal from very early (post-inflationary) Universe. At this cosmological epoch Topological Defects (TD) and long-lived suprheavy (SH) particles are expected to be naturally and effectively produced. Both of these relics can produce now the particles, such as protons and photons, with energies in a great excess of what is observed in UHECR, $E \\sim 10^{10} - 10^{11} GeV$. The Topological Defects as the UHECR sources are critically reviewed and cosmic necklaces and monopolonia are identified as most plausible sources. The relic superheavy particles and monopolonia are shown to be clustering in the halo of our Galaxy and their decays produce UHECR without the GZK cutoff. The observational signature of both models are discussed.

  2. Energy Measurement and Strategy for a Trigger of Ultra High Energy Cosmic

    E-Print Network [OSTI]

    Erdmann, Martin

    Energy Measurement and Strategy for a Trigger of Ultra High Energy Cosmic Rays Measured with Radio Ray induced Air Showers 3 2.1 Physics of Ultra High Energy Cosmic Rays . . . . . . . . . . . . . . . 3 2.1.1 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Composition

  3. Ultra-high-energy debris from the collisional Penrose process

    E-Print Network [OSTI]

    Emanuele Berti; Richard Brito; Vitor Cardoso

    2014-10-30T23:59:59.000Z

    Soon after the discovery of the Kerr metric, Penrose realized that superradiance can be exploited to extract energy from black holes. The original idea (involving the breakup of a single particle) yields only modest energy gains. A variant of the Penrose process consists of particle collisions in the ergoregion. The collisional Penrose process has been explored recently in the context of dark matter searches, with the conclusion that the ratio $\\eta$ between the energy of post-collision particles detected at infinity and the energy of the colliding particles should be modest ($\\eta \\lesssim 1.5$). Schnittman has shown that these studies underestimated the maximum efficiency by about one order of magnitude (i.e., $\\eta \\lesssim 15$). In this work we reach an even more striking conclusion: particle collisions in the vicinity of rapidly rotating black holes can result in arbitrarily high efficiencies. The astrophysical likelihood of these events deserves further scrutiny, but our study hints at the tantalizing possibility that the collisional Penrose process may power gamma rays and ultra-high-energy cosmic rays.

  4. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    E-Print Network [OSTI]

    Grinner, F. J.

    2009-01-01T23:59:59.000Z

    regime of laser-plasma-accelerated ultra-compact electronin ultra-high current electron bunches generated by laser-by laser-plasma accelerators due to their ultra-high peak

  5. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect (OSTI)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31T23:59:59.000Z

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

  6. Bimodal solar system based on a ultra-high-temperature TEC

    SciTech Connect (OSTI)

    Ogloblin, B.G.; Kirillov, E.Y.; Klimov, A.V.; Shalaev, A.I.; Shumov, D.P. [Central Design Bureau of Machine Building, Krasnogvardeyskaya Square 3, St. Petersburg, (Russia) 195272; Ender, A.Y.; Kuznetsov, V.I.; Sitnov, V.I. [Ioffe Physico-Technical Institute, Politekhnicheskaya St. 26, St. Petersburg, (Russia) 194021

    1996-03-01T23:59:59.000Z

    The paper considers an ecological, solar, bimodal system with ultra-high temperature thermionic energy converter (TEC). The solar bimodal Space Electric Propulsion System (SEPS) characteristics are presented. {copyright} {ital 1996 American Institute of Physics.}

  7. Infrastructure to support ultra high throughput biodosimetry screening after a radiological event

    E-Print Network [OSTI]

    Brenner, David Jonathan

    GUY GARTY1 , ANDREW KARAM2 , & DAVID J. BRENNER3 1 Radiological Research Accelerator Facility, Radiological Research Accelerator Facility, Nevis Laboratories, Columbia UniverInfrastructure to support ultra high throughput biodosimetry screening after a radiological event

  8. Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds

    SciTech Connect (OSTI)

    T. F. Patterson

    2004-03-15T23:59:59.000Z

    The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

  9. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    E-Print Network [OSTI]

    Voronov, Dmitry L.

    2010-01-01T23:59:59.000Z

    16. Yu. Shvyd’ko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

  10. Practical limitations of single-span ultra-high performance concrete beams

    E-Print Network [OSTI]

    Abrams, Daniel Scott

    2013-01-01T23:59:59.000Z

    Since its development in the early 1970's, researchers have continued to push the limits of concrete mixtures through the creation of ultra-high performance concretes. The use of this class of materials has allowed designers ...

  11. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06T23:59:59.000Z

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

  12. Search for Ultra High-Energy Neutrinos with AMANDA-II

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer; Ackermann, M.

    2007-11-19T23:59:59.000Z

    A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E{sup 2} {Phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2}s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} GeV to 10{sup 9} GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

  13. HIGH-ENERGY EMISSION INDUCED BY ULTRA-HIGH-ENERGY PHOTONS AS A PROBE OF ULTRA-HIGH-ENERGY COSMIC-RAY ACCELERATORS EMBEDDED IN THE COSMIC WEB

    SciTech Connect (OSTI)

    Murase, Kohta [Department of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210 (United States)

    2012-02-15T23:59:59.000Z

    The photomeson production in ultra-high-energy cosmic-ray (UHECR) accelerators such as {gamma}-ray bursts and active galaxies may lead to ultra-high-energy (UHE) {gamma}-ray emission. We show that the generation of UHE pairs in magnetized structured regions where the sources are embedded is inevitable, and accompanying {approx}> 0.1 TeV synchrotron emission provides an important probe of UHECR acceleration. It would especially be relevant for powerful transient sources, and synchrotron pair echoes may be detected by future CTA via coordinated search for transients of duration {approx}0.1-1 yr for the structured regions of {approx}Mpc. Detections will be useful for knowing structured extragalactic magnetic fields as well as properties of the sources.

  14. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOE Patents [OSTI]

    Jostlein, Hans

    2006-04-04T23:59:59.000Z

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  15. Numerical and experimental evaluation of laser forming process for the shape correction in ultra high strength steels

    SciTech Connect (OSTI)

    Song, J. H.; Lee, J.; Lee, S.; Kim, E. Z.; Lee, N. K.; Lee, G. A. [Forming Technology R and D Group, Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840 (Korea, Republic of); Park, S. J. [Dept. of Mechanical Engineering, Korea National University of Transportation, 50, DaeHak-ro, Chungju-si, Chung Buk, 380-702 (Korea, Republic of); Chu, A. [Shin Young Co. Ltd, 440, Bonchon-Dong, Yeongcheon-si, Gyeong Buk, 770-150 (Korea, Republic of)

    2013-12-16T23:59:59.000Z

    In this paper, laser forming characteristics in ultra high strength steel with ultimate strength of 1200MPa are investigated numerically and experimentally. FE simulation is conducted to identify the response related to deformation and characterize the effect of laser power, beam diameter and scanning speed with respect to the bending angle for a square sheet part. The thermo-mechanical behaviors during the straight-line heating process are presented in terms of temperature, stress and strain. An experimental setup including a fiber laser with maximum mean power of 3.0 KW is used in the experiments. From the results in this work, it would be easily adjustment the laser power and the scanning speed by controlling the line energy for a bending operation of CP1180 steel sheets.

  16. Raw material preparation for ultra high production rate sintering

    SciTech Connect (OSTI)

    Kortmann, H.A.; Ritz, V.J. [Studiengesellschaft fuer Eisenerzaufbereitung, Liebenburg-Othfresen (Germany); Cappel, F.; Weisel, H.; Richter, G. [LURGI AG, Frankfurt (Germany)

    1995-12-01T23:59:59.000Z

    An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

  17. Sensitivity of an underwater acoustic array to ultra-high energy neutrinos

    E-Print Network [OSTI]

    Buckingham, Michael

    -high energies appears in fireball models of gamma-ray bursts [6­8], active galactic nuclei [9­ 14] and of UHECR production [2, 17,18]. Weakly interacting neutrinos could, unlike UHE gamma rays and protons the possibility of searching for ultra high energy neutrinos in cosmic rays using acoustic techniques in ocean

  18. A Comparison of Hurricane Eye Determination Using Standard and Ultra-High Resolution

    E-Print Network [OSTI]

    Long, David G.

    A Comparison of Hurricane Eye Determination Using Standard and Ultra-High Resolution QuikSCAT Winds of hurricanes. I. INTRODUCTION Space-borne scatterometers such as SeaWinds on QuikSCAT are instruments designed these is the observation and tracking of tropical cyclones including hurricanes. Several fea- tures of interest

  19. Hurricane Wind Field Estimation from SeaWinds at Ultra High Resolution

    E-Print Network [OSTI]

    Long, David G.

    Hurricane Wind Field Estimation from SeaWinds at Ultra High Resolution Brent A. Williams and David) are inherently noisier than the standard 25km products and the high rain rates often associated with hurricanes. This paper develops a new procedure for hurricane wind field estimation from the SeaWinds instrument at ultra

  20. Roadmap for Ultra-High Energy Cosmic Ray Physics and Astronomy (whitepaper for Snowmass 2013)

    E-Print Network [OSTI]

    Anchordoqui, Luis A; Krizmanic, John F; Matthews, Jim; Mitchell, John W; Olinto, Angela V; Paul, Thomas C; Sokolsky, Pierre; Thomson, Gordon B; Weiler, Thomas J

    2013-01-01T23:59:59.000Z

    We summarize the remarkable recent progress in ultra-high energy cosmic ray physics and astronomy enabled by the current generation of cosmic ray observatories. We discuss the primary objectives for future measurements and describe the plans for near-term enhancements of existing experiments as well as the next generation of observatories.

  1. Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and micro-

    E-Print Network [OSTI]

    Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and micro-cavity to a pump laser using two, distinct methods: coupled power stabilization and wavelength locking of pump laser to the microcavity. In addition to improvements in operation of previously demonstrated micro

  2. Approaches for Ultra-High Efficiency Solar Cells C.B. Honsberg

    E-Print Network [OSTI]

    Honsberg, Christiana

    Approaches for Ultra-High Efficiency Solar Cells C.B. Honsberg School of Electrical and Computer and to identify the critical physical phenomena important for solar energy conversion. 2. Technical Approach The largest loss mechanism in photovoltaic energy conversion arises from the mismatch between the wavelengths

  3. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    E-Print Network [OSTI]

    and is in the process of changing from film to digital aerial image acquisition. Cur- rently, only broad land useHierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC, MSC3JER, NMSU, Las Cruces, NM 88003-8003, USA Ultra-high-resolution digital aerial imagery has great

  4. Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and

    E-Print Network [OSTI]

    Li, Mo

    Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and infrastructure. The development of ultra-high performance concrete of buildings or structures to dynamic loading and fire. Overview of research program on UHPC or CEP (concrete

  5. Ultra high vacuum heating and rotating specimen stage

    DOE Patents [OSTI]

    Coombs, A.W. III

    1995-05-02T23:59:59.000Z

    A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1{times}10{sup {minus}9} torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating. 5 figs.

  6. Ultra high vacuum heating and rotating specimen stage

    DOE Patents [OSTI]

    Coombs, III, Arthur W. (Patterson, CA)

    1995-01-01T23:59:59.000Z

    A heating and rotating specimen stage provides for simultaneous specimen heating and rotating. The stage is ideally suited for operation in ultrahigh vacuum (1.times.10.sup.-9 torr or less), but is useful at atmosphere and in pressurized systems as well. A specimen is placed on a specimen holder that is attached to a heater that, in turn, is attached to a top housing. The top housing is rotated relative to a bottom housing and electrically connected thereto by electrically conductive brushes. This stage is made of materials that are compatible with UHV, able to withstand high temperatures, possess low outgassing rates, are gall and seize resistant, and are able to carry substantial electrical loading without overheating.

  7. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30T23:59:59.000Z

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

  8. ULTRA HIGH EFFICIENCY ESP DEVELOPMENT FOR AIR TOXICS CONTROL

    SciTech Connect (OSTI)

    David K. Anderson

    1999-11-01T23:59:59.000Z

    Because more than 90 percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESPs), retrofitable ESP technologies represent a logical approach towards achieving the Department of Energy's (DOE) goal of a major reduction in fine particulate and mercury emissions (air toxics) from coal based power systems. EPA's recent issuance of significantly tightened ambient air standards for particles smaller than 2.5 {micro}m (PM{sub 2.5}) creates a new urgency for developing cost-effective means to control fine particulate emissions. This challenge is compounded by the on-going switch in the utility industry to low-sulfur Powder River Basin (PRB) coals, that generate higher resistivity and difficult-to-collect fly ash. Particulate emissions can increase by a factor of ten when a utility switches to a low-sulfur coal. Numerous power plants are presently limited in operation by the inability of their ESPs to control opacity at high loads. In Phase I of this program, ABB investigated five technologies to improve the collection of fine particulate and trace metals in ESPs. These included: (1) flue-gas cooling, (2) flue-gas humidification, (3) pulsed energization, (4) wet ESP and precharger modules, and (5) sorbent injection for mercury control. Tests were conducted with an Eastern bituminous coal and a Powder River Basin sub-bituminous low-sulfur coal in an integrated pilot-scale combustor and ESP test facility. The impacts of the different retrofit technologies on ESP performance, individually and in combination, were evaluated indepth through advanced sampling and measurement techniques. In Phase II, the most promising concepts identified from Phase I testing, flue-gas cooling and humidification, pulsed energization, and sorbent injection at low flue-gas temperatures for mercury control, were integrated into a commercially oriented sub-scale system for field testing at Commonwealth Edison's Waukegan Unit No. 8. The main objective of the proposed Phase II testing was to determine longer term ESP performance and mercury capture improvements with the above enhancements for a range of low-sulfur coals currently fired by utilities. Unanticipated cost growth in readying the Pilot Plant for shipment and during slipstream construction at the utility host site resulted in the issuance of a preemptive stop work order from ABB until a detailed technical and budgetary review of the project could be completed. Four program recovery scenarios were developed and presented to the DOE. After careful review of these options, it was decided to terminate the program and although the Pilot Plant installation was essentially completed, no testing was performed. The Pilot Plant was subsequently decommissioned and the host site returned to its preprogram condition.

  9. Precision optical slit for high heat load or ultra high vacuum

    DOE Patents [OSTI]

    Andresen, Nord C. (Hayward, CA); DiGennaro, Richard S. (Albany, CA); Swain, Thomas L. (Richmond, CA)

    1995-01-01T23:59:59.000Z

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  10. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOE Patents [OSTI]

    Dunham, M.E.; Hudson, C.L.

    1993-05-11T23:59:59.000Z

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  11. Precision optical slit for high heat load or ultra high vacuum

    DOE Patents [OSTI]

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24T23:59:59.000Z

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  12. Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves

    SciTech Connect (OSTI)

    Shilton, Richie J., E-mail: richard.shilton@iit.it [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Travagliati, Marco [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Beltram, Fabio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Cecchini, Marco, E-mail: marco.cecchini@nano.cnr.it [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2014-08-18T23:59:59.000Z

    Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754?MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w???10??, where ? is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

  13. Propagation of Ultra High Energy Cosmic Rays and the Production of Cosmogenic Neutrinos

    E-Print Network [OSTI]

    Aloisio, R; di Matteo, A; Grillo, A F; Petrera, S; Salamida, F

    2015-01-01T23:59:59.000Z

    We present an updated version of the {\\it SimProp} Monte Carlo code to study the propagation of ultra high energy cosmic rays in astrophysical backgrounds computing the cosmogenic neutrino fluxes expected on earth. The study of secondary neutrinos provides a powerful tool to constrain the source models of these extremely energetic particles. We will show how the newly detected IceCube neutrino events at PeV energies together with the the latest experimental results of the Pierre Auger Observatory and Telescope Array experiment are almost at the level of excluding several hypothesis on the astrophysical sources of ultra high energy cosmic rays. Results presented here can be also used to evaluate the discovery capabilities of future high energy cosmic rays and neutrino detectors.

  14. Ultra-High Speed Particle Image Velocimetry on Drop-on-Demand Jetting

    E-Print Network [OSTI]

    Castrejon-Pita, J.R.; Hoath, S.D.; Castrejon-Pita, A.A.; Morrison, N.F.; Hsiao, W.-K.; Hutchings, I.M.

    2011-01-01T23:59:59.000Z

    , Applied Mathematics Hsiao, Wen-Kai; University of Cambridge, Engineering Hutchings, Ian; University of Cambridge, Engineering Ultra-High Speed Particle Image Velocimetry on Drop-on- Demand Jetting José R. Castrejón-Pita, Stephen D. Hoath... ). The velocity response extracted from this point is shown in Fig. 3. Figure 3. Time variation of the fluid velocity as measured by PIV. See Figure 2. Numerical method The simulations were performed using computational methods similar to those reported...

  15. The ultra-high lime with aluminum process for removing chloride from recirculating cooling water

    E-Print Network [OSTI]

    Abdel-wahab, Ahmed Ibraheem Ali

    2004-09-30T23:59:59.000Z

    THE ULTRA-HIGH LIME WITH ALUMINUM PROCESS FOR REMOVING CHLORIDE FROM RECIRCULATING COOLING WATER A Dissertation by AHMED IBRAHEEM ALI ABDEL-WAHAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...-WAHAB Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Bill Batchelor (Chair of Committee) Robin L. Autenrieth (Member...

  16. Low-temperature germanium ultra-high vacuum chemical vapor deposition for back-end photonic integration

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    Polycrystalline germanium (poly-Ge) grown on amorphous Si (a-Si) by ultra-high vacuum chemical vapor deposition (UHVCVD) over oxide barriers at low temperatures (Tles450degC) exhibits a larger grain size and lower defect ...

  17. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    SciTech Connect (OSTI)

    Wilmsmeyer, Amanda R.; Morris, John R. [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States); Gordon, Wesley O.; Mantooth, Brent A.; Lalain, Teri A. [Research and Technology Directorate, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States)] [Research and Technology Directorate, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States); Davis, Erin Durke [OptiMetrics, Inc., Abingdon, Maryland 21009 (United States)] [OptiMetrics, Inc., Abingdon, Maryland 21009 (United States)

    2014-01-15T23:59:59.000Z

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  18. A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions

    E-Print Network [OSTI]

    Scott, R H H

    2015-01-01T23:59:59.000Z

    A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.

  19. Cherenkov light Extrapolation at Ultra High Energy Cosmic Rays in Extensive Air Showers

    E-Print Network [OSTI]

    A. A. Al-Rubaiee

    2011-03-22T23:59:59.000Z

    The Simulation of Cherenkov light lateral distribution function (LDF) from particles of Extensive Air Showers (EAS) with ultra high energy cosmic rays (E>=10^16 eV) was simulated for primary protons by the computer code CORSIKA. The parameterization, that constructed on the basis of this simulation have allowed us to reconstruct the events, that is, to reconstruct the type and energy of the particle that generated EAS from signal amplitudes of Cherenkov light registered with the Tunka-25 facility. The extrapolation of the Cherenkov light LDF approximation at the energy range (10^16-2.10^18 eV) was taken into account.

  20. An Interferometric Analysis Method for Radio Impulses from Ultra-high Energy Particle Showers

    E-Print Network [OSTI]

    Romero-Wolf, A; Vieregg, A; Gorham, P

    2013-01-01T23:59:59.000Z

    We present an interferometric technique for the reconstruction of ultra-wide band impulsive signals from point sources. This highly sensitive method was developed for the search for ultra-high energy neutrinos with the ANITA experiment but is fully generalizable to any antenna array detecting radio impulsive events. Applications of the interferometric method include event reconstruction, thermal noise and anthropogenic background rejection, and solar imaging for calibrations. We illustrate this technique with applications from the analysis of the ANITA-I and ANITA-II data in the 200-1200 MHz band.

  1. Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum

    SciTech Connect (OSTI)

    Ermolov, A.; Mak, K. F.; Tani, F.; Hölzer, P.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)] [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Russell, P. St. J. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany) [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)

    2013-12-23T23:59:59.000Z

    A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

  2. Simulation of Ultra High Energy Neutrino Interactions in Ice and Water

    E-Print Network [OSTI]

    S. Bevan; S. Danaher; J. Perkin; S. Ralph; C. Rhodes; L. Thompson; T. Sloan; D. Waters

    2007-04-08T23:59:59.000Z

    The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

  3. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect (OSTI)

    Ogale, Amod A

    2012-04-27T23:59:59.000Z

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000�°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500�°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300�°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

  4. CONSTRAINTS ON THE SOURCE OF ULTRA-HIGH-ENERGY COSMIC RAYS USING ANISOTROPY VERSUS CHEMICAL COMPOSITION

    SciTech Connect (OSTI)

    Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Taylor, Andrew M. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Lemoine, Martin [Institut d'Astrophysique de Paris, CNRS, UPMC, 98 bis Boulevard Arago, F-75014 Paris (France); Waxman, Eli, E-mail: lemoine@iap.fr [Physics Faculty, Weizmann Institute, P.O. Box 26, Rehovot 7600 (Israel)

    2013-10-20T23:59:59.000Z

    The joint analysis of anisotropy signals and chemical composition of ultra-high-energy cosmic rays offers strong potential for shedding light on the sources of these particles. Following up on an earlier idea, this paper studies the anisotropies produced by protons of energy >E/Z, assuming that anisotropies at energy >E have been produced by nuclei of charge Z, which share the same magnetic rigidity. We calculate the number of secondary protons produced through photodisintegration of the primary heavy nuclei. Making the extreme assumption that the source does not inject any proton, we find that the source(s) responsible for anisotropies such as reported by the Pierre Auger Observatory should lie closer than ?20-30, 80-100, and 180-200 Mpc if the anisotropy signal is mainly composed of oxygen, silicon, and iron nuclei, respectively. A violation of this constraint would otherwise result in the secondary protons forming a more significant anisotropy signal at lower energies. Even if the source were located closer than this distance, it would require an extraordinary metallicity ?> 120, 1600, and 1100 times solar metallicity in the acceleration zone of the source, for oxygen, silicon, and iron, respectively, to ensure that the concomitantly injected protons do not produce a more significant low-energy anisotropy. This offers interesting prospects for constraining the nature and the source of ultra-high-energy cosmic rays with the increase in statistics expected from next-generation detectors.

  5. Influence of amorphous silica on the hydration in ultra-high performance concrete

    SciTech Connect (OSTI)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Hutter, Frank [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Kletti, Holger [Building Materials, Bauhaus–Universität Weimar, Coudraystr. 11, 99423 Weimar (Germany); Sextl, Gerhard [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01T23:59:59.000Z

    Amorphous silica particles (silica) are used in ultra-high performance concretes to densify the microstructure and accelerate the clinker hydration. It is still unclear whether silica predominantly increases the surface for the nucleation of C–S–H phases or dissolves and reacts pozzolanically. Furthermore, varying types of silica may have different and time dependent effects on the clinker hydration. The effects of different silica types were compared in this study by calorimetric analysis, scanning and transmission electron microscopy, in situ X-ray diffraction and compressive strength measurements. The silica component was silica fume, pyrogenic silica or silica synthesized by a wet-chemical route (Stoeber particles). Water-to-cement ratios were 0.23. Differences are observed between the silica for short reaction times (up to 3 days). Results indicate that silica fume and pyrogenic silica accelerate alite hydration by increasing the surface for nucleation of C–S–H phases whereas Stoeber particles show no accelerating effect.

  6. NLO corrections to ultra-high energy neutrino-nucleon scattering, shadowing and small x

    E-Print Network [OSTI]

    Rahul Basu; Debajyoti Choudhury; Swapan Majhi

    2002-10-22T23:59:59.000Z

    We reconsider the Standard Model interactions of ultra-high energy neutrinos with matter. The next to leading order QCD corrections are presented for charged-current and neutral-current processes. Contrary to popular expectations, these corrections are found to be quite substantial, especially for very large (anti-) neutrino energies. Hence, they need to be taken into account in any search for new physics effects in high-energy neutrino interactions. In our extrapolation of the parton densities to kinematical regions as yet unexplored directly in terrestrial accelerators, we are guided by double asymptotic scaling in the large Q^2 and small Bjorken x region and to models of saturation in the low Q^2 and low x regime. The sizes of the consequent uncertainties are commented upon. We also briefly discuss some variables which are insensitive to higher order QCD corrections and are hence suitable in any search for new physics.

  7. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-12-01T23:59:59.000Z

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore »design and performance of the TARA transmitter and receiver systems.« less

  8. Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications

    SciTech Connect (OSTI)

    Bacrania, Minesh K [Los Alamos National Laboratory; Croce, Mark [Los Alamos National Laboratory; Bond, Evelyn [Los Alamos National Laboratory; Dry, Donald [Los Alamos National Laboratory; Moody, W. Allen [Los Alamos National Laboratory; Lamont, Stephen [Los Alamos National Laboratory; Rabin, Michael [Los Alamos National Laboratory; Rim, Jung [Los Alamos National Laboratory; Smith, Audrey [Los Alamos National Laboratory; Beall, James [NIST-BOULDER; Bennett, Douglas [NIST-BOULDER; Kotsubo, Vincent [NIST-BOULDER; Horansky, Robert [NIST-BOULDER; Hilton, Gene [NIST-BOULDER; Schmidt, Daniel [NIST-BOULDER; Ullom, Joel [NIST-BOULDER; Cantor, Robin [STAR CRYOELECTRONICS

    2010-01-01T23:59:59.000Z

    We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

  9. Ultra-High Energy Cosmic Rays and Neutron-Decay Halos from Gamma Ray Bursts

    E-Print Network [OSTI]

    C. D. Dermer

    2001-03-20T23:59:59.000Z

    Simple arguments concerning power and acceleration efficiency show that ultra-high energy cosmic rays (UHECRS) with energies >~ 10^{19} eV could originate from GRBs. Neutrons formed through photo-pion production processes in GRB blast waves leave the acceleration site and travel through intergalactic space, where they decay and inject a very energetic proton and electron component into intergalactic space. The neutron-decay protons form a component of the UHECRs, whereas the neutron-decay electrons produce optical/X-ray synchrotron and gamma radiation from Compton-scattered background radiation. A significant fraction of galaxies with GRB activity should be surrounded by neutron-decay halos of characteristic size ~ 100 kpc.

  10. Saturation Physics in Ultra High Energy Cosmic Rays: Heavy Quark Production

    E-Print Network [OSTI]

    V. P. Goncalves; M. V. T. Machado

    2007-03-30T23:59:59.000Z

    In this work we estimate the heavy quark production in the interaction of ultra high energy cosmic rays in the atmosphere, considering that the primary cosmic ray is a proton or a photon. At these energies the saturation momentum Q_{sat}^2 stays above the hard scale \\mu_c^2=4m_c^2, implying charm production probing the saturation regime. In particular, we show that the ep HERA data presents a scaling on \\tau_c = (Q^2+\\mu_c^2)/Q_{sat}^2. We derive our results considering the dipole picture and the Color Glass Condensate formalism, which one shows to be able to describe the heavy quark production in photon-proton and proton-proton collisions. Nuclear effects are considered in computation of cross sections for scattering on air nuclei. Implications on the flux of prompt leptons at the earth are analyzed and a large suppression is predicted.

  11. New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment

    E-Print Network [OSTI]

    ANITA collaboration; P. Gorham; P. Allison; S. Barwick; J. Beatty; D. Besson; W. Binns; C. Chen; P. Chen; J. Clem; A. Connolly; P. Dowkontt; M. DuVernois; R. Field; D. Goldstein; A. Goodhue; C. Hast; C. Hebert; S. Hoover; M. Israel; J. Kowalski; J. Learned; K. Liewer; J. Link; E. Lusczek; S. Matsuno; B. Mercurio; C. Miki; P. Miocinovic; J. Nam; C. Naudet; R. Nichol; K. Palladino; K. Reil; A. Romero-Wolf; M. Rosen; L. Ruckman; D. Saltzberg; D. Seckel; G. Varner; D. Walz; Y. Wang; F. Wu

    2008-12-15T23:59:59.000Z

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3 EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultra-high energy extensive air showers.

  12. An Efficient, Movable Single-Particle Detector for Use in Cryogenic Ultra-High Vacuum Environments

    E-Print Network [OSTI]

    Spruck, Kaija; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Old?ich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2014-01-01T23:59:59.000Z

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut f\\"ur Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to $\\sim$ 10 K and consist fully of ultra-high vacuum (UHV) compatible, high-temperature bakeable and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring (CSR). We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  13. Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background

    E-Print Network [OSTI]

    Tomonori Totani

    1999-04-13T23:59:59.000Z

    We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

  14. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    E-Print Network [OSTI]

    Fujii, T; Bertaina, M; Casolino, M; Dawson, B; Horvath, P; Hrabovsky, M; Jiang, J; Mandat, D; Matalon, A; Matthews, J N; Motloch, P; Palatka, M; Pech, M; Privitera, P; Schovanek, P; Takizawa, Y; Thomas, S B; Travnicek, P; Yamazaki, K

    2015-01-01T23:59:59.000Z

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Tele- scopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.

  15. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R. [Univ. of Utah, Salt Lake City, UT (United States); Takai, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Allen, C. [Univ. of Kansas, Lawrence, KS (United States); Beard, L. [Purdue Univ., West Lafayette, IN (United States); Belz, J. [Univ. of Utah, Salt Lake City, UT (United States); Besson, D. [Univ. of Kansas, Lawrence, KS (United States). Moscow Engineering and Physics Inst. (Russian Federation); Byrne, M. [Univ. of Utah, Salt Lake City, UT (United States); Abou Bakr Othman, M. [Univ. of Utah, Salt Lake City, UT (United States); Farhang-Boroujeny, B. [Univ. of Utah, Salt Lake City, UT (United States); Gardner, A. [Univ. of Utah, Salt Lake City, UT (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT (United States); Hanlon, W. [Univ. of Utah, Salt Lake City, UT (United States); Hanson, J. [Univ. of Kansas, Lawrence, KS (United States); Jayanthmurthy, C. [Univ. of Utah, Salt Lake City, UT (United States); Kunwar, S. [Univ. of Kansas, Lawrence, KS (United States); Larson, S. L. [Utah State Univ., Logan, UT (United States); Myers, I. [Univ. of Utah, Salt Lake City, UT (United States); Prohira, S. [Univ. of Kansas, Lawrence, KS (United States); Ratzlaff, K. [Univ. of Kansas, Lawrence, KS (United States); Sokolsky, P. [Univ. of Utah, Salt Lake City, UT (United States); Thomson, G. B. [Univ. of Utah, Salt Lake City, UT (United States); Von Maluski, D. [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01T23:59:59.000Z

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  16. Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project

    SciTech Connect (OSTI)

    Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

    2011-09-01T23:59:59.000Z

    High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

  17. Discovering Ultra High Energy Neutrinos by Horizontal and Upward tau Air-Showers: Evidences in Terrestrial Gamma Flashes?

    E-Print Network [OSTI]

    Daniele Fargion

    2010-05-18T23:59:59.000Z

    Ultra high energy neutrinos UHE neutrino Tau, anti-neutrino Tau, anti-neutrino electron at PeVs, and higher energy may induce tau air-showers whose detectability is million to billion times amplified by their secondaries. We considered UHE nu_{tau}- N and UHE bar\

  18. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback

    E-Print Network [OSTI]

    Illing, Lucas

    Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback Lucas- dynamical electronic device. It consists of a transistor-based nonlinearity, commercially of such a device, we explore the dynamics of an electronic circuit that consists of a simple transistor

  19. Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

    SciTech Connect (OSTI)

    Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A.G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R.G.; al Yahyaoui, R.

    2010-04-02T23:59:59.000Z

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath theMoon?s surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequencywindow for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a samplingfrequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, thedetection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit onthe UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  20. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    E-Print Network [OSTI]

    Philipp Baerwald; Mauricio Bustamante; Walter Winter

    2014-07-07T23:59:59.000Z

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.

  1. The Role and Detectability of the Charm Contribution to Ultra High Energy Neutrino Fluxes

    E-Print Network [OSTI]

    Raj Gandhi; Abhijit Samanta; Atsushi Watanabe

    2009-08-27T23:59:59.000Z

    It is widely believed that charm meson production and decay may play an important role in high energy astrophysical sources of neutrinos, especially those that are baryon-rich, providing an environment conducive to pp interactions. Using slow-jet supernovae (SJS) as an example of such a source, we study the detectability of high-energy neutrinos, paying particular attention to those produced from charmed-mesons. We highlight important distinguishing features in the ultra-high energy neutrino flux which would act as markers for the role of charm in the source. In particular, charm leads to significant event rates at higher energies, after the conventional (pi, K) neutrino fluxes fall off. We calculate event rates both for a nearby single source and for diffuse SJS fluxes for an IceCube-like detector. By comparing muon event rates for the conventional and prompt fluxes in different energy bins, we demonstrate the striking energy dependence in the rates induced by the presence of charm. We also show that it leads to an energy dependant flux ratio of shower to muon events, providing an additional important diagnostic tool for the presence of prompt neutrinos. Motivated by the infusion of high energy anti-electron neutrinos into the flux by charm decay, we also study the detectability of the Glashow resonance due to these sources.

  2. ULTRA-HIGH ENERGY COSMIC-RAY ACCELERATION IN THE JET OF CENTAURUS A

    SciTech Connect (OSTI)

    Honda, Mitsuru [Plasma Astrophysics Laboratory, Institute for Global Science, Mie (Japan)

    2009-12-01T23:59:59.000Z

    We evaluate the achievable maximum energy of nuclei diffusively accelerated by shock wave in the jet of Cen A, based on an updated model involving the stochastic magnetic fields that are responsible for recent synchrotron X-ray measurements. For the maximum energy analysis, conceivable energy constraints from spatiotemporal scales are systematically considered for the jet-wide including discrete X-ray knots. We find that in the inner region within approx1 arcmin from galactic core, which includes knots AX and BX, proton and iron nucleus can be accelerated to 10{sup 19}-10{sup 20} and 10{sup 21} eV (10-100 EeV and ZeV) ranges, respectively. The upper cutoff energy of the very energetic neutrinos produced via photopion interaction is also provided. These are essential for identifying the acceleration site of the ultra-high energy cosmic ray detected in the Pierre Auger Observatory, which signifies the arrival from nearby galaxies including Cen A.

  3. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOE Patents [OSTI]

    Frank, Matthias (Berkeley, CA); Mears, Carl A. (Oakland, CA); Labov, Simon E. (Berkeley, CA); Benner, W. Henry (Danville, CA)

    1999-01-01T23:59:59.000Z

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  4. Ultra-high speed permanent magnet axial gap alternator with multiple stators

    DOE Patents [OSTI]

    Hawsey, Robert A. (Oak Ridge, TN); Bailey, J. Milton (Knoxville, TN)

    1991-01-01T23:59:59.000Z

    An ultra-high speed, axial gap alternator that can provide an output to a plurality of loads, the alternator providing magnetic isolation such that operating conditions in one load will not affect operating conditions of another load. This improved alternator uses a rotor member disposed between a pair of stator members, with magnets disposed in each of the rotor member surfaces facing the stator members. The magnets in one surface of the rotor member, which alternate in polarity, are isolated from the magnets in the other surface of the rotor member by a disk of magnetic material disposed between the two sets of magents. In the preferred embodiment, this disk of magnetic material is laminated between two layers of non-magnetic material that support the magnets, and the magnetic material has a peripheral rim that extends to both surfaces of the rotor member to enhance the structural integrity. The stator members are substantially conventional in construction in that equally-spaced and radially-oriented slots are provided, and winding members are laid in these slots. A unit with multiple rotor members and stator members is also described.

  5. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    SciTech Connect (OSTI)

    Das, Sadhan Chandra [UGC-DAE Consortium For Scientific Research, University Campus, Khandwa Road, Indore 452 001, MP (India) [UGC-DAE Consortium For Scientific Research, University Campus, Khandwa Road, Indore 452 001, MP (India); School of Electronics, Devi Ahilya University, Indore 452001, MP (India); Institute of Physics, University of Greifswald, Felix Hausdroff Str. 6 (Germany); Majumdar, Abhijit, E-mail: majuabhijit@gmail.com, E-mail: majumdar@uni-greifswald.de; Hippler, R. [Institute of Physics, University of Greifswald, Felix Hausdroff Str. 6 (Germany)] [Institute of Physics, University of Greifswald, Felix Hausdroff Str. 6 (Germany); Katiyal, Sumant [School of Electronics, Devi Ahilya University, Indore 452001, MP (India)] [School of Electronics, Devi Ahilya University, Indore 452001, MP (India); Shripathi, T. [UGC-DAE Consortium For Scientific Research, University Campus, Khandwa Road, Indore 452 001, MP (India)] [UGC-DAE Consortium For Scientific Research, University Campus, Khandwa Road, Indore 452 001, MP (India)

    2014-02-15T23:59:59.000Z

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000?°C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000?ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000?°C from room temperature (?10{sup ?6} mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1?ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20?°C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50?°C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000?°C.

  6. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOE Patents [OSTI]

    Gray, Joe W. (Livermore, CA); Alger, Terry W. (Livermore, CA); Lord, David E. (Livermore, CA)

    1982-01-01T23:59:59.000Z

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system, a nozzle with an orifice having a small ratio of length to diameter, and mechanism for vibrating the nozzle along its axis at high frequencies. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separate low pressure reservoirs are transferred into separate high pressure buffer reservoirs through a valve arrangement which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected to high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  7. The isotropy problem of sub-ankle ultra high energy cosmic rays

    SciTech Connect (OSTI)

    Kumar, Rahul; Eichler, David [Physics Department, Ben-Gurion University, Be'er-Sheba 84105 (Israel)

    2014-01-20T23:59:59.000Z

    We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

  8. Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities

    SciTech Connect (OSTI)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

    2013-06-01T23:59:59.000Z

    We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

  9. Energy reconstruction of hadron-initiated showers of ultra-high energy cosmic rays

    E-Print Network [OSTI]

    Ros, G; Supanitsky, A D; del Peral, L; Rodríguez-Frías, M D

    2015-01-01T23:59:59.000Z

    The current methods to determine the primary energy of ultra-high energy cosmic rays (UHECRs) are different when dealing with hadron or photon primaries. The current experiments combine two different techniques, an array of surface detectors and fluorescence telescopes. The latter allow an almost calorimetric measurement of the primary energy. Thus, hadron-initiated showers detected by both type of detectors are used to calibrate the energy estimator from the surface array (usually the interpolated signal at a certain distance from the shower core S(r0)) with the primary energy. On the other hand, this calibration is not feasible when searching for photon primaries since no high energy photon has been unambiguously detected so far. Therefore, pure Monte Carlo parametrizations are used instead. In this work, we present a new method to determine the primary energy of hadron-induced showers in a hybrid experiment based on a technique previously developed for photon primaries. It consists on a set of calibration ...

  10. The Role and Detectability of the Charm Contribution to Ultra High Energy Neutrino Fluxes

    E-Print Network [OSTI]

    Gandhi, Raj; Watanabe, Atsushi

    2009-01-01T23:59:59.000Z

    It is widely believed that charm meson production and decay may play an important role in high energy astrophysical sources of neutrinos, especially those that are baryon-rich, providing an environment conducive to pp interactions. Using slow-jet supernovae (SJS) as an example of such a source, we study the detectability of high-energy neutrinos, paying particular attention to those produced from charmed-mesons. We highlight important distinguishing features in the ultra-high energy neutrino flux which would act as markers for the role of charm in the source. In particular, charm leads to significant event rates at higher energies, after the conventional (pi, K) neutrino fluxes fall off. We calculate event rates both for a nearby single source and for diffuse SJS fluxes for an IceCube-like detector. By comparing muon event rates for the conventional and prompt fluxes in different energy bins, we demonstrate the striking energy dependence in the rates induced by the presence of charm. We also show that it lead...

  11. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron(positron) storage rings

    E-Print Network [OSTI]

    Duan, Zhe; Barber, Desmond P; Qin, Qing

    2015-01-01T23:59:59.000Z

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called "correlated" crossing of spin resonances ...

  12. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    SciTech Connect (OSTI)

    Grant, Marion B.

    2012-04-30T23:59:59.000Z

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

  13. System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field Magnetic Resonance Applications

    E-Print Network [OSTI]

    System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field identification; parameter optimization; smoothing filters; phase-locked loop; Hurwitz criterion; PID controllers

  14. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    SciTech Connect (OSTI)

    Tomlinson, Jason; Jensen, Mike

    2012-02-28T23:59:59.000Z

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  15. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  16. The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection

    E-Print Network [OSTI]

    M. Monasor; M. Bohacova; C. Bonifazi; G. Cataldi; S. Chemerisov; J. R. T. De Mello Neto; P. Facal San Luis; B. Fox; P. W. Gorham; C. Hojvat; N. Hollon; R. Meyhandan; L. C. Reyes; B. Rouille D'Orfeuil; E. M. Santos; J. Pochez; P. Privitera; H. Spinka; V. Verzi; C. Williams; J. Zhou

    2011-08-31T23:59:59.000Z

    We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  17. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15T23:59:59.000Z

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

  18. An improved limit to the diffuse flux of ultra-high energy neutrinos from the Pierre Auger Observatory

    E-Print Network [OSTI]

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Aranda, Victor Manuel; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Ave, Maximo; Avenier, Michel; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Barber, Kerri B; Bäuml, Julia; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Bleve, Carla; Blümer, Hans; Bohá?ová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bridgeman, Ariel; Brogueira, Pedro; Brown, William C; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceição, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dembinski, Hans; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fernandes, Mateus; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filip?i?, Andrej; Fox, Brendan; Fratu, Octavian; Freire, Martín Miguel; Fuchs, Benjamin; Fujii, Toshihiro; García, Beatriz; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; G?as, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guardincerri, Yann; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Kégl, Balazs; Keilhauer, Bianca; Keivani, Azadeh; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Krömer, Oliver; Kuempel, Daniel; Kunka, Norbert; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lu, Lu; Lucero, Agustin; Malacari, Max; Maldera, Simone; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mari?, Ioana; Marsella, Giovanni; Martello, Daniele; Martin, Lilian; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurel, Detlef; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano

    2015-01-01T23:59:59.000Z

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultra-high energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time-structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins $60^\\circ-75^\\circ$ and $75^\\circ-90^\\circ$ as well as for upward-going neutrinos, are combined to give a single limit. The $90\\%$ C.L. single-flavor limit to the diffuse flux of ultra-high energy neutrinos with an $E^{-2}$ spectrum in the energy ra...

  19. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  20. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  1. CLEAN-ROOM AND C02 -LASER PROCESSING OF ULTRA HIGH-PURITY AL2 0 3 P.A. Morris , R.H. French*, R.L. Coble*, F.N. Tebbe*, U. Chowdhry**

    E-Print Network [OSTI]

    Rollins, Andrew M.

    79 CLEAN-ROOM AND C02 -LASER PROCESSING OF ULTRA HIGH-PURITY AL2 0 3 P.A. Morris , R.H. French*ý, R of the material. The microstructure of a C02 - laser ultra high-purity A12 03 is illustrated. Densification with a C02 -laser. The microstructure of the laser fired ultra high purity A1 2 03 is discussed. Chemical

  2. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect (OSTI)

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15T23:59:59.000Z

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  3. Ultra-High-Efficiency Multijunction Cell and Receiver Module, Phase 1B: High Performance PV Exploring and Accelerating Ultimate Pathways; Final Subcontract Report, 13 May 2005 - 10 December 2008

    SciTech Connect (OSTI)

    King, R. R.

    2010-03-01T23:59:59.000Z

    Spectrolab's two High Performance Photovoltaics primary objectives: (1) develop ultra-high-efficiency concentrator multijunction cells and (2) develop a robust concentrator cell receiver package.

  4. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    SciTech Connect (OSTI)

    Schaefer-Nolte, E.; Wrachtrup, J. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Reinhard, F. [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany)] [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Ternes, M., E-mail: m.ternes@fkf.mpg.de [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Kern, K. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condenseé, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2014-01-15T23:59:59.000Z

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  5. A limit on the ultra-high-energy neutrino flux from lunar observations with the Parkes radio telescope

    E-Print Network [OSTI]

    Bray, J D; Roberts, P; Reynolds, J E; James, C W; Phillips, C J; Protheroe, R J; McFadden, R A; Aartsen, M G

    2015-01-01T23:59:59.000Z

    We report a limit on the ultra-high-energy neutrino flux based on a non-detection of radio pulses from neutrino-initiated particle cascades in the Moon, in observations with the Parkes radio telescope undertaken as part of the LUNASKA project. Due to the improved sensitivity of these observations, which had an effective duration of 127 hours and a frequency range of 1.2-1.5 GHz, this limit extends to lower neutrino energies than those from previous lunar radio experiments, with a detection threshold below 10^20 eV. The calculation of our limit allows for the possibility of lunar-origin pulses being misidentified as local radio interference, and includes the effect of small-scale lunar surface roughness. The targeting strategy of the observations also allows us to place a directional limit on the neutrino flux from the nearby radio galaxy Centaurus A.

  6. ULTRA-HIGH SURFACE AREA SINGLE AND MULTI-WALLED CARBON NANOTUBE 3-DIMENSIONAL HYBRID STRUCTURE

    E-Print Network [OSTI]

    Mellor-Crummey, John

    flexible electronic devices, membranes, sensors, and energy storage devices, the primary reason being surface area 3-dimensional hybrid nanostructure by combining carbon nanotube growth on two templates. This novel hybrid carbon nanostructure demonstrates an enhanced conductive surface area that paves the way

  7. Umbilical cord blood gas analysis at the time of

    E-Print Network [OSTI]

    Aickelin, Uwe

    Umbilical cord blood gas analysis at the time of delivery Maureen Harris, Sarah L. Beckley, Jonathan M. Garibaldi, Robert D. E Keith and Keith R. Greene Aims: it is now recommended that cord blood. In this paper our experience of cord blood analysis is described and the literature is reviewed to: (I) provide

  8. arXiv:astro-ph/0409377v115Sep2004 The Search for Anisotropy in the Arrival Directions of Ultra-High Energy

    E-Print Network [OSTI]

    Center present in its events with energies around 1018 eV [4]. This result seemed to be corroborated predictions mentioned above. Additionally, over the past decade, the search for sources of Ultra-High Energy-High Energy Cosmic Rays Observed by the High Resolution Fly's Eye Detector in Monocular Mode Benjamin T

  9. VISA IB: ULTRA-HIGH BANDWIDTH, HIGH GAIN SASE FEL G. Andonian, A. Murokh, R. Agustsson, C. Pellegrini, S. Reiche, J. B. Rosenzweig, and G. Travish

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    VISA IB: ULTRA-HIGH BANDWIDTH, HIGH GAIN SASE FEL G. Andonian, A. Murokh, R. Agustsson, C spread SASE FEL experiment, the intermediary experiment linking the VISA I and VISA II projects. A highly-election lasers (SASE FEL) promises to be an invalu- able tool for the scientific community. There are current

  10. Dynamic tensile fracture of mortar at ultra-high strain-rates

    SciTech Connect (OSTI)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y. [CEA, DAM, GRAMAT, F-46500 Gramat (France)

    2013-12-28T23:59:59.000Z

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4}?s{sup ?1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  11. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

  12. Treatment Outcomes in Non-Metastatic Prostate Cancer Patients With Ultra-High Prostate-Specific Antigen

    SciTech Connect (OSTI)

    Tai, Patricia, E-mail: ptai2@yahoo.com [Saskatchewan Cancer Agency, Regina, SK (Canada); Tonita, Jon; Woitas, Carla; Zhu Tong [Saskatchewan Cancer Agency, Regina, SK (Canada); Joseph, Kurian [Department of Oncology, Cross Cancer Institute, University of Alberta, Calgary, AB (Canada); Skarsgard, David [Department of Oncology, Tom Baker Cancer Center, University of Alberta, Calgary, AB (Canada)

    2012-07-15T23:59:59.000Z

    Purpose: It is commonly believed that prostate cancer patients with very high prostate-specific antigen (PSA) levels are unlikely to benefit from definitive local treatment, and patients with very high PSA are often underrepresented in, or excluded from, randomized clinical trials. Consequently, little is known about their optimal treatment or prognosis. We performed a registry-based analysis of management and outcome in this population of patients. Methods and Materials: Our provincial Cancer Registry was used to identify all men who were diagnosed with prostate cancer from 1990 to 2001. A retrospective chart review provided information on stage, Gleason score, PSA at diagnosis, and treatment. In this study, ultra-high PSA was defined as PSA of {>=}50 ng/ml. For a more complete perspective, treatment outcomes of patients with PSA of 20 to 49.9 ng/ml were also studied. Results: Of the 8378 men diagnosed with prostate cancer during this period, 6,449 had no known nodal or distant metastatic disease. The median follow-up of this group was 67.2 months (range, 0-192 months). A total of 1534 patients had PSA of {>=}20 ng/ml. Among the 995 patients with PSA 20 to 49.9 ng/ml, 85 had radical prostatectomy (RP), and their 5- and 10-year cause-specific survivals (CSS) were 95% and 84%, respectively. The 497 patients treated with radiotherapy (RT) had 5- and 10-year CSS of 92% and 71%. For the 332 patients with PSA 50-99.9 ng/ml, RT was associated with 5- and 10-year CSS of 81% and 55%. For the 207 patients with PSA of {>=}100 ng/ml, RT was associated with 5- and 10-year CSS of 80% and 54%. Conclusions: This is the largest series in the world on non metastatic cancer patients with ultra-high PSA at diagnosis. Even in the setting of a very high presenting PSA level, prostatectomy and radiotherapy are often associated with prolonged survival.

  13. Limits on the Transient Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts (GRB) Derived from RICE Data

    E-Print Network [OSTI]

    D. Besson; S. Razzaque; J. Adams; P. Harris

    2006-07-24T23:59:59.000Z

    We present limits on ultra-high energy (UHE; E(nu)>1 PeV) neutrino fluxes from gamma-ray bursts (GRBs), based on recently presented data, limits, and simulations from the RICE experiment. We use data from five recorded transients with sufficient photon spectral shape and redshift information to derive an expected neutrino flux, assuming that the observed photons are linked to neutrino production through pion decay via the well-known 'Waxman-Bahcall' prescription. Knowing the declination of the observed burst, as well as the RICE sensitivity as a function of polar angle and the previously published non-observation of any neutrino events allows an estimate of the sensitivity to a given neutrino flux. Although several orders of magnitude weaker than the expected fluxes, our GRB neutrino flux limits are nevertheless the first in the PeV--EeV energy regime. For completeness, we also provide a listing of other bursts, recorded at times when the RICE experiment was active, but requiring some assumptions regarding luminosity and redshift to permit estimates of the neutrino flux.

  14. Ultra-High-Energy Cosmic Rays from a Magnetized Strange Star Central Engine for Gamma-Ray Bursts

    E-Print Network [OSTI]

    O. Esquivel; D. Page

    2008-04-04T23:59:59.000Z

    Ultra-high-energy cosmic rays (UHECRs) have been tried to be related to the most varied and powerful sources known in the universe. Gamma-ray bursts (GRBs) are natural candidates. Here, we argue that cosmic rays can be accelerated by large amplitude electromagnetic waves (LAEMWs) when the MHD approximation of the field in the wind generated by the GRB's magnetized central engine breaks down. The central engine considered here is a strange star born with differential rotation from the accretion induced conversion of a neutron star into a strange star in a low-mass X-ray binary system. The LAEMWs generated this way accelerate light ions to the highest energies $E = q\\eta\\Delta\\Phi_{max}$ with an efficiency $\\eta \\sim 10^{-1}$ that accounts for all plausible energy losses. Alternatively, we also consider the possibility that, once formed, the LAEMWs are unstable to creation of a relativistically strong electromagnetic turbulence due to an overturn instability. Under this assumption, a lower limit to the efficiency of acceleration is estimated to be about $\\eta \\sim 10^{-2.5}$. Due to their age, low mass X-ray binary systems can be located in regions of low interstellar medium density as, e.g., globular clusters or even intergalactic medium in case of high proper motion systems, and cosmic ray energy losses due to proton collisions with photons at the decelerating region are avoided, thus opening the possibility for particles to exploit the full voltage available, well beyond that currently observed.

  15. System and method for generating a displacement with ultra-high accuracy using a fabry-perot interferometer

    DOE Patents [OSTI]

    McIntyre, Timothy J. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A system and method for generating a desired displacement of an object, i.e., a target, from a reference position with ultra-high accuracy utilizes a Fabry-Perot etalon having an expandable tube cavity for resolving, with an Iodine stabilized laser, displacements with high accuracy and for effecting (as an actuator) displacements of the target. A mechanical amplifier in the form of a micropositioning stage has a platform and a frame which are movable relative to one another, and the tube cavity of the etalon is connected between the platform and frame so that an adjustment in length of the cavity effects a corresponding, amplified movement of the frame relative to the cavity. Therefore, in order to provide a preselected magnitude of displacement of the stage frame relative to the platform, the etalon tube cavity is adjusted in length by a corresponding amount. The system and method are particularly well-suited for use when calibrating a high accuracy measuring device.

  16. Towards Scalable Cost-Effective Service and Survivability Provisioning in Ultra High Speed Networks

    SciTech Connect (OSTI)

    Bin Wang

    2006-12-01T23:59:59.000Z

    Optical transport networks based on wavelength division multiplexing (WDM) are considered to be the most appropriate choice for future Internet backbone. On the other hand, future DOE networks are expected to have the ability to dynamically provision on-demand survivable services to suit the needs of various high performance scientific applications and remote collaboration. Since a failure in aWDMnetwork such as a cable cut may result in a tremendous amount of data loss, efficient protection of data transport in WDM networks is therefore essential. As the backbone network is moving towards GMPLS/WDM optical networks, the unique requirement to support DOE’s science mission results in challenging issues that are not directly addressed by existing networking techniques and methodologies. The objectives of this project were to develop cost effective protection and restoration mechanisms based on dedicated path, shared path, preconfigured cycle (p-cycle), and so on, to deal with single failure, dual failure, and shared risk link group (SRLG) failure, under different traffic and resource requirement models; to devise efficient service provisioning algorithms that deal with application specific network resource requirements for both unicast and multicast; to study various aspects of traffic grooming in WDM ring and mesh networks to derive cost effective solutions while meeting application resource and QoS requirements; to design various diverse routing and multi-constrained routing algorithms, considering different traffic models and failure models, for protection and restoration, as well as for service provisioning; to propose and study new optical burst switched architectures and mechanisms for effectively supporting dynamic services; and to integrate research with graduate and undergraduate education. All objectives have been successfully met. This report summarizes the major accomplishments of this project. The impact of the project manifests in many aspects: First, the project addressed many essential problems that arisen in current and future WDM optical networks, and provided a host of innovative solutions though there was no invention or patent filing. This project resulted in more than 2 dozens publications in major journals and conferences (including papers in IEEE Transactions and journals, as well as a book chapter). Our publications have been cited by many peer researchers. In particular, one of our conference papers was nominated for the best paper award of IEEE/Create-Net Broadnets (International Conference on Broadband Communications, Networks, and Systems) 2006. Second, the results and solutions of this project were well received by DOE Labs where presentations were given by the PI. We hope to continue the collaboration with DOE Labs in the future. Third, the project was the first to propose and extensively study multicast traffic grooming, new traffic models such as sliding scheduled traffic model and scheduled traffic model. Our research has sparkled a flurry of recent studies and publications by the research community in these areas. Fourth, the project has benefited a diverse population of students by motivating, engaging, enhancing their learning and skills. The project has been conducted in a manner conducive to the training of students both at graduate and undergraduate levels. As a result, one Ph.D., Dr. Abdur Billah, was graduated. Another Ph.D. student, Tianjian Li, will graduate in January 2007. In addition, four MS students were graduated. One undergraduate student, Jeffrey Alan Shininger, completed his university honors project. Fifth, thanks to the support of this ECPI project, the PI has obtained additional funding from the National Science Foundation, the Air Force Research Lab, and other sources. A few other proposals are pending. Finally, this project has also significantly impacted the curricula and resulted in the enhancement of courses at the graduate and undergraduate levels, therefore strengthening the bond between research and education.

  17. Propagation In Matter Of Currents Of Relativistic Electrons Beyond The Alfven Limit, Produced In Ultra-High-Intensity Short-Pulse Laser-Matter Interactions

    SciTech Connect (OSTI)

    Batani, D.; Manclossi, M. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Baton, S.D.; Amiranoff, F.; Koenig, M.; Gremillet, L.; Popescu, H. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Santos, J.J. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Martinolli, E. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Antonicci, A. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Rousseaux, C.; Rabec Le Gloahec, M. [Commissariat a l'Energie Atomique, Bruyeres-le-Chatel (France); Hall, T. [University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ (United Kingdom); Malka, V. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Cowan, T.E.; Stephens, R. [Inertial Fusion Technology Division, Fusion Group, General Atomics, San Diego, CA (United States); Key, M. [Lawrence Livermore National Laboratory, Livermore CA (United States); King, J.; Freeman, R. [Department of Applied Sciences, University of California Davis, CA 95616 (United States)

    2004-12-01T23:59:59.000Z

    This paper reports the results of several experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic currents in matter from ultra-high-intensity laser pulse interaction with target. We present our results according to the type of diagnostics used in the experiments: 1) K{alpha} emission and K{alpha} imaging, 2) study of target rear side emission in the visible region, 3) time resolved optical shadowgraphy.

  18. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; ,

    2012-01-01T23:59:59.000Z

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  19. Ultra High Energy Fermions

    E-Print Network [OSTI]

    Burra G. Sidharth

    2015-04-07T23:59:59.000Z

    The LHC in Geneva is already operating at a total energy of $7 TeV$ and hopefully after a pause in 2012, it will attain its full capacity of $14 TeV$ in 2013. These are the highest energies achieved todate in any accelerator. It is against this backdrop that it is worthwhile to revisit very high energy collisions of Fermions (Cf. also \\cite{bgspp}). We will in fact examine their behaviour at such energies.

  20. Comparison of high and low intensity contact between secondary and primary care to detect people at ultra-high risk for psychosis: study protocol for a theory-based, cluster randomized controlled trial

    E-Print Network [OSTI]

    Perez, Jesus; Russo, Debra A; Stochl, Jan; Byford, Sarah; Zimbron, Jorge; Graffy, Jonathan P; Painter, Michelle; Croudace, Tim J; Jones, Peter B

    2013-07-17T23:59:59.000Z

    Abstract Background The early detection and referral to specialized services of young people at ultra-high risk (UHR) for psychosis may reduce the duration of untreated psychosis and, therefore, improve prognosis. General practitioners (GPs...

  1. INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS

    E-Print Network [OSTI]

    Zhou, Yaoqi

    INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS such as S. mutans treated with cigarette smoke condensate (CSC) and nicotine have on human umbilical vein and supernatants will then be used to treat HUVEC cells for 72 hours before the media is collected and analyzed

  2. INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS

    E-Print Network [OSTI]

    Zhou, Yaoqi

    INTERACTIONS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS WITH TOBACCO TREATED STREPTOCOCCUS MUTANS of S. mutans UA 159 has on binding to Human Umbilical Vein Endothelial Cells (HUVEC) when treated to treat HUVECs for 72 hours and cytotoxicity was determined by lactate dehydrogenase (LDH) assays

  3. Study of Dispersion of Mass Distribution of Ultra-High Energy Cosmic Rays using a Surface Array of Muon and Electromagnetic Detectors

    E-Print Network [OSTI]

    Vícha, Jakub; Nosek, Dalibor; Ebr, Jan

    2015-01-01T23:59:59.000Z

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  4. Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    E-Print Network [OSTI]

    Allison, P; Bard, R; Beatty, J J; Besson, D Z; Bora, C; Chen, C -C; Chen, P; Connolly, A; Davies, J P; DuVernois, M A; Fox, B; Gorham, P W; Hanson, K; Hill, B; Hoffman, K D; Hong, E; Hu, L -C; Ishihara, A; Karle, A; Kelley, J; Kravchenko, I; Landsman, H; Laundrie, A; Li, C -J; Liu, T; Lu, M -Y; Maunu, R; Mase, K; Meures, T; Miki, C; Nam, J; Nichol, R J; Nir, G; O'Murchadha, A; Pfendner, C G; Ratzlaff, K; Richman, M; Rotter, B; Sandstrom, P; Seckel, D; Shultz, A; Song, M; Stockham, J; Stockham, M; Sullivan, M; Touart, J; Tu, H -Y; Varner, G S; Yoshida, S; Young, R; Guetta, D

    2015-01-01T23:59:59.000Z

    We searched for ultra-high energy (UHE) neutrinos from Gamma-Ray Bursts (GRBs) with the Askaryan Radio Array (ARA) Testbed station's 2011-2012 data set. Among 589 GRBs monitored by the Gamma Ray Coordinate Network (GCN) catalog from Jan. 2011 to Dec. 2012 over the entire sky, 57 GRBs were selected for analysis. These GRBs were chosen because they occurred during a period of low anthropogenic background and high stability of the station and fell within our geometric acceptance. We searched for UHE neutrinos from 57 GRBs and observed 0 events, which is consistent with 0.11 expected background events. With this result, we set the limits on the UHE GRB neutrino fluence and quasi-diffuse flux from $10^{16}$ to $10^{19}$~eV. This is the first limit on the UHE GRB neutrino quasi-diffuse flux at energies above $10^{16}$~eV.

  5. Study of impurity distribution in mechanically polished, chemically treated and ultra-high vacuum degassed pure Niobium samples using TOFSIMS technique

    E-Print Network [OSTI]

    Bose, A

    2015-01-01T23:59:59.000Z

    The performance of Superconducting radio frequency cavities (SCRF) are highly dependent on the surface treatment processes, which in turn is influenced by the chemistry within the penetration depth of Niobium (Nb). The present study analyses various impurities within the RF penetration depth (~50nm) of Nb samples treated by SCRF cavity processing techniques like colloidal silica polishing (simulating centrifugal barrel polishing), buffer chemical polishing (BCP), high pressure rinsing (HPR) and degassing under ultra high vacuum (UHV) condition at 600{\\deg}C for 10hrs. Various modes of Time of flight secondary ion mass spectrometry (TOFSIMS) technique was employed to study the effect of the above treatments on the vast spectrum of impurities that include interstitials, hydrocarbons, oxides, acidic residuals, reaction products and metallic impurities. UHV degassing treatment was the only treatment capable of reducing hydrogen contamination, but, it led to extensive oxygen, carbon and metallic impurities in the ...

  6. Structure and magnetic properties of low-temperature phase Mn-Bi nanosheets with ultra-high coercivity and significant anisotropy

    SciTech Connect (OSTI)

    Liu, Rongming, E-mail: rmliu@iphy.ac.cn, E-mail: shenbg@iphy.ac.cn; Zhang, Ming; Niu, E; Li, Zhubai; Zheng, Xinqi; Wu, Rongrong; Zuo, Wenliang; Shen, Baogen; Hu, Fengxia; Sun, Jirong [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-05-07T23:59:59.000Z

    The microstructure, crystal structure, and magnetic properties of low-temperature phase (LTP) Mn-Bi nanosheets, prepared by surfactant assistant high-energy ball milling (SA-HEBM) with oleylamine and oleic acid as the surfactant, were examined with scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer, respectively. Effect of ball-milling time on the coercivity of LTP Mn-Bi nanosheets was systematically investigated. Results show that the high energy ball milling time from tens of minutes to several hours results in the coercivity increase of Mn-Bi powders and peak values of 14.3 kOe around 10 h. LTP Mn-Bi nanosheets are characterized by an average thickness of tens of nanometers, an average diameter of ?1.5??m, and possess a relatively large aspect ratio, an ultra-high room temperature coercivity of 22.3 kOe, a significant geometrical and magnetic anisotropy, and a strong (00l) crystal texture. Magnetization and demagnetization behaviors reveal that wall pinning is the dominant coercivity mechanism in these LTP Mn-Bi nanosheets. The ultrafine grain refinement introduced by the SA-HEBM process contribute to the ultra-high coercivity of LTP Mn-Bi nanosheets and a large number of defects put a powerful pinning effect on the magnetic domain movement, simultaneously. Further magnetic measurement at 437?K shows that a high coercivity of 17.8 kOe and a strong positive temperature coefficient of coercivity existed in the bonded permanent magnet made by LTP Mn-Bi nanosheets.

  7. Polarization-dependent all-optical modulator with ultra-high modulation depth based on a stereo graphene-microfiber structure

    E-Print Network [OSTI]

    Xu, Fei; Zheng, Bi-cai; Shao, Guang-hao; Ge, Shi-jun; Lu, Yan-qing

    2015-01-01T23:59:59.000Z

    We report an in-line polarization-dependent all-optical fiber modulator based on a stereo graphene-microfiber structure (GMF) by utilizing the lab-on-rod technique. Owing to the unique spring-like geometry, an ultra-long GMF interaction length can be achieved, and an ultra-high modulation depth (MD) of ~7.5 dB and a high modulation efficiency (ME) of ~0.2 dB/mW were demonstrated for one polarization state. The MD and ME are more than one order larger than those of other graphene-waveguide hybrid all-optical modulators. By further optimizing the transferring and cleaning process, the modulator can quickly switch between transparent and opaque states for both the two polarization states with a maximized MD of tens of decibels. This modulator is compatible with current fiber-optic communication systems and may be applied in the near future to meet the impending need for ultrafast optical signal processing.

  8. Adsorption geometry, conformation, and electronic structure of 2H-octaethylporphyrin on Ag(111) and Fe metalation in ultra high vacuum

    SciTech Connect (OSTI)

    Borghetti, Patrizia; Sangaletti, Luigi [I-LAMP and Department of Mathematics and Physics, Universita Cattolica del Sacro Cuore, Brescia (Italy); Santo, Giovanni Di; Castellarin-Cudia, Carla; Goldoni, Andrea [ST-INSTM micro- and nano-carbon lab., Elettra - Sincrotrone Trieste S.C.p.A., s.s.14 Km. 163.5, 34149 Trieste (Italy); Fanetti, Mattia [ST-INSTM micro- and nano-carbon lab., Elettra - Sincrotrone Trieste S.C.p.A., s.s.14 Km. 163.5, 34149 Trieste (Italy); Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, 34149 Trieste (Italy); Magnano, Elena; Bondino, Federica [Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, 34149 Trieste (Italy)

    2013-04-14T23:59:59.000Z

    Due to the growing interest in the ferromagnetic properties of Fe-octaethylporphyrins (Fe-OEP) for applications in spintronics, methods to produce stable Fe-porphyrins with no Cl atoms are highly demanded. Here, we demonstrate the formation of Fe-OEP layers on Ag(111) single crystal by the ultra high vacuum in situ metalation of the free-base 2H-2,3,7,8,12,13,17,18-octaethylporphyrin (2H-OEP) molecules. The metalation proceeds exactly as in the case of 2H-5,10,15,20-tetraphenylporphyrin (2H-TPP) on the same substrate. An extensive surface characterization by means of X-ray photoemission spectroscopy, valence band photoemission, and NEXAFS with synchrotron radiation light provides information on molecular conformation and electronic structure in the monolayer and multilayer cases. We demonstrate that the presence of the ethyl groups affects the tilt of the adsorbed molecules, the conformation of the macrocycle, and the polarization screening in multilayers, but has only a minor effect in the metalation process with respect to 2H-TPP.

  9. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields

    E-Print Network [OSTI]

    Misra, Shashank; Drozdov, Ilya K; Seo, Jungpil; Gyenis, Andras; Kingsley, Simon C J; Jones, Howard; Yazdani, Ali

    2013-01-01T23:59:59.000Z

    We describe the construction and performance of a scanning tunneling microscope (STM) capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically-resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of perform...

  10. The Evaluation of an Expert System for the Analysis of Umbilical Cord Blood

    E-Print Network [OSTI]

    Garibaldi, Jon

    H, partial pressure of carbon dioxide (pCO2) and partial pressure of oxygen (pO2). A parameter termed base. Such assessment of the acid-base status of umbilical cord blood has recently been recommended by the British Royal the fact that the sampling took place within a research study which featured regular staff training

  11. Color Glass Condensate in Brane Models or Don't Ultra High Energy Cosmic Rays Probe $10^{15}eV$ Scale ?

    E-Print Network [OSTI]

    Houri Ziaeepour

    2006-03-16T23:59:59.000Z

    In a previous work hep-ph/0203165 we have studied propagation of relativistic particles in the bulk for some of most popular brane models. Constraints have been put on the parameter space of these models by calculating the time delay due to propagation in the bulk of particles created during the interaction of Ultra High Energy Cosmic Rays with protons in the terrestrial atmosphere. The question was however raised that probability of hard processes in which bulk modes can be produced is small and consequently, the tiny flux of UHECRs can not constrain brane models. Here we use Color Glass Condensate (CGC) model to show that effects of extra dimensions are visible not only in hard processes when the incoming particle hits a massive Kaluza-Klein mode but also through the modification of soft/semi-hard parton distribution. At classical level, for an observer in the CM frame of UHECR and atmospheric hadrons, color charge sources are contracted to a thin sheet with a width inversely proportional to the energy of the ultra energetic cosmic ray hadron and consequently they can see an extra dimension with comparable size. Due to QCD interaction a short life swarm of partons is produced in front of the sheet and its partons can penetrate to the extra-dimension bulk. This reduces the effective density of partons on the brane or in a classical view creates a delay in the arrival of the most energetic particles if they are reflected back due to the warping of the bulk. In CGC approximation the density of swarm at different distance from the classical sheet can be related and therefore it is possible (at least formally) to determine the relative fraction of partons in the bulk and on the brane at different scales. Results of this work are also relevant to the test of brane models in hadron colliders like LHC.

  12. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering

    SciTech Connect (OSTI)

    Zapata-Solvas, E. [Imperial College, London; Jayaseelan, D. [Imperial College, London; Lin, Hua-Tay [ORNL; Brown, P. [DSTL, Porton Down, Salisbury, Wiltshire, UK; Lee, W.E. [Imperial College, London

    2013-01-01T23:59:59.000Z

    Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400 C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.

  13. Arra: Tas::89 0227::Tas Recovery Act 100g Ftp: An Ultra-High Speed Data Transfer Service Over Next Generation 100 Gigabit Per Second Network

    SciTech Connect (OSTI)

    YU, DANTONG [Brookhaven National Lab/Stony Brook University; Jin, Shudong [Stony Brook University

    2014-03-01T23:59:59.000Z

    Data-intensive applications, including high energy and nuclear physics, astrophysics, climate modeling, nano-scale materials science, genomics, and financing, are expected to generate exabytes of data over the coming years, which must be transferred, visualized, and analyzed by geographically distributed teams of users. High-performance network capabilities must be available to these users at the application level in a transparent, virtualized manner. Moreover, the application users must have the capability to move large datasets from local and remote locations across network environments to their home institutions. To solve these challenges, the main goal of our project is to design and evaluate high-performance data transfer software to support various data-intensive applications. First, we have designed a middleware software that provides access to Remote Direct Memory Access (RDMA) functionalities. This middleware integrates network access, memory management and multitasking in its core design. We address a number of issues related to its efficient implementation, for instance, explicit buffer management and memory registration, and parallelization of RDMA operations, which are vital to delivering the benefit of RDMA to the applications. Built on top of this middleware, an implementation and experimental evaluation of the RDMA-based FTP software, RFTP, is described and evaluated. This application has been implemented by our team to exploit the full capabilities of advanced RDMA mechanisms for ultra-high speed bulk data transfer applications on Energy Sciences Network (ESnet). Second, we designed our data transfer software to optimize TCP/IP based data transfer performance such that RFTP can be fully compatible with today’s Internet. Our kernel optimization techniques with Linux system calls sendfile and splice, can reduce data copy cost. In this report, we summarize the technical challenges of our project, the primary software design methods, the major project milestones achieved, as well as the testbed evaluation work and demonstrations during our project life time.

  14. Conductive Polymers

    SciTech Connect (OSTI)

    Bohnert, G.W.

    2002-11-22T23:59:59.000Z

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  15. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.; Day, Anthony R.; Farmer, Orville T.; Hossbach, Todd W.; McIntyre, Justin I.; Miley, Harry S.; Mintzer, Esther E.; Seifert, Allen; Smart, John E.; Warren, Glen A.

    2008-07-01T23:59:59.000Z

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS. Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.

  16. Resistive switching and conductance quantization in Ag/SiO{sub 2}/indium tin oxide resistive memories

    SciTech Connect (OSTI)

    Gao, S.; Chen, C.; Liu, H. Y.; Lin, Y. S.; Li, S. Z.; Lu, S. H.; Wang, G. Y.; Song, C.; Zeng, F., E-mail: zengfei@mail.tsinghua.edu.cn; Pan, F., E-mail: panf@mail.tsinghua.edu.cn [Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhai, Z. [Department of Metallurgical Engineering, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-11T23:59:59.000Z

    The Ag/SiO{sub 2}/indium tin oxide (ITO) devices exhibit bipolar resistive switching with a large memory window of ?10{sup 2}, satisfactory endurance of >500 cycles, good retention property of >2000?s, and fast operation speed of <100?ns, thus being a type of promising resistive memory. Under slow voltage sweep measurements, conductance plateaus with a conductance value of integer or half-integer multiples of single atomic point contact have been observed, which agree well with the physical phenomenon of conductance quantization. More importantly, the Ag/SiO{sub 2}/ITO devices exhibit more distinct quantized conductance plateaus under pulse measurements, thereby showing the potential for realizing ultra-high storage density.

  17. Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

    E-Print Network [OSTI]

    Rivière, R; Schliesser, A; Kippenberg, T J

    2013-01-01T23:59:59.000Z

    We developed an apparatus to couple a 50-micrometer diameter whispering-gallery silica microtoroidal resonator in a helium-4 cryostat using a straight optical tapered-fiber at 1550nm wavelength. On a top-loading probe specifically adapted for increased mechanical stability, we use a specifically-developed "cryotaper" to optically probe the cavity, allowing thus to record the calibrated mechanical spectrum of the optomechanical system at low temperatures. We then demonstrate excellent thermalization of a 63-MHz mechanical mode of a toroidal resonator down to the cryostat's base temperature of 1.65K, thereby proving the viability of the cryogenic refrigeration via heat conduction through static low-pressure exchange gas. In the context of optomechanics, we therefore provide a versatile and powerful tool with state-of-the-art performances in optical coupling efficiency, mechanical stability and cryogenic cooling.

  18. Ultra high frequency imaging acoustic microscope

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23T23:59:59.000Z

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  19. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06T23:59:59.000Z

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  20. Ultra-high speed semiconductor lasers

    SciTech Connect (OSTI)

    Lau, K.Y.; Yariv, A.

    1985-02-01T23:59:59.000Z

    Recent progress on semiconductor lasers having a very high direct modulation bandwidth of beyond 10 GHz are described. Issues related to application of these lasers in actual systems are addressed. Possibilities of further extending the bandwidth of semiconductor lasers are examined.

  1. Ultra-high speed semiconductor lasers

    SciTech Connect (OSTI)

    Lau, K.Y.; Yariv, A.

    1985-02-01T23:59:59.000Z

    Recent research efforts which have led to the development of advanced laser structures possessing a direct modulation bandwidth of beyond 10 GHz under reliable room temperature continuous operation is described. Theoretical considerations on the relevant physical parameter are addressed, and experimental results on bandwidth modulation in short-cavity lasers and direct amplitude modulation in low-temperature operation are discussed. High-photon density devices and parasitic elements limitation are addressed, and mechanisms for bandwidth enhancement are considered. Intermodulation products, intensity noise, and superluminescent damping are discussed. 65 references.

  2. Ultra High Precision Muon Storage Ring

    E-Print Network [OSTI]

    Roberts, B. Lee

    .06 UF5 White 348 Disp. 6.45 UF6 Colorless 64.05 56.54 5.06 UCl3 Olive green 837 1657 5.51 UCl4 Dark

  3. Variable Selection for Ultra High Dimensional Data

    E-Print Network [OSTI]

    Song, Qifan

    2014-05-29T23:59:59.000Z

    of the proposed approach have been made with the penalized likelihood approaches, such as Lasso, elastic net, SIS and ISIS. The numerical results show that the proposed approach generally outperforms the penalized likelihood approaches. The models selected...

  4. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypeforUSDOIin Developing andUlster,

  5. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  6. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  7. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  8. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01T23:59:59.000Z

    particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work... gas release from the fuel particle and contact resistance at the fuel-matrix interface. A description of the methodology used to construct the model is given in Chapter 3. Comparisons between the analytic predictions and the experimental data...

  9. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04T23:59:59.000Z

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  10. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

    2009-05-19T23:59:59.000Z

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  11. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

  12. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07T23:59:59.000Z

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  13. Dissecting holographic conductivities

    E-Print Network [OSTI]

    Richard A. Davison; Blaise Goutéraux

    2015-05-19T23:59:59.000Z

    The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.

  14. Low thermal conductivity skutterudites

    SciTech Connect (OSTI)

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1997-07-01T23:59:59.000Z

    Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

  15. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOE Patents [OSTI]

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03T23:59:59.000Z

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  16. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOE Patents [OSTI]

    Haney, Steven J. (Tracy, CA); Stulen, Richard H. (Livermore, CA); Toly, Norman F. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  17. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, dated 6-25-13, cancels DOE O 422.1. Certified 12-3-14.

  18. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 2, dated 12-3-14, cancels Admin Chg 1.

  19. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  20. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Liu, C.

    1996-04-09T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  1. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01T23:59:59.000Z

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  2. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

    1984-01-01T23:59:59.000Z

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  3. Cermet fuel thermal conductivity

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01T23:59:59.000Z

    ? ) is expressed by k ( + + ) (3 21) where llg? gap conductance (W/mz-'K) kg? ? conductivity of the gas mixture (W/m-'K) d = actual gap dimension (m) gt gz= temperature jump distances at the fuel and cladding surfaces (cm) The value of d in Equation 3. 21...- ?, )+ ( ") 3 (I- ?, ) - ( ? ) 3 1 yvM trMT b 1+ vF g?T a 1-v?a 1-vF (3. 31) and finally, 2aFBF T 2EMC3M 1 1-2va 1-va 1+vM a (3, 32) 21 Once the constants have been determined, Equation 3. 28 can be solved at the fuel particle outer radius to determine...

  4. Electrically conductive alternating copolymers

    DOE Patents [OSTI]

    Aldissi, M.; Jorgensen, B.S.

    1987-08-31T23:59:59.000Z

    Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

  5. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  7. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  8. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06T23:59:59.000Z

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  9. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, Ruoyi (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Embury, John David (Hamilton, CA)

    1998-01-01T23:59:59.000Z

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  10. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01T23:59:59.000Z

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  11. TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX

    E-Print Network [OSTI]

    Walker, D. Greg

    to sev- eral applications including flexible thin-film transistors, PEM fuel cells, and direct energy, particularly Peltier devices, high electrical conductivity and low thermal conductivity are preferred

  12. Enhanced Thermal Conductivity Oxide Fuels

    SciTech Connect (OSTI)

    Alvin Solomon; Shripad Revankar; J. Kevin McCoy

    2006-01-17T23:59:59.000Z

    the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

  13. Lateral conduction infrared photodetector

    DOE Patents [OSTI]

    Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

    2011-09-20T23:59:59.000Z

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  14. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  15. Thermal Conductivity of Coated Paper

    SciTech Connect (OSTI)

    Kerr, Lei L [ORNL; Pan, Yun-Long [Smart Papers, Hamilton, OH 45013; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL; Peterson, Robert C. [Miami University, Oxford, OH

    2009-01-01T23:59:59.000Z

    In this paper, we introduce a method for measuring the thermal conductivity of paper using a hot disk system. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper although it is important to various forms of today s digital printing where heat is used for imaging as well as for toner fusing. This motivates us to investigate the thermal conductivity of paper coating. Our investigation demonstrates that thermal conductivity is affected by the coat weight and the changes in the thermal conductivity affect ink gloss and density. As the coat weight increases, the thermal conductivity increases. Both the ink gloss and density decrease as the thermal conductivity increases. The ink gloss appears to be more sensitive to the changes in the thermal conductivity.

  16. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  17. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  18. Optical Conductivity with Holographic Lattices

    E-Print Network [OSTI]

    Gary T. Horowitz; Jorge E. Santos; David Tong

    2012-08-03T23:59:59.000Z

    We add a gravitational background lattice to the simplest holographic model of matter at finite density and calculate the optical conductivity. With the lattice, the zero frequency delta function found in previous calculations (resulting from translation invariance) is broadened and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a strong resemblance to the properties of some of the cuprates.

  19. Appendix C Conducting Structured Walkthroughs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21T23:59:59.000Z

    This guide describes how to conduct a structured walkthroughs during the lifecycle stages of software engineering projects, regardless of hardware platform.

  20. Enhancement of Topological Insulators Surface Conduction

    E-Print Network [OSTI]

    Yu, Xinxin

    2012-01-01T23:59:59.000Z

    Enhancement of Topological Insulators Surface Conduction AEnhancement of Topological Insulators Surface Conduction byTopological Insulator

  1. Conductive polymer-based material

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI); Dourado, Sunil K. (Ann Arbor, MI); Dulebohn, Joel I. (Lansing, MI); Hanchar, Robert J. (Charlotte, MI)

    2007-04-17T23:59:59.000Z

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  2. Experimental thermal conductivity and contact conductance of graphite composites 

    E-Print Network [OSTI]

    Jackson, Marian Christine

    1998-01-01T23:59:59.000Z

    Graphite fiber organic matrix composites were reviewed ics. for potential heat sink applications in the electronics packaging determined the effective transverse and longitudinal thermal industry. This experimental investigation conductivity...

  3. Experimental thermal conductivity and contact conductance of graphite composites

    E-Print Network [OSTI]

    Jackson, Marian Christine

    1998-01-01T23:59:59.000Z

    Graphite fiber organic matrix composites were reviewed ics. for potential heat sink applications in the electronics packaging determined the effective transverse and longitudinal thermal industry. This experimental investigation conductivity...

  4. Ultra high performance connectors for power transmission applications

    DOE Patents [OSTI]

    Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao

    2014-03-04T23:59:59.000Z

    Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.

  5. Ultra High Temperature Rapid Thermal Annealing of GaN

    SciTech Connect (OSTI)

    Cao, X.A.; Fu, M.; Han, J.; Pearton, S.J.; Rieger, D.J.; Sekhar, J.A.; Shul, R.J.; Singh, R.K.; Wilson, R.G.; Zolper, J.C.

    1998-11-20T23:59:59.000Z

    All of the major acceptor (Mg, C, Be) and donor (Si, S, Se and Te) dopants have been implanted into GaN films grown on A1203 substrates. Annealing was performed at 1100- 1500 C, using AIN encapsulation. Activation percentages of >90Y0 were obtained for Si+ implantation annealed at 1400 C, while higher temperatures led to a decrease in both carrier concentration and electron mobility. No measurable redistribution of any of the implanted dopants was observed at 1450 C.

  6. Instrument Series: Microscopy Ultra-High Vacuum, Variable-

    E-Print Network [OSTI]

    (graphene), and formation of self-assembled monolayers. Thin film and cluster growth ­ characterizing AFM Operations Ì Includes AES, XPS, and LEED Ì Sample Preparation: Thin Film Growth, Ion Sputtering preparation ­ offers heating up to 1100 K, cooling down to 100 K, ion sputtering, evaporation sources for film

  7. Ultra high temperature diffusion apparatus and operating procedures

    SciTech Connect (OSTI)

    Wyrick, S.B.

    1985-11-15T23:59:59.000Z

    It is the purpose of this paper to present an experimental apparatus which is capable of measuring diffusion coefficients of interdiffusing gases in the temperature range 300K to 2500K. Because of the high temperatures which will be encountered, a special alloy of tantalum (T-111) is used to house the diffusion process. This T-111 diffusion cell is heated via radiation heat from a tungsten heating element powered by a Saban saturable reactor power supply. The diffusion cell heating element are encased in a nickel-plated copper cooling can. This entire assembly is enclosed in an Ultek vacuum chamber to prevent oxidation of the diffusion cell. This report covers the construction and calibration of the diffusion cell, details of the gas loading and sampling system, and complete information on the components required to operate the vacuum furnace. Thus far, several experiments have been run in the temperature range 600K to 800K and the resulting diffusion coefficients agree fairly well with previously published values. 21 refs., 9 figs., 4 tabs.

  8. Underwater Acoustic Detection of Ultra High Energy Neutrinos

    E-Print Network [OSTI]

    V. Niess; V. Bertin

    2006-04-21T23:59:59.000Z

    We investigate the acoustic detection method of 10^18-20 eV neutrinos in a Mediterranean Sea environment. The acoustic signal is re-evaluated according to dedicated cascade simulations and a complex phase dependant absorption model, and compared to previous studies. We detail the evolution of the acoustic signal as function of the primary shower characteristics and of the acoustic propagation range. The effective volume of detection for a single hydrophone is given taking into account the limitations due to sea bed and surface boundaries as well as refraction effects. For this 'benchmark detector' we present sensitivity limits to astrophysical neutrino fluxes, from which sensitivity bounds for a larger acoustic detector can be derived. Results suggest that with a limited instrumentation the acoustic method would be more efficient at extreme energies, above 10^20 eV.

  9. Energy spectrum of ultra high energy cosmic rays

    E-Print Network [OSTI]

    Ioana C. Maris; for the Pierre Auger Collaboration

    2008-08-12T23:59:59.000Z

    The construction of the southern site of the Pierre Auger Observatory is almost completed. Three independent measurements of the flux of the cosmic rays with energies larger than 1 EeV have been performed during the construction phase. The surface detector data collected until August 2007 have been used to establish a flux suppression at the highest energies with a 6 sigma significance. The observations of cosmic rays by the fluorescence detector allowed the extension of the energy spectrum to lower energies, where the efficiency of the surface detector is less than 100% and a change in the spectral index is expected.

  10. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect (OSTI)

    Fisch, Nathaniel J

    2014-01-08T23:59:59.000Z

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­?energy-­? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­?energy-­? density plasma the ideas for steady-­?state current drive developed for low-­?energy-­? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­?energy-­?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  11. Ultra-high sensitivity radiation detection apparatus and method

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Valentine, John D. (Cincinnati, OH); Markum, Francis (Joliet, IL); Zawadzki, Mary (Rouses Point, NY); Dickerman, Charles (Downers Grove, IL)

    1999-01-01T23:59:59.000Z

    A method and apparatus are provided to concentrate and detect very low levels of radioactive noble gases from the atmosphere. More specifically the invention provides a method and apparatus to concentrate xenon, krypton and radon in an organic fluid and to detect these gases by the radioactive emissions.

  12. Acceleration of ULtra High Energy Cosmic Rays: Cosmic Zevatrons?

    E-Print Network [OSTI]

    T. W. Jones

    2002-10-21T23:59:59.000Z

    In this lecture I outline some of the underlying physics issues associated with accelerators plausibly capable of explaining the UHECRs up to ZeV energies. I concentrate on the concentrate on mechanisms and their constraints, but provide a brief background on on observations and the constraints they supply, as well.

  13. CLINICAL SCIENCES High-Speed UltraHigh-Resolution Optical

    E-Print Network [OSTI]

    Srinivasan, Vivek J.

    of the perifoveal pho- toreceptor inner segment/outer segment junction and thin- ning of the outer nuclear layer- velopedbyourgroupforuseintheophthal- mologyclinicattheNewEnglandEyeCen- ter,Boston,Mass.Thissystemusesspectral or­high-resolutionOCTenablessuperior visualizationofretinalmorphologyinanum- Author Affiliations: New England Eye Center, Tufts­New England Medical Center, Tufts University

  14. Towards Ultra-High Resolution Models of Climate and Weather

    E-Print Network [OSTI]

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2008-01-01T23:59:59.000Z

    Models of Climate and Weather Michael Wehner, Leonid Oliker,modeling climate change and weather prediction is one of thedelity in both short term weather prediction and long term

  15. Ultra-High Temperature Sensors Based on Optical Property

    SciTech Connect (OSTI)

    Nabeel Riza

    2008-09-30T23:59:59.000Z

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  16. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Broader source: Energy.gov (indexed) [DOE]

    Dr. Lawrence F. Allard Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge, TN DOE 2010 Vehicle Technologies Annual Merit Review and Peer Evaluation...

  17. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Broader source: Energy.gov (indexed) [DOE]

    L. F. Allard Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge, TN 2009 DOE Merit Review Crystal City, MD May 22, 2009 Agreement PM-9105 Project ID:...

  18. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Broader source: Energy.gov (indexed) [DOE]

    Characterization Dr. Lawrence F. Allard Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge, TN DOE 2010 Vehicle Technologies Annual Merit Review...

  19. Ultra-high angular resolution by gravitational microlensing

    E-Print Network [OSTI]

    M. B. Bogdanov

    2000-09-14T23:59:59.000Z

    The problem of restoration of the source brightness distribution from an analysis of the stellar and AGNs microlensing light curves is investigated. In case of microlensing of stars by a point-mass lens as well as for caustic crossing events for binary lens the problem can be reduced to solution of the Fredholm integral equation of the 1st kind. Concrete form of the kernel of this equation depends on a type of the microlensing event. Assuming the circular symmetry of the stellar disk the search for radial brightness distribution can be carried out in the special compact sets of functions which correspond to the physics of the problem. These sets include the non-negative functions that are not increasing with increasing distance from the center of stellar disk and the upwards convex non-negative functions. The brightness distribution for the AGNs accretion disks is also circularly symmetric, but only in the locally co-moving frame. Therefore, the kernel of integral equation that determined the AGN microlensing light curve must take into account equally with the projection effect on picture plane the influence of relativistic effects. The search for solution of this equation can be carried out in the set of non-negative down convex functions. The results of analysis of microlensing light curves for the red giant MACHO Alert 95-30 and the A6 star MACHO 98-SMC-1 as well as the results of numerical simulations for the AGN microlensing observations are given.

  20. Detecting and Blocking Network Attacks at Ultra High Speeds

    SciTech Connect (OSTI)

    Paxson, Vern

    2010-11-29T23:59:59.000Z

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a monitor in front of one of the bank's server farms cannot safely omit a subset of the traffic from analysis. In this environment, Shunting cannot realize its main performance benefits, and the monitoring task likely calls for using custom hardware instead. However, in many other environments we find Shunting holds promise for delivering major performance gains. This arises due to the the widely documented 'heavy tail' nature of most forms of network traffic, which we might express as 'a few of the connections carry just about all the bytes.' The key additional insight is '... and very often for these few large connections, the very beginning of the connection contains nearly all the information of interest from a security analysis perspective.' We argue that this second claim holds because it is at the beginning of connections that authentication exchanges occur, data or file names and types are specified, request and reply status codes conveyed, and encryption is negotiated. Once these occur, we have seen most of the interesting facets of the dialog. Certainly the remainder of the connection might also yield some grist for analysis, but this is generally less likely, and thus if we want to lower analysis load at as small a loss as possible of information relevant to security analysis, we might best do so by skipping the bulk of large connections. In a different context, the 'Time Machine' work by Kornexl and colleagues likewise shows that in some environments we can realize major reductions in the volume of network traffic processed, by limiting the processing to the first 10-20 KB of each connection. As a concrete example, consider an IPS that monitors SSH traffic. When a new SSH connection arrives and the Shunt fails to find an entry for it in any of its tables (per-address, per-port, per-connection), it executes the default action of diverting the connection through the IPS. The IPS analyzes the beginning of the connection in this fashion. As long as it is satisified with the dialog, it reinjects the packets forwarded to it so that the connection can continue. If the connection successfully

  1. Ultra-High Resolution Electron Microscopy for Catalyst Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan WorkingUSEA/Johnsonand

  2. Ultra-High Resolution Electron Microscopy for Catalyst Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan WorkingUSEA/JohnsonandDepartment of

  3. Ultra-high Resolution Electron Microscopy for Catalyst Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-JapanCatalysts | Department of

  4. CONDUCTANCE OF NANOSYSTEMS WITH INTERACTION

    E-Print Network [OSTI]

    Ramsak, Anton

    -beam lithography or small metallic grains,[1] semiconductor quantum dots,[2] or a single large molecule of an atomic-size bridge that forms in the break,[3] or even measure the conductance of a single hydrogen

  5. Continuous production of conducting polymer

    E-Print Network [OSTI]

    Gaige, Terry A. (Terry Alden), 1981-

    2004-01-01T23:59:59.000Z

    A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

  6. Plasma conductivity at finite coupling

    E-Print Network [OSTI]

    Babiker Hassanain; Martin Schvellinger

    2011-08-31T23:59:59.000Z

    By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

  7. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01T23:59:59.000Z

    Conduction  in  Rare-­Earth  Phosphates   by   Hannah  Conduction  in  Rare-­?Earth  Phosphates   by   Hannah  conduction  in  rare  earth  phosphates.  Specifically,  

  8. Electrically Conductive Bacterial Nanowires Produced by Shewanella...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms . Electrically Conductive Bacterial Nanowires Produced by Shewanella...

  9. Optical conductivity of curved graphene

    E-Print Network [OSTI]

    A. J. Chaves; T. Frederico; O. Oliveira; W. de Paula; M. C. Santos

    2014-05-01T23:59:59.000Z

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far and mid infrared frequencies for periodicities $\\sim100\\,$nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthemore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

  10. Conductive Channel for Energy Transmission

    SciTech Connect (OSTI)

    Apollonov, Victor V. [A.M. Prokhorov General Physics Institute, Vavilov Str. 38, Moscow, 119991 (Russian Federation)

    2011-11-10T23:59:59.000Z

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  11. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  12. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  13. Electroosmosis in conducting nanofluidic channels

    E-Print Network [OSTI]

    Zhao, Cunlu

    2010-01-01T23:59:59.000Z

    Theoretical modeling of electroosmosis through conducting (ideally polarizable) nanochannels is reported. Based on the theory of induced charge electrokinetics, a novel nanofluidic system which possesses both adjustable ion selective characteristics and flexible flow control is proposed. Such nanofluidic devices operate only with very low gate control voltage applied on the conductive walls of nanochannels, and thus even can be energized by normal batteries. We believe that it is possible to use such metal-electrolyte configurations to overcome the difficulties met with conventional metal-isolator-electrolyte systems for nanofluidic applications.

  14. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, T.E.; Spieker, D.A.

    1983-12-08T23:59:59.000Z

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  15. Conducting Your Own Energy Audit

    E-Print Network [OSTI]

    Phillips, J.

    2008-01-01T23:59:59.000Z

    Why should you or anyone be interested in conducting a time intensive energy audit. What equipment is needed? When should you get started? Who should do it? The answer to Why is that energy costs are cutting into a company’s profit every minute...

  16. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, Thomas E. (Grandview, MO); Spieker, David A. (Olathe, KS)

    1985-03-19T23:59:59.000Z

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  17. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  18. Conduction at a ferroelectric interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung-Guen; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly,more »in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  19. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J. [Yale Univ., New Haven, CT (United States); Malashevich, Andrei [Yale Univ., New Haven, CT (United States); Disa, Ankit S. [Yale Univ., New Haven, CT (United States); Han, Myung-Guen [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Hanghui [Yale Univ., New Haven, CT (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Ismail-Beigi, Sohrab [Yale Univ., New Haven, CT (United States); Walker, Frederick J. [Yale Univ., New Haven, CT (United States); Ahn, Charles H. [Yale Univ., New Haven, CT (United States);

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  20. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  1. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

    1990-01-01T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  2. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  3. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  4. Precise Application of Transparent Conductive Oxide Coatings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide (TCO)...

  5. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, M.

    1988-02-12T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  6. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1989-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  7. Advances in inherently conducting polymers

    SciTech Connect (OSTI)

    Aldissi, M.

    1987-09-01T23:59:59.000Z

    The discovery of polyacetylene as the prototype material led to extensive research on its synythesis and characterization. The techniques that emerged as the most important and promising ones are those that dealt with molecular orientation and that resulted in conductivities almost as high as that of copper. The study of dozens of other materials followed. Interest in conducting polymers stems from their nonclassical optical and electronic properties as well as their potential technological applications. However, some of the factors currently limiting their use are the lack of long-term stability and the need to develop conventional low-cost techniques for easy processing. Therefore, research was extended toward solving these problems, and progress has been recently made in that direction. The synthesis of new materials such as stable and easily processable alkylthiophenes, water-soluble polymers, and multicomponent systems, including copolymers and composites, constitutes an important step forward in the area of synthetic metals. However, a full understanding of materials chemistry and properties requires more work in the years to come. Although, few small-scale applications have proven to be successful, long-term stability and applicability tests are needed before their commercial use becomes reality.

  8. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1990-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  9. CRADA Final Report: Ionically Conductive Membranes Oxygen Separation

    SciTech Connect (OSTI)

    Visco, Steven J.

    2001-10-29T23:59:59.000Z

    Scientists at the Lawrence Berkeley National Laboratory (LBNL) in a collaborative effort with Praxair Corporation developed a bench-top oxygen separation unit capable of producing ultra-high purity oxygen from air. The device is based on thin-film electrolyte technology developed at LBNL as part of a solid oxide fuel cell program. The two teams first demonstrated the concept using planar ceramic disks followed by the development of tubular ceramic structures for the bench-top unit. The highly successful CRADA met all technical milestones on time and on budget. Due to the success of this program the industrial partner and the team at LBNL submitted a grant proposal for further development of the unit to the Advanced Technology Program administered by the National Institute of Standar~s. This proposal was selected for funding, and now the two teams are developing a precommercial oxygen separation unit under a 3-year, $6 million dollar program.

  10. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-?B and MAPK signaling pathways

    SciTech Connect (OSTI)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01T23:59:59.000Z

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-?B) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-?B and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-?B and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9 targeted signaling pathways mediated by Akt-NF-kB, VEGF, and MMP-2. • The anti-angiogenic activity of OSU-A9 supports its clinical promise.

  11. Electronically conductive polymer composites and microstructures

    SciTech Connect (OSTI)

    Van Dyke, L.S.

    1993-01-01T23:59:59.000Z

    Composites of electronically conductive polymers with insulating host materials are investigated. A template synthesis method was developed for the production of electronically conductive polymer microstructures. In template synthesis the pores of a porous host membrane act as templates for the polymerization of a conductive polymer. The template synthetic method can be used to form either solid microfibrils or hollow microtubules. The electrochemical properties of conductive polymers produced via the template synthesis method are superior to those of conventionally synthesized conductive polymers. Electronically conductive polymers are used to impart conductivity to non-conductive materials. Two different approaches are used. First, thin film composites of conductive polymers with fluoropolymers are made by the polymerization of conductive polymers onto fluoropolymer films. Modification of the fluoropolymer surface prior to conductive polymer polymerization is necessary to obtain good adhesion between the two materials. The difference in adhesion of the conductive polymer to the modified and unmodified fluoropolymer surfaces can be used to pattern the conductive polymer coating. Patterning of the conductive polymer coating can alternatively be done via UV laser ablation of the conductive polymer. The second method by which conductive polymers were used to impart conductivity to an insulating polymer was via the formation of a graft copolymer. In this approach, heterocyclic monomers grafted to an insulating polyphosphazene backbone were polymerized to yield semiconductive materials. Finally the measurement of electrolyte concentration in polypyrrole and the effects of hydroxide anion on the electrochemical and electrical properties of polypyrrole are described. It is shown that treatment of polypyrrole with hydroxide anion increases the potential window over which polypyrrole is a good electronic conductor.

  12. CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS

    E-Print Network [OSTI]

    Collins, Gary S.

    CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS Catherine Smith, Brooks Lively, Wei of polymers. Emerging technologies have demonstrated the crucial need for highly conductive polymer combination between polycarbonate (PC) and hybrid concentrations of CNT and GNP nanofillers was investigated

  13. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01T23:59:59.000Z

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  14. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect (OSTI)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2014-02-15T23:59:59.000Z

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  15. Holographic conductivity of zero temperature superconductors

    E-Print Network [OSTI]

    R. A. Konoplya; A. Zhidenko

    2010-02-15T23:59:59.000Z

    Using the recently found by G. Horowitz and M. Roberts (arXiv:0908.3677) numerical model of the ground state of holographic superconductors (at zero temperature), we calculate the conductivity for such models. The universal relation connecting conductivity with the reflection coefficient was used for finding the conductivity by the WKB approach. The dependence of the conductivity on the frequency and charge density is discussed. Numerical calculations confirm the general arguments of (arXiv:0908.3677) in favor of non-zero conductivity even at zero temperature. In addition to the Horowitz-Roberts solution we have found (probably infinite) set of extra solutions which are normalizable and reach the same correct RN-AdS asymptotic at spatial infinity. These extra solutions (which correspond to larger values of the grand canonical potential) lead to effective potentials that also vanish at the horizon and thus correspond to a non-zero conductivity at zero temperature.

  16. Thermal conductivity and heat transfer in superlattices

    SciTech Connect (OSTI)

    Chen, G.; Neagu, M.; Borca-Tasciuc, T.

    1997-07-01T23:59:59.000Z

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  17. Sandia National Laboratories: electronic conducting transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronic conducting transition metal oxides Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory,...

  18. Conducting polymer actuator enhancement through microstructuring

    E-Print Network [OSTI]

    Pillai, Priam Vasudevan

    2007-01-01T23:59:59.000Z

    Electroactive conducting polymers, such as polypyrrole, polyaniline, and polythiophenes are currently studied as novel biologically inspired actuators. The actuation mechanisms in these materials are based on the diffusion ...

  19. Fabrication and characterization of conducting polymer microwires

    E-Print Network [OSTI]

    Saez, Miguel Angel

    2009-01-01T23:59:59.000Z

    Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that ...

  20. Low temperature proton conducting oxide devices

    DOE Patents [OSTI]

    Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

    2008-08-19T23:59:59.000Z

    A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

  1. Conducting polymer nanostructures for biological applications

    E-Print Network [OSTI]

    Berdichevsky, Yevgeny

    2006-01-01T23:59:59.000Z

    of Electronically Conductive Polymer Nanostructures,” Acc.et al. , “Conjugated-Polymer Micro- and Milliactuators for3. Y. Berdichevsky, Y. -H. Lo, “Polymer Microvalve Based on

  2. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

  3. EPA -- Addressing Children's Health through Reviews Conducted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health...

  4. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2005-12-20T23:59:59.000Z

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  5. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27T23:59:59.000Z

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  6. Flexible moldable conductive current-limiting materials

    SciTech Connect (OSTI)

    Shea, John Joseph (Pittsburgh, PA); Djordjevic, Miomir B. (Milwaukee, WI); Hanna, William Kingston (Pittsburgh, PA)

    2002-01-01T23:59:59.000Z

    A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

  7. NUMBER: 1530 TITLE: Code of Student Conduct

    E-Print Network [OSTI]

    . For the purposes of this Code, the term "University Official" is inclusive of "Faculty Member" as defined in IV 1530 1 NUMBER: 1530 TITLE: Code of Student Conduct APPROVED: August 27, 1970; Revised June 14, 2012 I. BASIS AND RATIONALE FOR A CODE OF STUDENT CONDUCT Old Dominion University

  8. Selected factors influencing GCL hydraulic conductivity

    SciTech Connect (OSTI)

    Petrov, R.J. [Trow Consulting Engineers Ltd., Brampton, Ontario (Canada); Rowe, R.K.; Quigley, R.M. [Univ. of Western Ontario, London, Ontario (Canada)

    1997-08-01T23:59:59.000Z

    A series of confined swell and hydraulic conductivity tests were conducted on a needle-punched geosynthetic clay liner (GCL) with water as the hydrating medium and reference permeant. Increases in the static confining stress and the needle-punching both restricted GCL swell and contributed to lower bulk GCL void ratios and hence significantly lower hydraulic conductivity values. A well defined linear-log relationship is found between the bulk void ratio and hydraulic conductivity. The number of pore volumes of permeant flow and consequently the level of chemical equilibrium is shown to have a significant effect on the hydraulic conductivity. It is shown that there is a decrease in hydraulic conductivity for small amounts of permeant flow for all ethanol/water mixtures examined. At or near chemical equilibrium, low concentration mixtures (25 and 50% ethanol) continued to produce relative decreases in GCL hydraulic conductivity due to the increased viscosity of the permeant; however, highly concentrated mixtures (75 and 100% ethanol) produced relative increases in GCL hydraulic conductivity arising from double layer contraction. The implications are discussed.

  9. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect (OSTI)

    Jamil A. Khan

    2009-11-21T23:59:59.000Z

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  10. The Generalized Switched Accounting or Conduction

    E-Print Network [OSTI]

    The Generalized Switched Accounting or Conduction Isaac Zafrany1 1 Technical Support Avant modeling and simulation of PWM converters was extended to include conduction losses. The method covers losses due to the inductor's resistance and due to the voltage drops across the switch and the diode

  11. Proton conducting ceramic membranes for hydrogen separation

    DOE Patents [OSTI]

    Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

    2011-09-06T23:59:59.000Z

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  12. The Organic Chemistry of Conducting Polymers

    SciTech Connect (OSTI)

    Tolbert, Laren Malcolm [Georgia Institute of Technology

    2014-12-01T23:59:59.000Z

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  13. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect (OSTI)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01T23:59:59.000Z

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  14. Increased thermal conductivity monolithic zeolite structures

    DOE Patents [OSTI]

    Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

    2008-11-25T23:59:59.000Z

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  15. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15T23:59:59.000Z

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  16. Thermal conductivity of bulk nanostructured lead telluride

    SciTech Connect (OSTI)

    Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-01-13T23:59:59.000Z

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

  17. Characterization of macro-length conducting polymers and the development of a conducting polymer rotary motor

    E-Print Network [OSTI]

    Schmid, Bryan D. (Bryan David), 1981-

    2005-01-01T23:59:59.000Z

    Conducting polymers are a subset of materials within the electroactive polymer class that exhibit active mechanical deformations. These deformations induce stresses and strains that allow for conducting polymers to be used ...

  18. M. Bahrami ENSC 388 (F09) Steady Conduction Heat Transfer 1 Steady Heat Conduction

    E-Print Network [OSTI]

    Bahrami, Majid

    of the material. In the limiting case where x0, the equation above reduces to the differential form: W dx dT k is the only energy interaction; the energy balance for the wall can be expressed: dt dE QQ wall outin). Thermal Conductivity Thermal conductivity k [W/mK] is a measure of a material's ability to conduct heat

  19. Modeling tensorial conductivity of particle suspension networks

    E-Print Network [OSTI]

    Tyler Olsen; Ken Kamrin

    2015-01-13T23:59:59.000Z

    Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

  20. Synthesis and characterization of conducting polymer actuators

    E-Print Network [OSTI]

    Vandesteeg, Nathan A. (Nathan Alan)

    2007-01-01T23:59:59.000Z

    Conducting polymers are known to mechanically respond to electrochemical stimuli and have been utilized as linear actuators. To date, the most successful mechanism for actuation is ionic ingress and egress, though mechanisms ...

  1. LE JOURNAL DE PHYSIQUE LA CONDUCTION LECTRIQUE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LE JOURNAL DE PHYSIQUE ET LE RADIUM LA CONDUCTION ÉLECTRIQUE DES HYDROCARBURES LIQUIDES EN COUCHES hydrocarbures liquides en couches minces, signalé dans un précédent mémoire. Les expériences, faites dans des

  2. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  3. November 15, 2012 Conducting and managing documents

    E-Print Network [OSTI]

    Kaji, Hajime

    1 November 15, 2012 Conducting and managing documents #12;2 Agenda 1. Basics of copyright 2. Necessary information for citing materials 3. Citation Manager #12;1.Basics of copyright 3 #12;Definitions

  4. Large displacement fast conducting polymer actuators

    E-Print Network [OSTI]

    Chen, Angela Y. (Angela Ying-Ju), 1982-

    2006-01-01T23:59:59.000Z

    Conducting polymers are a promising class of electroactive materials that undergo volumetric changes under applied potentials, which make them particularly useful for many actuation applications. Polypyrrole , is one of ...

  5. Electrical conductivity of segregated network polymer nanocomposites 

    E-Print Network [OSTI]

    Kim, Yeon Seok

    2009-06-02T23:59:59.000Z

    . The composites made using the emulsion with higher modulus show lower percolation threshold and higher conductivity. Higher modulus causes tighter packing of carbon black between the polymer particles. When the drying temperature was increased to 80°C...

  6. Conducting polymer nanostructures for biological applications

    E-Print Network [OSTI]

    Berdichevsky, Yevgeny

    2006-01-01T23:59:59.000Z

    Synthesis and characterization of conducting copolymer nanofibrils of pyrrolepolypyrrole synthesis was 0.1 M pyrrole monomer dissolved insynthesis Polypyrrole was electropolymerized from a solution of 0.1 M pyrrole (

  7. Development and characterization of conducting polymer actuators

    E-Print Network [OSTI]

    Pillai, Priam Vasudevan

    2011-01-01T23:59:59.000Z

    Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out ...

  8. California: Conducting Polymer Binder Boosts Storage Capacity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 10:17am Addthis Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a...

  9. Nanopatterned Electrically Conductive Films of Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Mentzel, Tamar

    We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals ...

  10. Finite Heat conduction in 2D Lattices

    E-Print Network [OSTI]

    Lei Yang; Yang Kongqing

    2001-07-30T23:59:59.000Z

    This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.

  11. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10T23:59:59.000Z

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  12. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27T23:59:59.000Z

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  13. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28T23:59:59.000Z

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  14. Conductive polymeric compositions for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A. (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2009-03-17T23:59:59.000Z

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  15. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  16. Acetonitrile Drastically Boosts Conductivity of Ionic Liquids

    E-Print Network [OSTI]

    Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V

    2012-01-01T23:59:59.000Z

    We apply a new methodology in the force field generation (PCCP 2011, 13, 7910) to study the binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). The investigated RTILs are composed of tetrafluoroborate (BF4) anion and dialkylimidazolium cations, where one of the alkyl groups is methyl for all RTILs, and the other group is different for each RTILs, being ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Specific densities, radial distribution functions, ionic cluster distributions, heats of vaporization, diffusion constants, shear viscosities, ionic conductivities, and their correlations are discussed. Upon addition of ACN, the ionic conductivity of RTILs is found to increase by more than 50 times, that significantly exceeds an impact of most known solvents. Remarkably, the sharpest conductivity growth is found for the long-tailed imidazolium-based cations. This new fact motivates to revisit an application of these binary systems as a...

  17. Gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  18. Thermal Conductivity of Ordered Molecular Water

    SciTech Connect (OSTI)

    W Evans; J Fish; P Keblinski

    2006-02-16T23:59:59.000Z

    We use molecular dynamics simulation to investigate thermal transport characteristics of water with various degree of orientational and translational order induced by the application of an electric field. We observe that orientational ordering of the water dipole moments has a minor effect on the thermal conductivity. However, electric-field induced crystallization and associated translational order results in approximately a 3-fold increase of thermal conductivity with respect to the base water, i.e., to values comparable with those characterizing ice crystal structures.

  19. Thermoelectric DC conductivities from black hole horizons

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2014-10-14T23:59:59.000Z

    An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.

  20. Electrically conductive connection for an electrode

    DOE Patents [OSTI]

    Hornack, T.R.; Chilko, R.J.

    1986-09-02T23:59:59.000Z

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  1. Extremal structures of multiphase heat conducting composites

    E-Print Network [OSTI]

    Cherkaev, Andrej

    Extremal structures of multiphase heat conducting composites A.V. Cherkaev \\Lambda L.V. Gibiansky y April 19, 1995 Abstract In this paper we construct microstructures of multiphase composites with un be easily gen­ eralized for the three­dimensional composites with arbitrary number of phases. 1 Introduction

  2. Conduct of Operations Requirements for DOE Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-07-09T23:59:59.000Z

    "To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

  3. Code of Conduct Etiquette at Utrecht University

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Code of Conduct Etiquette at Utrecht University What principles underpin our behaviour of Utrecht University. The Code describes the values that govern the way people work and study for sanctions. How is Utrecht University different from other universities? What do we wish to achieve? MISSION

  4. Mössbauer study of conductive oxide glass

    SciTech Connect (OSTI)

    Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2014-10-27T23:59:59.000Z

    Heat treatment of barium iron vanadate glass, BaO?Fe{sub 2}O{sub 3}?V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (?) from several M?cm to several ?cm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (?) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

  5. How to Conduct an Energy Efficiency Study

    E-Print Network [OSTI]

    Biles, J. E.

    1979-01-01T23:59:59.000Z

    This paper describes how to organize a team of specialists in order to conduct an energy efficiency study in a totally unfamiliar plant. In-plant data gathering techniques are presented as well as methods for obtaining ideas and information from...

  6. Faculty and Staff Commute Report Conducted by

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Faculty and Staff Commute Report July 2008 Conducted by #12;Executive Summary The price of gasoline at Austin is $91.35 per month. With no relief in sight to rising gasoline prices, employees are increasingly there was no correlation between average work commute and salary, considering the price of gas, getting to work can

  7. Heat conductivity of a pion gas

    E-Print Network [OSTI]

    Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

    2007-02-13T23:59:59.000Z

    We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

  8. Conducting a Wildland Visual Resources Inventory1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Conducting a Wildland Visual Resources Inventory1 James F. Palmer 2/ 1/ Submitted to the National of Massachusetts, Amherst, MA 01003. Abstract: This paper describes a procedure for system- atically inventorying- tion and description of each inventoried scene are recorded on U.S. Geological Survey topographic maps

  9. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03T23:59:59.000Z

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  10. Application of conducting polymers to electroanalysis

    SciTech Connect (OSTI)

    Josowicz, M.A.

    1994-04-01T23:59:59.000Z

    Conducting polymers can be used as sensitive layers in chemical microsensors leading to new applications of theses devices. They offer the potential for developing material properties that are critical to the sensor sensitivity, selectivity and fabrication. The advantages and limitations of the use of thin polymer layers in electrochemical sensors are discussed.

  11. Fig. 1 A 1 2 Conductance

    E-Print Network [OSTI]

    Hasegawa, Shuji

    were direct electrical conductivity measurements with monolithic microscopic four-point probes and four. The probe spacing (a side of the square) was 60 µm. Experimental data are fitted by a function described of monolithic MFPP measurements with 8-µm spacing probes (A) on a step-bunching region and (B) a step-free re

  12. Code of Official Conduct Student Government Association

    E-Print Network [OSTI]

    Long, Nicholas

    Code of Official Conduct Student Government Association Stephen F. Austin State University Section, the Student Government Association of Stephen F. Austin State University has adopted this Code of Official Association officials who may be elected, appointed, or employed comply with both the Letter and the Spirit

  13. Carbon Nanotube Assemblies for Transparent Conducting Electrodes

    SciTech Connect (OSTI)

    Garrett, Matthew P [ORNL] [ORNL; Gerhardt, Rosario [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The goal of this chapter is to introduce readers to the fundamental and practical aspects of nanotube assemblies made into transparent conducting networks and discuss some practical aspects of their characterization. Transparent conducting coatings (TCC) are an essential part of electro-optical devices, from photovoltaics and light emitting devices to electromagnetic shielding and electrochromic widows. The market for organic materials (including nanomaterials and polymers) based TCCs is expected to show a growth rate of 56.9% to reach nearly 20.3billionin2015,whilethemarketfortraditionalinorganictransparentelectronicswillexperiencegrowthwithratesof6.7103 billion in 2015. Emerging flexible electronic applications have brought additional requirements of flexibility and low cost for TCC. However, the price of indium (the major component in indium tin oxide TCC) continues to increase. On the other hand, the price of nanomaterials has continued to decrease due to development of high volume, quality production processes. Additional benefits come from the low cost, nonvacuum deposition of nanomaterials based TCC, compared to traditional coatings requiring energy intensive vacuum deposition. Among the materials actively researched as alternative TCC are nanoparticles, nanowires, and nanotubes with high aspect ratio as well as their composites. The figure of merit (FOM) can be used to compare TCCs made from dissimilar materials and with different transmittance and conductivity values. In the first part of this manuscript, we will discuss the seven FOM parameters that have been proposed, including one specifically intended for flexible applications. The approach for how to measure TCE electrical properties, including frequency dependence, will also be discussed. We will relate the macroscale electrical characteristics of TCCs to the nanoscale parameters of conducting networks. The fundamental aspects of nanomaterial assemblies in conducting networks will also be addressed. We will review recent literature on TCCs composed of carbon nanotubes of different types in terms of the FOM.

  14. Nuclear fission as resonance-mediated conductance

    E-Print Network [OSTI]

    G. F. Bertsch

    2014-12-18T23:59:59.000Z

    For 75 years the theory of nuclear fission has been based on the existence of a collective coordinate associated with the nuclear shape, an assumption required by the Bohr-Wheeler formula as well as by the R-matrix theory of fission. We show that it is also possible to formulate the theory without the help of collective coordinates. In the new formulation, fission is facilitated by individual states in the barrier region rather than channels over the barrier. In a certain limit the theory reduces to a formula closely related to the formula for electronic conductance through resonant tunneling states. In contrast, conduction through channels gives rise to a staircase excitation function that is well-known in nanoscale electronics but has never been seen in nuclear fission.

  15. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

    2008-07-01T23:59:59.000Z

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  16. Micro-machined thermo-conductivity detector

    DOE Patents [OSTI]

    Yu, Conrad (Antioch, CA)

    2003-01-01T23:59:59.000Z

    A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.

  17. Multiterminal Conductance of a Floquet Topological Insulator

    E-Print Network [OSTI]

    L. E. F. Foa Torres; P. M. Perez-Piskunow; C. A. Balseiro; G. Usaj

    2014-09-08T23:59:59.000Z

    We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states in graphene lead to quantum Hall plateaus once imperfect matching with the non-illuminated leads is lessened. But the magnitude of the Hall plateaus is not directly related to the number and chirality of all the edge states at a given energy as usual. Instead, the plateaus are dominated only by those edge states adding to the dc density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full the Floquet bands.

  18. Fracture Conductivity of the Eagle Ford Shale

    E-Print Network [OSTI]

    Guzek, James J

    2014-07-25T23:59:59.000Z

    , and rock geomechanical properties. Therefore, optimizing conductivity by tailoring a well’s fracturing treatment to local reservoir characteristics is important to the oil and gas industry for economic reasons. The roots of hydraulic fracturing can... of the formation. Sahoo et al. (2013) identified that mineralogy, hydrocarbon filled porosity, and total organic content are most prominent parameters that control Eagle Ford well productivity. Mineral composition determines several geomechanical properties...

  19. Status of surface conduction in topological insulators

    SciTech Connect (OSTI)

    Barua, Sourabh, E-mail: sbarua@iitk.ac.in; Rajeev, K. P. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2014-01-15T23:59:59.000Z

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness.

  20. Conductive Thermal Interaction in Evaporative Cooling Process

    E-Print Network [OSTI]

    Kim, B. S.; Degelman, L. O.

    1990-01-01T23:59:59.000Z

    from the evaporative cooler would often be more than 6.5'F lower than that of a conventional evaporative cooling system due to thermal conduction between water and entering air. - Figure 1 Pad type evaporative cooler. DIRECT EVAPORATIVE COOLER... There are several types of direct evaporative cooler configurations available. Two popular system types are pad type unit and rotary type unit. A number of window mounted units are pad type evaporative coolers (Figure 1). In a pad type cooler, water...

  1. Nonlinear optical and conductive polymeric material

    DOE Patents [OSTI]

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19T23:59:59.000Z

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  2. Method of synthesis of proton conducting materials

    DOE Patents [OSTI]

    Garzon, Fernando Henry; Einsla, Melinda Lou; Mukundan, Rangachary

    2010-06-15T23:59:59.000Z

    A method of producing a proton conducting material, comprising adding a pyrophosphate salt to a solvent to produce a dissolved pyrophosphate salt; adding an inorganic acid salt to a solvent to produce a dissolved inorganic acid salt; adding the dissolved inorganic acid salt to the dissolved pyrophosphate salt to produce a mixture; substantially evaporating the solvent from the mixture to produce a precipitate; and calcining the precipitate at a temperature of from about 400.degree. C. to about 1200.degree. C.

  3. Transparent conducting oxides: A -doped superlattice approach

    SciTech Connect (OSTI)

    Cooper, Valentino R [ORNL; Seo, Sung Seok A. [University of Kentucky, Lexington; Lee, Suyoun [ORNL; Kim, Jun Sung [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Choi, Woo Seok [ORNL; Okamoto, Satoshi [ORNL; Lee, Ho Nyung [ORNL

    2014-01-01T23:59:59.000Z

    Two-dimensional electron gases (2DEGs) at the interface of oxide heterostructures have been the subject of recent experiment and theory, due to the intriguing phenomena that occur in confined electronic states. However, while much has been done to understand the origin of 2DEGs and related phenomena, very little has been explored with regards to the control of conduction pathways and the distribution of charge carriers. Using first principles simulations and experimental thin film synthesis methods, we examine the effect of dimensionality on carrier transport in La delta-doped SrTiO3 (STO) superlattices, as a function of the thickness of the insulating STO spacer. Our computed Fermi surfaces and layer-resolved carrier density proles demonstrate that there is a critical thickness of the STO spacer, below which carrier transport is dominated by three-dimensional conduction of interface charges arising from appreciable overlap of the quantum mechanical wavefunctions between neighboring delta-doped layers. We observe that, experimentally, these superlattices remain highly transparent to visible light. Band structure calculations indicate that this is a result of the appropriately large gap between the O 2p and Ti d states. The tunability of the quantum mechanical wavefunctions and the optical transparency highlight the potential for using oxide heterostructures in novel opto-electronic devices; thus providing a route to the creation of novel transparent conducting oxides.

  4. Conductance valve and pressure-to-conductance transducer method and apparatus

    DOE Patents [OSTI]

    Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

    2005-01-18T23:59:59.000Z

    A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

  5. Effective hydraulic conductivity of bounded, strongly heterogeneous porous media

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    Effective hydraulic conductivity of bounded, strongly heterogeneous porous media Evangelos K of Arizona, Tucson Abstract. We develop analytical expressions for the effective hydraulic conductivity Ke boundaries. The log hydraulic conductivity Y forms a Gaussian, statistically homogeneous and anisotropic

  6. Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test

    E-Print Network [OSTI]

    Romero Lugo, Jose 1985-

    2012-10-24T23:59:59.000Z

    deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture...

  7. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2008-10-10T23:59:59.000Z

    conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries... different or special methods for completion, stimulation, and/or production techniques to retrieve the resource. Natural gas from coal or coal bed methane, tight gas sands, shale gas, and gas hydrates are all examples of unconventional gas reservoirs...

  8. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2009-05-15T23:59:59.000Z

    ) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

  9. Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze

    SciTech Connect (OSTI)

    Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-10-01T23:59:59.000Z

    Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

  10. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1991-01-01T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  11. Conductivity maximum in a charged colloidal suspension

    SciTech Connect (OSTI)

    Bastea, S

    2009-01-27T23:59:59.000Z

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  12. Lead Sulphide Nanocrystal: Conducting Polymer Solar Cells

    E-Print Network [OSTI]

    Andrew A. R. Watt; David Blake; Jamie H. Warner; Elizabeth A. Thomsen; Eric L. Tavenner; Halina Rubinsztein-Dunlop; Paul Meredith

    2004-12-13T23:59:59.000Z

    In this paper we report photovoltaic devices fabricated from PbS nanocrystals and the conducting polymer poly MEH-PPV. This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n=1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials.

  13. Nanostructured Transparent Conducting Oxides via Blockcopolymer Patterning

    E-Print Network [OSTI]

    Kim, Joung Youn Ellie

    2014-05-27T23:59:59.000Z

    . This can lead to new device designs of organic light emitting diodes (OLEDS), fuel cells, displays and solar cells. Moreover, the ability to incorporate other various functional materials to form a hybrid with the nanostructured TCO allows possibilities... cell work and the XPS measurements as well as other scientific insights. I am grateful to Dr. K.K. Banger for the help with conductivity measurements as well as the collaborative work on the amorphous TCO. His insights on sol-gel chemistry as well...

  14. Synthesis of transparent conducting oxide coatings

    DOE Patents [OSTI]

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04T23:59:59.000Z

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  15. Exploding conducting film laser pumping apparatus

    DOE Patents [OSTI]

    Ware, Kenneth D. (San Diego, CA); Jones, Claude R. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  16. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-04-16T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  17. Code of Conduct Regarding Holiday Gifts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,Cobalt discoveryCode of Conduct

  18. Conductive Plays - Basement | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open EnergyInformationConductive Plays - Basement

  19. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  20. Study hints at conduction secrets in bacteria nanowires | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the team used a non-conducting fiber from Gonorrhea to model how electrically conducting proteins might work. They overlaid multiple Geobacter pilin proteins on Gonorrhea's fiber...

  1. EM Conducts Third Annual Spanish Language Training with Record...

    Office of Environmental Management (EM)

    EM Conducts Third Annual Spanish Language Training with Record Participation EM Conducts Third Annual Spanish Language Training with Record Participation March 30, 2015 - 12:00pm...

  2. Possible Dynamically Gated Conductance along Heme Wires in Bacterial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme Cytochromes. Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme...

  3. Multilayered YSZ/GZO films with greatly enhanced ionic conduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YSZGZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. Multilayered YSZGZO films with greatly enhanced ionic conduction for low...

  4. An automated tool for three types of saturated hydraulic conductivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automated tool for three types of saturated hydraulic conductivity laboratory measurements. An automated tool for three types of saturated hydraulic conductivity laboratory...

  5. anesthesia conduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies and Information Sciences Websites Summary: CodeofConduct British Computer Society Code of Conduct 5 SEPTEMBER 2001 VERSION 2.0 12;INTRODUCTION This Code sets out...

  6. aquifer tests conducted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies and Information Sciences Websites Summary: CodeofConduct British Computer Society Code of Conduct 5 SEPTEMBER 2001 VERSION 2.0 12;INTRODUCTION This Code sets out...

  7. Non carbon mixed conducting materials for PEFC electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes These slides were...

  8. UMBC Code of Conduct for Logo Merchandise Licensees I. Introduction

    E-Print Network [OSTI]

    Adali, Tulay

    UMBC Code of Conduct for Logo Merchandise Licensees I. Introduction A. UMBC is committed licensed University logo merchandise are required to follow when they conduct business. D. Throughout

  9. Formed Core Sampler Hydraulic Conductivity Testing

    SciTech Connect (OSTI)

    Miller, D. H.; Reigel, M. M.

    2012-09-25T23:59:59.000Z

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

  10. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01T23:59:59.000Z

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  11. Sampling Artifacts from Conductive Silicone Tubing

    SciTech Connect (OSTI)

    Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

    2009-05-15T23:59:59.000Z

    We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

  12. Guidance manual for conducting technology demonstration activities

    SciTech Connect (OSTI)

    Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

    1991-12-01T23:59:59.000Z

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  13. Ion-/proton-conducting apparatus and method

    DOE Patents [OSTI]

    Yates, Matthew (Penfield, NY); Liu, Dongxia (Rochester, NY)

    2011-05-17T23:59:59.000Z

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  14. High thermal conductivity aluminum nitride ceramic body

    SciTech Connect (OSTI)

    Huseby, I. C.; Bobik, C. F.

    1985-10-15T23:59:59.000Z

    A process for producing a polycrystalline aluminum nitride ceramic body having a porosity of less than about 10% by volume of said body and a thermal conductivity greater than 1.0 W/cm-K at 22/sup 0/ C., which comprises forming a mixture comprised of aluminum nitride powder and an yttrium additive selected from the group consisting of yttrium, yttrium hydride, yttrium nitride and mixtures thereof, said aluminum nitride and yttrium additive having a predetermined oxygen content, said mixture having a composition wherein the equivalent % of yttrium, aluminum, nitrogen and oxygen shapping said mixture into a compact and sintering said compact at a temperature ranging from about 1850/sup 0/ C. to about 2170/sup 0/ C. in an atmosphere selected from the group consisting of nitrogen, argon, hydrogen and mixtures thereof to produce said polycrystalline body.

  15. Westinghouse GOCO conduct of casualty drills

    SciTech Connect (OSTI)

    Ames, C.P.

    1996-02-01T23:59:59.000Z

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

  16. Nanostructured polymer membranes for proton conduction

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18T23:59:59.000Z

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  17. Theory of Electrical Conductivities of Ferrogels J. P. Huang

    E-Print Network [OSTI]

    Huang, Ji-Ping

    conductivity of a metal-polymer composite should depend on the conductivity of particles, the particle shapeTheory of Electrical Conductivities of Ferrogels J. P. Huang Max Planck Institute for Polymer, while magnetic fields can offer a correction. I. Introduction Conductive polymers1 have received much

  18. Thermal Conductivity of Composites Under Di erent Heating Scenarios

    E-Print Network [OSTI]

    : Two dimensional heat transfer model #26;(z), and c p (z) represent the thermal conductivity, density

  19. Washington State University STANDARDS OF CONDUCT FOR STUDENTS

    E-Print Network [OSTI]

    Collins, Gary S.

    .................................................................................. 5 WAC 50426207 Failure to comply with university officials. ....................................................... 11 STUDENT CONDUCT CODE PROCEDURES

  20. NIRSA National Campus Championship Series Code of Conduct

    E-Print Network [OSTI]

    NIRSA National Campus Championship Series Code of Conduct The Code of Conduct shall serve's conduct while participating in, and attending, a NCCS event. · Notification to University Officials officials; payment of fines, penalties and monetary damages arising from, or caused by, my conduct while

  1. 2012 NIRSA NCCS Regional Flag Football Code of Conduct

    E-Print Network [OSTI]

    , a NCCS event. · Notification to University officials for any violation of the Code of Conduct2012 NIRSA NCCS Regional Flag Football Code of Conduct The Code of Conduct shall serve. Violation of the Code of Conduct may result in: · Suspension from the game/match; · Suspension from

  2. History Club of the Newark Campus Code of Conduct

    E-Print Network [OSTI]

    Jones, Michelle

    History Club of the Newark Campus Code of Conduct As members of an official organization Code of Conduct." As stated in the "Introduction" of the "Student Code of Conduct:" The code of student note that you are required to abide by the "Student Code of Conduct" at all History Club events

  3. Materials and methods for autonomous restoration of electrical conductivity

    DOE Patents [OSTI]

    Blaiszik, Benjamin J; Odom, Susan A; Caruso, Mary M; Jackson, Aaron C; Baginska, Marta B; Ritchey, Joshua A; Finke, Aaron D; White, Scott R; Moore, Jeffrey S; Sottos, Nancy R; Braun, Paul V; Amine, Khalil

    2014-03-25T23:59:59.000Z

    An autonomic conductivity restoration system includes a solid conductor and a plurality of particles. The particles include a conductive fluid, a plurality of conductive microparticles, and/or a conductive material forming agent. The solid conductor has a first end, a second end, and a first conductivity between the first and second ends. When a crack forms between the first and second ends of the conductor, the contents of at least a portion of the particles are released into the crack. The cracked conductor and the released contents of the particles form a restored conductor having a second conductivity, which may be at least 90% of the first conductivity.

  4. Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test 

    E-Print Network [OSTI]

    Correa Castro, Juan

    2011-08-08T23:59:59.000Z

    EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A Thesis by JUAN CARLOS CORREA CASTRO Submitted to the Office of Graduate Studies of Texas A... in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test Copyright 2011 Juan Carlos Correa Castro EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A...

  5. Quantized conductance of a suspended graphene nanoconstriction

    E-Print Network [OSTI]

    Nikolaos Tombros; Alina Veligura; Juliane Junesch; Marcos H. D. Guimarães; Ivan J. Vera Marun; Harry T. Jonkman; Bart J. van Wees

    2011-05-31T23:59:59.000Z

    A yet unexplored area in graphene electronics is the field of quantum ballistic transport through graphene nanostructures. Recent developments in the preparation of high mobility graphene are expected to lead to the experimental verification and/or discovery of many new quantum mechanical effects in this field. Examples are effects due to specific graphene edges, such as spin polarization at zigzag edges of a graphene nanoribbon and the use of the valley degree of freedom in the field of graphene valleytronics8. As a first step in this direction we present the observation of quantized conductance at integer multiples of 2e^2/h at zero magnetic field and 4.2 K temperature in a high mobility suspended graphene ballistic nanoconstriction. This quantization evolves into the typical quantum Hall effect for graphene at magnetic fields above 60mT. Voltage bias spectroscopy reveals an energy spacing of 8 meV between the first two subbands. A pronounced feature at 0.6 2e^2/h present at a magnetic field as low as ~0.2T resembles the "0.7 anomaly" observed in quantum point contacts in a GaAs-AlGaAs two dimensional electron gas, having a possible origin in electron-electron interactions.

  6. Quantized conductance of a suspended graphene nanoconstriction

    E-Print Network [OSTI]

    Tombros, Nikolaos; Junesch, Juliane; Guimarães, Marcos H D; Marun, Ivan J Vera; Jonkman, Harry T; van Wees, Bart J

    2011-01-01T23:59:59.000Z

    A yet unexplored area in graphene electronics is the field of quantum ballistic transport through graphene nanostructures. Recent developments in the preparation of high mobility graphene are expected to lead to the experimental verification and/or discovery of many new quantum mechanical effects in this field. Examples are effects due to specific graphene edges, such as spin polarization at zigzag edges of a graphene nanoribbon and the use of the valley degree of freedom in the field of graphene valleytronics8. As a first step in this direction we present the observation of quantized conductance at integer multiples of 2e^2/h at zero magnetic field and 4.2 K temperature in a high mobility suspended graphene ballistic nanoconstriction. This quantization evolves into the typical quantum Hall effect for graphene at magnetic fields above 60mT. Voltage bias spectroscopy reveals an energy spacing of 8 meV between the first two subbands. A pronounced feature at 0.6 2e^2/h present at a magnetic field as low as ~0.2T...

  7. Thin transparent conducting films of cadmium stannate

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO)

    2001-01-01T23:59:59.000Z

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  8. Ion/proton-conducting apparatus and method

    DOE Patents [OSTI]

    Yates, Matthew; Xue, Wei

    2014-12-23T23:59:59.000Z

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.

  9. Amorphous silica in ultra-high performance concrete: First hour of hydration

    SciTech Connect (OSTI)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Hutter, Frank [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Chair for Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Sextl, Gerhard [Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chair for Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01T23:59:59.000Z

    Amorphous silica in the sub-micrometer size range is widely used to accelerate cement hydration. Investigations including properties of silica which differ from the specific surface area are rare. In this study, the reactivity of varying types of silica was evaluated based on their specific surface area, surface silanol group density, content of silanol groups and solubility in an alkaline suspension. Pyrogenic silica, silica fume and silica synthesized by hydrolysis and condensation of alkoxy silanes, so-called Stoeber particles, were employed. Influences of the silica within the first hour were further examined in pastes with water/cement ratios of 0.23 using in-situ X-ray diffraction, cryo scanning electron microscopy and pore solution analysis. It was shown that Stoeber particles change the composition of the pore solution. Na{sup +}, K{sup +}, Ca{sup 2+} and silicate ions seem to react to oligomers. The extent of this reaction might be highest for Stoeber particles due to their high reactivity.

  10. Ultra-High Gradient Compact S-Band Linac for Laboratory and Industrial Applications

    SciTech Connect (OSTI)

    Faillace, Luigi; /RadiaBeam Tech.; Agustsson, Ronald; /RadiaBeam Tech.; Frigola, Pedro; /RadiaBeam Tech.; Murokh, Alex; /RadiaBeam Tech.; Dolgashev, Valery; /SLAC; Rosenzweig, James; /UCLA

    2012-07-03T23:59:59.000Z

    There is growing demand from the industrial and research communities for high gradient, compact RF accelerating structures. The commonly used S-band SLAC-type structure has an operating gradient of only about 20 MV/m; while much higher operating gradients (up to 70 MV/m) have been recently achieved in X-band, as a consequence of the substantial efforts by the Next Linear Collider (NLC) collaboration to push the performance envelope of RF structures towards higher accelerating gradients. Currently however, high power X-band RF sources are not readily available for industrial applications. Therefore, RadiaBeam Technologies is developing a short, standing wave S-band structure which uses frequency scaled NLC design concepts to achieve up to a 50 MV/m operating gradient at 2856 MHz. The design and prototype commissioning plans are presented.

  11. Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

    E-Print Network [OSTI]

    Scholten, O.

    2010-01-01T23:59:59.000Z

    of Physics & Astronomy, Alan Turing Building, Univ. ofof Physics & Astronomy, Alan Turing Building, Univ. of

  12. New Ultra-High Speed Network Connection for Researchers and Educators...

    Broader source: Energy.gov (indexed) [DOE]

    our labs much more efficient, its potential goes far beyond that," said Secretary of Energy Steven Chu. "This faster speed at which data can be shared could pioneer the next...

  13. Ultra high-speed Mobile Information and CommunicationUMIC Prof. Fadhel M. Ghannouchi

    E-Print Network [OSTI]

    and smart-grid wireless communication networks. This talk will highlight the why it is important to reduce

  14. Ultra-high Throughput Real-time Instruments for Capturing Fast Signals and Rare Events

    E-Print Network [OSTI]

    Buckley, Brandon Walter

    2013-01-01T23:59:59.000Z

    from non-linear regression. . . . . . . . . . Conceptually,was estimated from non-linear regression. Un-Equalized RealRF band- width. A non-linear regression estimated the chirp

  15. Dielectric Spectroscopy and Ultrasonic Study of Propylene Carbonate under Ultra-high Pressures

    E-Print Network [OSTI]

    M. V. Kondrin; E. L. Gromnitskaya; A. A. Pronin; A. G. Lyapin; V. V. Brazhkin; A. A. Volkov

    2013-05-16T23:59:59.000Z

    We present the high pressure dielectric spectroscopy (up to 4.2 GPa) and ultrasonic study (up to 1.7 GPa) of liquid and glassy propylene carbonate (PC). Both of the methods provide complementary pictures of the glass transition in PC under pressure. No other relaxation processes except $\\alpha$-relaxation have been found in the studied pressure interval. The propylene carbonate liquid is a glassformer where simple relaxation and the absence of $\\beta$-relaxation are registered in the record-breaking ranges of pressures and densities. The equation of state of liquid PC was extended up to 1 GPa from ultrasonic measurements of bulk modulus and is in good accordance with the previous equations developed from volumetric data. We measured the bulk and shear moduli and Poisson's ratio of glassy PC up to 1.7 GPa. Many relaxation and elastic properties of PC can be qualitatively described by the soft-sphere or Lennard-Jones model. However, for the quantitative description of entire set of the experimental data, these models are insufficient. Moreover, the Poisson coefficient value for glassy PC indicates a significant contribution of non-central forces to the intermolecular potential. The well-known correlation between Poisson's ratio and fragility index (obtained from dielectric relaxation) is confirmed for PC at ambient pressure, but it is violated with pressure increase. This indicates that different features of the potential energy landscape are responsible for the evolution of dielectric response and elasticity with pressure increase.

  16. Method and apparatus for distributed intrusion protection system for ultra high bandwidth networks

    DOE Patents [OSTI]

    Goranson, Craig A.; Burnette, John R.; Greitzer, Frank L.; McMillan, Bryan H.

    2013-10-15T23:59:59.000Z

    A method for providing security to a network having a data stream with a plurality of portions of data, each having differing levels of sensitivity. The data stream is interrogated to determine the presence of predetermined characteristics associated with at least one of the portions of data within the data stream. At least one of the portions of data is then characterized, based upon the portion of data exhibiting a predetermined combination of characteristics, wherein the predetermined combination of characteristics is related to the sensitivity of the portion of data. The portions of the data stream are then distributed into a plurality of different channels, each of the channels associated with different level of sensitivity.

  17. Detuned Twin-Signal-Recycling for ultra-high precision interferometers

    E-Print Network [OSTI]

    Andre Thuering; Roman Schnabel; Harald Lueck; Karsten Danzmann

    2007-07-03T23:59:59.000Z

    We propose a new interferometer technique for high precision phase measurements such as those in gravitational wave detection. The technique utilizes a pair of optically coupled resonators that provides identical resonance conditions for the upper as well the lower phase modulation signal sidebands. This symmetry significantly reduces the noise spectral density in a wide frequency band compared with single sideband recycling topologies of current and planned gravitational wave detectors. Furthermore the application of squeezed states of light becomes less demanding.

  18. A Circulating Hydrogen Ultra-High Purification System for the MuCap Experiment

    E-Print Network [OSTI]

    V. A. Ganzha; P. A. Kravtsov; O. E. Maev; G. N. Schapkin; G. G. Semenchuk; V. Trofimov; A. A. Vasilyev; M. E. Vznuzdaev; S. M. Clayton; P. Kammel; B. Kiburg; M. Hildebrandt; C. Petitjean; T. I. Banks; B. Lauss

    2007-05-10T23:59:59.000Z

    The MuCap experiment is a high-precision measurement of the rate for the basic electroweak process of muon capture, mu- + p -> n + nu . The experimental approach is based on an active target consisting of a time projection chamber (TPC) operating with pure hydrogen gas. The hydrogen has to be kept extremely pure and at a stable pressure. A Circulating Hydrogen Ultrahigh Purification System was designed at the Petersburg Nuclear Physics Institute (PNPI) to continuously clean the hydrogen from impurities. The system is based on an adsorption cryopump to stimulate the hydrogen flow and on a cold adsorbent for the hydrogen cleaning. It was installed at the Paul Scherrer Institute (PSI) in 2004 and performed reliably during three experiment runs. During several months long operating periods the system maintained the hydrogen purity in the detector on the level of 20 ppb for moisture, which is the main contaminant, and of better than 7 ppb and 5 ppb for nitrogen and oxygen, respectively. The pressure inside the TPC was stabilized to within 0.024% of 10 bar at a hydrogen flow rate of 3 standard liters per minute.

  19. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01T23:59:59.000Z

    Intensities with Short-Pulse Lasers 1.2 Inertial Confinementhigh-power, short laser pulse, D. . . . . . . . . . Figurea high-intensity short-pulse laser to produce relativistic

  20. Ultra-high-resolution Observations of MHD Waves in Photospheric Magnetic Structures

    E-Print Network [OSTI]

    Jess, David B

    2015-01-01T23:59:59.000Z

    Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal ...

  1. ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY

    SciTech Connect (OSTI)

    Nabeel A. Riza

    2005-07-22T23:59:59.000Z

    The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

  2. An ultra-high precision, high bandwidth torque sensor for microrobotics applications

    E-Print Network [OSTI]

    Wood, Robert

    and testing of a custom single-axis torque sensor. The micorobots in question are too large for MEMS force of predicted torques is on the order of 1-10µNm. These values were obtained using a quasi-steady blade and manufacture of custom torque sensors for a variety This work was supported in part by the Army Research

  3. Permafrost - An Alternative Target Material for Ultra High Energy Neutrino Detection?

    E-Print Network [OSTI]

    R. Nahnhauer; A. A. Rostovtsev; D. Tosi

    2007-07-25T23:59:59.000Z

    The detection of cosmic neutrinos with energies above 1017 eV got growing interest during recent years. Possible target materials for in-matter arrays of ~100 km3 size under discussion are water, ice and rock salt. Here we propose to investigate permafrost as an additional alternative, covering ~20% of Earth land surface and reaching down to more than 1000 m depth at certain locations. If sufficiently large attenuation lengths for radio and acoustic signals can be demonstrated by in-situ measurements, the construction of a large hybrid array within this material may be possible in the Northern hemisphere. Properties and problems of a possible location in Siberia are discussed below. Some acoustic data are compared to laboratory measurements using "artificial" permafrost.

  4. Multimode laser cooling and ultra-high sensitivity force sensing with nanowires

    E-Print Network [OSTI]

    Hosseini, Mahdi; Slatyer, Harri J; Buchler, Ben C; Lam, Ping Koy

    2015-01-01T23:59:59.000Z

    Photo-induced forces can be used to manipulate and cool the mechanical motion of oscillators. When the oscillator is used as a force sensor, such as in atomic force microscopy, active feedback is an enticing route to enhancing measurement performance. Here, we show broadband multimode cooling of $-23$ dB down to a temperature of $8 \\pm 1$~K in the stationary regime. Through the use of periodic quiescence feedback cooling, we show improved signal-to-noise ratios for the measurement of transient signals. We compare the performance of real feedback to numerical post-processing of data and show that both methods produce similar improvements to the signal-to-noise ratio of force measurements. We achieved a room temperature force measurement sensitivity of $< 2\\times10^{-16}$ N with integration time of less than $0.1$ ms. The high precision and fast force microscopy results presented will potentially benefit applications in biosensing, molecular metrology, subsurface imaging and accelerometry.

  5. Free ultra-high-Q microtoroid: a tool for designing photonic devices

    E-Print Network [OSTI]

    . A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled- resonator optical, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J filters for WDM applications," IEEE photon. Technol. Lett. 16, 2263-2265 (2004). 3. T. Barwicz, M. A

  6. Ultra-High Q/V Fabry-Perot microcavity on SOI substrate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .5298) Photonic crystals; References and links 1. J. Poon, L. Zhu, G. DeRose, and A. Yariv, "Transmission. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, I. Kim, "Two-Dimensional Photonic Band and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456 (2006) 2. A. Melloni

  7. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    SciTech Connect (OSTI)

    Spencer, W; Laura Tovo, L

    2008-07-08T23:59:59.000Z

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms. Analysis of low concentration ions, at the ppm level, required a separate analysis using ion ejection techniques. Chemical ionization due to the formation of the MH{sup +} ion or MD{sup +} increased the complexity of the spectra compared to magnetic sector mass spectra and formation of the protonated or deuterated complex was a dynamic function of the trap ion concentration. This made quantitative measurement more of a challenge. However, the resolution of the instrument was far superior to any other mass spectrometry technique that has been applied to the analysis of the hydrogen isotopes. The piezo-electric picoliter injection device offers a new way of submitting small quantities of atmospheric pressure sample gas for analysis. The new software had many improvements over the previous version but significant flaws in the beta codes remain that make the prototype units less than ideal. The instrument is a promising new technology that experience will likely improve. Unfortunately, Siemens has concluded that the technology will not be a commercial success and has decided to stop producing this product.

  8. Permafrost - An Alternative Target Material for Ultra High Energy Neutrino Detection?

    E-Print Network [OSTI]

    Nahnhauer, R; Tosi, D

    2007-01-01T23:59:59.000Z

    The detection of cosmic neutrinos with energies above 1017 eV got growing interest during recent years. Possible target materials for in-matter arrays of ~100 km3 size under discussion are water, ice and rock salt. Here we propose to investigate permafrost as an additional alternative, covering ~20% of Earth land surface and reaching down to more than 1000 m depth at certain locations. If sufficiently large attenuation lengths for radio and acoustic signals can be demonstrated by in-situ measurements, the construction of a large hybrid array within this material may be possible in the Northern hemisphere. Properties and problems of a possible location in Siberia are discussed below. Some acoustic data are compared to laboratory measurements using "artificial" permafrost.

  9. Table 1. Design specifications of ultra-high speed PM motor. Supply voltage (V) 12

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    by the engine to compress inlet air to the engine cylinder. The supercharger electrically driven by the UHS combustion engine with a belt from a crankshaft, and compress the air flow to the engine cylinder, for example, magnet eddy-current loss that is proportional to square of the operating frequency

  10. Fibrous Fillers to Manufacture Ultra-High Ash/Performance Paper

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to demonstrate the economic and technological viability of fibrous filler to manufacture paper containing up to 50% ash, at equal or better quality and performance than conventional alternatives and at a lower cost.

  11. Ultra-high-resolution time projection chambers with liquid crystal backplanes

    SciTech Connect (OSTI)

    Monreal, Benjamin

    2014-10-15T23:59:59.000Z

    We investigated the possibility of incorporating a liquid-crystal device into a gas ionization detector. After extensive R&D on several candidate liquid-crystal technologies, we developed some novel materials allowing twisted nematic liquid-crystal layers to be coupled directly to gas ionization counters. However, the resulting structures were unsuitable for large-scale or practical use. We tested several technologies known to result in mechanically-robust liquid crystal electrooptic layers, but found poor behavior in the detector context.

  12. Cactus and Visapult: An Ultra-High Performance Grid-Distributed Visualization Architecture

    E-Print Network [OSTI]

    Connectionless Protocols E. Wes Bethel and John Shalf Lawrence Berkeley National Laboratory National Energy in the memory and data storage capabilities of the largest supercomputing installations in the world has operated network/Grid-connected observatories and experimental equipment come online [1]. While statistical

  13. Cactus and Visapult: A Case Study of Ultra-High Performance Distributed Visualization

    E-Print Network [OSTI]

    Connectionless Protocols John Shalf and E. Wes Bethel Lawrence Berkeley National Laboratory National Energy capabilities of the largest supercomputing installations in the world has outpaced Moore's law. This has lead/Grid-connected observatories and experimental equipment come online [21]. While statistical methods and feature detection

  14. Atcitty_Ultra-HighSIC_RD100v8.2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e ciency, advanced interconnection technologies widen the practical end-use of fuel cells, photovoltaics, wind power, batteries, superconducting magnetic storage, adjustable...

  15. E-Print Network 3.0 - attaining ultra-high energies Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SNM Sudeep Banerjee, Nathan Powers, Vidya Ramanathan, Nathaniel Cunningham, Nate Chandler-Smith, Shouyuan Summary: of suitable media is of considerable interest as a way to achieve...

  16. Statistical Modeling of Marked Point Processes and (Ultra-)High Frequency Data

    E-Print Network [OSTI]

    Wen, Musen

    2010-01-01T23:59:59.000Z

    the ACD model with a GARCH model for prices, Engle [25]these, the Generalized ARCH (GARCH) model by Bollerslev [11]in practice. Definition 3.7 (GARCH(r, s) model) A process {z

  17. An ultra-high throughput mutational spectrometer for human genetic diagnostics

    E-Print Network [OSTI]

    Forest, Craig Richard, 1978-

    2007-01-01T23:59:59.000Z

    Discovering the genetic causes of common diseases may require scanning for mutations in all of the genes in a million people, a significant undertaking. Such discoveries would revolutionize biotechnology, potentially ...

  18. Eikonal contributions to ultra high energy neutrino-nucleon cross sections in low scale gravity models

    E-Print Network [OSTI]

    E. M. Sessolo; D. W. McKay

    2008-11-18T23:59:59.000Z

    We calculate low scale gravity effects on the cross section for neutrino-nucleon scattering at center of mass energies up to the Greisen-Zatsepin-Kuzmin (GZK) scale, in the eikonal approximation. We compare the cases of an infinitely thin brane embedded in n=5 compactified extra-dimensions, and of a brane with a physical tension M_{S}=1 TeV and M_{S}=10 TeV. The extra dimensional Planck scale M_{D} is set at 10^{3} GeV and 2\\times10^{3} GeV. We also compare our calculations with neutral current standard model calculations in the same energy range, and compare the thin brane eikonal cross section to its saddle point approximation. New physics effects enhance the cross section by orders of magnitude on average. They are quite sensitive to M_{S} and M_{D} choices, though much less sensitive to n.

  19. ULTRA HIGH ENERGY COSMIC RAY SPECTRUM Baltrusaitis, R.M., Cady7

    E-Print Network [OSTI]

    ' energy by the relation Figure 1. Raw Energy Distribution of Fly's Eye Data. Eem = å0/X0 f Ne(x)dx where å

  20. Prediction of Ultra-High Aspect Ratio Nanowires from Self-Assembly

    E-Print Network [OSTI]

    Wu, Zhigang

    a combination of ab initio total energy calculations and classical molecular dynamics (MD) simulations ratio nanowires with high-quality alignment. We show that the electronic structure of the resulting. The ab initio calculations provide key information regarding selective chemical functionalization for end

  1. Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays

    E-Print Network [OSTI]

    Abbasi, R; Belz, J; de Souza, V; Hanlon, W; Ikeda, D; Lundquist, J P; Sokolsky, P; Stroman, T; Tameda, Y; Tsunesada, Y; Unger, M

    2015-01-01T23:59:59.000Z

    For the first time a proper comparison of the average depth of shower maximum ($X_{\\rm max}$) published by the Pierre Auger and Telescope Array Observatories is presented. The $X_{\\rm max}$ distributions measured by the Pierre Auger Observatory were fit using simulated events initiated by four primaries (proton, helium, nitrogen and iron). The primary abundances which best describe the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD) fluorescence and surface detector array. The simulated events were analyzed by the TA Collaboration using the same procedure as applied to their data. The result is a simulated version of the Auger data as it would be observed by TA. This analysis allows a direct comparison of the evolution of $\\langle X_{\\rm max} \\rangle$ with energy of both data sets. The $\\langle X_{\\rm max} \\rangle$ measured by TA-MD is consistent with a preliminary simulation of the Auger data through the TA detector and the average difference between the two data sets was found to...

  2. Improved performance of ultra-high molecular weight polyethylene for orthopedic applications

    E-Print Network [OSTI]

    Plumlee, Kevin Grant

    2009-05-15T23:59:59.000Z

    two alternate approaches to improving the wear performance of UHMWPE in orthopedic applications Previous work has shown that UHMWPE-based composites have wear resistance comparable to the irradiation-crosslinked polymer. Zirconium has been shown...

  3. Design and manufacture of an ultra-high field ex vivo coil assembly

    E-Print Network [OSTI]

    Bridgers, Loren Daniel

    2012-01-01T23:59:59.000Z

    Magnetic Resonance based architectonic segmentation aims to detect variations in brain architecture that may provide incredible insight into diseases such as epilepsy, schizophrenia, dyslexia, and autism. Data from ex vivo ...

  4. Test-Theory Correlation Study for an Ultra High Temperature Thrust Magnetic Bearing 

    E-Print Network [OSTI]

    Desireddy, Vijesh R.

    2010-01-14T23:59:59.000Z

    between bearing force, applied current and temperature. The thesis incorporates the assembly, testing of the electromagnetic bearing at various speeds and temperatures and compare predicted to measured force vs. speed, current, gap and temperature...

  5. Equation of state of rhenium and application for ultra high pressure calibration

    SciTech Connect (OSTI)

    Anzellini, Simone; Dewaele, Agnès; Occelli, Florent; Loubeyre, Paul [CEA, DAM, DIF, F-91297 Arpajon (France); Mezouar, Mohamed [European Synchrotron Radiation Facility, BP220, 38043 Grenoble Cedex (France)

    2014-01-28T23:59:59.000Z

    The isothermal equation of state of rhenium has been measured by powder X-ray diffraction experiments up to 144?GPa at room temperature in a diamond anvil cell. A helium pressure transmitting medium was used to minimize the non-hydrostatic stress on the sample. The fit of pressure-volume data yields a bulk modulus K{sub 0}?=?352.6?GPa and a pressure derivative of the bulk modulus K?{sub 0}=4.56. This equation of state differs significantly from a recent determination [Dubrovinsky et al., Nat. Commun. 3, 1163 (2012)], giving here a lower pressure at a given volume. The possibility of using rhenium gasket X-ray diffraction signal, with the present equation of state, to evaluate multi-Mbar pressures in the chamber of diamond anvil cells is discussed.

  6. Test-Theory Correlation Study for an Ultra High Temperature Thrust Magnetic Bearing

    E-Print Network [OSTI]

    Desireddy, Vijesh R.

    2010-01-14T23:59:59.000Z

    Magnetic bearings have been researched by the National Aeronautics and Space Administration (NASA) for a very long time to be used in wide applications. This research was to assemble and test an axial thrust electromagnetic bearing, which can handle...

  7. Ultra-high speed burst-mode imager for multi-frame radiography

    SciTech Connect (OSTI)

    Kwiatkowski, Kris [Los Alamos National Laboratory; Nedrow, Paul [Los Alamos National Laboratory; Mariam, Fesseha [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory; Morris, Chris L [Los Alamos National Laboratory; Saunders, Abdy [Los Alamos National Laboratory; Hogan, Gary [Los Alamos National Laboratory; Douance, Vincent [TELEDYNE IMAGING SENSORS; Bal, Yibin [TELEDYNE IMAGING SENSORS; Joshi, Atul [TELEDYNE IMAGING SENSORS; Auyeung, John [TELEDYNE IMAGING SENSORS

    2010-01-01T23:59:59.000Z

    A 720 x 720 pixel hybrid-CMOS imager was fabricated by Rockwell Scientific (now Teledyne Imaging Sensors). Several cameras have been in operation for 5 years, in a variety of static and dynamic experiments, at the 800MeV proton radiography (pRAD) facility at the LANSCE accelerator. The cameras can operate with a per-pulse adjustable inter-frame time of 250ns to 2s, and with an exposure/integration-time as short as 150 ns. Given the 800 ms total readout time, the imager can be externally synchronized to 0.1-to-5Hz, 50-ns wide proton beam pulses, and record 1000-frame radiographic movies of 5-to-30 minute duration. The effectiveness and dependence of the global electronic shutter on the pixelated Si photo-sensor bias voltage is discussed. The spatial resolution dependence of the full imaging system on various monolithic and structured scintillators is presented. We also present features of a new-generation 10-frame, 1024 x 1024 pixel, 50-ns exposure, 12-bit dynamic range imager, which is now in the design phase.

  8. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    SciTech Connect (OSTI)

    Rabin, Michael W [Los Alamos National Laboratory; Hoover, Andrew S [Los Alamos National Laboratory; Bacrania, Mnesh K [Los Alamos National Laboratory; Croce, Mark P [Los Alamos National Laboratory; Hoteling, N J [Los Alamos National Laboratory; Lamont, S P [Los Alamos National Laboratory; Plionis, A A [Los Alamos National Laboratory; Dry, D E [Los Alamos National Laboratory; Ullom, J N [NIST; Bennett, D A [NIST; Horansky, R [NIST; Kotsubo, V [NIST; Cantor, R [STAR CRYOELECTRONICS

    2009-01-01T23:59:59.000Z

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with {approx}15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  9. Muon content of ultra-high-energy air showers: Yakutsk data versus simulations

    E-Print Network [OSTI]

    A. V. Glushkov; I. T. Makarov; M. I. Pravdin; I. E. Sleptsov; D. S. Gorbunov; G. I. Rubtsov; S. V. Troitsky

    2008-02-18T23:59:59.000Z

    We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2\\cdot 10^{19} eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, ``light'' and ``heavy''. Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \\sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>10^{19} eV is 0.52^{+0.19}_{-0.20} at 95% confidence level.

  10. Three DOE Labs Now Connected With Ultra-High Speed Network That...

    Office of Environmental Management (EM)

    at the gala opening of SC11, the premier international conference on high performance computing, networking, storage and analysis, where DOE researchers will use the...

  11. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    DOE Patents [OSTI]

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01T23:59:59.000Z

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  12. Ultra-High Temperature Steam Corrosion of Complex Silicates for Nuclear Applications: A Computational Study

    SciTech Connect (OSTI)

    Rashkeev, Sergey N. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Center for Advanced Modeling and Simulation; Glazoff, Michael V. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Tokuhiro, Akira [Univ. of Idaho, Idaho Falls, ID (United States). Dept. of Nuclear Engineering

    2014-01-01T23:59:59.000Z

    Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimated the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time – at least 100 h – is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 °C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.

  13. Design of indoor communication infrastructure for ultra-high capacity next generation wireless services

    E-Print Network [OSTI]

    Gordon, George S. D.

    2013-11-12T23:59:59.000Z

    [1, 2, 4]. 2 1.1. MODERN WIRELESS COMMUNICATION boards, solar panels and electricity meters could all be controlled wirelessly with the aim of creating a much more efficient energy supply system [6]. This increasing demand for and reliance upon...

  14. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect (OSTI)

    Gorham, P.W.; Allison, P.; /Hawaii U.; Barwick, S.W.; /UC, Irvine; Beatty, J.J.; /Ohio State U.; Besson, D.Z.; /Kansas U.; Binns, W.R.; /Washington U., St. Louis; Chen, C.; /Taiwan, Natl. Taiwan U.; Chen, P.; /SLAC; Clem, J.M.; /Delaware U.; Connolly, A.; /University Coll. London; Dowkontt, P.F.; /Washington U., St. Louis; DuVernois, M.A.; /Minnesota U.; Field, R.C.; /SLAC; Goldstein, D.; /UC, Irvine; Goodhue, A.; /UCLA; Hast, C.; /SLAC; Hebert, C.L.; /Hawaii U.; Hoover, S.; /UCLA; Israel, M.H.; /Washington U., St. Louis; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01T23:59:59.000Z

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  15. NUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA-HIGH

    E-Print Network [OSTI]

    Boyer, Edmond

    in the cementitious matrix can react with carbon dioxide dissolved in the water filling the crack. Autogenous healingNUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA into the crack and leads to a partial recovery of mechanical properties (Young's modulus, tensile strength

  16. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1997-01-01T23:59:59.000Z

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  17. Several Technical Measures to Improve Ultra-High and Extreme-High Vacuum

    SciTech Connect (OSTI)

    Changkun Dong; Parixit Mehrotra; Ganapati Rao Myneni

    2002-11-01T23:59:59.000Z

    Achieving UHV/XHV with out high temperature bake outs is becoming essential in many applications. In this study, we investigated the use of inexpensive silica and titanium oxide thin film coatings on UHV/XHV chambers/components to reduce the adsorption of water on the chamber walls. Water can be cracked into oxygen and hydrogen in the material and act as one of the sources of hydrogen. We have also implemented backing of the turbo pump with an ion pump for reducing the vacuum chamber pump down times into UHV/XHV pressure range. The results of these investigations are summarized in this paper.

  18. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1997-12-30T23:59:59.000Z

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  19. Model-based design of an ultra high performance concrete support structure for a wind turbine

    E-Print Network [OSTI]

    Wang, Zheng, M. Eng. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    A support tower is the main structure which would support rotor, power transmission and control systems, and elevates the rotating blades above the earth boundary layer. A successful design should ensure safe, efficient ...

  20. Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

  1. Final Report: Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    SciTech Connect (OSTI)

    Bedair, Salah M. [NCSU; Hauser, John R. [NCSU; Elmasry, Nadia [NCSU; Colter, Peter C. [NCSU; Bradshaw, G. [NCSU; Carlin, C. Z. [NCSU; Samberg, J. [NCSU; Edmonson, Kenneth [Spectrolab

    2012-07-31T23:59:59.000Z

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  2. NANO EXPRESS Open Access Selective area epitaxy of ultra-high density InGaN

    E-Print Network [OSTI]

    Gilchrist, James F.

    annealing and GaN spacer layer growth for improving the PL intensity of the SiNx-treated GaN surface in three dimensions for QD nanostructures so that the non-radiative recom- bination centers and defects can

  3. Ultra-high-aspect-ratio nanofluidic channels for high-throughput biological applications

    E-Print Network [OSTI]

    Mao, Pan

    2009-01-01T23:59:59.000Z

    The development of micro/nanofluidics is expected to be the enabling technology for sample preparation of proteomic biosamples, which has been the bottleneck in proteomics. Most microfabricated nanofluidic channels, such ...

  4. Performance optimization of interconnections for ultra-high-speed digital circuits

    E-Print Network [OSTI]

    Carey, David Harrison

    1986-01-01T23:59:59.000Z

    Veri6cation Test Fixture Fabrications Evaluation of a GaAs Gate Design of a Three-Conductor Coupler Design of a Two-Conductor Coupler 24 24 25 28 28 35 38 IV COMPUTER SIMULATION OF SINGLE CONDUCTOR DISCONTINUITIES AND DISTORTION MECHANISMS... . V 40 A. Conductor Bends . . . . . . . . . . . . . . . . 42 B. Impedance Step/Mismatched Transmission Line Element 46 C. Fan-out/Fan-in Signal Distribution Networks D. Conclusions for Discontinuity Behaviors 55 71 V COUPLED LINE BEHAVIORS...

  5. Ultra high pressure liquid chromatography column permeability and changes of the eluent properties

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2008-01-01T23:59:59.000Z

    The behavior of four similar liquid chromatography columns (2.1 mm i.d. x30, 50, 100, and 150 mm, all packed with fine particles, average d{sub p} {approx} 1.7 {micro}m, of bridged ethylsiloxane/silica hybrid-C{sub 18}, named BEH-C{sub 18}) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of C in still air and C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144 {+-} 3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured {Delta}T = 25-30 K, ({Delta}{eta}/{eta}) {approx_equal} 100%, and ({Delta}{rho}/{rho}) {approx_equal} 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in UPLC is discussed.

  6. Complete temperature profiles in ultra-high pressure liquid chromatography columns

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2008-01-01T23:59:59.000Z

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C{sub 18} particles, average d{sub p} {approx} 1.7 {micro}m) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than {+-}0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  7. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    SciTech Connect (OSTI)

    O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Rodionov, A. V.; Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Shaner, M.; Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street Pasadena, California 91105 (United States); Sobacchi, E. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dergachev, V.; DeSalvo, R., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientfica 1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia)

    2014-07-15T23:59:59.000Z

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  8. Designs for ultra-high efficiency grid-connected power conversion

    E-Print Network [OSTI]

    Pierquet, Brandon J. (Brandon Joseph)

    2011-01-01T23:59:59.000Z

    Grid connected power conversion is an absolutely critical component of many established and developing industries, such as information technology, telecommunications, renewable power generation (e.g. photovoltaic and wind), ...

  9. Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography

    E-Print Network [OSTI]

    Kagemann, Larry

    We use Fourier domain optical coherence tomography (OCT) data to assess retinal blood oxygen saturation. Three-dimensional disk-centered retinal tissue volumes were assessed in 17 normal healthy subjects. After removing ...

  10. The ultra-high lime with aluminum process for removing chloride from recirculating cooling water 

    E-Print Network [OSTI]

    Abdel-wahab, Ahmed Ibraheem Ali

    2004-09-30T23:59:59.000Z

    and XRD analysis of precipitated solids indicated that this deviation was due to the formation of other solid phases such as tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate. Effect of pH on chloride removal was characterized. Optimum pH...

  11. Method for beam steering compensation in an ultra-high power liquid laser

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Thermally induced distortion of the optical wavefront caused by heating of the laser media by waste heat from the excitation process and absorption of laser radiation creates optical phase errors. A system generates an error signal derived from the optical phase errors. The error signal is fed back to the power supplies driving semiconductor diodes that excite the lasing liquid thereby introducing an electrically controllable wedge into the optical cavity to correct the optical phase errors.

  12. New Ultra-High Speed Network Connection for Researchers and Educators is 10

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-Zero CampusGasificationDepartmentDepartmentTimes

  13. Three DOE Labs Now Connected With Ultra-High Speed Network That is 10 Times

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48HPublicforManagement and

  14. A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8threbuild

  15. WO3 and HPA based system for ultra high stability Innovation for Our Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |to

  16. Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstitute RegardingMethaneEnergy

  17. Method of Production of Pure Hydrogen Near Room Temperature From Ultra High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRodMIT-HarvardEnergyMethod-----

  18. Atcitty_Ultra-HighSIC_RD100v8.2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshley BoyleAn overhead view ofAt-HomeR &

  19. MATHEMATICAL ANALYSIS OF CONDUCTING AND SUPERCONDUCTING TRANSMISSION LINES

    E-Print Network [OSTI]

    Ramdani, Karim - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

    MATHEMATICAL ANALYSIS OF CONDUCTING AND SUPERCONDUCTING TRANSMISSION LINES ANNE-SOPHIE BONNET propagation in the microstrip transmission lines used in microelectronics. In the first part, the case of the perfectly conducting strip. Key words. superconducting transmission lines, waveguides, spectral analysis

  20. LECTRISATION ET CONDUCTION LECTRIQUE DES HYDROCARBURES LIQUIDES par L. BRUNINGHAUS.

    E-Print Network [OSTI]

    Boyer, Edmond

    ÉLECTRISATION ET CONDUCTION ÉLECTRIQUE DES HYDROCARBURES LIQUIDES par L. BRUNINGHAUS. Sommaire. - I. Electrisation des hydrocarbures. - Les hydrocarbures liquides s'électrisent (négativement) lorsqu'ils s hydrocarbures. - Les hydrocarbures liquides mani- festent trois régimes de conduction : 1° En couches épaisses

  1. Master Thesis Proposal Eddy Current Imaging of Electrically Conducting Media

    E-Print Network [OSTI]

    Vuik, Kees

    Master Thesis Proposal Eddy Current Imaging of Electrically Conducting Media Domenico Lahaye and optimization techniques en- abling the eddy current imaging of electrically conducting media. Examples: · perform a literature study into topics such as eddy current imaging, inverse problems including

  2. Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites 

    E-Print Network [OSTI]

    Moriarty, Gregory P.

    2013-05-21T23:59:59.000Z

    fabrication temperatures. These concerns have led research efforts into electrically conductive polymer composites prepared in ambient conditions from aqueous solutions. By combining polymer latex with carbon nanotubes (CNT), electrical conductivity can...

  3. Strain-controlled thermal conductivity in ferroic twinned films

    E-Print Network [OSTI]

    Li, Suzhi

    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity ? of ferroic twinned thin ...

  4. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

  5. Integrated experimental and modeling study of the ionic conductivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling study of the ionic conductivity of samaria-doped ceria thin films. Abstract: Oxygen diffusion and ionic conductivity of samaria-doped ceria (SDC) thin films have been...

  6. Laboratory-scale fracture conductivity created by acid etching 

    E-Print Network [OSTI]

    Pournik, Maysam

    2009-05-15T23:59:59.000Z

    Success of acid fracturing treatment depends greatly on the created conductivity under closure stress. In order to have sufficient conductivity, the fracture face must be non-uniformly etched while the fracture strength maintained to withstand...

  7. anisotropic conductive film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and CdIn2O4. Thin films of amorphous Cd2SnO4 were prepared by Nozik with conductivities thin films of polycrystalline spinel Cd2SnO4 with conductivities exceeding 6700 Scm.7...

  8. anomalous thermal conductivity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conductivity in the range (4.84 ( 0.44) ? 103 to (5.30 ( 0 84 THERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND Mathematics Websites Summary:...

  9. apparent thermal conductivity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conductivity in the range (4.84 ( 0.44) ? 103 to (5.30 ( 0 66 THERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND Mathematics Websites Summary:...

  10. Structure, Magnetism and Conductivity in Epitaxial Ti-doped ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductivity in Epitaxial Ti-doped -Fe2O3 Hematite: Experiment and density functional theory Structure, Magnetism and Conductivity in Epitaxial Ti-doped -Fe2O3 Hematite:...

  11. Department of Residential Life Revised Conduct and Contractual Process

    E-Print Network [OSTI]

    Harms, Kyle E.

    Department of Residential Life Revised Conduct and Contractual Process Appeal Does Not Meet Criteria Process Complete: Sanctions administered by appropriate staff. Student complies and vacates. Case Declines Administrative Decision Appeals Conduct Board Decision Decision Final; Process Complete Process

  12. In-Plane Conductivity Testing Procedures and Results

    Broader source: Energy.gov [DOE]

    This presentation on conductivity testing was given at the High Temperature Membrane Working Group Meeting in May 2007.

  13. Photovoltaic device having light transmitting electrically conductive stacked films

    DOE Patents [OSTI]

    Weber, Michael F. (St. Paul, MN); Tran, Nang T. (St. Paul, MN); Jeffrey, Frank R. (St. Paul, MN); Gilbert, James R. (St. Paul, MN); Aspen, Frank E. (St. Paul, MN)

    1990-07-10T23:59:59.000Z

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  14. CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011

    E-Print Network [OSTI]

    Dyer, Bill

    ME 525 CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011 Office: 201C Roberts Hall Lecture Room of conduction heat transfer. Important results which are useful for engineering application will also: 121 Roberts Hall Phone: 994-6295 Lecture Periods: 12:45- 2:00, TR TEXT: Heat Conduction, M. N. Ozisik

  15. PREPARING FOR YOUR CONDUCT APPEAL PURPOSE OF THE APPEAL PROCESS

    E-Print Network [OSTI]

    Hayden, Nancy J.

    PREPARING FOR YOUR CONDUCT APPEAL 9/15/11 PURPOSE OF THE APPEAL PROCESS The purpose of the appeal process is to ensure that students who engage in the University of Vermont's conduct process, through in and are treated fairly in this process. The appeal process is not a rehearing of the original conduct case

  16. Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop

    E-Print Network [OSTI]

    Madden, Peter Geoffrey Alexander, 1971-

    2003-01-01T23:59:59.000Z

    Conducting polymers as a class of materials can be used to build a diverse range of devices. Conducting polymer based actuators (muscles), transistors (neurons), strain gages (muscle spindles), force sensors (Golgi tendon ...

  17. UCF-5.012 Organizational Rules of Conduct Student organizations are expected to abide by these Organizational Rules of Conduct,

    E-Print Network [OSTI]

    Van Stryland, Eric

    UCF-5.012 Organizational Rules of Conduct Student organizations are expected to abide by these Organizational Rules of Conduct, and administrators and faculty are expected to enforce them. These rules should these offenses, constitute violations of the Organizational Rules of Conduct. (1) Theft, Disregard for Property

  18. Heat conduction through a trapped solid: effect of structural changes on thermal conductance

    E-Print Network [OSTI]

    Debasish Chaudhuri; Abhishek Chaudhuri; Surajit Sengupta

    2007-03-20T23:59:59.000Z

    We study the conduction of heat across a narrow solid strip trapped by an external potential and in contact with its own liquid. Structural changes, consisting of addition and deletion of crystal layers in the trapped solid, are produced by altering the depth of the confining potential. Nonequilibrium molecular dynamics simulations and, wherever possible, simple analytical calculations are used to obtain the thermal resistance in the liquid, solid and interfacial regions (Kapitza or contact resistance). We show that these layering transitions are accompanied by sharp jumps in the contact thermal resistance. Dislocations, if present, are shown to increase the thermal resistance of the strip drastically.

  19. Feasibility of cooling positrons via conduction in conductive micro-tubes

    SciTech Connect (OSTI)

    Khamehchi, M. A., E-mail: mak@cmr.wsu.edu; Baker, C. J.; Weber, M. H.; Lynn, K. G., E-mail: kgl@wsu.edu [Center for Materials Research, Washington State University, Pullman, Washington 99164-2814 (United States)

    2014-01-15T23:59:59.000Z

    A first order perturbation with respect to velocity has been employed to find the frictional damping force imposed on a single moving charge inside a conductive cylindrical micro-tube. The tensorial relationship between the force and velocity is derived and numerically estimated. Our results asymptotically match that of a flat geometry presented in the literature. Using the single particle analysis the cooling is formulated for an arbitrary density ensemble. It is shown that no further cooling via conduction occurs in the well-established non-neutral plasma equilibrium state. Also, the cooling rate for a weakly interacting ensemble is estimated. It is shown micro-tubes can be employed to cool down low density positron ensembles and/or to improve the beam emittance. A pack of tens of thousands of individual micro-tubes, each cooling only tens of positrons, is capable of cooling hundreds of thousands of particles in each cooling cycle. For example, with tens of particles per micro-tube in a 5?cm long micro-tube stack with the resistivity of 0.46??m and the tubes of radius 50??m, hundreds of thousands of positrons can be cooled down with a time constant of 103??s in longitudinal and 7??s in perpendicular direction. However, it must be noted that the cooling does not guarantee long term storage of particles in micro-tubes.

  20. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Roberts, Jeffery J. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  1. Electron thermal conductivity owing to collisions between degenerate electrons

    E-Print Network [OSTI]

    P. S. Shternin; D. G. Yakovlev

    2006-08-17T23:59:59.000Z

    We calculate the thermal conductivity of electrons produced by electron-electron Coulomb scattering in a strongly degenerate electron gas taking into account the Landau damping of transverse plasmons. The Landau damping strongly reduces this conductivity in the domain of ultrarelativistic electrons at temperatures below the electron plasma temperature. In the inner crust of a neutron star at temperatures T scattering and becomes competitive with the the electron conductivity due to scattering of electrons by impurity ions.

  2. Thermal conductivity of graphene nanoribbons in noble gaseous environments

    SciTech Connect (OSTI)

    Zhong, Wei-Rong, E-mail: wrzhong@hotmail.com; Xu, Zhi-Cheng; Zheng, Dong-Qin [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn [Laboratory of Quantum Information Technology, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China)

    2014-02-24T23:59:59.000Z

    We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

  3. Conducting polymers as potential active materials in electrochemical supercapacitors

    SciTech Connect (OSTI)

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Ferraris, J.P. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry

    1992-12-01T23:59:59.000Z

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  4. Conducting polymers as potential active materials in electrochemical supercapacitors

    SciTech Connect (OSTI)

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. (Los Alamos National Lab., NM (United States)); Ferraris, J.P. (Texas Univ., Richardson, TX (United States). Dept. of Chemistry)

    1992-01-01T23:59:59.000Z

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  5. Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids

    SciTech Connect (OSTI)

    R Prasher; W Evans; J Fish; P Meakin; P Phelan; Pawel Keblinski

    2006-08-10T23:59:59.000Z

    Using effective medium theory we demonstrate that the thermal conductivity of nanofluids can be significantly enhanced by the aggregation of nanoparticles into clusters. The enhancement is based purely on conduction and does not require a novel mechanism. Predictions of the effective medium theory are in excellent agreement with detailed numerical calculations on model nanofluids involving fractal clusters and show the importance of cluster morphology on thermal conductivity enhancements.

  6. NMSLO Application for Permit to Conduct Geophysical Exploration...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Legal Document- OtherOther: NMSLO Application for Permit to Conduct Geophysical Exploration on Unleased State LandsLegal Published NA Year...

  7. Raman Scattering at Plasmonic Junctions Shorted by Conductive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories...

  8. Conducting and Using Energy Efficiency Studies for States Presentation

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on how to effectively conduct and use Energy Efficiency Studies for States.

  9. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  10. Electron Exchange and Conduction in Nontronite from First-Principles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Conduction in Nontronite from First-Principles. Abstract: Fe-bearing clay minerals serve as an important source and sink for electrons in redox reactions in various...

  11. Electrical and thermal conductivity of low temperature CVD graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and thermal conductivity of low temperature CVD graphene: the effect of disorder This article has been downloaded from IOPscience. Please scroll down to see the full text article....

  12. anisotropic conductive adhesive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    volumetric flux P (x) w (also called the Darcy flow) is everywhere parallel to the pressure Knowles, Ian W. 24 THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER...

  13. Step 3: Conduct Audience Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the methods, at the times, and in the places that will inspire action and changes in behavior. Understand Different Types of Research Develop a Research Plan Conduct Research...

  14. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOE Patents [OSTI]

    Frank, A.J.; Honda, K.

    1984-01-01T23:59:59.000Z

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  15. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOE Patents [OSTI]

    Frank, Arthur J. (Lakewood, CO); Honda, Kenji (Wheatridge, CO)

    1984-01-01T23:59:59.000Z

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  16. affects stomatal conductance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of interest. Conduction provides extra heating and yet it reduces the free-free radiative efficiency of the accretion flow (by potentially large factors). These idealized solutions...

  17. Assessment of the Portsmouth/Paducah Project Office Conduct of...

    Office of Environmental Management (EM)

    Quality CR Condition Report CONOPS Conduct of Operations DOE U.S. Department of Energy DUF6 Depleted Uranium Hexafluoride FIR Field Inspection Report FPD Federal Project Director...

  18. Teachers Conduct Research at Prestigious Department of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    teachers to conduct practical and essential group research on a variety of projects at CEBAF including: Data analysis, construction and operation of safety systems, and control...

  19. The synthesis and characterization of porous, conductive, and ordered materials

    E-Print Network [OSTI]

    Narayan, Tarun Chandru

    2013-01-01T23:59:59.000Z

    Two different classes of polymers were pursued as candidates for materials possessing porosity, conductivity, and crystalline order. Attempts were made with hexaazatrinaphthylene- and dibenzotetrathiafulvalene-based ...

  20. Conduct Operations Assessment Plan - Developed By NNSA/Nevada...

    Broader source: Energy.gov (indexed) [DOE]

    AMTS Performance Assurance Division AMNS Programs CONDUCT OF OPERATIONS Assessment Plan NNSANevada Site Office Independent Oversight Division Performance Objective: The purpose of...

  1. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Summary of Experiments Conducted in Support ... NNSA's...

  2. Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires

    E-Print Network [OSTI]

    tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films. KEYWORDS: Graphene, nanowires, transparent conductive films, electrochromic devices Due to low electron

  3. First Subcritical Experiment Conducted at Nevada Test Site |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcritical Experiment Conducted at Nevada Test Site | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  4. Method of forming an electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN); Woodward, Jonathan (Ashtead, GB)

    2011-11-22T23:59:59.000Z

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect (OSTI)

    Bogdanov, G.; Ludwig, R. [Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 (United States); Wiggins, J.; Bertagnolli, K. [US Synthetic, 1260 South 1600 West, Orem, UT 84058 (United States)

    2014-02-18T23:59:59.000Z

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  6. Conduction Models Of The Temperature Distribution In The East...

    Open Energy Info (EERE)

    Geothermal Project well HGP-A are simulated by model studies using a finite element code for conductive heat flow. Three models were generated: a constant temperature source...

  7. An Analytical Study Of A 2-Layer Transient Thermal Conduction...

    Open Energy Info (EERE)

    Typical interpretation schemes are based on simple, one-layer solutions to the Fourier conduction equation using the annual solar cycle as a surface heat source. We present...

  8. Microscopic mechanism of low thermal conductivity in lead telluride

    SciTech Connect (OSTI)

    Delaire, Olivier A [ORNL; Ma, Jie [ORNL

    2012-01-01T23:59:59.000Z

    Themicroscopic physics behind low-lattice thermal conductivity of single-crystal rock salt lead telluride (PbTe) is investigated. Mode-dependent phonon (normal and umklapp) scattering rates and their impact on thermal conductivity were quantified by first-principles-based anharmonic lattice dynamics calculations that accurately reproduce thermal conductivity in a wide temperature range. The low thermal conductivity of PbTe is attributed to the scattering of longitudinal acoustic phonons by transverse optical phonons with large anharmonicity and small group velocity of the soft transverse acoustic phonons. This results in enhancing the relative contribution of optical phonons, which are usually minor heat carriers in bulk materials.

  9. analyzing skin conductance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coupling between each tactile sensing chip and a ground Shinoda, Hiroyuki 8 HandWave: Design and Manufacture of a Wearable Wireless Skin Conductance Computer Technologies and...

  10. Identifying semiconductors by d.c. ionization conductivity

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    expected from high-Z semiconductor detectors? ,” IEEE Transand binary compound semiconductors and insulators,” J PhysIdentifying Semiconductors by D.C. Ionization Conductivity

  11. The Classical Nature of Thermal Conduction in Nanofluids

    E-Print Network [OSTI]

    Jacob Eapen; Roberto Rusconi; Roberto Piazza; Sidney Yip

    2008-12-31T23:59:59.000Z

    Several new mechanisms have been hypothesized in the recent years to characterize the thermal conduction behavior in nanofluids. In this paper, we show that a large set of nanofluid thermal conductivity data is enveloped by the well-known Hashin and Shtrikman (HS) mean-field bounds for inhomogeneous systems. The thermal conductivity in nanofluids, therefore, is largely dependent on whether the nanoparticles stays dispersed in the base fluid, form linear chain-like configurations, or assume an intermediate configuration. The experimental data, which is strikingly analogous to those in most solid composites and liquid mixtures, provides a strong evidence for the classical nature of thermal conduction in nanofluids.

  12. POLYMERIC MICROCOMBUSTORS FOR SOLID-PHASE CONDUCTIVE FUELS

    E-Print Network [OSTI]

    combustor for the ignition and reaction of solid conductive fuels. Solid fuels can he made conductive, the hum rate of fuel in the overall combustor can he decoupled from the chemical reaction rate by changing igniter volume density; the combustor housing can be made of a low-temperature, low-cost mate

  13. Percolation in Transparent and Conducting Carbon Nanotube Networks

    E-Print Network [OSTI]

    Gruner, George

    and chemical sensors9 , field emission devices10,11 , and transparent conductive coatings7 . We12 , and another. Transmission measurements also indicate the usefulness of nanotube network films as a transparent, conductive coating. Avenues for improvement of the network transparency are discussed. KEYWORDS Nanotubes, Networks

  14. Interactions Between Membrane Conductances Underlying Thalamocortical Slow-Wave Oscillations

    E-Print Network [OSTI]

    Destexhe, Alain

    or oscillations can be explained by interactions between calcium- and voltage-dependent channels. At the networkInteractions Between Membrane Conductances Underlying Thalamocortical Slow-Wave Oscillations A: Oscillations and Bursts Emerging From the Interplay of Intrinsic Conductances in Single Neurons 1404 A

  15. HEALTH CARE COLLEGES CODE OF STUDENT PROFESSIONAL CONDUCT

    E-Print Network [OSTI]

    Hayes, Jane E.

    10/14/08 Page 1 HEALTH CARE COLLEGES CODE OF STUDENT PROFESSIONAL CONDUCT (APPROVED BY THE BOARD OF TRUSTEES) ARTICLE 1: INTRODUCTION A. Rationale The credibility of a health care professional is based. Consequently, students in the health care colleges have a particular obligation to conduct themselves at all

  16. DEGRADATION OF TRANSPARENT CONDUCTIVE OXIDES: MECHANISTIC INSIGHTS AND INTERFACIAL ENGINEERING

    E-Print Network [OSTI]

    Rollins, Andrew M.

    DEGRADATION OF TRANSPARENT CONDUCTIVE OXIDES: MECHANISTIC INSIGHTS AND INTERFACIAL ENGINEERING;Degradation of Transparent Conductive Oxides: Mechanistic insights and Interfacial engineering Case Western;Dedicated to the science and engineering of photovoltaics, in an effort to make a better world. #12;Table

  17. High carrier concentration p-type transparent conducting oxide films

    DOE Patents [OSTI]

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21T23:59:59.000Z

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  18. The Electrical Conductivity Of Partly Ionized Helium Plasma

    SciTech Connect (OSTI)

    Sreckovic, Vladimir A.; Ignjatovic, Ljubinko; Mihajlov, A. A. [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    In this paper we analyzed atoms influence on electro conductivity, partially ionized helium plasma, in temperature region 5 000 K - 40 000 K and pressure 0.1 - 10 atm. Electro conductivity was calculated using 'Frost like' formula and Random Phase Approximation method and Semi-Classical (SC) approximation.

  19. Nanoscale Current Imaging of the Conducting Channels in Proton

    E-Print Network [OSTI]

    Buratto, Steve

    Nanoscale Current Imaging of the Conducting Channels in Proton Exchange Membrane Fuel Cells David A area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic particle at its end. This is due to the formation of protons, at the carbon cloth side of the cell

  20. THERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND

    E-Print Network [OSTI]

    envelope and on the performance of systems. This behaviour is related to hygric and thermal propertiesTHERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND WATER CONTENT of formulation, density and water content on the thermal conductivity of hemp concretes. The investigations