Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Materials for Advanced Ultra-Supercritical Steam Boilers  

E-Print Network (OSTI)

Materials for Advanced Ultra-Supercritical Steam Boilers Mike Santella ORNL 25th Annual Conference ­ For Profit Cost Sharing Consortium #12;2 26-May-2010 Materials for Advanced Ultra-Supercritical Steam Boilers Estimated Total Amount of Tubing for a Generic A-USC Boiler Images courtesy of The Babcock & Wilcox Company

2

Advanced Materials for Ultra Supercritical Boiler Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Patricia a. Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Robert M. Purgert Prime Contractor and Administrator Energy Industries of Ohio 6100 Oak Tree Boulevard, Suite 200 Independence, OH 44131-6914 216-643-2952 purgert@msn.com AdvAnced MAteriAls for UltrA sUpercriticAl Boiler systeMs Description A consortium led by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) has conducted the first phase of a multiyear program to develop materials technology for use in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of

3

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

4

New Materials for 750C Boilers in Advanced Ultra-supercritical  

Science Conference Proceedings (OSTI)

Presentation Title, New Materials for 750C Boilers in Advanced Ultra- supercritical (A-USC) Power Plants. Author(s), Yuefeng Gu, Z ZHONG, Y Yuan, Z Shi.

5

Computational Modeling and Assessment of Nanocoatings for Ultra-Supercritical Boilers  

Science Conference Proceedings (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler water walls and tubing. Reliable coatings are required for ultra-supercritical application to mitigate corrosion because these boilers will operate at much higher temperatures and pressures than in supercritical boilers.Computational modeling efforts have been undertaken to design and assess potentialFe-Cr-Ni-Al systems to produce stable nanocrystalline ...

2012-12-12T23:59:59.000Z

6

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

SciTech Connect

Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

David W. Gandy; John P. Shingledecker

2011-04-11T23:59:59.000Z

7

Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers  

Science Conference Proceedings (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.

J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

2011-06-21T23:59:59.000Z

8

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

Science Conference Proceedings (OSTI)

Coal-fired power plants are a significant part of the nation???¢????????s power generating capacity, currently accounting for more than 55% of the country???¢????????s total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760???????°C (1400???????°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

David W. Gandy; John P. Shingledecker

2011-05-11T23:59:59.000Z

9

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energys goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

10

Research on virtual assembly of supercritical boiler  

Science Conference Proceedings (OSTI)

Supercritical boiler is an important measure to solve problems like electricity shortage or energy intensity, with its high combustion efficiency. As supercritical boiler is a large and complex product, it may appear some problems of collision, location ... Keywords: interaction, lightweight model, supercritical boiler, virtools, virtual assembly, virtual reality

Pi-Guang Wei; Wen-Hua Zhu; Hao Zhou

2010-09-01T23:59:59.000Z

11

Ultra supercritical steamside oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are part of the U.S. Department of Energy's Vision 21 goals. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Vision 21 goals include steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems. Emphasis is placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.; Alman, David A.; Ochs, Thomas L.

2004-01-01T23:59:59.000Z

12

Assessing Cast Alloys for Use in Advanced Ultra-supercritical Steam ...  

Science Conference Proceedings (OSTI)

... of these alloys were examined via SEM; phase identification and chemistry are being ... Phase Stability of Cast and Wrought IN 740 at Ultra Supercritical Boiler...

13

Ultra Supercritical Steamside Oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

14

Ultra Supercritical Steamside Oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

15

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

16

Supercritical Boiler Tube Wall Temperature Test Base on the Power Plant Control System Database  

Science Conference Proceedings (OSTI)

In order to precisely learn the working condition of 600MW supercritical boiler, new temperature measuring points are set on the super-heater tube wall inner the flue. Since the working condition of 600MW supercritical boiler is quite severe, the temperature ... Keywords: supercritical boiler, database, temperature test, super-heater

Yu Yanzhi; Zhang Liangbo; Xu Haichuan; Chen Duogang; Dong Gongjun; Shen Bo; Liu Sheng

2010-06-01T23:59:59.000Z

17

A centurial history of technological change and learning curves or pulverized coal-fired utility boilers  

E-Print Network (OSTI)

allow ultra-supercritical boilers to achieve still higherthat supercritical-coal boilers, at least in the 1970s, didGW/year) by type of boiler. Source: [25]. Net Efficiency (

Yeh, Sonia; Rubin, Edward S.

2007-01-01T23:59:59.000Z

18

Evaluation of Circumferential Cracking on Supercritical Boiler Waterwalls  

Science Conference Proceedings (OSTI)

Circumferential cracking of the fireside surfaces of supercritical waterwalls remains a problem for many coal-fired boilers. Two parallel test programs at Pennsylvania Power and Light's (PPL) Brunner Island Unit 3 attempted to correlate operating conditions with the development and propagation of circumferential cracks.

2008-03-31T23:59:59.000Z

19

Materials for Ultra-Supercritical Steam Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

20

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alloy Design of 9% Cr Steel for High Efficiency Ultra-Supercritical ...  

Science Conference Proceedings (OSTI)

Presentation Title, Alloy Design of 9% Cr Steel for High Efficiency Ultra- Supercritical Power Plants. Author(s), Fujio Abe. On-Site Speaker (Planned), Fujio Abe.

22

Circumferential Cracking Investigation on a Supercritical Boiler Martin Lake Unit 3  

Science Conference Proceedings (OSTI)

Luminants Martin Lake unit 3 is one of three supercritical boilers at the site. Lignite from nearby mines is the principal source of fuel, which is mixed with 10-20% Powder River Basin or western coal to assist combustion. The boiler was originally designed to generate around 750 MW, although it is now generating up to 850 MW. In 2000, water cannons were installed in the walls as a replacement for the wall blowers. At about the same time, after 21 years of operation without signs of cracking, the unit wa...

2010-06-30T23:59:59.000Z

23

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

2010-05-01T23:59:59.000Z

24

Survey of Ultra-Supercritical Pulverized Coal Power Plants in Japan and China  

Science Conference Proceedings (OSTI)

Within the United States, there is interest in pulverized coal (PC) units operating at ultra-supercritical (USC) conditions, arbitrarily defined as having main steam temperatures of 1100186F (595186C) and above. Such units have higher efficiency than conventional supercritical (SC) PC units with corresponding reductions in emissions8212on a lb/MWh basis8212for CO2, criteria pollutants, and mercury. Some power producers also consider the improved efficiency a hedge against future coal price increases. To ...

2009-12-09T23:59:59.000Z

25

Economic Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

SciTech Connect

This report determines the capital and operating costs of two different oxygen-based, pulverized coal-fired (PC) power plants and compares their economics to that of a comparable, air-based PC plant. Rather than combust their coal with air, the oxygen-based plants use oxygen to facilitate capture/removal of the plant CO{sub 2} for transport by pipeline to a sequestering site. To provide a consistent comparison of technologies, all three plants analyzed herein operate with the same coal (Illinois No 6), the same site conditions, and the same supercritical pressure steam turbine (459 MWe). In the first oxygen-based plant, the pulverized coal-fired boiler operates with oxygen supplied by a conventional, cryogenic air separation unit, whereas, in the second oxygen-based plant, the oxygen is supplied by an oxygen ion transport membrane. In both oxygen-based plants a portion of the boiler exhaust gas, which is primarily CO{sub 2}, is recirculated back to the boiler to control the combustion temperature, and the balance of the flue gas undergoes drying and compression to pipeline pressure; for consistency, both plants operate with similar combustion temperatures and utilize the same CO{sub 2} processing technologies. The capital and operating costs of the pulverized coal-fired boilers required by the three different plants were estimated by Foster Wheeler and the balance of plant costs were budget priced using published data together with vendor supplied quotations. The cost of electricity produced by each of the plants was determined and oxygen-based plant CO{sub 2} mitigation costs were calculated and compared to each other as well as to values published for some alternative CO{sub 2} capture technologies.

Andrew Seltzer; Archie Robertson

2006-09-01T23:59:59.000Z

26

Superalloys for ultra supercritical steam turbines--oxidation behavior  

Science Conference Proceedings (OSTI)

Goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

27

Program on Technology Innovation: State of Knowledge Review of Nanostructured Coatings for Boiler Tube Applications  

Science Conference Proceedings (OSTI)

Since the adoption of low-NOx emission controls with staged burner systems, severe waterwall corrosion has been experienced in many utility boilers. Protective coatings applied by thermal spray processes have reduced the adverse effects of corrosion to some degree, especially in sub-critical boilers. However, the corrosion intensity observed in super-critical boilers, and foreseen in ultra super-critical units, requires coatings with protective capabilities beyond what has been achievable with convention...

2007-03-12T23:59:59.000Z

28

Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler  

SciTech Connect

Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

2011-02-15T23:59:59.000Z

29

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

Science Conference Proceedings (OSTI)

Abstract Scope, The proposed steam inlet temperature in the Advanced Ultra ... 15 - The Effect of Primary ?' Distribution on Grain Growth Behavior of GH720Li...

30

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

Science Conference Proceedings (OSTI)

Develop advanced coal-based power systems capable of 4550 % efficiency at cost of electricity in an IGCC-based plant cost of electricity for pulverized coal boilers Demonstrate coal-based energy plants that offer near-zero emissions (including CO2) with multiproduct production

G. R. Holcomb, P. D. Jablonski, and P. Wang

2010-10-01T23:59:59.000Z

31

Demonstration Development Project: Readiness of Advanced Ultra-Supercritical Pulverized Coal Technology for Demonstration  

Science Conference Proceedings (OSTI)

Advanced ultra-supercritical (A-USC) pulverized coal technology operates with main steam temperatures in the range of 700C to 760C (1290F to 1400F) and has the potential to raise net generating efficiency by up to 50% (HHV). Economic analysis indicates that, by lowering CO2/MWh, A-USC technology lowers the cost of CO2 capture and storage when it is integrated with the power plant. To achieve these higher operating temperatures, nickel alloys and associated fabrication procedures are b...

2011-08-26T23:59:59.000Z

32

Engineering and Economic Evaluation of 1300F Series Ultra-Supercritical Pulverized Coal Power Plants: Phase 1  

Science Conference Proceedings (OSTI)

The strategy for lowering the cost of CO2 capture from coal-based power plants includes raising generating efficiency. For pulverized coal (PC) plants this means progressing to ultra-supercritical (USC) steam conditions, arbitrarily defined as having temperatures above 593C (1100F). Currently, USC steam temperatures are limited to approximately 627C (1160F) by the use of ferritic steels, the most advanced commercially available steels. To go to higher temperatures, high-nickel alloys must be used, and th...

2008-09-30T23:59:59.000Z

33

Computational Modeling and Assessment of Nanocoating for Ultra-Supercritical Boilers  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJEC PROJEC T FAC TS Advanced Research Materials CONTACTS Robert Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Vito Cedro III Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7406 vito.cedro@netl.doe.gov David Gandy Principal Investigator

34

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

Andrew Seltzer

2006-05-01T23:59:59.000Z

35

Engineering and Economic Analysis of a 1300F (704C) Series Advanced Ultra-Supercritical Demonstration Plant with Natural Gas Equivalency Post-Combustion Capture  

Science Conference Proceedings (OSTI)

The strategy for lowering the cost of CO2 capture from coal-based power plants includes increasing generating efficiency. The most effective way to reduce CO2 is simply to make less of it, and generating units with higher efficiencies require less coal for each MW of outputthereby producing less CO2. Each 1% increase in efficiency decreases CO2 by approximately 2.5%. For pulverized coal (PC) plants, this means progressing to ultra-supercritical ...

2013-04-30T23:59:59.000Z

36

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

37

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network (OSTI)

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research (unrecuperated) with an ultra- low nitrous oxide (NOx) boiler burner for firetube boilers. The project goals

38

BOILER PERF MODEL  

Science Conference Proceedings (OSTI)

The BOILER PERFORMANCE MODEL is a package of eleven programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. (USDOE, Pittsburgh Energy Technology Center, Pittsburgh, PA (United States))

1988-01-01T23:59:59.000Z

39

Superheater Corrosion in Ultra-Supercritical Power Plants: Long-Term Field Exposure at TVA's Gallatin Station  

Science Conference Proceedings (OSTI)

An advanced, high-strength stainless steel containing 25 percent Cr performed well in most areas of a reheater in a boiler fueled with corrosive coals. However, in limited areas it and all other alloys tested experienced high corrosion rates.

1999-03-02T23:59:59.000Z

40

Growth Characteristics in Waterwall Tubes of Supercritical Units  

Science Conference Proceedings (OSTI)

Waterwall tubes in some of the existing fleet of U.S. supercritical steam boilers operating with oxygenated water treatment (OT) are experiencing the growth of duplex oxide scales of similar morphology to those found in the circuitry of steam-touched superheater and reheater tubing. A 2009 EPRI report, Oxide Scale Growth Characteristics in Waterwall Tubes of Supercritical Steam Boilers (1015656), examined the conditions at which these oxides are formed. This report provides information to allow the predi...

2010-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS  

SciTech Connect

In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate the particle size distribution, but was of insufficient size to permit reliable chemical analysis. The size classified fly ash from the inlet of the ESP was used for detailed chemical analyses. Chemical analyses of the fly ash samples from the ESP outlet using a high volume sampler were performed for comparison to the size classified results at the inlet. For all test conditions the particulate removal efficiency of the ESP exceeded 99.3% and emissions were less than the NSPS limits of {approx}48 mg/dscm. With constant combustion conditions, the removal efficiency of the ESP increased as the ESP voltage and Specific Collection Area (SCA) increased. The associated decrease in particle emissions occurred in size fractions both larger and smaller than 2.5 microns. For constant ESP voltage and SCA, the removal efficiency for the ultra low-NO{sub x} combustion ash (99.4-99.6%) was only slightly less than for the low-NO{sub x} combustion ash (99.7%). The decrease in removal efficiency was accompanied by a decrease in ESP current. The emission of PM{sub 2.5} from the ESP did not change significantly as a result of the change in combustion conditions. Most of the increase in emissions was in the size fraction greater than 2.5 microns, indicating particle re-entrainment. These results may be specific to the coal tested in this program. In general, the concentration of inorganic elements and trace species in the fly ash at the ESP inlet was dependent on the particle size fraction. The smallest particles tended to have higher concentrations of inorganic elements/trace species than larger particles. The concentration of most elements by particle size range was independent of combustion condition and the concentration of soluble ions in the fly ash showed little change with combustion condition when evaluated on a carbon free basis.

Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

2001-09-30T23:59:59.000Z

42

Super Boiler 2nd Generation Technology for Watertube Boilers  

Science Conference Proceedings (OSTI)

This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

Mr. David Cygan; Dr. Joseph Rabovitser

2012-03-31T23:59:59.000Z

43

Boiler Alloys  

Science Conference Proceedings (OSTI)

Table 4   Major international research and development efforts...650 °C Ferritic steel development EPRI, U.S.A. Electric Power Research Institute 1978??2003 ? Boiler and turbine thick-walled components; standardization

44

A centurial history of technological change and learning curves or pulverized coal-fired utility boilers  

E-Print Network (OSTI)

reason is that supercritical-coal boilers, at least in thenot operate well on U.S. coal with high sulfur and active32 (2007) 19962005 Pulverized Coal Installed Capacity (GW)

Yeh, Sonia; Rubin, Edward

2007-01-01T23:59:59.000Z

45

Interim Guidance on Chemical Cleaning of Supercritical Units  

Science Conference Proceedings (OSTI)

Waterwall tubes in some of the existing fleet of supercritical steam generators operating with oxygenated water treatment (OT) are experiencing the growth of duplex oxide scales of similar morphology to those found in the circuitry of steam-touched superheater and reheater tubing. EPRI report 1015656, Oxide Scale Growth Characteristics in Waterwall Tubes of Supercritical Steam Boilers, examined the conditions at which these oxides are formed. This report provides guidance on the proper monitoring of wate...

2010-05-11T23:59:59.000Z

46

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. Ultrasupercritical (USC...

2011-12-23T23:59:59.000Z

47

Choosing the right boiler air fans at Weston 4  

SciTech Connect

When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

Spring, N.

2009-04-15T23:59:59.000Z

48

Boilers | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Boilers Jump to: navigation, search TODO: Add description List of Boilers Incentives...

49

BPM2.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

BOILER PERFORMANCE MODEL (BPM2.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, Pittsburgh, PA (United States)

1988-01-01T23:59:59.000Z

50

BPM3.0. Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

The BOILER PERFORMANCE MODEL (BPM3.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

Winslow, J.C. [USDOE, Pittsburgh Energy Technology Center, PA (United States)

1992-03-01T23:59:59.000Z

51

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jul 6, 2009... specifications for future energy generation technologies, including the Ultra- Supercritical Steam Boiler and Turbine Project, said Williamson.

52

Thermal Stability Study on a New Ni-Cr-Co-Mo-Nb-Ti-Al Superalloy  

Science Conference Proceedings (OSTI)

superalloy for advanced ultra-supercritical boiler tubes is under development ... pressure and temperature of their pulverized coal-fired boilers so as to improve...

53

Supercritical fluid extraction  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

1994-01-01T23:59:59.000Z

54

Minimize Boiler Blowdown  

SciTech Connect

This revised ITP tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

55

Shield for Water Boiler  

SciTech Connect

Siimplified shielding calculations indicating the proposed design for the water boiler assembly will reduce the radiation at normal operaton to values well below those which are considered tolerable.

Balent, R.

1951-08-08T23:59:59.000Z

56

Boilers and Fired Systems  

SciTech Connect

This chapter examines how energy is consumed, how energy is wasted, and opportunities for reducing energy consumption and costs in the operation of boilers.

Parker, Steven A.; Scollon, R. B.

2009-07-14T23:59:59.000Z

57

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

58

A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler  

SciTech Connect

Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and ? phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

2011-02-27T23:59:59.000Z

59

A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultrasupercritical Steam Turbine and Boiler  

Science Conference Proceedings (OSTI)

Cast forms of traditionally wrought Ni-base precipitation-strengthened superalloys are being considered for service in the ultra-supercritical conditions (760C, 35MPa) of next-generation steam boilers and turbines. After casting and homogenization, these alloys were given heat-treatments typical for each in the wrought condition to develop the gamma-prime phase. Specimens machined from castings were creep-rupture tested in air at 800C. In their wrought forms, alloy 282 is expected to precipitate M23C6 within grain boundaries, alloy 740 is expected to precipitate several grain boundary phases including M23C6, G Phase, and ? phase, and alloy 263 has M23C6 and MC within its grain boundaries. This presentation will correlate the observed creep-life of these cast alloys with the microstructures developed during creep-rupture tests, with an emphasis on the phase identification and chemistry of precipitated grain boundary phases. The suitability of these cast forms of traditionally wrought alloys for turbine and boiler components will also be discussed.

Jablonski, P D; Evens, N; Yamamoto, Y; Maziasz, P

2011-02-27T23:59:59.000Z

60

Boiler Stack Economizer Tube Failure  

Science Conference Proceedings (OSTI)

Presentation Title, Boiler Stack Economizer Tube Failure ... performed to investigate the failure of a type 304 stainless steel tube from a boiler stack economizer.

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Supercritical Fluid Extraction  

E-Print Network (OSTI)

In supercritical fluid extraction, many options are available for achieving and controlling the desired selectivity, which is extremely sensitive to variations in pressure, temperature, and choice of solvent. The ability of supercritical fluids to vaporize relatively nonvolatile compounds at moderate temperatures can reduce the energy requirements compared to distillation and liquid extraction.

Johnston, K. P.; Flarsheim, W. M.

1984-01-01T23:59:59.000Z

62

An Engineering and Economic Assessment of Alstom's Chilled Ammonia Process Development Unit (PDU) Design Applied at Full Scale to a n 1100 F Ultra-Supercritical Pulverized Coal Power Plant  

Science Conference Proceedings (OSTI)

EPRIs CO2 capture program aims to assess promising CO2 capture processes for pulverized coal-fired boilers, assist in developing lower cost options than the best technologies/processes available to date, and accelerate promising capture technologies to full-scale commercialization. This report presents the findings and conclusions from EPRIs Economic and Engineering Assessment of the initial Alstom chilled ammonia process (CAP) design, scaled up, and applied to ...

2012-10-30T23:59:59.000Z

63

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

64

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

65

Drum-boiler dynamics  

Science Conference Proceedings (OSTI)

A nonlinear dynamic model for natural circulation drum-boilers is presented. The model describes the complicated dynamics of the drum, downcomer, and riser components. It is derived from first principles, and is characterized by a few physical parameters. ...

K. J. StrM; R. D. Bell

2000-03-01T23:59:59.000Z

66

Boiler Condition Assessment Guideline  

Science Conference Proceedings (OSTI)

This report Boiler Condition Assessment Guideline provides a concise overview of procedures developed by the Electric Power Research Institute EPRI to help power plant operators cost-effectively determine the extent of degradation and remaining life of key boiler components. The Guideline draws from EPRIs detailed area-specific guidelines, which in turn are based on extensive research findings by EPRI, member companies, and other organizations. This Guideline offers a starting point for power plant perso...

2010-12-23T23:59:59.000Z

67

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-04-23T23:59:59.000Z

68

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-01-31T23:59:59.000Z

69

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

2003-04-21T23:59:59.000Z

70

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

71

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

72

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-01-23T23:59:59.000Z

73

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-04-20T23:59:59.000Z

74

Boiler Materials for Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-07-17T23:59:59.000Z

75

Boiler Materials For Ultrasupercritical Coal Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-09-30T23:59:59.000Z

76

Nano Particles Supercritical Fluid Process  

Scientists at Idaho National Laboratory have invented a new method of producing quantum particles of varying dimensions by employing supercritical ...

77

Supercritical fluid reverse micelle systems  

DOE Patents (OSTI)

of 1 ) United States Patent 5,158,704 Fulton , et al. October 27, 1992 Supercritical fluid reverse micelle systems

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1992-01-01T23:59:59.000Z

78

Inherently Reliable Boiler Component Design  

Science Conference Proceedings (OSTI)

This report summarizes the lessons learned during the last decade in efforts to improve the reliability and availability of boilers used in the production of electricity. The information in this report can assist in component modifications and new boiler designs.

2003-03-31T23:59:59.000Z

79

Compilation of EPRI Boiler Guidelines  

Science Conference Proceedings (OSTI)

Boiler component failures are the most common cause of unplanned outages in fossil steam plants. Headers and drums are two of the largest and most expensive boiler components; however, tube failures have posed the primary availability problem for operators of conventional and combinedcycle plants for as long as reliable statistics have been kept. This product provides a compilation of technical reports covering boiler condition assessment, header and drum failures, and boiler and heat recovery steam gene...

2008-03-26T23:59:59.000Z

80

CX-005591: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: A9, B3.6 Date: 04112011 Location(s): Livingston, New Jersey...

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CX-005592: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: A1, A9 Date: 04112011 Location(s): Charlotte, North Carolina...

82

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NC Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers This project will develop advanced nanostructured corrosion resistant coatings for...

83

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers This project will develop advanced nanostructured corrosion resistant coatings for...

84

(Mn,Co)3O4 SOFC Interconnect Coating Materials and Chromia  

Science Conference Proceedings (OSTI)

Phase Stability of Cast and Wrought IN 740 at Ultra Supercritical Boiler Temperatures Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange...

85

SUPERALLOYS 718, 625, 706  

Science Conference Proceedings (OSTI)

591. E.-G. Wagenhuber, V.B. Trindade, and U. Krupp. A New Alloy Designed for Superheater Tubing in Coal-Fired Ultra Supercritical Boilers....................... 601.

86

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NJ Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers This project will develop advanced nanostructured corrosion resistant coatings for...

87

Novel Metallic Membranes for Hydrogen Separation  

Science Conference Proceedings (OSTI)

A Comparison of Creep-Rupture Tested Cast Alloys HR282, IN740 and 263 for Possible Application in Advanced Ultra-supercritical Steam Turbine and Boiler...

88

Fossil Energy | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

resources. Research Focuses include: Developing cutting edge materials for use in boilers and turbines for Ultra-Supercritical steam power plants, Developing a suite of alloys...

89

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TX Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers This project will develop advanced nanostructured corrosion resistant coatings for...

90

Sol-gel derived lithium iron phosphate films for efficient lithium-ion ...  

Science Conference Proceedings (OSTI)

In addition, we will also show the impacts of the surface chemistry, impurity or defects ... Phase Stability of Cast and Wrought IN 740 at Ultra Supercritical Boiler

91

New Jersey | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: A9, B3.6 Date: 04112011 Location(s): Livingston, New...

92

An Overview of Hot Corrosion in Waste to Energy Boiler ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Overview of Hot Corrosion in Waste to Energy Boiler ... boiler designers, and boiler tube manufacturers since quite a few number of boiler...

93

Evaluation of Solvent Processes for Chemical Cleaning of Supercritical Waterwalls and Removal of Duplex Oxides Formed by High-Temper ature In Situ Oxidation of Ferritic Steels  

Science Conference Proceedings (OSTI)

Electric Power Research Institute (EPRI) report 1003994, Guidelines for Chemical Cleaning of Conventional Fossil Plant Equipment, published in 2001, provides information pertinent to the chemical cleaning of boiler water and steam touched surfaces. The guidelines consider the needs of both drum type and once-through boilers. After the publication of these guidelines, the presence of in situ duplex oxides was identified on the internal diameter of liquid-like touched surfaces of supercritical waterwalls i...

2010-04-30T23:59:59.000Z

94

Recovery Boiler Modeling  

E-Print Network (OSTI)

Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown to provide good resolution of the complex flow near the air ports and greatly improve the convergence characteristics of the numerical procedure. The improved resolution enhances the predictive capabilities of the computations, and allows the assessment of the relative performance of different air delivery systems.

Abdullah, Z.; Salcudean, M.; Nowak, P.

1994-04-01T23:59:59.000Z

95

Supercritical CO2 Tech Team  

Energy.gov (U.S. Department of Energy (DOE))

Supercritical CO2 is a highly technical team focused on different heat source applications of the sCO2 Brayton Cycle.

96

Flame Doctor for Cyclone Boilers  

Science Conference Proceedings (OSTI)

This development program was designed to enhance monitoring and diagnostic technology for cyclone furnaces using the Flame Doctor combustion diagnostic system. First developed for wall-fired pulverized-coal burner systems and boilers, Flame Doctor allows simultaneous, continuous monitoring and evaluation of each burner in a boiler using signals from optical flame scanners. An initial feasibility test conducted at the AmerenUE Sioux cyclone boiler indicated Flame Doctor technology could be extended to cyc...

2007-12-12T23:59:59.000Z

97

Return Condensate to the Boiler  

SciTech Connect

This revised ITP tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

98

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

99

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and...

100

Boiler Reliability Optimization: Interim Guideline  

Science Conference Proceedings (OSTI)

Competitive pressures to drive costs down in the new business environment sometimes conflict with the demands of increased reliability and quality of supply. The Boiler Reliability Optimization program, which makes use of a number of applicable EPRI technologies, was developed to assess, create, and implement an effective boiler maintenance strategy for the changing business environment.

1999-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flame Doctor for Cyclone Boilers  

Science Conference Proceedings (OSTI)

NOx control and combustion optimization in cyclone boilers requires a monitoring technique that can assess the quality of combustion in the burner and barrel and provide guidance to the operator to make adjustments in the air distribution. This report describes the results through the end of 2008 of a beta demonstration of the Flame Doctor combustion diagnostic system at five working cyclone boilers.

2009-07-22T23:59:59.000Z

102

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities in EPA's Boiler Rules Opportunities in EPA's Boiler Rules On December 20, 2012, the US Environmental Protection Agency (EPA) finalized new regulations to control emissions of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and Boiler Area Source Rule (smaller sources), will reduce the amount of HAPS such as mercury, heavy metals, and other toxics that enter the environment. Since emissions from boilers are linked to fuel consumption, energy efficiency is an important strategy for complying with the new Boiler rules. Who is affected? Most existing industrial, commercial and institutional (ICI) boilers will not be affected by the Boiler MACT. These unaffected boilers are mostly small natural gas-fired boilers. Only about 14% of all existing

103

New and Underutilized Technology: Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE))

The following information outlines key deployment considerations for condensing boilers within the Federal sector.

104

Temperature Evolution and Oxide Growth in Waterwall Tubes of Supercritical Units  

SciTech Connect

In order to understand the failures in some waterwall tubes of supercritical steam boilers, an analysis is required to estimate the temperature of the waterwall tubes and the oxide growth in these tubes. A review on the thermophysical properties of oxide grown in waterwall tubes was conducted. Specimens of waterwall tubes associated with thermal fatigue cracking were obtained and microstructural analyses, using metallographic and electron-optical techniques such as SEM and electron-probe microanalysis, were performed. A computer model is being developed to estimate the maximum temperature in waterwall tubes by considering several phenomena that take place in supercritical units. The comprehensive model includes the following boiler operation features and phenomena: oxide growth, distribution of the heat flux on the waterwall tube as a function of height distance, variation of steam flow rate due to load variation, variation of heat flux due to load variation, and variation of the heat transfer coefficient with steam conditions and furnace heat flux. The model will handle the transition subcritical-to-supercritical and will account for the heat transfer deterioration phenomena in tubes. The tube regions with deteriorated heat transfer regimes will be identified. The temperatures of steam, metal, and oxide will be obtained as a function of the height distance in the boiler. The mixing effects of the steam from different waterwall tubes and subsequent fluid dynamics effects on the heat transfer will be considered. The new model will enable the prediction of the maximum metal temperature for realistic boiler operation schedule, which include transitions from full-to-low loads. Based on the estimated data for the steam temperature, metal temperature, and oxide thickness, regions of the waterwall tubes that are exposed to the most severe conditions will be identified.

Sabau, Adrian S [ORNL; Wright, Ian G [ORNL; Zhang, Wei [ORNL; Pint, Bruce A [ORNL; Unocic, Kinga A [ORNL

2010-01-01T23:59:59.000Z

105

Practical Procedures for Auditing Industrial Boiler Plants  

E-Print Network (OSTI)

Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis, and the preparation of recommendations. A complete boiler plant program will consider each individual boiler, boiler room auxiliary equipment, steam distribution and return systems, and steam end use equipment. This paper summarizes the practical procedures, techniques, and instrumentation which Nabisco uses in its boiler plant energy conservation program.

O'Neil, J. P.

1980-01-01T23:59:59.000Z

106

Oxy-combustion Boiler Material Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

107

Recover Heat from Boiler Blowdown  

SciTech Connect

This revised ITP tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

108

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

109

Computer Control of Boiler Operation  

E-Print Network (OSTI)

Rapidly rising energy costs present the opportunity for substantial cost savings through improved boiler combustion control. A process computer control system was installed at an Air Products & Chemicals facility in 1978. As a result the boiler efficiency has increased over 11%. The control system includes; air flow, fuel flow, pressure and drum level control. Air flow control is achieved through modulation of the F.D. fan inlet vanes. Demand for airflow is produced from a high signal selection of the steam pressure controller or the total fuel signal. The output of the oxygen controller is used to modify this airflow index by the desired air/fuel ratio. The air/fuel ratio is a polynomial function of the type of fuel used. In summary, the computer control system provides for; greater overall boiler stability, operation within tight air/gas limits, increased boiler efficiency, capability to burn multiple fuels, faster response to demand changes, and fewer shutdowns.

Pareja, G. E.

1981-01-01T23:59:59.000Z

110

Field Guide: Boiler Tube Failure  

Science Conference Proceedings (OSTI)

In conventional and combined-cycle plants, boiler tube failures (BTFs) have been the main availability problem for as long as reliable statistics have been kept for each generating source. The three volumes of the Electric Power Research Institute (EPRI) report Boiler and Heat Recovery Steam Generator Tube Failures: Theory and Practice (1012757) present an in-depth discussion of the various BTF and degradation mechanisms, providing plant owners and operators with the technical basis to address tube failu...

2009-12-22T23:59:59.000Z

111

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

112

NOx Control for Utility Boiler OTR Compliance  

Science Conference Proceedings (OSTI)

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

Hamid Farzan

2003-12-31T23:59:59.000Z

113

Steam Turbine Materials for Ultra Supercritical Coal Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert M. Purgert Principal Investigator Energy Industries of Ohio 6100 Oak Tree Boulevard Park Center One, Suite 200 Independence, OH 44131-6914 216-643-2952 purgert@msn.com Vis...

114

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

115

Implementation of Boiler Best Practices  

E-Print Network (OSTI)

Boilers are an essential part of any industrial plant, and their efficient, economical operation can significantly affect the reliability and profitability of the entire plant. Best Practices for Boilers include tools to determine where a plant or corporation is with respect to boiler treatment, what needs to be done to make the plant (corporation) the "best of the best," and how to get there. When implemented, Best Practices provide a method to measure and track progress, and represent a benchmark for continuous improvement. Best Practices combine our global collective experience from the areas of research, consulting, sales and marketing, and involve not only recommendations and specifications, but also the rationale behind them for the application of the chosen treatment, monitoring, and instrumentation. Best practices provide energy savings, profitability improvement, reduction in total cost of operations, project management, optimized treatment choices, enhanced safety, system assessment processes and facilitated system improvements.

Blake, N. R.

2000-04-01T23:59:59.000Z

116

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

117

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

118

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

119

Fossil Boiler Life News July 2008  

Science Conference Proceedings (OSTI)

Fossil Boiler Life News, published twice yearly, is the newsletter of EPRI's Boiler Life and Availability Improvement Program (P63). The July 2008 issue includes articles on upcoming meetings, new program personnel, R&D projects for 2009, a boiler drum fracture assessment guideline, protocols for manufacturing and inspecting CSEF steels, predictive FAC codes for fossil units, corrosion-resistant nanocoatings, preventive designs for eliminating boiler tube failures, and other deliverables. The newsletter ...

2008-07-28T23:59:59.000Z

120

ECUT energy data reference series: boilers  

SciTech Connect

Information on the population and fuel consumption of water-tube, fire-tube and cast iron boilers is summarized. The use of each boiler type in the industrial and commercial sector is examined. Specific information on each boiler type includes (for both 1980 and 2000) the average efficiency of the boiler, the capital stock, the amount of fuel consumed, and the activity level as measured by operational load factor.

Chockie, A.D.; Johnson, D.R.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Steam Boiler Control Specification Problem:  

E-Print Network (OSTI)

Our solution to the specification problem in the specification language TLA+ is based on a model of operation where several components proceed synchronously. Our first specification concerns a simplified controller and abstracts from many details given in the informal problem description. We successively add modules to build a model of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed controller specification and prove that it refines the abstract controller. We also address the relationship between the physical state of the steam boiler and the model maintained by the controller and discuss the reliability of failure detection. Finally, we discuss the implementability of our specification.

Tla Solution Frank; Frank Le Ke; Stephan Merz

1996-01-01T23:59:59.000Z

122

Sootblowing optimization for improved boiler performance  

SciTech Connect

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

123

Sootblowing optimization for improved boiler performance  

SciTech Connect

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

2012-12-25T23:59:59.000Z

124

CHP Integrated with Burners for Packaged Boilers  

SciTech Connect

The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the projects subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

Castaldini, Carlo; Darby, Eric

2013-09-30T23:59:59.000Z

125

Covered Product Category: Commercial Boiler  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

126

In-Field Performance of Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IN-FIELD PERFORMANCE OF CONDENSING IN-FIELD PERFORMANCE OF CONDENSING BOILERS Lois B. Arena Steven Winter Associates, Inc. March 2012 Why Research Hydronic Heating? © 2012 Steven Winter Associates, Inc. All rights reserved Reasons to Research Boilers  Approx. 14 million homes (11%) in the US are heated with a steam or hot water system  Almost 70 percent of existing homes were built prior to 1980  Boilers built prior to 1980 generally have AFUE's of 0.65 or lower  Energy savings of 20+% are possible by simply replacing older boilers with standard boilers & up to 30% with condensing boilers.  Optimizing condensing boilers in new and existing homes could mean the difference of 8-10% savings with little to no

127

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

128

MULTI-FUEL BOILER TECHNOLOGY RICK A. HAVERLAND  

E-Print Network (OSTI)

-fired boiler was replaced with a N. V. Vyncke multi-fuel boiler with a rated capacity of 17,600 lb/hr (8000 kg of $0.785/gal ($0.208/L). The oil-fired boiler was replaced with a N. V. Vyncke multi-fuel boiler on the conveyor. Multi-Fuel Boiler Both boilers are the JUMBO OR) series boiler man ufactured by N. V. Vyncke

Columbia University

129

Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions.  

E-Print Network (OSTI)

??Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, (more)

Yang, Dong

2008-01-01T23:59:59.000Z

130

PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS  

Science Conference Proceedings (OSTI)

Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications.

HOLROYD,R.

2007-01-01T23:59:59.000Z

131

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Open Energy Info (EERE)

Technologies Project Type Topic 2 Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more...

132

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. The measures include: 1) Reheating of dehumidified cleanroom make-up air with heat extracted during precooling. 2) Preheating of deionization feedwater with refrigerant heat of condensation. 3) Preheating of boiler combustion air with heat extracted from boiler flue gas. 4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust. 5) Variable speed operation of boiler feedwater pumps and forced-draft fans. 6) Preheating of boiler make-up water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) reduced the amount of steam produced by about 25% and saved about $1,010,000/yr by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the unit cost of steam produced by about 13% and saved about $293,500/yr by reducing natural gas and electricity usage at the steam boiler plant. The combined result was a 35% reduction in annual steam costs (fuel and power).

Fiorino, D. P.

2000-04-01T23:59:59.000Z

133

Supercritical plants to come online in 2009  

Science Conference Proceedings (OSTI)

A trio of coal-fired power plants using supercritical technology set to enter service this year. These are: We Energies is Elm Road Generating Station in Wisconsin, a two-unit, 1,230 MW supercritical plant that will burn bituminous coal; a 750 MW supercritical coal-fired power plant at the Comanche Generating Station in Pueblo, Colo., the third unit at the site; and Luminant's Oak Grove plant in Texas which will consist of two supercritical, lignite-fueled power generation units. When complete, the plant will deliver about 1,6000 MW. Some details are given on each of these projects. 2 photos.

Spring, N.

2009-07-15T23:59:59.000Z

134

Fluidized bed boiler feed system  

SciTech Connect

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

135

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network (OSTI)

On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers. The methods include calculation of combustion temperature, calculation of the relationship between internal convection coefficient and gas flow rate, and calculation of overall heat transfer assuming a parallel-flow heat exchanger model. The method for estimating savings from changing from on/off to modulation control accounts for purge and drift losses through the boiler and the improved heat transfer within the boiler due to the reduced combustion gas flow rate. The method for estimating savings from reducing excess combustion air accounts for the increased combustion temperature, reduced internal convection coefficient and increased residence time of combustion gasses in the boiler. Measured boiler data are used to demonstrate the accuracy of the methods.

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

136

Guidelines for the Nondestructive Examination of Boilers  

Science Conference Proceedings (OSTI)

As the boiler fleet ages, new demands are being placed upon them including operating in cycling modes for which they were not originally designed. Operators are experiencing an increasing incidence of boiler tube failures (BTFs). These guidelines provide guidance on the performance of nondestructive evaluation (NDE) so that operators will know what type of NDE to perform and where to perform NDE within the boiler. The use of appropriate NDE methods is an essential approach to detecting and mitigating boi...

2007-08-30T23:59:59.000Z

137

List of Boilers Incentives | Open Energy Information  

Open Energy Info (EERE)

Boilers Incentives Boilers Incentives Jump to: navigation, search The following contains the list of 550 Boilers Incentives. CSV (rows 1-500) CSV (rows 501-550) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

138

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

139

ENERGY STAR Qualified Boilers | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualified Boilers Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov Communities Consumer Data ENERGY STAR Qualified...

140

Stress-Assisted Corrosion in Boiler Tubes  

Science Conference Proceedings (OSTI)

A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

Preet M Singh; Steven J Pawel

2006-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

preparation, and industrial processes. In homes with boilers, steam is distributed via pipes to steam radiators, and hot water can be distributed via baseboard radiators or...

142

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers  

E-Print Network (OSTI)

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers Carlos E. Romero *, Ying Li, Harun Bilirgen, Nenad Sarunac, Edward K. Levy Energy Research Center type, boiler operation, fly ash characteristics and type of environmental control equipment installed

Li, Ying

143

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler  

E-Print Network (OSTI)

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler tube repairs, basic arc and gas welding, measurement tools, gauge glass maintenance, heat by employer and instructor on boiler inspection and cleaning, centrifugal pumps, basic rigging, piping

Castillo, Steven P.

144

Application of the CALPHAD method for ferritic boiler steels  

Science Conference Proceedings (OSTI)

Presentation Title, Application of the CALPHAD method for ferritic boiler steels ... of the CALPHAD method on various questions concerning ferritic boiler steels...

145

FEMP Technology Brief: Boiler Combustion Control and Monitoring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows...

146

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval...

147

Passivity based control of drum boiler  

Science Conference Proceedings (OSTI)

This paper proposes a novel state space model for the drum boilers with natural recirculation. This model uses the total mass and energy inventories of the boiler as the state variables, and has an affine structure in the control variables. A passivity ...

Chengtao Wen; B. Erik Ydstie

2009-06-01T23:59:59.000Z

148

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network (OSTI)

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water movement inside a boiler has remained highly speculative. This paper and support test video of actual boiler operations will illustrate the effects steam quality vs. boiler efficiency during different boiler and steam system demands. There are four different operating situations that effect the steam quality. Each of the following situation will be described in detail using visual aids and supporting literature: Case I: On/Off Feedwater Control: Wide swings in the water level of the boiler can result in unnecessary low water alarms and shut downs. Case II: Reduced Operating Pressure: By running a boiler at a lower pressure, the boiling action within the boiler becomes much more violent causing water to be carried over in to the steam system. Case III: A Demand of 15% over Capacity: Over loading a boiler will cause excessive amounts of water to be carried along with the steam into the system. Case IV: TDS Control: Without proper control of IDS within the boiler carry-over of water into the steam system will occur causing damage to equipment and/or waterhammer.

Hahn, G.

1998-04-01T23:59:59.000Z

149

The Design of an Inspection Robot for Boiler Tubes Inspection  

Science Conference Proceedings (OSTI)

A climbing robot with magnetic wheels is designed for the inspection of boiler tubes in fossil power plants, which can inspect the boiler tubes automatically. The climbing robot will move on the boiler tubes. The magnetic wheels of the robot can be move ... Keywords: boiler tubes, climbing robot, magnetic flux leakage sensor, VSC controller

Lu Xueqin; Qiu Rongfu; Liu Gang; Huang Fuzhen

2009-11-01T23:59:59.000Z

150

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents (OSTI)

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

Wagoner, C.L.; Foote, J.P.

1995-07-04T23:59:59.000Z

151

Retrofitted coal-fired firetube boiler and method employed therewith  

SciTech Connect

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

1995-01-01T23:59:59.000Z

152

A new blowdown compensation scheme for boiler leak detection  

E-Print Network (OSTI)

A new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advances in identification-based leak detection techniques of boiler steam- water systems. Keywords: Industrial Boilers, Tube

Marquez, Horacio J.

153

Unit Operational Flexibility: Low-Load Turndown of a Large Supercritical Boiler  

Science Conference Proceedings (OSTI)

Power plants must be able to match their output with system demand, which varies with the season and, more important, with the time of the day. Additionally, the variable nature of many renewable generation assets places flexibility pressure on traditional generation.BackgroundEPRI has a history of investigating off-design operation of power plants dating back more than 30 years. The issues surrounding variable pressure operation (VPO) are well understood; ...

2013-12-20T23:59:59.000Z

154

Boiler efficiency methodology for solar heat applications  

DOE Green Energy (OSTI)

This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

Maples, D.; Conwell, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Boiler Efficiency Inst.; Pacheco, J.E. [Sandia National Labs., Albuquerque, NM (United States)

1992-08-01T23:59:59.000Z

155

A Methodology for Optimizing Boiler Operating Strategy  

E-Print Network (OSTI)

Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required. There is a need to be able to balance the cost advantages of operating with less boiler surplus against the potential economic losses that might result from the increased risk of not meeting demand. A methodology for doing this along with an example calculation, is presented in this paper.

Jones, K. C.

1983-01-01T23:59:59.000Z

156

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

157

Nanostructured Materials: Symthesis in Supercritical Fluids  

Science Conference Proceedings (OSTI)

This chapter summarizes the recent developent of synthesis and characterization of nanostructured materials synthesized in supercritical fluids. Nanocomposite catalysts such as Pt and Pd on carbon nanotube support have been synthesized and used for fuel cell applications.

Lin, Yuehe; Ye, Xiangrong; Wai, Chien M.

2009-03-24T23:59:59.000Z

158

Stability analysis of supercritical water cooled reactors  

E-Print Network (OSTI)

The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500C average core exit). The high coolant temperature as it leaves the ...

Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

159

Analysis of a supercritical hydrogen liquefaction cycle  

E-Print Network (OSTI)

In this work, a supercritical hydrogen liquefaction cycle is proposed and analyzed numerically. If hydrogen is to be used as an energy carrier, the efficiency of liquefaction will become increasingly important. By examining ...

Staats, Wayne Lawrence

2008-01-01T23:59:59.000Z

160

HIGH CREEP-STRENGTH ALLOYS P.J. Maziasz, J.P Shingledecker, R.W. Swindeman, R.L. Klueh and N.D. Evans  

E-Print Network (OSTI)

power plants [1-3]. While such alloys for boiler application must also be construction-code approved resistance in ultra- supercritical (USC) boiler conditions at 700o C and above [1,2]. This new alloy is also one of the candidate alloys being studied by the U.S. USC Boiler Consortium for steam temperatures

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solubilities of phenols in supercritical carbon dioxide  

SciTech Connect

Equilibrium solubilities of pure anthracene at 50 C, 1-naphthol at 35, 45, and 55 C, and hydroquinone at 35 and 45 C in supercritical carbon dioxide over a pressure range of about 85--300 bar have been measured using a supercritical fluid extractor coupled with an external high-pressure liquid chromatographer. The solubility results, along with those for other phenols reported in the literature, are correlated with the translated-modified Peng Robinson equation of state.

Coutsikos, P.; Magoulas, K.; Tassios, D. [National Technical Univ. of Athens (Greece)

1995-07-01T23:59:59.000Z

162

CX-005589: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: B3.6 Date: 04112011 Location(s): Golden, Colorado Office(s): Fossil...

163

table of contents  

Science Conference Proceedings (OSTI)

591] E.-G. Wagenhuber, V.B. Trindade, and U. Krupp. A New Alloy Designed for Superheater Tubing in Coal-Fired Ultra Supercritical Boilers [pp. 601] B.A. Baker.

164

CX-005590: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: B3.6 Date: 04112011 Location(s): San Antonio, Texas Office(s):...

165

Colorado | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: B3.6 Date: 04112011 Location(s): Golden, Colorado Office(s): Fossil...

166

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

167

DOE Webcast: GTI Super Boiler Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webcast Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D > November 20, 2008 November 20, 2008 2 November 20, 2008 2 WHO WE ARE Gas Technology Institute >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets ─ An independent, 501c (3) not-for-profit Serving the Energy Industry Since 1941 > Over 1,000 patents > Nearly 500 products commercialized November 20, 2008 3 November 20, 2008 3 Super Boiler Background > U.S. industrial and commercial steam boilers ─ Consume over 6 quads of natural gas per year ─ Wide range of steam uses from process steam to space heating > Installed base of steam boilers ─ Largely over 30 years old

168

Energy Conservation for Boiler Water Systems  

E-Print Network (OSTI)

In the last ten years energy costs have soared. The cost of coal and # 2 fuel oil have gone up by a factor of 3-5. Residual fuel oil cost has increased by approximately ten times. The cost of natural gas has gone up at an even higher rate. This paper reviews methods to conserve energy in industrial boiler water systems. Both mechanical and chemical approaches for energy conservation are discussed. The important aspects of efficient combustion are covered as well as other mechanical factors such as boiler blowdown heat recovery, economizers, air preheaters, and boiler blowdown control. The chemical aspects discussed for energy conservation include fuel additives, boiler internal treatment, and condensate treatments. The emphasis in this paper, for both mechanical and chemical approaches to energy conservation covers three areas: 1) maximizing the use of available Btu's in fuel through more efficient combustion, 2) improving the efficiency of heat transfer, and 3) recovering Btu's that have been previously considered uneconomical.

Beardsley, M. L.

1981-01-01T23:59:59.000Z

169

Low Temperature Heat Recovery for Boiler Systems  

E-Print Network (OSTI)

Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas, are commonly called condensing economizers. It has traditionally been common practice in the boiler industry to not reduce flue gas temperatures below the 300F to 400F range. This barrier has now been broken by the development and application of corrosion proof heat exchanger technology. This opens up a vast reservior of untapped recoverable energy that can be recovered and reused as an energy source. The successful recovery of this heat and the optimum use of it are the fundemental goals of the technology presented in this paper. This Recovered Low Level Heat Is Normally Used To Heat Cold Make-up Water Or Combustion Air.

Shook, J. R.; Luttenberger, D. B.

1986-06-01T23:59:59.000Z

170

Water treatment program raises boiler operating efficiency  

Science Conference Proceedings (OSTI)

This report details the boiler water treatment program which played a vital role in changing an aging steam plant into a profitable plant in just three years. Boiler efficiency increased from approximately 70 percent initially to 86 percent today. The first step in this water treatment program involves use of a sodium zeolite water softener that works to remove scale-forming ions from municipal water used in the system. A resin cleaner is also added to prolong the life of resins in the softener. The water is then passed through a new blow-down heat exchanger, which allows preheating from the continuous blow-down from the boiler system. The water gets pumped into a deaerator tank where sulfite treatment is added. The water then passes from feedpumps into the boiler system.

Not Available

1984-03-01T23:59:59.000Z

171

Boiler scale prevention employing an organic chelant  

DOE Patents (OSTI)

An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

Wallace, Steven L. (Lake Jackson, TX); Griffin, Jr., Freddie (Missouri City, TX); Tvedt, Jr., Thorwald J. (Angleton, TX)

1984-01-01T23:59:59.000Z

172

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

Fulton, J.L.; Smith, R.D.

1993-11-30T23:59:59.000Z

173

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1993-01-01T23:59:59.000Z

174

Metallurgical Guidebook for Fossil Power Plant Boilers  

Science Conference Proceedings (OSTI)

A wide range of steels has been used to manufacture boilers and associated piping components for fossil power plants. Detailed information on the various alloys and component design considerations is contained in applicable specifications and standards, but utility personnel often need to access basic metallurgical information to support decision making for various projects. This guidebook, developed to meet this need, provides information on all of the most common boiler and piping materials.

2008-03-25T23:59:59.000Z

175

Industrial Boiler Optimization Utilizing CO Control  

E-Print Network (OSTI)

Escalating energy costs have caused industry to search the technical section for the current state-of-the-art in combustion and control technology for power generation. Long a forgotten area in many industrial facilities, today the steam generating complex is the focus of many corporate and plant managers. This paper discusses the approach of a large chemical company that is effectively utilizing a direct digital control (DOC) system coupled with the measurement of carbon monoxide to optimize boiler combustion and generate steam in the most cost effective manner. Significant reductions in the amount of excess air have resulted from the use of CO as a control parameter. Previously, combustion effectiveness was determined by the more typical 02 measurement. For reasons of boiler leakage and gas stratification, this control technique was not suitable when operating close to stoichiometry. The use of DOC type control in our multiple boiler installation has also enabled the intelligent allocation of boiler capacity by evaluating steam demand versus incremental boiler steam cost. The system selectively increases or decreases boiler loads within specified constraints to provide the lowest overall steam production cost while continuing to meet the steam demand.

Ruoff, C. W.; Reiter, R. E.

1980-01-01T23:59:59.000Z

176

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

177

Section 5.2.1 Boilers: Greening Federal Facilities; Second Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

more efficient than single boilers, espe- cially under part-load conditions. * Consider solar-assisted systems and biomass-fired boilers as alternatives to conventional boiler...

178

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

179

Supercritical fluid-based extraction/processing: then and now  

Science Conference Proceedings (OSTI)

An expert in supercritical fluid technologies reviews past, present, and future developments in this field as they relate to lipids. Supercritical fluid-based extraction/processing: then and now Inform Magazine Inform Archives Processing Jerry W. King

180

Supercritical/Solid Catalyst (SSC) - Energy Innovation Portal  

Idaho National Laboratory. Contact INL About This Technology Technology Marketing Summary Supercritical/Solid Catalyst (SSC) is a tested ...

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Topography-sensitive copper deposition in supercritical solutions  

Science Conference Proceedings (OSTI)

Topography-sensitive deposition, a preferential growth mode in a narrow concave feature, of copper in supercritical solutions is reported. Experiments were carried out in supercritical carbon dioxide at 13MPa with a maximum temperature of 230^oC, using ... Keywords: Capillary condensation, Copper, Nanorod, Supercritical fluid

E. Kondoh; K. Nagano; C. Yamamoto; J. Yamanaka

2009-04-01T23:59:59.000Z

182

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

183

Ultra Fine Grain/Ultra Low Carbon 718  

Science Conference Proceedings (OSTI)

An ultra low carbon alloy 718 composition has been investigated in combination with ultra fine grain processing to improve the low cycle fatigue capabilities.

184

Boiler MACT Technical Assistance (Fact Sheet)  

Science Conference Proceedings (OSTI)

Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

Not Available

2012-03-01T23:59:59.000Z

185

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report  

SciTech Connect

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

Philip E. MacDonald

2003-09-01T23:59:59.000Z

186

SPECIAL HEAT TRANSFER PHENOMENA FOR SUPERCRITICAL FLUIDS  

SciTech Connect

Present-day knowledge concerning the molecular structure of supercritical fluids is briefly reviewed. It is shown that liquid-like and gas- like phases may coexist at supercritical pressures, although they may not be in equllibrium with each other. it is postulated that on the basis of the coexistence of these two phases a "boiling-like" phenomenon may provide the mechanism of heat transfer to supercritical fluids at high heat fluxes and certain other conditions. An unusual mode of heat transfer was actually observed at supercritical pressures during tests which produced the high heat fluxes and other conditions under which such "boiling" would be expected. The tests and the various conditions are briefly described. An emission of high-frequeney, high- intensity sounds usually accompanied these tests. It is shown that similar screaming sounds were heard during boiling at subcritical pressures, giving further support to the hypothesis that "boiling" may occur at supercritical pressures. A seeond possible explanation for the unusual mode of heat transfer is based on boundarylayer stability considerations. At high heat fluxes large density differences exist between the bulk of the fluid and the fluid in the boundary layer near the wall. A breakdown of the boundary layer may be caused by the build-up of ripples between its low-density fluid and the high-density bulk fluid, in a manner quite similar to the breaking of ocean waves at high wind velocities. It is pointed out that the density variation of supercritical fluide may be used to advantage by certrifuging boundary layers. (auth)

Goldmann, K.

1956-01-01T23:59:59.000Z

187

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

188

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, P.M.

1979-12-27T23:59:59.000Z

189

Heat Recovery Boilers for Process Applications  

E-Print Network (OSTI)

Heat recovery boilers are widely used in process plants for recovering energy from various waste gas streams, either from the consideration of process or of economy. Sulfuric, as well as nitric, acid plant heat recovery boilers are examples of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800F to 1800F. This gas, when recovered, can result in a large energy savings and steam production. This paper attempts to outline some of the engineering considerations in the design of heat recovery boilers for turbine exhaust applications (combined cycle, cogeneration mode), incineration plants (solid waste, fume) and chemical plants (reformer, sulfuric acid, nitric acid).

Ganapathy, V.; Rentz, J.; Flanagan, D.

1985-05-01T23:59:59.000Z

190

Assessment of black liquor recovery boilers  

DOE Green Energy (OSTI)

In the paper making industry, pulpwood chips are digested and cooked to provide the pulp going to the refining and paper mills. Black liquor residue, containing the dissolved lignin binder from the chips, with a concentration of 12 to 16% solids, is further concentrated to 62 to 65% solids and mixed with salt cake, Sodium Sulfate (Na/sub 2/SO/sub 4/). The resulting concentrate of black liquor serves both as a fuel for generating steam in the boiler and also as the mother liquid from which other process liquors are recovered and recycled. Because the black liquor fuel contains high alkali concentrations, 18.3% sodium, 3.6% sulfur, an amount typical of midwestern bituminous coal, and measurable amounts of silica, iron oxides and other species, the black liquor boiler experience was reviewed for application to MHD boiler technology.

Not Available

1979-05-01T23:59:59.000Z

191

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high-sulfur Illinois coal. Design production is 125,000 pounds per hour of 400 psig saturated steam. An Illinois EPA construction permit has been received, engineering design is under way, major equipment is on order, ground breaking occurred in January 1984 and planned commissioning date is late 1985. This paper describes the planned installation and the factors and analyses used to evaluate the technology and justify the project. Design of the project is summarized, including the boiler performance requirements, the PYROFLOW boiler, the coal, limestone and residue handling systems and the pollutant emission limitations.

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

192

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

193

Energy Savings Calculator for Commercial Boilers: Closed Loop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtuhr* What is the thermal efficiency of the existing boiler? % Et New What is the...

194

Oregon Hospital Heats Up with a Biomass Boiler | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain...

195

Boiler Blowdown Heat Recovery Project Reduces Steam System Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

produced. Much of this heat can be recovered by routing the blown down liquid through a heat exchanger that preheats the boiler's makeup water. A boiler blowdown heat recovery...

196

Biomass Boiler to Heat Oregon School | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia...

197

Descriptions of Past Research: Boiler Life and Availability Improvement Program  

Science Conference Proceedings (OSTI)

Descriptions of Past Research: Boiler Life and Availability Improvement Program contains summaries of many past Electric Power Research Institute (EPRI) Boiler Life and Availability Improvement Program research and development (R&D) efforts.

2011-09-30T23:59:59.000Z

198

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the Electric Power Research Institute (EPRI) reports Boiler Water Deposition Model for Fossil Fuel Plants, Part 1: Feasibility Study (1004931), published in 2004; Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization (1012207) published in 2007; and Boiler Water Deposition ...

2009-03-12T23:59:59.000Z

199

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the following Electric Power Research Institute (EPRI) reports: 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004; 1012207, Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization, published in 2007; 1014128, Boiler Water Deposition Model fo...

2010-01-27T23:59:59.000Z

200

Best Practices: The Engineering Approach For Industrial Boilers  

E-Print Network (OSTI)

A plant's boilers represent a large capital investment, as well as a crucial portion of overall plant operations, regardless of the industry our customers are in. It is important to have systems and procedures in place to protect this investment, as well as plant profitability. Boiler Best Practices represent The Engineering Approach for Boilers-a way to examine mechanical, operational and chemical aspects of the systems (pretreatment through condensate) to ensure reliable boiler operations with no surprises.

Blake, N. R.

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

TA-2 Water Boiler Reactor Decommissioning Project  

Science Conference Proceedings (OSTI)

This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

Durbin, M.E. (ed.); Montoya, G.M.

1991-06-01T23:59:59.000Z

202

Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions  

DOE Patents (OSTI)

This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

Ginosar, Daniel M. (Idaho Falls, ID); Fox, Robert V. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

203

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

204

Multifunctional robot to maintain boiler water-cooling tubes  

Science Conference Proceedings (OSTI)

A robot has been developed to maintain boiler water-cooling tubes. This robot has a double tracked moving mechanism, an ash cleaning device, a slag purging device, a tubes' thickness measurement device, a marking device, and a control system. This robot ... Keywords: Boiler maintenance, Boiler water-cooling tube, Climbing robot, Mobile robot

Xueshan Gao; Dianguo Xu; Yan Wang; Huanhuan Pan; Weimin Shen

2009-10-01T23:59:59.000Z

205

Density-Enthalpy Phase Diagram 0D Boiler Simulation  

E-Print Network (OSTI)

Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Goal

Vuik, Kees

206

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

207

1 | P a g e Boiler Gold Rush  

E-Print Network (OSTI)

1 | P a g e Boiler Gold Rush VISION STATEMENT The vision of BGR is twofold: first, help all new by participating in the premiere orientation program in the nation, Boiler Gold Rush. Second, enhance upper leaders for the betterment of the university. PROGRAM GOALS Boiler Gold Rush will provide the following

Ginzel, Matthew

208

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

?lveczky, Peter Csaba

209

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

210

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network (OSTI)

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

211

Steam boiler control speci cation problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

Cengarle, María Victoria

212

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

213

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

214

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

?lveczky, Peter Csaba

215

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

Cengarle, María Victoria

216

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility of modeling the various processes governing deposition in fossil boilers was assessed in EPRI report 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004. This report presents findings of follow-up activities directed toward the ultimate goal of developing an aggregate model that is applicable to the important deposition phenomena in fossil drum-type boilers.

2007-03-26T23:59:59.000Z

217

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

Liss, William E; Cygan, David F

2013-04-17T23:59:59.000Z

218

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration  

SciTech Connect

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

Liss, William E; Cygan, David F

2013-04-17T23:59:59.000Z

219

Chemical deposition methods using supercritical fluid solutions  

DOE Patents (OSTI)

A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

Sievers, Robert E. (Boulder, CO); Hansen, Brian N. (Boulder, CO)

1990-01-01T23:59:59.000Z

220

Adaptive Fuzzy PID Control for Boiler Deaerator  

Science Conference Proceedings (OSTI)

The boiler deaerator temperature control system is a non-linear, time-varying, delay control process. It can not achieve satisfying effect using traditional control algorithm to control deaerator water temperature, the paper proposes an adaptive fuzzy ... Keywords: Deaerator, Adaptive, Fuzzy control, PID control

Lei Jinli

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Digital radiographic systems detect boiler tube cracks  

SciTech Connect

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

222

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

223

The next generation of oxy-fuel boiler systems  

SciTech Connect

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

224

NREL: Concentrating Solar Power Research - 10-Megawatt Supercritical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercritical Carbon Dioxide Turbine Test-Thermodynamic Cycle to Revolutionize CSP Systems Advancing concentrating solar power (CSP) systems to the target cost of 0.06...

225

A Mechanistic Model for Pipeline Steel Corrosion in Supercritical ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A mechanistic model was established to investigate the corrosion mechanism of pipeline steel in supercritical CO2/SO2/O2/H2O environments.

226

Candidate Materials Evaluation for Supercritical Water-Cooled Reactor  

SciTech Connect

Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept.

T. R. Allen and G. S. Was

2008-12-12T23:59:59.000Z

227

Kinetics of Supercritical Water Reformation of Ethanol to H  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Description Kinetics of the supercritical water reformation of ethanol was experimentally studied in a tubular reactor made of Inconel 625 alloy.

228

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

229

Study of Supercritical CO2 Emulsion in Ni Electroplating and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Study of Supercritical CO2 Emulsion in Ni Electroplating and Application in Fabrication of Defect-Free Micromechanical Component with High ...

230

Corrosion of Candidate Alloys in High Temperature Supercritical  

Science Conference Proceedings (OSTI)

Materials corrosion in high temperature supercritical CO2 will be an important consideration for this application. The results of corrosion evaluations of a wide...

231

Exploration of supercritical water gasification of biomass using batch reactor .  

E-Print Network (OSTI)

??The focus of this study is on gasification of a biomass in supercritical water. Vapor mass yield in a batch reactor after 20 minutes in (more)

Venkitasamy, Chandrasekar

2011-01-01T23:59:59.000Z

232

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or (more)

Youssef, Emhemmed A.E.A

2011-01-01T23:59:59.000Z

233

Cost-Effective Industrial Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were implemented during a recently completed boiler plant replacement project at a large semiconductor manufacturing complex. The "new" boiler plant began service in November, 1996 and consists of four 75,000 lb/hr water-tube boilers burning natural gas and producing 210 psig saturated steam for heating and humidification. Efficiency advancements include: 1) Reheating of cleanroom make-up air with heat extracted during precooling. 2) Preheating of combustion air with heat extracted from boiler flue gas. 3) Preheating of boiler feedwater with heat extracted from the exhaust of a nearby gas turbine. 4) Variable speed operation of boiler feedwater pumps and forced-draft fans. 5) Preheating of boiler make-up water with heat extracted from boiler blow-down. These efficiency advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

Fiorino, D. P.

1997-04-01T23:59:59.000Z

234

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2010-01-01T23:59:59.000Z

235

Biomass Cofiring in Coal-Fired Boilers  

DOE Green Energy (OSTI)

Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

Not Available

2004-06-01T23:59:59.000Z

236

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

237

Simulating aerosol formation and effects in NOx absorption in oxy-fired boiler gas processing units using Aspen Plus.  

E-Print Network (OSTI)

??Oxy-fired boilers are receiving increasing focus as a potential response to reduced boiler emissions limits and greenhouse gas legislation. Among the challenges in cleaning boiler (more)

Schmidt, David Daniel

2013-01-01T23:59:59.000Z

238

Effect of Operational Transients on Boiler Damage  

Science Conference Proceedings (OSTI)

It is increasingly the case that utility systems demand more flexibility in a unit's ability to respond to dispatch requirements, which can create a conflict between maximizing efficient operation and limiting damage accumulation. A boiler can be operated in various cycling modes and can be subjected to planned and unplanned transients associated with load following, minimum load operation, forced cooling, variable pressure operation, increased ramp rates, increased attemperation, over-temperature operat...

2009-03-24T23:59:59.000Z

239

Impact of Operating Factors on Boiler Availability  

Science Conference Proceedings (OSTI)

As utilities strive to achieve higher reliability and lower operation and maintenance (O&M) costs for their fossil-fired power plants, changing plant operating conditions will provide even greater challenges in meeting those objectives. This report summarizes the cause and effect relationships that exist between operating conditions and boiler component reliability. It is an initial step in developing the tools and technology that will enable utilities to meet their objectives in an ever more competitive...

2000-12-19T23:59:59.000Z

240

Boiler Chemical Cleaning Waste Management Manual  

Science Conference Proceedings (OSTI)

Chemical cleaning to remove tube deposits/oxides that occur during unit operation or scale during unit commissioning from conventional fossil plants and combined cycle plants with heat recovery steam generators (HRSGs) will result in the generation of a waste solution. The waste contains residual solvent and elevated levels of heavy metals (primarily iron and copper) in addition to rinse and passivation solutions. An earlier manual, Boiler Chemical Cleaning Wastes Management Manual (EPRI ...

2013-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Demonstration of Advanced Boiler Instrumentation Technologies  

Science Conference Proceedings (OSTI)

New and increasing limits on emissions (in particular, NOx) and new emphasis on heat rate have underscored the need to measure flue gas constituents more accurately and in more locations. Utilities are making large capital investments in boiler improvements and emission control devices. These investments can be enhanced through the use of innovative, on-line instrumentation closer to the furnace combustion zone. Traditionally, sensors for flue gas constituents, such as NOx and CO, are implemented as part...

2005-03-31T23:59:59.000Z

242

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

Chum, Helena L. (Arvada, CO); Filardo, Giuseppe (Palermo, IT)

1990-01-01T23:59:59.000Z

243

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

Chum, H.L.; Filardo, G.

1990-10-23T23:59:59.000Z

244

Improving boiler performance through operator training  

SciTech Connect

The majority of the technical training in many plant facilities is the self-study type. These courses consist of packaged text materials as well as plant specific lessons. Video-based training is more effective than textbooks alone, and computer interactive training is becoming increasingly popular. Demonstration of technical competence can be conducted in a variety of ways: supervised system check off and verification system walk-throughs; simulator evaluation; written examinations required for promotion; and oral examinations. Boiler operators can be required to demonstrate in a practical way that they can apply the boiler plant theory to actual job performance in the plant. Some classifications may be required to perform a supervised system check off and verification before promotion to the next higher classification. Personnel who operate boilers from a control room or gauge board may be required to successfully complete simulator training and evaluation. All classifications may require successful completion of written and oral examinations before being promoted to the next higher classification.

DeHart, R.M. [Cogentrix Energy, Inc., Charlotte, NC (United States)

1995-12-31T23:59:59.000Z

245

Supercritical water oxidation of landfill leachate  

Science Conference Proceedings (OSTI)

Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

Wang Shuzhong, E-mail: s_z_wang@yahoo.cn [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Guo Yang [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Chen Chongming [Hebei Electric Power Research Institute, Shijizhuang, Hebei 050021 (China); Zhang Jie; Gong Yanmeng; Wang Yuzhen [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China)

2011-09-15T23:59:59.000Z

246

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

247

Advanced Thermal Storage for Central Receivers with Supercritical Coolants  

Science Conference Proceedings (OSTI)

The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Low temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 C. At temperatures of 700 C and above, intermetallic compounds can precipitate between, and within, the grains of nickel alloys. The precipitation leads to an increase in tensile strength, and a decrease in ductility. Whether the proposed tube materials can provide the required low cycle fatigue life for the supercritical H2O and CO2 receivers is an open question. 4) A ranking of the plants, in descending order of technical and economic feasibility, is as follows: i) Supercritical nitrate salt and baseline nitrate salt: equal ratings ii) Low temperature supercritical H2O iii) Low temperature supercritical CO2 iv) High temperature supercritical CO2 v) High temperature supercritical H2O 5) The two-tank nitrate salt thermal storage systems are strongly preferred over the thermocline systems using supercritical heat transport fluids.

Kelly, Bruce D.

2010-06-15T23:59:59.000Z

248

Flow Stability of Supercritical Water Cooled Systems  

SciTech Connect

Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior and flow stability of supercritical water cooled systems. Although extensive thermal-hydraulic research activities have been carried out worldwide, studies on flow stability of SC water cooled systems are scarce. The present study deals with the flow behavior of SC water cooled systems. For this purpose the computer code SASC was developed, which is applied to a simplified cooling system. The effect of various parameters on the flow behavior is investigated. The first results achieved up to now reveals a complicated dynamic performance of a system cooled by supercritical water. (authors)

Cheng, X.; Kuang, B.; Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China)

2006-07-01T23:59:59.000Z

249

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

250

Covered Product Category: Commercial Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Boiler Commercial Boiler Covered Product Category: Commercial Boiler October 7, 2013 - 10:27am Addthis What's Covered All Federal purchases of hot water or steam boilers (using either oil or gas) with a rated capacity (Btu/h) of 300,000-10,000,000 must meet or exceed FEMP-designated thermal efficiencies. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Boilers Table 1 displays the FEMP-designated minimum efficiency requirements for

251

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

252

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

253

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

254

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

255

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler efficiency and availability. Proper control of boiler blowdown is also important to assure clean boiler surfaces without wasting water, heat, and chemicals. Recovering hot condensate for reuse as boiler feedwater is another means of improving system efficiency. Condensate which is contaminated with corrosion products or process chemicals, however, is ill fit for reuse; and steam which leaks from piping, valves, traps and connections cannot be recovered. Effective chemical treatment, in conjunction with mechanical system improvements, can assure that condensate can be safely returned and valuable energy recovered.

Bloom, D.

1999-05-01T23:59:59.000Z

256

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boilers, Big Savings for Minnesota County Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

257

Ultra-Low Sulfur Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Low Sulfur Diesel ULSD LSD Off-Road Ultra-Low Sulfur Highway Diesel Fuel (15 ppm Sulfur Maximum). Required for use in all model year 2007 and later highway diesel vehicles...

258

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-water cycles. Deposition in drum boilers has been identified as the area of broadest concern to the industry; therefore, an improved understanding of deposition in drum boilers is expected to represent the greatest source of benefits and value to end users. The overall objective of the modeling described here is to develop a comprehensive, integrated model for deposition process...

2011-12-16T23:59:59.000Z

259

Application of Multivariable Control to Oil and Coal Fired Boilers  

E-Print Network (OSTI)

Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity and temperature levels. A microcomputer-based control system which recognizes the inter-relationship of these variables has produced fuel savings averaging about 3% on coal and oil fired boilers. The system is described and case study data is presented for both coal and oil fired boilers.

Swanson, K.

1981-01-01T23:59:59.000Z

260

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Simulation of Combustion and Thermal Flow inside an Industrial Boiler.  

E-Print Network (OSTI)

??Industrial boilers that produce steam or electric power represent a large capital investment as well as a crucial facility for overall plant operations. In real (more)

Saripalli, Raja

2004-01-01T23:59:59.000Z

262

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: AstraZeneca - Newark This profiles explains how Astrazeneca's Newark...

263

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Allergan - Westport This profiles explains how Allergan's Westport facility...

264

Boiler Tune-ups: Improve efficiency, reduce pollution, and save...  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

265

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Boeing Philadelphia This profiles explains how Beoing's Philadelphia plant...

266

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Cargill Krefeld This profiles explains how Cargill's Krefeld mill saved...

267

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: GM Marion & Orion This profiles explains how GM's Marion & Orion facilities...

268

Flame Doctor for Cyclone Boilers: Beta Demonstration Program  

Science Conference Proceedings (OSTI)

This report describes the results of the beta demonstration of the Flame Doctor system as it is applied to cyclone boilers.

2012-07-10T23:59:59.000Z

269

Shattering Kraft Recovery Boiler Smelt by a Steam Jet.  

E-Print Network (OSTI)

??Kraft recovery boiler smelt is shattered into small droplets by an impinging steam jet to prevent smelt-water explosions in the dissolving tank. Inadequate shattering increases (more)

Taranenko, Anton

2013-01-01T23:59:59.000Z

270

Modeling of a Drum Boiler Using MATLAB/Simulink.  

E-Print Network (OSTI)

??A dynamic simulator was developed for a natural circulation drum type boiler through a joint Youngstown State University/The Babcock and Wilcox Company cooperative agreement. The (more)

Anderson, Scott B.

2008-01-01T23:59:59.000Z

271

Factors Affecting the Resistivity of Recovery Boiler Precipitator Ash.  

E-Print Network (OSTI)

??Electrostatic precipitators (ESPs) are commonly used to control particulate emissions from recovery boilers in the kraft pulping process. The electrical resistivity of entrained particulates is (more)

Sretenovic, Ivan

2012-01-01T23:59:59.000Z

272

Nanostructured Environmental Barrier Coatings for Corrosion Resistance in Recovery Boilers.  

E-Print Network (OSTI)

??Corrosion of components in a recovery boiler is a major problem faced by the pulp and paper industry. The superheater tubes get severely corroded due (more)

Rao, Shishir

2011-01-01T23:59:59.000Z

273

Improving Boiler Efficiency Modeling Based on Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

2002-05-01T23:59:59.000Z

274

Improving Boiler Efficiency Modeling Based On Ambient Air Temperature  

E-Print Network (OSTI)

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load significantly effects boiler efficiency. In the study reported here, the measured performance of a 300,000 lb/h steam boiler was found to show more dependence on ambient air temperature than on boiler load. It also showed an unexplained dependence on the month of the year that is comparable to the load dependence.

Zhou, J.; Deng, S.; Turner, W. D.; Claridge, D. E.; Haberl, J. S.

2002-01-01T23:59:59.000Z

275

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

276

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

277

New Steels for Advanced Power Plants 2  

Science Conference Proceedings (OSTI)

Two new steels -- P-92 and P-122, each tested up to 620 degrees Celsius and American Society of Mechanical Engineers (ASME) code-approved for use in heavy-section boiler components -- were installed in an ultra supercritical (USC) boiler in Denmark and tested to failure in a high-temperature/high-pressure test cell in Japan.

2001-10-29T23:59:59.000Z

278

Characterization of Oxide Layers Formed During Corrosion in Supercritical Water  

E-Print Network (OSTI)

.edu ABSTRACT The Supercritical Water Reactor is one of the Generation IV nuclear power plant designs envisioned of the Generation IV nuclear power plant designs envisioned for its high thermal efficiency and plant simplification for the study of oxide growth in steels and in zirconium alloys during exposure to supercritical water. A very

Motta, Arthur T.

279

REVIEW OF THE STATUS OF SUPERCRITICAL WATER REACTOR TECHNOLOGY  

SciTech Connect

Supercritical water-reactor design studies are reviewed. The status of supercritical water technology relative to heat transfer and fluid flow, water chemistry, internal deposition on heated surfaces, plant power cycles, and reactor construction materials is reviewed. The direct cycle was found to offer the highest probability for achieving economic power. (C.J.G.)

Marchaterre, J.F.; Petrick, M.

1960-08-01T23:59:59.000Z

280

Robust Output Feedback Stabilization of Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network (OSTI)

to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract-- This paper boiler (Utility boiler), where the nonlinear model describes the complicated dynamics of the drum

Marquez, Horacio J.

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Condensing Heat Exchangers Optimize Steam Boilers  

E-Print Network (OSTI)

The development of fluorocarbon resin covered tubes has advanced to the point where full scale marketing in connection with condensing heat exchangers has begun. Field installations show simple paybacks of one to one and a half years with resulting steam boiler fuel to steam efficiencies in excess of 90%. The studies and evaluations done to date indicate that units of this type will be cost effective in sizes ranging from 10,000 to 300,0000 steam per hour as long as cold makeup water is available for preheating with the waste flue gases.

Sullivan, B.; Sullivan, P. A.

1983-01-01T23:59:59.000Z

282

Flame Spectral Analysis for Boiler Control  

E-Print Network (OSTI)

An instrument has been developed by Tecogen, Inc., to determine the combustion characteristics of individual burners in multiburner installations. The technology is based on measuring the emissions in the ultraviolet (UV) and infrared (IR) spectral range from the flames and using these measurements to determine the burner operating conditions. Two prototype instruments have been installed on package boilers at a Con Edison powerplant and Polaroid facility, and their performance has been evaluated. These instruments provide data relating to the variations in the IR and UV spectrum with a change in the combustion condition in individuals burners. This paper describes the instruments operation and these tests.

Metcalfe, C. I.; Cole, W. E.; Batra, S. K.

1987-09-01T23:59:59.000Z

283

Failure Analysis of Two 80 HP Multiport Boilers - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Failure Analysis of Two 80 HP Multiport Boilers ... microstructure and the scale collected suggested overheating of the boiler during service.

284

Sigma Phase Embrittlement of a Boiler Tube Lug - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Sigma Phase Embrittlement of a Boiler Tube Lug ... which dissolves in temperatures above 1800 F. Boilers commonly operate at 1800- 2100...

285

Identification and predictive control for a circulation fluidized bed boiler  

Science Conference Proceedings (OSTI)

This paper introduces the design and presents the research findings of the identification and control application for an industrial Circulation Fluidized Bed (CFB) boiler. Linear Parameter Varying (LPV) model is used in the model identification where ... Keywords: CFB boilers, Identification, LPV model, Linear models interpolation, MPC

Guoli Ji, Jiangyin Huang, Kangkang Zhang, Yucai Zhu, Wei Lin, Tianxiao Ji, Sun Zhou, Bin Yao

2013-06-01T23:59:59.000Z

286

Heat Flux Electrochemical Studies of Underdeposit Boiler Tube Corrosion  

Science Conference Proceedings (OSTI)

Boiler water-side corrosion in fossil plants represents a key cause of availability loss and performance degradation, with underdeposit corrosion (UDC) being a major damage mechanism. UDC results from concentration of impurities and contaminants within the structure of the deposit residing on the heated internal surfaces of boiler waterwall tubing. The EPRI cycle chemistry guidelines provide control curves based on ...

2013-09-10T23:59:59.000Z

287

Boiler Gold Rush Prof. Johnny Brown (MATH 700)  

E-Print Network (OSTI)

Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;#12;#12;David McCullough, Jr help Always be prepared #12;Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;

Brown, Johnny E.

288

Modelling of a Utility Boiler Using Parallel Computing  

Science Conference Proceedings (OSTI)

A mathematical model for the simulation of the turbulent reactive flow and heat transfer in a power station boiler has been parallelized. The mathematical model is based on the numerical solution of the governing equations for mass, momentum, energy ... Keywords: boilers, computational fluid dynamics, discrete ordinates, parallel processing, radiative heat transfer, turbulent reactive flows

P. J. Coelho; P. A. Novo; M. G. Carvalho

1999-03-01T23:59:59.000Z

289

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

290

Base load fuel comsumption with radiant boiler simulation  

Science Conference Proceedings (OSTI)

The operating point of an oil fired radiant boiler, 580 Megawatt capacity, is critical in maximizing the availability, performance, reliability, and maintainability of a power producing system. Operating the unit above the design operating point causes outages to occur sooner than scheduled. When the boiler is operated below the design operating point, fuel is wasted because the quantity of fuel required to operate a radiant boiler is the same, whether the design setpoint is maintained or not. This paper demonstrates by means of simulation software that the boiler design setpoints is critical to fuel consumption and optimum output megawatts. A boiler with this capacity is used to provide a portion of the base load of an electric utility in order to sustain revenues and maintain reliable generation.

Shwehdi, M.H. (Pennsylvania State Univ., Wilkes-Barre, Lehman, PA (United States)); Hughes, C.M. (Naval Aviation Depot, NAS Jacksonville, Jacksonville, FL (United States)); Quasem, M.A. (Howard Univ. School of Business, Washington, DC (United States))

1992-12-01T23:59:59.000Z

291

Modeling new coal projects: supercritical or subcritical?  

Science Conference Proceedings (OSTI)

Decisions made on new build coal-fired plants are driven by several factors - emissions, fuel logistics and electric transmission access all provide constraints. The crucial economic decision whether to build supercritical or subcritical units often depends on assumptions concerning the reliability/availability of each technology, the cost of on-fuel operations including maintenance, the generation efficiencies and the potential for emissions credits at some future value. Modeling the influence of these key factors requires analysis and documentation to assure the assets actually meet the projected financial performance. This article addresses some of the issue related to the trade-offs that have the potential to be driven by the supercritical/subcritical decision. Solomon Associates has been collecting cost, generation and reliability data on coal-fired power generation assets for approximately 10 years using a strict methodology and taxonomy to categorize and compare actual plant operations data. This database provides validated information not only on performance, but also on alternative performance scenarios, which can provide useful insights in the pro forma financial analysis and models of new plants. 1 ref., 1 fig., 3 tabs.

Carrino, A.J.; Jones, R.B. [Solomon Associates, Dallas, TX (United States)

2006-11-15T23:59:59.000Z

292

Supercritical Fluid Extraction Applications in the Process Industries  

E-Print Network (OSTI)

Supercritical fluid extraction (SFE), a separations technique, has recently attracted the attention of the process industries. SFE is based on the observation that a fluid exhibits enhanced solvating ability when compressed at temperatures near its critical temperature to pressures greater than its critical pressure. This extraction process can, under certain circumstances, offer economic advantages comparable to those of conventional separation techniques. Several commercial supercritical processes are currently in operation in the United States and Europe, and new industrial applications are emerging. In this paper, the current and future applications of supercritical fluid technology and the prospects for implementing an SFE operation on an industrial scale are reviewed.

Lahiere, R. J.; Fair, J. R.; Humphrey, J. L.

1985-05-01T23:59:59.000Z

293

Optimized, Competitive Supercritical-CO2 Cycle GFR for Gen IV Service  

DOE Green Energy (OSTI)

An overall plant design was developed for a gas-cooled fast reactor employing a direct supercritical Brayton power conversion system. The most important findings were that (1) the concept could be capital-cost competitive, but startup fuel cycle costs are penalized by the low core power density, specified in large part to satisfy the goal of significatn post-accident passive natural convection cooling; (2) active decay heat removal is preferable as the first line of defense, with passive performance in a backup role; (3) an innovative tube-in-duct fuel assembly, vented to the primpary coolant, appears to be practicable; and (4) use of the S-Co2 GFR to support hydrogen production is a synergistic application, since sufficient energy can be recuperated from the product H2 and 02 to allow the electrolysis cell to run 250 C hotter than the reactor coolant, and the water boilers can be used for reactor decay heat removal. Increasing core poer density is identified as the top priority for future work on GFRs of this type.

M.J. Driscoll; P. Hejzlar; G. Apostolakis

2008-09-08T23:59:59.000Z

294

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

295

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

296

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

297

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

298

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

299

SNAP I MERCURY BOILER DEVELOPMENT, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The mercury-boiler development program was undertaken to develop a system that would utilize the heat of radioisotope decay to boil and superheat mercury vapor for use with a small turbine-generator package. Through the use of a Rankine cycle, the mercury vapor can be provided continuously to power a turbine-driven alternator and produce electricity for extended periods of time. This mercury boiler and the related power-conversion system was planned for a satellite that would orbit the earth. This system design and development program was designated as SNAP-I. Development of the mercury boiler is described and a chronological description of the various mercury-boiler concepts is presented. The applicable results of an extensive literature survey of mercury are included. The mercury-boiler experimental-test-program description provides complete coverage of each experimental boiler and its relation to the system design of that period. A summary of all mercury boilers and their final disposition is also given. (auth)

Jicha, J.; Keenan, J.J.

1960-06-01T23:59:59.000Z

300

Rapid ignition of fluidized bed boiler  

DOE Patents (OSTI)

A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

Osborn, Liman D. (Alexandria, VA)

1976-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Boiler Efficiency--Consider All the Angles  

E-Print Network (OSTI)

The cost of steam has become a very real part of Product cost. U.S. Industry strives to become more fuel efficient, while increasing productivity. At the same time it must adhere to stringent emission regulations. The plant manager is faced with a bewildering number of avenues to explore to achieve efficiency improvements through the use of the widest conceivable array of products. These range from simple fuel additives to highly sophisticated Computer Programs. Each has merit. This paper recognizes that only a small percentage of plant managers have an in-depth understanding of combustion processes and presents simple yet factual measurements for the determination of boiler combustion, operating and maintenance efficiencies.

Blakeley, C. P.

1981-01-01T23:59:59.000Z

302

Revival of Interest in Super-bainitic Steels for Ultra-supercritical ...  

Science Conference Proceedings (OSTI)

... the potential need for an oxidation-resistant coating on the steam side of tubes. ... Strength Steels Applied in Auto Structural Parts for the Optimization of Auto...

303

Phase Stability of Cast and Wrought IN 740 at Ultra Supercritical ...  

Science Conference Proceedings (OSTI)

Characterization of Mn-Co Electrodeposition for SOFC Interconnect Applications by ... Degradation of SOFC anodes and SOFC performance in coal syngas...

304

Waste heat boiler with feed mixing nozzle  

SciTech Connect

A waste heat boiler of the type which is particularly suited for use in marine applications and which incorporates a feed mixing nozzle that is operative for purposes of effecting, by utilizing steam taken from the steam generating bank, a preheating of the feedwater that is fed to the steam drum. In addition to the aforesaid feed mixing nozzle, the subject waste heat boiler includes a feedwater control valve, a steam drum, a circulation pump, a steam generating bank and a centrifugal water separator. The feedwater control valve is employed to modulate the flow rate of the incoming feedwater in order to maintain the desired level of water in the steam drum. In turn the latter steam drum is intended to function in the manner of a reservoir for the circulating water that through the operation of the circulating pump is supplied to the steam generating bank. The circulating water which is supplied to the steam generating bank is heated therein to saturation temperature, and steam is generated thus. A water-steam mixture is returned from the steam generating bank to the steam drum and is directed into the centrifugal water separator that is suitably located within the steam drum. It is in the centrifugal water separator that the separation of the water-steam mixture is effected such that water is returned to the lower portion of the steam drum and the steam is supplied to the upper portion of the steam drum. The preheating of the feedwater is accomplished by directing the incoming feedwater through an internal feed pipe to the mixing nozzle, the latter being positioned in the line through which the water-steam mixture is returned to the steam drum.

Mastronarde, Th.P.

1984-05-01T23:59:59.000Z

305

Development of Materials for Supercritical-Water-Cooled Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system simplification, the R&D cost minimization and the flexibility for core design. As the demand for advanced nuclear system increases, Japanese R&D project started in 1999 aiming to provide technical information essential to demonstration of SCPR technologies through three sub-themes of 1. Plant conceptual design, 2. Thermal-hydraulics, and 3. Material. Although the material development is critical issue of SCWR development, previous studies were limited for the screening tests on commercial alloys

306

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

307

Formation of rare earth carbonates using supercritical carbon dioxide  

DOE Patents (OSTI)

The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

1991-09-03T23:59:59.000Z

308

Supercritical Marine-Layer Flow along a Smoothly Varying Coastline  

Science Conference Proceedings (OSTI)

A model for hydraulically supercritical atmospheric marine-layer flow along a smoothly varying coastline is formulated and solved numerically. The model is motivated by a recent comparison of CODE observations to a simple hydraulic theory, which ...

R. M. Samelson

1992-09-01T23:59:59.000Z

309

Dynamics of Excimer Formation and Decay in Supercritical Krypton  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamics of Excimer Formation and Decay in Supercritical Krypton R. A. Holroyd, A. R. Cook and J. M. Preses J. Chem. Phys. 131, 224509 (2009). Find paper at Scitation Abstract:...

310

Modeling Supercritical Systems With Tough2- The Eoslsc Equation...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Modeling Supercritical Systems With Tough2- The Eoslsc Equation Of State Module And A Basin And Range...

311

Diurnal Cycle of Supercritical Along-Coast Flows  

Science Conference Proceedings (OSTI)

In this study, a three-dimensional hydrostatic mesoscale model is used to address the transient behavior of supercritical along-coast flow. A control experiment and several sensitivity tests are performed in order to investigate the diurnal cycle ...

Stefan Sderberg; Michael Tjernstrm

2002-09-01T23:59:59.000Z

312

Reactor physics design of supercritical CO?-cooled fast reactors  

E-Print Network (OSTI)

Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

Pope, Michael A. (Michael Alexander)

2004-01-01T23:59:59.000Z

313

Synthesis of Amides and Lactams in Supercritical Carbon Dioxide  

E-Print Network (OSTI)

Supercritical carbon dioxide can be employed as an environmentally friendly alternative to conventional organic solvents for the synthesis of a variety of carboxylic amides. The addition of amines to ketenes generated in ...

Mak, Xiao Yin

314

A Simple Parameterization of Turbulent Tidal Mixing near Supercritical Topography  

Science Conference Proceedings (OSTI)

A simple parameterization for tidal dissipation near supercritical topography, designed to be applied at deep midocean ridges, is presented. In this parameterization, radiation of internal tides is quantified using a linear knife-edge model. ...

Jody M. Klymak; Sonya Legg; Robert Pinkel

2010-09-01T23:59:59.000Z

315

An investigation of real gas effects in supercritical CO? compressors  

E-Print Network (OSTI)

This thesis presents a comprehensive assessment of real gas effects on the performance and matching of centrifugal compressors operating with CO2 at supercritical conditions. The analytical framework combines first principles ...

Baltadjiev, Nikola D. (Nikola Dimitrov)

2012-01-01T23:59:59.000Z

316

Modern Boiler Control and Why Digital Systems are Better  

E-Print Network (OSTI)

Steam generation in petrochemical plants and refineries is in a state of change. Expensive fuels have resulted in greater use of waste heat recovery boilers and other energy conservation measures. As a result, many conventional boilers have been mothballed. Improved flue gas analyzers and digital controls are replacing less efficient and less reliable control hardware. As the production of steam becomes decentralized, control systems needed to meet expanded plant objectives must be installed. Production, engineering and maintenance personnel are finding increased need to learn more about this specialized control area. This article will discuss conventional controls systems common in industrial boilers plus improvements made possible with currently available hardware.

Hughart, C. L.

1983-01-01T23:59:59.000Z

317

Improved Process control of wood waste fired boilers  

DOE Green Energy (OSTI)

This project's principal aim was the conceptual and feasibility stage development of improved process control methods for wood-waste-fired water-tube boilers operating in industrial manufacturing applications (primarily pulp and paper). The specific objectives put forth in the original project proposal were as follows: (1) fully characterize the wood-waste boiler control inter-relationships and constraints through data collection and analysis; (2) design an improved control architecture; (3) develop and test an appropriate control and optimization algorithm; and (4) develop and test a procedure for reproducing the approach and deriving the benefits on similar pulp and paper wood-waste boilers. Detailed tasks were developed supporting these objectives.

Process Control Solutions, Inc.

2004-01-30T23:59:59.000Z

318

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

Barnes, Charles M. (Idaho Falls, ID); Shapiro, Carolyn (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

319

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

Barnes, C.M.; Shapiro, C.

1997-11-25T23:59:59.000Z

320

Fischer-Tropsch synthesis in supercritical fluids. Final report  

DOE Green Energy (OSTI)

The objective of this study was to investigate Fischer-Tropsch Synthesis (FTS) in the supercritical phase employing a commercial precipitated iron catalysts. As the supercritical fluid the authors used propane and n-hexane. The catalyst had a nominal composition of 100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis and was used in a fixed bed reactor under both normal (conventional) and supercritical conditions. Experimental data were obtained at different temperatures (235 C, 250 C, and 260 C) and synthesis gas feed compositions (H{sub 2}/CO molar feed ratio of 0.67, 1.0 and 2.0) in both modes of operation under steady state conditions. The authors compared the performance of the precipitated iron catalyst in the supercritical phase, with the data obtained in gas phase (fixed bed reactor) and slurry phase (STS reactor). Comparisons were made in terms of bulk catalyst activity and various aspects of product selectivity (e.g. lumped hydrocarbon distribution and olefin content as a function of carbon number). In order to gain better understanding of the role of intraparticle mass transfer during FTS under conventional or supercritical conditions, the authors have measured diffusivities of representative hydrocarbon products in supercritical fluids, as well as their effective diffusion rates into the pores of catalyst at the reaction conditions. They constructed a Taylor dispersion apparatus to measure diffusion coefficients of hydrocarbon products of FTS in sub and supercritical ethane, propane, and hexane. In addition, they developed a tracer response technique to measure the effective diffusivities in the catalyst pores at the same conditions. Based on these results they have developed an equation for prediction of diffusion in supercritical fluids, which is based on the rough hard sphere theory.

Akgerman, A.; Bukur, D.B.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Containment system for supercritical water oxidation reactor  

DOE Patents (OSTI)

A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

Chastagner, Philippe (3134 Natalie Cir., Augusta, GA 30909-2748)

1994-01-01T23:59:59.000Z

322

Containment system for supercritical water oxidation reactor  

DOE Patents (OSTI)

This invention is comprised of a system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

Chastagner, P.

1991-12-31T23:59:59.000Z

323

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

324

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

325

Commonwealth Small Pellet Boiler Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Maximum Rebate $15,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 03/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Base Grant: $7,000 Automated Conveyance of Fuel Adder: $3,000 Thermal Storage Adder: $2,000 Solar Thermal Hybrid System Adder: $1,000 Moderate Income Adder or Moderate Home Value Adder: $2,000 Maximum Grant: $15,000 Provider Massachusetts Clean Energy Center The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler

326

FIELD PERFORMANCE OF EROSION RESISTANT MATERIALS ON BOILER INDUCED...  

Office of Scientific and Technical Information (OSTI)

15 Fan design data for units 5 - 9 ... 16 FIELD P E R F O R M A N C E OF ' EROSION RESISTANT MATERIALS ON BOILER INDUCED D R A F T F A N...

327

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

328

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

329

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

330

Evaluation of Methods to Identify Boiler Air Inleakage Sources  

Science Conference Proceedings (OSTI)

The information contained in this technical update report represents a first-of-a-kind study to evaluate different methods used to identify boiler air inleakage. The study begins to outline the cost and benefits of using those different methods in addition to describing their application. The collection and assemblage of this information will provide a reference for plant engineering and management personnel as their units experience the problems associated with boiler air inleakage. Through the use of t...

2011-09-23T23:59:59.000Z

331

Passive Corrosion Probe Testing at Dairyland Power's Genoa #3 Boiler  

Science Conference Proceedings (OSTI)

Environmental Protection Agency (EPA) regulations require significant reductions on emissions of nitrogen oxides (NOx) for utility boilers. A preferred method to achieve this uses burner systems that reduce NOx formation. Such burner systems create reducing zones in the lower furnace, especially in staged conditions, using overfire air (OFA) ports. Waterwall wastage has increased significantly in such boilers. EPRI has sponsored research to define wastage mechanisms and to predict wastage rates based on ...

2003-10-20T23:59:59.000Z

332

Technical Progress Report on Boiler Materials Development for USC Plants  

Science Conference Proceedings (OSTI)

A major, 5-year, national effort is being sponsored by the Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) to develop/evaluate materials for advanced ultrasupercritical (AUSC) boilers capable of operating with steam up to 760C (1400F), 35 MPa (5000 psia). This work is being carried out by a consortium comprised of Energy Industries of Ohio (EIO), EPRI, Oak Ridge National Laboratory (ORNL), and all domestic boiler manufacturers. The scope of the materials evaluation includes mechani...

2009-03-31T23:59:59.000Z

333

Evaluation of Explosive Cleaning Damage in Ferritic Boiler Tubes  

Science Conference Proceedings (OSTI)

Utilities have reported boiler tube damage after explosive cleaning to control or remove slag deposits. The damage typically consists of tube crushing, denting, microcracking, and inner diameter (ID) initiated cracking. Because the latter two might not propagate through tube wall thickness initially, these types of cracking are not commonly detected during the cleaning process. However, tube failures after the boiler resumed service have been attributed to these ID-related cracking. Many utilities have r...

2010-10-29T23:59:59.000Z

334

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2011 1, 2011 CX-005591: Categorical Exclusion Determination Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: A9, B3.6 Date: 04/11/2011 Location(s): Livingston, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory April 11, 2011 CX-005590: Categorical Exclusion Determination Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: B3.6 Date: 04/11/2011 Location(s): San Antonio, Texas Office(s): Fossil Energy, National Energy Technology Laboratory April 11, 2011 CX-005589: Categorical Exclusion Determination Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers CX(s) Applied: B3.6 Date: 04/11/2011 Location(s): Golden, Colorado

335

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network (OSTI)

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand the combustion and thermal flow behaviors inside the boiler. This study performs a detailed simulation of combustion and thermal flow behaviors inside an industrial boiler. The simulations are conducted using the commercial CFD package FLUENT. The 3-D Navier-Stokes equations and five species transport equations are solved with the eddy-breakup combustion model. The simulations are conducted in three stages. In the first stage, the entire boiler is simulated without considering the steam tubes. In the second stage, a complete intensive calculation is conducted to compute the flow and heat transfer across about 496 tubes. In the third stage, the results of the saturator/superheater sections are used to calculate the thermal flow in the chimney. The results provide insight into the detailed thermal-flow and combustion in the boiler and showing possible reasons for superheater tube rupture. The exhaust gas temperature is consistent with the actual results from the infrared thermograph inspection.

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

336

Notice of construction for proposed backup package boiler  

Science Conference Proceedings (OSTI)

The Hanford Site steam plant consists of coal-fired boilers located at the 200 East and the 200 West Areas. These boilers have provided steam to heat and cool facilities in the 200 Areas since the early 1940`s. As part of Project L-017, ``Steam System Rehabilitation, Phase II``, the 200 West Area coal-fired boilers will be permanently shut down. The shut down will only occur after a proposed package backup boiler (50,000 pounds per hour (lb/hr) steam, firing No. 2 oil) is installed at the 200 West Area. The proposed backup boiler will provide back-up services when the 200 East Area steam line, which provides steam to the 200 West Area, is down for maintenance or, when the demand for steam exceeds the supply available from the 200 East Plant. This application is a request for approval to construct and operate the package backup boiler. This request is being made pursuant to Washington Administration Code (WAC) Chapter 173-400, ``General Regulations for Air Pollution Sources``, and Chapter 173-460, ``Controls for New Sources of Toxic Air Pollutants``.

Not Available

1993-10-01T23:59:59.000Z

337

Improved Boiler System Operation with Real-time Chemical Control  

E-Print Network (OSTI)

The steam boiler system is a critical component of most manufacturing processes. Steam production reliability is often a key component in product quality and overall production efficiency. Hourly steam load demands can swing by as much as 500% in some plants, making responsive water treatment of the boiler system difficult. This challenging production environment is made even more so by volatile economic forces in today's world. New technologies have been developed that help steam operations staff achieve more consistent, proactive boiler feedwater treatment by detecting system variability, determining the correct chemical or operational action, and delivering measurable environmental return on investment (ROI). These new technologies will be described and several case histories presented. The steam boiler system is a critical component of most manufacturing processes. Steam production reliability is often a key component in product quality and overall production efficiency. Hourly steam load demands can swing by as much as 500% in some plants, making responsive water treatment of the boiler system difficult. This challenging production environment is made even more so by volatile economic forces in today's world. New technologies have been developed that help steam operations staff achieve more consistent, proactive boiler feedwater treatment by detecting system variability, determining the correct chemical or operational action, and delivering measurable environmental return on investment (ROI). These new technologies will be described and several case histories presented.

Bloom, D.; Jenkins, B.

2010-01-01T23:59:59.000Z

338

Cofiring Wood and Coal to Stoker Boilers in Pittsburgh  

DOE Green Energy (OSTI)

The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

Cobb, J.T., Jr.; Elder, W.W.

1997-07-01T23:59:59.000Z

339

SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercritical Carbon Dioxide Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers to someone by E-mail Share SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Facebook Tweet about SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Twitter Bookmark SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Google Bookmark SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Delicious Rank SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on Digg Find More places to share SunShot Initiative: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers on AddThis.com... Concentrating Solar Power Systems Components

340

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Supercritical CO2Brayton Cycle Control Strategy for Autonomous Liquid Metal-Cooled Reactors  

Science Conference Proceedings (OSTI)

This presentation discusses a supercritical carbon dioxide brayton cycle control strategy for autonomous liquid metal-cooled reactors.

Moisseytsev, A.; Sienicki, J.J.

2004-10-06T23:59:59.000Z

342

World Class Boilers and Steam Distribution System  

E-Print Network (OSTI)

World class is a term used to describe steam systems that rank in the top 20% of their industry based on quantitative system performance data and energy management for the facility. The rating is determined through a proceduralized assessment process that includes technical features such as boiler efficiency and the percentage of failed steam traps. Management features such as the internal metrices and adequate staffing and training area also included in the assessment. These results are compared with benchmarks for the subject industry. Chemical plants are compared with other chemical plants instead of aggregated data from refining, food processing, health care, etc. This approach provides relevant comparisons and realistic performance targets. The assessment process and industry benchmarks have been developed through sources that include those in the public domain and proprietary industry data. Periodic review and updates are used to ensure that the data accurately represents the relevant industrial profile. Some companies may question why they should upgrade their system. The most obvious answer will be found in the benefits that derive from more efficient operations. Costs are reduced, reliability is improved, and adverse environmental impacts are mitigated. Successful upgrading and maintenance of the energy system requires management support. This may necessitate changes in current practices, technical upgrades to equipment, additional personnel, or other resources. Managers must communicate the message that they want energy management at their plant to be world class.

Portell, V. P.

2002-04-01T23:59:59.000Z

343

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

344

State emissions limitations for boilers: particulate matter  

SciTech Connect

This document summarizes regulations applicable to boilers as reflected in current state and local air regulations. Not all of these regulations are officially part of Federally-approved State Implementation Plans (SIPs). Several regulations have only recently been adopted by the State and are now undergoing EPA review for incorporation into the SIP. Each summary also contains local regulations more stringent than the State rules. Most local regulations in this handbook are included in the State Implementation Plan. Site-specific emission limits (variances from State limits or limits more stringent than State limits) are not included in these summaries. Appendix A contains maps showing the location of Air Quality Control Regions or other districts by which several States regulate emissions. Appendix B contains a summary of National Ambient Air Quality Standards, which States are required to meet as a minimum. Appendix C contains a description and summary of Federal New Source Performance Standards. Appendix D contains formulas for conversion of emmissions limits expressed in one set of units to the most common units - No. PM/MMBtu. Appendix E contains Figure 2 of ASME APS-1, used for determining particulate emissions limits in some States.

Not Available

1980-01-01T23:59:59.000Z

345

Predictive modelling of boiler fouling. Final report.  

SciTech Connect

A spectral element method embodying Large Eddy Simulation based on Re- Normalization Group theory for simulating Sub Grid Scale viscosity was chosen for this work. This method is embodied in a computer code called NEKTON. NEKTON solves the unsteady, 2D or 3D,incompressible Navier Stokes equations by a spectral element method. The code was later extended to include the variable density and multiple reactive species effects at low Mach numbers, and to compute transport of large particles governed by inertia. Transport of small particles is computed by treating them as trace species. Code computations were performed for a number of test conditions typical of flow past a deep tube bank in a boiler. Results indicate qualitatively correct behavior. Predictions of deposition rates and deposit shape evolution also show correct qualitative behavior. These simulations are the first attempts to compute flow field results at realistic flow Reynolds numbers of the order of 10{sup 4}. Code validation was not done; comparison with experiment also could not be made as many phenomenological model parameters, e.g., sticking or erosion probabilities and their dependence on experimental conditions were not known. The predictions however demonstrate the capability to predict fouling from first principles. Further work is needed: use of large or massively parallel machine; code validation; parametric studies, etc.

Chatwani, A

1990-12-31T23:59:59.000Z

346

High Temperature Oxidation Issues in Fossil Boilers  

SciTech Connect

This report covers the conclusion of a multi-year project that examined the oxidation resistance of Al-rich coatings and a new project examining the effect of higher CO{sub 2} contents on corrosion mechanisms in oxy-fired coal-fueled boilers. The coating work primarily examined diffusion coatings for the steam side of typical ferritic (9-12%Cr) and austenitic (e.g., Type 304L) tube materials in accelerated testing at 650-800 C in wet air. The final phase of this work has attempted to obtain additional coating failures to determine a critical Al content (at coating failure) as a function of exposure temperature. However, no failures have been observed for austenitic substrates including >25 kh at 700 C and >6 kh at 800 C. Preliminary results are presented from the oxy-firing project, where the initial focus is on ferritic alloys. Initial coal-ash experiments were conducted at 600 C to evaluate some of the test parameters and three different levels of CO{sub 2} were investigated. An in-situ creep rig is being constructed to evaluate the effect of environment on creep properties. Initial ex-situ creep experiments are presented as a baseline.

Pint, Bruce A [ORNL; Bestor, Michael A [ORNL; Dryepondt, Sebastien N [ORNL; Zhang, Ying [Tennessee Technological University

2010-01-01T23:59:59.000Z

347

Multiple boiler steam blending control system for an electric power plant  

SciTech Connect

A steam blending control is provided for two or more boilers in an electric power plant. To blend an oncoming boiler with an online boiler, the oncoming boiler is fired to a pressure ramp setpoint and outlet steam is isolated from the plant turbine and directed through position controlled bypass valve means. When steam temperature and pressure conditions are matched, the oncoming boiler isolation valve is opened and the bypass flow then existing is stored in a memory. The oncoming boiler bypass flow is cut back with total oncoming boiler steam flow controlled to the memorized flow valve as a setpoint. Flow from the on-line boiler is cut back under load control as the oncoming boiler flow to the plant turbine is increased. Deblending is implemented in a similar manner.

Binstock, M.H.; Criswell, R.L.

1981-12-22T23:59:59.000Z

348

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

349

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Open Energy Info (EERE)

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more common fluid for extracting volatile oil and fragrance compounds from various raw materials that are used in perfumery. Furthermore, its use as a heat transmission fluid is very attractive because of the greater uptake capability of heat from hot reservoir rock, compared with that of water. However, one concern was the reactivity of CO2 with clay and rock minerals in aqueous and non-aqueous environments. So if this reaction leads to the formation of water-soluble carbonates, such formation could be detrimental to the integrity of wellbore infrastructure.

350

Extraction of metals using supercritical fluid and chelate forming legand  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

351

Extraction of metals using supercritical fluid and chelate forming ligand  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

Wai, C.M.; Laintz, K.E.

1998-03-24T23:59:59.000Z

352

Comments on the use of boiler efficiencies to determine unit heat rate  

SciTech Connect

The expression for boiler efficiency defined in ASME PTC4.1 was developed for evaluating boiler performance, carrying out acceptance tests on boilers and computing the effects of changes in parameters such as fuel characteristics on boiler performance. While satisfactory for applications such as these, this particular definition of boiler efficiency can result in substantial errors when used for computing unit performance. Sample calculations are presented for a 600 MW coal fired unit which show errors in net unit heat rate of 1 to 3 percent due to inconsistent definitions for boiler efficiency.

Levy, E.K.; Sarunac, N. (Lehigh Univ., Bethlehem, PA (USA). Energy Research Center); Leyse, R. (Electric Power Research Inst., Palo Alto, CA (USA))

1990-01-01T23:59:59.000Z

353

Near Term Application of Supercritical Water Technologies  

Science Conference Proceedings (OSTI)

A pressurized water reactor with a supercritical water primary loop is analyzed (PWR-SC) within this paper. It will be shown that the PWR-SC offers considerable advantages in the fields of safety, economy and efficiency compared with a conventional PWR design. A cycle analysis shows that the net plant efficiency increases by 2% compared to currently operated or built systems. In addition, the mass flow rate of the primary side is strongly decreased, which enables a reduction of the primary pump power by a factor of 4. In the secondary loop, the mass flow rate can be decreased by about 15%, which allows down-scaling of all secondary side components such as turbines, condensers and feed-water preheat systems as a consequence of the high core exit temperature. A coupled core analysis and a hot channel factor analysis are performed to demonstrate the promising safety features of the PWR-SC and to show the technical feasibility of such a system. (authors)

Vogt, Bastian [EnBW Kraftwerke AG, Lautenschlagerstr. 20 70173 Stuttgart (Germany); Starflinger, Joerg; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen (Germany)

2006-07-01T23:59:59.000Z

354

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

355

Density Inhomogeneities and Electron Mobility in Supercritical Xenon  

NLE Websites -- All DOE Office Websites (Extended Search)

Density Inhomogeneities and Electron Mobility in Supercritical Xenon Density Inhomogeneities and Electron Mobility in Supercritical Xenon Richard A. Holroyd, Kengo Itoh, and Masaru Nishikawa J. Chem. Phys. 118, 706-710 (2003) [Find paper at Scitation] Abstract: The low-field mobility of electrons in supercritical Xe has been measured isothermally as a function of density above the critical temperature (289.7 K). At 293 K the mobility varies from a high of 890 cm2/Vs at 9.2 x 1021 atoms/cm3 to a minimum value of 4.6 cm2/Vs at a density of 3.5 x 1021 atoms/cm3, which is just below the critical density. The density dependence of the mobility is reasonably well predicted by the deformation potential model if the adiabatic compressibility is used to characterize the electron-medium interactions. Approximate agreement indicates that

356

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions | Open  

Open Energy Info (EERE)

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

357

AVESTAR® - Supercritical Once-Through (SCOT) Pulverized Coal Dynamic  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercritical Once-Through (SCOT) Pulverized Coal Dynamic Simulator Supercritical Once-Through (SCOT) Pulverized Coal Dynamic Simulator A new U.S. Department of Energy (DOE) cooperative research and development agreement to develop, test, and deploy a dynamic simulator and operator training system (OTS) could eventually help commercialize important carbon capture technologies at the nation's power plants. The high-fidelity, real-time OTS for a generic supercritical once-through (SCOT) pulverized-coal power plant will be installed at the National Energy Technology Laboratory's (NETL's) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center in Morgantown, W.Va. It will be used for collaborative research, industry workforce training, and engineering education on SCOT plant operations and control under the agreement signed with Invensys Operations Management.

358

Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge  

E-Print Network (OSTI)

Abstract: Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 C, and 10.6 % (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. Int. J. Mol. Sci. 2012, 13 3023

Muhammad Hanif; Yoichi Atsuta; Koichi Fujie; Hiroyuki Daimon

2012-01-01T23:59:59.000Z

359

Step-wise supercritical extraction of carbonaceous residua  

DOE Patents (OSTI)

A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

Warzinski, Robert P. (Venetia, PA)

1987-01-01T23:59:59.000Z

360

Step-wise supercritical extraction of carbonaceous residua  

DOE Patents (OSTI)

A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter which includes processing with a plurality of different supercritical solvents is described. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

Warzinski, R.P.

1986-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Exp6-polar thermodynamics of dense supercritical water  

SciTech Connect

We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.

Bastea, S; Fried, L E

2007-12-13T23:59:59.000Z

362

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

363

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

. Our solution to the specification problem in the specification language TLA+ is based on a model of operation where several components proceed synchronously. Our first specification concerns a simplified controller and abstracts from many details given in the informal problem description. We successively add modules to build a model of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed controller specification and prove that it refines the abstract controller. We also address the relationship between the physical state of the steam boiler and the model maintained by the controller and discuss the reliability of failure detection. Finally, we discuss the implementability of our specification. 1 Introduction We propose a solution to the steam boiler control specification problem [AS] by means of a formal specification in the specification language TLA+, which is based on Lamport's Temporal Logic of Actions TLA [L94]. The overall str...

Frank Leke; Stephan Merz

1995-01-01T23:59:59.000Z

364

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

365

Modeling of a coal-fired natural circulation boiler  

SciTech Connect

Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

2007-06-15T23:59:59.000Z

366

A Boiler Plant Energy Efficiency and Load Balancing Survey  

E-Print Network (OSTI)

Daily energy use data was used to perform an energy efficiency survey of a medium-sized university boiler plant. The physical plant operates centralized mechanical plants to provide both chilled water and steam for building conditioning. Steam is used for heating buildings and to operate a 4000-ton steam-driven chiller. There are five natural gas-fired steam boilers that have rated capacities ranging from 40,000 lb/hr to 100,000 lb/hr at an operating pressure of 125 psig. This paper discusses the operating characteristics of the boiler and potential energy efficiency improvements. Results from the study included that reducing excess air levels to recommended minimums would save over $15,000 per year.

Nutter, D. W.; Murphy, D. R.

1997-04-01T23:59:59.000Z

367

Climate Wise Boiler and Steam Efficiency Wise Rules  

E-Print Network (OSTI)

Climate Wise is an industrial energy efficiency program sponsored by the U.S. EPA, and supported by the U.S. DOE, working in partnership with more than 400 industrial companies. Many Climate Wise Partners are evaluating or implementing boiler and steam system efficiency measures and have requested assistance in quickly estimating the impacts of these projects through the Wise Line. Climate Wise has developed the Wise Rules for Industrial Efficiency (Wise Rules Tool Kit) to provide companies with simple rules of thumb, or Wise Rules, for estimating potential energy, cost, and greenhouse gas emissions savings from key industrial energy efficiency measures for a broad range of end uses, including boilers and steam systems. This paper presents excerpts from the Wise Rules Tool Kit on boiler and steam system efficiency measures.

Milmoe, P. H.; Winkelman, S. R.

1998-04-01T23:59:59.000Z

368

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Eligibility Multi-Family Residential...

369

Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application of a Moving Line Heat Source  

Science Conference Proceedings (OSTI)

Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proved to be very labor intensive and slow. ...

Cramer K. Elliott; Winfree William P.

2000-01-01T23:59:59.000Z

370

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money!  

NLE Websites -- All DOE Office Websites (Extended Search)

Tune-ups: Tune-ups: Improve efficiency, reduce pollution, and save money! ____________________________________________________ Did you know . . . * Inefficient industrial, commercial, and institutional (ICI) boilers waste money and pollute? * There are over 1.5 million ICI boilers in the United States? * Boilers burning coal, oil, biomass, and other solid fuels and liquid are a major source of toxic air pollution? * New federal Clean Air Act rules require certain boilers to get regular tune-ups? * Keeping your boilers tuned-up can reduce hazardous air pollution? Energy Management, Tune-ups and Energy Assessment Reducing the amount of fuel used by boilers is one of the most cost effective ways to control hazardous air pollution. Tuning-up a boiler optimizes the air-fuel mixture for the operating range of the boiler

371

EIS-0284: Low-Emission Boiler System (LEBS) Proof-of-Concept...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Low-Emission Boiler System (LEBS) Proof-of-Concept System, Elkhart, Illinois EIS-0284: Low-Emission Boiler System (LEBS) Proof-of-Concept System, Elkhart, Illinois Summary This...

372

Damage Modeling and Life Extending Control of a Boiler-Turbine System1  

E-Print Network (OSTI)

Damage Modeling and Life Extending Control of a Boiler-Turbine System1 Donglin Li Tongwen Chen2 hierarchical LEC structure and apply it to a typ- ical boiler system. There are two damage models

Marquez, Horacio J.

373

Boiler Tube Corrosion Characterization With a Scanning Thermal Line  

E-Print Network (OSTI)

Wall thinning due to corrosion in utility boiler waterwall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler waterwalls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system ...

Elliott Cramer National; K. Elliott Cramer; Langley Blvd; Ronald Jacobstein; Thomas Reilly

2001-01-01T23:59:59.000Z

374

COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS  

SciTech Connect

The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

2001-04-01T23:59:59.000Z

375

Field Test of a Semi-Continuous Fly Ash Unburned Carbon Monitor: Cyclone Boiler Application  

Science Conference Proceedings (OSTI)

Unburned carbon (UBC) is the measure of the carbon level in the fly ash of a coal-fired boilerwith increased carbon indicating less-complete and less-efficient combustion. Boiler design is one important factor that affects UBC levels. Cyclone boilers burn coal at high combustion temperatures (ca. 1650C) and exhibit relatively high, but quite variable, fly ash UBC levels. Recently, because of competitive fuel pricing and reduced SO2 and NOX emissions, cyclone boilers ...

2013-12-17T23:59:59.000Z

376

Mitigation of Boiler Tubing Damage from Use of Explosive Cleaning Methods  

Science Conference Proceedings (OSTI)

Combustion of fossil fuels results in formation of slags that cover boiler tubes. Efficient boiler operation requires periodic removal of these slags, and explosive cleaning is an excellent cleaning method. While boiler tube cleaning using explosives is an established technology, a number of cases of tube damage have been reported, including cracking and denting of boiler tubes. This report details the work accomplished in Phase I of this project to capture the current understanding and practice of explo...

2008-01-01T23:59:59.000Z

377

Wood-Coal Fired "Small" Boiler Case Study  

E-Print Network (OSTI)

Galaxy Carpet Corporation installed a coal and wood waste fired boiler approximately twelve months ago. Its first year net savings were $195,000.00 Total capital investment was paid off in 1.9 years. 20% investment tax credits were granted by the Federal Government. Galaxy Carpet Corporation has been sufficiently impressed with performance, both economically and technically, to place a follow-up order of $1,500,000.00 for a second solid fuel fired boiler system at its Dalton, Georgia Dye House operation.

Pincelli, R. D.

1980-01-01T23:59:59.000Z

378

Research on water level optimal control of boiler drum based on dual heuristic dynamic programming  

Science Conference Proceedings (OSTI)

Boiler drum system is an important component of a thermal power plant or industrial production, and the water level is a critical parameter of boiler drum control system. Because of non-linear, strong coupling and large disturbance, it is difficult to ... Keywords: BP neural network, boiler drum level, dual heuristic dynamic programming, optimal control

Qingbao Huang; Shaojian Song; Xiaofeng Lin; Kui Peng

2011-05-01T23:59:59.000Z

379

Application of Phast in the Quantitative Consequence Analysis for the Boiler BLEVE  

Science Conference Proceedings (OSTI)

Boilers BLEVE are among the most devastating accidents likely in chemical process industry, which lead to shock waves and rocketing fragments of ruptured vessels. The prediction of the boiler explosion energy and its impact is fairly helpful to the prevention ... Keywords: boiler, BLEVE, Phast, quantitative assessment, blast-wave overpressure, positive phase impulse

Qu Fang, Zuo Zhe, Si Qingmin

2013-01-01T23:59:59.000Z

380

Boiler Room Coal Drying Heat Exchanger Numerical Computational Simulation and Analysis  

Science Conference Proceedings (OSTI)

Northeast area city district heating boiler room of coal with high moisture content, have caused a large number of waste of coal resources. Boiler coal drying heat exchanger is a long design cycle, testing workload and investment is more equipment. In ... Keywords: District heating boiler room, Dry heat exchanger, Numerical simulation, Heat transfer calculation

Zhao Xuefeng, Xiong Wen-zhuo

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

An Algebraic Speci cation of the Steam-Boiler Control System  

E-Print Network (OSTI)

An Algebraic Speci#12;cation of the Steam-Boiler Control System Michel Bidoit 1 , Claude Chevenier describe how to derive an algebraic speci#12;cation of the Steam-Boiler Control System starting from to specify the detection of the steam-boiler fail- ures. Finally we discuss validation and veri#12;cation

Bidoit, Michel

382

welcome to university residences Boiler Gold Rush Check-In...........................Saturday, August 13 and  

E-Print Network (OSTI)

welcome to university residences #12;Boiler Gold Rush Check-In...........................Saturday, August 13 and Sunday, August 14, 2011 Boiler Gold Rush residence hall systems in the United States. weLcomE! 1 #12;Boiler GoLD Rush ParticiPants Your regular

Fernández-Juricic, Esteban

383

Decentralized robust control of a class of nonlinear systems and application to a boiler system  

E-Print Network (OSTI)

Decentralized robust control of a class of nonlinear systems and application to a boiler system Keywords: Asymptotic disturbance rejection Boiler systems Decentralized robust control Descriptor systems problem, a decentralized controller for the system can be calculated. In order to control a utility boiler

Marquez, Horacio J.

384

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING  

E-Print Network (OSTI)

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING APPROACH ANDREW KUSIAK to analyze events leading to plug- gage of a boiler. The proposed approach involves statistics, data. The proposed approach has been tested on a 750 MW commercial coal-fired boiler affected with an ash fouling

Kusiak, Andrew

385

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

386

Assertional Specification and Verification using PVS of the Steam Boiler Control System  

E-Print Network (OSTI)

Assertional Specification and Verification using PVS of the Steam Boiler Control System Jan Vitt 1 of the steam boiler control system has been derived using a formal method based on assumption/commitment pairs Introduction The steam boiler control system, as described in chapter AS of this book, has been designed

Hooman, Jozef

387

Gain-scheduled `1 -optimal control for boiler-turbine dynamics  

E-Print Network (OSTI)

Gain-scheduled `1 -optimal control for boiler-turbine dynamics with actuator saturation Pang; accepted 2 June 2003 Abstract This paper presents a gain-scheduled approach for boiler-turbine controller the magnitude and rate saturation constraints on actuators. The nonlinear boiler-turbine dynamics is brought

Shamma, Jeff S.

388

Corrections to "Proving Safety Properties of the Steam Boiler Controller" Correction Sheet  

E-Print Network (OSTI)

Corrections to "Proving Safety Properties of the Steam Boiler Controller" 1 Correction Sheet After our paper "Proving Safety Properties of the Steam Boiler Controller" went already to print, Myla address http://theory.lcs.mit.edu/tds/boiler.html. Following are the corrections to these errors and some

Lynch, Nancy

389

MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC APPROACH  

E-Print Network (OSTI)

MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC mathematically and prac- tically tractable. Boilers are industrial units, which are used for gener- ating steam of fuel. Boiler operation is a complex operation in which hot water must be delivered to a turbine

Rizvi, Syed Z.

390

Refining Abstract Machine Specifications of the Steam Boiler Control to Well Documented  

E-Print Network (OSTI)

Refining Abstract Machine Specifications of the Steam Boiler Control to Well Documented Executable the steam boiler control specification problem to il­ lustrate how the evolving algebra approach and Specification, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract

Börger, Egon

391

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network (OSTI)

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

392

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented  

E-Print Network (OSTI)

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented Executable the steam boiler control speci cation problem to il- lustrate how the evolving algebra approach to the speci, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract machines

Börger, Egon

393

Development and Application of Gas Sensing Technologies to Enable Boiler Balancing  

E-Print Network (OSTI)

01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

Dutta, Prabir K.

394

INTERACTIVE SIMULATION AND ANALYSIS OF EMISSION REDUCTION SYSTEMS IN COMMERCIAL BOILERS  

E-Print Network (OSTI)

INTERACTIVE SIMULATION AND ANALYSIS OF EMISSION REDUCTION SYSTEMS IN COMMERCIAL BOILERS Darin an emission reduction sys- tem for commercial boilers. The interactive environment is used to optimize for commercial boilers and incinerators. This work has been done as part of a collaboration between Nalco Fuel

395

Predictive control and thermal energy storage for optimizing a multi-energy district boiler  

E-Print Network (OSTI)

Predictive control and thermal energy storage for optimizing a multi- energy district boiler Julien of the OptiEnR research project, the present paper deals with optimizing the multi-energy district boiler to the complexity of the district boiler as a whole and the strong interactions between the sub-systems, previous

Paris-Sud XI, Université de

396

Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1  

E-Print Network (OSTI)

Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1 , Horacio J. Marquez b, and the concept is applied to a boiler-turbine unit to analyze its dynamics. It is shown that the unit shows. Keywords: Boiler-turbine unit; Nonlinearity measure; Gap metric; Anti-windup bumpless transfer techniques

Marquez, Horacio J.

397

Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co-Firing  

E-Print Network (OSTI)

ACERC-2008 Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co based measurements methods #12;Objective Minor impact of biomass cofiring with coal on boiler operation) · Experimentally demonstrate the existence of stratified flows in boilers Indication: SO2, ash composition, straw

398

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37  

E-Print Network (OSTI)

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

399

Environmental impact of small scale pellets boilers in the context of Belgian quality labeling  

E-Print Network (OSTI)

Environmental impact of small scale pellets boilers in the context of Belgian quality labeling of pellet boilers in standard laboratory and in field conditions. This part had three main targets were identified. Pollutants emissions and efficiency of a multi- fuel boiler was compared

Glineur, François

400

Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation  

E-Print Network (OSTI)

Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation. In this paper, we apply this modeling principle to a well known case study, the steam boiler problem which has model and to assess the difficulty of such a process in a realistic case study. The steam boiler case

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement  

E-Print Network (OSTI)

Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement The Division which fosters an appreciation for a healthy lifestyle and promotes lifelong learning. Boiler Kids Camp Mission Statement Boiler Kids Camp is an interactive, summer day camp designed for children ranging

Holland, Jeffrey

402

The Steam Boiler Case Study: Competition of Formal Program Speci cation and Development  

E-Print Network (OSTI)

The Steam Boiler Case Study: Competition of Formal Program Speci#12;cation and Development Methods the design of a steam boiler control, which realizes the informal speci#12;cation handed out. The steam boiler-control speci#12;cation problem was sent out to the partici- pants nine months before

Börger, Egon

403

Development program for heat balance analysis fuel to steam efficiency boiler and data wireless transfer  

Science Conference Proceedings (OSTI)

This research aim to improve a combustion system of boiler within increase combustion efficiency and use all out of the energy. The large boilers were used in the industrial factories which consume a lot of energy for production. By oil and gas fuel ... Keywords: boiler, cogeneration energy, heat balance, steam efficiency, wireless data transfer

Nattapong Phanthuna; Warunee Srisongkram; Sunya Pasuk; Thaweesak Trongtirakul

2009-02-01T23:59:59.000Z

404

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA  

E-Print Network (OSTI)

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

405

A thermal computation program of process steam boilers obtained with reusable equipments and plants  

Science Conference Proceedings (OSTI)

This paper presents a process steam boiler dimensioned by means of two computer programs. The first computer program entitled "thermal computation of the chamber furnace of boiler" provides the utilization of the Boltzmann criterion. This computer program ... Keywords: boiler, chamber furnace, computer program, heat exchanger

Aurel Gaba; Ion-Florin Popa; Alexis-Daniel Negrea

2010-05-01T23:59:59.000Z

406

NOx Control for Utility Boiler OTR Compliance  

SciTech Connect

Babcock & Wilcox Power Generation Group (B&W) and Fuel Tech, Inc. (Fuel Tech) teamed to evaluate an integrated solution for NO{sub x} control comprised of B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu. In a previous project sponsored by the U.S. Department of Energy (DOE), promising results were obtained with this technology from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) which simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO{sub x} emissions of 0.19 lb/10{sup 6} Btu were achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO{sub x} emissions were as low as 0.09 lb/10{sup 6} Btu. Improved performance with this system was proposed for this new program with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes or in the convective tube bank. Convective pass lances represent the current state-of-the-art in SNCR and needed to be evaluated in order to assess the full potential of the combined technologies. The objective of the program was to achieve a NO{sub x} level below 0.15 lb/10{sup 6} Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign} System. Commercial installations of B&W's low-NO{sub x} burner, in combination with overfire air ports using PRB coal, have demonstrated a NO{sub x} level of 0.15 to 0.2 lb/10{sup 6} Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO{sub x} level at 0.15 lb/10{sup 6} Btu. The NO{sub x} reduction goal for SNCR is 25% from the low-NO{sub x} combustion emission levels. Therefore, overall NO{sub x} emissions would approach a level of 0.11 lb/10{sup 6} Btu in commercial installation. The goals of the program were met. At 100% load, using the MNL for very low baseline NO{sub x} (0.094 to 0.162 lb/10{sup 6} Btu depending on burner stoichiometry), an approximately 25% NO{sub x} reduction was achieved (0.071 to 0.124 lb/10{sup 6} Btu) while maintaining NH{sub 3} slip less than 6.4 ppm. At 60% load, using MNL or only wall-injectors for very low baseline NO{sub x} levels, more than 30% NO{sub x} reduction was achieved. Although site specific economic evaluation is required for each unit, our economic evaluation of DRB-4Z{reg_sign} burner and SNCR for a 500 MW{sub e} plant firing PRB shows that the least cost strategy is low-NO{sub x} burner and OFA at a cost of $210 to $525 per ton of NO{sub x} removed. Installation of SNCR allows the utilities to sell more NO{sub x} credit and it becomes economical when NO{sub x} credit cost is more than $5,275 per ton of NO{sub x}.

Hamid Farzan; Jennifer L. Sivy

2005-07-30T23:59:59.000Z

407

SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report  

Science Conference Proceedings (OSTI)

The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

Not Available

1983-09-01T23:59:59.000Z

408

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmount, IL)

1993-01-01T23:59:59.000Z

409

Field-portable supercritical CO{sub 2} extractor  

DOE Patents (OSTI)

The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending there between, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell. 10 figs.

Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Woodcock, L.J.

1997-06-10T23:59:59.000Z

410

Field-portable supercritical CO.sub.2 extractor  

DOE Patents (OSTI)

The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending therebetween, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell.

Wright, Bob W. (Richland, WA); Zemanian, Thomas S. (Richland, WA); Robins, William H. (Richland, WA); Woodcock, Leslie J. (Benton City, WA)

1997-01-01T23:59:59.000Z

411

Method for nucleic acid isolation using supercritical fluids  

DOE Patents (OSTI)

A method for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification.

Nivens, David E. (11912 Kingsgate Rd., Knoxville, TN 37911); Applegate, Bruce M. (3700 Sutherland Ave. #Q2, Knoxville, TN 37911)

1999-01-01T23:59:59.000Z

412

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, J.W.; Klingler, R.J.

1992-12-31T23:59:59.000Z

413

Corrosion of various engineering alloys in supercritical carbon dioxide  

E-Print Network (OSTI)

The corrosion resistance of ten engineering alloys were tested in a supercritical carbon dioxide (S-CO 2) environment for up to 3000 hours at 610C and 20MPa. The purpose of this work was to evaluate each alloy as a potential ...

Gibbs, Jonathan Paul

2010-01-01T23:59:59.000Z

414

Repowering the 250 MW Supercritical Power Plant at Lenenergo, Russia  

Science Conference Proceedings (OSTI)

This report describes the repowering of a supercritical 250 MW generating unit with an ABB 52.9 MN gas turbine at the Southern Plant of the Lenenergo system in Russia. It includes a review of the performance parameters of the repowered unit and an economic analysis of the repowering project.

1999-11-30T23:59:59.000Z

415

Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide  

DOE Patents (OSTI)

A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

Rathke, J.W.; Klingler, R.J.

1993-03-30T23:59:59.000Z

416

Supercritical Burning of Liquid Oxygen (LOX) Droplet with Detailed Chemistry  

E-Print Network (OSTI)

Supercritical Burning of Liquid Oxygen (LOX) Droplet with Detailed Chemistry J. DAOU,* P with diameter less than I pm vaporize before burning. A quasi-steady-like diffusion flame is then established is considered; temperature and pressure in the combustion chamber have a weak influence on the burning time

Heil, Matthias

417

Method for nucleic acid isolation using supercritical fluids  

DOE Patents (OSTI)

A method is disclosed for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification. 4 figs.

Nivens, D.E.; Applegate, B.M.

1999-07-13T23:59:59.000Z

418

Ultra-Long-Haul WDM transmission systems  

Science Conference Proceedings (OSTI)

This paper discusses the key transmission issues and design considerations for ultra-long-haul WDM systems. The key enabling technologies for the current generation of ultra-long-haul WDM transmission are described. Noise analysis and transmission modelling ...

Y. R. Zhou; A. Lord; S. R. Sikora

2002-10-01T23:59:59.000Z

419

Ultra-Deepwater Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee Minutes of Meeting of June 21, 2007 Crystal City Marriott, Arlington, VA Executive Session Bill Hochheiser, the Committee Management Officer (CMO), welcomed the Ultra- Deepwater Advisory Committee (hereafter referred to as the Committee) at 8:35 a.m. on June 21, 2007. Bill noted that he shared the CMO responsibilities with Elena Melchert but, although she was not able to attend the meeting, she sent her regards to the Committee members. The Agenda for the meeting and Committee Member Sign-in sheet are provided as Appendix 1 and Appendix 2, respectively. After appointment and administration of Oath of Office for special Government employees, the Committee was briefed on conflict of interest statutes and the

420

Simulation of air flow in the typical boiler windbox segments  

Science Conference Proceedings (OSTI)

Simulation of turbulent air flow distribution in CFBC furnace, wherein primary air is entrained through inlet duct system called windbox, is attempted through state of art CAD/CFD softwares. Establishment of flow in windbox channel, distributed plate ... Keywords: CFBC boiler, air flow, combustor geometry, distributed plate nozzles, multi-block grids, recirculation flow, simulation of flow, unequal air flow, windbox channel

C. Bhasker

2002-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hybrid System for fouling control in biomass boilers  

Science Conference Proceedings (OSTI)

Renewable energy sources are essential paths towards sustainable development and CO"2 emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive ... Keywords: Biomass, Boiler fouling, Hybrid system

Luis M. Romeo; Raquel Gareta

2006-12-01T23:59:59.000Z

422

THE IMPORTANCE OF PROPER LOADING OF REFUSE FIRED BOILERS  

E-Print Network (OSTI)

an explanation for the unusually high maintenance costs, not as a criticism of Thermal's management. All parties in 1980, the same year that Thermal management uprated the boilers. Annual oper ating and maintenance of the overfire air system, the maintenance expenses due to tube wastage and stoker failures, would

Columbia University

423

Natural Gas as a Boiler Fuel of Choice in Texas  

E-Print Network (OSTI)

Natural gas is abundant, clean burning, and cost competitive with other fuels. In addition to superior economic fundamentals, the expanded use of natural gas will be enhanced by political and industry leaders. Natural gas therefore will continue to be the boiler fuel choice for Texas electric generating companies.

Kmetz, W. J.

1992-04-01T23:59:59.000Z

424

Integrated boiler, superheater, and decomposer for sulfuric acid decomposition  

DOE Patents (OSTI)

A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

2010-01-12T23:59:59.000Z

425

Post-test examination of a pool boiler receiver  

DOE Green Energy (OSTI)

A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 {degrees}C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 percent) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 percent. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined. 3 refs.

Dreshfield, R.L.; Moore, T.J.; Bartolotta, P.A.

1992-04-01T23:59:59.000Z

426

Gas Cofiring Assessment for Coal Fired Utility Boilers  

Science Conference Proceedings (OSTI)

This study evaluates gas co-firing as one option for coal-fired utility boilers. It provides electric power generators an objective review of the potential, experience to date, and economics of five gas co-firing technologies, plus a sixth pilot-scale application.

2000-08-23T23:59:59.000Z

427

ENVIRONMENTAL EMISSIONS FROM A SUSPENSION FIRED BOILER WHILE BURNING  

E-Print Network (OSTI)

, are not given in any of the tables. 4. The fouling of the boiler tubes while co firing RDF is a confirmation of European experi ence which showed that co-firing of MSW (with #12;lower ash fusion point) with coal

Columbia University

428

Integrated Boiler Tube Failure Reduction/Cycle Chemistry Improvement Program  

Science Conference Proceedings (OSTI)

Boiler tube failures (BTF) and cycle chemistry corrosion and deposition problems remain the leading causes of availability losses in fossil-fired steam plants worldwide. This report describes techniques developed during a 20-year EPRI project to assist utilities in substantially reducing availability and performance losses due to these problems.

2006-05-16T23:59:59.000Z

429

Hydroliquefaction of Big Brown lignite in supercritical fluids  

E-Print Network (OSTI)

Big Brown lignite was liquefied in a fixed bed tube reactor. Three solvents were used in the liquefaction studies, toluene, cyclohexane and methanol. Two co-solvents, tetralin and water were used with toluene. The effects of the solvents and co-solvents were investigated. Supercritical fluid is the fluid at the temperature and pressure above its critical values. Toluene was the main supercritical fluid used in this study. Tetralin and water as co-solvents can contribute hydrogen to stabilize the free radicals produced during liquefaction reaction. The total conversion of Big Brown lignite and yield of liquid were increased. Water is not as good as tetralin in producing hydrogen, but it can increase the polarity of the solvent, which increases the solvency of supercritical fluids. The liquid product was found to consist primarily of saturated hydrocarbons. It illustrated that the free radicals were saturated by hydrogen during liquefaction. Alkylated aromatics and furans are also common chemical species present in the liquid products. The aromatic species were predominantly alkylated phenols, benzenes, indenes, pyridines and naphthalenes. At the supercritical conditions of this study, temperature and flowrate of the solvent were not important to the conversion of Big Brown lignite and yield of liquid, since supercritical fluids have gas-like viscosities with very high solubilities. To get more liquid products, the main point is to produce more free radicals from coal, inhibit the recombination of these radicals, and prevent the decomposition of these radicals to gas. Tetralin and water are good co-solvents for coal hydroliquefaction. Further research on the mechanism of water as a co-solvent in coal hydroliquefaction was recommended.

Chen, Hui

1996-01-01T23:59:59.000Z

430

Ultra-wideband Propagation Measurements and Channel ...  

Science Conference Proceedings (OSTI)

... including capacitor, resonator, and coaxial cavities methods, and radiated measurements as well [Bak98]. This work concentrates on ultra ...

2009-02-03T23:59:59.000Z

431

Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama  

E-Print Network (OSTI)

The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four boiler system. The boiler control scheme, integrated header pressure control scheme, boiler efficiency measurement, the concepts involved in the economic load allocation problem and the solution to this problem, as applied to the Amoco Decatur site will be discussed. In addition, actual fuel savings achieved from the use of a DCS boiler control solution coupled with the application of economic load allocation will be presented, based on several months of plant data.

Winter, J.

1998-04-01T23:59:59.000Z

432

The ultra-low-linolenic soybean market  

Science Conference Proceedings (OSTI)

Does the failure of Asoyia Inc., the Iowa-based company that marketed 1% ultra-low-linolenic soybeans and soy oil, signal the beginning of the end for the ultra-low-linolenic soy oil market in the United States? The ultra-low-linolenic soybean market ...

433

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

Science Conference Proceedings (OSTI)

This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

Ovidiu Marin; Fabienne Chatel-Pelage

2003-04-01T23:59:59.000Z

434

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

435

Oregon Hospital Heats Up with a Biomass Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Julie McAlpin Communications Liaison, State Energy Program Why biomass? Wood was the first energy source used and man's main fuel source until the Industrial Revolution.

436

Study of Supercritical Carbon Dioxide Power Cycle for Low Grade Heat Conversion  

Science Conference Proceedings (OSTI)

Research on supercritical carbon dioxide power cycles has been mainly focused on high temperature applications, such as Brayton cycle in a nuclear power plant. This paper conducts a comprehensive study on the feasibility of a CO2-based supercritical power cycle for low-grade heat conversion. Energy and exergy analyses of the cycle were conducted to discuss the obstacles as well as the potentials of using supercritical carbon dioxide as the working fluid for supercritical Rankine cycle, Carbon dioxide has desirable qualities such as low critical temperature, stability, little environmental impact and low cost. However, the low critical temperature might be a disadvantage for the condensation process. Comparison between a carbon dioxide-based supercritical Rankine cycle and an organic fluid-based supercritical Rankine cycle showed that the former needs higher pressure to achieve the same efficiency and a heat recovery system is necessary to desuperheat the turbine exhaust and pre-heat the pressure charged liquid.

Vidhi, Rachana [University of South Florida, Tampa; Goswami, Yogi D. [University of South Florida, Tampa; Chen, Huijuan [University of South Florida, Tampa; Stefanakos, Elias [University of South Florida, Tampa; Kuravi, Sarada [University of South Florida, Tampa; Sabau, Adrian S [ORNL

2011-01-01T23:59:59.000Z

437

Diesel de Azufre Ultra Bajo  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel de Azufre Ultra Bajo Diesel de Azufre Ultra Bajo ULSD LSD Off-Road Diesel para Carretera de Azufre Ultra Bajo (máximo de 15 ppm de azufre). Se requiere su uso en todos los motores y vehículos diesel de carretera modelos 2007 y posteriores. También se recomienda su uso en todos los vehículos y motores diesel. Diesel para Carretera Bajo en Azufre (máximo de 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores modelos 2007 y posteriores, su uso podría dañarlos. Combustible Diesel que no es para Carretera (puede exceder 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores que no son de carretera, su uso podría dañarlos. Los consumidores con vehículos modelo 2007 ó posteriores deben utilizar solo diesel ultra bajo de azufre (ULSD). El ULSD es un diesel de

438

Fabrication of Micro and Nanoparticles of Paclitaxel-loaded Poly L Lactide for Controlled Release using Supercritical Antisolvent Method: Effects of Thermodynamics and Hydrodynamics  

E-Print Network (OSTI)

This paper presents the fabrication of controlled release devices for anticancer drug paclitaxel using supercritical antisolvent method. The thermodynamic and hydrodynamic effects during supercritical antisolvent process ...

Lee, Lai Yeng

439

Superheater Corrosion In Biomass Boilers: Today's Science and Technology  

DOE Green Energy (OSTI)

This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

Sharp, William (Sandy) [SharpConsultant

2011-12-01T23:59:59.000Z

440

Base Technologies and Tools for Supercritical Reservoirs Geothermal Lab  

Open Energy Info (EERE)

Technologies and Tools for Supercritical Reservoirs Geothermal Lab Technologies and Tools for Supercritical Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Base Technologies and Tools for Supercritical Reservoirs Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 High-Temperature Downhole Tools Project Description Development of downhole tools capable of reliable operation in supercritical environments is a significant challenge with a number of technical and operational hurdles related to both the hardware and electronics design. Hardware designs require the elimination of all elastomer seals and the use of advanced materials. Electronics must be hardened to the extent practicable since no electronics system can survive supercritical temperatures. To develop systems capable of logging in these environments will require a number of developments. More robust packaging of electronics is needed. Sandia will design and develop innovated, highly integrated, high-temperature (HT) data loggers. These data loggers will be designed and developed using silicon-on-insulator/silicon carbide (SOI/SiC) technologies integrated into a MultiChip Module (MCM); greatly increasing the reliability of the overall system (eliminating hundreds of board-level innerconnects) and decreasing the size of the electronics package. Tools employing these electronics will be capable of operating continuously at temperatures up to 240 °C and by using advanced Dewar flasks, will operate in a supercritical reservoir with temperatures over 450 °C and pressures above 70 MPa. Dewar flasks are needed to protect the electronic components, but those currently available are only reliable in temperature regimes in the range of 350 °C; promising advances in materials will be investigated to improve Dewar technologies. HT wireline currently used for logging operations is compromised at temperatures above 300 °C; along with exploring the development of a HT wireline for logging purposes, alternative approaches that employ HT batteries (e.g., those awarded a recent R&D 100) will also be investigated, and if available will enable deployment using slickline, which is not subject to the same temperature limitations as wireline. To demonstrate the capability provided by these improvements, tools will be developed and fielded. The developed base technologies and working tool designs will be available to industry throughout the project period. The developed techniques and subsystems will help to further the advancement of HT tools needed in the geothermal industry.

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The design, synthesis, and optimization of nanomaterials fabricated in supercritical carbon dioxide .  

E-Print Network (OSTI)

??This thesis presents investigations into the design and synthesis of nanomaterials in supercritical carbon dioxide (sc-CO?) as well as novel experimental design methodologies. First, the (more)

Casciato, Michael John

2013-01-01T23:59:59.000Z

442

Healthful LipidsChapter 6 Supercritical Fluid Processing of Nutritionally Functional Lipids  

Science Conference Proceedings (OSTI)

Healthful Lipids Chapter 6 Supercritical Fluid Processing of Nutritionally Functional Lipids Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS Press Downloadable pdf of Chapter 6 Sup

443

Process simulation, economic analysis and synthesis of biodiesel from waste vegetable oil using supercritical methanol.  

E-Print Network (OSTI)

??Biodiesel production using supercritical methanol received attention as an alternative method to replace the conventional alkali-catalyzed method being practiced in industry. Due to its flexibility (more)

Lee, Soo Jin

2010-01-01T23:59:59.000Z

444

Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operations.  

E-Print Network (OSTI)

??Feasibility of drilling with supercritical carbon dioxide to serve the needs of deep underbalanced drilling operations has been analyzed. A case study involving underbalanced drilling (more)

Gupta, Anamika

2006-01-01T23:59:59.000Z

445

Operation and analysis of a supercritical CO2 Brayton cycle.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

Wright, Steven Alan; Radel, Ross F.; Vernon, Milton E.; Pickard, Paul S.; Rochau, Gary Eugene

2010-09-01T23:59:59.000Z

446

Method and apparatus for waste destruction using supercritical water oxidation  

DOE Patents (OSTI)

The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

Haroldsen, Brent Lowell (1251 Sprague St., Manteca, CA 95336); Wu, Benjamin Chiau-pin (2270 Goldenrod La., San Ramon, CA 94583)

2000-01-01T23:59:59.000Z

447

Transpiring wall supercritical water oxidation test reactor design report  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G. [Sandia National Labs., Livermore, CA (United States). Engineering for Transportation and Environment Dept.; Rousar, D.C. [GenCorp Aerojet, Sacramento, CA (United States)

1996-02-01T23:59:59.000Z

448

Supercritical instability in graphene with two charged impurities  

E-Print Network (OSTI)

We study the supercritical instability in gapped graphene with two charged impurities separated by distance R using the two-dimensional Dirac equation for electron quasiparticles. Attention is paid to a situation when charges of impurities are subcritical, whereas their total charge exceeds a critical one. The critical distance R_{cr} in the system of two charged centers is defined as that at which the electron bound state with the lowest energy reaches the boundary of the lower continuum. A variational calculation of the critical distance R_{cr} separating the supercritical (RR_{cr}) regimes is carried out. It is shown that the critical distance R_{cr} increases as the quasiparticle gap decreases. The energy and width of a quasistationary state as functions of the distance between two impurities are derived in the quasiclassical approximation.

E. V. Gorbar; V. P. Gusynin; O. O. Sobol

2013-07-29T23:59:59.000Z

449

NETL: Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Demonstration of a Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction with Cryogenic Compression Project No.: DE-FE0009395 Southwest Research Institute (SwRI) is developing a novel supercritical carbon dioxide (sCO2) advanced power system utilizing pressurized oxy-combustion in conjunction with cryogenic compression. The proposed power system offers a leap in overall system efficiency while producing an output stream of sequestration ready CO2 at pipeline pressures. The system leverages developments in pressurized oxy-combustion technology and recent developments in sCO2 power cycles to achieve high net cycle efficiencies and produce CO2 at pipeline pressures without requiring additional compression of the flue gas.

450

Analysis of drying wood waste fuels with boiler exhaust gases: simulation, performance, and economics  

DOE Green Energy (OSTI)

This study evaluates the feasibility of retrofitting a rotary dryer to a hog fuel boiler, using the boiler exhaust gases as the drying medium. Two simulation models were developed. Each model accurately predicts system performance given site-specific parameters such as boiler steam demand, fue moisture content, boiler exhaust temperature and combustion excess air. Three rotary dryers/hog fuel boilers currently in operation in the forest products industry were analyzed. The data obtained were used to validate te accuracy of the simulation models and to establish the performance of boiler/dryer systems under field conditions. The boiler exhaust temperatures observed ranged from 340 to 500/sup 0/F and indicated that significant drying could be realized at moderate stack temperatures, as substantitated by experimental moisture content data. The simulation models were used to evaluate a general boiler/dryer system's sensitivity to variation in operating conditions. The sensitivity analyses indicated that under moderate conditions (400/sup 0/F boiler exhaust, etc.) the installation of a rotary dryer results in a 15% increase in boiler efficiency and a 13% decrease in fuel consumption. Both the field data and sensitivity analyses indicated that a greater increase in boiler efficiency could be realized at higher stack temperatures, approximately a 30% increase in boiler efficiency for a stack temperature of 600/sup 0/F. The cash flow basis payback periods based on hog fuel savings due to dryer installation ranged from 2.7 years for a used dryer to 3.9 years for a new dryer. The payback periods for equivalent BTU savings of gas and oil ranged from 1.2 to 2.0 for gas and from 1.3 to 2.1 years for oil. This study concludes that retrofitting a rotary dryer to an existing hog fuel boiler is an economically feasible option to the forest products industry. 31 references, 24 figures, 18 tables.

Kirk, R.W.; Wilson, J.B.

1984-09-01T23:59:59.000Z

451

Tighten water-chemistry control after boiler layup  

Science Conference Proceedings (OSTI)

The potential for internal deposition and corrosion can affect boiler reliability by reducing thermal efficiency, tube integrity, and the time between chemical cleanings. While chemical control specifications for normal operation have been developed by consensus of manufacturers and industry, their impact on shutdowns, layups, and startups is not always appreciated. The discussion of chemical-control options applies to boiler systems operating in the medium- and high-pressure ranges. Identification and correction of root causes underlying the chemistry problems encountered and application of the principles involved should result in shorter startup times, improved control over phosphate hideout, and reduced need for chemical cleaning. Each of these has a significant cost impact; together, they are the true measure of a successful chemistry-control program.

Brestel, L.

1994-01-01T23:59:59.000Z

452

Improve Boiler System Operations- Application of Statistical Process Control  

E-Print Network (OSTI)

The Utilities Department provides utility services to Monsanto and Cain Chemical Company production units at Chocolate Bayou. Over two years ago the department recognized that a significant reduction in waste and rework could be achieved by improving steam boiler and boiler feedwater system operations. The processes were experiencing high maintenance cost due to metering pump and analyzer failures, equipment failures and fouling due to poor control of chemical treatment, and steam vent losses due to unproven system reliability. The team used statistical process control to prevent overadjustment of the process, identified special causes, interviewed customers and applied the ten steps to quality improvement. Results include a six-fold reduction in process variability, $2.3 million/year cost reduction, and improved reliability and customer relations.

Scarr, D.; Shea, D.

1989-09-01T23:59:59.000Z

453

Build, Own, Operate and Maintain (BOOM) Boiler Systems  

E-Print Network (OSTI)

"Overview: The article addresses the growing trend in outsourcing boiler equipment, installation, operation, maintenance and ownership by large corporations, colleges and universities. Issues: To remain competitive and provide for growth, corporations and not-for-profit (NFP) organizations have changed the way they look at their energy systems: They are only allocating capital to ""core"" assets. In most cases, thennal, electric and air energy systems are not considered ""core"" assets resulting in the need to find ""other"" solutions to providing the needed energy. Reduced staffing has resulted in fewer experienced and knowledgeable boiler operating and maintenance personnel. Fluctuating energy costs make it difficult to accurately plan and budget. Constantly changing emissions standards and regulations add operational cost burdens. Objective: Find a solution to these pressures that does not require capital investment."

Henry, T.

2003-05-01T23:59:59.000Z

454

Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler  

DOE Green Energy (OSTI)

The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

1999-09-12T23:59:59.000Z

455

An Algebraic Specification of the Steam-Boiler Control System  

E-Print Network (OSTI)

We describe how to derive an algebraic specification of the Steam-Boiler Control System starting from the informal requirements provided to the participants of the Dagstuhl Meeting Methods for Semantics and Speci cation, organized jointly by Jean-Raymond Abrial, Egon Brger and Hans Langmaack in June 1995. The aim of this formalization process is to analyze the informal requirements, to detect inconsistencies and loose ends, and to translate the requirements into a formal, algebraic, specification. During this process we have to provide interpretations for the unclear or missing parts. We explain how we can keep track of these additional interpretations by localizing very precisely in the formal specification where they lead to specific axioms. Hence we take care of the traceability issues. We also explain how the formal specification is obtained in a stepwise way by successive refinements. Emphasis is put on how to specify the detection of the steam-boiler failures. Finally...

Michel Bidoit; Claude Chevenier; Christine Pellen

1996-01-01T23:59:59.000Z

456

Protecting the Investment in Heat Recovery with Boiler Economizers  

E-Print Network (OSTI)

Many people consider energy to be a crisis in remission -- even with continuing high fuel costs. Some voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability of an economizer or air heater to continue to perform efficiently without corrosion. The recognized economic advantages of an economizer result from its ability to convert heat losses into sources of energy. One of the most productive means of obtaining reduced energy costs lies in the improvements of the efficiency of steam generating boilers. Industrial and institutional boilers operating at pressures of 75 psig or greater are excellent applications. The maximum gain that can be safely achieved is governed by a number of technical and physical limitations. Among these are considerations of the economics, temperatures of the flue gas and water, and the potential for corrosion. This paper will discuss the economic and practical considerations of an economizer installation.

Roethe, L. A.

1985-05-01T23:59:59.000Z

457

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The hazardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, C.K.; Buelow, S.J.; Dyer, R.B.; Wander, J.D.

1991-03-29T23:59:59.000Z

458

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

1992-01-01T23:59:59.000Z

459

Supercritical Fluid Assisted Synthesis and Processing of Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon nanotubes (CNTs) constitute one of the most fascinating nanomaterials with specific properties and enormous applications. Taking advantages of the unique properties of supercritical fluids (SCFs), various techniques have been developed to produce and process CNTs and related nanostructured materials when conventional techniques become unviable. Herein we propose a critical review of these SCF based techniques. The most relevant characteristics of each technique and the enabled novel structures and functions which are difficult to accomplish by traditional techniques are highlighted.

Ye, Sufang; Wu, Fengming; Ye, Xiangrong; Lin, Yuehe

2009-03-26T23:59:59.000Z

460

Technology for the Examination of Boiler Tubing Dissimilar Metal Welds  

Science Conference Proceedings (OSTI)

In an effort to determine the optimum method for examination of fossil power plant dissimilar metal boiler tube welds, researchers obtained several samples removed from service, and applied various ultrasonic examination technology to these samples. The welds in these samples were made with either austenitic stainless steel weld metal or by the induction pressure method. The welds were then subjected to conventional and advanced ultrasonic examination in the laboratory. For all examination methods, there...

2011-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1982-01-01T23:59:59.000Z

462

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1984-01-01T23:59:59.000Z

463

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1985-05-01T23:59:59.000Z

464

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size and unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1986-06-01T23:59:59.000Z

465

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1983-01-01T23:59:59.000Z

466

Boiler Water Deposition Model, Part 1: Feasibility Study  

Science Conference Proceedings (OSTI)

Many sources of availability and performance losses in fossil units involve deposition on water- and steam-touched surfaces, with the most acute effects occurring in boilers and turbines. Earlier deposition state-of-knowledge assessments sponsored by EPRI established three broad classifications of deposition phenomena (EPRI reports 1004194 and 1004930). However, within these classifications are many processes and influencing factors that need to be considered in order to make meaningful improvements in d...

2004-11-17T23:59:59.000Z

467

Process for treating effluent from a supercritical water oxidation reactor  

DOE Patents (OSTI)

The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

Barnes, C.M.; Shapiro, C.

1995-12-31T23:59:59.000Z

468

Supercritical Fluid Extraction of Plutonium and Americium from Soil  

Science Conference Proceedings (OSTI)

Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% 6.0 extraction of americium and 69% 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% 3.0 extraction of americium and 83% 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

Fox, Robert Vincent; Mincher, Bruce Jay

2002-08-01T23:59:59.000Z

469

Supercritical Fluid Extraction of Plutonium and Americium from Soil  

Science Conference Proceedings (OSTI)

Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% {+-} 6.0 extraction of americium and 69% {+-} 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% {+-} 3.0 extraction of americium and 83% {+-} 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

Fox, R.V.; Mincher, B.J.

2002-05-23T23:59:59.000Z

470

Advanced Research Robert R. Romanosky  

E-Print Network (OSTI)

in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of coal-fired boilers with advanced steam cycles involving much higher temperatures and pressures than those presently used in conventional pulverized coal (PC) power

471

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS  

DOE Green Energy (OSTI)

This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

Jeffrey J. Sweterlitsch; Robert C. Brown

2002-07-01T23:59:59.000Z

472

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

473

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS  

SciTech Connect

This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

Jeffrey J. Sweterlitsch; Robert C. Brown

2002-07-01T23:59:59.000Z

474

Supercritical carbon dioxide cycle control analysis.  

SciTech Connect

This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-04-11T23:59:59.000Z

475

San Francisco Turns Up The Heat In Push To Eliminate Old Boilers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Francisco Turns Up The Heat In Push To Eliminate Old Boilers Francisco Turns Up The Heat In Push To Eliminate Old Boilers San Francisco Turns Up The Heat In Push To Eliminate Old Boilers February 8, 2011 - 5:37pm Addthis Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Johanna Sevier Project Officer, Golden Field Office San Francisco's extensive stock of multifamily properties is getting some critical assistance in replacing old and inefficient boilers with new, high-efficiency heating systems using Energy Efficiency and Conservation Block Grant (EECBG) funds. By providing financial incentives to property owners, new heating systems result in energy savings, job creation for

476

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

477

Simulated Boiler Corrosion Studies Using Electrochemical Techniques: AVT(R) Contaminant Limits  

Science Conference Proceedings (OSTI)

Boiler water-side corrosion in fossil plants represents a key cause of availability and performance loss. The Electric Power Research Institute (EPRI) cycle chemistry guidelines provide control curves based on cation conductivity and steam quality limits. Electrochemical techniques developed to simulate boiler corrosion can be used to determine actual contaminant limits, based on corrosion, in boiler water. This report provides the results of an electrochemistry study to determine the limits and control ...

2009-03-31T23:59:59.000Z

478

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network (OSTI)

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones. The analysis shows that the low-temperature radiant floor heating system is more suitable for natural gas- condensing water boilers. It is more comfortable, more economical, and can save more energy than other heating systems.

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

479

NOx Control Options and Integration for US Coal Fired Boilers  

DOE Green Energy (OSTI)

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

480

Corrosion of ferriticmartensitic steels in steam and supercritical water Jeremy Bischoff a,b  

E-Print Network (OSTI)

of their resistance to radiation degradation and stress corrosion cracking, ferritic­martensitic steels such as HCM12ACorrosion of ferritic­martensitic steels in steam and supercritical water Jeremy Bischoff a: Available online xxxx a b s t r a c t Corrosion tests were performed in steam and supercritical water at 500

Motta, Arthur T.

Note: This page contains sample records for the topic "ultra supercritical boilers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.