Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority  

Broader source: Energy.gov [DOE]

Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authorityfor exchange of information concerning management of radioactive waste.

2

Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority  

Broader source: Energy.gov [DOE]

Statement of Intent NO. 2 between the Department of Energy of the United States and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and northern Ireland for exchange of...

3

Confidentiality Agreement between the Nuclear Decommissioning Authority and  

Broader source: Energy.gov (indexed) [DOE]

Services » Communication & Engagement » International Programs » Services » Communication & Engagement » International Programs » Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy More Documents & Publications Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Scanned_Agreement.pdf Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Waste Management Nuclear Materials & Waste

4

Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy  

Broader source: Energy.gov [DOE]

Confidentiality Agreement betweenthe Nuclear Decommissioning Authorityin UKand US Department of Energy

5

Nuclear Decommissioning Financing Act (Maine)  

Broader source: Energy.gov [DOE]

The Nuclear Decommissioning Financing Act calls for the establishment of a tax-exempt, tax-deductible decommissioning fund by the licensee of any nuclear power generating facility to pay for the...

6

Statement of Intent between the US Department of Energy and UK Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Communication & Engagement » International Programs » Communication & Engagement » International Programs » Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority for exchange of information concerning management of radioactive waste. Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority More Documents & Publications Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority International Agreements Comments

7

The UK nuclear option  

Science Journals Connector (OSTI)

The UK faces the need to reduce its greenhouse gas emissions. A decision has yet to be made to replace its currently retiring nuclear reactors with modern reactors, yet time is pressing if the UK is to meet its emission target and ensure security of its future energy supply.

Robert Hawley

2006-01-01T23:59:59.000Z

8

Safety of Decommissioning of Nuclear Facilities  

SciTech Connect (OSTI)

Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

9

Decommissioning of the Iraq former nuclear complex  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of the Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)

Abbas, Mohammed [Ministry of Science and Technology (Iraq); Helou, Tuama; Ahmead, Bushra [Ministry of Environment (Iraq); Al-Atia, Mousa; Al-Mubarak, Mowaffak [Iraqi Radiation Sources Regulatory Authority (Iraq); Danneels, Jeffrey; Cochran, John; Sorenson, Ken [Sandia National Laboratories (United States); Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria)

2007-07-01T23:59:59.000Z

10

Ris-R-1250(EN) Decommissioning of the Nuclear  

E-Print Network [OSTI]

Risø-R-1250(EN) Decommissioning of the Nuclear Facilities at Risø National Laboratory Descriptions on request from the Minister of Research and Information Technology. It describes the nuclear facilities;Decommissioning of Risø's nuclear facilities. Descriptions and cost assessment. Risø-R-1250(EN) 3 Contents 1

11

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect (OSTI)

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

12

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect (OSTI)

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

13

Issues in UK cleanup and decommissioning; a strategic R and D programme  

SciTech Connect (OSTI)

Nexia Solutions is contracted to manage and carry out research on behalf of the Nuclear Decommissioning Authority (NDA). This paper will describe the nuclear research ongoing and how it fits in with the UK cleanup and decommissioning strategy. The aim of the strategic R and D programme is to assist the NDA in maintaining a technical portfolio which will:- - identify and address challenges and clean-up problems that do not have an existing solution; - resolve potential inconsistencies between sites in the technical bases for certain strategic decisions and their implementation; - maintain options while developing strategy (emerging risks); - save costs by developing multi-site solutions; - provide technology, skills and facilities on the timescale required. The strategy for the R and D programme has been developed from a top-level approach by understanding the challenges which need to be addressed and prioritising these according to the objectives of the programme. The programme has demonstrated that a technical portfolio comprising six areas, each containing a number of key themes, is appropriate to address the technical challenges which the NDA faces and aligns with the NDA's technical issues register. An important aspect of the R and D programme is that it should create opportunities for undertaking the NDA mission more effectively. This arises from the emphasis given in those technical programmes which define the challenge more precisely and thus provide a platform from which to produce innovative solutions. The paper will present an overview of the strategic R and D programme along with the key technical programme areas. Examples will be provided of the technical work ongoing, and the results obtained so far. (author)

Tinsley, T.P.; Ashley, V.B.; Morgan, H.G.; Fairhall, G.A. [Nexia Solutions, British Technology Centre, Sellafield, Seascale, Cumbria (United Kingdom)

2008-07-01T23:59:59.000Z

14

Radiological planning and implementation for nuclear-facility decommissioning  

SciTech Connect (OSTI)

The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures.

Valentine, A.M.

1982-01-01T23:59:59.000Z

15

In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international government and private industry decommissioning applications. SRS offers critical services based upon the SRS experience in decommissioning and reactor entombment technology (e.g., grout formulations for varying conditions, structural and material sciences). The SRS ISD approach follows a systems engineering framework to achieve a regulatory acceptable end state based on established protocols, attains the final end state with minimal long stewardship requirements, protects industrial workers, and protects groundwater and the environment. The ISD systems engineering framework addresses key areas of the remedial process planning, technology development and deployment, and assessment to attain the ultimate goal of natural resource stewardship and protecting the public. The development and deployment of the SRS ISD approach has established a path for ISD of other large nuclear facilities in the United States and around the globe as an acceptable remedial alternative for decommissioning nuclear facilities. (authors)

Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

16

A critical review of nuclear power plant decommissioning planning studies  

Science Journals Connector (OSTI)

During the past decade there have been at least ten major efforts to perform comprehensive, analytical studies of the complex issues associated with decommissioning civilian nuclear power plants. These planning efforts are reviewed, using the standard framework of technology assessment. In particular, each study is analysed to determine the degree to which formal methods of decision analysis have been employed to evaluate options and make recommendations and the degree to which formal methods of consensus have been employed to engage citizen involvement and promote public acceptance. Not unexpectedly, we find that the greatest strides in decommissioning analyses have been made in forecasting the economic costs of decommissioning to licensees. Comparatively few improvements have been made in the processes used to compare the impacts of alternative technologies more broadly, or to address the legitimate concerns of interested parties more widely.

W.Timothy Lough; K.Preston White Jr.

1990-01-01T23:59:59.000Z

17

Engineering and planning for decommissioning of nuclear power plants  

SciTech Connect (OSTI)

With the publication of NUREG-0586, ''Draft Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities'' in January, 1981 the Nuclear Regulatory Commission staff has put the industry on notice that the termination of operating licenses and the final disposal of physical facilities will require the early consideration of several options and approaches and the preparation of comprehensive engineering and planning documents for the selected option at the end of useful life. This paper opens with a discussion of the options available and the principal aspects of decommissioning. The major emphasis of the composition is the nature of documents, the general approach to be followed, and special considerations to be taken into account when performing the detailed engineering and planning for decommissioning, as the end of life approaches and actual physical disposal is imminent. The author's main point of reference is on-going work by Burns and Roe, with Nuclear Energy Services, under contract to the Department of Energy's Richland Office, to perform the engineering and planning for the decommissioning of the Shippingport Atomic Power Station in Pennsylvania.

Gans, G.M. Jr.

1982-01-01T23:59:59.000Z

18

Decommissioning and Demolition of a Redundant UK Research Facility at AWE Aldermaston - 12453  

SciTech Connect (OSTI)

The redundant two-storey brick built research facility on the AWE Site at Aldermaston, UK is in the closing stages of decommissioning and demolition. The facility was used for a variety of purposes up to 1995 predominately involving the use of alpha-emitting isotopes. The two main areas of alpha-based contamination have been decommissioned with the removal of hot -boxes and fume cupboards on the ground floor and HEPA filter units and ventilation equipment on the first floor. Many of these activities were undertaken using both airline fed suits, (supplied via a free standing mobile unit), and full face respirators. Asbestos materials were located and cleared from the first floor by specialist contractor. All sections of active drain running from the building to the site active effluent disposal system were removed early in the program using established techniques with specialist monitoring equipment used to provide confidence in the data required for disposal of the decommissioning debris. In particular a dedicated High Resolution Gamma Spectrometer (radioactive materials scanning unit) was utilized to categorise waste drums and wrapped packages. The building has been decommissioned and the monitoring and sampling of the structure was completed in November 2011 - the results demonstrating that the building was clear of contamination in accordance with UK clearance and exemption requirements. The demolition plan was developed and implemented in December with site excavation of foundations and site clearance currently ongoing in preparation for final site backfill activities and project close. A number of useful lessons have been learnt during the operations and are set out at the rear of the main text. (authors)

Pritchard, Paul [Atomic Weapons Establishment, Aldermaston (United Kingdom)

2012-07-01T23:59:59.000Z

19

Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361  

SciTech Connect (OSTI)

The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada)] [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada); Daniska, Vladimir [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)] [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)

2013-07-01T23:59:59.000Z

20

A New Life Adaptive Reuse and Redevelopment of Decommissioned Commercial Nuclear Power Plants.  

E-Print Network [OSTI]

??My study analyzed the challenges and opportunities faced in the historic preservation and adaptive reuse of decommissioned commercial nuclear power plants. While operating, these plants (more)

Farrow, Elizabeth

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Five-Year Technology Development Strategic Plan Targets EMs Decommissioning Challenges  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. Leaders from EM headquarters and field offices and the UKs Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

22

Decommissioning at AWE  

SciTech Connect (OSTI)

AWE (A) has been at the heart of the UK Nuclear deterrent since it was established in the early 1950's. It is a nuclear licensed site and is governed by the United Kingdoms Nuclear Installation Inspectorate (NII). AWE plc on behalf of the Ministry of Defence (MOD) manages the AWE (A) site and all undertakings including decommissioning. Therefore under NII license condition 35 'Decommissioning', AWE plc is accountable to make and implement adequate arrangements for the decommissioning of any plant or process, which may affect safety. The majority of decommissioning projects currently being undertaken are to do with Hazard category 3, 4 or 5 facilities, systems or plant that have reached the end of their operational span and have undergone Post-Operational Clean-Out (POCO). They were either built for the production of fissile components, for supporting the early reactor fuels programmes or for processing facility waste arisings. They either contain redundant contaminated gloveboxes associated process areas, process plant or systems or a combination of all. In parallel with decommissioning project AWE (A) are undertaking investigation into new technologies to aid decommissioning projects; to remove the operative from hands on operations; to develop and implement modifications to existing process and techniques used. AWE (A) is currently going thorough a sustained phase of upgrading its facilities to enhance its scientific capability, with older facilities, systems and plant being replaced, making decommissioning a growth area. It is therefore important to the company to reduce these hazards progressively and safety over the coming years, making decommissioning an important feature of the overall legacy management aspects of AWE PLC's business. This paper outlines the current undertakings and progress of Nuclear decommissioning on the AWE (A) site. (authors)

Biles, K.; Hedges, M.; Campbell, C

2008-07-01T23:59:59.000Z

23

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes  

SciTech Connect (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

24

Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority  

Broader source: Energy.gov [DOE]

Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and Northern Ireland for exchange of information concerning management of...

25

Statement of Intent NO. 2 between the US Department of Energy and UK  

Broader source: Energy.gov (indexed) [DOE]

Statement of Intent NO. 2 between the US Department of Energy and UK Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the Department of Energy of the United States and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and northern Ireland for exchange of information concerning management of radioactive waste. Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority More Documents & Publications Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority

26

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect (OSTI)

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

27

UK waives nuclear waste rule for Georgia  

Science Journals Connector (OSTI)

... Only hours before the government's announcement, the Nuclear Installations Inspectorate (NII), part of the UK government's Health and Safety Executive, ... material for reprocessing until a complete safety audit and an assessment of the plant's waste-management capability had been carried out. The other contract is with the Australian ...

Alison Abbott

1998-04-30T23:59:59.000Z

28

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network [OSTI]

THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

Birmingham, University of

29

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect (OSTI)

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

30

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

SciTech Connect (OSTI)

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

31

Criticality safety aspects of decontamination and decommissioning at defense nuclear facilities  

SciTech Connect (OSTI)

Defense nuclear facilities have operated for forty years with a well-defined mission to produce weapons components for the nation. With the end of the cold war, the facilities` missions have changed to one of decontamination and decommissioning. Off-normal operations and use of new procedures, such as will exist during these activities, have often been among the causal factors in previous criticality accidents at process facilities. This paper explores the similarities in causal factors in previous criticality accidents to the conditions existing in current defense nuclear facilities undergoing the transition to decontamination and decommissioning. Practices to reduce the risk to workers, the public, and the environment are recommended.

Croucher, D.W.

1994-02-01T23:59:59.000Z

32

Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548  

SciTech Connect (OSTI)

The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

Kim, HakSoo; Chung, SungHwan; Maeng, SungJun [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)] [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2013-07-01T23:59:59.000Z

33

Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216  

SciTech Connect (OSTI)

Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

2013-07-01T23:59:59.000Z

34

The siting of UK nuclear reactors  

Science Journals Connector (OSTI)

Choosing a suitable site for a nuclear power station requires the consideration and balancing of several factors. Some 'physical' site characteristics, such as the local climate and the potential for seismic activity, will be generic to all reactors designs, while others, such as the availability of cooling water, the area of land required and geological conditions capable of sustaining the weight of the reactor and other buildings will to an extent be dependent on the particular design of reactor chosen (or alternatively the reactor design chosen may to an extent be dependent on the characteristics of an available site). However, one particularly interesting tension is a human and demographic one. On the one hand it is beneficial to place nuclear stations close to centres of population, to reduce transmission losses and other costs (including to the local environment) of transporting electricity over large distances from generator to consumer. On the other it is advantageous to place nuclear stations some distance away from such population centres in order to minimise the potential human consequences of a major release of radioactive materials in the (extremely unlikely) event of a major nuclear accident, not only in terms of direct exposure but also concerning the management of emergency planning, notably evacuation.This paper considers the emergence of policies aimed at managing this tension in the UK. In the first phase of nuclear development (roughly speaking 19451965) there was a highly cautious attitude, with installations being placed in remote rural locations with very low population density. The second phase (19651985) saw a more relaxed approach, allowing the development of AGR nuclear power stations (which with concrete pressure vessels were regarded as significantly safer) closer to population centres (in 'semi-urban' locations, notably at Hartlepool and Heysham). In the third phase (19852005) there was very little new nuclear development, Sizewell B (the first and so far only PWR power reactor in the UK) being colocated with an early Magnox station on the rural Suffolk coast. Renewed interest in nuclear new build from 2005 onward led to a number of sites being identified for new reactors before 2025, all having previously hosted nuclear stations and including the semi-urban locations of the 1960s and 1970s. Finally, some speculative comments are made as to what a 'fifth phase' starting in 2025 might look like.

Malcolm Grimston; William J Nuttall; Geoff Vaughan

2014-01-01T23:59:59.000Z

35

DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE  

SciTech Connect (OSTI)

VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

U. Helwig, W. Boessert

2003-02-27T23:59:59.000Z

36

An evaluation of the dismantling technologies for decommissioning of nuclear power plants  

Science Journals Connector (OSTI)

Abstract This paper is to suggest an evaluation method on the dismantling technologies for decommissioning of nuclear power plants. The parameters of evaluation are performance impacts, site-specific impacts, safety impacts, and cost impacts. The evaluation model was provided and applied for dismantling of a steam generator.

KwanSeong Jeong; ByungSeon Choi; Jeikwon Moon; Dongjun Hyun; JongHwan Lee; IkJune Kim; GeunHo Kim; JaeSeok Seo

2014-01-01T23:59:59.000Z

37

Statement of Intent NO. 2 between the US Department of Energy and UK  

Broader source: Energy.gov (indexed) [DOE]

Services » Communication & Engagement » International Programs » Services » Communication & Engagement » International Programs » Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the Department of Energy of the United States and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and northern Ireland for exchange of information concerning management of radioactive waste. Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority More Documents & Publications Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear

38

2009 UK/US Nuclear Engineering Workshop Report  

SciTech Connect (OSTI)

This report summarizes the 2009 UK/US Nuclear Engineering Workshop held April 20-21, 2010, in Washington, D.C. to discuss opportunities for nuclear engineering collaboration between researchers in the United States and the United Kingdom.

Richard Rankin

2009-04-01T23:59:59.000Z

39

Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities  

E-Print Network [OSTI]

1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

40

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program  

SciTech Connect (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

Farfan, E.

2009-09-30T23:59:59.000Z

42

Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

2009-11-09T23:59:59.000Z

43

Input to review of STFC UK Nuclear Physics Community  

E-Print Network [OSTI]

Input to review of STFC UK Nuclear Physics Community Introduction STFC covers essentially and project funding for Astronomy, Nuclear Physics, Particle Physics and Space Science Since STFC was formed programme. Grant funding Nuclear Physics grant funding was in EPSRC until 2007 and then moved to STFC

Crowther, Paul

44

Decision to reorganise or reorganising decisions? A First-Hand Account of the Decommissioning of the Phnix Nuclear Power Plant  

E-Print Network [OSTI]

of the Decommissioning of the Phénix Nuclear Power Plant Melchior Pelleterat de Borde, MINES ParisTech, Christophe Martin looks at the effect of ongoing organisational changes taking place in a nuclear power plant being campaigns, the Phénix nuclear power plant was taken out of service at the end of 2009. The plant has two

Paris-Sud XI, Université de

45

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12  

SciTech Connect (OSTI)

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

46

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program  

SciTech Connect (OSTI)

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

47

Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant  

SciTech Connect (OSTI)

ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

Sullivan T.

2014-06-09T23:59:59.000Z

48

Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project  

SciTech Connect (OSTI)

ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

Sullivan T.

2014-06-09T23:59:59.000Z

49

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors  

Broader source: Energy.gov (indexed) [DOE]

6 6 Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites December 2008 U.S. Department of Energy Office of Civilian Radioactive Waste Management Washington, D.C. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel The picture on the cover is the Connecticut Yankee Independent Spent Fuel Storage Installation site in Haddam, Connecticut, with 43 dry storage NRC-licensed dual-purpose (storage and transport) casks. ii Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel EXECUTIVE SUMMARY The House Appropriations Committee Print that accompanied the Consolidated Appropriations Act, 2008, requests that the U.S. Department of Energy (the Department):

50

Burying democracy along with UK nuclear waste Stuart Haszeldine 3 May 2012 s.haszeldine@ed.ac.uk  

E-Print Network [OSTI]

Burying democracy along with UK nuclear waste Stuart Haszeldine 3 May 2012 s up to accept. The UK was first to deploy civil nuclear power in 1956, but waste disposal has experienced serial inertia amongst technocrats and politicians, so that problem of nuclear waste accumulating

51

bristol.ac.uk/cabot Implications for the UK nuclear industry of the events at the Fukushima  

E-Print Network [OSTI]

bristol.ac.uk/cabot Implications for the UK nuclear industry of the events at the Fukushima Dai of the events at the Fukushima Dai- ichi nuclear power station, Japan. The report draws on expertise at the Fukushima Daiichi Nuclear Power Plant (NPP), which has recently been declared a level 7 accident within

Bristol, University of

52

Decommissioning handbook  

SciTech Connect (OSTI)

This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

Manion, W.J.; LaGuardia, T.S.

1980-11-01T23:59:59.000Z

53

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect (OSTI)

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

54

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

SciTech Connect (OSTI)

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

55

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

56

UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaborat...  

Broader source: Energy.gov (indexed) [DOE]

UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaboration UK Nuclear Cleanup and Research Experts Visit DOE to Expand Collaboration September 30, 2014 - 12:00pm...

57

Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning  

SciTech Connect (OSTI)

DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

JACKSON, M.W.

2002-05-01T23:59:59.000Z

58

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

59

Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant  

SciTech Connect (OSTI)

The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

NONE

1997-12-01T23:59:59.000Z

60

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network [OSTI]

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

A. Petraglia; C. Sabbarese; M. De Cesare; N. De Cesare; F. Quinto; F. Terrasi; A. D'Onofrio; P. Steier; L. K. Fifield; A. M. Esposito

2012-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network [OSTI]

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

Petraglia, A; De Cesare, M; De Cesare, N; Quinto, F; Terrasi, F; D'Onofrio, A; Steier, P; Fifield, L K; Esposito, A M; 10.1051/radiopro/2012010

2012-01-01T23:59:59.000Z

62

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER Abstract Third Party Nuclear Liability: The Case Thomas and Raphael J. Heffron The law surrounding third party nuclear liability is important to all parties in the nuclear supply chain whether they are providing decommissioning services, project

Aickelin, Uwe

63

Factors Impacting Decommissioning Costs - 13576  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

2013-07-01T23:59:59.000Z

64

DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security  

Broader source: Energy.gov (indexed) [DOE]

Statement on UK Government's "Road to 2010" Report on Nuclear Statement on UK Government's "Road to 2010" Report on Nuclear Security DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security July 17, 2009 - 12:00am Addthis WASHINGTON, DC - Thomas P. D'Agostino, the Department of Energy's Under Secretary for Nuclear Security and Administrator of the National Nuclear Security Administration, today applauded the British government's new report on advancing the global nuclear security agenda. Issued yesterday, "The Road to 2010 - Addressing the Nuclear Question in the Twenty First Century" outlines a strategy for addressing the threat posed by the proliferation of nuclear weapons ahead of the 2010 Nuclear Non-Proliferation Treaty (NPT) Review Conference. Among other steps, it includes the creation of a UK Center for Nuclear

65

Decommissioning Unit Cost Data  

SciTech Connect (OSTI)

The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

Sanford, P. C.; Stevens, J. L.; Brandt, R.

2002-02-26T23:59:59.000Z

66

Novel Problems Associated with Accounting and Control of Nuclear Material from Decontamination and Decommissioning and in Waste  

SciTech Connect (OSTI)

Abstract The reduction in nuclear arms and the production facilities that supported the weapons programs have produced some unique problems for nuclear material control and accountability (MC&A). Many of these problems are not limited to the weapons complex, but have the potential to appear in many legacy facilities as they undergo dismantlement and disposal. Closing facilities find that what was previously defined as product has become a waste stream bringing regulatory, human, and technological conflict. The sometimes unique compositions of these materials produce both storage and measurement problems. The nuclear material accounting and control programs have had to become very adaptive and preemptive to ensure control and protection is maintained. This paper examines some of the challenges to Safeguards generated by deinventory, decontamination decommissioning, dismantlement, demolition, and waste site remediation from predictable sources and some from unpredictable sources. 1.0 Introduction The United States is eliminating many facilities that support the nuclear weapons program. With the changing political conditions around the world and changes in military capabilities, the decreased emphasis on nuclear weapons has eliminated the need for many of the aging facilities. Additionally, the recovery of plutonium from dismantled weapons and reuse of components has eliminated the need to produce more plutonium for the near future. Because the nuclear weapons program and commercial applications generally do not mix in the United States, the facilities in the DOE complex that no longer have a weapon mission are being deinventoried, decontaminated, decommissioned, and dismantled/demolished. The materials from these activities are then disposed of in various ways but usually in select waste burial sites. Additionally, the waste in many historical burial sites associated with the weapons complex are being recovered, repackaged if necessary, and disposed of in either geological sites or low-level waste sites. The type of waste from the decontamination and decommissioning (D&D) activities varies from uncontaminated construction materials to nuclear weapon components. This variety of forms, types, and composition of nuclear material presents many challenges to MC&A. It requires the creative application of regulations, but current regulations are adequate to ensure the security and control of the nuclear material. This paper examines some of the approaches used to meet regulatory requirements and problems that occurred during D&D. Experiences are drawn for the Hanford site and elsewhere in the DOE complex.

Schlegel, Steven C.

2007-07-10T23:59:59.000Z

67

Renewing Skills in Nuclear R and D - opportunities arising from the UK's formation of a National Nuclear Laboratory  

SciTech Connect (OSTI)

This paper summarises challenges to maintenance of scientific and engineering skills relevant to the nuclear industry in the UK. A number of new initiatives are discussed, included the contribution to be made by the recently announced National Nuclear Laboratory (NNL). Working with both the university sector and major stakeholders in the UK nuclear industry, the National Nuclear Laboratory will bring valuable contributions to the overall skills maintenance approach. It is well suited to the provision of industrially-relevant training and occupies facilities for experimental study of radioactive materials which are unique in the UK. A strong contribution to skills maintenance from the National Nuclear Laboratory will produce benefits across the UK's nuclear industry at an important stage in the country's management of nuclear energy. (authors)

Fairhall, G.A.; Morgan, H.G. [Nexia Solutions, Seascale Cumbria, CA20 1PG (United Kingdom)

2008-07-01T23:59:59.000Z

68

NNSA, Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best  

National Nuclear Security Administration (NNSA)

Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best Practices Workshop | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA, Rosatom, UK Ministry of Defence Hold ... Press Release NNSA, Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best

69

DECOMMISSIONING DOCUMENTS Decommissioning Handbook The Decommissioning Handbook has  

Broader source: Energy.gov (indexed) [DOE]

DECOMMISSIONING DOCUMENTS DECOMMISSIONING DOCUMENTS Decommissioning Handbook The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioning Implementation Guide. Decommissioning Benchmarking Study DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine approaches to improve the decommissioning process. The study focused on quantifying productivity of decommissioning physical activities and identifying how productivity is affected by specific working conditions. The decommissioning benchmarking results are the foundation for several distinct products:

70

Decommissioning Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Decommissioning Documents Decommissioning Documents More Documents & Publications Decommissioning Benchmarking Study Final Report Decommissioning Handbook dgappendices.pdf...

71

Decommissioning Handbook  

Broader source: Energy.gov [DOE]

The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioing...

72

Status of the NRC Decommissioning Program  

SciTech Connect (OSTI)

On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

2003-02-24T23:59:59.000Z

73

Decontamination, decommissioning, and vendor advertorial issue, 2005  

SciTech Connect (OSTI)

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major interviews, articles and reports in this issue include: Increasing momentum, by Gary Taylor, Entergy Nuclear, Inc.; An acceptable investment, by Tom Chrisopher, Areva, Inc.; Fuel recycling for the U.S. and abroad, by Philippe Knoche, Areva, France; We're bullish on nuclear power, by Dan R. Keuter, Entergy Nuclear, Inc.; Ten key actions for decommissioning, by Lawrence E. Boing, Argonne National Laboratory; Safe, efficient and cost-effective decommissioning, by Dr. Claudio Pescatore and Torsten Eng, OECD Nuclear Energy Agency (NEA), France; and, Plant profile: SONGS decommissioning.

Agnihotri, Newal (ed.)

2005-07-15T23:59:59.000Z

74

Site decommissioning management plan  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

1993-10-01T23:59:59.000Z

75

STATUS OF THE NRC'S DECOMMISSIONING PROGRAM  

SciTech Connect (OSTI)

On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

Orlando, D. A.; Camper, L. W.; Buckley, J.

2002-02-25T23:59:59.000Z

76

EM Renews Information-Sharing Agreement with United Kingdom's Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Renews Information-Sharing Agreement with United Kingdom's Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority EM Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority March 1, 2012 - 12:00pm Addthis DOE Senior Advisor for Environmental Management David Huizenga (left) and Mark Lesinski, U.K.'s Nuclear Decommissioning Authority (NDA) Executive Director for Delivery, renewed the Statement of Intent between DOE and NDA in a signing ceremony this week. DOE Senior Advisor for Environmental Management David Huizenga (left) and Mark Lesinski, U.K.'s Nuclear Decommissioning Authority (NDA) Executive Director for Delivery, renewed the Statement of Intent between DOE and NDA in a signing ceremony this week. Florida International University's DOE Fellows gather for a photo with DOE Senior Advisor for Environmental Management David Huizenga (eighth from left) and DOE Fellows director, Dr. Leo Lagos (tenth from left), at the 2012 Waste Management Symposia in Phoenix this week.

77

Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center  

Broader source: Energy.gov (indexed) [DOE]

Environmental Impact Statement for Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders DOE/EIS-0226-D (Revised) November 2008 The West Valley Site Availability of the Revised Draft EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Draft EIS, or to request a copy please contact: Cathern Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov Printed with soy ink on recycled paper

78

Final EIS for Decommissioning and/or Long-Term Stewardship at the WVDP and Western New York Nuclear Service Center  

Broader source: Energy.gov (indexed) [DOE]

DOE/EIS-0226 DOE/EIS-0226 January 2010 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders The West Valley Site Availability of the Final EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Final EIS, or to request a copy of the EIS or references, please contact: Catherine Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov

79

EM Continues Progress in U.S. - U.K. Collaboration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Continues Progress in U.S. - U.K. Collaboration Continues Progress in U.S. - U.K. Collaboration EM Continues Progress in U.S. - U.K. Collaboration March 19, 2013 - 12:00pm Addthis Front row, left to right: John Mathieson, Head of International Relations, U.K. Nuclear Decommissioning Authority (NDA), Joe Franco, Manager, Carlsbad Field Office (CBFO), and Graham Jonsson, Deputy Head, NDA, Sellafield Site; second row, left to right, Andrew Szilagyi, Director, EM Office of Deactivation & Decommissioning and Facility Engineering, Laurie Judd, Vice President for Government Programs, NuVision Engineering, Nancy Buschman, Engineer, EM Office of Nuclear Material Disposition, John Lawes, Contract Manager, Dounreay, Dr. Abraham Van Luik, Manager, International Programs, CBFO, Rosa Elmetti, Foreign Affairs Specialist, EM International Program, and Steve Schneider, Director, EM Office of Tank Waste Management.

80

Issues of Policy Integration in Solving the Problems of Nuclear Submarines Decommissioning  

Science Journals Connector (OSTI)

Nuclear power in ships is a field of human activity that is linked with various kinds of hazards with nonzero probability. In order to define possible priorities and our place in the entire problem of disposal...

V. G. Iljin; V. A. Melnikov

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

UK nuclear waste company gets extended lease of life  

Science Journals Connector (OSTI)

... been mounting before the meeting that Nirex was to merge with its largest shareholder, British Nuclear Fuels (BNFL), which owns 40 per cent of Nirex. ...

Ehsan Masood

1997-10-02T23:59:59.000Z

82

Decontamination and decommissioning  

SciTech Connect (OSTI)

The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. These four phases of work were conducted in accordance with applicable regulations for D and D of research facilities and applicable regulations for packaging, transportation, and burial and storage of radioactive materials. The final result is that the Advanced Fuel Laboratories now meet requirements of ANSI 13.12 and can be released for unrestricted use. The four principal documents utilized in the D and D of the Cheswick Site were: (1) Plan for Fully Decontaminating and Decommissioning, Revision 3; (2) Environmental Assessment for Decontaminating and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pa.; (3) WARD-386, Quality Assurance Program Description for Decontaminating and Decommissioning Activities; and (4) Health Physics, Fire Control, and Site Emergency Manual. These documents are provided as Attachments 1, 2, 3 and 4.

Adams, G.A.; Bowen, W.C.; Cromer, P.M.; Cwynar, J.C.; Jacoby, W.R.; Woodsum, H.G.

1982-02-01T23:59:59.000Z

83

Decommissioning of Large Components as an Example of Steam Generator from PWR Nuclear Power Plants  

SciTech Connect (OSTI)

This paper describes the procedure for the qualification of large components (Steam Generators) as an IP-2 package, the ship transport abroad to Sweden and the external treatment of this components to disburden the Nuclear Power Plant from this task, to assure an accelerated the deconstruction phase and to minimize the amount of waste. In conclusion: The transport of large components to an external treatment facility is linked with many advantages for a Nuclear Power Plant: - Disburden of the Nuclear Power Plant from the treatment of such components, - no timely influence on the deconstruction phase of the power reactor and therewith an accelerated deconstruction phase and - minimization of the waste to be returned and therewith less demand of required waste storage capacity. (authors)

Beverungen, M. [GNS Gesellschaft fur Nuklear-Service mbH, Hollestrabe 7A (Germany)

2008-07-01T23:59:59.000Z

84

U.K. Is Modernizing for the Second Nuclear Age  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Age In the 1940s the United Kingdom initially started out alone developing a nuclear weapon. However, the scale and cost of the effort made it necessary to partner with the...

85

The UK's nuclear renaissance and its legal foundations  

Science Journals Connector (OSTI)

This paper addresses the proposed development of a new generation of new nuclear power stations in England and Wales. It explains the genesis of this nuclear renaissance and explores the legal changes which have been instituted to facilitate that programme. It explores some of the areas of likely legal controversy and conflict, for example in relation to how the wastes from new power stations will be managed.

Stephen Tromans

2010-01-01T23:59:59.000Z

86

Shielding requirements for the transport of nuclear warhead components under decommissioning  

SciTech Connect (OSTI)

The requirements to carry out accurate shielding calculations involved with the safe off-site transportation of packages containing nuclear warhead components, special assemblies and radioactive materials are discussed. The need for (a) detailed information on the geometry and material composition of the packaging and radioactive load, (b) accurate representation of the differential energy spectra (dN/dE) for the neutron and gamma spectra emitted by the radioactive materials enclosed in the packaging, (c) well-tested neutron and photon cross section libraries, (d) and accurate three-dimensional Monte Carlo transport codes are illustrated. A brief discussion of the need for reliable dose measurements is presented.

Hansen, L.F.

1994-09-01T23:59:59.000Z

87

The development of regulatory expectations for computer-based safety systems for the UK nuclear programme  

SciTech Connect (OSTI)

The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety cases for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)

Hughes, P. J. [HM Nuclear Installations Inspectorate Marine Engineering Submarines Defence Nuclear Safety Regulator Serco Assurance Redgrave Court, Merton Road, Bootle L20 7HS (United Kingdom); Westwood, R.N; Mark, R. T. [FLEET HQ, Leach Building, Whale Island, Portsmouth, PO2 8BY (United Kingdom); Tapping, K. [Serco Assurance,Thomson House, Risley, Warrington, WA3 6GA (United Kingdom)

2006-07-01T23:59:59.000Z

88

The application of contrast explanation to energy policy research: UK nuclear energy policy 20022012  

Science Journals Connector (OSTI)

This paper advances the application of the methodology, contrast explanation, to energy policy research. Research in energy policy is complex and often involves inter-disciplinary work, which traditional economic methodologies fail to capture. Consequently, the more encompassing methodology of contrast explanation is assessed and its use in other social science disciplines explored in brief. It is then applied to an energy policy research topicin this case, nuclear energy policy research in the UK. Contrast explanation facilitates research into policy and decision-making processes in energy studies and offers an alternative to the traditional economic methods used in energy research. Further, contrast explanation is extended by the addition of contested and uncontested hypotheses analyses. This research focuses on the methods employed to deliver the new nuclear programme of the UK government. In order to achieve a sustainable nuclear energy policy three issues are of major importance: (1) law, policy and development; (2) public administration; and (3) project management. Further, the research identifies that policy in the area remains to be resolved, in particular at an institutional and legal level. However, contrary to the literature, in some areas, the research identifies a change of course as the UK concentrates on delivering a long-term policy for the nuclear energy sector and the overall energy sector.

Raphael J. Heffron

2013-01-01T23:59:59.000Z

89

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

Weiss, A. J. [comp.

1988-02-01T23:59:59.000Z

90

Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396  

SciTech Connect (OSTI)

Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-li

Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States); Laraia, Michele [private consultant, formerly from IAEA, Kolonitzgasse 10/2, 1030, Vienna (Austria); Pescatore, Claudio [OECD, Nuclear Energy Agency, Issy-les-Moulineaux, Paris (France); Dinner, Paul [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria)

2012-07-01T23:59:59.000Z

91

EM Delegation Tours UK Cleanup Program's Sellafield Site | Department of  

Broader source: Energy.gov (indexed) [DOE]

EM Delegation Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site May 13, 2013 - 12:00pm Addthis Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear Decommissioning Authority (NDA) Head of International Relations John Mathieson; back row, left to right, NDA Sellafield Site Deputy Head Graham Jonsson and EM Deputy Assistant Secretary for Tank Waste and Nuclear Material Management Ken Picha. Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear

92

EM Delegation Tours UK Cleanup Program's Sellafield Site | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tours UK Cleanup Program's Sellafield Site Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site May 13, 2013 - 12:00pm Addthis Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear Decommissioning Authority (NDA) Head of International Relations John Mathieson; back row, left to right, NDA Sellafield Site Deputy Head Graham Jonsson and EM Deputy Assistant Secretary for Tank Waste and Nuclear Material Management Ken Picha. Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear

93

Decommissioning of Nuclear Plants  

Science Journals Connector (OSTI)

All wastes from dismantling or operations will be sent ... proceed according to the chosen strategy shipping the waste to a long-term centralized storage center, if available, or may be...

Maurizio Cumo

2010-01-01T23:59:59.000Z

94

NMSS handbook for decommissioning fuel cycle and materials licensees  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

1997-03-01T23:59:59.000Z

95

Decommissioning Plan RM  

Broader source: Energy.gov [DOE]

The Decommissioning Plan Review (DPR) Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the decommissioning plan prior to approval of the associated CD.

96

Participatory governance for energy policy-making: A case study of the UK nuclear consultation in 2007  

Science Journals Connector (OSTI)

Abstract The policy challenges associated with climate impacts, nuclear risks and an emergence of public preferences for fuel mixes have prompted many contemporary societies to adopt participatory approaches for managing energy matters. The extent to which and just how participatory approaches can work has however remained under-researched. This paper develops a normative framework for participatory governance to examine, analyse, and understand nuclear policy making processes and outcomes, with a particular reference to a case study of the UK nuclear consultation exercise in 2007. By comparing the actual consultation practice in the UK and our normative contentprocessoutcome framework, we found that the government approach paid insufficient attention to trust and some other normative values underpinning participatory governance, contributing to undesirable outcomes relating to policy legitimacy and public distrust. Our findings suggest that the UK government needs to pay more attention to the interaction that can occur between different rationales for participation and the processes and consequences of participatory exercises.

Daphne Ngar-yin Mah; Peter Hills

2014-01-01T23:59:59.000Z

97

RESULTS OF IONSIV IE-95 STUDIES FOR THE REMOVAL OF RADIOACTIVE CESIUM FROM K-EAST BASIN SPENT NUCLEAR FUEL POOL DURING DECOMMISSIONING ACTIVITIES  

SciTech Connect (OSTI)

This report delineates the results obtained from laboratory testing of IONISIV{reg_sign} IE-95 to determine the efficacy of the zeolite for the removal of radioactive cesium from the KE Basin water prior to transport to the Effluent Treatment Facility, as described in RPP-PLAN-36158, IONSIV{reg_sign} IE-95 Studies for the removal of Radioactive Cesium from KE Basin Spent Nuclear Fuel Pool during Decommissioning Activities. The spent nuclear fuel was removed from KE Basin and the remaining sludge was layered with a grout mixture consisting of 26% Lehigh Type I/II portland cement and 74% Boral Mohave type F fly ash with a water-to-cement ratio of 0.43. The first grout pour was added to the basin floor to a depth of approximately 14 in. covering an area of 12,000 square feet. A grout layer was also added to the sludge containers located in the attached Weasel and Technical View pits.

DUNCAN JB; BURKE SP

2008-07-07T23:59:59.000Z

98

Sellafield Decommissioning Programme - Update and Lessons Learned  

SciTech Connect (OSTI)

The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

Lutwyche, P. R.; Challinor, S. F.

2003-02-24T23:59:59.000Z

99

CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

Farfan, E.

2009-11-23T23:59:59.000Z

100

Shippingport Station Decommissioning Project decommissioning plan. Volume I  

SciTech Connect (OSTI)

Information is presented concerning the organization of the decommissioning project; decommissioning operations concept; safety and environmental assessment; information and guidance for the DOC; work breakdown structure; decommissioning operation schedule; decommissiong operations estimate; and training requirements.

Not Available

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Early Regulatory Engagement for Successful Site Remediation: the UK Experience - 13173  

SciTech Connect (OSTI)

The Office for Nuclear Regulation (ONR) is an independent safety, security and transport regulator of the UK nuclear industry. ONR regulates all civil nuclear reactor power stations, fuel manufacture, enrichment, spent fuel reprocessing, most defence sites and installations that store and process legacy spent fuel and radioactive waste. The responsibility for funding and strategic direction of decommissioning and radioactive waste management of state owned legacy sites has rested solely with the Nuclear Decommissioning Authority (NDA) since 2005. A key component of NDA's mandate was to encourage new strategic approaches and innovation to dealing with the UK's waste legacy and which deliver value-for-money to the UK taxpayer. ONR, as an agency of the Health and Safety Executive, is entirely independent of NDA and regulates all prescribed activities on NDA's sites. NDA's competition of site management and closure contracts has attracted significant international interest and the formation of consortia comprised of major British, US, French and Swedish organizations bidding for those contracts. The prominence of US organizations in each of those consortia reflects the scale and breadth of existing waste management and D and D projects in the US. This paper will articulate, in broad terms, the challenges faced by international organizations seeking to employ 'off-the-shelf' technology and D and D techniques, successfully employed elsewhere, into the UK regulatory context. The predominantly 'goal-setting' regulatory framework in the UK does not generally prescribe a minimum standard to which a licensee must adhere. The legal onus on licensees in the UK is to demonstrate, whatever technology is selected, that in its applications, risks are reduced 'So Far As Is Reasonably Practicable' or 'SFAIRP'. By the nature of its role, ONR adopts a conservative approach to regulation; however ONR also recognises that in the decommissioning (and ultimately the site closure) domain, it is often necessary to consider and support novel approaches to achieve the nationally desired end-state. Crucial to successful and compliant operation in this regulatory environment is early and sustained engagement of the contractor with the regulator. There must be a 'no-surprises' culture to engender regulatory confidence early in a project. The paper considers some of the challenges facing international prime and lower tier contractors when undertaking D and D contracts in the UK, and emphasizes the importance of constructive and transparent dialogue with all regulators to sustain confidence at all stages of a major decommissioning project. The paper will also articulate ONR's strategy to increase collaboration with the US Department of Energy in light of increasing UK-US synergy in the area of waste management and to benchmark respective regulatory approaches. (authors)

Maitland, R.P.; Senior, D. [Office for Nuclear Regulation, Redgrave Court, Liverpool L20 7HS (United Kingdom)] [Office for Nuclear Regulation, Redgrave Court, Liverpool L20 7HS (United Kingdom)

2013-07-01T23:59:59.000Z

102

Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund  

Broader source: Energy.gov (indexed) [DOE]

0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are directly or indirectly involved with the Fund. c. Requirements and Sources of the Fund. (1) The Energy Policy Act of 1992 (EPACT) requires DOE to establish and administer the Fund. EPACT authorizes that the

103

Technology Requirements for In-Situ Decommissioning Workshop Report  

Broader source: Energy.gov (indexed) [DOE]

09-00269, Rev. 0 09-00269, Rev. 0 KEY WORDS: DOE-HQ In situ Decommissioning Entombment Workshop TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING (ISD) WORKSHOP REPORT Patricia L. Lee, John B. Gladden, G. Timothy Jannik, Christine A. Langton, Michael G. Serrato, SRNL Chuck Urland, Erick Reynolds, PEC June 2009 Savannah River National Laboratory Savannah River Nuclear Solutions Savannah River Site

104

3-D Model for Deactivation & Decommissioning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. 3-D Model for Deactivation & Decommissioning More Documents & Publications D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization D&D and Risk Assessment Tools 3-D Model for Deactivation & Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D

105

Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249  

SciTech Connect (OSTI)

Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)] [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)

2013-07-01T23:59:59.000Z

106

Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station  

SciTech Connect (OSTI)

For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)

2013-07-01T23:59:59.000Z

107

Decommissioning Benchmarking Study Final Report  

Broader source: Energy.gov [DOE]

DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

108

Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect (OSTI)

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

109

Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center (3/13/03)  

Broader source: Energy.gov (indexed) [DOE]

4 4 Federal Register / Vol. 68, No. 49 / Thursday, March 13, 2003 / Notices Dated: March 6, 2003. Gerald A. Reynolds, Assistant Secretary for Civil Rights. [FR Doc. 03-5999 Filed 3-12-03; 8:45 am] BILLING CODE 4000-01-M DEPARTMENT OF ENERGY Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center AGENCY: Department of Energy. ACTION: Notice of Intent. SUMMARY: The U.S. Department of Energy (DOE) and the New York State Energy Research and Development Authority (NYSERDA) are announcing their intent to prepare an Environmental Impact Statement (EIS) for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project (WVDP) and

110

Policy Statement 3, Board Oversight of Department of Energy Decommissioning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Date: August 19, 1996 Subject Policy Statement on Board oversight of Department of Energy decommissioning activities at defense nuclear facilities. Summary This policy statement describes the decommissioning phase of a DOE defense nuclear facility and identifies the Board's safety oversight responsibilities for decommisioning activities. John T. Conway, Chairman Congress directed the Defense Nuclear Facilities Safety Board (Board) to oversee Department of Energy (DOE) practices at defense nuclear facilities that could adversely affect public health and safety during any stage in the life cycle of those facilities, from design, construction, and operation through decommissioning. The Board's objective during decommissioning is identical to its objective during any other phase of a facility's life cycle: to ensure that DOE provides adequate protection of worker and public health and safety at defense nuclear facilities. Congress specifically tasked the Board with reviewing and evaluating:

111

Systematic Approach for Decommissioning Planning and Estimating  

SciTech Connect (OSTI)

Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises.

Dam, A. S.

2002-02-26T23:59:59.000Z

112

Shippingport Station decommissioning project decommission plan  

SciTech Connect (OSTI)

This volume consists of the following appendices: long-lead-time activities, technical baseline, assessment of one-price removal of reactor vessel and internals by barge, final environmental impact statement (this forms the bulk of this volume), and record of the decision to decommission Shippingport. (DLC)

Not Available

1983-01-01T23:59:59.000Z

113

Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044  

SciTech Connect (OSTI)

This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of 180 degrees (pan) and 90 degrees (tilt) equivalent to 4 ? steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple radionuclides may be selected by the operator and will be identified if present. In scanning operation the unit scans a designated region and superimposes over a video image the distribution of measured radioactivity. For the total scanned area or object RadSearch determines the total activity of operator selected radionuclides present and the gamma dose-rate measured at the detector head. Results of hold-up measurements made in a nuclear facility are presented, as are test measurements of point sources distributed arbitrarily on surfaces. These latter results are compared with the results of benchmarked MCNP Monte Carlo calculations. The use of the device for hold-up and decommissioning measurements is validated. (authors)

Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N. [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom)] [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom); Creed, Richard; Pancake, Daniel [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-07-01T23:59:59.000Z

114

A review of decommissioning considerations for new reactors  

SciTech Connect (OSTI)

At a time of 'nuclear renaissance' when the focus is on advanced reactor designs and construction, it is easy to overlook the decommissioning considerations because such a stage in the life of the new reactors will be some sixty years down the road. Yet, one of the lessons learned from major decommissioning projects has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Hence, the time to examine what decommissioning considerations should be taken into account is right from the design stage with regular updates of the decommissioning strategy and plans throughout the life cycle of the reactor. Designing D and D into the new reactor designs is necessary to ensure that the tail end costs of the nuclear power are manageable. Such considerations during the design stage will facilitate a more cost-effective, safe and timely decommissioning of the facility when a reactor is eventually retired. This paper examines the current regulatory and industry design guidance for the new reactors with respect to the decommissioning issues and provides a review of the design considerations that can help optimize the reactor designs for the eventual decommissioning. (authors)

Devgun, J.S.Ph.D. [Manager Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States)

2008-07-01T23:59:59.000Z

115

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

116

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect (OSTI)

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

117

3-D Model for Deactivation & Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

Project & Identifier Project & Identifier Tech Stage: Deployment In-Situ Decommissioning: SR09171 SRS Area Closure Projects: PBS SR-0040 3-D models of the R reactor building and P reactor vessel were delivered to SRS Area Closure Projects Page 1 of 2 Tech Fact Sheet Savannah River Site South Carolina 3-D Model for Deactivation & Decommissioning Challenge Planning for the safe and controlled deactivation and decommissioning (D&D) of highly contaminated nuclear facilities requires that engineers and managers fully understand the work space in which personnel and equipment will operate. It also requires that they effectively communicate safety concerns and work sequences to the personnel who will perform the work. This crucial knowledge is conveyed in

118

Rancho Seco--Decommissioning Update  

SciTech Connect (OSTI)

The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered.

Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

2003-02-26T23:59:59.000Z

119

STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING  

SciTech Connect (OSTI)

Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions.

Foss, D. L.; Stevens, J. L.; Gerdeman, F. W.

2002-02-25T23:59:59.000Z

120

Safely Decommission about how we  

E-Print Network [OSTI]

and make them available to low- income communities, individuals, and community non-profit organizations to information technologies among low-income and disadvantaged groups. #12; Safely Decommission Your PCs Learn more about how we can help you effectively decommission

Blanchette, Robert A.

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A critical study on Kennedys Cost-Benefit-Analysis New nuclear power generation in the UK.  

E-Print Network [OSTI]

?? The demand for energy is forever growing. The technology of extracting power from uranium through nuclear facilities is rather old. Core melting, nuclear bombs, (more)

Strng, Jonathan

2011-01-01T23:59:59.000Z

122

REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198  

SciTech Connect (OSTI)

Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

Lowry, N.

2010-11-05T23:59:59.000Z

123

Decontamination, decommissioning, and vendor advertorial issue, 2007  

SciTech Connect (OSTI)

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

Agnihotri, Newal (ed.)

2007-07-15T23:59:59.000Z

124

Idaho Site Closes Out Decontamination and Decommissioning Project about  

Broader source: Energy.gov (indexed) [DOE]

Site Closes Out Decontamination and Decommissioning Project Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost Idaho Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost November 8, 2012 - 12:00pm Addthis Workers demolish the Test Area North Hot Shop Complex, shown here. Workers demolish the Test Area North Hot Shop Complex, shown here. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown here removed, loaded and ready for transport to the on-site landfill. The Engineering Test Reactor vessel is shown here removed, loaded and ready

125

Progress in Decommissioning the Humboldt Bay Power Plant - 13604  

SciTech Connect (OSTI)

Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)

Rod, Kerry [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States)] [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States); Shelanskey, Steven K. [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States)] [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States); Kristofzski, John [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)] [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)

2013-07-01T23:59:59.000Z

126

Decommissioning Plan RM  

Broader source: Energy.gov (indexed) [DOE]

Decommissioning Plan Review Module Decommissioning Plan Review Module March 2010 CD-0 O 0 C OFFICE OF D C CD-1 F ENVIRO Standard R Decomm Rev Critical Decisi CD-2 M ONMENTAL Review Plan missioning view Module ion (CD) Ap CD March 2010 L MANAGE n (SRP) g Plan e plicability D-3 EMENT CD-4 Post Oper ration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

127

Decommissioning Implementation Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Department of Energy (DOE) faces an enormous task in the disposition of the nation's excess facilities. Many of these facilities are large and complex and contain potentially hazardous substances. As DOE facilities complete mission operations and are declared excess, they pass into a transition phase which ultimately prepares them for disposition. The disposition phase of a facility's life-cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

1999-09-02T23:59:59.000Z

128

In-Situ Decommissioning: A Strategy for Environmental Management  

Broader source: Energy.gov (indexed) [DOE]

In-Situ Decommissioning In-Situ Decommissioning A Strategy for Environmental Management Reducing the Footprint of the Cold War For over a decade, the Department of Energy has focused on reducing the footprint of 60 years of nuclear research and weapons testing and production. While these facilities are no longer needed, they exist with varying degrees of radiation contamination from years of operation. Deactivation & Decommissioning (D&D) is the process of closing down a nuclear facility and placing it in a state that reduces or eliminates risk to the pub lic and the environment. This generally includes demolition and transport of the debris to a disposal facility. Another alternative is to dispose of the facility in place (i.e., in-situ). The concept of In-Situ Decommis-

129

DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS  

SciTech Connect (OSTI)

From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

Bollinger, J; William Austin, W; Larry Koffman, L

2007-09-17T23:59:59.000Z

130

Decontamination, decommissioning, and vendor advertorial issue, 2008  

SciTech Connect (OSTI)

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

Agnihotri, Newal (ed.)

2008-07-15T23:59:59.000Z

131

A Nuclear Future? UK Government Policy and the Role of the Market?  

E-Print Network [OSTI]

their customers. In todays liberalised electricity markets, nuclear investments would have to be undertaken by private companies taking a commercial view about the risks involved. These are considerable. The price of electricity in the forward market moves... -C) targets will not be cheap, but should be affordable. We forget that in the interwar period electricity prices were three to four times more expensive than now in real terms. Since then dramatic improvements in efficiency have allowed costs and prices...

Newbery, David

132

J. Phys.: Condens. Matter 10 (1998) 71337144. Printed in the UK PII: S0953-8984(98)92644-3 X-ray diffraction, magnetization and nuclear magnetic  

E-Print Network [OSTI]

J. Phys.: Condens. Matter 10 (1998) 7133­7144. Printed in the UK PII: S0953-8984(98)92644-3 X-ray diffraction, magnetization and nuclear magnetic resonance study of Y2Fe17-xGax N X Shen, T K Daeubler , J I of the Holy Cross, Worcester, MA 01610, USA § State Key Laboratory of Magnetism, Institute of Physics, Chinese

Yang, De-Ping

133

Decontamination & decommissioning focus area  

SciTech Connect (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

134

Decontamination and Decommissioning activities photobriefing book FY 1997  

SciTech Connect (OSTI)

The Decontamination and Decommissioning (D and D) Program at Argonne National Laboratory-East (ANL-E) is dedicated to the safe and cost effective D{ampersand}D of surplus nuclear facilities. There is currently a backlog of more than 7,000 contaminated US Department of Energy facilities nationwide. Added to this are 110 licensed commercial nuclear power reactors operated by utilities learning to cope with deregulation and an aging infrastructure that supports the commercial nuclear power industry, as well as medical and other uses of radioactive materials. With this volume it becomes easy to understand the importance of addressing the unique issues and objectives associated with the D{ampersand}D of surplus nuclear facilities. This photobriefing book summarizes the decontamination and decommissioning projects and activities either completed or continuing at the ANL-E site during the year.

NONE

1998-04-01T23:59:59.000Z

135

decommissioning of carbon dioxide (CO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

136

The Chernobyl NPP decommissioning: Current status and alternatives  

SciTech Connect (OSTI)

After the Chernobyl accident of April 26, 1986, many contradictory decisions were taken concerning the Chernobyl nuclear power plant (NPP) future. The principal source of contradictions was a deadline for a final shutdown of the Chernobyl NPP units. Alterations in a political and socioeconomic environment resulted in the latest decision of the Ukrainian Authorities about 2000 as a deadline for a beginning of the Chernobyl NPP decommissioning. The date seems a sound compromise among the parties concerned. However, in order to meet the data a lot of work should be done. First of all, a decommissioning strategy has to be established. The problem is complicated due to both site-specific aspects and an absence of proven solutions for the RBMK-type reactor decommissioning. In the paper the problem of decommissioning option selection is considered taking into account an influence of the following factors: relevant legislative and regulatory requirements; resources required to carry out decommissioning (man-power, equipment, technologies, waste management infrastructure, etc.); radiological and physical status of the plant, including structural integrity and predictable age and weather effects; impact of planned activities at the destroyed unit 4 and within the 30-km exclusion zone of the Chernobyl NPP; planed use of the site; socio-economic considerations.

Mikolaitchouk, H. [Atomaudit Ltd., Kiev (Ukraine); Steinberg, N. [Atomaudit Ltd., Kiev (Ukraine)

1996-08-01T23:59:59.000Z

137

Is Entombment an Acceptable Option for Decommissioning? An International Perspective - 13488  

SciTech Connect (OSTI)

Selection of a decommissioning strategy is one of the key steps in the preparation for decommissioning of nuclear facilities and other facilities using radioactive material. Approaches being implemented or considered by Member States include immediate dismantling, deferred dismantling and entombment. Other options or slight modifications of these strategies are also possible. Entombment has been identified in the current International Atomic Energy Agency (IAEA) Safety Standards as one of the three basic decommissioning strategies and has been defined as a decommissioning strategy by which radioactive contaminants are encased in a structurally long lived material until radioactivity decays to a level permitting the unrestricted release of the facility, or release with restrictions imposed by the regulatory body. Although all three strategies have been considered, in principle, applicable to all facilities, their application to some facilities may not be appropriate owing to political concerns, safety or environmental requirements, technical considerations, local conditions or financial considerations. The IAEA is currently revising the decommissioning Safety Standards and one of the issues widely discussed has been the applicability of entombment in the context of decommissioning and its general objective to enable removal of regulatory control from the decommissioned facility. The IAEA recently established a consultancy to collect and discuss experience and lessons learned from entombment projects, to identify regulatory requirements and expectations for applying entombment as a decommissioning option strategy, in compliance with the internationally agreed standards. (authors)

Belencan, Helen [US Department of Energy (United States)] [US Department of Energy (United States); Nys, Vincent [Federal Agency for Nuclear Control (Belgium)] [Federal Agency for Nuclear Control (Belgium); Guskov, Andrey [Scientific and Engineering Centre on Safety in Nuclear Energy (United States)] [Scientific and Engineering Centre on Safety in Nuclear Energy (United States); Francois, Patrice [Institut de radioprotection et de surete nucleaire (France)] [Institut de radioprotection et de surete nucleaire (France); Watson, Bruce [US Nuclear Regulatory Commission (United States)] [US Nuclear Regulatory Commission (United States); Ljubenov, Vladan [International Atomic Energy Agency (Austria)] [International Atomic Energy Agency (Austria)

2013-07-01T23:59:59.000Z

138

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Needs Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for international nuclear fuel service frameworks. Officials from the U.S. Department of Energy (DOE) and the U.K. Nuclear Decommissioning Authority co-chaired the working group meeting. "As a key component of the international Global Nuclear Energy Partnership program, the Infrastructure Development Working Group focuses

139

EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley  

Broader source: Energy.gov (indexed) [DOE]

26: Decommissioning and/or Long-Term Stewardship at the West 26: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center SUMMARY This EIS evaluates the potential environmental impacts of the range of reasonable alternatives to decommission and/or maintain long-term stewardship at WNYNSC. The alternatives analyzed in the EIS include the Sitewide Removal Alternative, the Sitewide Close-In-Place Alternative, the Phased Decisionmaking Alternative (Preferred Alternative), and the No Action Alternative. The analysis and information contained in the EIS are intended to assist DOE and NYSERDA with the consideration of environmental

140

Development of a Remote Monitoring Sensor Network for In-Situ Decommissioned Structures  

Broader source: Energy.gov (indexed) [DOE]

10-01666, Revision 0 10-01666, Revision 0 Key Words: in situ decommissioning sensor remote monitoring end state Retention: Permanent DEVELOPMENT OF A REMOTE MONITORING SENSOR NETWORK FOR IN SITU DECOMMISSIONED STRUCTURES Panel Report November 2010 Savannah River National Laboratory Savannah River Nuclear Solutions Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470 Development of a Remote Monitoring Sensor Network Page 2 of 34

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Miller, R. L.; Scotti, K. S.

1986-05-01T23:59:59.000Z

142

Originally from Venice, Italy Martina studied in Liverpool (UK) for her PhD in Nuclear Physics. In 2003 she started a post-doc at the Lawrence Berkeley National Laboratory, working on the development of gamma-ray tracking detectors for nuclear physics exp  

E-Print Network [OSTI]

Originally from Venice, Italy Martina studied in Liverpool (UK) for her PhD in Nuclear Physics of gamma-ray tracking detectors for nuclear physics experiments. Since May 2005, she is a postdoctoral and, the department! Martina Descovich PhD Education Ph.D. in Nuclear Physics (2003) University

Pouliot, Jean

143

Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities  

SciTech Connect (OSTI)

Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires that contaminated components either be: (1) decontaminated to restricted or unrestricted release levels or (2) packaged and shipped to an authorized disposal site. This study considers unrestricted release only. The new decommissioning criteria of July 1997 are too recent for this study to include a cost analysis of the restricted release option, which is now allowed under these new criteria. The costs of decommissioning facility components are generally estimated to be in the range of $140 to $27,000, depending on the type of component, the type and amount of radioactive contamination, the remediation options chosen, and the quantity of radioactive waste generated from decommissioning operations. Estimated costs for decommissioning the example laboratories range from $130,000 to $205,000, assuming aggressive low-level waste (LLW) volume reduction. If only minimal LLW volume reduction is employed, decommissioning costs range from $150,000 to $270,000 for these laboratories. On the basis of estimated decommissioning costs for facility components, the costs of decommissioning typical non-fuel-cycle laboratory facilities are estimated to range from about $25,000 for the decommissioning of a small room containing one or two fume hoods to more than $1 million for the decommissioning of an industrial plant containing several laboratories in which radiochemicals and sealed radioactive sources are prepared. For the reference sites of this study, the basic decommissioning alternatives are: (1) site stabilization followed by long-term care and (2) removal of the waste or contaminated soil to an authorized disposal site. Cost estimates made for decommissioning three reference sites range from about $130,000 for the removal of a contaminated drain line and hold-up tank to more than $23 million for the removal of a tailings pile that contains radioactive residue from ore-processing operations in which tin slag is processed for the recovery of rare metals. Total occupational radiation doses generally range from 0.00007 person-rem to 13 person-rem for

MC Bierschbach; DR Haffner; KJ Schneider; SM Short

2002-12-01T23:59:59.000Z

144

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) |  

Broader source: Energy.gov (indexed) [DOE]

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) As the DOE complex sites prepare for closure, a large number of buildings and facilities must be deactivated and decommissioned. These facilities contain many complex systems (e.g. ventilation), miles of contaminated pipelines, glove boxes, and unique processing equipment that require labor intensive deactivation and decommissioning methods. Although

145

Hallam, Nebraska, Decommissioned Reactor Site Fact Sheet  

Office of Legacy Management (LM)

Program. Objectives for the reactor were fulfilled by 1966, and the Nebraska Public Power District decommissioned and dismantled the facility between 1967 and 1969. Facility...

146

Optimisation of the Management of Higher Activity Waste in the UK - 13537  

SciTech Connect (OSTI)

The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interim storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)

Walsh, Ciara; Buckley, Matthew [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

147

FLUOR HANFORD DECOMMISSIONING UPDATE  

SciTech Connect (OSTI)

Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield workers to a safe level from the residual radioactivity. Workers then continued preparations for demolishing the structure. Currently, they are isolating utilities, removing asbestos, draining oils, and removing other items not allowed to be disposed in Hanford's Environmental Restoration Disposal Facility (ERDF). The basin's superstructure will be demolished using a heavy industrial excavator equipped with a shear. This portion of the work is expected to be completed in September, with removal of the basin substructure to follow in 2009. D&D of the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream.

GERBER MS

2008-04-21T23:59:59.000Z

148

Interim Storage Facility decommissioning. Final report  

SciTech Connect (OSTI)

Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel.

Johnson, R.P.; Speed, D.L.

1985-03-15T23:59:59.000Z

149

Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada  

SciTech Connect (OSTI)

Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred thousand hours worked, on schedule and under budget despite some significant changes throughout the decommissioning phases. The actual cost to decommission this building will come in under 9 million dollars vs. an estimated 14.5 million dollars. This paper will cover some of the unique aspects of dismantling a radioactive building that has seen pretty much every element of the periodic table pass through it with the client requirement focused on minimization of radioactive waste volumes.

Kenny, Stephen [Acting Director of Waste Management and Decommissioning Operations, AECL, Chalk River Labs, Chalk River, Ont. (Canada)

2008-01-15T23:59:59.000Z

150

In-Situ Decommissioning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Site & Facility Restoration » Deactivation & Site & Facility Restoration » Deactivation & Decommissioning (D&D) » In-Situ Decommissioning In-Situ Decommissioning In-Situ Decommissioning (ISD) is the permanent entombment of a facility that contains residual radiological and/or chemical contamination. The ISD approach is a cost-effective alternative to both demolition and complete removal of the structure and its content (including the cost of transport and disposal). In addition, the effective use of ISD reduces human health and safety risks while helping to attain sustainability goals through the reduction of greenhouse gas (GHG) emissions, petroleum consumption and waste generation. Not all contaminated structures can be decommissioned using ISD; canditate sites must meet strict criteria.

151

Report to Congress on Plan for Interim Storage of Spent Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from...

152

FY 2000 Deactivation and Decommissioning Focus Area Annual Report  

SciTech Connect (OSTI)

This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

None

2001-03-01T23:59:59.000Z

153

Mobile workstation for decontamination and decommissioning operations  

SciTech Connect (OSTI)

This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

Whittaker, W.L.; Osborn, J.F.; Thompson, B.R. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Robotics Inst.

1993-10-01T23:59:59.000Z

154

Impact of Lack of Consistent Free Release Standards on Decommissioning Projects and Costs  

SciTech Connect (OSTI)

While the Nuclear Regulatory Commission has had specific and dose-based standards for the release of liquids and gases for a long time, there are no regulatory mechanisms in place for the release of solid bulk materials from a nuclear power plant. Even though free releases of small quantities of solid materials continue under existing guidelines from the operating plants, the regulatory void creates major difficulties for the bulk materials that result from the decommissioning of a nuclear site. Decommissioning of a commercial nuclear power plant generates large quantities of solid bulk materials such as concrete, metal, and demolition debris. Disposition of such materials has a large impact on the overall decommissioning cost. Yet, there are no clear and cost-effective alternatives for the disposal of these materials from a regulatory perspective. This paper discusses the methodologies for clearance of solid materials1, their applicability to the disposition of bulk materials, and the impact of lack of consistent free release standards on the decommissioning projects and costs.

Devgun, J. S.

2002-02-26T23:59:59.000Z

155

EIS-0259: Disposal of Decommissioned, Defueled Cruiser, Ohio Class and Los Angeles Class Naval Reactor Plants, Hanford Site, Richland (adopted from Navy)  

Broader source: Energy.gov [DOE]

This EIS analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines.

156

Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)] [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

2013-07-01T23:59:59.000Z

157

Guides: Design/Engineering for Deactivation & Decommissioning  

Broader source: Energy.gov [DOE]

To ensure development of appropriate levels of engineering detail, DOE-EMs Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for tailoring a D...

158

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY Third Party Nuclear Liability 1207 Anthony Thomas and Raphael J. Heffron With a return to nuclear new build expected in the UK, the clarification of the position of a Supplier and their potential to be liable for nuclear damage is of vital

Aickelin, Uwe

159

Aspects of operational radiation protection during dismantling of nuclear facilities relevant for the estimation of internal doses  

Science Journals Connector (OSTI)

......its decommissioning plan. In that period...including clearance from regulatory control, and to...analysis includes a review of the documentation...decommissioning standard review plan. NUREG 1727. 6...Journal Article Review | Humans Nuclear......

T. Labarta

2007-04-01T23:59:59.000Z

160

www.electricitypolicy.org.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

www.electricitypolicy.org.uk EPRGWORKINGPAPER Abstract Nuclear Power and Deregulated Electricity of running a nuclear generator in a deregulated electricity market. This paper explains the causes of the company's financial difficulties and argues that they do not amount to evidence that nuclear power cannot

Aickelin, Uwe

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

www.electricitypolicy.org.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

www.electricitypolicy.org.uk EPRGWORKINGPAPER Abstract Financing the Nuclear Renaissance EPRG the key economic risks associated with nuclear power. The authors observe that the bulk of the risks of a nuclear power station project fall during the roughly five year period of plant construction. This window

Aickelin, Uwe

162

Decommissioning Under CERCLA Information Sheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Decommissioning Under CERCLA Information Sheet Decommissioning Under CERCLA Information Sheet Decommissioning Under CERCLA Information Sheet This Question and Answer (Q&A) Sheet discusses the use of removal authority in the conduct of decommissioning activities, consistent with the Policy on Decommissioning of Department of Energy Facilities under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (May 22, 1995), and the accompanying Decommissioning Implementation Guide . The Policy and Guide establish the approach agreed upon by the Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). It is consistent with CERCLA statutory requirements, as well as CERCLA regulatory requirements found in the National Contingency Plan (NCP), and applicable

163

Decommissioning Cost Estimating Factors And Earned Value Integration  

SciTech Connect (OSTI)

The Rocky Flats 771 Project progressed from the planning stage of decommissioning a plutonium facility, through the strip-out of highly-contaminated equipment, removal of utilities and structural decontamination, and building demolition. Actual cost data was collected from the strip-out activities and compared to original estimates, allowing the development of cost by equipment groupings and types and over time. Separate data was developed from the project control earned value reporting and compared with the equipment data. The paper discusses the analysis to develop the detailed factors for the different equipment types, and the items that need to be considered during characterization of a similar facility when preparing an estimate. The factors are presented based on direct labor requirements by equipment type. The paper also includes actual support costs, and examples of fixed or one-time start-up costs. The integration of the estimate and the earned value system used for the 771 Project is also discussed. The paper covers the development of the earned value system as well as its application to a facility to be decommissioned and an existing work breakdown structure. Lessons learned are provided, including integration with scheduling and craft supervision, measurement approaches, and verification of scope completion. In summary: The work of decommissioning the Rocky Flats 771 Project process equipment was completed in 2003. Early in the planning process, we had difficulty in identifying credible data and implementing processes for estimating and controlling this work. As the project progressed, we were able to collect actual data on the costs of removing plutonium contaminated equipment from various areas over the life of this work and associate those costs with individual pieces of equipment. We also were able to develop and test out a system for measuring the earned value of a decommissioning project based on an evolving estimate. These were elements that would have been useful to us in our early planning process, and we would expect that they would find application elsewhere as the DOE weapons complex and some commercial nuclear facilities move towards closure. (authors)

Sanford, P.C.; Cimmarron, E. [Englewood, CO, B. Skokan, Office of Project Management Oversight, EM-53, United States Department of Energy, Washington, DC (United States)

2008-07-01T23:59:59.000Z

164

West Valley Demonstration Project Phase I Decommissioning - Facility  

Broader source: Energy.gov (indexed) [DOE]

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

165

FAQS Qualification Card - Deactivation and Decommissioning | Department of  

Broader source: Energy.gov (indexed) [DOE]

Deactivation and Decommissioning Deactivation and Decommissioning FAQS Qualification Card - Deactivation and Decommissioning A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-DeactivationDecommissioning.docx Description Deactivation and Decommissioning Qualification Card More Documents & Publications

166

DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Policy on Decommissioning DOE Facilities Under DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This policy ensures protection of the environment, worker health and public health, provides opportunities for stakeholder involvement, and achieves risk reduction without unnecessary delay. Consistent with the jointly issued "Guidance on Accelerating CERCLA Environmental Restoration at Federal Facilities" (August 22, 1994), this decommissioning policy encourages streamlined decision-making. This

167

Offshore decommissioning issues: Deductibility and transferability  

Science Journals Connector (OSTI)

Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international best practices standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions.

Virginia Parente; Doneivan Ferreira; Edmilson Moutinho dos Santos; Estanislau Luczynski

2006-01-01T23:59:59.000Z

168

University of Virginia Reactor Facility Decommissioning Results  

SciTech Connect (OSTI)

The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

2003-02-24T23:59:59.000Z

169

Policy on Decommissioning of Department of Energy Facilities Under the  

Broader source: Energy.gov (indexed) [DOE]

Policy on Decommissioning of Department of Energy Facilities Under Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Purpose This Policy establishes the approach agreed upon by the Department of Energy (DOE) and Environmental Protection Agency (EPA) for the conduct of decommissioning projects [1] consistent with CERCLA requirements. This Policy creates a framework for the conduct of decommissioning of DOE facilities and provides guidance to EPA Regions and DOE Operations Offices on the use of CERCLA response authority to decommission such facilities. The principal objectives of this Policy are to ensure that decommissioning

170

Estimating boiling water reactor decommissioning costs. A user`s manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment  

SciTech Connect (OSTI)

With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

Bierschbach, M.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-01T23:59:59.000Z

171

www.electricitypolicy.org.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network [OSTI]

www.electricitypolicy.org.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY Financing the Nuclear Renaissance with nuclear power. The cost structure of nuclear power differs significantly from that of fossil-fuelled electricity. In the case of nuclear the majority of costs are associated with the construiction phase whereas

Aickelin, Uwe

172

Decommissioning of the Tokamak Fusion Test Reactor  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

2003-10-28T23:59:59.000Z

173

DOE Awards New York Decommissioning Services Contract | Department of  

Broader source: Energy.gov (indexed) [DOE]

New York Decommissioning Services Contract New York Decommissioning Services Contract DOE Awards New York Decommissioning Services Contract June 29, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 William.taylor@emcbc.doe.gov West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP). The contract is a performance-based, cost-plus-award-fee, completion type contract with cost and schedule incentives. The total contract value is $333.4 million. DOE has selected a phased approach for decommissioning activities at the WVDP. Phase I is the first of a two-phase process for the final decommissioning of the western New York site in accordance with the West

174

Brookhaven Lab Completes Decommissioning of Graphite Research Reactor:  

Broader source: Energy.gov (indexed) [DOE]

Brookhaven Lab Completes Decommissioning of Graphite Research Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal September 1, 2012 - 12:00pm Addthis The Brookhaven Graphite Research Reactor’s bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. The Brookhaven Graphite Research Reactor's bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. Pictured here is the Brookhaven Graphite Research Reactor, where major decommissioning milestones were recently reached after the remaining radioactive materials from the facility’s bioshield were shipped to a licensed offsite disposal facility.

175

In-Situ Decommissioning: A Strategy for Environmental Management |  

Broader source: Energy.gov (indexed) [DOE]

In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning (ISD) is an effective decommissioning practice offering a safe and environmentally-favorable alternative to completely demolishing a facility and transporting its debris elsewhere for disposal. Regulatory approval to decommission a facility through ISD is authorized primarily by the Environmental Protection Agency under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). In addition, Federal Facility Agreements and local stakeholder agreements have a direct influence on ISD approval and oversight. The ISD approach limits radiation exposure and industrial hazards to workers to a greater extent than larger scale cleanout and demolition.

176

DOE Awards New York Decommissioning Services Contract | Department of  

Broader source: Energy.gov (indexed) [DOE]

New York Decommissioning Services Contract New York Decommissioning Services Contract DOE Awards New York Decommissioning Services Contract June 29, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 William.taylor@emcbc.doe.gov West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP). The contract is a performance-based, cost-plus-award-fee, completion type contract with cost and schedule incentives. The total contract value is $333.4 million. DOE has selected a phased approach for decommissioning activities at the WVDP. Phase I is the first of a two-phase process for the final decommissioning of the western New York site in accordance with the West

177

GRR/Section 20 - Plant Decommissioning Overview | Open Energy Information  

Open Energy Info (EERE)

20 - Plant Decommissioning Overview 20 - Plant Decommissioning Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20 - Plant Decommissioning Overview 20PlantDecommissioningOverview (1).pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3263.10-3263.15: Well Abandonment Geothermal Resources Operational Order No.3 Triggers None specified Click "Edit With Form" above to add content 20PlantDecommissioningOverview (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative State and federal laws have specific requirements for the decommissioning process. 20.1 to 20.2 - Will a Geothermal Well be Abandoned?

178

Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074  

SciTech Connect (OSTI)

Whiteshell Laboratories (WL) is a nuclear research site in Canada that was commissioned in 1964 by Atomic Energy of Canada Limited. It covers a total area of approximately 4,375 hectares (10,800 acres) and includes the main campus site, the Waste Management Area (WMA) and outer areas of land identified as not used for or impacted by nuclear development or operations. The WL site employed up to 1100 staff. Site activities included the successful operation of a 60 MW organic liquid-cooled research reactor from 1965 to 1985, and various research programs including reactor safety research, small reactor development, fuel development, biophysics and radiation applications, as well as work under the Canadian Nuclear Fuel Waste Management Program. In 1997, AECL made a business decision to discontinue research programs and operations at WL, and obtained government concurrence in 1998. The Nuclear Legacy Liabilities Program (NLLP) was established in 2006 by the Canadian Government to remediate nuclear legacy liabilities in a safe and cost effective manner, including the WL site. The NLLP is being implemented by AECL under the governance of a Natural Resources Canada (NRCan)/AECL Joint Oversight Committee (JOC). Significant progress has since been made, and the WL site currently holds the only Canadian Nuclear Safety Commission (CNSC) nuclear research site decommissioning license in Canada. The current decommissioning license is in place until the end of 2018. The present schedule planned for main campus decommissioning is 30 years (to 2037), followed by institutional control of the WMA until a National plan is implemented for the long-term management of nuclear waste. There is an impetus to advance work and complete decommissioning sooner. To accomplish this, AECL has added significant resources, reorganized and moved to a projectized environment. This presentation outlines changes made to the organization, the tools implemented to foster projectization, and the benefits and positive impacts on schedule and delivery. A revised organizational structure was implemented in two phases, starting 2011 April 1, to align WL staff with the common goal of decommissioning the site through the direction of the WL Decommissioning Project General Manager. On 2011 September 1, the second phase of the reorganization was implemented and WL Decommissioning staff was organized under five Divisions: Programs and Regulatory Compliance, General Site Services, Decommissioning Strategic Planning, Nuclear Facilities and Project Delivery. A new Mission, Vision and Objectives were developed for the project, and several productivity enhancements are being implemented. These include the use of an integrated and fully re-sourced Site Wide Schedule that is updated and reviewed at Plan-of-the-Week meetings, improved work distribution throughout the year, eliminating scheduling 'push' mentality, project scoreboards, work planning implementation, lean practices and various process improvement initiatives. A revised Strategic Plan is under development that reflects the improved project delivery capabilities. As a result of these initiatives, and a culture change towards a projectized approach, the decommissioning schedule will be advanced by approximately 10 years. (authors)

Wilcox, Brian; Mellor, Russ; Michaluk, Craig [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)

2013-07-01T23:59:59.000Z

179

E-Print Network 3.0 - application decommissioning models Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE KLAMATH BASIN HYDROELECTRIC... Consultant Report Economic Modeling of Relicensing and Decommissioning Options...

180

Beta Dosimetry at Nuclear Power Plants  

Science Journals Connector (OSTI)

......function of gamma dose and energy of the beta rays. Measurements...radiation and effective beta energy obtained in the working environment at nuclear power plants during the shut-down...decommissioning. The effective beta energy is most frequently between......

P. Carn; M. Lieskovsky

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Department of Energy Nuclear Safety Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

182

MCW Laboratory Decommissioning Checklist P.I.:_______________ Date: ___________ LAB DECOMMISSIONING CHECKLIST rev. 12/12/13  

E-Print Network [OSTI]

DECOMMISSIONING CHECKLIST rev. 12/12/13 Timeline Tasks Contacts Completed NA 1 month Inventory sends inventory list to appropriate contact Send email to safetyinfo@mcw.edu "Attn: Chemical, and outline appropriate path of decontamination (e.g. needs oil removed prior to disposal, requires surface

183

Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141  

SciTech Connect (OSTI)

The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Michal, V. [IAEA, Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna (Austria); Vargovcik, L. [ZTS VVU Kosice, Inc., Juzna Trieda 95, 041 24 Kosice (Slovakia)

2012-07-01T23:59:59.000Z

184

EIS-0259 Final Environmental Impact Statement On The Disposal Of Decommissioned, Defueled Cruiser, Ohio Class, And Los Angeles Class Naval Reactor Plants  

Broader source: Energy.gov (indexed) [DOE]

-. -. 1. PURPOSE AND NEED U.S. Navy nuclear ships are decommissioned and defieled at the end of their usefi Metime, when the cost of continued operation is not justified by their fitary capabfity, or when the ship is no longer needed. The Navy needs to disposition the reactor compartments born defieled and decommissioned ctisers, and OHIO Class and LOS ANGELES Class submarines. The number of reactor compartments under consideration by this Environmental Impact Statement is about 100. These reactor compartments are in addition to the pre-LOS ANGELES Class submarines tieady being disposed of under the Na&s 1984 Find Environmental hpact Statement (USN, 1984a). Newer types of U.S. Navy nuclear-powered stips that are not expected to be decommissioned in the next 20 years (e.g., aircraft carriers, SEAWOLF Class submarines) are not included in this fid Enviromentd Impact Statement.

185

Technology Requirements for In-Situ Decommissioning Workshop Report |  

Broader source: Energy.gov (indexed) [DOE]

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM initiated an ISD Technology Needs Workshop to identify the technical barriers and technology development

186

Capturing Process Knowledge for Facility Deactivation and Decommissioning |  

Broader source: Energy.gov (indexed) [DOE]

Capturing Process Knowledge for Facility Deactivation and Capturing Process Knowledge for Facility Deactivation and Decommissioning Capturing Process Knowledge for Facility Deactivation and Decommissioning The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. Capturing Process Knowledge for Facility Deactivation and Decommissioning More Documents & Publications Capturing Process Knowledge for Facility Deactivation and Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

187

Technology Requirements for In-Situ Decommissioning Workshop Report |  

Broader source: Energy.gov (indexed) [DOE]

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM initiated an ISD Technology Needs Workshop to identify the technical barriers and technology development

188

Generating the Option of a Two-Stage Nuclear Renaissance  

Science Journals Connector (OSTI)

...capacity of waste repositories for decommissioning waste in the second half of the century will...is returned to the manufacturer for decommissioning and disposal. Because fuel handling is avoided at the...International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems...

Robin W. Grimes; William J. Nuttall

2010-08-13T23:59:59.000Z

189

A Quarterly Update on Joint UK NDA/US DOE Activities and Initiatives  

Office of Environmental Management (EM)

used to reprocess spent nuclear fuel from the UK and elsewhere, including Japan and Germany Waste Vitrification Plant, which converts radioactive waste into safe, stable...

190

U.K. Atomic Energy Authority, G. D. Searle form new company to market radiochemicals  

Science Journals Connector (OSTI)

U.K. Atomic Energy Authority, G. D. Searle form new company to market radiochemicals ... Nuclear-Chicago markets about two thirds of products represented by these sales. ...

1968-07-15T23:59:59.000Z

191

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report  

SciTech Connect (OSTI)

The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

192

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER Abstract Nuclear Energy in the Enlarged European Union of nuclear energy and notes that it has shifted significantly as the European Union has grown from 15 member states to 27. The proportion of member states with nuclear energy experience has increased markedly. Also

Aickelin, Uwe

193

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY Nuclear Energy in the Enlarged in central and eastern Europe for nuclear power. This working paper notes that with the addition of 12 new significantly in favour of nuclear power. Furthermore several of these central and eastern EU countries have

Aickelin, Uwe

194

www.electricitypolicy.org.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network [OSTI]

www.electricitypolicy.org.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY Nuclear Power and Deregulated nuclear power company British Energy ran into financial crisis in 2002 and had to be rescued by the government, it appeared to show that nuclear power could not survive in a deregulated electricity market like

Aickelin, Uwe

195

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822  

E-Print Network [OSTI]

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822 Research and education in nuclear engineering, waste management and decommissioning holds the key to sustainable energy production on an ambitious programme of commissioning nuclear energy, creating opportunities for graduates from plant design

Miall, Chris

196

Safety analysis for Shippingport Station Decommissioning Project. Vol. 9. Pt. 1. Rev. 1  

SciTech Connect (OSTI)

Information is presented concerning the safety analysis for the decommissioning project; and permitting plan.

Not Available

1983-09-01T23:59:59.000Z

197

Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3  

SciTech Connect (OSTI)

The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities.

Not Available

1982-01-01T23:59:59.000Z

198

DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY  

SciTech Connect (OSTI)

Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

Murray, A.; Abbott, H.

2003-02-27T23:59:59.000Z

199

Assessment of strippable coatings for decontamination and decommissioning  

SciTech Connect (OSTI)

Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

Ebadian, M.A.

1998-01-01T23:59:59.000Z

200

UK | OpenEI  

Open Energy Info (EERE)

UK UK Dataset Summary Description The UK Department of Energy and Climate Change (DECC) released experimental statistics on domestic electricity and gas consumption (and number of meters) at the Lower Layer Super Output Authority level (LLSOA) for 2008 and for 2007 (only 45 local authorities included in 2007 data). The LLSOAs have a minimum population of 1,000 (approximately 400 households). The domestic electricity consumption data data is split by ordinary electricity and economy7 electricity usage. These data are classified as experimental. Source UK Department of Energy and Climate Change (DECC) Date Released March 25th, 2010 (4 years ago) Date Updated Unknown Keywords Electricity Consumption gas LLOAS UK Data application/zip icon Guidance document for interpreting data (zip, 1.2 MiB)

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cost Savings through Innovation in Decontamination, Decommissioning, and Dismantlement  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) continually seeks safer and more cost effective technologies for the decontamination and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsored large-scale demonstration and deployment projects (LSDDPs) to help bring new technologies into the D&D programs. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of needs defining specific problems where improved technologies could be incorporated into ongoing D&D tasks. The needs fell into 5 major categories--characterization, dismantlement, safety, material dispositioning, and decontamination. Technologies were carefully selected that provide a large benefit for a small investment. The technologies must provide significant improvements in cost, safety, radiation exposure, waste volume reduction, or schedule savings and widely applicable throughout the DOE complex. The LSDDP project provided training for the new technologies and worked with technology suppliers to resolve any questions that arose. Since 1998, 26 technologies have been demonstrated or deployed through the LSDDP for the D&D program at the INEEL. Of the 26 demonstrated and deployed technologies, 14 were in characterization, 3 were in decontamination, 4 were in dismantlement, 3 were in safety, and 2 were in material dispositioning. To promote the use of these technologies at other sites within the DOE complex, the LSDDP team published fact sheets, videos, technology summary reports, articles in INEEL star newspaper, posters, and maintained an internet home page on the project. As a result, additional deployments have taken place at the Hanford, Mound, Fernald, Oak Ridge, Ashtabula, and West Valley. Eight of the 26 technologies evaluated were developed in foreign countries. The technologies demonstrated have been shown to be faster, less expensive, and/or safer. The technologies evaluated through the LSDDP have provided improvements in the following D&D areas: robotic underwater characterization of fuel storage pools, characterization of scrap metal for recycle, PCB and RCRA metals analysis in soil, water, paint, or sludge, subsurface characterization, personnel safety, waste disposal, scaffolding use, and remote radiation characterization of buildings and soil. It is estimated that the technologies demonstrated and deployed through this program will save more than $50 million dollars over the next 10 years at the INEEL alone. Of the $50 million estimated dollars saved, about 75% of the savings will come from characterization technologies, 11% from technologies associated with material dispositioning, 10% are associated with dismantlement technologies and the balance split between safety and decontamination.

Neal A. Yancey

2003-02-27T23:59:59.000Z

202

FAQS Job Task Analyses - Deactivation and Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

Functional Area Qualification Standard Functional Area Qualification Standard Deactivation & Decommissioning (D&D) DOE-STD-1166-2003 Step 1 Identify and evaluate tasks - Develop a comprehensive list of tasks that define the job. o A great starting point is the list of Duties and Responsibilities from the FAQS. o Give careful thought to additional tasks that could be considered. o Don't worry about deleting tasks at this point - that is a part of the process further down. - List the tasks (and their sources, e.g., Duties and Responsibilities #1) in the chart below. - Discuss each task as a group and come to a consensus pertaining to Importance and Frequency of the task (i.e., each team member can consent to the assigned value, even if they don't exactly agree with it).

203

EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell  

Broader source: Energy.gov (indexed) [DOE]

3: Decontaminating and Decommissioning the General Atomics 3: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California SUMMARY This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's General Atomics' Hot Cell Facility would be transported to either a DOE owned facility, such as the Hanford site in Washington, or to a commercial facility, such as Envirocare in Utah, for treatment and/or storage and disposal. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1995 EA-1053: Finding of No Significant Impact

204

DOE-EM'S In-Situ Decommissioning Strategy  

SciTech Connect (OSTI)

This paper addressed the current status of decommissioning projects within the Department of Energy (DOE) that have an end state of permanent entombment, referred to as in-situ decommissioning (ISD). The substance of a Department of Energy, Office of Environmental Management (DOE-EM) review of ISD and the development of a strategy are summarized. The strategy first recognizes ISD as a viable decommissioning end state; secondly addresses the integration of this approach within the external and internal regulatory regimes; subsequently identifies tools that need developing; and finally presents guidance for implementation. The overall conclusion is that ISD is a viable mode of decommissioning that can be conducted within the existing structure of rules and regulations. (author)

Negin, C.A.; Urland, C.S. [Chuck, Project Enhancement Corporation, Germantown, MD (United States); Szilagyi, A.P. [Andy, U.S. Department of Energy, Germantown, MD (United States)

2008-07-01T23:59:59.000Z

205

An overview of U.S. decommissioning experience -- A basic introduction  

SciTech Connect (OSTI)

This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

Boing, L.E.

1998-03-09T23:59:59.000Z

206

Mobile worksystems for decontamination and decommissioning operations. Final report  

SciTech Connect (OSTI)

This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

NONE

1997-02-01T23:59:59.000Z

207

Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316  

SciTech Connect (OSTI)

The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been used to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The Northern Dimension Environmental Partnership (NDEP) approved an internationally funded project to identify and prioritise nuclear and environmental hazards in NW Russia. Within this project the Lepse was recognised as being one of the highest nuclear hazards in NW Russia. Removal of SNF, SRW and LRW from Lepse requires innovative design and development of bespoke equipment. The main drivers of the NDEP Donors are first to safely transport Lepse in 2012 from her current berth close to the local population in Murmansk to the nominated dismantling shipyard, and secondly to raise Lepse from the water in 2013 onto the slip-way at the dismantling shipyard. A description is provided of the approach and progress towards preparing the Lepse for the removal of SFAs and other radioactive waste, to decontaminate and then dismantle the vessel under international donor funding. (authors)

Field, D.; Mizen, K. [Nuvia Limited (United Kingdom)] [Nuvia Limited (United Kingdom)

2013-07-01T23:59:59.000Z

208

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Main report, draft report for comment. Volume 1  

SciTech Connect (OSTI)

On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

1994-09-01T23:59:59.000Z

209

Allowable residual-contamination levels for decommissioning facilities in the 100 areas of the Hanford Site  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for five generic categories of facilities in the 100 Areas of the Hanford Site. The purpose of this study is to provide ARCL data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use provided by this report is intended to permit a full consideration of decommissioning alternatives. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm/sup 2/), and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are presented in an appendix for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste.

Kennedy, W.E. Jr.; Napier, B.A.

1983-07-01T23:59:59.000Z

210

A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP  

SciTech Connect (OSTI)

The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

Milchikov, A.; Hund, G.; Davidko, M.

1999-10-20T23:59:59.000Z

211

OpenEI - UK  

Open Energy Info (EERE)

/0 en UK Electricity /0 en UK Electricity Consumption at LLSOA level (2007 - 2008) http://en.openei.org/datasets/node/256 The UK Department of Energy and Climate Change (DECC) released experimental statistics on domestic electricity and gas consumption (and number of meters) at the Lower Layer Super Output Authority level (LLSOA) for 2008 and for 2007 (only 45 local authorities included in 2007 data). The LLSOAs have a minimum population of 1,000 (approximately 400 households). The domestic electricity consumption data data is split by ordinary electricity and economy7 electricity usage. These data are classified as experimental.  

License

212

Technology needs for decommissioning and decontamination  

SciTech Connect (OSTI)

This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

Bundy, R.D.; Kennerly, J.M.

1993-12-01T23:59:59.000Z

213

PROJECT MANGEMENT PLAN EXAMPLES Deactivation to Decommissioning Transition  

Broader source: Energy.gov (indexed) [DOE]

to Decommissioning Transition to Decommissioning Transition Example Example 80 1.5 OPERATIONAL TRANSITION AND DEACTIVATION STRATEGY According to the U.S. Department of Energy (DOE) Order 430.1A Life Cycle Asset Management (LCAM), the life cycle of a facility makes several transitions over the course of it's existence. The typical stages or phases include operation, (standby), deactivation, S&M, decontamination and decommissioning (D&D). The life cycle phases may occur as a straight through process or with long interim periods. In Fig. 1.4, "Facility Disposition Scenarios and Associated Hazard Profiles" (Ref. DOE-STD-1120-98), Scenario 2 demonstrates the life cycle phasing that most closely represents that of the 9206 Complex. Since the ultimate disposition of Building 9206 (and associated buildings and operations) is not known, a decision was made to

214

DOE Awards Contract for Decontamination & Decommissioning Project for the  

Broader source: Energy.gov (indexed) [DOE]

DOE Awards Contract for Decontamination & Decommissioning Project DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park April 29, 2011 - 12:00pm Addthis Media Contact Mike Koentop (865) 576-0885 www.oakridge.doe.gov Oak Ridge, Tenn. - As part of its ongoing commitment to cleaning up the legacy of the Cold War at sites across the weapons complex, the U.S. Department of Energy has awarded a contract for the remaining environmental cleanup at the East Tennessee Technology Park (ETTP) to URS | CH2M Oak Ridge, LLC. The $2.2 billion contract will complete cleanup and provide support functions at ETTP, while supporting local jobs and area small businesses. "Today's contract announcement means that we can continue to meet our

215

DOE Awards Contract for Decontamination & Decommissioning Project for the  

Broader source: Energy.gov (indexed) [DOE]

Decontamination & Decommissioning Project Decontamination & Decommissioning Project for the East Tennessee Technology Park DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park April 29, 2011 - 12:00pm Addthis Media Contact Mike Koentop (865) 576-0885 www.oakridge.doe.gov Oak Ridge, Tenn. - As part of its ongoing commitment to cleaning up the legacy of the Cold War at sites across the weapons complex, the U.S. Department of Energy has awarded a contract for the remaining environmental cleanup at the East Tennessee Technology Park (ETTP) to URS | CH2M Oak Ridge, LLC. The $2.2 billion contract will complete cleanup and provide support functions at ETTP, while supporting local jobs and area small businesses. "Today's contract announcement means that we can continue to meet our

216

Guides: Design/Engineering for Deactivation & Decommissioning | Department  

Broader source: Energy.gov (indexed) [DOE]

Guides: Design/Engineering for Deactivation & Guides: Design/Engineering for Deactivation & Decommissioning Guides: Design/Engineering for Deactivation & Decommissioning To ensure development of appropriate levels of engineering detail, DOE-EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for tailoring a D&D project's engineering/design to meet the objectives of the CD milestones. The enhanced rigor in planning and systematic, forward looking approach to engineering/design recommended in this guidance is intended to ensure that the level of detail in technical planning and technical development, integrated with other project aspects such as safety basis modifications, leads to a high confidence that the engineered system as a whole will function as designed. As the level of

217

Completion of decommissioning: Monitoring for site release and license termination  

SciTech Connect (OSTI)

To request termination of a license upon completion of dismantling or decommissioning activities, documenting any residual radioactivity to show that the levels are environmentally acceptable will be necessary. When the regulators approve the decommissioning plan, they establish what the release criteria for the decommissioned site will be at the time of the site release and license termination. The criteria are numeric guidelines for direct radiation in soils and on surfaces. If the regulatory body finds that the measured on-site values are below the guidelines, the site will be acceptable for unrestricted release (no radiological controls or future use). If areas are found above those values, more decontamination or cleanup of these areas may be required unless the regulatory body grants an exemption.

Boing, L.E.

1997-08-01T23:59:59.000Z

218

Plan for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

Spampinato, P.T.; Walton, G.R. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Commander, J.C. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1993-01-01T23:59:59.000Z

219

Plan for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D&D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D&D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D&D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D&D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

Spampinato, P.T.; Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Commander, J.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-12-31T23:59:59.000Z

220

Research Councils UK Transforming  

E-Print Network [OSTI]

research is helping to accelerate the use of green energy technologies. RCUK has played a key role to help combat climate change, accelerate the deployment of green energy technologies and create newResearch Councils UK Transforming our energy future #12;Research funded by the Research Councils

Berzins, M.

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Risk, trust and place: a mixed methods investigation into community perceptions of a nearby nuclear power station.  

E-Print Network [OSTI]

??Recent UK government policy advocates the expansion of nuclear power, and indicated that any new nuclear power stations will be built mostly at existing 'nuclear' (more)

Venables, Daniel

2011-01-01T23:59:59.000Z

222

Capturing Process Knowledge for Facility Deactivation and Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

Tech Assistance Tech Assistance Savannah River National Laboratory- Assess Adequacy of Process Knowledge for D&D Guidance for Determining Adequacy of Process Knowledge Page 1 of 2 Savannah River National Laboratory South Carolina Capturing Process Knowledge for Facility Deactivation and Decommissioning Challenge The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. When such excess facilities are scheduled for deactivation and decommissioning (D&D), among the tasks the responsible project team is faced with include the evaluation and planning for the removal, characterization, and disposition of all legacy

223

Finding of no significant impact, decontamination and decommissioning of Battelle Columbus Laboratories in Columbus and West Jefferson, Ohio  

SciTech Connect (OSTI)

This Environmental Assessment has been developed by the Department of Energy in accordance with the requirements of the National Environmental Policy Act of 1969 for the proposed decommissioning of contaminated areas at the Battelle Memorial Institute, Columbus, Ohio. The discussions in Section 1.0 provide general background information on the proposed action. Section 2.0 describes the existing radiological and non-radiological condition of the Battelle Columbus Laboratories. Section 3.0 identifies the alternatives considered for the proposed action and describes in detail the proposed decommissioning project. Section 4.0 evaluates the potential risks the project poses to human health and the environment. Section 5.0 presents the Department of Energy's proposed action. As a result of nuclear research and development activities conducted over a period of approximately 43 years performed for the Department of Energy, its predecessor agencies, and under commercial contracts, the 15 buildings became contaminated with varying amounts of radioactive material. The Department of Energy no longer has a need to utilize the facilities and is contractually obligate to remove that contamination such that they can be used by their owners without radiological restrictions. This Environmental Assessment for the Battelle Columbus Laboratories Decommissioning Project is consistent with the direction from the Secretary of Energy that public awareness and participation be considered in sensitive projects and is an appropriate document to determine action necessary to satisfy the requirements of the National Environmental Policy Act. 30 refs., 6 figs., 9 tabs.

Not Available

1990-01-01T23:59:59.000Z

224

Allowable residual contamination levels for decommissioning the 115-F and 117-F facilities at the Hanford Site  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for the 115-F and 117-F facilities at the Hanford Site. The purpose of this study is to provide data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. Information on restricted and controlled use is provided to permit a full consideration of decommissioning alternatives. Procedures are presented for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations and to determine instrument responses for various mixtures of radionuclides. Finally, a comparison is made between existing decommissioning guidance and the ARCL values calculated for unrestricted release of the 115-F and 117-F facilities. The comparison shows a good agreement.

Kennedy, W.E. Jr.; Napier, B.A.

1983-07-01T23:59:59.000Z

225

Implementation of 10 CFR 20.1406, Regarding Minimizing Contamination and the Generation of Waste, and Facilitating Decommissioning through the Design of Facilities and Operating Procedures  

SciTech Connect (OSTI)

In the very near future (perhaps as soon as the fall of 2007), the U.S. Nuclear Regulatory Commission (NRC) anticipates receiving one or more license applications for new nuclear power plants. An important consideration for new facilities is that they be designed and operated to minimize contamination, to minimize the generation of waste, and to facilitate decommissioning. A relatively recent regulation, 10 CFR 20.1406, mandates these requirements. The regulation states, 'Applicants for licenses, other than renewals, after August 20, 1997, shall describe in the application how facility design and procedures for operation will minimize, to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize, to the extent practicable, the generation of radioactive waste'. This paper summarizes various initiatives taken by the NRC and industry to develop guidance for implementing 10 CFR 20.1406 before submission of license applications. (authors)

O'Donnell, E.; Ott, W.R. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC (United States)

2007-07-01T23:59:59.000Z

226

Future Supply of Medical Radioisotopes for the UK Report 2014  

E-Print Network [OSTI]

The UK has no research nuclear reactors and relies on the importation of 99Mo and other medical radioisotopes (e.g. Iodine-131) from overseas (excluding PET radioisotopes). The UK is therefore vulnerable not only to global shortages, but to problems with shipping and importation of the products. In this context Professor Erika Denton UK national Clinical Director for Diagnostics requested that the British Nuclear Medicine Society lead a working group with stakeholders including representatives from the Science & Technology Facilities Council (STFC) to prepare a report. The group had a first meeting on 10 April 2013 followed by a working group meeting with presentations on 9th September 2013 where the scope of the work required to produce a report was agreed. The objectives of the report are: to describe the status of the use of medical radioisotopes in the UK; to anticipate the potential impact of shortages for the UK; to assess potential alternative avenues of medical radioisotope production for the UK m...

Neilly, Brian; Ballinger, Jim; Buscombe, John; Clarke, Rob; Ellis, Beverley; Flux, Glenn; Fraser, Louise; Hall, Adrian; Owen, Hywel; Paterson, Audrey; Perkins, Alan; Scarsbrook, Andrew

2015-01-01T23:59:59.000Z

227

s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6, 7 Sept 2012 1 Geological disposal of radioactive  

E-Print Network [OSTI]

of Edinburgh Professor of Geology Nuclear waste ­ exists and has to be solved Nuclear power ­ is likely_and_Copeland.html #12;Nuclear power s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6, 7 Sept 2012 2 First civil nuclear waste Cumbria 6, 7 Sept 2012 15 Thus, the nuclear industry has calculated that the escape of radioactive

228

DOE-STD-1166-2003; Deactivation and Decommissioning Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT SENSITIVE DOE-STD-1166-2003 September 2003 DOE STANDARD DEACTIVATION AND DECOMMISSIONING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1166-2003 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

229

Nuclear Regulatory Commission issuances  

SciTech Connect (OSTI)

This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

NONE

1996-03-01T23:59:59.000Z

230

EM Develops Database for Efficient Solutions to Nuclear Cleanup Challenges Across Complex  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. Many deactivation and decommissioning (D&D) projects across the EM complex require robotic and remote handling systems to protect workers during nuclear cleanup operations.

231

Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall  

E-Print Network [OSTI]

Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall Judge Business School, Cambridge University, Trumpington Street Cambridge, CB2 1AG UK Abstract Nuclear energy was developed by technocratic as a result of global anthropogenic climate change, nuclear power might actually represent a means to preserve

Aickelin, Uwe

232

Commercial Decommissioning at DOE's Rocky Flats  

SciTech Connect (OSTI)

Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rocky Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.

Freiboth, C.; Sandlin, N.; Schubert, A.; Hansen, S.

2002-02-25T23:59:59.000Z

233

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

234

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

235

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

. We discuss why the theoretical case for public ownership might be more attractive now than in the recent past. We then discuss six case studies of modern public ownership drawn from the UK (Great Britain and nuclear power, LNG facilities, electricity and gas distribution investments and energy service companies

Aickelin, Uwe

236

Deactivation & Decommissioning (D&D) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deactivation & Deactivation & Decommissioning (D&D) Deactivation & Decommissioning (D&D) American Recovery and Reinvestment Act workers at the Savannah River Site imploded the 455-foot-tall K Reactor Cooling Tower in May 2010. The project was completed safely and contributed 36.5 square miles to the site's total footprint reduction. On August 3, 2013, contractors and the Oak Ridge Office of Environmental Management successfully completed the explosive demolition of the K-1206-F Fire Water Tower, which for 54 years had been used for fire water supply at the East Tennessee Technology Park in Oak Ridge Tennessee. The 382 foot tall, 400,000-gallon water tower tank was drained and isolated from the fire water system prior to the estimated 100-ton steel structure being

237

Decontamination and decommissioning surveillance and maintenance report for FY 1991  

SciTech Connect (OSTI)

The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

238

Radiation consequences of seawater contamination during floating storage of reactor-compartment units from salvaged nuclear-powered submarines  

Science Journals Connector (OSTI)

The storage time before salvaging of decommissioned nuclear-powered submarines and the floating storage time of reactor units from salvaged submarines ... decades. During this time, radioactive contamination of seawater

A. Ya. Blekher; N. L. Kuchin; I. V. Sergeev

239

Nuclear energy: current situation and prospects to 2020  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Nuclear energy: current situation and prospects...stand to improve the economics of nuclear energy still further. Waste volumes...UK's long-term energy needs. nuclear energy|fission|reactor systems...

2007-01-01T23:59:59.000Z

240

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

242

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

243

Sandia National Laboratories: Sandia Researchers, UK Partners...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Researchers, UK Partners Publish Groundbreaking Work on Criegee Intermediates in Science Magazine Sandia Researchers, UK Partners Publish Groundbreaking Work on Criegee...

244

Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning  

SciTech Connect (OSTI)

This paper summarizes a regulatory guide that the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, is currently developing for use in implementing Title 10, Section 20.1406, of the Code of Federal Regulations (10 CFR 20.1406), 'Minimization of Contamination'. The intent of the regulation is to diminish the occurrence and severity of 'legacy sites' by taking measures to reduce and control contamination and facilitate eventual decommissioning. The thrust of the regulatory guide is to encourage applicants to use technically sound engineering judgment and a practical risk-informed approach to achieve the objectives of 10 CFR 20.1406. In particular, such an approach should consider the materials and processes involved (e.g., solids, liquids, gases), and focus on (1) the relative significance of potential contamination, (2) areas that are most susceptible to leaks, and (3) the appropriate level of consideration that should be incorporated in facility design and operational procedures to prevent and control contamination. (authors)

O'Donnell, E.; Ott, W.R. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC (United States)

2008-07-01T23:59:59.000Z

245

Technical program plan for the transitioning, decommissioning, and final disposition focus area  

SciTech Connect (OSTI)

Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

Not Available

1994-01-01T23:59:59.000Z

246

PROGRESS WITH K BASINS SLUDGE RETRIEVAL STABILIZATION & PACKAGING AT THE HANFORD NUCLEAR SITE  

SciTech Connect (OSTI)

This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the U.S. and the U.K. to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford Site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, so as to remove the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building, is described, and the uranium-corrosion and grout packaging processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. Optimization and simplification of the original sludge corrosion process design is described and the use of transportable and reusable equipment is indicated. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup.

KNOLLMEYER, P.M.; PHILLIPS, C; TOWNSON, P.S.

2006-01-30T23:59:59.000Z

247

FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure  

E-Print Network [OSTI]

. Popovic. K. W. Neale. S. Rizkalla. and G. Tadros Synopsis: The Gentilly· l nuclear power plant, in Quebec support. Keywords: concrete repair; fiber optic sensors; nuclear power plant; structural monitoring. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located

248

DOE Environmental Management Strategy and Experience for In-Situ Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

Strategy and Experience Strategy and Experience for In Situ Decommissioning Prepared By U.S. Department of Energy Office of Environmental Management Office of Engineering and Technology, EM-20 September 2009 This page is deliberately blank. DOE EM Strategy and Experience for In Situ Decommissioning i Contents Acknowledgements......................................................................................................................................iv Acronyms...................................................................................................................................................... v 1. Introduction......................................................................................................................................

249

EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

250

EIS-0080: Decommissioning of the Shipping port Atomic Power Station, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

251

UK bridge to rare tongues  

E-Print Network [OSTI]

THE TELEGRAPH - About Us - Advertise - Feedback - Contact Us /div> 2 Front Page > Nation > Story UK bridge to rare tongues London, Dec. 12 (PTI): Cambridge University has launched a project to provide public access to languages...

Anon.

2010-12-13T23:59:59.000Z

252

Deactivation & Decommissioning Knowledge Management Information Tool (D&D  

Broader source: Energy.gov (indexed) [DOE]

Site & Facility Restoration » Deactivation & Site & Facility Restoration » Deactivation & Decommissioning (D&D) » Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) The Deactivation and Decommissioning Knowledge Management Information Tool (D&D KM-IT) serves as a centralized repository providing a common interface for all D&D related activities. It assists users in gathering, analyzing, storing and sharing knowledge and information within the D&D community. This approach assists in reducing the need to rediscover the knowledge of the past while capturing the new knowledge and experiences gained during

253

DOE EM Project Experience & Lessons Learned for In Situ Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

EM Project Experience & Lessons Learned for In Situ EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013) DOE EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013) The purpose of the "DOE EM Project Experience & Lessons Learned for In Situ Decommissioning" report is to capture the considerable technical experience gained to date for implementation of In Situ Decommissioning (ISD) projects at DOE facilities. As current and projected budgets for the EM program indicate reduced and flat funding profiles for the foreseeable future, the potential exists for this institutional knowledge to be lost as the ramp-down of project staffing commences with the cessation of ARRA. EM's Office of Deactivation & Decommissioning and Facility Engineering

254

Big business opportunities for UK companies at world-class science facilities  

E-Print Network [OSTI]

architecture and building maintenance) � Instrumentation (including accelerators, cryogenics, vacuum fund on behalf of the UK. We publicise tenders from: � CERN (European Organisation for Nuclear Research source. The neutrons are produced from a nuclear reactor for materials research. Together the ESRF

Crowther, Paul

255

Decommissioning of the TA-42 plutonium contaminated incinerator facility  

SciTech Connect (OSTI)

During 1978, a plutonium (/sup 239/Pu) contaminated incinerator facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned. The project involved dismantling the facility and burying the debris at an on-site radioactive solid waste disposal/storage area. Contaminated soil from the 5000 m/sup 2/ area was also buried. The facility was constructed in 1951 to incinerate /sup 239/Pu contaminated wastes. It was later used as a decontamination facility. The major features included a 185-m/sup 2/ floor area control building, incinerator, cyclone dust collector, spray cooler, venturi scrubber, air filter bank, ash separator, and two 140 000-liter ash storage tanks. Six-hundred cubic meters of debris and 1200 m/sup 3/ of soil contaminated with less than 10 nCi /sup 239/Pu per gram of soil were buried at the Laboratory disposal area. Five cubic meters of /sup 239/Pu contaminated ash residues containing more than 10 nCi /sup 239/Pu per gram of waste were packaged and stored to meet the Department of Energy's 20-year retrievable storage criteria. The operation consumed 80 work days and 5800 manhours at a cost of $150 000. This report presents the details concerning decommissioning procedures, the health physics, the waste management, the environmental surveillance results, and a cost breakdown for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

256

Resource book: Decommissioning of contaminated facilities at Hanford  

SciTech Connect (OSTI)

In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

257

THE NUCLEAR SURFACE D. F. JACKSON  

E-Print Network [OSTI]

THE NUCLEAR SURFACE D. F. JACKSON Dept. of Physics, University of Surrey, Guildford, U.K. Abstract. -- Nuclear scattering and reactions which give information on the nuclear surface are described by a particular method. The results are compared with theories of the nuclear surface. 1. Introduction

Boyer, Edmond

258

M Cauldwell UK Ltd | Open Energy Information  

Open Energy Info (EERE)

Cauldwell UK Ltd Cauldwell UK Ltd Jump to: navigation, search Name M Cauldwell UK Ltd Place United Kingdom Sector Wind energy Product UK-based private developer, Mark Cauldwell, involved in the development of a wind farm in Lincolnshire, UK. References M Cauldwell UK Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. M Cauldwell UK Ltd is a company located in United Kingdom . References ↑ "M Cauldwell UK Ltd" Retrieved from "http://en.openei.org/w/index.php?title=M_Cauldwell_UK_Ltd&oldid=348539" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

259

Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA  

SciTech Connect (OSTI)

Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

Dean, L.N. [Advanced Sciences, Inc., (United States)

1994-02-01T23:59:59.000Z

260

Rosie - mobile robot worksystem for decommissioning and dismantling operations. Final report, April 1, 1996--January 31, 1997  

SciTech Connect (OSTI)

RedZone Robotics, Inc. has undertaken development of an advanced remote worksystem - Rosie - specifically designed to meet the challenges of performing a wide range of decontamination and dismantlement (D&D) operations in nuclear environments. The Rosie worksystem includes a locomotor, heavy manipulator, operator console, and control system for remote operations. The locomotor is a highly mobile platform with tether management and hydraulic power onboard. The heavy manipulator is a high-payload, long-reach boom used to deploy a wide variety of tools and/or sensors into the work area. Rosie`s advanced control system, broad work capabilities, and hardening/reliability for hazardous duty make it a new and unique capability that facilitates completion of significant cleanup projects throughout the Department of Energy (DOE) and private sector. Endurance testing of the first Rosie system from September 1995 to March 1996 has proven its capabilities and appropriateness for D&D applications. Design enhancements were incorporated into the second Rosie system to improve and add features necessary for deployment at a DOE facility decommissioning. This second Rosie unit was deployed to the Argonne National Laboratory`s CP-5 reactor facility in early December 1996, and it is currently being used in the decommissioning of the reactor there. This report will overview this second Rosie system and the design enhancements made to it based on the lessons learned during the design, fabrication, and testing of the first Rosie system. The Rosie system has been designed to be a versatile and adaptable tool that can be used in many different applications in D&D work at nuclear facilities. It can carry a wide variety of tooling, sensors, and other robotic equipment at the tip of its heavy manipulator, and it can deploy those items to many different hazardous work areas. Rosie`s capabilities and system design address the need for durability and reliability in these environments.

NONE

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2  

SciTech Connect (OSTI)

This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

Poderis, Reed J. [NSTec] [NSTec; King, Rebecca A. [NSTec] [NSTec

2013-09-30T23:59:59.000Z

262

Office of Nuclear Safety - Directives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives The HSS Office of Nuclear Safety is the responsible office for the development, interpretation, and revision of the following Department of Energy (DOE) directives. Go to DOE's Directives Web Page to view these directives. DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

263

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect (OSTI)

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

264

WHAT FUTURE FOR UK HIGHER EDUCATION?  

E-Print Network [OSTI]

BERKELEY http://cshe.berkeley.edu/ WHAT FUTURE FOR UK HIGHERof the course). Brown, What Future for UK Higher Educationand local trends and also on what happens on migration, and

Roger Brown

2010-01-01T23:59:59.000Z

265

Gamesa Energy UK | Open Energy Information  

Open Energy Info (EERE)

Kingdom Zip: NP10 8FY Sector: Wind energy Product: UK arm of wind farm developer and turbine manufacturer Gamesa. References: Gamesa Energy UK1 This article is a stub. You...

266

Research Councils UK Synthetic biology  

E-Print Network [OSTI]

, bioinformatics approaches and DNA synthesis, all of which are central to the current field of synthetic biologyResearch Councils UK Synthetic biology #12;Synthetic biology Research funded by the Research them commercially. Synthetic biology is one of `Eight Great Technologies' identified by the Chancellor

Berzins, M.

267

EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS  

Broader source: Energy.gov (indexed) [DOE]

89: Disposal of Decommissioned, Defueled Naval Reactor Plants 89: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington Summary This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE's Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 23, 2012

268

Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant  

SciTech Connect (OSTI)

Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

Elder, H. K.

1981-10-01T23:59:59.000Z

269

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning  

Broader source: Energy.gov [DOE]

American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Savannah River Site this month after they safely removed its...

270

Forests and biodiversity UK Forestry Standard Guidelines  

E-Print Network [OSTI]

Forests and biodiversity UK Forestry Standard Guidelines #12;Key to symbols UKFS Requirements;Forests and biodiversity Forestry Commission: Edinburgh UK Forestry Standard Guidelines #12;© Crown Commission in 2011. ISBN 978-0-85538-831-7 FORESTRY COMMISSION (2011). Forests and Biodiversity. UK Forestry

271

Heat Pump Markets UK in Europe  

E-Print Network [OSTI]

Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

Oak Ridge National Laboratory

272

Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex  

SciTech Connect (OSTI)

Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

A. B. Culp

2006-10-01T23:59:59.000Z

273

EM Hosts Successful Visit from Canadian Nuclear Laboratories at Hanford Site  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. EMs Office of D&D and Facility Engineering (D&D/FE) hosted decommissioning professionals from Canadian Nuclear Laboratories (CNL) Canada's premier nuclear technology and engineering organization for two days at EMs Hanford site in November this year. CNL was formerly known as Atomic Energy Canada Ltd.

274

Assessing the performance of the UK Emissions Trading Scheme  

Science Journals Connector (OSTI)

The UKs Climate Change Programme introduced an Emissions Trading Scheme (ETS) for greenhouse gases. Firms...

Stephen Smith; Joseph Swierzbinski

2007-05-01T23:59:59.000Z

275

Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

276

An analysis of decommissioning costs for the AFRRI TRIGA reactor facility  

SciTech Connect (OSTI)

A decommissioning cost analysis for the AFRRI TRIGA Reactor Facility was made. AFRRI is not at this time suggesting that the AFRRI TRIGA Reactor Facility be decommissioned. This report was prepared to be in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations which requires the assurance of availability of future decommissioning funding. The planned method of decommissioning is the immediate decontamination of the AFRRI TRIGA Reactor site to allow for restoration of the site to full public access - this is called DECON. The cost of DECON for the AFRRI TRIGA Reactor Facility in 1990 dollars is estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment is an additional $600,000. Thus the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for this cost estimate is a study of the decommissioning costs of a similar reactor facility that was performed by Battelle Pacific Northwest Laboratory (PNL) as provided in USNRC publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA. (author)

Forsbacka, Matt [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States)

1990-07-01T23:59:59.000Z

277

Radioactive waste management and decommissioning of accelerator facilities  

Science Journals Connector (OSTI)

......produced in nuclear power plants and in accelerators is that there...high-energy accelerator is of solid...of magnets, vacuum pipes and components...of particle accelerators are: iron...content. Several nuclear processes contribute......

Luisa Ulrici; Matteo Magistris

2009-11-01T23:59:59.000Z

278

Nuclear Instruments and Methods in Physics Research A262 (1987) 353-358 353 North-Holland, Amsterdam  

E-Print Network [OSTI]

UK D.B. SYME and G. HUXTABLE Nuclear Physics Division, AERE, Harwell, Oxfordshire, UK Received6 July of the detector was evaluated using the IBIS (intense bunched ion source) accelerator at AERE, Harwell

de Souza, Romualdo T.

279

Enertrag UK Ltd | Open Energy Information  

Open Energy Info (EERE)

Enertrag UK Ltd Enertrag UK Ltd Jump to: navigation, search Name Enertrag UK Ltd Place United Kingdom Sector Wind energy Product Involved throught the SPV Norfolk Offshore Wind in the development of Cromer Offshore Wind Farm. References Enertrag UK Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Enertrag UK Ltd is a company located in United Kingdom . References ↑ "Enertrag UK Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Enertrag_UK_Ltd&oldid=344939" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

280

Solargen Solutions UK | Open Energy Information  

Open Energy Info (EERE)

UK UK Jump to: navigation, search Name Solargen Solutions UK Place United Kingdom Zip NP 44 3AS Sector Renewable Energy, Solar Product String representation "SolarGen is a E ... s requirements." is too long. References Solargen Solutions UK[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solargen Solutions UK is a company located in United Kingdom . References ↑ "Solargen Solutions UK" Retrieved from "http://en.openei.org/w/index.php?title=Solargen_Solutions_UK&oldid=351378" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RES UK Ireland Ltd | Open Energy Information  

Open Energy Info (EERE)

Ireland Ltd Ireland Ltd Jump to: navigation, search Name RES UK & Ireland Ltd Place County Antrim, Northern Ireland, United Kingdom Zip BT40 2SF Sector Services, Wind energy Product Wind farm development Ltd became known as RES UK and Ireland Ltd in February 2007. RES UK and Ireland also took control of B9 Energy Services' share of the company. References RES UK & Ireland Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. RES UK & Ireland Ltd is a company located in County Antrim, Northern Ireland, United Kingdom . References ↑ "RES UK & Ireland Ltd" Retrieved from "http://en.openei.org/w/index.php?title=RES_UK_Ireland_Ltd&oldid=350385

282

STAG UK Newsletter Issue 48  

E-Print Network [OSTI]

Vlindsor, Ontario, Canada N9l-7 1B 7, asks, 'Does anybody knovr a Hussol1 (A.H.) King Jr., 10 Glen Fruin Hd, Greenock, Scotland, PA16 9N1'. The last address I have from him is the above - but he may have moved to Canada since January. If anyon" can help..., Grace Lee \\U.K. & Eire - ?2'50 U.K. currency .B:Urope - ?4"50 airmail,t3'50 surface U.S.A. 80 S. Africa - ~15'50 or ,\\:6'00 airmail, )l'9'00 or ?3'50 surface...

1981-01-01T23:59:59.000Z

283

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

284

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-12-15T23:59:59.000Z

285

LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL  

SciTech Connect (OSTI)

5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-10-22T23:59:59.000Z

286

Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part A, Decontamination and Decommissioning  

SciTech Connect (OSTI)

This report documents activities of decontamination and decommissioning at ORNL. Topics discussed include general problems, waste types, containment, robotics automation and decontamination processes.

Not Available

1993-09-01T23:59:59.000Z

287

Dynamic nuclear polarization of liquid 3He  

Science Journals Connector (OSTI)

...March 1998 research-article Dynamic nuclear polarization of liquid 3He B. Bleaney...3PU, UK Methods of producing dynamic nuclear polarization of liquid 3He by the solid...method have been proposed using enhanced nuclear paramagnetic resonance in Van Vleck compounds...

1998-01-01T23:59:59.000Z

288

The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474  

SciTech Connect (OSTI)

The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

2012-07-01T23:59:59.000Z

289

Systems/Process Monitoring, Diagnostics and Control - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities > Nuclear Systems Capabilities > Nuclear Systems Technologies > Systems/Process Monitoring, Diagnostics and Control Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Bookmark and Share Systems/Process Monitoring, Diagnostics and Control Systems/Process Monitoring, Diagnostics and Control. Click on image to view larger image. The goal of the Nuclear Engineering Division's research on advanced

290

Power translation chart kWh/d each GW / UK TWh/y / UK Mtoe/y / UK  

E-Print Network [OSTI]

Photovoltaics: 12 Energy crops: 9 Tide: 2.4 Wave: 2.3 Hydroelectricity: 0.09 Transport 35% Hot air 26% Hot water'`Safe and fair' UK (1990) UK (2005) 60% target 80% target UK Electricity kWh thermal energy exchange rate: 1 kWh 250 g of CO2 (oil, petrol) kWh(e) electrical energy is more costly: 1 kWh(e) 445 g of CO2 (gas) (Coal

MacKay, David J.C.

291

UK mining invests, suppliers profit  

SciTech Connect (OSTI)

In the midst of a major economic crisis in the United Kingdom, equipment suppliers have been reporting a number of considerable purchases by British coal mining companies. In December 2008, Liebherr-Great Britain delivered the first two of four Rq350 Litronic hydraulic excavators for use at the Broken Cross opencast coal site in Lanarkshire, Scotland. Ten Terex TR100 rigid haulers were delivered to the site in late 2008. Hatfield Colliery at Stainforth, South Yorkshire, has been reopened by PowerFuel. The main equipment for two longwall faces was supplied by Joy Mining Machinery UK Ltd. 2 photos.

NONE

2009-04-15T23:59:59.000Z

292

Decommissioning and PIE of the MEGAPIE spallation target  

SciTech Connect (OSTI)

A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly. The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by ?-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from ?-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and ?-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.

Latge, C.; Henry, J. [CEA-Cadarache, DEN-DTN, 13108 Saint-Paul-les-Durance (France); Wohlmuther, M.; Dai, Y.; Gavillet, D.; Hammer, B.; Heinitz, S.; Neuhausen, J.; Schumann, D.; Thomsen, K.; Tuerler, A.; Wagner, W. [PSI, Villigen (Switzerland); Gessi, A. [ENEA, Brasimone (Italy); Guertin, A. [CNRS, Subatech, Nantes (France); Konstantinovic, M. [SCK-CEN, Mol (Belgium); Lindau, R. [KIT, Karlsruhe (Germany); Maloy, S. [DOE-LANL, Los Alamos (United States); Saito, S. [JAEA, Tokai (Japan)

2013-07-01T23:59:59.000Z

293

DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU-HCET to evaluate a technology integration--shot blasting technology and an ultrasonic rangefinder, which are decontamination and sensor technology, respectively.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

294

Deactivation & Decommissioning (D&D) Program Map | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » Deactivation & Decommissioning (D&D) Program Map Deactivation & Decommissioning (D&D) Program Map Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. The "D&D Program Map" presents an integrated overview of DOE's complex-wide D&D project locations, scope, and issues and includes information on: * The affects of the AMERICAN Recovery and Reinvestment Act of 2009

295

Deactivation & Decommissioning (D&D) Program Map | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » Deactivation & Decommissioning (D&D) Program Map Deactivation & Decommissioning (D&D) Program Map Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. The "D&D Program Map" presents an integrated overview of DOE's complex-wide D&D project locations, scope, and issues and includes information on: * The affects of the AMERICAN Recovery and Reinvestment Act of 2009

296

Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre  

E-Print Network [OSTI]

Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre CARBON CAPTURE AND STORAGE: SUSTAI NABI LI TY I N THE UK ENERGY MI X WorkshopSciences, University of Edinburgh Event organised and sponsored by: #12;Carbon Capture and Storage: Sustainability

297

ANL CP-5 decontamination and decommissioning project necessary and sufficient pilot. Report of the standards identification team on the selection of the necessary and sufficient standards set  

SciTech Connect (OSTI)

The CP-5 reactor was a heavy-water moderated and cooled, highly-enriched uranium-fueled thermal reactor designed for supplying neutrons for research. The reactor was operated almost continuously for 25 years until its final shutdown in 1979. It is situated on approximately three acres in the southwestern section of Argonne National Laboratory. In 1980, all nuclear fuel and the heavy water that could be drained from the process systems were shipped off-site, and the CP-5 facility was placed into lay-up pending funding for decommissioning. It was maintained in the lay-up condition with a minimum of maintenance until 1990, when the decontamination and decommissioning (D and D) project began. This D and D project provides for the disassembly and removal of all radioactive components, equipment, and structures that are associated with the CP-5 facility. The experimental area around the CP-5 reactor has been prepared for D and D, and the area outside the facility has been remediated. The reactor primary coolant and support systems have been removed and packaged as waste. The significant remaining tasks are (1) removal of the reactor internals and the biological shield structure; (2) decontamination of the rod storage area; (3) decontamination of the various radioactive material storage and handling facilities, including the fuel pool; and (4) decontamination and dismantlement of the building. This report describes the scope of the project, identification of standards for various aspects of the project, the lessons learned, and consideration for implementation.

NONE

1996-05-01T23:59:59.000Z

298

Cancer Research UK eGMS Applicant Guide Cancer Research UK (eGMS) applicant guide June 2012 Page 1  

E-Print Network [OSTI]

Cancer Research UK eGMS Applicant Guide Cancer Research UK (eGMS) applicant guide June 2012 Page 1 2012 INTERNAL USER GUIDE A Guide to the Cancer Research UK electronic Grants Management System (e://egms.cancerresearchuk.org #12;Cancer Research UK eGMS Applicant Guide Cancer Research UK (eGMS) applicant guide June 2012 Page 2

299

Decommissioning of TA-21-153, a /sup 227/Ac contaminated old filter building  

SciTech Connect (OSTI)

An exhaust air filter building contaminated with /sup 227/Ac was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1978. The building was constructed in the late 1940s to clean exhaust air from several buildings at TA-21, DP Site. It was in service until March 1970. The project involved preliminary decontamination, dismantling the building, and burying the debris at an on-site waste disposal/storage area. This report presents the details on the decommissioning procedures, health physics, waste management, environmental surveillance, and costs for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

300

Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project  

SciTech Connect (OSTI)

This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

S. L. Reno

2006-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect (OSTI)

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. [Bechtel National, Inc., San Francisco, CA (United States); Schafer, J.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-05-01T23:59:59.000Z

302

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect (OSTI)

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. (Bechtel National, Inc., San Francisco, CA (United States)); Schafer, J.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-05-01T23:59:59.000Z

303

Decontamination and decommissioning of building 889 at Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

At the Rocky Flats site, the building 889 decommissioning project was the first large-scale decommissioning project of a radiologically contaminated facility at Rocky Flats. The scope consisted of removal of all equipment and utility systems from the interior of the building, decontamination of interior building surfaces, and the demolition of the facility to ground level. Details of the project management plan, including schedule, engineering, cost, characterization methodologies, decontamination techniques, radiological control requirements, and demolition methods, are provided in this article. 1 fig., 3 tabs.

Dorr, K.A. [Kaiser-Hill Co., Golden, CO (United States); Hickman, M.E.; Henderson, B.J. [Rocky Mountain Remediation Services, Golden, CO (United States); Sexton, R.J. [Scientific Ecology Group, Golden, CO (United States)

1997-09-01T23:59:59.000Z

304

Evidence for trends in UK flooding  

Science Journals Connector (OSTI)

...flooding. | Recent major flooding in the UK has raised concern...of a long-term trend in flooding over the last 80-120 years...Gov't | Climate Computer Simulation Disasters Ecosystem Environmental...Evidence for trends in UK flooding By Alice J. Robson Centre...

2002-01-01T23:59:59.000Z

305

Life cycle sustainability assessment of UK electricity scenarios to 2070  

Science Journals Connector (OSTI)

Abstract Decarbonising the UK electricity mix is vital to achieving the national target of 80% reduction of greenhouse gas (GHG) emissions by 2050, relative to a 1990 baseline. Much work so far has focused only on costs and GHG emissions ignoring other sustainability issues. This paper goes beyond to assess the life cycle sustainability of different electricity scenarios for the UK, extending to 2070. The scenarios include the main technologies relevant to the UK: nuclear, gas, coal with and without carbon capture and storage (CCS), wind, solar photovoltaics and biomass. Three levels of decarbonisation are considered and the implications are assessed for techno-economic, environmental and social impacts on a life cycle basis. The results show that decarbonisation is likely to increase electricity costs despite anticipated future cost reductions for immature technologies. Conversely, sensitivity to volatile fuel prices decreases by two-thirds in all the scenarios with low-carbon technologies. To meet the GHG emission targets, coal CCS can only play a limited role, contributing 10% to the electricity mix at most; the use of CCS also increases other sustainability impacts compared to today, including worker injuries, large accident fatalities, depletion of fossil fuels and long-term waste storage. This calls into question the case for investing in coal CCS. A very low-carbon mix with nuclear and renewables provides the best overall environmental performance, but some impacts increase, such as terrestrial eco-toxicity. Such a mix also worsens some social issues such as health impacts from radiation and radioactive waste storage requirements. UK-based employment may more than double by 2070 if a renewables-intensive mix is chosen. However, the same mix also increases depletion of elements nearly seven-fold relative to the present, emphasising the need for end-of-life recycling. Very low-carbon mixes also introduce considerable uncertainty due to low dispatchability and grid instability. With equal weighting assumed for each sustainability impact, the scenario with an equal share of nuclear and renewables is ranked best.

Laurence Stamford; Adisa Azapagic

2014-01-01T23:59:59.000Z

306

Implementing Agreement - U.S.-UK Collaboration in Fossil Energy...  

Broader source: Energy.gov (indexed) [DOE]

Implementing Agreement - U.S.-UK Collaboration in Fossil Energy R&D Implementing Agreement - U.S.-UK Collaboration in Fossil Energy R&D Implementing Agreement - U.S.-UK...

307

Personal Carbon Trading: a critical examination ofproposals for the UK  

E-Print Network [OSTI]

Anglia Norwich NR4 7TJ, UK *Corresponding author: g.seyfang@uea.ac.uk Tel: +44(0)1603 592956 Fax: +44(0)1603

Watson, Andrew

308

Sizing particles of natural uranium and nuclear fuels using poly-allyl-diglycol carbonate autoradiography  

Science Journals Connector (OSTI)

......particles of natural uranium and nuclear fuels...low enriched, depleted and natural uranium and also aged...committed doses and cancer risks(4...Bristol, UK, sized uranium fragments found...nuclear fuels of depleted uranium (depUO2......

G. Hegyi; R. B. Richardson

2008-07-01T23:59:59.000Z

309

Robotics Laboratory - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Robotics Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Robotics Laboratory The Robotics Laboratory (RL) houses various remote manipulator systems, including the Dual Arm Work Platform, to support enhancements to teleoperation of remote systems for nuclear applications. Bookmark and Share Argonne scientists are using computer simulation and robot task programming tools to enhance the safety and efficiency of telerobotics in applications such as the decontamination and decommissioning (D&D) of nuclear power

310

Conceptual Decontamination and Decommissioning Plan for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The Conceptual Decontamination and Decommissioning Plan (D&D) was developed as a concept for progressing from the final actions of the Disposal Phase, through the Decontamination and Decommissioning Phase, and into the initiation of the Long-Term Monitoring Phase. This plan was written in a manner that coincides with many of the requirements specified in DOE Order 5820.2A. Radioactive Waste Management; ASTM El 167 87, Standard Guide for Radiation Protection Program for Decommissioning Operations; and other documents listed in Attachment 3 of the D&D Plan. However, this conceptual plan does not meet all of the requirements necessary for a Decontamination and Decommissioning plan necessary for submission to the U.S. Congress in accordance with the Land Withdrawal Act (P.L. 102-579). A complete D&D plan that will meet the requirements of all of these documents and of the Land Withdrawal Act will be prepared and submitted to Congress by October 1997.

Westinghouse Electric Corporation Waste Isolation Division, now Washington TRU Solutions LLC

1995-01-30T23:59:59.000Z

311

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE  

E-Print Network [OSTI]

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE KLAMATH BASIN HYDROELECTRIC, and steelhead trout on the West Coast of the United States. PacifiCorp's 169-megawatt Klamath Hydroelectric Hydroelectric Project is the only thorough, objective and transparent assessment tool that analyzes the cost

312

EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

313

Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site  

SciTech Connect (OSTI)

As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

1983-09-01T23:59:59.000Z

314

Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana  

SciTech Connect (OSTI)

In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC) of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.

Not Available

1989-07-01T23:59:59.000Z

315

Nuclear and Facility Safety Directives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety » Nuclear and Facility Safety Nuclear Safety » Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. HS-30 Contact: James O'Brien

316

Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites |  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Removing Used Nuclear Fuel From Shutdown Evaluation of Removing Used Nuclear Fuel From Shutdown Sites Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America's Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. Shutdown sites are defined as those commercial nuclear power reactor sites where the

317

Two Cheers for Nuclear Physics  

Science Journals Connector (OSTI)

... of the way in which the UK has supported big science was given by Sir Harry Melville, the retired chairman of the Council for Scientific Policy, in the Appleton Memorial ... the Appleton Memorial Lecture to the Institution of Electrical Engineers. In nuclear physics, Sir Harry said, the home effort was certainly too large if the powerful international facilities to ...

1967-11-11T23:59:59.000Z

318

NPP Grassland: Beacon Hill, U.K.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beacon Hill, U.K., 1972-1973 Beacon Hill, U.K., 1972-1973 [PHOTOGRAPH] Photograph: General view of study site in 1973 (click on the photo to view a series of images from this site). Data Citation Cite this data set as follows: Williamson, P., and J. Pitman. 1998. NPP Grassland: Beacon Hill, U.K., 1972-1973. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of a chalk grassland was studied from 1972 to 1973 at Beacon Hill, West Sussex, U.K. Measurements of above-ground live biomass and total dead matter were made approximately bi-monthly. Above-ground net primary production was estimated by several methods, including peak live biomass, peak total live and dead, and accounting for turnover determined from

319

UK Climate Change Risk Assessment and National  

E-Print Network [OSTI]

UK Climate Change Risk Assessment and National Adaptation Programme Meg Patel Defra #12 change #12;Weather & climate impacts - economic, societal, environmental Water consumption per capita;Legislative Framework Climate Change Act 2008 Adaptation Reporting Power 2011 Climate Change Risk Assessment

Wirosoetisno, Djoko

320

Modelling the UK perennial energy crop market  

E-Print Network [OSTI]

Biomass produced from perennial energy crops, Miscanthus and willow or poplar grown as short-rotation coppice, is expected to contribute to UK renewable energy targets and reduce the carbon intensity of energy production. ...

Alexander, Peter Mark William

2014-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Opening a UK bank account money&consumeradvice  

E-Print Network [OSTI]

Opening a UK bank account money&consumeradvice Student Information, Advice & Guidance www a non-UK bank card you will be charged every time you withdraw money from cash machines. · If you get a job in the UK your employer will want to pay your money directly into a UK accounts. · You cannot set

Applebaum, David

322

Securing major investment in the UK timber processing industry  

E-Print Network [OSTI]

Egger UK Securing major investment in the UK timber processing industry objectives An Austrian, for a £100 million investment. Egger UK supplies 25% of the UK demand for chipboard. Investment in a new. This investment will catalyse active woodland management helping to create and maintain vital habitats for rare

323

Publication and citation statistics for UK astronomers  

E-Print Network [OSTI]

This article presents a survey of publication and citation statistics for 835 UK professional astronomers: the majority of academics and contract researchers within the UK astronomical community. I provide histograms of these bibliometrics for the whole sample as well as of the median values for the individual departments. I discuss the distribution of top bibliometric performers in the sample, and make some remarks on the usage of bibliometrics in a real-world assessment exercise.

A. J. Blustin

2007-12-28T23:59:59.000Z

324

UK now claims world's top discovery rate  

SciTech Connect (OSTI)

UK explorers are a bit more cheerful these days even though no one has discovered a giant field or anything elephant-sized. The reason is a benign tax regime and a growing confidence among industry explorers. This last has resulted in discovery of many smaller fields - particularly gas, some potentially commercial. It is claimed that the UK's discovery rate is now the highest in the world.

Not Available

1985-05-01T23:59:59.000Z

325

What's in the U.S. Nuclear Stockpile?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ballistic missiles. VIEW THIS ARTICLE PDF ICON PDF ICON IN THIS ISSUE Detonation: From the Bottom Up What's in the U.S. Nuclear Stockpile? U.K. Is Modernizing for...

326

Nuclear energy: current situation and prospects to 2020  

Science Journals Connector (OSTI)

...as a matter of policy that a country will have nuclear in its forward...and accept. For nuclear energy in the UK, clarity in waste policy is essential as...immediately to encourage nuclear build. There...deliver such a policy and the solution...

2007-01-01T23:59:59.000Z

327

Review of research on geological disposal of radioactive waste March 2011 s.haszeldine@ed.ac.uk Page 1 of 13 Review of research on geological disposal of radioactive waste proposed by  

E-Print Network [OSTI]

Review of research on geological disposal of radioactive waste March 2011 s.haszeldine@ed.ac.uk Page 1 of 13 Review of research on geological disposal of radioactive waste proposed by the UK Nuclear, and future research work needed, on the pathway towards choosing sites for a radioactive waste Repository

328

Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory … East Argonne, Illinois  

Broader source: Energy.gov (indexed) [DOE]

DOE/EA-1483 DOE/EA-1483 Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois March 2004 U.S. Department of Energy Chicago Operations Office Argonne Area Office Argonne, Illinois Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois Table of Contents Acronyms....................................................................................................................................... iii 1.0 Background ..........................................................................................................................1 1.1 Facility History ........................................................................................................1

329

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

330

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

331

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground Environmental Surveillance Programs  

SciTech Connect (OSTI)

This Addendum supplements, and to some extent replaces, the preliminary description of environmental radiological surveillance programs for low-level waste burial grounds (LLWBG) used in the parent document, 11 Technology, Safety and Costs of DecolliTlissioning a Reference Low-Level Waste Burial Ground, 11 NUREG/ CR-0570. The Addendum provides additional detail and rationale for the environmental radiological surveillance programs for the two referenced sites and inventories described in NUREG/CR-0570. The rationale and performance criteria herein are expected to be useful in providing guidance for determining the acceptability of environmental surveillance programs for other inventories and other LLWBG sites. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are reference facilities considered in this Addendum, and as described in the parent document (NUREG/CR-0570). The two sites are assumed to have the same capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology, and hydrology of the two reference sites are typical of existing western and eastern sites, altnough a single population distribution was chosen for both. Each reference burial ground occupies about 70 hectares and includes 180 trenches filled with a total of 1.5 x 10{sup 6} m{sup 3} of radioactive waste. In acldition, there are 10 slit trenches containing about 1.5 x 10{sup 3} m{sup 3} of high beta-gamma activity waste. In this Addendum environmental surveillance programs are described for the several periods in the life of a LLWBG: preoperational (prior to nuclear waste receipt); operational (including interim trench closures); post-operational (after all nuclear waste is received), for both short-term {up to three years) and long-term (up to 100 years) storage and custodial care; and decommissioning (only for the special case of waste removal). The specific environmental monitoring requirements for final site characterization and certification surveys are beyond the scope of this Addendum. Data collection associated with site reconnaissance and preselection is not specifically addressed, but it is recognized that such data may be useful in designing the preoperational program. Predisposal control measures, quality assurance, and record-keeping (other than inventory records) associated with waste disposal operations are also not addressed. The primary intent of routine environmental surveillance at a LLWBG is to help ensure that site activities do not cause significant transport of radioactivity from the site, resulting in an unacceptable health hazard to people. Preoperational environmental surveillance serves to determine for later comparison the background radioactivity levels, either naturally occurring or the result of man's activities (e.g. world-wide fallout or an adjacent nuclear facility), in and around the proposed burial ground site. The operational environmental surveillance program is used to estimate radiological conditions, both onsite and offsite as a possible result of burial ground activities, including trench closure(s). These data help to determine LLWBG compliance with regulatory requirements. During the post-operational period environmental surveillance should normally be an extension of the program carried out during operations, with appropriate deletions (or modifications) to account for the differences between operational and post-operational activities at the site. During the long-term storage and custodial care period, environmental surveillance serves to verify the radionuclide confinement capability of the burial ground and to identify problem situations requiring remedial action. For waste removal (exhumation), the environmental surveillance program is again modified to account for the greatly increased potential for direct radiation and contamination spread. At the time of decommissioning, "environmental surveillance" takes on a new meaning, from that of an ongoing prog

Denham, D. H.; Eddy, P. A.; Hawley, K. A.; Jaquish, R. E.; Corley, J. P.

1981-07-01T23:59:59.000Z

332

MARKETING AND UK STUDENT RECRUITMENT OFFICE UK Undergraduate Marketing, Recruitment and Admissions Strategy 2009  

E-Print Network [OSTI]

MARKETING AND UK STUDENT RECRUITMENT OFFICE UK Undergraduate Marketing, Recruitment and Admissions Strategy ­ 2009 entry EXECUTIVE SUMMARY 1. This strategy document covers the UG marketing, recruitment corporate UG marketing and recruitment activities to ensure that it is perceived by our target audiences

Bearhop, Stuart

333

National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

National Nuclear Security Administration National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Learn More NNSA DOE removes all remaining HEU from Hungary Learn More DOE removes all remaining HEU from Hungary Tiffany A. Blanchard-Case receives 2013 Linton Brooks Medal

334

Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial Statement Audit  

Broader source: Energy.gov (indexed) [DOE]

Uranium Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial Statement Audit OAS-FS-13-02 October 2012 September 7, 2012 Mr. Gregory Friedman Inspector General U.S. Department of Energy 1000 Independence Avenue, S.W. Room 5D-039 Washington, DC 20585 Dear Mr. Friedman: We have audited the financial statements of the Department of Energy's (the Department) Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) as of and for the year ended September 30, 2011, and have issued our report thereon dated September 7, 2012. In planning and performing our audit of the consolidated financial statements, in accordance with auditing standards generally accepted in the United States of America, we considered the Department's internal control

335

Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

A. M Smith; G. E. Matthern; R. H. Meservey

1998-11-01T23:59:59.000Z

336

Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).

NONE

1995-12-01T23:59:59.000Z

337

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

SciTech Connect (OSTI)

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

338

Nuclear Forensics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear...

339

Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program  

SciTech Connect (OSTI)

The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

340

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Adelan UK Ltd | Open Energy Information  

Open Energy Info (EERE)

Adelan UK Ltd Adelan UK Ltd Jump to: navigation, search Name Adelan UK Ltd Place Birmingham, United Kingdom Zip B15 2SQ Product A small solid oxide fuel cell (SOFC) which has developed an innovative microtubular fuel cell unit design. Coordinates 40.647112°, -78.197678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.647112,"lon":-78.197678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Agni UK Inc | Open Energy Information  

Open Energy Info (EERE)

Agni UK Inc Agni UK Inc Jump to: navigation, search Name Agni UK Inc Place London, United Kingdom Zip EC2Y 8AD Sector Biofuels Product Focused on design and development of fuel cells, co(tri)generation technology, biofuels and CO2 sequestration technology. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

O Gen UK Ltd | Open Energy Information  

Open Energy Info (EERE)

O Gen UK Ltd O Gen UK Ltd Jump to: navigation, search Name O-Gen UK Ltd Place Stone, United Kingdom Zip ST15 8XU Sector Biomass Product Power generator from biomass. Coordinates 37.582998°, -82.270862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.582998,"lon":-82.270862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Energy Events UK Ltd | Open Energy Information  

Open Energy Info (EERE)

UK Ltd UK Ltd Jump to: navigation, search Name Energy Events UK Ltd Place London, United Kingdom Zip SW19 1EX Product e² - Energy Solutions Expo is an event organiser dedicated to clean, efficient, sustainable energy consumption within the corporate world. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Daly International UK Ltd | Open Energy Information  

Open Energy Info (EERE)

UK Ltd UK Ltd Jump to: navigation, search Name Daly International (UK) Ltd Place Berkshire, England, United Kingdom Zip RG14 1JX Sector Renewable Energy, Services Product String representation "Daly Internatio ... ect Management." is too long. Coordinates 44.975662°, -72.77043° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.975662,"lon":-72.77043,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Renewable Energy Association UK REA | Open Energy Information  

Open Energy Info (EERE)

UK REA UK REA Jump to: navigation, search Name Renewable Energy Association UK (REA) Place London, United Kingdom Zip SW1Y 4AR Sector Renewable Energy Product Trade association open to all companies involved in the UK renewable energy industry. References Renewable Energy Association UK (REA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Association UK (REA) is a company located in London, United Kingdom . References ↑ "Renewable Energy Association UK (REA)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Association_UK_REA&oldid=350314" Categories: Clean Energy Organizations Companies Organizations Stubs

347

Improving UK greenhouse gas emission estimates using tall tower observations  

E-Print Network [OSTI]

Greenhouse gases in the Earths atmosphere play an important role in regulating surface temperatures. The UK is signatory to international agreements that legally commit the UK to reduce its greenhouse gas emissions, and ...

Howie, James Edward

2014-06-30T23:59:59.000Z

348

UK Coal Peel Energy JV | Open Energy Information  

Open Energy Info (EERE)

Coal Peel Energy JV Jump to: navigation, search Name: UK Coal & Peel Energy JV Place: United Kingdom Sector: Wind energy Product: JV to develop wind projects. References: UK Coal &...

349

Memorandum of Understanding - U.S.-UK Collaboration in Fossil...  

Broader source: Energy.gov (indexed) [DOE]

Memorandum of Understanding - U.S.-UK Collaboration in Fossil Energy R&D Memorandum of Understanding - U.S.-UK Collaboration in Fossil Energy R&D Memorandum of Understanding -...

350

Inertial fusion energy studies in the UK  

E-Print Network [OSTI]

#12;The types of research - Fusion ·Absorption and partition of laser energy ­ effects of laserInertial fusion energy studies in the UK Dr Kate Lancaster #12;Inertial Confinement Fusion #12 burns because the alpha particles produced deposit more energy and make more fusion reactions happen

351

Retail competition in the UK electricity sector  

E-Print Network [OSTI]

Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition Santiago, Chile 16 &17 March 2006 #12;Outline · Why retail competition? · Preparations and large user;Why retail competition? · Wholesale competition to deliver most efficient pattern of generation

Rudnick, Hugh

352

UK'S first commercial hydrogen mini-grid  

Science Journals Connector (OSTI)

The contract to create the UK's first commercial hydrogen powered mini-grid, at a cost of 2.5 million (US$5m), has been awarded to the energy consultancy TNEI. In partnership with the Pure Energy Centre, TNEI was appointed to create this pioneering energy development on the Advanced Manufacturing Park in Rotherham on behalf of the Yorkshire Forward regional development agency.

2008-01-01T23:59:59.000Z

353

www.jubileecentre.ac.uk JAMES ARTHUR  

E-Print Network [OSTI]

www.jubileecentre.ac.uk JAMES ARTHUR KRISTJÁN KRISTJÁNSSON HYWEL THOMAS MICHAEL HOLDSWORTH LUCA BADINI CONFALONIERI TIAN QIU FOREWORD BY PROFESSOR ADRIAN EVANS VIRTUOUS CHARACTERFOR THE PRACTICE OF LAW by Professor James Arthur. Based at the University of Birmingham, it has a dedicated team of 30 academics from

Birmingham, University of

354

www.electricitypolicy.org.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

www.electricitypolicy.org.uk EPRGWORKINGPAPER Abstract Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector EPRG Working Paper 1117 Cambridge Working Paper in Economics 1139 Scott Kelly Energy consumption from the residential sector

Aickelin, Uwe

355

www.mmu.ac.uk/careers Careers & Employability Service  

E-Print Network [OSTI]

.mmu.ac.uk/careers Identifying courses · www.prospects.ac.uk/search_courses.htm · www.jobs.ac.uk · www.Findamasters.com · www.mmu.ac.uk/careers PG Professional/Vocational courses: Courses to allow you to enter certain professions Courses involve lectures for the first two terms then a research project for the final term (often finishing after

356

UK universities turning more and more to private funding  

Science Journals Connector (OSTI)

... Nature Publishing Group 10.1038/334463c0 UK universities turning more and more to private fundingChristine

Christine McGourty

1988-08-11T23:59:59.000Z

357

Paul Workman Cancer Research UK Cancer Therapeutics Unit  

E-Print Network [OSTI]

Paul Workman Cancer Research UK Cancer Therapeutics Unit Institute of Cancer Research/Royal Marsden Hospital Sutton, Surrey SM2 5NG UK ian.collins@icr.ac.uk Drugging the cancer genome: The challenges therapeutic agents Personalised diagnosis and treatment Exploiting cancer biology and the cancer genome

358

DesignbyHype!hype.co.uk INSTITUTE OF BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

DesignbyHype!hype.co.uk INSTITUTE OF BIOMEDICAL ENGINEERING MedTech Accelerator www.ibme.ucl.ac.uk UCL Institute of Biomedical Engineering University College London Gower Street London WC1E 6BT UK #12;3 The Director of the IBME, Professor Quentin Pankhurst, is a physicist and biomedical engineer. Since joining

Saunders, Mark

359

Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

NONE

1996-02-21T23:59:59.000Z

360

Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory … East Argonne, Illinois  

Broader source: Energy.gov (indexed) [DOE]

Finding of No Significant Impact Finding of No Significant Impact Proposed Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois AGENCY: U. S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has prepared an Environmental Assessment (EA), DOE/EA-1483, evaluating the decontamination and decommissioning of the Juggernaut Reactor at Argonne National Laboratory-East (ANL-E), in Argonne, Illinois. The decontamination and decommissioning of the reactor is needed to ensure the protection of the health and safety of the public, DOE and contractor employees, and the environment, consistent with DOE Order 5400.5, Radiation Protection of the Public and the Environment. Based on the analysis in the EA, DOE has determined that the proposed action does not

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities  

SciTech Connect (OSTI)

The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

Erickson, T.A.

1998-11-01T23:59:59.000Z

362

FROM CONCEPT TO REALITY, IN-SITU DECOMMISSIONING OF THE P AND R REACTORS AT THE SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

SRS recently completed an approximately three year effort to decommission two SRS reactors: P-Reactor (Building 105-P) and R-Reactor (Building 105-R). Completed in December 2011, the concurrent decommissionings marked the completion of two relatively complex and difficult facility disposition projects at the SRS. Buildings 105-P and 105-R began operating as production reactors in the early 1950s with the mission of producing weapons material (e.g., tritium and plutonium-239). The 'P' Reactor and was shutdown in 1991 while the 'R' Reactor and was shutdown in 1964. In the intervening period between shutdown and deactivation & decommissioning (D&D), Buildings 105-P and 105-R saw limited use (e.g., storage of excess heavy water and depleted uranium oxide). For Building 105-P, deactivation was initiated in April 2007 and was essentially complete by June 2010. For Building 105-R, deactivation was initiated in August 2008 and was essentially complete by September 2010. For both buildings, the primary objective of deactivation was to remove/mitigate hazards associated with the remaining hazardous materials, and thus prepare the buildings for in-situ decommissioning. Deactivation removed the following hazardous materials to the extent practical: combustibles/flammables, residual heavy water, acids, friable asbestos (as needed to protect workers performing deactivation and decommissioning), miscellaneous chemicals, lead/brass components, Freon(reg sign), oils, mercury/PCB containing components, mold and some radiologically-contaminated equipment. In addition to the removal of hazardous materials, deactivation included the removal of hazardous energy, exterior metallic components (representing an immediate fall hazard), and historical artifacts along with the evaporation of water from the two Disassembly Basins. Finally, so as to facilitate occupancy during the subsequent in-situ decommissioning, deactivation implemented repairs to the buildings and provided temporary power.

Musall, J.; Blankenship, J.; Griffin, W.

2012-01-09T23:59:59.000Z

363

The collapse of nuclear power  

Science Journals Connector (OSTI)

The bombshell of the UK government statement of 9 November 1989, withdrawing all nuclear stations from privatization and cancelling the three \\{PWRs\\} which were to have followed on from Sizewell B, was a shattering blow to the nuclear industry. The reversal (at least temporarily) of decades of government support for nuclear power, and the figures which were becoming available of its relatively high-cost (confirmed by the levy on electricity sales to subsidize nuclear and other non-fossil generation), caused the House of Commons Energy Select Committee to conduct the inquiry culminating in its Report The Cost of Nuclear Power. This is certainly one of the most important and influential reports from a Committee well known for its effectiveness and is the basis for this article.

J.W. Jeffery

1991-01-01T23:59:59.000Z

364

Groundwater Monitoring and Control Before Decommissioning of the Research Reactor VVR-S from Magurele-Bucharest  

SciTech Connect (OSTI)

The research reactor type VVR-S (tank type, water is cooler, moderator and reflector, thermal power- 2 MW, thermal energy- 9. 52 GW d) was put into service in July 1957 and, in December 1997 was shout down. In 2002, Romanian Government decided to put the research reactor in the permanent shut-down in order to start the decommissioning. This nuclear facility was used in nuclear research and radioisotope production for 40 years, without events, incidents or accidents. Within the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: Radioactive Waste Treatment Plant, Tandem Van der Graaf heavy ions accelerator, Cyclotron, Industrial Irradiator, Radioisotope Production Center. The objectives of this work were dedicated on the water underground analyses described in the following context: - presentation of the approaches in planning the number of drillings, vertical soil profiles (characteristics, analyses, direction of the flow of underground water, uncertainties in measurements); - presentation of the instrumentation used in analyses of water, soil and vegetation samples - analyses and final conclusions on results of the measurements; - comparison of the results of measurements on underground water from drillings with the measurements results on samples from the town and the system of drinking water - supplied from the second level of underground water. According to the analysis, in general, no values higher than the Minimum Detectable Activity were detected in water samples (MDA) for Pb{sup 212}, Bi{sup 214}, Pb{sup 214}, Ac{sup 228}, but situated under values foreseen in drinking water. Distribution of Uranium As results of the Uranium determination, values higher than 0,004 mg/l (4 ppb) were detected, values that represent the average contents in the underground water. The higher values, 2-3 times higher than background, were detected in the water from the drillings F15, F12, F5, F13, drillings located between RWTP (Radioactive Waste Treatment Plant) - the 300 m{sup 3} tanks and the Spent Filters Storage (SFS). At south of this area, on the leaking direction of the underground water layer, in the drillings F1, F2, F3, F18 and at east, in F6, F7, the natural Uranium values are within the background for the underground-water. Distribution of Radon For the Radon determination with RAD 7 equipment, water samples were taken from the same piezo-metrical drilling, 2 or 4 times during of six months period, and then, the average contents were calculated, which varied between 0,35 - 2,1 Bq/l. The values higher than 1,1 -1,2 Bq/l were detected in the water taken from the drillings located in the northern part (F10, F11) and in the eastern part (F6, F8) of the Institute fences (around of the radioactive waste storage facilities). The concentrations of 0,3 - 0,5 Bq/l are in the underground-water layer 'intercepted' by the piezo-metrical drillings (F1, F2, F3) located near the Nuclear Reactor. Concentration of heavy metals: 0.04-0.08 mg/l Pb in F5, F14, F7, F8 exceeding MCA-Maximum Admissible Concentration (0.01 mg/l) for Pb, and for Zn in F5, F7, F8, F14 are 0.2-0.5 mg/l situated under MCA , and 0.18 mg/l in F18, in accordance with tendency of decreasing of concentration of contaminants. After 50 years of deploying nuclear activities on the site the underground water quality is in very good condition. Taking into consideration the direction of the underground water flow, it results that, only in the area of underground pipe, around of the research reactor and radioactive waste treatment plant, the quality of water is influenced, and remediation actions are not necessary. Based on measurements executed in F18, the water quality is the same with any other part of the region. During the decommissioning of the Research Reactor, the samples from 18 drillings will be analysed monthly, and the contents of the heavy metals, Pb and Zn, will be monitored carefully, together with all the factors: air, soil, vegetation, subsoil, water surface and underground water. A great attention will be paid t

Dragusin, Mitica [National Institute of Physics and Nuclear Engineering-Horia Hulubei - IFIN-HH, Bucharest-Magurele, Romania, POBox MG-6, 077125, Ilfov (Romania)

2008-01-15T23:59:59.000Z

365

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

366

www.electricitypolicy.org.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

organisation for new nuclear build in electricity markets EPRG Working Paper EPRG 0826 Cambridge Working Paper in Economics 0850 Dominique Finon and Fabien Roques The paper studies how risks specific to a nuclear power to make nuclear power attractive to investors in liberalised markets, at least for the first batch of new

Aickelin, Uwe

367

Green Systems UK | Open Energy Information  

Open Energy Info (EERE)

Green Systems UK Green Systems UK Place Cambridge, United Kingdom Sector Solar Product Design and installation of vacuum tube & flat plate solar hot water systems, heat pumps, underfloor heating and bio-mass boliers. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Event: UK to host Science on Stage  

Science Journals Connector (OSTI)

Event: UK to host Science on Stage Travel: Gaining a more global perspective on physics Event: LIYSF asks students to 'cross scientific boundaries' Competition: Young Physicists' tournament is international affair Conference: Learning in a changing world of new technologies Event: Nordic physical societies meet in Lund Conference: Tenth ESERA conference to publish ebook Meeting: Rugby meeting brings teachers together Note: Remembering John L Lewis OBE

369

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011  

Broader source: Energy.gov (indexed) [DOE]

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. POLICY: It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

370

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect (OSTI)

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

371

Recent Sodium Technology Development for the Decommissioning of the Rapsodie and Superphenix Reactors and the Management of Sodium Wastes  

SciTech Connect (OSTI)

The Commissariat a l'Energie Atomique (CEA) has recently developed and/or conducted experiments on several processes in support of the decommissioning of two French liquid-metal fast reactors (LMFRs), Rapsodie and Superphenix, as well as on the treatment of CEA sodium wastes. CEA has demonstrated that it is possible to define appropriate and efficient processes to meet the different situations encountered in decommissioning LMFRs. Mechanical techniques derived from standard technologies have been successfully applied to fast reactor decommissioning to complete primary vessel draining from sodium. In addition, specific chemical processes have been developed to deal safely with metallic sodium reactivity. Sodium-contaminated equipment has been successfully cleaned by reacting sodium with water mist in an atmosphere with carbon dioxide to form inert sodium carbonate. Bulk sodium has been successfully converted into aqueous caustic soda by injection of liquid-metallic sodium into sodium hydroxide solution. Several processes were also defined to deal with specific sodium wastes. In all cases the principle is based on a sodium/water chemical reaction where the released hydrogen and heat are controlled. With the development of a wide variety of processes, all steps in the decommissioning of LMFRs are assumed to be now properly mastered.

Rodriguez, G.; Gastaldi, O.; Baque, F. [Commissariat a l'Energie Atomique Cadarache (France)

2005-04-15T23:59:59.000Z

372

Long Term Storage with Surveillance of Canadian Prototype Nuclear Power Reactors  

SciTech Connect (OSTI)

Atomic Energy of Canada (AECL) was originally formed by the government of Canada in 1952 to perform research in radiation and nuclear areas. In the mid 1950's Canada decided to limit itself to peaceful uses of nuclear energy and AECL embarked on several research and development programs, one of them being the development of nuclear power plants. This led to the development of the CANDU{sup TM} design of heavy water power reactors, of which there are now 29 operating around the world. This presentation discusses the present state of the first two CANDU{sup TM} prototype reactors and a prototype boiling light water reactor and lessons learnt after being in a long-term storage with surveillance state for more than 20 years. AECL facilities undergo decommissioning by either a prompt or a deferred removal approach. Both approaches are initiated after an operating facility has been declared redundant and gone through final operational shutdown. For the deferred approach, initial decommissioning activities are performed to put the facility into a sustainable, safe, shutdown state to minimize the hazards and costs of the ensuing extended storage with surveillance (SWS) or Safestor phase. At the appropriate time, the facility is dismantled and removed, or put into a suitable condition for re-use. AECL has a number of facilities that were built during its history, and some of these are now redundant or will become redundant in the near future. The deferred removal approach is part of AECL's decommissioning strategy for several reasons: 1. Reduction in radiation doses to workers during the final dismantling, 2. No facilities are available yet in Canada for the management of quantity of wastes arising from decommissioning, 3. Financial constraints presented by the number of facilities that will undergo decommissioning, compared to the availability of funds to carry out the work. This has led to the development of a comprehensive decommissioning plan that includes all of AECL's redundant and presently operating facilities. Several significant issues have arisen over the decades these reactors have been in the SWS phase. With the long time frames encompassed by this approach to decommissioning, the storage and maintenance of facility information for future decommissioning, and the knowledge and training of successive generations of staff to perform facility inspections and maintenance are major issues. Complacency of both staff and management is a potential issue. The problem arises primarily because these facilities have been put into a comparatively low hazard state, are remotely located, and not much changes over time and changes are slow. During the period that these facilities have been in this state, regulatory scrutiny and expectations have increased. This along with continuing changes in regulatory staff requires a continuous education and communication activity with the regulator. Because of the long time frames involved, the building structures continue to deteriorate slowly, and repairs and maintenance are required upon occasion. The costs can be significant, for example, to replace a roof. When these occasions arise, the balance of cost and benefit is always questioned, i.e., 'Wouldn't it be better to spend the money on dismantling rather than fixing?'. One positive note is that ancillary buildings that either have very low radiation hazards or were decontaminated during the initial decommissioning activities have been used for several alternate uses. This has helped to defray costs, and also keeps an interest in maintaining the building structures and systems in good condition during the SWS phase. Over the past few years, the lessons learnt from these and other facilities in SWS, have been addressed in a holistic manner by moving from a short-term, project-oriented approach to a comprehensive, long term stewardship approach. Key to this approach was the development of an integrated plan to decommission all of AECL's facilities. One of the prime results of the implementation of this plan was the development of an organiza

Janzen, Rick [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

2008-01-15T23:59:59.000Z

373

No Slide Title  

Broader source: Energy.gov (indexed) [DOE]

1 1 Presented by: Mark Steele: Ex WAGR Project Manager Decommissioning of Windscale Advanced Gas-Cooled Reactor (WAGR) Slide 2 Introduction * UK policy for nuclear power plant decommissioning is long-term safe- storage of reactor facilities * WAGR Project is being used to demonstrate that such a plant can be fully decommissioned * Project funded by the UK Government * Windscale Licensee UKAEA * During early and mid 1990"s facility modified and construction of Reactor Dismantling Machine and Waste Route * 1999 contract let for the dismantling of the reactor to Magnox Electric - fixed price * Scope included engineering and design, safety submission, provision of equipment and operations

374

OSPREY makes waves in UK energy research  

Science Journals Connector (OSTI)

... -nuclear energy research programme, and the remainder from private companies including AEA Technology, Scottish Hydroelectric and GEC Alsthom. British Steel donated 800 tonnes of steel to the project.

Ehsan Masood

1995-08-17T23:59:59.000Z

375

6 - Nuclear Waste Regulations  

Science Journals Connector (OSTI)

The most influential national and international bodies providing recommendations on radiation protection are described, including the International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA). Protection philosophies and the ICRP general principles of radiation protection are discussed. Radioactive material regulations and sources of radiation are explained. Criteria of exemption from regulatory control are discussed with examples of exemption levels for naturally occurring and radioactive waste radionuclides. Clearance of both moderate and bulk amounts of materials from regulatory control is also explained, including examples of EU and the UK regulations. Dose limits recommended by the ICRP are given, as well as the main principles of control of radiation hazards. Nuclear waste classification schemes are outlined, including the IAEA classification scheme. A brief explanation of nuclear waste classes including exempt waste, very short-lived waste, very low-level waste, low-level waste, intermediate-level waste and high-level waste is given. Examples of waste classification schemes are given, including that of the UK.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

376

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

377

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Programs >> Nuclear Energy Error Error Nuclear Energy Home - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Energy Home - RCC * Increasing...

378

ISSN 1745-9648 UK Merger Remedies under Scrutiny  

E-Print Network [OSTI]

, University of East Anglia, Norwich, NR4 7TJ, UK; t: +44 (0) 1603 593715, f: +44 (0) 1603 591622; m

Feigon, Brooke

379

www.sheffield.ac.uk/careers Develop Your  

E-Print Network [OSTI]

Marketplace' run by the Careers Service and HSBC Bank www.shef. ac.uk/careers/students/advice/sfs. 10. If you

Martin, Stephen John

380

Final report of the decontamination and decommissioning of the BORAX-V facility turbine building  

SciTech Connect (OSTI)

The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

Arave, A.E.; Rodman, G.R.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Final report of the decontamination and decommissioning of the BORAX-V facility turbine building  

SciTech Connect (OSTI)

The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

Arave, A.E.; Rodman, G.R.

1992-12-01T23:59:59.000Z

382

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

American Recovery and Reinvestment American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Sa- vannah River Site this month after they safely re- moved its rusty, orange, 75-foot-tall dome. With the help of a 660-ton crane and lifting lugs, the work- ers pulled the 174,000-pound dome off the Heavy Water Components Test Reactor, capping more than 16 months of preparations. Workers will cut the dome into smaller pieces for disposal. Removal of the dome allows workers to access the 219,000-pound reactor vessel and two steam generators so they can remove and permanently dispose them onsite. Re- maining equipment will be moved to the cavity vacated by the vessel, and below-grade portions of the reactor will be

383

Source term characterization program for the decommissioning waste from a CANDU reactor  

Science Journals Connector (OSTI)

An automatic source term characterization program was developed, and its structure, logic, and function are explained here in detail. Called the CANDU Activated Source Term Evaluator (CASE), the developed program is equipped with a convenient graphical user interface; it uses MCNP for the neutron transport calculation and ORIGEN2 for activation analysis. CASE can prepare the MCNP input and run MCNP to obtain the neutron flux and the cross section. It can also prepare the ORIGEN2 input for the activation analysis of the region of interest, process the ORIGEN2 output, and compare the estimated specific activity of activated waste with the waste classification standard. CASE is expected to be very useful for reducing the engineering time, minimizing human error, and enhancing the reliability of source term evaluations of decommissioning waste from CANDU reactors.

Dong-Keun Cho; Jeong-Hun Cha; Dong-Hak Kook; Jong-Youl Lee; Heui-Joo Choi; Jongwon Choi; Won-il Ko; Jeong-Ho Park

2012-01-01T23:59:59.000Z

384

Strategic sourcing in the UK bioenergy industry  

Science Journals Connector (OSTI)

Successful supply chain management requires the management of a complex, multi-stakeholder, multi-criteria system. Stakeholder inclusion in the supply chain design and decision making processes is an area of growing interest for companies looking to design sustainable supply chains or produce sustainable products. This paper demonstrates the use of the integrated quality function deployment and analytic hierarchy process (QFDAHP) method for the inclusion of a wide group of stakeholder requirements into the supplier selection process. The method provides a weighted ranked list of evaluating criteria which can be used to assess potential suppliers in the UK renewable bioenergy industry. The bioenergy industry is suitable as there are many stakeholders placing various requirements upon potential biomass suppliers. The paper uses a mixture of literature review and semi-structured industry interviews to answer three research questions: which stakeholder groups are important when selecting biomass suppliers for the UK? What requirements are made by these stakeholders on the supply of biomass fuels and feedstocks? Which evaluating criteria are most important?

James A. Scott; William Ho; Prasanta K. Dey

2013-01-01T23:59:59.000Z

385

Nuclear Debate  

Science Journals Connector (OSTI)

Nuclear Debate ... This month, the Senate will consider the nominations of two women to serve on the Nuclear Regulatory Commission. ... Svinicki is a nuclear engineer with experience in the Department of Energys nuclear energy programs. ...

JEFF JOHNSON

2012-06-11T23:59:59.000Z

386

UK CARBON CAPTURE AND STORAGE, WHERE IS IT ? Stuart Haszeldine  

E-Print Network [OSTI]

437 UK CARBON CAPTURE AND STORAGE, WHERE IS IT ? Stuart Haszeldine Professor of Carbon Capture.haszeldine@ed.ac.uk SUMMARY Carbon capture and storage, to capture CO2 from power plants and big industry, remains much strategy ­ either co-firing with biomass, or direct capture form the air ­ both need to bury CO2. How

Haszeldine, Stuart

387

www.mmu.ac.uk/careers Careers & Employability Service  

E-Print Network [OSTI]

to prepare? Alison Proudlove Thursday, June 07, 2012 1 #12;www.mmu.ac.uk/careers What will we cover researched the organisation #12;www.mmu.ac.uk/careers Use your time wisely · If there are large queues , have

388

Renewables and CHP Deployment in the UK January 2002  

E-Print Network [OSTI]

Renewables and CHP Deployment in the UK to 2020 Jim Watson January 2002 Tyndall Centre for Climate Change Research Working Paper 21 #12;Renewables and CHP Deployment in the UK to 2020 Jim Watson Energy....................................................................................................6 3. The Deployment of Renewables and CHP to 2020

Watson, Andrew

389

IT Services go.warwick.ac.uk/whatsnew2010  

E-Print Network [OSTI]

to enable us to develop it as you would like. https://start.warwick.ac.uk/ Warwick Forward Warwick Forward. The domain itself must be registered with an external company by you. http://forward.warwick.ac.uk/ Files to navigate. · Files Transfer Utility. Enable access via a drive letter in Windows Explorer (or equivalent

Davies, Christopher

390

UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) |  

Open Energy Info (EERE)

403 403 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288403 Varnish cache server UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) Dataset Summary Description Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels. These data were used to produce Tables 7.1 to 7.3 in the Digest of United Kingdom Energy Statistics 2010 (available: http://decc.gov.uk/assets/decc/Statistics/publications/dukes/348-dukes-2...).

391

DOE P 420.1 Department of Energy Nuclear Safety Policy  

Broader source: Energy.gov (indexed) [DOE]

POLICY POLICY Washington, D.C. Approved: 2-08-2011 SUBJECT: DEPARTMENT OF ENERGY NUCLEAR SAFETY POLICY PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. POLICY: It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the

392

Nuclear Regulatory Commission issuances, Volume 46, No. 4  

SciTech Connect (OSTI)

This report includes the issuances received in October 1997. Issuances are from the Commission, the Atomic Safety and Licensing Boards, and the Directors` Decisions. Five issuances were received on the following subjects: (1) decontamination and decommissioning funding for Sequoyah Fuels Corporation and General Atomics; (2) involvement in NRC-licensed activities by Aharon Ben-Haim; (3) Barnett Industrial X-Ray, Inc.; (4) spent fuel storage installation at Northern States Power Company; and (5) Vermont Yankee Nuclear Power Station. No issuances were received from the the Administrative Law Judges or the Decisions on Petitions for Rulemaking.

NONE

1997-10-01T23:59:59.000Z

393

UK FT PDU Facility Draft EA  

Broader source: Energy.gov (indexed) [DOE]

2S 2S Draft Supplemental Environmental Assessment for University of Kentucky Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis Lexington, KY December 2013 Prepared for: Department of Energy National Energy Technology Laboratory This page intentionally left blank. Draft Supplemental Environmental Assessment DOE/EA-1642S Fischer-Tropsch Process Development Unit December 2013 Cover Sheet Proposed Action: The United States (U.S.) Department of Energy (DOE) proposes, through a cooperative agreement with the University of Kentucky (UK) Center for Applied Energy Research (CAER), to partially fund the completion of the design, construction, and operation of a small-scale pilot plant for research related to the gasification of coal

394

myUK: https://myuk.uky.edu/ Registration Help Line: (859) 257-7173 Registration Using myUK  

E-Print Network [OSTI]

myUK: https://myuk.uky.edu/ · Registration Help Line: (859) 257-7173 Registration Using myUK 1 not created an account, follow the instructions at the InformationTechnologyCustomerService Centersite:www.uky.edu/ukit/help.You may also e-mail the Help Desk at: helpdesk@uky.edu or call at (859) 218- 4357.Ifyoudonothavea

MacAdam, Keith

395

Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites  

SciTech Connect (OSTI)

This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases.

Meyer, Philip D.; Gee, Glendon W.; Nicholson, Thomas J.

2000-02-28T23:59:59.000Z

396

Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project  

SciTech Connect (OSTI)

The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

Stevens, J. L.; Titus, R.; Sanford, P. C.

2002-02-26T23:59:59.000Z

397

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network [OSTI]

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

398

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor defueling and disassembly. Summary status report. Volume 3  

SciTech Connect (OSTI)

This document summarizes information relating to the preparations for defueling the Three Mile Island Unit 2 (TMI-2) reactor and disassembly activities being performed concurrently with decontamination of the facility. Data have been collected from activity reports, reactor containment entry records, and other sources and entered in a computerized data sysem which permits extraction/manipulation of specific data which can be used in planning for recovery from a loss of coolant event similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during the period of April 23, 1979 to April 16, 1985, in the completion of activities related to preparation for reactor defueling. Support activities conducted outside of radiation areas are not included within the scope of this report. Computerized reports included in this document are: A chronological summary listing work performed for the period; and summary reports for each major task undertaken in connection with the specific scope of this report. Presented in chronological order for the referenced time period. Manually-assembled table summaries are included for: Labor and exposures by department; and labor and exposures by major activity.

Doerge, D.H.; Miller, R.L.; Scotti, K.S.

1986-05-01T23:59:59.000Z

399

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor building decontamination. Summary status report. Volume 2  

SciTech Connect (OSTI)

This document summarizes information relating to decontamination of the Three Mile Island Unit 2 (TMI-2) reactor building. The report covers activities for the period of June 1, 1979 through March 29, 1985. The data collected from activity reports, reactor containment entry records, and other sources were entered into a computerized data system which permits extraction/manipulation of specific information which can be used in planning for recovery from an accident similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during decontamination of the reactor building. Support activities conducted outside of radiation areas are excluded from the scope of this report. Computerized reports included in this document are: a chronological summary listing work performed relating to reactor building decontamination for the period specified; and summary reports for each major task during the period. Each task summary is listed in chronological order for zone entry and subtotaled for the number of personnel entries, exposures, and man-hours. Manually-assembled table summaries are included for: labor and exposures by department and labor and exposures by major activity.

Doerge, D.H.; Miller, R.L.; Scotti, K.S.

1986-05-01T23:59:59.000Z

400

Nuclear Facility Decommissioning and Site Remedial Actions: A selected bibliography, Volume 14. Environmental Restoration Program: Part 2, Indexes  

SciTech Connect (OSTI)

This Part 2 of this report provides indexes of: Author, Corporate Affiliation, Title Word, Publication Description, Geographic Location, Subject Category, and Key Words.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Returns  

Science Journals Connector (OSTI)

Nuclear Returns ... For the first time since 1978, the Nuclear Regulatory Commission has given the green light for a new U.S. nuclear power plant. ... NRC granted a license to Southern Co. to build and operate twin 1,100-MW reactors adjacent to two operating nuclear power plants at its Vogtle nuclear facility, near Waynesboro, Ga. ...

JEFF JOHNSON

2012-02-19T23:59:59.000Z

402

The Role of the UK Energy Efficiency Office  

E-Print Network [OSTI]

----------------------------- THE ROLE: (IF THE UK ENERGY EFFICIENCY OFF] CE Dr Elliot G Finer Director for Incustry and Commerce Lcr:don, England TH~_~~~~_~QB ENERGY EFFICIENCY IN THE UK ~asl year the United Kingdom spent sorr.e ?37bn... on energy. Analysis of energy use, through extensive studIes such as the Energy Efficiency Office's "Energy Use and Energy Efficiency in UK Manufacturing Industry up tu the Year 2000" has revealed that 20% of energy, or ?7bn worth, IS wasted in all...

Finer, E. G.

403

Testing, expanding and implementing pollution prevention tools for environmental restoration and decontamination and decommissioning  

SciTech Connect (OSTI)

Pollution Prevention (P2) programs and projects within the DOE Environmental Restoration (ER) and Decontamination and Decommissioning (D and D) Programs have been independently developed and implemented at various sites. As a result, unique, innovative solutions used at one site may not be known to other sites, and other sites may continue to duplicate efforts to develop and implement similar solutions. Several DOE Program offices have funded the development of tools to assist ER/D and D P2 projects. To realize the full value of these tools, they need to be evaluated and publicized to field sites. To address these needs and concerns, Sandia National Laboratory (SNL/NM), Los Alamos National Laboratory (LANL), and the Oak Ridge Field Office (DOE-OR) have teamed to pilot test DOE training and tracking tools; transfer common P2 analyses between sites, and evaluate and expand P2 tools and methodologies. The project is supported by FY 98 DOE Pollution Prevention Complex-Wide Project Funds. This paper presents the preliminary results for each of the following project modules: Training, Waste Tracking Pilot, Information Exchange, Evaluate P2 Tools for ER/D and D, Field Test of P2 Tools; and DOE Information Exchange.

Roybal, J.A. [Sandia National Lab., Albuquerque, NM (United States); McInroy, D. [Los Alamos National Lab., NM (United States); Watson, J. [GTS Duratek, Albuquerque, NM (United States); Mizner, J. [ICF Kaiser, Albuquerque, NM (United States)

1998-06-01T23:59:59.000Z

404

Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory  

SciTech Connect (OSTI)

The Final Report for the Decontamination and Decommissioning (D&D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D&D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D&D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D&D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a {open_quotes}Radiologically Controlled Area,{close_quotes} noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion).

Fellhauer, C.R.; Boing, L.E. [Argonne National Lab., IL (United States); Aldana, J. [NES, Inc., Danbury, CT (United States)

1997-03-01T23:59:59.000Z

405

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

406

Nuclear Nonproliferation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

407

Opportunity, risk, and success recognizing, addressing, and balancing multiple factors crucial to the success of a project management system deployed to support multi-lateral decommissioning programs  

SciTech Connect (OSTI)

This paper addresses the factors involved in effectively implementing a world-class program/project management information system funded by multiple nations. Along with many other benefits, investing in and utilizing such systems improves delivery and drive accountability for major expenditures. However, there are an equally large number of impediments to developing and using such systems. To be successful, the process requires a dynamic combining of elements and strategic sequencing of initiatives. While program/project-management systems involve information technologies, software and hardware, they represent only one element of the overall system.. Technology, process, people and knowledge must all be integrated and working in concert with one another to assure a fully capable system. Major system implementations occur infrequently, and frequently miss established targets in relatively small organizations (with the risk increasing with greater complexity). The European Bank of Reconstruction (EBRD) is midway through just such an implementation. The EBRD is using funds from numerous donor countries to sponsor development of an overarching program management system. The system will provide the Russian Federation with the tools to effectively manage prioritizing, planning, and physically decommissioning assets{sub i}n northwest Russia to mitigate risks associated the Soviet era nuclear submarine program. Project-management delivery using world-class techniques supported by aligned systems has been proven to increase the probability of delivering on-time and on-budget, assuring those funding such programs optimum value for money. However, systems deployed to manage multi-laterally funded projects must be developed with appropriate levels of consideration given to unique aspects such as: accommodation of existing project management methods, consideration for differences is management structures and organizational behaviors, incorporation of unique strengths, and subtle adjustment to compensate weaknesses. This paper addresses the architecture and sequencing of implementation. (authors)

Funk, Greg; Longsworth, Paul [Fluor Cumbria, Unit 8, Galemire Court, Westlakes Science Park, Moor Row, CA24 3HY (United Kingdom)

2007-07-01T23:59:59.000Z

408

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network [OSTI]

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

409

www.electricitypolicy.org.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

power stations each with an output exceeding 1GW (ibid.). By 2015, one third of the coal- fired stations shortfall in two principal options; greater reliance on gas powered plant, which brings perceived security of supply issues, or the construction of a new fleet of nuclear power stations (DTI, 2007 b). The need

Aickelin, Uwe

410

NUCLEAR REACTORS.  

E-Print Network [OSTI]

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

411

nuclear reactor  

Science Journals Connector (OSTI)

...a complex atomic apparatus used to obtain energy from nuclear fission chain reaction. Used to produce nuclear energy, radioactive isotopes, and artificial elements.... atomic pile ...

2009-01-01T23:59:59.000Z

412

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

413

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

414

Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

415

Financing the UK's renewable energy boom  

Science Journals Connector (OSTI)

The opportunity to invest in and operate renewable energy power projects in the United Kingdom is the result of the financial measures established by the Electricity Act 1989, which created the Non-Fossil Fuel Obligation. In the three different orders specified so far, approximately 1400 MW (declared net capacity) of contracts have been awarded to schemes generating electricity from wind, hydro, landfill gas, sewage gas, waste combustion and other combustion (using forestry wastes and biomass) schemes. The majority of projects that have become operational so far have been financed either on 'balance sheet' or by a combination of non-recourse or limited recourse project loans and investor equity. In order to fulfil the government's goal to have 1500 MW (declared net capacity) of electricity from renewables by 2000 a total investment of in excess of 1.5 billion will be required. This paper reviews the terms of the Non Fossil Fuel Obligation, gives details of contracts awarded so far, reviews the financing methods used, summarises the project risks and the means of mitigation and provides case histories of several different renewable energy projects financed in the UK.

David Lindley

1996-01-01T23:59:59.000Z

416

Abbey Publishing Exhibitions UK Ltd | Open Energy Information  

Open Energy Info (EERE)

Publishing Exhibitions UK Ltd Publishing Exhibitions UK Ltd Jump to: navigation, search Name Abbey Publishing & Exhibitions UK Ltd Place Essex, England, United Kingdom Zip EN9 3BP Product UK publishing house responsible for Sustainable FM Magazine. Coordinates 44.511005°, -73.058204° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.511005,"lon":-73.058204,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

UK Windspeed Reference/Archival Database | OpenEI  

Open Energy Info (EERE)

Windspeed Reference/Archival Database Windspeed Reference/Archival Database Dataset Summary Description The windspeed database provides estimates of mean annual wind speed throughout the UK, averaged over a 1-kilometer square area, at each of the following three heights above ground level (agl): 10 meters, 25 meters, and 45 meters. The windspeed database is available through the UK Department of Energy and Climate Change (DECC) website, and is provided for archive purposes only. The database is comprised of historic information, including results derived from mathematical models, so it should not be considered to be measured data, or up to date or accurate. The database was originally developed by the UK Department of Trade and Industry (DTI) at some point before 2001. The data used to develop the database dates from the period approximately between the mid-1970s to the mid-1980s. Results derived from the UK windspeed database should be treated as approximate and high-level.

418

www.kent.ac.uk/is/ Information Services  

E-Print Network [OSTI]

.kent.ac.uk/cmsds-local/ Installing `Putty' Download it from the web (if you have administrator privilages) www close to each other. A dark cursor will not show on a dark background. Ideally make either

Banaji,. Murad

419

David M. Frohlich d.frohlich@surrey.ac.uk  

E-Print Network [OSTI]

19 David M. Frohlich d.frohlich@surrey.ac.uk Professor & Director, Digital World Research Centre in Community Content Creation FROHLICH, BHAT, JONES, LALMAS, FRANK, RACHOVIDES, TUCKER, RIGA Research Article

Lalmas, Mounia

420

www.glasgow.ac.uk/parents Say hello to Glasgow  

E-Print Network [OSTI]

Parents' Guide www.glasgow.ac.uk/parents #12;2 Welcome Say hello to Glasgow Choosing the right Satisfaction (National Student Survey). Contents Page 2 Welcome Say hello to Glasgow Pages3

Guo, Zaoyang

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

UK Energy Consumption by Sector | OpenEI  

Open Energy Info (EERE)

68 68 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278068 Varnish cache server UK Energy Consumption by Sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. In addition, a user guide is available as a supplement to the full set of spreadsheets to explain the technical concepts and vocabulary found within Energy Consumption in the UK (http://www.decc.gov.uk/assets/decc/Statistics/publications/ecuk/272-ecuk-user-guide.pdf). Energy Consumption in the United Kingdom is an annual publication currently published by the UK Department of Energy and Climate Change (DECC) for varying time periods, generally 1970 to 2009 (though some time periods are shorter).

422

Relevance of Case Studies to the U.S. Nuclear Power Industry  

Science Journals Connector (OSTI)

The U.S. aviation and rail industries and the United Kingdom (U.K.) nuclear power industry have many parallels with the U.S. nuclear power industry,1 as noted in the previous sections. In particular, all four ind...

Vicki Bier; James Joosten; David Glyer

2003-01-01T23:59:59.000Z

423

Nuclear Power: A Price Worth Paying For A Stable Climate? Will Cavendish & Robert Gross  

E-Print Network [OSTI]

and under private sector investment criteria a new nuclear station would produce electricity at more than that "nuclear energy will play an essential role in electricity production and strategies against global warming provides a significant share of the world's energy (one quarter of the UK's electricity for example

424

Detecting Nuclear Threats | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detecting Nuclear Threats Detecting Nuclear Threats Stories of Discovery & Innovation Detecting Nuclear Threats Enlarge Photo Photo: Denise Applewhite The MINDS device was invented by a team of engineers at the Princeton Plasma Physics Laboratory, including, from left: Kenny Silber, Henry Carnevale, Charles Gentile, Dana Mastrovito, and Bill Davis. Enlarge Photo 03.28.11 Detecting Nuclear Threats Plasma physics challenge yields portable nuclear detector for homeland security. In 1999, faced with the task of decommissioning the legendary Tokamak Fusion Test Reactor (TFTR), officials at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) realized they needed something that didn't yet exist-a non-destructive, real time device to detect certain "hot" elements lacing the inner vessel of the doughnut-

425

Basis for Contributions by New Members to Past Capital Expenditure - Draft Note by the UK Delegation  

E-Print Network [OSTI]

Basis for Contributions by New Members to Past Capital Expenditure - Draft Note by the UK Delegation

1957-01-01T23:59:59.000Z

426

Advanced nuclear precleaner  

SciTech Connect (OSTI)

This Phase II Small Business Innovation Research (SBIR) program`s goal is to develop a dynamic, self-cleaning air precleaner for high-efficiency particulate air (HEPA) filtration systems that would extend significantly the life of HEPA filter banks by reducing the particulate matter that causes filter fouling and increased pack pressure. HEPA filters are widely used in DOE, Department of Defense, and a variety of commercial facilities. InnovaTech, Inc. (Formerly Micro Composite materials Corporation) has developed a proprietary dynamic separation device using a concept called Boundary Layer Momentum Transfer (BLMT) to extract particulate matter from fluid process streams. When used as a prefilter in the HVAC systems or downstream of waste vitrifiers in nuclear power plants, fuel processing facilities, and weapons decommissioning factories, the BLMT filter will dramatically extend the service life and increase the operation efficiency of existing HEPA filtration systems. The BLMT filter is self cleaning, so there will be no degraded flow or increased pressure drop. Because the BLMT filtration process is independent of temperature, it can be designed to work in ambient, medium, or high-temperature applications. During Phase II, the authors are continuing development of the computerized flow simulation model to include turbulence and incorporate expansion into a three-dimensional model that includes airflow behavior inside the filter housing before entering the active BLMT device. A full-scale (1000 ACFM) prototype filter is being designed to meet existing HEPA filter standards and will be fabricated for subsequent testing. Extensive in-house testing will be performed to determine a full range of performance characteristics. Final testing and evaluation of the prototype filter will be conducted at a DOE Quality Assurance Filter Test Station.

Wright, S.R. [InnovaTech, Inc., Durham, NC (United States)

1997-10-01T23:59:59.000Z

427

UK university unveils affordable hydrogen fuel cell car in India  

Science Journals Connector (OSTI)

Birmingham City University in the UK showcased the concept and design behind what could prove to be the world's first affordable hydrogen fuel cell powered mass transport vehicle, at the recent Auto Expo 2014 motor show in India. BCU partnered on the pioneering project with UK motorsport components manufacturer Spencer Ashley Ltd and the DYP-DC Center for Automotive Research and Studies in Pune.

2014-01-01T23:59:59.000Z

428

The impact of the Fukushima nuclear accident on European energy policy  

Science Journals Connector (OSTI)

The disaster that struck the Fukushima Daiichi nuclear plant in Japan has reignited the international debate on the future of nuclear energy. Interestingly, the incident has been used to both justify nuclear power generation and reconsider past decisions made on established or planned nuclear power sites. Geographically removed from the radioactive fallout, Europe's response to the massive nuclear accident differed greatly among the member states. The UK and Germany stand out as examples of the wide spread of policy response to the Fukushima Daiichi nuclear accident. In the UK, policy makers remained firm on their decision to increase nuclear power generation in the near future, whereas in Germany, the federal government decided to at least temporarily shut down the old generation of nuclear reactors and re-examine the safety of all national nuclear power facilities. Furthermore, a regional voter backlash, fuelled by resentment of the Merkel government's previous commitment to nuclear power, dealt a serious blow to the ruling coalition parties. How can national policy responses to the same event be so divergent in two European countries? This article attempts to answer this question in five arguments. I argue that in contrast to the UK, the German public faced imminent elections, stronger media reporting, increasing trust in renewable technologies, a history of nuclear resistance and a feeling of close cultural proximity to the Japanese.

Bettina B.F. Wittneben

2012-01-01T23:59:59.000Z

429

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERNEP/2002-074  

E-Print Network [OSTI]

King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, U.K. M. Contalbrigo, P. Dalpiaz, J. Duclos, P Institute for Nuclear Studies, Laboratory for High Energy Physics, PL-00-681 Warsaw, Poland11) H. Dibon, M measured with the NA48 detector using a high intensity short neutral beam from the CERN SPS. The measured

Boyer, Edmond

430

Nuclear Matter and Nuclear Dynamics  

E-Print Network [OSTI]

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

431

Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.  

SciTech Connect (OSTI)

The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

LaFreniere, L. M. (Environmental Science Division)

2012-06-29T23:59:59.000Z

432

Preliminary standard review guide for Environmental Restoration/Decontamination and Decommissioning safety analyses  

SciTech Connect (OSTI)

The review guide is based on the shared experiences, approaches, and philosophies of the Environmental Restoration/Decontamination and Decommissioning (ER/D&D) subgroup members. It is presented in the form of a review guide to maximize the benefit to both the safety analyses practitioner and reviewer. The guide focuses on those challenges that tend to be unique to ER/D&D cleanup activities. Some of these experiences, approaches, and philosophies may find application or be beneficial to a broader spectrum of activities such as terminal cleanout or even new operations. Challenges unique to ER/D&D activities include (1) consent agreements requiring activity startup on designated dates; (2) the increased uncertainty of specific hazards; and (3) the highly variable activities covered under the broad category of ER/D&D. These unique challenges are in addition to the challenges encountered in all activities; e.g., new and changing requirements and multiple interpretations. The experiences in approaches, methods, and solutions to the challenges are documented from the practitioner and reviewer`s perspective, thereby providing the viewpoints on why a direction was taken and the concerns expressed. Site cleanup consent agreements with predetermined dates for restoration activity startup add the dimension of imposed punitive actions for failure to meet the date. Approval of the safety analysis is a prerequisite to startup. Actions that increase expediency are (1) assuring activity safety; (2) documenting that assurance; and (3) acquiring the necessary approvals. These actions increase the timeliness of startup and decrease the potential for punitive action. Improvement in expediency has been achieved by using safety analysis techniques to provide input to the line management decision process rather than as a review of line management decisions. Expediency is also improved by sharing the safety input and resultant decisions with reviewers and regulators.

Ellingson, D.R.

1993-06-01T23:59:59.000Z

433

Nuclear choices  

SciTech Connect (OSTI)

This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

Wolfson, R.

1991-01-01T23:59:59.000Z

434

THE STRUCTURAL CHEMISTRY OF MOLYBDENUM IN MODEL HIGH LEVEL NUCLEAR WASTE GLASSES, INVESTIGATED BY MO K-EDGE X-RAY ABSORPTION  

E-Print Network [OSTI]

THE STRUCTURAL CHEMISTRY OF MOLYBDENUM IN MODEL HIGH LEVEL NUCLEAR WASTE GLASSES, INVESTIGATED of molybdenum in model UK high level nuclear waste glasses was investigated by X-ray Absorption Spectroscopy (XAS). Molybdenum K-edge XAS data were acquired from several inactive simulant high level nuclear waste

Sheffield, University of

435

Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation  

SciTech Connect (OSTI)

During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

NONE

1994-09-01T23:59:59.000Z

436

Decommissioning samples from the Ft. Lewis, WA, solvent refined coal pilot plant: chemical analysis and biological testing  

SciTech Connect (OSTI)

This report presents the results from chemical analyses and limited biological assays of three sets of samples from the Ft. Lewis, WA solvent refined coal (SRC) pilot plant. The samples were collected during the process of decommissioning this facility. Chemical composition was determined for chemical class fractions of the samples by using high-resolution gas chromatography (GC), high-resolution GC/mass spectrometry (MS) and high-resolution MS. Biological activity was measuring using both the histidine reversion microbial mutagenicity assay with Salmonella typhimurium, TA98 and an initiation/promotion mouse-skin tumorigenicity assay. 19 refs., 7 figs., 27 tabs.

Weimer, W.C.; Wright, C.W.

1985-10-01T23:59:59.000Z

437

defense nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

438

Chernobyl Nuclear Accident | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Chernobyl Nuclear Accident | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

439

Countering Nuclear Terrorism and Trafficking | National Nuclear...  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism and Trafficking | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

440

Site A/Plot M, Illinois, Decommissioned Reactor Site Fact Sheet  

Office of Legacy Management (LM)

at Site A began in 1943 and ended in 1954. The fi rst nuclear reactor to achieve a self-sustaining chain reaction, CP-1, was moved from the University of Chicago to Site A in 1943...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

December 2013 | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 | National Nuclear Security Administration 3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > December 2013 December 2013 NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Posted By Office of Public Affairs On Dec. 18-19, 2013, the United States hosted a visit by delegations from

442

December 2013 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

3 | National Nuclear Security Administration 3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > December 2013 December 2013 NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Posted By Office of Public Affairs On Dec. 18-19, 2013, the United States hosted a visit by delegations from

443

NNSA Blog | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Blog | National Nuclear Security Administration Blog | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Posted By Office of Public Affairs On Dec. 18-19, 2013, the United States hosted a visit by delegations from

444

U. S. Department of Energy National Nuclear Security Administration  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration Pantex Site Office P. O. Box 30030 Amarillo, TX 79120-0030 JUL 30 2010 AGENCY: U.S. Department of Energy's (DOE's) National Nuclear Security Administration (NNSA) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The NNSA has prepared an Environmental Assessment (EA), DOE/EA-1696, to analyze the potential environmental consequences of constructing, operating, maintaining, and decommissioning a 3- phased wind generator farm and its associated energy distribution infrastructure on Pantex Federal property or leased land using federal funding. NNSA needs the capability to generate and distribute electricity as a renewable energy source. The quantity generated, as a minimum, would be sufficient in Phase I to meet or

445

20 - Licensing for nuclear power plant siting, construction and operation  

Science Journals Connector (OSTI)

Abstract: This chapter addresses the need for licensing of nuclear power plants, and how such licenses can be requested by an applicant and granted by a regulatory authority. The licensing process is country dependent, although based on the common principle that the applicant must demonstrate that the proposed nuclear power plant will comply with the established regulations, and that it will operate safely without undue risks to the health and safety of plant personnel, the population and the environment. During the construction and operational phases the regulatory authority ensures compliance with the the license conditions through evaluation, monitoring and inspection. The license may be a single document covering all the phases in the life of the plant, or a set of consecutive documents requested and issued for different phases, which may include design certification, site approval, design and construction, commissioning and operation, design changes during operation, life extension and, finally, decommissioning.

A. Alonso; S.K. Sharma; D.F. Torgerson

2012-01-01T23:59:59.000Z

<