Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS  

SciTech Connect

Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

Farfan, E.; Foley, T.

2010-02-11T23:59:59.000Z

2

Confidentiality Agreement between the Nuclear Decommissioning Authority and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Communication & Engagement » International Programs » Services » Communication & Engagement » International Programs » Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy More Documents & Publications Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Scanned_Agreement.pdf Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Waste Management Nuclear Materials & Waste

3

Nuclear Plant Decommissioning  

Science Conference Proceedings (OSTI)

In the 1990s several nuclear utilities proceeded with full decommissioning of their nuclear power plants based on perceived economics. This major shift to immediate decommissioning presented a significant challenge to the industry in terms of the development of a decommissioning process and a comprehensive updated regulatory framework. EPRI responded by undertaking the formation of the Decommissioning Support Program. The initial work involved conducting a series of topical workshops directed to specific...

2010-11-24T23:59:59.000Z

4

Nuclear Decommissioning Financing Act (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Nuclear Decommissioning Financing Act calls for the establishment of a tax-exempt, tax-deductible decommissioning fund by the licensee of any nuclear power generating facility to pay for the...

5

Statement of Intent between the US Department of Energy and UK Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication & Engagement » International Programs » Communication & Engagement » International Programs » Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority for exchange of information concerning management of radioactive waste. Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority More Documents & Publications Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority International Agreements Comments

6

DECOMMISSIONING OF NUCLEAR POWER REACTORS  

E-Print Network (OSTI)

Decommissioning means permanently removing a nuclear facility from service and reducing radioactive material on the licensed site to levels that would permit termination of the NRC license. On June 27, 1988, the NRC issued general requirements on decommissioning that contained technical and financial criteria and dealt with planning needs, timing, funding mechanisms, and environmental review

unknown authors

2000-01-01T23:59:59.000Z

7

Decommissioning in the mature nuclear power industry  

SciTech Connect

Procedures for decommissioning a nuclear power plant or a spent fuel reprocessing plant are described. (DCC)

Anderson, F.H.; Slansky, C.M.

1975-01-01T23:59:59.000Z

8

Regulatory Process for Decommissioning Nuclear Power Reactors  

Science Conference Proceedings (OSTI)

The NRC revised decommissioning rule 10 CFR 50.82 in 1996 to make significant changes in the regulatory process for nuclear power plant licensees. This report provides a summary of ongoing federal agency and industry activities. It also describes the regulatory requirements applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning plan, and provides industry...

1998-03-26T23:59:59.000Z

9

Updated Costs for Decommissioning Nuclear Power Facilities  

Science Conference Proceedings (OSTI)

This update of 1978 NRC cost estimates--in 1984 dollars--also estimates the costs of several special manpower and licensing options for decommissioning nuclear power facilities. The fully developed methodology offers utilities a sound basis on which to estimate the costs of decommissioning specific plants.

1985-05-13T23:59:59.000Z

10

Safety of Decommissioning of Nuclear Facilities  

Science Conference Proceedings (OSTI)

Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

11

Rancho Seco Nuclear Generating Station Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants entered decommissioning in the 1990s. Based on current information, the next group of plants whose license will expire will not begin decommissioning for nearly a decade. This report provides detailed information on the decommissioning of one plant, the Rancho Seco Nuclear Generating Station, in order to capture its experience for future plants.

2007-12-19T23:59:59.000Z

12

Ris-R-1250(EN) Decommissioning of the Nuclear  

E-Print Network (OSTI)

Risø-R-1250(EN) Decommissioning of the Nuclear Facilities at Risø National Laboratory Descriptions on request from the Minister of Research and Information Technology. It describes the nuclear facilities;Decommissioning of Risø's nuclear facilities. Descriptions and cost assessment. Risø-R-1250(EN) 3 Contents 1

13

Statement of Intent No. 2 between DOE and the Nuclear Decommissioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent...

14

Yankee Nuclear Power Station - analysis of decommissioning costs  

SciTech Connect

The preparation of decommissioning cost estimates for nuclear power generating stations has received a great deal of interest in the last few years. Owners are required by regulation to ensure that adequate funds are collected for the timely decommissioning of their facilities. The unexpected premature shutdown of several facilities and uncertainties associated with radioactive waste disposal and long-term spent-fuel storage, when viewed in the light of a deregulated electric utility industry, has caused many companies to reevaluate their decommissioning cost estimates. The decommissioning of the Yankee Nuclear Power Station represents the first large-scale project involving the complete decontamination and dismantlement of a commercial light water nuclear power generation facility in the United States. Since this pressurized water reactor operated for 32 yr at a respectable 74% lifetime capacity factor, the actual costs and resources required to decommission the plant, when compared with decommissioning estimates, will yield valuable benchmarking data.

Lessard, L.P. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

15

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

1990-09-01T23:59:59.000Z

16

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

1989-09-01T23:59:59.000Z

17

Application of Non-Nuclear Robotics to Nuclear Industry Decommissioning  

Science Conference Proceedings (OSTI)

Segmentation of radioactive components, including reactor cavity internals, has proved to be a challenging job for the nuclear power industry during decommissioning. The innovative use of robotic technology to perform debris cleanup can help utilities maximize worker safety. This report documents a first of its kind robotics experience at Connecticut Yankee.

2004-08-11T23:59:59.000Z

18

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

19

Future AI and Robotics Technology for Nuclear Plants Decommissioning  

E-Print Network (OSTI)

Robotics Program The Robotics Program within the Nuclear Engineering Division is developing new technologies. Currently, we are exploring opportunities in applications for nuclear reactor operation, maintenance of remote energy installations, decontamination and decommissioning, and minimally invasive surgery

Hu, Huosheng

20

San Onofre Nuclear Generating Station - Unit 1 Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

This report provides detailed information on the successful decommissioning activities of San Onofre Nuclear Generating Station, Unit 1 (SONGS 1). The report describes their experiences and lessons learned for managers of US and international plants beginning or currently engaged in decommissioning.

2008-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Safety Oversight of Decommissioning Activities at DOE Nuclear Sites  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

2008-01-15T23:59:59.000Z

22

Bayesian Analysis for the Site-Specific Dose Modeling in Nuclear Power Plant Decommissioning.  

E-Print Network (OSTI)

??Decommissioning is the process of closing down a facility. In nuclear power plant decommissioning, it must be determined that that any remaining radioactivity at a (more)

Ling, Xianbing

2001-01-01T23:59:59.000Z

23

Decommissioning considerations at a time of nuclear renaissance  

SciTech Connect

At a time of renaissance in the nuclear power industry, when it is estimated that anywhere between 60 to 130 new power reactors may be built worldwide over the next 15 years, why should we focus on decommissioning? Yet it is precisely the time to examine what decommissioning considerations should be taken into account as the industry proceeds with developing final designs for new reactors and the construction on the new build begins. One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Even though decommissioning may be sixty years down the road from the time they go on line, eventually all reactors will be decommissioned. It is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. The overall objective in this regard is that when the time comes for decommissioning, it can be completed in shorter time frames, with minimum generation of radioactive waste, and with better radiological safety. This will ensure that the tail end costs of the power reactors are manageable and that the public confidence in the nuclear power is sustained through the renaissance and beyond. (author)

Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC, 55 E. Monroe St, Chicago, IL 60603 (United States)

2007-07-01T23:59:59.000Z

24

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

25

Decommissioning of Ris's nuclear facilities. Descriptions and cost assessment.  

E-Print Network (OSTI)

nuclear facilities at Ris National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. ISBN 87-550-2844-6; 87-550-2846-2 (Internet)

Edited Kurt Lauridsen

2001-01-01T23:59:59.000Z

26

Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities  

E-Print Network (OSTI)

1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

27

Program Change Management During Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear power plant is a complex project, which involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As plants meet certain project Milestones, the evolution of such plant programs and regulations can help optimize project execution and cost. This report provides information about these Milestones and the plant departments and programs that change throughout a decommissioning project.

2009-12-11T23:59:59.000Z

28

The Decommissioning of the Trino Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of BNFL decommissioning experience and knowledge to develop a strategy, methodology and cost for the decommissioning of NPPs. Over the past year, a prompt decommissioning strategy for Trino has been developed. The strategy has been based on the principles of minimizing waste products that require long term storage, maximizing 'free release' materials and utilizing existing and regulatory approved technologies.

Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

2002-02-27T23:59:59.000Z

29

Decommissioning San Onofre Nuclear Generating Station Unit 1 (SONGS-1)  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear power plant and termination of the plant license requires the removal of highly activated materials from inside the nuclear reactor pressure vessel (RPV). Such a task presents a major challenge in terms of technology, project management, and worker exposure. This report documents the approach taken by Southern California Edison (SCE) in their highly successful reactor vessel internals (RVI) segmentation of San Onofre Nuclear Generating Station Unit 1 (SONGS-1). The report detail...

2005-12-12T23:59:59.000Z

30

Pending Issues In Decommissioning Of Nuclear Installations In Developing Countries  

E-Print Network (OSTI)

While decommissioning technology and infrastructures are reasonably mature in fully developed countries at the beginning of the third millennium, this is not necessarily the case for some developing countries. It is unfortunate that many of these countries have given little or no attention to early planning and creation of infrastructures for the decommissioning of their nuclear installations, which in many cases are candidates for permanent shutdown in the near future. Critical areas include inter alia (1) poor or no allocation of decommissioning funds, (2) uncertain availability of affordable technologies, (3) unclear definition of roles and responsibilities including lack of regulations, (4) inadequate management and organization techniques, (5) perceived low priority and weak political support, and (6) lack of human and technical resources, particularly in the long term. The International Atomic Energy Agency (IAEA) is a unique forum to identify and address current and prospecti...

Michele Laraia International

2000-01-01T23:59:59.000Z

31

The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities  

SciTech Connect

Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

32

Conceptual Nuclear Decommissioning Knowledge Management System Design  

Science Conference Proceedings (OSTI)

Taiwan Research Reactor (TRR) was shut down in January 1988, along with the termination of a few nuclear facilities within Institute of Nuclear Energy Research (INER). In the past few years, INER has continually dismantled its related nuclear facilities. ...

I-Hsin Chou; Chin-Feng Fan; Yen-Chang Tzeng

2005-07-01T23:59:59.000Z

33

Trojan Nuclear Power Plant Reactor Vessel and Internals Removal: Trojan Nuclear Plant Decommissioning Experience  

Science Conference Proceedings (OSTI)

One goal of the EPRI Decommissioning Technology Program is to capture the growing utility experience in nuclear plant decommissioning activities for the benefit of other utilities facing similar challenges in the future. This report provides historical information on the background, scope, organization, schedule, cost, contracts, and support activities associated with the Trojan Nuclear Plant Reactor Vessel and Internals Removal (RVAIR) Project. Also discussed are problems, successes, and lessons learned...

2000-10-16T23:59:59.000Z

34

Environment, Food and Rural Affairs (Defra) and the Nuclear Decommissioning Authority (NDA)  

E-Print Network (OSTI)

Decommissioning Authority (NDA) have commissioned the 2007 UK Radioactive Waste Inventory (2007 Inventory) to provide information on the status of radioactive waste at 1 April 2007 and forecasts of future arisings in the UK. Its aim is to provide comprehensive and up-to-date data in an open and transparent manner for those interested in radioactive waste issues. It is part of an ongoing programme of research jointly conducted by Defra and NDA. Waste volumes are given for the UK as a whole, for each type of waste producing activity and for each of the main organisations producing wastes. The report also presents information on the radioactivity and the material content of the wastes. The report includes high, intermediate and low level wastes produced from uranium enrichment, nuclear fuel manufacture, nuclear power production, spent fuel reprocessing, research and development, medical and industrial sources and defence activities. The assumptions used in the forecasts of future waste arisings are presented and discussed. Also the waste quantities in the present Inventory are compared with corresponding information from previous inventories and any differences are explained.

Pyry Energy Limited Preface

2008-01-01T23:59:59.000Z

35

NNSA, Rosatom, UK Ministry of Defence Hold Trilateral Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA, Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best Practices Workshop | National Nuclear Security Administration Our Mission Managing the Stockpile...

36

A Comparative Perspective on Reactor Decommissioning  

Science Conference Proceedings (OSTI)

A comparative perspective on decommissioning, based on facts and figures as well as the national policies, is useful in identifying mutually beneficial 'lessons learned' from various decommissioning programs. In this paper we provide such a perspective on the US and European approaches based on a review of the programmatic experience and the decommissioning projects. The European countries selected for comparison, UK, France, and Germany, have nuclear power programs comparable in size and vintage to the US program but have distinctly different policies at the federal level. The national decommissioning scene has a lot to do with how national nuclear energy policies are shaped. Substantial experience exists in all decommissioning programs and the technology is in a mature state. Substantial cost savings can result from sharing of decommissioning information, technologies and approaches among various programs. However, the Achilles' heel for the decommissioning industry remains the lack of appropriate disposal facilities for the nuclear wastes. (authors)

Devgun, J.S. [Nuclear Power Technologies, Sargent and Lundy LLC, 55 E. Monroe Street, Chicago, IL 60603 (United States); Zelmer, R. [Low-Level Radioactive Waste Management Office, Atomic Energy of Canada Limited, 1900 City Park Drive, Suite 200, Ottawa, Ontario K1J 1A3 (Canada)

2006-07-01T23:59:59.000Z

37

Preservation and Implementation of Decommissioning Lessons Learned in the United States Nuclear Regulatory Commission  

SciTech Connect

Over the past several years, the United States Nuclear Regulatory Commission (NRC) has actively worked to capture and preserve lessons learned from the decommissioning of nuclear facilities. More recently, NRC has involved industry groups, the Organization of Agreement States (OAS), and the Department of Energy (DOE) in the effort to develop approaches to capture, preserve and disseminate decommissioning lessons learned. This paper discusses the accomplishments of the working group, some lessons learned by the NRC in the recent past, and how NRC will incorporate these lessons learned into its regulatory framework. This should help ensure that the design and operation of current and future nuclear facilities will result in less environmental impact and more efficient decommissioning. In summary, the NRC will continue capturing today's experience in decommissioning so that future facilities can take advantage of lessons learned from today's decommissioning projects. NRC, both individually and collectively with industry groups, OAS, and DOE, is aggressively working on the preservation and implementation of decommissioning lessons learned. The joint effort has helped to ensure the lessons from the whole spectrum of decommissioning facilities (i.e., reactor, fuel cycle, and material facilities) are better understood, thus maximizing the amount of knowledge and best practices obtained from decommissioning activities. Anticipated regulatory activities at the NRC will make sure that the knowledge gained from today's decommissioning projects is preserved and implemented to benefit the nuclear facilities that will decommission in the future.

Rodriguez, Rafael L. [United States Nuclear Regulatory Commission, Office of Federal and State Materials and Environmental Management Programs, Washington, DC 20555 (United States)

2008-01-15T23:59:59.000Z

38

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network (OSTI)

policy 52 New nuclear stations in the UK 57 The UK nuclear fuel cycle: historic, present and future 63 energy, nuclear research 86 and the fuel cycle The future of waste disposal 88 Public perception failures, can nuclear power stations be built to budget and time? Is public opinion sufficiently resilient

Birmingham, University of

39

Statement of Intent NO. 2 between the US Department of Energy and UK  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Intent NO. 2 between the US Department of Energy and UK Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the Department of Energy of the United States and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and northern Ireland for exchange of information concerning management of radioactive waste. Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority More Documents & Publications Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority

40

4.1.4 NUCLEAR SUBSTANCE ROOM DECOMMISSIONING FORM The permit holder shall ensure that prior to decommissioning any area, room or enclosure where  

E-Print Network (OSTI)

and efficiency of telerobotics in the decontamination and decommissioning of nuclear power plants. Currently, we, LLC Nuclear Engineering Technology Initiatives The Nuclear Engineering (NE) Division carries out · Decontamination & Decommissioning ­ Laser processing technology for decontamination of surfaces · Refractory Alloy

Sinnamon, Gordon J.

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

42

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

43

Decommissioning at AWE  

Science Conference Proceedings (OSTI)

AWE (A) has been at the heart of the UK Nuclear deterrent since it was established in the early 1950's. It is a nuclear licensed site and is governed by the United Kingdoms Nuclear Installation Inspectorate (NII). AWE plc on behalf of the Ministry of Defence (MOD) manages the AWE (A) site and all undertakings including decommissioning. Therefore under NII license condition 35 'Decommissioning', AWE plc is accountable to make and implement adequate arrangements for the decommissioning of any plant or process, which may affect safety. The majority of decommissioning projects currently being undertaken are to do with Hazard category 3, 4 or 5 facilities, systems or plant that have reached the end of their operational span and have undergone Post-Operational Clean-Out (POCO). They were either built for the production of fissile components, for supporting the early reactor fuels programmes or for processing facility waste arisings. They either contain redundant contaminated gloveboxes associated process areas, process plant or systems or a combination of all. In parallel with decommissioning project AWE (A) are undertaking investigation into new technologies to aid decommissioning projects; to remove the operative from hands on operations; to develop and implement modifications to existing process and techniques used. AWE (A) is currently going thorough a sustained phase of upgrading its facilities to enhance its scientific capability, with older facilities, systems and plant being replaced, making decommissioning a growth area. It is therefore important to the company to reduce these hazards progressively and safety over the coming years, making decommissioning an important feature of the overall legacy management aspects of AWE PLC's business. This paper outlines the current undertakings and progress of Nuclear decommissioning on the AWE (A) site. (authors)

Biles, K.; Hedges, M.; Campbell, C

2008-07-01T23:59:59.000Z

44

Effect of Nuclear Power Plant Decommissioning Costs on Plant Life Cycle Decisions  

Science Conference Proceedings (OSTI)

Nuclear utilities implementing Life Cycle Management (LCM) Programs and facing run-relicense-retire decisions need to evaluate the financial cost/benefit of such decisions. Decommissioning costs are one element of these evaluations. This report includes a decommissioning cost estimate for Calvert Cliffs Nuclear Power Plant (CCNPP) that can be used as a reference source by nuclear utilities involved in LCM and license renewal (LR) decisions.

1995-07-01T23:59:59.000Z

45

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes  

Science Conference Proceedings (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

46

Application of Mobile Agents to Robust Teleoperation of Internet Robots in Nuclear Decommissioning  

E-Print Network (OSTI)

to harness nuclear fusion for energy production. The Committee recommends $474,617,000 for fusion energy the Alcator C- Mod facility and provides only enough funding for decommissioning and existing graduate

Hu, Huosheng

47

Decommissioning Program  

NLE Websites -- All DOE Office Websites (Extended Search)

area. The organizations has been actively performing and supporting others in performing decommissioning of former nuclear sites. Staff members are recognized as subject matter...

48

Characterization and Dose Modeling of Soil, Sediment and Bedrock During Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

A decommissioning nuclear power plant must confirm that the radionuclides present in the soils, sediments, and bedrock left on site at the time of license termination will meet the appropriate dose limits for site release. This process involves the characterization, dose modeling, and if required, remediation, of these media. At some decommissioning nuclear power plants, the management of contaminated soil, sediments, and bedrocks was a major project that led to generation of remediation projects and rad...

2009-11-20T23:59:59.000Z

49

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

50

Statement of Intent NO. 2 between the US Department of Energy and UK  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Communication & Engagement » International Programs » Services » Communication & Engagement » International Programs » Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Statement of Intent NO. 2 between the Department of Energy of the United States and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and northern Ireland for exchange of information concerning management of radioactive waste. Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority More Documents & Publications Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent between the US Department of Energy and UK Nuclear

51

Group Differences in Safety Climate Among Workers in the Nuclear Decommissioning and Demolition Industry in the United States.  

E-Print Network (OSTI)

??This study investigated group differences in safety climate among workers in the nuclear decommissioning and demolition (D&D) industry in the United States. The study population (more)

Findley, Michael Everett

2004-01-01T23:59:59.000Z

52

Nuclear reactor decommissioning. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning nuclear power and research reactor decommissioning and decontamination plans, costs, and safety standards. References discuss the design and evaluation of protective confinement, entombment, and dismantling systems. Topics include decommissioning regulations and rules, public and occupational radiation exposure estimates, comparative evaluation, and reactor performance under high neutron flux conditions. Waste packaging and disposal, environmental compliance, and public opinion are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-10-01T23:59:59.000Z

53

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

54

Comparison of Decommissioning Dose Modeling Codes for Nuclear Power Plant Use: RESRAD and DandD  

Science Conference Proceedings (OSTI)

A number of power plants are currently in the decommissioning phase. As the plants seek to terminate their operating license, they need to successfully conduct definite dose assessments. To assist these utilities in selecting an analysis code and appropriate input data, EPRI conducted a code comparison. However, this report was done as the industry's input to the NRC on their evolving review and improvement of decommissioning modeling. In early 2000, EPRI will publish a report for the commercial nuclear ...

1999-10-29T23:59:59.000Z

55

Decommissioning of the Nuclear Licensed Facilities at the Fontenay aux Roses CEA Center  

SciTech Connect

This is a summary of the program for the decommissioning of all the CEA's facilities in Fontenay aux Roses. The particularity of this center is that it is located in a built-up area. Taking into account the particularities of the various buildings and the levels of radioactivity in them, it was possible to devise a coherent, optimized program for the CEA-FAR licensed nuclear facility decommissioning operations.

Jeanjacques, Michel; Piketty, Laurence; Mandard, Lionel; Pedron, Guy; Boissonneau, Jean Francois; Fouquereau, Alain; Pichereau, Eric; Lethuaire, Nathalie; Estivie, David; Binet, Cedric; Meden, Igor [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Direction deleguee des Activites Nucleaires de Saclay, Departement des Reacteurs et des Services Nucleaires, Service d'Assainissement de Fontenay Aux Roses : 18, route du Panorama, BP6, 92265 Fontenay aux Roses Cedex (France)

2008-01-15T23:59:59.000Z

56

Decision to reorganise or reorganising decisions? A First-Hand Account of the Decommissioning of the Phnix Nuclear Power Plant  

E-Print Network (OSTI)

of scheduled nuclear reactor shutdowns. It was also the approach adopted for the study presented here, which in the decommissioning of nuclear facilities. ORGANISATIONAL THEORY AND RESEARCH TOOL VALIDATION The study of the Decommissioning of the Phénix Nuclear Power Plant Melchior Pelleterat de Borde, MINES ParisTech, Christophe Martin

Paris-Sud XI, Université de

57

Decommissioning Economics and Risk Advisor: An Introduction to DERAD Version 2.0: Volume 1: EPRI's Nuclear Decommissioning Program; Volume 2: Methodology Description; Volume 3: Program Manual; Volume 4: Using DERAD  

Science Conference Proceedings (OSTI)

Decommissioning of commercial nuclear plants in the United States is estimated to cost hundreds of millions of dollars per plant. EPRI's Decommissioning Economics and Risk Advisor (DERAD) Version 2.0 is a decision analysis support tool designed to help utilities evaluate the economics and financial risk of decommissioning nuclear power plants. This report provides examples and case studies to support DERAD use.

1996-09-17T23:59:59.000Z

58

D&D GoalD&D Goal The goal of the Argonne Decommissioning Program is to be recognized as a  

E-Print Network (OSTI)

Body Organisation responsible for decommissioning one the UK legacy nuclear installationswww.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY Third Party Nuclear Liability 1207 Anthony Thomas and Raphael J. Heffron With a return to nuclear new build expected in the UK

Kemner, Ken

59

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

Science Conference Proceedings (OSTI)

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

60

Decommissioning Handbook  

Science Conference Proceedings (OSTI)

The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

Not Available

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Criticality safety aspects of decontamination and decommissioning at defense nuclear facilities  

SciTech Connect

Defense nuclear facilities have operated for forty years with a well-defined mission to produce weapons components for the nation. With the end of the cold war, the facilities` missions have changed to one of decontamination and decommissioning. Off-normal operations and use of new procedures, such as will exist during these activities, have often been among the causal factors in previous criticality accidents at process facilities. This paper explores the similarities in causal factors in previous criticality accidents to the conditions existing in current defense nuclear facilities undergoing the transition to decontamination and decommissioning. Practices to reduce the risk to workers, the public, and the environment are recommended.

Croucher, D.W.

1994-02-01T23:59:59.000Z

62

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station  

SciTech Connect

This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

Konzek, G.J.; Smith, R.I. (Pacific Northwest Lab., Richland, WA (USA))

1990-12-01T23:59:59.000Z

63

Remediation of Embedded Piping: Trojan Nuclear Plant Decommissioning Experience  

Science Conference Proceedings (OSTI)

Characterization, decontamination, survey, and/or removal of contaminated embedded piping can have a substantial financial impact on decommissioning projects, depending on the project approach. This report presents a discussion of the Trojan Embedded Pipe Remediation Project (EPRP) activities, including categorization and characterization of affected piping, modeling for the proposed contamination acceptance criteria, and evaluations of various decontamination and survey techniques. The report also descr...

2000-10-19T23:59:59.000Z

64

Determining Background Radiation Levels in Support of Decommissioning Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report is a technical reference for determining background radiation levels in support of surveys for decommissioning nuclear power facilities. Careful planning and data evaluation are essential for a valid survey. The report discusses important considerations for successful establishment of background levels for soils, surfaces, structures, and groundwater. It also explores alternatives to performing a formal background study.

2001-11-26T23:59:59.000Z

65

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

66

Graphite Decommissioning  

Science Conference Proceedings (OSTI)

Many of the international participants in the EPRI Decommissioning Technology Program use graphite as a moderator material in their gas cooled reactors. This report reviews the current options for the management and disposal of irradiated nuclear graphite following the decommissioning of these nuclear installations. It also discusses specific issues associated with the disposal of graphite, and outlines innovative options for recycling or reusing products formed from the irradiated material.

2006-03-03T23:59:59.000Z

67

Decommissioning Planning  

Science Conference Proceedings (OSTI)

The purpose of this EPRI Technical Report is to provide a series of pre-planning guidance documents for the decommissioning of a nuclear power plant. This guidance is based in part upon Nuclear Decommissioning Plans (NDPs) developed by Commonwealth Edison (now Exelon) following the premature closure of Zion Station in 1998 as well as from other industry references and experience. These NDPs focus on the planning activities over the period from prior to final shutdown through the transition period into de...

2006-11-15T23:59:59.000Z

68

Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities  

E-Print Network (OSTI)

1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

69

Optimising waste management performance - The key to successful decommissioning  

SciTech Connect

Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

Keep, Matthew [Entec UK Limited. 17 Angel Gate. City Road. London EC1V 2SH (United Kingdom)

2007-07-01T23:59:59.000Z

70

Development of a safety assessment approach for decontamination and decommissioning operations at nuclear facilities  

SciTech Connect

The US Department of Energy (DOE) is responsible for nearly 1000 nuclear facilities which will eventually be decommissioned. In order to ensure that the health and safety of the workers, other personnel on site and the public in general is maintained during decontamination and decommissioning (D&D) operations, a methodology specifically for use in evaluating the nuclear safety of the associated activities is being developed within the Department. This methodology represents not so much a departure from that currently fish in the DOE when conducting safety assessments of operations at nuclear facilities but, rather, a formalization of those methods specifically adapted to the D&D activities. As such, it is intended to provide the safety assessment personnel with a framework on which they can base their technical judgement, to assure a consistent approach to safety assessment of D&D operations and to facilitate the systematic collection of data from facilities in the post-operational part of the life cycle.

Worthington, P.R. [USDOE, Washington, DC (United States); Cowgill, M.G. [Brookhaven National Lab., Upton, NY (United States)

1994-12-31T23:59:59.000Z

71

Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities  

E-Print Network (OSTI)

1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

72

Updates to the U.S. Nuclear Regulatory Commission's Consolidated NMSS Decommissioning Guidance  

Science Conference Proceedings (OSTI)

In September 2003, U.S. Nuclear Regulatory Commission (NRC) staff in the Office of Nuclear Material Safety and Safeguards (NMSS) consolidated and updated the policies and guidance of its decommissioning program in a three-volume NUREG report, NUREG-1757, 'Consolidated NMSS Decommissioning Guidance' [1,2,3]. This NUREG report provides guidance on: planning and implementing license termination under the NRC's License Termination Rule (LTR), in 10 CFR Part 20, Subpart E; complying with the radiological criteria for license termination; and complying with the requirements for financial assurance and record-keeping for decommissioning and timeliness in decommissioning of materials facilities. The staff plans to periodically update NUREG-1757, so that it reflects current NRC decommissioning policy. In September 2005, the staff issued, for public comment, draft Supplement 1 to NUREG-1757 [4], which contains proposed updates to the three volumes of NUREG-1757. Draft Supplement 1 includes new and revised decommissioning guidance that addresses some of the LTR implementation issues, which were analyzed by the staff in two Commission papers (SECY-03-0069, Results of the LTR Analysis [5]; and SECY-04-0035, Results of the LTR Analysis of the Use of Intentional Mixing of Contaminated Soil [6]). These issues include restricted use and institutional controls, onsite disposal of radioactive materials under 10 CFR 20.2002, selection and justification of exposure scenarios based on reasonably foreseeable future land use (realistic scenarios), intentional mixing of contaminated soil, and removal of material after license termination (a follow-up to the LTR Analysis issue on the relationship between the LTR and the current case-by-case approach for release of solid materials). The staff also developed new and revised guidance on other issues, including the risk-informed graded approach for engineered barriers. This paper is a follow-up to a poster session and paper at Waste Management 2004, which presented the new Consolidated NMSS Decommissioning Guidance in NUREG-1757. This paper discusses the issues addressed in the current update to NRC's decommissioning guidance and explores the relationships between the issues. (authors)

Banovac, K.L.; Johnson, R.L.; Schmidt, D.W. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

73

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

74

Capturing Historical Knowledge for Decommissioning of Nuclear Power Plants: Summary of Historical Site Assessments at Eight Decommis sioning Plants  

Science Conference Proceedings (OSTI)

This report describes approaches utilized and experience gained in the development of early characterization activities by a number of nuclear power plants undergoing decommissioning. In particular, the report provides experience and lessons of performing the Historical Site Assessment, or HSA.

2004-04-01T23:59:59.000Z

75

Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece  

Science Conference Proceedings (OSTI)

Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

76

Use of Probabilistic Methods in Nuclear Power Plant Decommissioning Dose Analysis  

Science Conference Proceedings (OSTI)

This report provides guidance on the use of probabilistic dose analysis in the demonstration of regulatory compliance for final release of decommissioned nuclear plant sites. It also addresses probabilistic dose analysis and the interpretation of its results in general terms. Finally, the report examines the use of the RESRAD 6.0 as a tool for screening dose analysis and for site-specific probabilistic dose analysis.

2002-05-21T23:59:59.000Z

77

Use of In-Situ Gamma Spectroscopy During Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

Due to leakage and other events that may occur during nuclear power plant operations, soil, concrete and bedrock have the potential to become contaminated, and therefore must be characterized to demonstrate that they meet strict regulatory site release limits. This report provides detailed information on the use of portable gamma spectroscopy systems for the characterization and Final Status Survey of soil, concrete and bedrock contaminated with radionuclides at a number of plants undergoing decommission...

2010-12-06T23:59:59.000Z

78

Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond  

SciTech Connect

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

2009-11-09T23:59:59.000Z

79

ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND  

Science Conference Proceedings (OSTI)

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

Farfan, E.

2009-09-30T23:59:59.000Z

80

Clearance Levels For Redundant Material From Decommissioning Of Nuclear Facilities  

E-Print Network (OSTI)

Currently, a great deal is happening in the regulatory field regarding the release of radiologically contaminated material: . The IAEA is working on the revision of Safety Series 89 (governing the principles of exemption and clearance) and of the TECDOC 855 on clearance levels. . The European Commission Directive on basic safety standards for protection against ionizing radiation in both nuclear and non-nuclear industries will become effective in May 2000. . The U.S. NRC has issued its draft on clearance of material from nuclear facilities (NUREG 1640), as well as an "issues" paper on the release of solid materials. The U.S. State Department has launched an International Radioactive Source Management Initiative, one of the objectives being to "develop international standards and guidelines and `harmonize' U.S. and IAEA radioactive clearance levels." Of great significance to the implementor of clearance regulations in the nuclear industry is the emergence of the NORM issue durin...

Shankar Menon Program; Shankar Menon

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography  

SciTech Connect

This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

Faust, R.A.; Fore, C.S.; Knox, N.P.

1980-09-01T23:59:59.000Z

82

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program  

SciTech Connect

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

83

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites December 2008 U.S. Department of Energy Office of Civilian Radioactive Waste Management Washington, D.C. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel The picture on the cover is the Connecticut Yankee Independent Spent Fuel Storage Installation site in Haddam, Connecticut, with 43 dry storage NRC-licensed dual-purpose (storage and transport) casks. ii Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel EXECUTIVE SUMMARY The House Appropriations Committee Print that accompanied the Consolidated Appropriations Act, 2008, requests that the U.S. Department of Energy (the Department):

84

ASSURING THE AVAILABILITY OF FUNDS FOR DECOMMISSIONING NUCLEAR REACTORS  

E-Print Network (OSTI)

This regulatory guide is being issued in draft form to involve the public in the early stages of the development of a regulatory position in this area. It has not received complete staff review or approval and does not represent an official NRC staff position. Public comments are being solicited on this draft guide (including any implementation schedule) and its associated regulatory analysis or value/impact statement. Comments should be accompanied by appropriate supporting data. Written comments may be submitted to the Rules and Directives Branch, Office of Administration, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001. Comments may be submitted electronically or downloaded through the NRCs interactive web site at through Rulemaking. Copies of comments received may be examined at the NRC Public

Contact B. J. Richter; B. Discussion

2001-01-01T23:59:59.000Z

85

Decommissioning Experiences and Lessons Learned: Decommissioning Costs  

Science Conference Proceedings (OSTI)

In 1995, the United States (US) Nuclear Regulatory Commission (NRC) issued revised decommissioning regulations that provided a dose-based site release limit and detailed supporting regulatory guidance. This report summarizes the decommissioning cost experiences at US nuclear plants, including information about radwaste volumes and the cost of radwaste disposal based on the current regulatory situation in the US.

2011-11-29T23:59:59.000Z

86

Power Reactor Decommissioning Experience  

Science Conference Proceedings (OSTI)

During the past two decades the NRC regulated nuclear industry has encountered and dealt with a diverse range of political, financial and technological challenges while decommissioning its nuclear facilities. During that time, the decommissioning of nuclear facilities has evolved into a mature industry in the United States with a number of large power reactors successfully decommissioned and their NRC licenses terminated. One of the challenges discussed in this report is site release standards, required ...

2011-07-08T23:59:59.000Z

87

ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING  

SciTech Connect

Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information, the reuse of concrete may be possible, thus reducing dose and decontamination and decommissioning costs. This paper outlines ten steps required to release concrete for reuse and discusses the disposal options covered in the ASTM Standard Guide.

Phillips, Ann Marie; Meservey, Richard H.

2003-02-27T23:59:59.000Z

88

DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on UK Government's "Road to 2010" Report on Nuclear Statement on UK Government's "Road to 2010" Report on Nuclear Security DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security July 17, 2009 - 12:00am Addthis WASHINGTON, DC - Thomas P. D'Agostino, the Department of Energy's Under Secretary for Nuclear Security and Administrator of the National Nuclear Security Administration, today applauded the British government's new report on advancing the global nuclear security agenda. Issued yesterday, "The Road to 2010 - Addressing the Nuclear Question in the Twenty First Century" outlines a strategy for addressing the threat posed by the proliferation of nuclear weapons ahead of the 2010 Nuclear Non-Proliferation Treaty (NPT) Review Conference. Among other steps, it includes the creation of a UK Center for Nuclear

89

Decommissioning handbook  

SciTech Connect

This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

Manion, W.J.; LaGuardia, T.S.

1980-11-01T23:59:59.000Z

90

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

Science Conference Proceedings (OSTI)

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

91

Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8  

SciTech Connect

The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1987-09-01T23:59:59.000Z

92

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

93

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

94

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

Science Conference Proceedings (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

95

NNSA, Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best  

National Nuclear Security Administration (NNSA)

Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best Practices Workshop | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA, Rosatom, UK Ministry of Defence Hold ... Press Release NNSA, Rosatom, UK Ministry of Defence Hold Trilateral Nuclear Security Best

96

Estimating decommissioning costs: The 1994 YNPS decommissioning cost study  

Science Conference Proceedings (OSTI)

Early this year, Yankee Atomic Electric Company began developing a revised decommissioning cost estimate for the Yankee Nuclear Power Station (YNPS) to provide a basis for detailed decommissioning planning and to reflect slow progress in siting low-level waste (LLW) and spent-nuclear-fuel disposal facilities. The revision also reflects the need to change from a cost estimate that focuses on overall costs to a cost estimate that is sufficiently detailed to implement decommissioning and identify the final cost of decommissioning.

Szymczak, W.J.

1994-12-31T23:59:59.000Z

97

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network (OSTI)

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

A. Petraglia; C. Sabbarese; M. De Cesare; N. De Cesare; F. Quinto; F. Terrasi; A. D'Onofrio; P. Steier; L. K. Fifield; A. M. Esposito

2012-07-17T23:59:59.000Z

98

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network (OSTI)

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

Petraglia, A; De Cesare, M; De Cesare, N; Quinto, F; Terrasi, F; D'Onofrio, A; Steier, P; Fifield, L K; Esposito, A M; 10.1051/radiopro/2012010

2012-01-01T23:59:59.000Z

99

Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9  

SciTech Connect

The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

1988-09-01T23:59:59.000Z

100

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes  

SciTech Connect

This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4  

Science Conference Proceedings (OSTI)

This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

1983-09-01T23:59:59.000Z

102

Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9  

SciTech Connect

The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

1988-09-01T23:59:59.000Z

103

Decommissioning Yankee Rowe  

Science Conference Proceedings (OSTI)

This article describes the process and progress of the decommissioning of the Yankee Rowe Nuclear Power Plant in Massachusetts. In 32 years Yankee Rowe was a safe, reliable and economical power source for New England. The uncertain near-term availability of disposal facilities for low-level waste, spent fuel, and other high level waste presents special challenges to the decommissioning. The decommissioning plan was submitted to the USNRC in December 1993 with final approval anticipated in 1994. Topics highlighted in this article are the decommissioning plan and the component removal program.

Heider, K.J.; Mellor, R.A.

1994-07-01T23:59:59.000Z

104

Decommissioning Nuclear Facilities: First lessons Learned from UP1, Marcoule, France  

Science Conference Proceedings (OSTI)

On September 30, 1997, UP1, Marcoule Fuel reprocessing facility, dissolved its last spent Fuel rod. Final shutdown and stage 1 decommissioning began immediately after, under the supervision of CODEM , a consortium composed of The French Atomic Energy Commission, COGEMA, France fuel Cycle Company and EDF, the French Electricity Utility. The goal of the decommissioning program was to achieve stage 2 decommissioning , as per IAEA standards, within a period of about 15 years. 10 years later, a significant amount of decontamination and decommissioning works has been conducted with success. The contractual structure under which the program was launched has been profoundly modified, and the capacity of The French Atomic Energy Commission (CEA) and AREVA NC to complete full decommissioning programs has been confirmed. In the present document, we propose to examine the main aspects involved in the management of such decommissioning programs, and highlight, with significant examples, the main lessons learnt. In conclusion: As of 2007, UP1 decommissioning program proves to be a success. The choice of early decommissioning, the partnership launched between the French Atomic Energy Commission as owner of the site and decommissioning fund, with AREVA NC as operator and main contractor of the decommissioning works has been a success. The French Atomic Energy commission organized a contractual framework ensuring optimal safety conditions and work completion, while AREVA NC gained a unique experience at balancing the various aspects involved in the conduction of complete decommissioning programs. Although such a framework may not be applicable to all situations and facilities, it provides a positive example of a partnership combining institutional regulations and industrial efficiency.

Chabeuf, Jean-Michel; Boya, Didier [AREVA, AREVA NC Marcoule, 30130 Bagnols sur Ceze (France); CEA, Marcoule, 30130 Bagnols sur Ceze (France)

2008-01-15T23:59:59.000Z

105

Connecticut Yankee Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants entered decommissioning in the 1990's. Based on current information, the next group of plants whose license will expire will not begin decommissioning for nearly a decade. This report provides detailed information on the decommissioning of one power reactor - Connecticut Yankee, in order to provide their experience for future plants.

2006-11-20T23:59:59.000Z

106

The Decontamination and Decommissioning Science  

E-Print Network (OSTI)

4.1.4 NUCLEAR SUBSTANCE ROOM DECOMMISSIONING FORM The permit holder shall ensure that prior to decommissioning any area, room or enclosure where the permitted activity has been conducted: non: ________________________________________________________________________ ________________________________________________________________________ #12;Contamination Monitoring Results Provide a floor plan of the lab/area to be decommissioned

Kemner, Ken

107

Spent Fuel Pool Cooling and Cleanup During Decommissioning: Experience at Trojan Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Operation of original in-plant spent fuel pool facilities at shutdown power plants is expensive compared to available alternatives and can interfere with the decommissioning process. This report describes the approach taken in the Trojan Decommissioning Project to establish independent cooling and cleanup services for the fuel pool until the spent fuel is placed in dry storage.

1999-03-15T23:59:59.000Z

108

Executive Director for Operations USE OF INSURANCE AS A METHOD TO PROVIDE FINANCIAL ASSURANCE FOR DECOMMISSIONING NUCLEAR POWER REACTORS  

E-Print Network (OSTI)

The purpose of this memorandum is to inform the Commission of the staffs proposed Standard Review Plan (SRP) criteria for evaluating the insurance method of providing financial assurance for decommissioning nuclear power reactors and provide the status of the staffs ongoing reviews of two insurance proposals. In a memorandum dated May 20, 2004, from then Executive Director for Operations, Dr. William Travers, the Commission was informed of the staffs receipt of two first-of-a-kind proposals submitted by Marsh USA (Marsh) and Nuclear Electric Insurance Limited (NEIL) to use insurance to provide financial assurance for decommissioning nuclear power reactors pursuant to 10 CFR 50.75(e)(1)(iii). In that memorandum, the staff stated that it would develop SRP criteria to evaluate the use of insurance, commence reviews of the two proposals, and inform the Commission of its progress by October 2004. The U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR 50.75(e) specify that insurance is an acceptable method for a licensee to demonstrate reasonable assurance that sufficient funds will be available for the plant decommissioning process. Specifically, 10 CFR 50.75(e)(1)(iii) requires that certain terms and conditions must be present in the decommissioning insurance policy. These conditions include: automatic renewal, 90-days advance notice by the insurer of intent not to renew the policy, and payment of the full face amount into a trust if the licensee fails to provide an acceptable replacement after receiving notice of the insurers intent to cancel the policy. CONTACT: Ronald B. Uleck, NRR/DRIP 301-415-3741 The Commissioners-2-However, 10 CFR 50.75 contains only limited requirements for use of the insurance method. Similarly, existing guidance provided by NUREG-1577, Rev. 1, Standard Review Plan on

unknown authors

2004-01-01T23:59:59.000Z

109

Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning  

E-Print Network (OSTI)

1.1 This standard guide defines the process for developing a strategy for dispositioning concrete from nuclear facility decommissioning. It outlines a 10-step method to evaluate disposal options for radioactively contaminated concrete. One of the steps is to complete a detailed analysis of the cost and dose to nonradiation workers (the public); the methodology and supporting data to perform this analysis are detailed in the appendices. The resulting data can be used to balance dose and cost and select the best disposal option. These data, which establish a technical basis to apply to release the concrete, can be used in several ways: (1) to show that the release meets existing release criteria, (2) to establish a basis to request release of the concrete on a case-by-case basis, (3) to develop a basis for establishing release criteria where none exists. 1.2 This standard guide is based on the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites, (1) from ...

American Society for Testing and Materials. Philadelphia

2002-01-01T23:59:59.000Z

110

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

scientific resources for decommissioning a nuclear facility.t) i Decommissioning Decommissioning of a nuclear facilityDecommissioning Funding: Ethics, Implementa- tion, Uncertainties. Nuclear

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

111

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program  

SciTech Connect

This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

112

Evaluation of Radionuclides in Concrete Shielding for Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

Shielding / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Decontamination/Decommissioning

Yen-Fu Chen; Yen-Kung Lin; Rong-Jiun Sheu; Shiang-Huei Jiang

113

Fort St. Vrain Decommissioning: Public Relations and Human Resources Issues: Personnel Plans and Communications During Decommissioni ng of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report details aspects of the personnel plan instrumental in the successful decommissioning of Fort St. Vrain nuclear power plant. It includes discussion of the personnel retention program, actions taken to mitigate harassment and intimidation issues, and the communications plan. The report also discusses some decommissioning pitfalls encountered, signs of trouble brewing, and ways to mitigate personnel problems before they become serious issues. Project managers designed the document to be generic ...

1998-02-13T23:59:59.000Z

114

Decommissioning License Termination Plan Documents and Lessons Learned: Summary of LTPs for Two Reactors and Nuclear Regulatory Comm ission Safety Evaluation Reports for Three Nuclear Power Plant LTPs  

Science Conference Proceedings (OSTI)

This report offers those utilities beginning the preparation of License Termination Plans (LTPs) in the near future a comprehensive summary of the approaches currently taken in LTP preparation by major nuclear decommissioning projects. The report details the approach taken in addressing each element of the LTP, and the lessons learned by those utilities currently undergoing the license termination process. This document provides needed guidance for the LTP process, and will greatly benefit utilities cons...

2004-04-28T23:59:59.000Z

115

US, UK, Russian Federation Hold Trilateral Nuclear Security Best...  

National Nuclear Security Administration (NNSA)

improve the security of nuclear materials around the world." The trilateral workshop was led by the NNSA Acting Chief of the Office of Defense Nuclear Security, the Rosatom Deputy...

116

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

for nuclear waste disposal and decommissioning whilethe cost of decommissioning and nuclear waste disposal on

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

117

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

nuclear waste disposal and decommissioning while underminingbetween the cost of decommissioning and nuclear waste

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

118

DECOMMISSIONING DOCUMENTS Decommissioning Handbook The Decommissioning Handbook has  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DECOMMISSIONING DOCUMENTS DECOMMISSIONING DOCUMENTS Decommissioning Handbook The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioning Implementation Guide. Decommissioning Benchmarking Study DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine approaches to improve the decommissioning process. The study focused on quantifying productivity of decommissioning physical activities and identifying how productivity is affected by specific working conditions. The decommissioning benchmarking results are the foundation for several distinct products:

119

EM Continues Progress in U.S. - U.K. Collaboration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Continues Progress in U.S. - U.K. Collaboration Continues Progress in U.S. - U.K. Collaboration EM Continues Progress in U.S. - U.K. Collaboration March 19, 2013 - 12:00pm Addthis Front row, left to right: John Mathieson, Head of International Relations, U.K. Nuclear Decommissioning Authority (NDA), Joe Franco, Manager, Carlsbad Field Office (CBFO), and Graham Jonsson, Deputy Head, NDA, Sellafield Site; second row, left to right, Andrew Szilagyi, Director, EM Office of Deactivation & Decommissioning and Facility Engineering, Laurie Judd, Vice President for Government Programs, NuVision Engineering, Nancy Buschman, Engineer, EM Office of Nuclear Material Disposition, John Lawes, Contract Manager, Dounreay, Dr. Abraham Van Luik, Manager, International Programs, CBFO, Rosa Elmetti, Foreign Affairs Specialist, EM International Program, and Steve Schneider, Director, EM Office of Tank Waste Management.

120

Substantial Variability Exists in Utilities' Nuclear Decommissioning Funding Adequacy: Baseline Trends (1997-2001); and Scenario and Sensitivity Analyses (Year 2001)  

SciTech Connect

This paper explores the trends over 1997-2001 in my baseline simulation analysis of the sufficiency of electric utilities' funds to eventually decommission the nation's nuclear power plants. Further, for 2001, I describe the utilities' funding adequacy results obtained using scenario and sensitivity analyses, respectively. In this paper, I focus more on the wide variability observed in these adequacy measures among utilities than on the results for the ''average'' utility in the nuclear industry. Only individual utilities, not average utilities -- often used by the nuclear industry to represent its funding adequacy -- will decommission their nuclear plants. Industry-wide results tend to mask the varied results for individual utilities. This paper shows that over 1997-2001, the variability of my baseline decommissioning funding adequacy measures (in percentages) for both utility fund balances and current contributions has remained very large, reflected in the sizable ranges and frequency distributions of these percentages. The relevance of this variability for nuclear decommissioning funding adequacy is, of course, focused more on those utilities that show below ideal balances and contribution levels. Looking backward, 42 of 67 utility fund (available) balances, in 2001, were above (and 25 below) their ideal baseline levels; in 1997, 42 of 76 were above (and 34 below) ideal levels. Of these, many utility balances were far above, and many far below, such ideal levels. The problem of certain utilities continuing to show balances much below ideal persists even with increases in the adequacy of ''average'' utility balances.

Williams, D. G.

2003-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Systems Technologies - Nuclear Engineering Division ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments involved: Research & Test Reactor | Engineering Development and Applications "Decommissioning of Nuclear Facilities" training courses Argonne Decommissioning Training...

122

Supercomputer decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputer decommissioning Community Connections: Our link to Northern New Mexico Communities Latest Issue:November 2013 All Issues submit Roadrunner supercomputer: Rest in...

123

Decommissioning Handbook  

Energy.gov (U.S. Department of Energy (DOE))

The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioing...

124

Designing Reactors to Facilitate Decommissioning  

SciTech Connect

Critics of nuclear power often cite issues with tail-end-of-the-fuel-cycle activities as reasons to oppose the building of new reactors. In fact, waste disposal and the decommissioning of large nuclear reactors have proven more challenging than anticipated. In the early days of the nuclear power industry the design and operation of various reactor systems was given a great deal of attention. Little effort, however, was expended on end-of-the-cycle activities, such as decommissioning and disposal of wastes. As early power and test reactors have been decommissioned difficulties with end-of-the-fuel-cycle activities have become evident. Even the small test reactors common at the INEEL were not designed to facilitate their eventual decontamination, decommissioning, and dismantlement. The results are that decommissioning of these facilities is expensive, time consuming, relatively hazardous, and generates large volumes of waste. This situation clearly supports critics concerns about building a new generation of power reactors.

Richard H. Meservey

2006-06-01T23:59:59.000Z

125

Decommissioning Standard Review Plans and Risk-Informing Decommissioning Regulation: Selected 1999 Industry/NRC Decommissioning Lice nsing Interactions  

Science Conference Proceedings (OSTI)

This report describes the technical support EPRI provided the Nuclear Energy Institute (NEI) Decommissioning Working Group in 1999. This volume includes two initiatives that produced four draft Decommissioning Standard Review Plans (DSRPs). It also includes an evaluation entitled Spent Fuel Pool Seismic Failure Frequency in Support of Risk-Informed Decommissioning -- Emergency Planning.

1999-10-31T23:59:59.000Z

126

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

experience in decommissioning its former nuclear-poweredfor decommissioning and decontamination of nuclear vessels.nuclear technology: design, procurement, equipment manufacturing, construction, installation, start up, operation and decommissioning.

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

127

Money Related Decommissioning and Funding Decision Making  

Science Conference Proceedings (OSTI)

'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds.

Goodman, Lynne S. [Detroit Edison Company, 6400 N. Dixie Highway, Newport, Michigan 48162 (United States)

2008-01-15T23:59:59.000Z

128

Status of the NRC Decommissioning Program  

Science Conference Proceedings (OSTI)

On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

2003-02-24T23:59:59.000Z

129

EM Renews Information-Sharing Agreement with United Kingdom's Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renews Information-Sharing Agreement with United Kingdom's Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority EM Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority March 1, 2012 - 12:00pm Addthis DOE Senior Advisor for Environmental Management David Huizenga (left) and Mark Lesinski, U.K.'s Nuclear Decommissioning Authority (NDA) Executive Director for Delivery, renewed the Statement of Intent between DOE and NDA in a signing ceremony this week. DOE Senior Advisor for Environmental Management David Huizenga (left) and Mark Lesinski, U.K.'s Nuclear Decommissioning Authority (NDA) Executive Director for Delivery, renewed the Statement of Intent between DOE and NDA in a signing ceremony this week. Florida International University's DOE Fellows gather for a photo with DOE Senior Advisor for Environmental Management David Huizenga (eighth from left) and DOE Fellows director, Dr. Leo Lagos (tenth from left), at the 2012 Waste Management Symposia in Phoenix this week.

130

Proposal For Internationally Standardized Cost Item Definitions For The Decommissioning Of Nuclear Installations  

E-Print Network (OSTI)

Various international decommissioning projects have shown that there are substantial variations in cost estimates for individual installations. Studies to understand the reasons for these differences have been somewhat hampered by the fact that different types of cost estimation methods are used, having different data requirements. Although some uncertainty is inevitable in any costing method, an understanding of the costing methods used in particular projects is useful to avoid key uncertainties. Difficulties of understanding can be encountered and invalid conclusions drawn in making cost comparisons without regard to the context in which the various cost estimates were made. The above-mentioned difficulties are partly due to the lack of a standardized or generally agreed-upon costing method that includes well-structured and defined cost items and an established estimation method. Such a structure and method would be useful not only for project cost comparisons but would also be a t...

Lucien Teunckens Belgoprocess; Kurt Pflugrad; Lucien Teunckens; Candace Chan-sands; Ted Lazo

2000-01-01T23:59:59.000Z

131

Release of radioisotopes and activated materials from nuclear installations and facilities  

E-Print Network (OSTI)

decommissioned. The decommissioning of a 60 Co therapy unit,problems. However, the decommissioning of an acceleratorto be disposed of. The decommissioning of a nuclear power

Manfredi, P.F.; Millaud, J.E.

2001-01-01T23:59:59.000Z

132

Preparing for Decommissioning: The Oyster Creek Experience  

Science Conference Proceedings (OSTI)

This report chronicles the process of preparing GPU Nuclear's Oyster Creek Nuclear Generating Station for early retirement and decommissioning. The Oyster Creek experience has great relevance to the nuclear industry, as future decommissioning projects will benefit from the comprehensive preplanning work performed there.

2000-06-06T23:59:59.000Z

133

Assessment of foreign decommissioning technology with potential application to US decommissioning needs  

Science Conference Proceedings (OSTI)

This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs.

Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

1987-09-01T23:59:59.000Z

134

Site decommissioning management plan  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

1993-10-01T23:59:59.000Z

135

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

136

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

137

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

138

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

139

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

140

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

142

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

143

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

144

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

145

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

146

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

147

EM Delegation Tours UK Cleanup Program's Sellafield Site | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tours UK Cleanup Program's Sellafield Site Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site May 13, 2013 - 12:00pm Addthis Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear Decommissioning Authority (NDA) Head of International Relations John Mathieson; back row, left to right, NDA Sellafield Site Deputy Head Graham Jonsson and EM Deputy Assistant Secretary for Tank Waste and Nuclear Material Management Ken Picha. Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear

148

EM Delegation Tours UK Cleanup Program's Sellafield Site | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Delegation Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site EM Delegation Tours UK Cleanup Program's Sellafield Site May 13, 2013 - 12:00pm Addthis Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear Decommissioning Authority (NDA) Head of International Relations John Mathieson; back row, left to right, NDA Sellafield Site Deputy Head Graham Jonsson and EM Deputy Assistant Secretary for Tank Waste and Nuclear Material Management Ken Picha. Front row, left to right, NuVision Engineering Vice President Laurie Judd, EM Lead International Affairs Specialist Ana Han, EM Associate Principal Deputy Assistant Secretary Alice Williams and United Kingdom Nuclear

149

Release of radioisotopes and activated materials from nuclear installations and facilities  

E-Print Network (OSTI)

wastes coming from the decommissioning of nuclear reactors,use of a nuclear facility The decommissioning, refurbishingdisposed of. The decommissioning of a nuclear power station

Manfredi, P.F.; Millaud, J.E.

2001-01-01T23:59:59.000Z

150

Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders DOE/EIS-0226-D (Revised) November 2008 The West Valley Site Availability of the Revised Draft EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Draft EIS, or to request a copy please contact: Cathern Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov Printed with soy ink on recycled paper

151

Final EIS for Decommissioning and/or Long-Term Stewardship at the WVDP and Western New York Nuclear Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS-0226 DOE/EIS-0226 January 2010 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders The West Valley Site Availability of the Final EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Final EIS, or to request a copy of the EIS or references, please contact: Catherine Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov

152

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16  

SciTech Connect

This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

NONE

1997-09-01T23:59:59.000Z

153

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9  

Science Conference Proceedings (OSTI)

This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

NONE

1997-09-01T23:59:59.000Z

154

UK Radioactive Waste: Classification, Sources and Management ...  

Science Conference Proceedings (OSTI)

Paper contents outlook: Introduction; Radioactive waste classification; Sources of waste (Nuclear power plant operation/decommissioning, Reprocessing and...

155

Decommissioning Regulatory Process Interactions in 2000: EPRI Support to NEI for NRC Proposed Decommissioning Rule Revision  

Science Conference Proceedings (OSTI)

This report describes the technical support EPRI provided to the Nuclear Energy Institute (NEI) Decommissioning Working Group in 2000. It includes the material supplied to the NEI for their use in generating comments on behalf of the nuclear energy industry concerning the Nuclear Regulatory Commission's (NRC) new draft regulations on decommissioning.

2000-11-03T23:59:59.000Z

156

Decommissioning Pre-Planning Manual  

Science Conference Proceedings (OSTI)

Utility experiences in recent years show that significant cost savings will result from advance planning for the eventual closure of nuclear power plants. This report provides a framework for planning ahead for plant decommissioning by drawing upon the experiences of utilities currently involved in decommissioning. It identifies important advance planning decisions, tasks, and contributing disciplines, establishes activity precedence relationships, and defines data requirements. The report also describes...

2001-11-05T23:59:59.000Z

157

Proceedings: Decommissioning - Plant Reconfiguration and Engineering Processes Workshop  

Science Conference Proceedings (OSTI)

EPRI's Plant Reconfiguration and Engineering Processes Workshop -- the seventh in a series -- will help utility personnel evaluate technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of plant reconfiguration and engineering processes as they relate to nuclear plant decommissioning. The information presented will help utilities assess approaches to restructuring of plant engineering processes and reconfiguration management to meet individual decommissioning pro...

2001-01-09T23:59:59.000Z

158

Decommissioning Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents Decommissioning Documents Decommissioning Documents More Documents & Publications CX-002246: Categorical Exclusion Determination Decommissioning Handbook CX-003134:...

159

Decommissioning Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents Decommissioning Documents Decommissioning Documents More Documents & Publications CX-002246: Categorical Exclusion Determination Decommissioning Handbook CX-000018:...

160

Trojan Nuclear Plant Decommissioning: Final Survey for the Independent Spent Fuel Storage Installation Site  

Science Conference Proceedings (OSTI)

This report describes the final radiological survey for the area where Portland General Electric (PGE) will construct the Independent Spent Fuel Storage Installation (ISFSI) at Trojan nuclear power plant. The survey fulfills the requirements for release of this area from Trojan's 10 CFR 50 license before radiation levels increase with spent fuel storage in the ISFSI.

1998-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Decommissioning Technology Experience Reports  

Science Conference Proceedings (OSTI)

This report presents four summary reports on field applications and demonstration tests of several nuclear plant deactivation and decommissioning (D&D) technologies. Specifically presented are findings from: (1) concrete decontamination technology tests at Rancho Seco; (2) a large bore piping decontamination and characterization demonstration at Big Rock Point; (3) gamma ray imaging for D&D applications; and (4) novel techniques for large tank and vessel removal at Trojan and Rancho Seco.

2000-11-30T23:59:59.000Z

162

Proceedings: 1998 EPRI/NEI Decommissioning Technology Workshop: Monterey, California, December 7-9, 1998  

Science Conference Proceedings (OSTI)

EPRI and NEI provide technical and regulatory support to utilities planning or involved in nuclear plant decommissioning projects. The second joint Decommissioning Technology Workshop provided the opportunity for utility representatives and selected vendors to exchange information related to nuclear plant decommissioning projects. The workshop focused on recent utility decommissioning experience, technological developments and regulatory updates.

1999-02-08T23:59:59.000Z

163

International Cooperation on Safety of Nuclear Plants - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

164

Current R&D Activities in Nuclear Criticality Safety - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

165

NUCLEAR DATA AND MEASUREMENTS REPORTS 161-180 - Nuclear Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

166

Analysis Tools for Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

167

Organization - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

168

Achievements: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

169

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2  

SciTech Connect

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

Weiss, A. J. [comp.

1988-02-01T23:59:59.000Z

170

2003 NEI/EPRI Decommissioning Forum  

Science Conference Proceedings (OSTI)

The NEI/EPRI Decommissioning Forum provides a comprehensive overview of the challenges facing the industry in the completion of the nuclear power plant life cycle. This report presents the proceedings of the NEI/EPRI 2003 Decommissioning Forum, which focused on license termination, material clearance values, funding, and final site release requirements.

2003-07-28T23:59:59.000Z

171

Maine Yankee Decommissioning - Experience Report: Detailed Experiences 1997-2004  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants began the decommissioning process in the 1990s. Based on current information, it will be several years before the next group of plant licenses expires, and the plants begin decommissioning. This report provides detailed information on the decommissioning of one power reactor, Maine Yankee, in order to document their experience for future plants.

2005-05-04T23:59:59.000Z

172

Concrete Characterization and Dose Modeling During Plant Decommissioning  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants entered decommissioning in the 1990's. The cost effective characterization of contaminated concrete remains a challenge for plants currently undergoing decommissioning. This report provides detailed information on projects involving the characterization, dose modeling, remediation and disposal of contaminated concrete at a number of plants undergoing decommissioning.

2008-03-31T23:59:59.000Z

173

Proceedings: EPRI International Decommissioning and Radioactive Waste Workshop at Dounreay  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI international workshop on decommissioning and radioactive waste management. EPRI initiated this continuing workshop series to aid utility personnel in assessing the technologies utilized in the decommissioning of nuclear power plants and facilities. The information presented will help individual utilities assess the benefits of the various programs, including their potential to reduce decommissioning costs.

2003-01-29T23:59:59.000Z

174

NEW MATERIALS DEVELOPED TO MEET REGULATORY AND TECHNICAL REQUIREMENTS ASSOCIATED WITH IN-SITU DECOMMISSIONING OF NUCLEAR REACTORS AND ASSOCIATED FACILITIES  

Science Conference Proceedings (OSTI)

For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m{sup 3} (250,000 yd{sup 3}) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker exposure to radioactive or hazardous contamination exceeding Principal Threat Source Material levels; (2) Minimize human and ecological exposure to unacceptable risk associated with radiological and hazardous constituents that are or may be present; (3) Prevent to the extent practicable the migration of radioactive or hazardous contaminants from the closed facility to the groundwater so that concentrations in groundwater do not exceed regulatory standards; (4) Eliminate or control all routes of human exposure to radiological and chemical contamination; and (5) Prevent animal intruder exposure to radioactive and hazardous contamination.

Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

2012-01-18T23:59:59.000Z

175

Idaho Site Closes Out Decontamination and Decommissioning Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FALLS, Idaho - The Idaho Cleanup Project (ICP) successfully closed out a 796 million nuclear facility decontamination and decommissioning project. The work was completed about...

176

NMSS handbook for decommissioning fuel cycle and materials licensees  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

1997-03-01T23:59:59.000Z

177

Trojan PWR Decommissioning: Large Component Removal Project  

Science Conference Proceedings (OSTI)

While the decommissioning of large commercial nuclear plants in the United States is in its infancy, the technical challenges with associated radioactive waste management are clear. This report describes the removal and disposal of four steam generators and one pressurizer from the Trojan nuclear power plant, the first large PWR to be decommissioned in the United States. The report chronicles the problems, successes, and lessons learned in this project, which was completed on schedule and under budget in...

1997-09-29T23:59:59.000Z

178

Decommissioning Handbook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decommissioning Handbook Decommissioning Handbook The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and...

179

Major Programs - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program International Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form...

180

Executive Bios: Christopher Grandy - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Engineering Division of Argonne National Laboratory:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

182

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

183

International Safety Projects - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

184

The Dawn of the Nuclear Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

185

Facility Safety Assessment - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

186

Computer Facilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

187

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

188

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

189

Safety - Vulnerability Assessment Team - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

190

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER  

E-Print Network (OSTI)

NGCC Nuclear LevelizedCost (dollarsperMWh) Decommission Waste Fuel Fixed Variable Construction Figure 2 to fund an eventual federal solution to the problem of long-term nuclear waste. Decommissioning Costs associated with decommissioning the nuclear power plant at the end of its operational life. Operators

Aickelin, Uwe

191

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network (OSTI)

arising from: i) decommissioning nuclear power stations; and ii) the treatment, storage and disposal quite plausibly lie a century or more in the future. Uranium-based fuel Nuclear reactor Decommissioning. Decommissioning costs arise as soon as a nuclear station is operated because irradiation is essentially a one off

Aickelin, Uwe

192

Proceedings: EPRI/NEI Decommissioning Workshop: San Antonio, Texas, December 10-12, 1997  

Science Conference Proceedings (OSTI)

EPRI and NEI are actively engaged in providing technical support to utilities planning or involved in nuclear plant decommissioning projects. The first joint Nuclear Decommissioning Workshop provided a forum for utility representatives and selected vendors to exchange information related to decommissioning of nuclear power plants. The workshop focused on the utility experience related to major projects currently under way, technology developments and regulatory issues.

1998-02-28T23:59:59.000Z

193

NUCLEAR DATA AND MEASUREMENTS REPORTS 61-80 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

194

NUCLEAR DATA AND MEASUREMENTS REPORTS 81-100 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

195

Decommissioning Plan RM  

Energy.gov (U.S. Department of Energy (DOE))

The Decommissioning Plan Review (DPR) Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the decommissioning plan prior to approval of the associated CD.

196

Designing decommissioning into new reactor designs  

SciTech Connect

One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed some three or four decades ago. Recently, the nuclear power has seen a worldwide resurgence and many new advanced reactor designs are either on the market or nearing design completion. Most of these designs are evolutionary in nature and build on the existing and proven technologies. They also incorporate many improvements and take advantage of the substantial operating experience. Nevertheless, by and large, the main factors driving the design of new reactors are the safety features, safeguards considerations, and the economic factors. With a large decommissioning experience that already exists in the nuclear industry, and with average decommissioning costs at around six hundred million dollars for each reactor in today's dollars, it is necessary that decommissioning factors also be considered as a part of the early design effort. Even though decommissioning may be sixty years down the road from the time they go on line, it is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. (authors)

Devgun, J.S.; CHMM, Ph.D. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States)

2007-07-01T23:59:59.000Z

197

Decommissioning Pre-Planning Manual: Interim Report  

Science Conference Proceedings (OSTI)

This EPRI Interim Technical Report provides a framework for pre-planning for the decommissioning of a nuclear power plant. It identifies important planning decisions, tasks, and contributing disciplines, establishes activity precedence relationships and defines data requirements. The report identifies actions that utilities can take now to ease the transition to decommissioning status, and will be of value to utilities planning plant closures in the future.

2000-11-08T23:59:59.000Z

198

Executive Bios: Dr. Robert N. Hill - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

199

Related Sites, Experimental Resources for Nuclear Data Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

200

Executive Bios: Dr. David C. Wade - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ANS President interviewed at the Argonne Booth during the Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

202

Executive Bios: Jerome L. Gaston - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

203

Executive Bios: A. C. (Paul) Raptis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

204

Executive Bios: Dr. Hussein S. Khalil - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

205

Argonne's role in DOE/NNSA International Nuclear Safeguards and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

206

Argonne staff members elected to American Nuclear Society governance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

207

Reactor Safety Testing and Analysis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

208

Executive Bios: Dr. Temitope Taiwo - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

209

Sloshing response of module-type worm tank - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

210

Executive Bios: Dr. Thomas F. Ewing - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

211

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

212

Executive Bios: Dr. John G. Stevens - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

213

Vulnerability Assessment Team (VAT) in the News - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

214

Executive Bios: Dr. Pete Heine - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

215

Executive Bios: Dr. Tanju Sofu - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

216

Risk and Safety Assessments - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

217

Executive Bios: Dr. Ken Natesan - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

218

Unit Process Modeling [Nuclear Waste Management using Electrometallurg...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

219

Proceedings: Decommissioning--License Termination Plans and Final Site Release Workshop  

SciTech Connect

This report presents the proceedings of an EPRI workshop dealing with the subject of decommissioning license termination and final site release. The workshop was the ninth in a series designed to aid utility personnel in assessing technologies for decommissioning nuclear power plants. It focused on specific aspects of license termination activities and final site release as they relate to nuclear plant decommissioning. The information presented will help utilities control decommissioning costs by selecting the best practices and technologies

None

2004-03-01T23:59:59.000Z

220

Proceedings: Decommissioning--License Termination Plans and Final Site Release Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop dealing with the subject of decommissioning license termination and final site release. The workshop was the ninth in a series designed to aid utility personnel in assessing technologies for decommissioning nuclear power plants. It focused on specific aspects of license termination activities and final site release as they relate to nuclear plant decommissioning. The information presented will help utilities control decommissioning costs by selecti...

2004-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Decommissioning: License Termination and Final Site Release: Proceedings of EPRI Technical Workshop, October 2001  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on decommissioning license termination and final site release. The workshop was the eighth in a series designed to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of license termination and final site release as they relate to nuclear plant decommissioning. The information presented will help utilities control decommissioning costs by selecting the best practices an...

2002-02-08T23:59:59.000Z

222

Proceedings: Decommissioning, Decontamination, ALARA, and Worker Safety Workshop  

Science Conference Proceedings (OSTI)

This workshop on decontamination, ALARA, and worker safety was the sixth in a series initiated by EPRI to aid utility personnel in assessing the technologies for decommissioning nuclear power plants. The workshop focused on specific aspects of decommissioning related to the management of worker radiation exposure and safety. The information presented will help individual utilities assess benefits of programs in these areas for their projects, including their potential to reduce decommissioning costs.

None

2000-09-01T23:59:59.000Z

223

Proceedings: Decommissioning, Decontamination, ALARA, and Worker Safety Workshop  

Science Conference Proceedings (OSTI)

This workshop on decontamination, ALARA, and worker safety was the sixth in a series initiated by EPRI to aid utility personnel in assessing the technologies for decommissioning nuclear power plants. The workshop focused on specific aspects of decommissioning related to the management of worker radiation exposure and safety. The information presented will help individual utilities assess benefits of programs in these areas for their projects, including their potential to reduce decommissioning costs.

2000-09-07T23:59:59.000Z

224

Decommissioning Low Level Waste Management and Reduction Guide  

Science Conference Proceedings (OSTI)

Nuclear plants undertaking decommissioning projects find that costs of low-level waste (LLW) management are a substantial portion of the total cost. To assist the industry in planning and optimizing their decommissioning radwaste management practices, EPRI developed a guide with more than 75 areas of guidance and an extensive lessons learned section. Using this report will aid utilities in successfully planning, executing, and disposing of low-level wastes during a decommissioning project.

1999-09-17T23:59:59.000Z

225

Nuclear Power Plant Design Project  

E-Print Network (OSTI)

................................................. 22 5.1.16 Decommissioning: AP600, HTGR, ALWR ............................................................................................................... 35 7.3.4 Decommissioning Cost #12;9 decommissioning. The long delayed nuclear waste disposal facility at Yucca Mountain is becoming

226

Engineering Development & Applications - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies (FCT) Generation IV (Gen IV) Nuclear Energy Program Decontamination and Decommissioning Nuclear Regulatory Research Facilities Environmentally Assisted Cracking...

227

An Integrated Approach To Decommissioning Radwaste Management: The Beginning  

E-Print Network (OSTI)

In the near future, Russia will be forced to start large-scale decommissioning programs embracing nuclear submarines, nuclear power plants, defense and nuclear fuel cycle (NFC) facilities, and numerous research reactors (RR). In this situation any attempt to promote D&D programs has the utmost importance. These obvious considerations stimulated the participation of the St. Petersburg Institute of Technology in the IAEA CRP on Decommissioning Techniques for Research Reactors with the project entitled "Decontamination and Waste Management in the Course of Research Reactors Decommissioning." The aims of the present study were the following: to estimate waste arising from RR decommissioning; to gather and evaluate information on decontamination and radioactive waste management techniques and materials recycling methods applicable for decommissioning purposes; and to develop a computerized multicriteria decision-making tool for determination of the appropriateness of various techniques ...

Victor Tsvetkov Sergey; Sergey A. Medvedev; Sergey K. Neljubov

2000-01-01T23:59:59.000Z

228

Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are directly or indirectly involved with the Fund. c. Requirements and Sources of the Fund. (1) The Energy Policy Act of 1992 (EPACT) requires DOE to establish and administer the Fund. EPACT authorizes that the

229

Technology Requirements for In-Situ Decommissioning Workshop Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09-00269, Rev. 0 09-00269, Rev. 0 KEY WORDS: DOE-HQ In situ Decommissioning Entombment Workshop TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING (ISD) WORKSHOP REPORT Patricia L. Lee, John B. Gladden, G. Timothy Jannik, Christine A. Langton, Michael G. Serrato, SRNL Chuck Urland, Erick Reynolds, PEC June 2009 Savannah River National Laboratory Savannah River Nuclear Solutions Savannah River Site

230

Decontamination and decommissioning experience at Experimental Breeder Reactor No. 1  

SciTech Connect

A description is presented of the experience obtained from decontamination and decommissioning of the Experimental Breeder Reactor No. 1 located at the Idaho Nuclear Engineering Laboratory, Scottsville, Idaho. Included are the planning, preparation, and operations associated with the removal and processing of radioactively contaminated sodium-potassium eutectic alloy (NaK) and decontamination and decommissioning of the facility. (auth)

Kendall, E.W.

1975-09-01T23:59:59.000Z

231

3-D Model for Deactivation & Decommissioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. 3-D Model for Deactivation & Decommissioning More Documents & Publications D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization D&D and Risk Assessment Tools 3-D Model for Deactivation & Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D

232

Decommissioning Benchmarking Study Final Report  

Energy.gov (U.S. Department of Energy (DOE))

DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

233

10 CFR Part 830, Nuclear Safety Management  

NLE Websites -- All DOE Office Websites (Extended Search)

construction such as environmental restoration activities, decontamination and decommissioning activities, specific nuclear explosives operations, or transition...

234

Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center (3/13/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Federal Register / Vol. 68, No. 49 / Thursday, March 13, 2003 / Notices Dated: March 6, 2003. Gerald A. Reynolds, Assistant Secretary for Civil Rights. [FR Doc. 03-5999 Filed 3-12-03; 8:45 am] BILLING CODE 4000-01-M DEPARTMENT OF ENERGY Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center AGENCY: Department of Energy. ACTION: Notice of Intent. SUMMARY: The U.S. Department of Energy (DOE) and the New York State Energy Research and Development Authority (NYSERDA) are announcing their intent to prepare an Environmental Impact Statement (EIS) for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project (WVDP) and

235

Khalil named co-director of the Center for Advanced Nuclear Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

236

Experimental Resources for Nuclear Data Studies in the U.S. ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

237

Peters and Fanning appear on NBC-5 report on Illinois nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

238

Policy Statement 3, Board Oversight of Department of Energy Decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Date: August 19, 1996 Subject Policy Statement on Board oversight of Department of Energy decommissioning activities at defense nuclear facilities. Summary This policy statement describes the decommissioning phase of a DOE defense nuclear facility and identifies the Board's safety oversight responsibilities for decommisioning activities. John T. Conway, Chairman Congress directed the Defense Nuclear Facilities Safety Board (Board) to oversee Department of Energy (DOE) practices at defense nuclear facilities that could adversely affect public health and safety during any stage in the life cycle of those facilities, from design, construction, and operation through decommissioning. The Board's objective during decommissioning is identical to its objective during any other phase of a facility's life cycle: to ensure that DOE provides adequate protection of worker and public health and safety at defense nuclear facilities. Congress specifically tasked the Board with reviewing and evaluating:

239

Proceedings of the TOUGH Symposium 2009  

E-Print Network (OSTI)

Kingdoms Nuclear Decommissioning Authority. REFERENCESby the UK Nuclear Decommissioning Authority (NDA), and theKingdoms Nuclear Decommissioning Authority. REFERENCES

Moridis, George J.

2010-01-01T23:59:59.000Z

240

The Financing of Decommissioning - A View on Legal Aspects in the European Union  

Science Conference Proceedings (OSTI)

In the future, an increasing number of nuclear power plants will be definitively closed and undergoing decommissioning. Realising the inseparable connection between the safe performance of decommissioning activities and its financing, the European Union is concerned about the availability of sufficient financial means for carrying out the decommissioning process by the time they are needed. Analysing which measures have been taken by the EU to ensure and harmonise the financing of decommissioning, the author illustrates the draft directives of the European Commission known as the 'nuclear package', which contain rules regarding the funding of decommissioning. In this context, he also descends to the envisaged Commission's analysis about the various concepts established in the Member States with respect to financing the decommissioning of nuclear facilities. The author comes to the conclusion that the EU has taken first initiatives to promote a transparent and harmonised system of regulations and standards concerning the financing of decommissioning across the Union. (author)

Fillbrandt, M. [Gesellschaft fiir Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50667 Cologne (Germany)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EPRG WORKING PAPER A Nuclear Future? UK Government Policy and the Role of the Market  

E-Print Network (OSTI)

Meeting carbon targets requires decarbonising electricity. The least cost strategy involves nuclear power. In a liberalised electricity market, the price of electricity is set by fossil generation whose input costs are volatile but correlated with electricity prices. Nuclear power lacks that hedged and its finance is threatened by low and uncertain EUA prices. The increasing share of intermittent renewables exacerbates price risk. I propose changes to market design and the transmission access regime, while in the absence of an EU-wide reform to the ETS, a carbon tax seems the cheapest and fiscally most responsible way to deliver decarbonised electricity. Keywords JEL Classification Nuclear power, intermittent renewables, wholesale electricity markets, market design, transmission access, balancing, carbon tax

David M. Newbery; David M. Newbery

2010-01-01T23:59:59.000Z

242

Yankee Rowe Decommissioning Experience Record: Volume 1  

Science Conference Proceedings (OSTI)

This report describes Yankee Atomic's experiences in the process of decommissioning the Yankee Rowe nuclear power plant. This volume presents lessons learned during work finished by September 1997. A second volume, to be published in 1998, will complete the experience record. The recommendations and insights in this report will be valuable to other utilities with permanently shutdown plants.

1997-12-31T23:59:59.000Z

243

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

244

A review of decommissioning considerations for new reactors  

Science Conference Proceedings (OSTI)

At a time of 'nuclear renaissance' when the focus is on advanced reactor designs and construction, it is easy to overlook the decommissioning considerations because such a stage in the life of the new reactors will be some sixty years down the road. Yet, one of the lessons learned from major decommissioning projects has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Hence, the time to examine what decommissioning considerations should be taken into account is right from the design stage with regular updates of the decommissioning strategy and plans throughout the life cycle of the reactor. Designing D and D into the new reactor designs is necessary to ensure that the tail end costs of the nuclear power are manageable. Such considerations during the design stage will facilitate a more cost-effective, safe and timely decommissioning of the facility when a reactor is eventually retired. This paper examines the current regulatory and industry design guidance for the new reactors with respect to the decommissioning issues and provides a review of the design considerations that can help optimize the reactor designs for the eventual decommissioning. (authors)

Devgun, J.S.Ph.D. [Manager Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States)

2008-07-01T23:59:59.000Z

245

Decontamination, decommissioning, and vendor advertorial issue, 2006  

SciTech Connect

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

Agnihotri, Newal (ed.)

2006-07-15T23:59:59.000Z

246

Calder Hall Cooling Tower Demolition: Landmark Milestone for Decommissioning at Sellafield  

Science Conference Proceedings (OSTI)

September 2007 saw a very visible change to the Sellafield site following the culmination of a major decommissioning project; the demolition of the four Calder Hall cooling towers. A key part of the UK's nuclear industrial heritage, Calder Hall, the world's first commercial nuclear power station, was opened by Her Majesty Queen Elizabeth II in October 1953 and continued to generate electricity until its closure in 2003. Following the decision to decommission the Calder Hall site, explosive demolition was identified as the safest and most cost effective route for the removal of the towers. The technique, involving the placement of explosive in 60% of the circumference of both shell and legs, is a tried and tested method which had already been used successfully in more than 200 cooling towers in the UK in the last 30 years. The location and composition of the four 88 metre high towers also created additional challenges. Situated only 40 metres away from the UK's only nuclear Fuel Handling Plant, as well as other sensitive structures on the Sellafield site, the project had to address the impact of a number of key areas, including dust, ground vibration and air over pressure, to ensure that the demolition could be carried out safely and without significant impact on other operational areas on the site. At the same time, the towers had to be prepared for demolition in a way that minimised the amounts of radioactive or hazardous waste materials arising. This paper follows the four year journey from the initial decision to demolish the towers right through to the demolition itself as well as the clean up of the site post demolition. It will also consider the massive programme of work necessary not only to carry out the physical work safely but also to gain regulatory confidence and stakeholder support to carry out the project successfully. In summary: The demolition of the four Calder Hall cooling towers was a highly visible symbol of the changes that are occurring on the Sellafield site as it moves forward towards a decommissioning future. Although in itself the demolition was both straightforward and standard, the various complexities posed by the towers situation at Sellafield introduced an entirely new element to the project, with a number of complex challenges which had to be overcome or resolved before the demolition could take place. It is a testament to the skill and dedication of the project team and its associated contractors that the project was delivered safely and successfully without a single accident, injury or event throughout the entire four years, and with minimal impact on both site operations and the local community. (authors)

Williamson, E.J. [Nuclear Decommissioning and Major Projects Group, Sellafield Ltd, Seascale, Cumbria (United Kingdom)

2008-07-01T23:59:59.000Z

247

Diagnostic and Advisory Systems - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic and Advisory Systems Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning SystemsProcess...

248

Artificial Intelligence / Expert Systems Expertise - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intelligence Expert Systems Expertise Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning...

249

Process Monitoring & Signal Validation - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Monitoring & Signal Validation Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems...

250

3-D Model for Deactivation & Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project & Identifier Project & Identifier Tech Stage: Deployment In-Situ Decommissioning: SR09171 SRS Area Closure Projects: PBS SR-0040 3-D models of the R reactor building and P reactor vessel were delivered to SRS Area Closure Projects Page 1 of 2 Tech Fact Sheet Savannah River Site South Carolina 3-D Model for Deactivation & Decommissioning Challenge Planning for the safe and controlled deactivation and decommissioning (D&D) of highly contaminated nuclear facilities requires that engineers and managers fully understand the work space in which personnel and equipment will operate. It also requires that they effectively communicate safety concerns and work sequences to the personnel who will perform the work. This crucial knowledge is conveyed in

251

Maintaining Quality in a Decommissioning Environment  

Science Conference Proceedings (OSTI)

The decommissioning of AECL's Whiteshell Laboratories is Canada's largest nuclear decommissioning project to date. This research laboratory has operated for forty years since it was set up in 1963 in eastern Manitoba as the Whiteshell Nuclear Research Establishment, complete with 60 MW(Th) test reactor, hot cells, particle accelerators, and multiple large-scale research programs. Returning the site to almost complete green state will require several decades of steady work in combination with periods of storage-with-surveillance. In this paper our approach to maintaining quality during the long decommissioning period is explained. In this context, 'quality' includes both regulatory aspects (compliance with required standards) and business aspects (meeting the customers' needs and exceeding their expectations). Both aspects are discussed, including examples and lessons learned. The five years of development and implementation of a quality assurance program for decommissioning the WL site have led to a number of lessons learned. Many of these are also relevant to other decommissioning projects, in Canada and elsewhere: - Early discussions with the regulator can save time and effort later in the process; - An iterative process in developing documentation allows for steady improvements and input throughout the process; - Consistent 2-way communication with staff regarding the benefits of a quality program assists greatly in adoption of the philosophy and procedures; - Top-level management must lead in promoting quality; - Field trials of procedures ('beta testing') ensures they are easy to use as well as useful. Success in decommissioning the Whiteshell Laboratories depends on the successful implementation of a rigorous quality program. This will help to ensure both safety and efficiency of all activities on site, from planning through execution and reporting. The many aspects of maintaining this program will continue to occupy quality practitioners in AECL, reaping steady benefits to AECL and to its customers, the people of Canada.

Attas, Michael [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba, R0E 1L0 (Canada)

2008-01-15T23:59:59.000Z

252

Standard Guide for Radiation Protection Program for Decommissioning Operations  

E-Print Network (OSTI)

1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

American Society for Testing and Materials. Philadelphia

1987-01-01T23:59:59.000Z

253

Haszeldine et al s.haszeldine@ed.ac.uk Regulation for CCS beneath the UK offshore and onshore International Risk Governance Council www.irgc.org March, modified April 2007, Washington, USA Page 1  

E-Print Network (OSTI)

. In addition there is the impending decommissioning of a large share of nuclear generation capacity without of decommissioning for offshore installations and pipelines, and decommissioning after operation as a CCS site waters. Decommissioning and Liability: Offshore oil and gas facilities typically comprise extremely large

Haszeldine, Stuart

254

DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES  

SciTech Connect

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department of Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.

Weaver, Patrick; Henderson, Glenn; Erickson, Peter; Garber, David

2003-02-27T23:59:59.000Z

255

Rancho Seco--Decommissioning Update  

SciTech Connect

The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered.

Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

2003-02-26T23:59:59.000Z

256

STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING  

SciTech Connect

Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions.

Foss, D. L.; Stevens, J. L.; Gerdeman, F. W.

2002-02-25T23:59:59.000Z

257

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

a Geologic Repository, Nuclear Technology, 154, in decommissioned U.S. nuclear facilities, German Framework for Nuclear Fuel Cycle Concepts,

Djokic, Denia

2013-01-01T23:59:59.000Z

258

The impact of dry spent-fuel storage on decommissioning  

Science Conference Proceedings (OSTI)

Several utilities have made decisions to decommission nuclear plants. Other utilities are currently investigating the economic and technical feasibility of decommissioning versus continued operations. As a result, assessments are being made to determine the impact of dry spent-fuel storage on decommissioning. This assessment is being made on a comparison of wet and dry storage (including modifications to current wet storage systems). Not only are the capital and operating costs of the equipment or modifications being evaluated, but staffing levels, interference with other decommissioning activities, and the ability to eventually transfer the fuel to the U.S. Department of Energy (DOE) all factor into the assessments. In the case of the Rancho Seco nuclear generating station, the Sacramento Municipal Utility District (SMUD) developed three objectives related to spent-fuel disposition to support the safe and economical closure of the plant. These objectives are as follows: 1. Minimize occupational and public radiation exposure. 2. Minimize decommissioning costs, including the need to maintain the spent-fuel pool. 3. Prepare the fuel for DOE acceptance. These rather universal goals are being met for Rancho Seco through the use of a canister-based spent-fuel storage and transportation system, the NUHOMS system. This paper discusses the economic and technical impacts of dry spent-fuel storage on decommissioning, more specifically as it relates to the decommissioning of the Rancho Seco plant.

Bowser, R.C.; Taylor, M. Jr. (Pacific Nuclear, San Jose, CA (United States)); Miller, K.R. (Sacramento Municipal Utility District, Herald, CA (United States))

1993-01-01T23:59:59.000Z

259

REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198  

SciTech Connect

Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

Lowry, N.

2010-11-05T23:59:59.000Z

260

Downloads - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Team (VAT) Argonne's National Security Information Systems Argonne's Facility Decommissioning Training Course Reactor Safety Experimentation Nuclear Energy Advanced...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Proceedings: 9th EPRI International Decommissioning and Radioactive Waste Workshop  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) held the 9th EPRI International Decommissioning and Radioactive Waste Workshop in collaboration with Enresa on November 2-4, 2010 in Madrid, Spain. A parallel session with EU CARBOWASTE focused on technologies and methodologies for management of graphite wastes. The Workshop featured a visit to the Jose Cabrera Nuclear Power Plant, which is presently undergoing decommissioning. This proceedings document contains the abstracts and presentation slides from the p...

2011-09-14T23:59:59.000Z

262

Proceedings of the 2007 ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization - DD and R 2007  

Science Conference Proceedings (OSTI)

The American Nuclear Society (ANS) Topical Meeting on Decommissioning, Decontamination, and Reutilization (DD and R 2007), 'Capturing Decommissioning Lessons Learned', is sponsored by the ANS Decommissioning, Decontamination and Reutilization; Environmental Sciences; and Fuel Cycle and Waste Management Divisions. This meeting provides a forum for an international exchange of technical knowledge and project management experience gained from the ongoing process of decommissioning nuclear facilities. Of particular note is the number of projects that are approaching completion. This document gathers 113 presentations given at this meeting.

NONE

2008-01-15T23:59:59.000Z

263

DECOMMISSIONING PLAN AND RADIOLOGICAL  

E-Print Network (OSTI)

Cabot Performance Materials (Cabot) holds NRC License SMC-1562, covering storage of radioactive materials at both their Revere and Reading sites in Pennsylvania. Former ore processing at the Revere facility generated waste slag contaminated with uranium and thorium. In 1988, Cabot began onsite decommissioning activities for the Revere facility, including site

unknown authors

2001-01-01T23:59:59.000Z

264

Decommissioning: Reactor Pressure Vessel Internals Segmentation  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear plant covers a wide variety of challenging projects. One of the most challenging areas is the removal and disposal of the reactor pressure vessel (RPV) and the RPV internals. This report describes commercial reactor pressure vessel segmentation projects that have been completed and discusses several projects that are still in the planning stages. The report also covers lessons learned from each project.

2001-10-11T23:59:59.000Z

265

Yankee Rowe Decommissioning Experience Record: Volume 2  

Science Conference Proceedings (OSTI)

This report describes Yankee Atomic Electric Company's (YAEC) recent experiences in the process of decommissioning the Yankee Rowe nuclear power plant. This volume supplements Volume 1 by presenting more lessons learned during work finished by September 1998. In 1999, EPRI will publish a final report completing the experience record. The recommendations and insights in this report will be valuable to other utilities with permanently shut down plants.

1998-12-18T23:59:59.000Z

266

Idaho Site Closes Out Decontamination and Decommissioning Project about  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Closes Out Decontamination and Decommissioning Project Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost Idaho Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost November 8, 2012 - 12:00pm Addthis Workers demolish the Test Area North Hot Shop Complex, shown here. Workers demolish the Test Area North Hot Shop Complex, shown here. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown here removed, loaded and ready for transport to the on-site landfill. The Engineering Test Reactor vessel is shown here removed, loaded and ready

267

Decommissioning Plan of the Musashi Reactor and Its Progress  

SciTech Connect

The Musashi Reactor is a TRIGA-II, tank-type research reactor, as shown in Table 1. The reactor had been operated at maximum thermal power level of 100 kW since first critical, January 30, 1963. Reactor operation was shut down due to small leakage of water from the reactor tank on December 21,1989. After shutdown, investigation of the causes, making plan of repair and discussions on restart or decommissioning had been done. Finally, decision of decommissioning was made in May, 2003. The initial plan of the decommissioning was submitted to the competent authority in January, 2004. Now, the reactor is under decommissioning. The plan of decommissioning and its progress are described. In conclusion: considering the status of undertaking plan of the waste disposal facility for the low level radioactive waste from research reactors, the phased decommissioning was selected for the Musashi Reactor. First phase of the decommissioning activities including the actions of permanent shutdown and delivering the spent nuclear fuels to US DOE was completed.

Tanzawa, Tomio [Atomic Energy Research Laboratory, Musashi Institute of Technology, Ozenji 971, Asao-ku, Kawasaki, 215-0013 (Japan)

2008-01-15T23:59:59.000Z

268

Decommissioning Plan RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decommissioning Plan Review Module Decommissioning Plan Review Module March 2010 CD-0 O 0 C OFFICE OF D C CD-1 F ENVIRO Standard R Decomm Rev Critical Decisi CD-2 M ONMENTAL Review Plan missioning view Module ion (CD) Ap CD March 2010 L MANAGE n (SRP) g Plan e plicability D-3 EMENT CD-4 Post Oper ration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

269

International Research Reactor Decommissioning Project  

SciTech Connect

Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

Leopando, Leonardo [Philippine Nuclear Research Institute, Quezon City (Philippines); Warnecke, Ernst [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

270

www.electricitypolicy.org.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network (OSTI)

The Decontamination and Decommissioning Science Consortium (DDSC) - Founded and Co-managed by ANL & ORAU ­ April 2009 Status Lawrence E. Boing Argonne National Laboratory Nuclear Engineering Division #12://www.orau.gov/ddsc/ ANL and ORAU jointly contribute to its content Purpose ­ To keep decommissioning community abreast

Aickelin, Uwe

271

Regulatory Reform and License Termination Planning in Decommissioning  

SciTech Connect

Decommissioning of commercial nuclear power plants (NPPs) must be safe and cost-effective and consider the needs of a wide range of stakeholders. The creative tension among these objectives has provided opportunities to reform the way these plants are regulated and managed in decommissioning. Enlightened and visionary leaders from the U.S. Nuclear Regulatory Commission (NRC) and industry are seizing these opportunities to create new paradigms for risk-informed regulation; creative stakeholder involvement; and effective, end-state focused, license termination planning.

Michael J. Meisner

2000-06-04T23:59:59.000Z

272

Interim Report on Cumulative Risk Assessment for Radiological and Chemical Constituents of Concern at Decommissioning Sites  

Science Conference Proceedings (OSTI)

Decommissioning nuclear facilities focus extensive efforts on site characterization to demonstrate regulatory compliance in the termination of site licenses. Many decommissioning sites, while recognizing radiological characterization and assessment needs, lacked experience in chemical risk assessment. This report documents plant approaches for performing cumulative risk assessments of both radiological and non-radiological constituents of concern.

2005-12-08T23:59:59.000Z

273

Capabilities listed by Department: Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Bio Research & Test Reactor Advanced Reactor Development Decontamination and Decommissioning Heat Transfer and fluid Mechanics International Nuclear Safety Reactor...

274

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network (OSTI)

in the assay of waste materials generated in the decommissioning of nuclear installations in which one would

275

DECONTAMINATION AND DECOMMISSIONING AT THEEAST TENNESSEE TECHNOLOGYPAR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DECONTAMINATION AND DECOMMISSIONING AT THEEAST TENNESSEE TECHNOLOGYPARK, ER-B-99-01 DECONTAMINATION AND DECOMMISSIONING AT THEEAST TENNESSEE TECHNOLOGYPARK, ER-B-99-01 The East...

276

Draft principles, policy, and acceptance criteria for decommissioning of U.S. Department of Energy contaminated surplus facilities and summary of international decommissioning programs  

SciTech Connect

Decommissioning activities enable the DOE to reuse all or part of a facility for future activities and reduce hazards to the general public and any future work force. The DOE Office of Environment, Health and Safety has prepared this document, which consists of decommissioning principles and acceptance criteria, in an attempt to establish a policy that is in agreement with the NRC policy. The purpose of this document is to assist individuals involved with decommissioning activities in determining their specific responsibilities as identified in Draft DOE Order 5820.DDD, ``Decommissioning of US Department of Energy Contaminated Surplus Facilities`` (Appendix A). This document is not intended to provide specific decommissioning methodology. The policies and principles of several international decommissioning programs are also summarized. These programs are from the IAEA, the NRC, and several foreign countries expecting to decommission nuclear facilities. They are included here to demonstrate the different policies that are to be followed throughout the world and to allow the reader to become familiar with the state of the art for environment, safety, and health (ES and H) aspects of nuclear decommissioning.

Singh, B.K. [Argonne National Lab., IL (United States)]|[USDOE Office of Nuclear Safety Policy and Standards, Washington, DC (United States). Systems Analysis and Standards Div.; Gillette, J.; Jackson, J. [Argonne National Lab., IL (United States)

1994-12-01T23:59:59.000Z

277

In-Situ Decommissioning: A Strategy for Environmental Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Situ Decommissioning In-Situ Decommissioning A Strategy for Environmental Management Reducing the Footprint of the Cold War For over a decade, the Department of Energy has focused on reducing the footprint of 60 years of nuclear research and weapons testing and production. While these facilities are no longer needed, they exist with varying degrees of radiation contamination from years of operation. Deactivation & Decommissioning (D&D) is the process of closing down a nuclear facility and placing it in a state that reduces or eliminates risk to the pub lic and the environment. This generally includes demolition and transport of the debris to a disposal facility. Another alternative is to dispose of the facility in place (i.e., in-situ). The concept of In-Situ Decommis-

278

Decontamination, decommissioning, and vendor advertorial issue, 2008  

SciTech Connect

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

Agnihotri, Newal (ed.)

2008-07-15T23:59:59.000Z

279

Collaborative RESEARCH COUNCILS UK INDIA  

E-Print Network (OSTI)

. SIN consists of 90 staff, based in 28 countries and 47 cities around the world. #12;Having a strong MINISTERS 20 | CIVIL NUCLEAR RESEARCH 21 Sustainability and proliferation resistance assessment of open cycle thorium-fuelled nuclear energy 21 An Indo-UK collaboration in joining technologies 22 Irradiation

Rambaut, Andrew

280

SITE: NMSU  

Science Conference Proceedings (OSTI)

... 3. TURKEY-GREECE DISPUTE. 4. UK-CHINA NUCLEAR DUMPING. ... 9. CALL TO DECOMMISSION CIVIL FACILITIES UK. 10. ...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Second EPRI International Decommissioning Workshop at Bristol  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an international EPRI workshop on decommissioning and radioactive waste management. The workshop focused on a wide range of decommissioning topics, including general approaches, technical developments, and project experiences. The information presented will assist individual utilities in their decommissioning projects, and has the potential to reduce decommissioning costs.

2004-08-06T23:59:59.000Z

282

Progressive Application Decommissioning Models for U.S. Power and Research Reactors  

SciTech Connect

This paper presents progressive engineering techniques and experiences in decommissioning projects performed by Bums and Roe Enterprises within the last fifteen years. Specifically, engineering decommissioning technical methods and lessons learned are discussed related to the Trojan Large Component Removal Project, San Onofre Nuclear Generating Station (SONGS) Decommissioning Project and the Brookhaven Graphite Research Reactor (BGRR) Decommissioning Project Study. The 25 years since the 1979 TMI accident and the events following 9/11 have driven the nuclear industry away from excessive, closed/elitist conservative methods towards more pragmatic results-oriented and open processes. This includes the essential recognition that codes, standards and regulatory procedures must be efficient, effective and fit for purpose. Financial and open-interactive stakeholder pressures also force adherence to aggressive risk reduction posture in the area of a safety, security and operations. The engineering methods and techniques applied to each project presented unique technical solutions. The decommissioning design for each project had to adopt existing design rules applicable to construction of new nuclear power plants and systems. It was found that the existing ASME, NRC, and DOE codes and regulations for deconstruction were, at best, limited or extremely conservative in their applicability to decommissioning. This paper also suggests some practical modification to design code rules in application for decommissioning and deconstruction. The representative decommissioning projects, Trojan, SONGS and Brookhaven, are discussed separately and the uniqueness of each project, in terms of engineering processes and individual deconstruction steps, is discussed. Trojan Decommissioning. The project included removal of entire NSSS system. The engineering complexity was mainly related to the 1200 MW Reactor. The approach, process of removal, engineering method related to protect the worker against excessive radiation exposure, transportation, and satisfying applicable rules and regulations, were the major problems to overcome. The project's successful completed earned a patent award. SONGS Decommissioning. The reactor's spherical containment and weakened integrity was the scope of this decommissioning effort. The aspects of structure stability and method of deconstruction is the major part of the presentation. The economical process of deconstruction, aspects of structural stability, worker safety, and the protection of the surrounding environment from contamination is highlighted in this section. BGRR Decommissioning Study. BREI was commissioned by Brookhaven National Laboratory (BNL) to evaluate and analyze the stability, and progressive decommissioning, and removal of BGRR components. This analysis took the form of several detailed decommissioning studies that range from disassembly and removal of the unit's graphite pile to the complete environmental restoration of the reactor site. While most of the facility's decommissioning effort is conventional, the graphite pile and its biological shield present the greatest challenge. The studies develop a unique method of removing high-activity waste trapped in the graphite joints. (authors)

Studnicka, Z.; Lacy, N.H.; Nicholas, R.G.; Campagna, M.; Morgan, R.D. [Bums and Roe Enterprises, Inc., 800 Kinderkamack Road, Oradell, NJ 07649 (United States); Sawruk, W. [ABS Consulting, Inc., 5 Birdsong Court, Shillington, PA 19607 (United States)

2006-07-01T23:59:59.000Z

283

Decontamination & decommissioning focus area  

Science Conference Proceedings (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

284

CALL FOR PAPERS Abstract Deadline: January 13, 2012 ANS Embedded Topical on Decommissioning,  

E-Print Network (OSTI)

· Changes the rules for nuclear decommissioning funds that are to be used to clean up closed nuclear plant Subsidies and Incentives for New Nuclear Reactors Research and Development · Generation IV program technologies · Investment in human resources and infrastructure in the nuclear sciences and engineering fields

Kemner, Ken

285

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Needs Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for international nuclear fuel service frameworks. Officials from the U.S. Department of Energy (DOE) and the U.K. Nuclear Decommissioning Authority co-chaired the working group meeting. "As a key component of the international Global Nuclear Energy Partnership program, the Infrastructure Development Working Group focuses

286

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

287

16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology  

E-Print Network (OSTI)

of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel Cycle

288

Technical Bases for the Development and Application of Derived Concentration Guidance Levels for Decommissioning and License Termination of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Nuclear Power plants achieve license termination by meeting regulatory site release criteria. Depending on the country, these criteria may be based on radionuclide concentration or dose. For dose-based criteria, corresponding radionuclide concentration limits, called Derived Concentration Guidance Levels (DCGLs), must also be developed. This report provides information related to site release criteria and the development of DCGLs.BackgroundThe ultimate goal ...

2012-09-10T23:59:59.000Z

289

Decommissioning Project Remnant Considerations  

- P-Reactor 2013 - R-Reactor 2014 - F-Canyon 2015 (pending Global Nuclear Energy Partnership decision by 2011) 5 Project Drivers

290

FAMS DECOMMISSIONING END-STATE ALTERNATIVE EVALUATION  

SciTech Connect

Nuclear Material Management (NMM) completed a comprehensive study at the request of the Department of Energy Savannah River Operations Office (DOE-SR) in 2004 (Reference 11.1). The study evaluated the feasibility of removal and/or mitigation of the Pu-238 source term in the F-Area Material Storage (FAMS) facility during on-going material storage operations. The study recommended different options to remove and/or mitigate the Pu-238 source term depending on its location within the facility. During April 2005, the Department of Energy (DOE) sent a letter of direction (LOD) to Washington Savannah River Company (WSRC) directing WSRC to implement a new program direction that would enable an accelerated shutdown and decommissioning of FAMS (Reference 11.2). Further direction in the LOD stated that effective December 1, 2006 the facility will be transitioned to begin deactivation and decommissioning (D&D) activities. To implement the LOD, Site D&D (SDD) and DOE agreed the planning end-state would be demolition of the FAMS structure to the building slab. SDD developed the D&D strategy, preliminary cost and schedule, and issued the deactivation project plan in December 2005 (Reference 11.3). Due to concerns and questions regarding the FAMS planning end-state and in support of the project's Critical Decision 1, an alternative study was performed to evaluate the various decommissioning end-states and the methods by which those end-states are achieved. This report documents the results of the alternative evaluation which was performed in a structured decision-making process as outlined in the E7 Manual, Procedure 2.15, ''Alternative Studies'' (Reference 11.4).

Grimm, B; Stephen Chostner, S; Brenda Green, B

2006-05-25T23:59:59.000Z

291

Power Burst Facility (PBF) Reactor Reactor Decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Decommissioning Click here to view Click here to view Reactor Decommissioning Click on an image to enlarge A crane removes the reactor vessel from the Power Burst Facility...

292

Innovative implementation of decommissioning activities at Yankee  

SciTech Connect

The decommissioning of the Yankee Rowe reactor is described. Reactor dismantlement, radioactive waste manageemnt, and cost are discussed.

Kadak, A.C.; Maret, G.A.; Mellor, R.A.

1994-12-31T23:59:59.000Z

293

INSTRUCTIONS FOR SUBMITTING NUCLEAR  

E-Print Network (OSTI)

the primary responsibility for the safe use of nuclear materials. C.3.2 NRC Criteria for Decommissioning, decontamination, decommissioning, and reclamation of uranium or thorium mills and mill tailings. Both regulations, special nuclear, and byproduct materials be managed, processed, and used in a manner that protects public

294

US, UK, France Discuss Stockpile Stewardship, Arms Control and...  

NLE Websites -- All DOE Office Websites (Extended Search)

US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration Our Mission...

295

Introduction to Nuclear Engineering Introduction to Nuclear Engineering  

E-Print Network (OSTI)

Cardiopulmonary Resuscitation CSA Canadian Standards Association D&D Decontamination and Decommissioning DC, dc Association NNSA National Nuclear Security Administration #12;NRTL Nationally Recognized Testing Laboratory

Corley, Bill

296

EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26: Decommissioning and/or Long-Term Stewardship at the West 26: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center SUMMARY This EIS evaluates the potential environmental impacts of the range of reasonable alternatives to decommission and/or maintain long-term stewardship at WNYNSC. The alternatives analyzed in the EIS include the Sitewide Removal Alternative, the Sitewide Close-In-Place Alternative, the Phased Decisionmaking Alternative (Preferred Alternative), and the No Action Alternative. The analysis and information contained in the EIS are intended to assist DOE and NYSERDA with the consideration of environmental

297

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report  

SciTech Connect

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Miller, R. L.; Scotti, K. S.

1986-05-01T23:59:59.000Z

298

Ceramics for Nuclear Waste Disposition  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Materials Solutions for the Nuclear Renaissance: Ceramics for .... In-situ Decommissioning of Heavy Water Reactor Disassembly Basin:...

299

Development of a Remote Monitoring Sensor Network for In-Situ Decommissioned Structures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10-01666, Revision 0 10-01666, Revision 0 Key Words: in situ decommissioning sensor remote monitoring end state Retention: Permanent DEVELOPMENT OF A REMOTE MONITORING SENSOR NETWORK FOR IN SITU DECOMMISSIONED STRUCTURES Panel Report November 2010 Savannah River National Laboratory Savannah River Nuclear Solutions Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470 Development of a Remote Monitoring Sensor Network Page 2 of 34

300

Proceedings: 8th EPRI International Decommissioning and Radioactive Waste Management Workshop  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) collaborated with E.On Kernkraft to hold the 8th EPRI International Decommissioning and Radwaste Management Workshop in Hamburg, Germany on October 6-8, 2009. A parallel session with EU CARBOWASTE focused on technologies and methodologies for management of graphite wastes. The Workshop featured a visit to the Stade nuclear power plant, which is presently undergoing decommissioning. This proceedings document contains the abstracts and presentation slides from t...

2011-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

On the road to decommissioning  

SciTech Connect

This article is a review of the planning of the decommissioning of the Yankee Rowe and Trojan reactors, with special note given to the issue of waste disposal. Transportation of the major Yankee Rowe components to the Barnwell site was discussed, and Portland General`s involvement with the Northwest Compact is noted.

NONE

1994-09-01T23:59:59.000Z

302

Worldwide Overview of Lessons Learned from Decommissioning Projects  

Science Conference Proceedings (OSTI)

With an increasing number of radioactive facilities and reactors now reaching the end of their useful life and being taken out of service, there is a growing emphasis worldwide on the safe and efficient decommissioning of such plants. There is a wealth of experience already gained in decommissioning projects for all kinds of nuclear facilities. It is now possible to compare and discuss progress and accomplishments worldwide. In particular, rather than on the factual descriptions of projects, technologies and case histories, it is important to focus on lessons learned: in this way, the return of experience is felt to effectively contribute to progress. Key issues - inevitably based on a subjective ranking - are presented in this paper. Through the exchange of lessons learned, it is possible to achieve full awareness of the need for resources for and constraints of safe and cost-effective decommissioning. What remains now is the identification of specific, remaining issues that may hinder or delay the smooth progress of decommissioning. To this end, lessons learned provide the necessary background information; this paper tries to make extensive use of practical experience gained by the international community.

Laraia, Michele [IAEA, Vienna (Austria)

2008-01-15T23:59:59.000Z

303

Materials for the Nuclear Renaissance II - Programmaster.org  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... Nuclear energy does not release carbon dioxide to the atmosphere and ... for used nuclear fuel, and (5) decommissioning, decontamination.

304

Proceedings of the TOUGH Symposium 2009  

E-Print Network (OSTI)

by the United Kingdoms Nuclear Decommissioning Authority.co-funded by the UK Nuclear Decommissioning Authority (NDA),by the United Kingdoms Nuclear Decommissioning Authority.

Moridis, George J.

2010-01-01T23:59:59.000Z

305

October 8, 2008 Attn: Charles Garlow, Attorney-Advisor  

E-Print Network (OSTI)

........................................................................ 9 3.3 Nuclear decommissioning employment factors INFORMATION....................................................... 35 APPENDIX 8 NUCLEAR DECOMMISSIONING ................................................ 3 FIGURE 2 UK PROJECTIONS FOR NUCLEAR WORKFORCE IN DECOMMISSIONING 2010-2025....... 40 FIGURE 3

306

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) As the DOE complex sites prepare for closure, a large number of buildings and facilities must be deactivated and decommissioned. These facilities contain many complex systems (e.g. ventilation), miles of contaminated pipelines, glove boxes, and unique processing equipment that require labor intensive deactivation and decommissioning methods. Although

307

NEW POSITIONS AT THE NEA DRAFT DESCRIPTIONS 1-Nuclear Safety Specialist Grade A3  

E-Print Network (OSTI)

, operation, uranium mining and milling, and plant decommissioning. 2. The nuclear power lifecycle Engineers.5. Decommissioning The last stage of the nuclear lifecycle involves the decom- missioning and dismantling Japanese nuclear reactors Frontend 17 24.2 Construction 2.8 Operation 3.2 Backend 0.8 Decommissioning 0

Papadopoulos, Evangelos

308

Decommissioning of U.S. uranium production facilities  

SciTech Connect

From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

Not Available

1995-02-01T23:59:59.000Z

309

Decommissioning And Its Financing In Belgium: Better To Prevent Than To Cure  

E-Print Network (OSTI)

Since 1985 the Belgian legislature has taken measures to guarantee the financing of the ultimate life period of nuclear facilities. An agreement was concluded with the utilities for the settlement of financial provisions for the later decommissioning of all commercial nuclear power plants. In 1991, the preventive measures were extended to all other nuclear facilities in the country, including healing actions for those plants having a lack of financial provisions to carry out the later decommissioning programs, as well as plants for which the operator or owner has failed to satisfy his legal obligation to decommission the plant. In 1997, the legislature extended the precautionary measures to financing for the remediation of all sites within the country containing radioactive substances liable to present risks for the public health or for the environment. The implementation and control of the measures taken since 1991 have been entrusted by laws to ONDRAF/NIRAS. 1.0 THE EVOLUTION...

Marnix Braeckeveldt Roger; Roger Verbeke; Manfred Schrauben; Ingrid Verstraeten

2000-01-01T23:59:59.000Z

310

A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

R. L. Demmer

2011-04-01T23:59:59.000Z

311

A Novel Approach to Spent Fuel Pool Decommissioning  

SciTech Connect

The Dresden Nuclear Power Station Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included.

R.L. Demmer; J.B. Panozzo; R.J. Christensen

2008-09-01T23:59:59.000Z

312

Decommissioning the Dresden Unit 1 Spent Fuel Pool  

Science Conference Proceedings (OSTI)

The Dresden Nuclear Power Station, Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to map (visually and radiologically) the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included. (authors)

Demmer, R.L.; Bargelt, R.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-7113 (United States); Panozzo, J.B.; Christensen, R.J. [Exelon Generation Company, LLC, Dresden Nuclear Power Station, Warrenville, IL 60555 (United States)

2006-07-01T23:59:59.000Z

313

Shippingport Station Decommissioning Project: overview and justification  

SciTech Connect

The purpose of this booklet is to brief the reader on the Shippingport Station Decommissioning Project and to summarize the benefits of funding the project in FY 1984. Background information on the station and the decommissioning project is provided in this section of the booklet; the need for a reactor decommissining demonstration is discussed in the next section; and a summary of how the Shippingport Station Decommissioning Project (SSDP) provides the needed demonstration is provided in the final section.

Coffman, F.E.

1984-01-01T23:59:59.000Z

314

Decommissioning of the High Flux Beam Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

After careful planning and input from regulatory agencies and the community, a decommissioning plan for the HFBR has been finalized. A Feasibility Study was completed and a...

315

Decommissioning Benchmarking Study Final Report | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarking Study Final Report Decommissioning Benchmarking Study Final Report DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its...

316

Reactor Decommissioning Projects | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor(BGRR) BGRR Overview BGRR Complex Description Decommissioning Decision BGRR Complex Cleanup Actions BGRR Documents BGRR Science &...

317

Uranium Enrichment Decontamination and Decommissioning Fund's...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

318

Executive Director for Operations PROPOSED RULE ON DECOMMISSIONING TRUST PROVISIONS  

E-Print Network (OSTI)

To request Commission approval to publish a proposed rule in the Federal Register on decommissioning trust agreement requirements. BACKGROUND: The staff presented a rulemaking plan (SECY-00-0002) to the Commission on December 30, 1999. The plan discussed two actions relating to amending nuclear power reactor decommissioning trust provisions i.e., to amend 10 CFR 50.75 and revise Regulatory Guide 1.159. Subsequently, in a February 9, 2000, staff requirements memorandum (SRM) to the Executive Director for Operations (Attachment 1), the Commission authorized the staff to proceed with the rulemaking plan. Further, the Commission instructed the staff that any specific trust fund terms and conditions necessary to protect the funds fully should be set out in the rule itself, not in the regulatory guide. Sample language for trust agreements consistent with the terms and conditions within the rule may be provided within the associated regulatory guide. The attached Federal Register notice (FRN) responds to the SRM. DISCUSSION: Contact:

William D. Travers; Brian Richter

2001-01-01T23:59:59.000Z

319

NISTIR 7026 Condition Assessment of Concrete Nuclear ...  

Science Conference Proceedings (OSTI)

... An im- portant consideration for decommissioning is that the existing concrete nuclear structure is a primary barrier between its remaining contents ...

2003-12-16T23:59:59.000Z

320

EA-1053: Decontaminating and Decommissioning the General Atomics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

3-D Model for Deactivation & Decommissioning | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated...

322

DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

323

FLUOR HANFORD DECOMMISSIONING UPDATE  

SciTech Connect

Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield workers to a safe level from the residual radioactivity. Workers then continued preparations for demolishing the structure. Currently, they are isolating utilities, removing asbestos, draining oils, and removing other items not allowed to be disposed in Hanford's Environmental Restoration Disposal Facility (ERDF). The basin's superstructure will be demolished using a heavy industrial excavator equipped with a shear. This portion of the work is expected to be completed in September, with removal of the basin substructure to follow in 2009. D&D of the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream.

GERBER MS

2008-04-21T23:59:59.000Z

324

For more information, contact Michele Boyd at mboyd@psr.org. Updated July 13, 2009. Existing Subsidies and Incentives for New Nuclear Reactors  

E-Print Network (OSTI)

..................................... 48 Table 5-3 ­ Scheduled nuclear capacity decommissioning prices and load profiles. - Investment in nuclear capacity is very responsive to the severity of CO2........................................................................... 35 4.2 Defining Generators: Investment, Decommission and Performance............................. 40

Laughlin, Robert B.

325

In-Situ Decommissioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site & Facility Restoration » Deactivation & Site & Facility Restoration » Deactivation & Decommissioning (D&D) » In-Situ Decommissioning In-Situ Decommissioning In-Situ Decommissioning (ISD) is the permanent entombment of a facility that contains residual radiological and/or chemical contamination. The ISD approach is a cost-effective alternative to both demolition and complete removal of the structure and its content (including the cost of transport and disposal). In addition, the effective use of ISD reduces human health and safety risks while helping to attain sustainability goals through the reduction of greenhouse gas (GHG) emissions, petroleum consumption and waste generation. Not all contaminated structures can be decommissioned using ISD; canditate sites must meet strict criteria.

326

Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada  

SciTech Connect

Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred thousand hours worked, on schedule and under budget despite some significant changes throughout the decommissioning phases. The actual cost to decommission this building will come in under 9 million dollars vs. an estimated 14.5 million dollars. This paper will cover some of the unique aspects of dismantling a radioactive building that has seen pretty much every element of the periodic table pass through it with the client requirement focused on minimization of radioactive waste volumes.

Kenny, Stephen [Acting Director of Waste Management and Decommissioning Operations, AECL, Chalk River Labs, Chalk River, Ont. (Canada)

2008-01-15T23:59:59.000Z

327

Fort St. Vrain Decommissioning: Final Site Radiation Survey: Summary Report and Lessons Learned  

Science Conference Proceedings (OSTI)

This report describes the final step in the decommissioning process at Public Service Company of Colorado's (PSCo) Fort St. Vrain nuclear power plant. The final site radiation survey documents that all nuclear facility surfaces meet the established release limits for unrestricted use. The survey formed the legal basis for the termination of the Fort St. Vrain nuclear license, which occurred in August 1997. The lessons learned in this process will be valuable to other utilities with permanently shutdown p...

1998-02-13T23:59:59.000Z

328

Present Status Of Research Reactor Decommissioning Program In Indonesia  

E-Print Network (OSTI)

At present, Indonesia has 3 research reactors: MTR-type multipurpose reactor of 30 MW at Serpong site, TRIGA-type research reactor of 1 MW at Bandung site, and small TRIGA - type reactor of 100 kW at Yogyakarta Research Center. The oldest one is the TRIGA reactor at Bandung site, which went critical at 250 kW in 1964, then was operated at maximum of 1000 kW by 1971. The reactor has operated for a total of 35 years. There is no decision for decommissioning this reactor; however, slowly but surely, it will be an object for a near-future decommissioning program. Anticipation of the situation is necessary. For the Indonesian case, early decommissioning strategy for a research reactor and restricted use of the site for another nuclear installation is favorable under high land pricing, availability of radwaste repository, and cost analysis. Graphite from Triga reactor reflector is recommended for direct disposal after conditioning, without volume reduction treatment. Development of human ...

Mulyanto And Gunandjar

2000-01-01T23:59:59.000Z

329

Waste Logic(TM): Decommissioning Waste Manager, Version 2.1 and Solid Waste Manager, Version 2.1  

Science Conference Proceedings (OSTI)

Waste Logic(TM) Decommissioning Waste Manager, Version 2.1: Rising program costs and a more competitive business environment have made solid waste management a major cost concern. Effective management of solid waste can reduce long range operating costs for a large nuclear plant by millions of dollars. To assist waste managers in maximizing potential cost savings, EPRI developed the Waste Logic Decommissioning Waste Manager(TM) computer code. It provides a comprehensive methodology for capturing and quan...

2003-03-03T23:59:59.000Z

330

Report to Congress on Plan for Interim Storage of Spent Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from...

331

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network (OSTI)

. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located satisfactory for safe operation, and AECL decided to decommission it in 1978. The nuclear fuel was removedSP·215-18 FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure by M. Demers. A

332

FY 2000 Deactivation and Decommissioning Focus Area Annual Report  

SciTech Connect

This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

None

2001-03-01T23:59:59.000Z

333

Proceedings: 3rd EPRI International Decommissioning and Radioactive Waste Workshop  

Science Conference Proceedings (OSTI)

EPRI held its 3rd International Decommissioning Workshop in collaboration with EDF in Lyon, France. This workshop focused on a wide range of decommissioning topics, including general approaches, technical developments and project experiences. The information presented will assist individual utilities in their decommissioning projects with the potential to reduce decommissioning costs.

2005-09-16T23:59:59.000Z

334

Mobile workstation for decontamination and decommissioning operations  

SciTech Connect

This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

Whittaker, W.L.; Osborn, J.F.; Thompson, B.R. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Robotics Inst.

1993-10-01T23:59:59.000Z

335

Shutdown plus 3 - a look at Yankee decommissioning experience  

Science Conference Proceedings (OSTI)

In three years, the Yankee Nuclear Power Station has not only made the transition from a facility with a full power operating license to a shut down facility but to a facility with a mature and experienced organization poised to effectively and efficiently decommission the remainder of the plant. Opportunities were acted upon to reduce the cost of running and dismantling a shut-down facility. This paper describes some of those opportunities and Yankee`s future strategy for dismantling in an environment with limited waste disposal availability.

Szymczak, W.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1995-12-31T23:59:59.000Z

336

Environmental restoration and decontamination & decommissioning safety documentation. Revision 2  

SciTech Connect

This document presents recommendations of a working group designated by the Environmental Restoration and Remediation (ER) and Decontamination and Decommissioning (D&D) subcommittees of the Westinghouse M&O (Management and Operation) Nuclear Facility Safety Committee. A commonalty of approach to safety documentation specific to ER and D&D activities was developed and is summarized below. Allowance for interpretative tolerance and documentation flexibility appropriate to the activity, graded for hazard category, duration, and complexity, was a primary consideration in development of this guidance.

Hansen, J.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Frauenholz, L.H. [Westinghouse Idaho Nuclear Co., Inc. (United States); Kerr, N.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-05-18T23:59:59.000Z

337

TA-2 Water Boiler Reactor Decommissioning Project  

Science Conference Proceedings (OSTI)

This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

Durbin, M.E. (ed.); Montoya, G.M.

1991-06-01T23:59:59.000Z

338

www.ni-environment.gov.uk Agency Northern Ireland  

E-Print Network (OSTI)

............................................................................................................................... 22 1.3 Sources of radiation exposure Division of the Food Standards Agency (radiation@foodstandards.gsi.gov.uk) · in Scotland, the Radioactive..................................................................... 23 1.3.2 International agreements, the UK Discharge Strategy and new nuclear power stations

339

UK Energy Statistics: Electricity (2010) UK National Statistics...  

Open Energy Info (EERE)

Statistics: Electricity (2010) UK National Statistics on electricity generation through sales are presented in Chapter 5 (Electricity) of the Digest of UK Energy Statistics...

340

Monitoring the recovery of decommissioned roads with citizen scientists in the Clearwater National Forest, Idaho  

E-Print Network (OSTI)

monitoring following road decommissioning . Wildlands CPR,research on road decommissioning, which will in turn allowService. 2003. Road decommissioning monitoring report 2002.

Court, Katherine; Switalski, T. Adam; Broberg, Len; Lloyd, Rebecca

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wildlife Use of Open and Decommissioned Roads on the Clearwater National Forest, Idaho  

E-Print Network (OSTI)

the effectiveness of road decommissioning (Switalski et al.hunting season. Road decommissioning has been recommended toresulting from road decommissioning has also been predicted

Switalski, T. Adam; Broberg, Len; Holden, Anna

2007-01-01T23:59:59.000Z

342

Road Decommissioning: Minimising the Adverse Ecological Effects of Roads i9n European Agriculture Landscapes  

E-Print Network (OSTI)

road corridors post-decommissioning, especially those roadsof RRE - that of road decommissioning. To date even thoughFor this reason, road decommissioning can potentially: (1)

Dolan, Lisa; Whelan, Pdraig M.

2007-01-01T23:59:59.000Z

343

UK | OpenEI  

Open Energy Info (EERE)

UK UK Dataset Summary Description The UK Department of Energy and Climate Change (DECC) released experimental statistics on domestic electricity and gas consumption (and number of meters) at the Lower Layer Super Output Authority level (LLSOA) for 2008 and for 2007 (only 45 local authorities included in 2007 data). The LLSOAs have a minimum population of 1,000 (approximately 400 households). The domestic electricity consumption data data is split by ordinary electricity and economy7 electricity usage. These data are classified as experimental. Source UK Department of Energy and Climate Change (DECC) Date Released March 25th, 2010 (4 years ago) Date Updated Unknown Keywords Electricity Consumption gas LLOAS UK Data application/zip icon Guidance document for interpreting data (zip, 1.2 MiB)

344

Guides: Design/Engineering for Deactivation & Decommissioning  

Energy.gov (U.S. Department of Energy (DOE))

To ensure development of appropriate levels of engineering detail, DOE-EMs Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for tailoring a D...

345

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Nuclear Power Reactors PROTECTION AGAINST SABOTAGE Protection Against Industrial Sabotage I1C-4 Decominarion and Decommissioning

Nero, A.V.

2010-01-01T23:59:59.000Z

346

Two Approaches to Reactor Decommissioning: 10 CFR Part 50 License Termination and License Amendment, Lessons Learned from the Regulatory Perspective  

SciTech Connect

Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in decommissioning planning, conduct of decommissioning operations, volumes of low- level radioactive waste disposed, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated their 10 CFR Part 50 license. Maine Yankee elected to obtain a general license under 10 CFR Part 50 for the ISFSI and reduce the physical site footprint to the ISFSI through a series of license amendments. While the NRC regulations are flexible and allow different approaches to ISFSI licensing there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, public input resulted in the licensee entering into an agreement with a concerned citizen group and resulted in State legislation that significantly lowered the dose limit below the NRC radiological criteria of 25 mrem (0.25 mSv) per year (yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs) that were well below the NRC DCGL screening values. This contributed to a longer than anticipated period to obtain NRC approval of the Maine Yankee License Termination Plan (LTP). By employing the lessons learned from its first LTP submittal, which was not accepted by the NRC staff, Trojan was able to obtain approval of its revised LTP promptly. While both licensees provided final status survey reports (FSSRs) for NRC approval, the Trojan approach to decommissioning and data management allowed NRC to efficiently review FSS records and supporting documentation. Therefore, NRC was able to review Trojan's FSSR more efficiently than Maine Yankee's FSSR. This paper describes the regulatory impacts of the two different approaches to the decommissioning, the development of licensee required plans, decommissioning operations and records, the differences in licensing processes, and the lessons learned for improving the processes. (authors)

Watson, B.A.; Buckley, J.T.; Craig, C.M. [U.S. Nuclear Regulatory Commission, Office of Nuclear Materials Safety and Safeguards, Decommissioning Directorate (T7E18), Washington, D.C. 20555 (United States)

2006-07-01T23:59:59.000Z

347

UK Renewable Energy Policy Since Privatisation  

E-Print Network (OSTI)

are ambitious by historical standards of decarbonisation. Between 1979 and 1987 France reduced its national carbon emissions from fossil fuels by 30%12 as its nuclear power programme increased the share of nuclear power plants in total electricity production... electricity and heat generation since privatisation in the UK: the Non-Fossil Fuel Obligation (NFFO) which ran from 1990-2002 and the Renewables Obligation Certificate (RO or ROC) Scheme which began in 22...

Pollitt, Michael G.

348

Materials for Nuclear Power: Digital Resource Center - BOOK ... - TMS  

Science Conference Proceedings (OSTI)

Jun 22, 2007 ... Topic Title: BOOK: Scientific Basis for Nuclear Waste Management XXVII ... as papers on waste-, tank- and site-cleanup and decommissioning.

349

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

May 15, 2007 ... This concise online guide to the nuclear fuel cycle offers a good overview of waste management and decommissioning processes. It is written...

350

Vibratory Shear Enhanced Process Filtration for Processing Decommissioning Wastes at Rancho Seco  

Science Conference Proceedings (OSTI)

Many non-nuclear industries use a vibratory shear enhanced filtration process (VSEP) to separate solids in liquid streams. Unlike other methods, including the application of a precoat of filter media, the VSEP does not generate any secondary waste, making it seem ideally suited for nuclear power plant radwaste systems. This report presents the results of laboratory and pilot scale in-plant testing of VSEP's ability to successfully process radioactive decommissioning waste. Testing at Rancho Seco showed t...

2003-12-02T23:59:59.000Z

351

Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission  

E-Print Network (OSTI)

(NRC) staff responses to frequently asked questions on the decommissioning process for commercial, nuclear power reactors. The questions were taken from a variety of sources over the past several years, including written inquiries to the NRC and questions asked at public meetings and during informal discussions with the NRC staff. In responding to the questions, the NRC staff attempted to provide the answers in a clear and non-technical form. With the increase in the number of power reactors beginning the decommissioning process and significant changes that occurred in the regulations since 1996, the staff realized that there was a general lack of understanding of the decommissioning process and the risks associated with decommissioning. This document was developed in response to the staffs concerns. The report contains a definition of decommissioning and a discussion of alternatives. It also provides a focus on decommissioning experiences in the United States and how the NRC regulates the decommissioning process. Questions related to spent fuel, low-level waste, and transportation related to decommissioning are answered. Questions related to license termination, the ultimate disposition of the facility, and finances for completing decommissioning and hazards associated with decommissioning are also addressed. This document also provides responses to questions related to public involvement in decommissioning as well as providing the public with sources for obtaining additional information on decommissioning.

John L Minns; Michael T. Masnik; U. S. Nuclear; Regulatory Commission; Washington D. C. Abstract

2000-01-01T23:59:59.000Z

352

Dalhousie University Nuclear Substance (Class 7) Receiving Refresher Training  

E-Print Network (OSTI)

.fissilematerials.org). In 2006-2007 he was part of a consultant consortium that assessed nuclear decommissioning and waste 2008 main nuclear operators EDF, CEA and AREVA answered a questionnaire on decommissioning and wasteNuclear Power in France Beyond the Myth By Mycle Schneider International Consultant on Energy

Brownstone, Rob

353

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network (OSTI)

, engineering, construction. operation, transmission and distribution of nuclear electricity, decommissioning from $O.Ol/kWh ($1982) at l%/yr to $O.O165/kWh in year 50, decommissioning and nuclear waste reserved Copyright 0 1988 Pergamon Journals Ltd THE NET-ENERGY YIELD OF NUCLEAR POWER GENETYNER SR,~ ROBERT

McDonald, Kirk

354

Decommissioning Under CERCLA Information Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decommissioning Under CERCLA Information Sheet Decommissioning Under CERCLA Information Sheet Decommissioning Under CERCLA Information Sheet This Question and Answer (Q&A) Sheet discusses the use of removal authority in the conduct of decommissioning activities, consistent with the Policy on Decommissioning of Department of Energy Facilities under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (May 22, 1995), and the accompanying Decommissioning Implementation Guide . The Policy and Guide establish the approach agreed upon by the Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). It is consistent with CERCLA statutory requirements, as well as CERCLA regulatory requirements found in the National Contingency Plan (NCP), and applicable

355

Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report  

SciTech Connect

With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

1995-11-01T23:59:59.000Z

356

Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report  

Science Conference Proceedings (OSTI)

With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N. [Pacific Northwest Lab., Richland, WA (United States)

1995-11-01T23:59:59.000Z

357

Waste Logic Decommissioning Waste Manager 2.0 Users Manual  

Science Conference Proceedings (OSTI)

The Decommissioning Waste Manager, part of EPRI's Waste Logic series of computer programs, analyzes decommissioning waste cost and volume reduction strategies with the intent of quantifying the existing waste management program for any given waste generator.

2001-10-29T23:59:59.000Z

358

Disposal of personal property from ERDA facilities being decommissioned  

SciTech Connect

Problem areas which should be considered early in planning the decommissioning of a facility are pointed out. (LK)

French, J.D.

1975-09-01T23:59:59.000Z

359

Uranium enrichment decontamination and decommissioning fund, 1995 report  

SciTech Connect

This report describes strategies for the decontamination and decommissioning of gaseous diffusion plants. Progress in remedial action activities are discussed.

1996-11-01T23:59:59.000Z

360

Decommissioning Cost Estimating Factors And Earned Value Integration  

Science Conference Proceedings (OSTI)

The Rocky Flats 771 Project progressed from the planning stage of decommissioning a plutonium facility, through the strip-out of highly-contaminated equipment, removal of utilities and structural decontamination, and building demolition. Actual cost data was collected from the strip-out activities and compared to original estimates, allowing the development of cost by equipment groupings and types and over time. Separate data was developed from the project control earned value reporting and compared with the equipment data. The paper discusses the analysis to develop the detailed factors for the different equipment types, and the items that need to be considered during characterization of a similar facility when preparing an estimate. The factors are presented based on direct labor requirements by equipment type. The paper also includes actual support costs, and examples of fixed or one-time start-up costs. The integration of the estimate and the earned value system used for the 771 Project is also discussed. The paper covers the development of the earned value system as well as its application to a facility to be decommissioned and an existing work breakdown structure. Lessons learned are provided, including integration with scheduling and craft supervision, measurement approaches, and verification of scope completion. In summary: The work of decommissioning the Rocky Flats 771 Project process equipment was completed in 2003. Early in the planning process, we had difficulty in identifying credible data and implementing processes for estimating and controlling this work. As the project progressed, we were able to collect actual data on the costs of removing plutonium contaminated equipment from various areas over the life of this work and associate those costs with individual pieces of equipment. We also were able to develop and test out a system for measuring the earned value of a decommissioning project based on an evolving estimate. These were elements that would have been useful to us in our early planning process, and we would expect that they would find application elsewhere as the DOE weapons complex and some commercial nuclear facilities move towards closure. (authors)

Sanford, P.C.; Cimmarron, E. [Englewood, CO, B. Skokan, Office of Project Management Oversight, EM-53, United States Department of Energy, Washington, DC (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

OpenEI - UK  

Open Energy Info (EERE)

/0 en UK Electricity /0 en UK Electricity Consumption at LLSOA level (2007 - 2008) http://en.openei.org/datasets/node/256 The UK Department of Energy and Climate Change (DECC) released experimental statistics on domestic electricity and gas consumption (and number of meters) at the Lower Layer Super Output Authority level (LLSOA) for 2008 and for 2007 (only 45 local authorities included in 2007 data). The LLSOAs have a minimum population of 1,000 (approximately 400 households). The domestic electricity consumption data data is split by ordinary electricity and economy7 electricity usage. These data are classified as experimental.  

License

362

FAQS Qualification Card - Deactivation and Decommissioning | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deactivation and Decommissioning Deactivation and Decommissioning FAQS Qualification Card - Deactivation and Decommissioning A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-DeactivationDecommissioning.docx Description Deactivation and Decommissioning Qualification Card More Documents & Publications

363

DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Policy on Decommissioning DOE Facilities Under DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This policy ensures protection of the environment, worker health and public health, provides opportunities for stakeholder involvement, and achieves risk reduction without unnecessary delay. Consistent with the jointly issued "Guidance on Accelerating CERCLA Environmental Restoration at Federal Facilities" (August 22, 1994), this decommissioning policy encourages streamlined decision-making. This

364

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

365

Sodium Reactor Experiment decommissioning. Final report  

Science Conference Proceedings (OSTI)

The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

1983-08-15T23:59:59.000Z

366

Decontamination and decommissioning focus area. Technology summary  

SciTech Connect

This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

1995-06-01T23:59:59.000Z

367

Lessons learned from decommissioning of a research lab and how to apply these on upcoming decommissioning projects at the Studsvik site  

SciTech Connect

Available in abstract form only. Full text of publication follows: The clearance of material and release of buildings for unconditional use are crucial factors for the waste amounts coming from decommissioning of nuclear facilities. The possibilities for clearance is also very much dependent on the regulatory body's ability to put in place the correct regulations or legislations. During the last decade the development of new guidelines for decommissioning has taken place. The implementation of these guidelines on a national level has not been fast but in Sweden it is on its way. This paper will describe the Swedish situation from the point of view of a decommissioner, i.e. an organization in need of clear and long term regulations. (authors)

Ellmark, Christoffer; Eriksson, Anders; Lindberg, Maria [Studsvik RadWaste AB, SE-611 82 Nykoeping (Sweden)

2007-07-01T23:59:59.000Z

368

Policy on Decommissioning of Department of Energy Facilities Under the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy on Decommissioning of Department of Energy Facilities Under Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Purpose This Policy establishes the approach agreed upon by the Department of Energy (DOE) and Environmental Protection Agency (EPA) for the conduct of decommissioning projects [1] consistent with CERCLA requirements. This Policy creates a framework for the conduct of decommissioning of DOE facilities and provides guidance to EPA Regions and DOE Operations Offices on the use of CERCLA response authority to decommission such facilities. The principal objectives of this Policy are to ensure that decommissioning

369

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network (OSTI)

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY Nuclear Energy in the Enlarged Russia and Ukraine. Interrrupted heating in European cities on cold winter nights adds a new dimension in central and eastern Europe for nuclear power. This working paper notes that with the addition of 12 new

Aickelin, Uwe

370

SDMSM 2.1 - Waste Logic Solid and Decommissioning Multi-Site Manager, Version 2.1  

Science Conference Proceedings (OSTI)

The Waste Logic Solid and Decommissioning Multi-Site Manager (SDMSM) software, Version 2.1, combines several existing Waste Logic programs into a single software package offering comprehensive waste management cost and performance input and analysis for multiple nuclear stations.

2006-06-27T23:59:59.000Z

371

Management of Decommissioning on a Multi-Facility Site  

SciTech Connect

The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate.

Laraia, Michele; McIntyre, Peter; Visagie, Abrie [IAEA, Vienna and NECSA (South Africa)

2008-01-15T23:59:59.000Z

372

Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems  

Science Conference Proceedings (OSTI)

From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design (CAD) system and had to be imported into a GIS framework. Since the data is maintained in a different format in CAD, import into GIS involved several spatial processing steps to convert various geometric shapes present in the CAD data to self-closing polygons. The polygons represent facility footprints in plan or map view. Once these were successfully imported and converted, building identifier attributes from the CAD had to be associated with the appropriate polygons in GIS. Attributes are stored as graphical information in a CAD system and are not 'attached' to a building in a relational sense. In GIS, attributes such as building names, building area, hazards, or other descriptive information, must be associated or related to the spatial polygon representing a particular building. This spatial relationship between building polygons and the descriptive attribute information is very similar to relating tables of information in a relational database in which each table record has a unique identifier that can be used to join or relate that table to other tables of information present in the database. The CAD building identifiers were imported into the GIS and several spatial processing steps were used to associate building polygons with the correct identifiers. These spatial steps involved determining the intersection of and nearest identifiers with each building polygon in the GIS. Automating this process in GIS saved a significant amount of time. Once a current and geographically correct representation of the infrastructure data had been created in GIS, field-engineering teams collected information for each facility. This information included the building area, radiological hazards and the associated area, industrial hazards such as asbestos or mercury, structure type (e.g. hardened, industrial, nuclear), annual surveillance and monitoring cost, and other engineering data. The facility engineering data was used in a simple model to determine the rough-order-of-magnitude cost for decontaminating and demolishing each facility. Finally, the engineering and cost d

Bollinger, James S.; Koffman, Larry D.; Austin, William E. [Savannah River National Laboratory, Bldg. 735-A, Aiken, SC 29808 (United States)

2008-01-15T23:59:59.000Z

373

The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning  

SciTech Connect

Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial disposal sites if they have no remaining value. In order to achieve these objectives, Belgoprocess uses techniques and equipment that enable the high degrees of decontamination to be obtained, while based on commercially available technology. As an example, for concrete surfaces, where the contamination has not penetrated deeply, significant improvement in operation efficiency was achieved when developing dry hand held and automated floor and wall shaving systems as an alternative for scabbling. As it was also shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, an industrial automated dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. Moreover, a specific facility was developed and operations started for taking representative samples and monitoring concrete material in view of the final demolition and unconditional release of remaining structures of buildings after completing all dismantling and decontamination work.

Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms. B.

2003-02-27T23:59:59.000Z

374

he CNWRA was estab-lished in 1987 to pro-  

E-Print Network (OSTI)

Application of Mobile Agents to Robust Teleoperation of Internet Robots in Nuclear Decommissioning, Colchester, Essex, C04 3SQ, U.K. Email: {lmcrag, hhu}@essex.ac.uk Abstract­ Nuclear decommissioning involves a substantial increase in decommissioning globally as a large number of nuclear facilities are due to reach

Chapman, Clark R.

375

The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania  

SciTech Connect

The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)

Barariu, G. [National Authority for Nuclear Activity-Subsidiary of Technology and Engineering for Nuclear Projects (Romania)

2008-07-01T23:59:59.000Z

376

Decommissioning of the Tokamak Fusion Test Reactor  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

2003-10-28T23:59:59.000Z

377

Third Party Nuclear Liability: The Case of a Supplier in the United Kingdom  

E-Print Network (OSTI)

The law surrounding third party nuclear liability is important to all parties in the nuclear supply chain whether they are providing decommissioning services, project management expertise or a new reactor. This paper examines third party nuclear...

Thomas, Anthony; Heffron, Raphael J.

2012-02-27T23:59:59.000Z

378

DOE Awards New York Decommissioning Services Contract | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New York Decommissioning Services Contract New York Decommissioning Services Contract DOE Awards New York Decommissioning Services Contract June 29, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 William.taylor@emcbc.doe.gov West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP). The contract is a performance-based, cost-plus-award-fee, completion type contract with cost and schedule incentives. The total contract value is $333.4 million. DOE has selected a phased approach for decommissioning activities at the WVDP. Phase I is the first of a two-phase process for the final decommissioning of the western New York site in accordance with the West

379

DOE Awards New York Decommissioning Services Contract | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New York Decommissioning Services Contract New York Decommissioning Services Contract DOE Awards New York Decommissioning Services Contract June 29, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 William.taylor@emcbc.doe.gov West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP). The contract is a performance-based, cost-plus-award-fee, completion type contract with cost and schedule incentives. The total contract value is $333.4 million. DOE has selected a phased approach for decommissioning activities at the WVDP. Phase I is the first of a two-phase process for the final decommissioning of the western New York site in accordance with the West

380

Brookhaven Lab Completes Decommissioning of Graphite Research Reactor:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Lab Completes Decommissioning of Graphite Research Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal September 1, 2012 - 12:00pm Addthis The Brookhaven Graphite Research Reactor’s bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. The Brookhaven Graphite Research Reactor's bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. Pictured here is the Brookhaven Graphite Research Reactor, where major decommissioning milestones were recently reached after the remaining radioactive materials from the facility’s bioshield were shipped to a licensed offsite disposal facility.

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

In-Situ Decommissioning: A Strategy for Environmental Management |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning (ISD) is an effective decommissioning practice offering a safe and environmentally-favorable alternative to completely demolishing a facility and transporting its debris elsewhere for disposal. Regulatory approval to decommission a facility through ISD is authorized primarily by the Environmental Protection Agency under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). In addition, Federal Facility Agreements and local stakeholder agreements have a direct influence on ISD approval and oversight. The ISD approach limits radiation exposure and industrial hazards to workers to a greater extent than larger scale cleanout and demolition.

382

GRR/Section 20 - Plant Decommissioning Overview | Open Energy Information  

Open Energy Info (EERE)

20 - Plant Decommissioning Overview 20 - Plant Decommissioning Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20 - Plant Decommissioning Overview 20PlantDecommissioningOverview (1).pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3263.10-3263.15: Well Abandonment Geothermal Resources Operational Order No.3 Triggers None specified Click "Edit With Form" above to add content 20PlantDecommissioningOverview (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative State and federal laws have specific requirements for the decommissioning process. 20.1 to 20.2 - Will a Geothermal Well be Abandoned?

383

Nuclear Engineering (NE) is one of the divisions within the Applied Science and Technology directorate of Argonne National Laboratory. The Division and its precursors  

E-Print Network (OSTI)

completion. However, the Project was awaiting a response from the Nuclear Decommissioning Authority over DECOMMISSIONING PLANNING PROJECT 13. The College Secretary presented the Second Annual Report on the Reactor Decommissioning Planning Project (RDPP). He reported that the Project had made significant progress in its task

Kemner, Ken

384

Decommissioning Handbook for Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This handbook lays out the steps necessary to fully decommission a coal-fired power plant. The handbook includes ways to handle permitting, environmental cleanup, site dismantlement, and site remediation, and discusses overall decommissioning costs. It is based on three actual case studies of coal plants recently decommissioned: the Arkwright coal-fired plant of Georgia Power, the Watts Bar coal-fired plant of TVA, and the Port Washington coal-fired plant of Wisconsin Electric Power.

2004-11-04T23:59:59.000Z

385

Decommissioning Process for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

This report describes a staged process for the decommissioning and possible demolition of fossil-fueled power generating facilities. Drawn from experience with power and major industrial facilities, the report provides the owner/operator of a plant that is approaching the end of its useful life with an overview of the key elements necessary to successfully implement decommissioning. The process is applicable to full decommissioning, demolition, and closure; to partial scenarios (that is, partial dismantl...

2010-01-22T23:59:59.000Z

386

HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING  

Science Conference Proceedings (OSTI)

The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

Austin, W.; Brinkley, D.

2011-10-13T23:59:59.000Z

387

Decommissioning of U.S. Uranium Production Facilities  

Reports and Publications (EIA)

This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

Information Center

1995-02-01T23:59:59.000Z

388

Decommissioning Anddismantling Of The Research Reactor Salaspils. I. Conceptual Study And The First Results.  

E-Print Network (OSTI)

In May 1995, the Latvian government decided to shut down the Research Reactor Salaspils (SRR) and to dis pense with nuclear energy in future. The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umweltlechnik GmbH at 1998-1999 years. The Latvian government decided in October 26 1999 to start the direct dismantling to "green field" at 2001 year. The first decommissioning and dismantling results from preparation measures in 1999 year are presented and discussed. The main efforts was devoted to collecting and conditioning of "historical" radioactive wastes from different storages outside and inside of reactor hall. All non-radioactive equipments and materials outside of reactor buildings were free-released and dismantled for reusing and conventional disposing. Weakly contaminated materials from reactor hall were collected and removed for free-release measurements. 1.0 INTRODUCTION The res...

Andris Abramenkovs Ministry; Andris Abramenkovs; Arnis Ezergailis; State Enterprise vides Projekti; Dzintars Kalnin

2000-01-01T23:59:59.000Z

389

Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning  

SciTech Connect

A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations.

Eberle, C.S.; Dean, E.M.; Angelo, P.L.

1995-12-31T23:59:59.000Z

390

Nuclear Power in France Beyond the Myth  

E-Print Network (OSTI)

.8 Decommissioning E.2 Unsealed Nuclear Substances E.2.1 Nuclear Substance Lab Facilities E.3 Precautions Safety Officer C.4 Director of EH&S C.5 Project Directors C.6 Nuclear Substance Users D Radiation Safety Policies 13 D.1 ALARA Statement D.2 Policies ALARA Policy Laboratory Status Transfer/Shipment of Nuclear

Laughlin, Robert B.

391

Regulatory Experiences for the Decommissioning of the Research Reactor in Korea  

Science Conference Proceedings (OSTI)

The first research reactor in Korea (KRR-1, TRIGA Mark-II) has operated since 1962, and the second one (KRR-2, TRIGA Mark-III), since 1972. Both of them were phased out in 1995 due to their lives and the operation of a new research reactor, HANARO (30 MW thermal power) operated by KAERI (Korea Atomic Energy Research Institute). After deciding the shutdown by the Nuclear Development and Utilization Committee in March 1996, KAERI began to prepare the decommissioning plan, including the environmental impact assessment, and submitted the plan to the Ministry of Science and Technology (MOST) in December 1998. Korea Institute of Nuclear Safety (KINS) reviewed document and prepared the review report in 1999. KINS is an organization of technical expertise which performs regulatory functions, entrusted by the MOST in accordance with the Atomic Energy Act and its Enforcement Decree. The review report written by KINS was consulted by the Special Committee on Nuclear Safety in January 2000. The committee submitted their consultation results to the Nuclear Safety Commission for the final approval by the Minister of MOST. The license was issued in November 2000. With the consent of the Korean government to the US Record of Decision, the spent fuel of KRR-1 and 2 was safely transported to the United States in July 1998. The decontamination and dismantling of KRR-2 was completed at the end of 2005 but the decommissioning of KRR-1 has been suspended by the problem for the memorial of the reactor. After the decommissioning of the research reactor is finished, the site will be returned to the site owner, Korea Electric Power Corporation (KEPCO). In this paper, the state-of-art and lessons learnt from recent regulatory activities for decommissioning of KRR- 2 are summarized. In conclusion: since the shutdown of KRR-1 and 2 had been decided, the safe assessment and licensing review were carried out after applying for decommissioning plan of those research reactors by operator. Through the safety assessment and license review, the plan was approved in 2000. The D and D of KRR-2 except Reactor hall of KRR-1 has been performed safely and completed in 2005. On the other hand the integrated safety for the decommissioning has been confirmed by regulatory team inspection. The radioactive waste arising from the dismantling work has been packed mainly in a 4 m{sup 3} containers and stored on site, reactor hall of KRR-2, until the LILW disposal facility is operational. For the whole dismantling work, with respect to the ALARA principle, not only worker protection from radiation and industrial hazard, but also the environment protection should be the first priority. Also much attention has been paid to the record keeping for the future decommissioning of nuclear power plants.

CHOI, Kyung-Woo [Korea Institute of Nuclear Safety, P.O Box 114, Yuseong, Daejeon (Korea, Republic of)

2008-01-15T23:59:59.000Z

392

Capturing Process Knowledge for Facility Deactivation and Decommissioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capturing Process Knowledge for Facility Deactivation and Capturing Process Knowledge for Facility Deactivation and Decommissioning Capturing Process Knowledge for Facility Deactivation and Decommissioning The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. Capturing Process Knowledge for Facility Deactivation and Decommissioning More Documents & Publications Capturing Process Knowledge for Facility Deactivation and Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

393

Technology Requirements for In-Situ Decommissioning Workshop Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM initiated an ISD Technology Needs Workshop to identify the technical barriers and technology development

394

Technology Requirements for In-Situ Decommissioning Workshop Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM initiated an ISD Technology Needs Workshop to identify the technical barriers and technology development

395

EIS-0259 Final Environmental Impact Statement On The Disposal Of Decommissioned, Defueled Cruiser, Ohio Class, And Los Angeles Class Naval Reactor Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-. -. 1. PURPOSE AND NEED U.S. Navy nuclear ships are decommissioned and defieled at the end of their usefi Metime, when the cost of continued operation is not justified by their fitary capabfity, or when the ship is no longer needed. The Navy needs to disposition the reactor compartments born defieled and decommissioned ctisers, and OHIO Class and LOS ANGELES Class submarines. The number of reactor compartments under consideration by this Environmental Impact Statement is about 100. These reactor compartments are in addition to the pre-LOS ANGELES Class submarines tieady being disposed of under the Na&s 1984 Find Environmental hpact Statement (USN, 1984a). Newer types of U.S. Navy nuclear-powered stips that are not expected to be decommissioned in the next 20 years (e.g., aircraft carriers, SEAWOLF Class submarines) are not included in this fid Enviromentd Impact Statement.

396

Student Opportunities in Nuclear Energy R&D  

E-Print Network (OSTI)

for decommissioning. · ITER parties met in Barcelona, Feb. 7-11, to complete the technical level negotiations construction, & costs for operation, deactivation, and decommissioning required much interaction with all · Last issue is the complicated matter of P&I and waiver thereto, involving French Nuclear Safety

Kemner, Ken

397

Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany  

SciTech Connect

In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

Koenig, Werner [TUEV NORD EnSys Hannover GmbH and Co. KG (Germany); Baumann, Roland [Siemens AG, Power Generation (Germany)

2007-07-01T23:59:59.000Z

398

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report  

SciTech Connect

The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

399

Ryle Technology Ltd UK | Open Energy Information  

Open Energy Info (EERE)

Ryle Technology Ltd UK Jump to: navigation, search Name Ryle Technology Ltd UK Place United Kingdom Sector Wind energy Product Focused on wind blade technology development....

400

UK - NETL Cooperation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon UK - NETL Cooperation Jump to: navigation, search Name UK - NETL Cooperation AgencyCompany...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Proceedings: 4th EPRI International Decommissioning and Radioactive Waste Workshop, Madrid, Spain  

Science Conference Proceedings (OSTI)

EPRI held its 4th International Decommissioning Workshop in collaboration with ENRESA and Union Fenosa in Madrid, Spain. This workshop focused on a wide range of decommissioning topics, including general approaches, technical developments, and project experiences. The information presented will assist individual utilities in their planning and conduct of decommissioning projects with the potential to reduce decommissioning costs.

2006-06-12T23:59:59.000Z

402

Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup  

Science Conference Proceedings (OSTI)

INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.

Ivan R. Thomas

2010-07-01T23:59:59.000Z

403

Cost Savings through Innovation in Decontamination, Decommissioning, and Dismantlement  

Science Conference Proceedings (OSTI)

The United States Department of Energy (DOE) continually seeks safer and more cost effective technologies for the decontamination and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsored large-scale demonstration and deployment projects (LSDDPs) to help bring new technologies into the D&D programs. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of needs defining specific problems where improved technologies could be incorporated into ongoing D&D tasks. The needs fell into 5 major categories--characterization, dismantlement, safety, material dispositioning, and decontamination. Technologies were carefully selected that provide a large benefit for a small investment. The technologies must provide significant improvements in cost, safety, radiation exposure, waste volume reduction, or schedule savings and widely applicable throughout the DOE complex. The LSDDP project provided training for the new technologies and worked with technology suppliers to resolve any questions that arose. Since 1998, 26 technologies have been demonstrated or deployed through the LSDDP for the D&D program at the INEEL. Of the 26 demonstrated and deployed technologies, 14 were in characterization, 3 were in decontamination, 4 were in dismantlement, 3 were in safety, and 2 were in material dispositioning. To promote the use of these technologies at other sites within the DOE complex, the LSDDP team published fact sheets, videos, technology summary reports, articles in INEEL star newspaper, posters, and maintained an internet home page on the project. As a result, additional deployments have taken place at the Hanford, Mound, Fernald, Oak Ridge, Ashtabula, and West Valley. Eight of the 26 technologies evaluated were developed in foreign countries. The technologies demonstrated have been shown to be faster, less expensive, and/or safer. The technologies evaluated through the LSDDP have provided improvements in the following D&D areas: robotic underwater characterization of fuel storage pools, characterization of scrap metal for recycle, PCB and RCRA metals analysis in soil, water, paint, or sludge, subsurface characterization, personnel safety, waste disposal, scaffolding use, and remote radiation characterization of buildings and soil. It is estimated that the technologies demonstrated and deployed through this program will save more than $50 million dollars over the next 10 years at the INEEL alone. Of the $50 million estimated dollars saved, about 75% of the savings will come from characterization technologies, 11% from technologies associated with material dispositioning, 10% are associated with dismantlement technologies and the balance split between safety and decontamination.

Neal A. Yancey

2003-02-27T23:59:59.000Z

404

FAQS Job Task Analyses - Deactivation and Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Functional Area Qualification Standard Functional Area Qualification Standard Deactivation & Decommissioning (D&D) DOE-STD-1166-2003 Step 1 Identify and evaluate tasks - Develop a comprehensive list of tasks that define the job. o A great starting point is the list of Duties and Responsibilities from the FAQS. o Give careful thought to additional tasks that could be considered. o Don't worry about deleting tasks at this point - that is a part of the process further down. - List the tasks (and their sources, e.g., Duties and Responsibilities #1) in the chart below. - Discuss each task as a group and come to a consensus pertaining to Importance and Frequency of the task (i.e., each team member can consent to the assigned value, even if they don't exactly agree with it).

405

Uranium enrichment decontamination and decommissioning fund  

SciTech Connect

One of the most challenging issues facing the Department of Energy`s Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge.

1994-12-31T23:59:59.000Z

406

Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis  

Science Conference Proceedings (OSTI)

An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

Dettmers, Dana Lee; Eide, Steven Arvid

2002-10-01T23:59:59.000Z

407

PROPOSED AMENDMENT TO THE NUCLEAR POWER PLANT  

E-Print Network (OSTI)

NOTE TO EDITORS: The Nuclear Regulatory Commission has received two reports from its independent Advisory Committee on Reactor Safeguards. The attached reports, in the form of letters, comment on a proposed amendment to the NRC's rule on license renewal for nuclear power plants and a proposed revision to the decommissioning rule for nuclear power reactors. Attachments:

T. S. Kress

1995-01-01T23:59:59.000Z

408

FOR NUCLEAR POWER PLANTS DURING DECOMMISSIONING AND PERMANENT SHUTDOWN  

E-Print Network (OSTI)

This guide has been developed to describe methods acceptable to the NRC staff for complying with the NRCs regulations regarding fire protection programs for licensees who have certified that their plants have permanently ceased operations and that the fuel has been permanently removed from the reactor vessels.

A. Introduction

2001-01-01T23:59:59.000Z

409

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2  

SciTech Connect

On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

1994-09-01T23:59:59.000Z

410

Collection 4 MODIS Land Product Subsets will be decommissioned...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 MODIS Land Product Subsets will be decommissioned on January 31, 2009 The ORNL NASA DAAC will discontinue the distribution of Collection 4 MODIS Land Product Subsets on January...

411

Experimental Boiling Water Reactor decontamination and decommissioning project  

SciTech Connect

The author begins by discussing the problems encountered during decontamination and decommissioning. Next, he discusses waste packaging and recycling. His last topic of lessons learned is subdivided into prevention and early detection, recovery issues, management issues, and noteworthy practices.

Fellhauer, C. [Argonne National Lab., IL (United States). Technology Development Div.

1995-08-01T23:59:59.000Z

412

EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Decontaminating and Decommissioning the General Atomics 3: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California SUMMARY This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's General Atomics' Hot Cell Facility would be transported to either a DOE owned facility, such as the Hanford site in Washington, or to a commercial facility, such as Envirocare in Utah, for treatment and/or storage and disposal. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1995 EA-1053: Finding of No Significant Impact

413

DOE-EM'S In-Situ Decommissioning Strategy  

SciTech Connect

This paper addressed the current status of decommissioning projects within the Department of Energy (DOE) that have an end state of permanent entombment, referred to as in-situ decommissioning (ISD). The substance of a Department of Energy, Office of Environmental Management (DOE-EM) review of ISD and the development of a strategy are summarized. The strategy first recognizes ISD as a viable decommissioning end state; secondly addresses the integration of this approach within the external and internal regulatory regimes; subsequently identifies tools that need developing; and finally presents guidance for implementation. The overall conclusion is that ISD is a viable mode of decommissioning that can be conducted within the existing structure of rules and regulations. (author)

Negin, C.A.; Urland, C.S. [Chuck, Project Enhancement Corporation, Germantown, MD (United States); Szilagyi, A.P. [Andy, U.S. Department of Energy, Germantown, MD (United States)

2008-07-01T23:59:59.000Z

414

Decommissioning of BG/P Systems and Resources | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

we continue to build documentation for our new computing resource. Feedback Form Decommissioning of BGP Systems and Resources On December 31 at 23:59:59 GMT (6PM Central),...

415

Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico  

SciTech Connect

The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program.

Salazar, M.; Elder, J.

1992-08-01T23:59:59.000Z

416

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

417

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

418

Executive Director for Operations FINAL RULE ON DECOMMISSIONING TRUST PROVISIONS  

E-Print Network (OSTI)

To request Commission approval to publish in the Federal Register a final rule on decommissioning trust provisions. BACKGROUND: The staff submitted Proposed Rule on Decommissioning Trust Provisions, (SECY-01-0049) to the Commission on March 23, 2001. The Commission issued a staff requirements memorandum (SRM) on April 20, 2001, approving publication of the proposed rule. The proposed rule was published in the Federal Register on May 30, 2001 (66 FR 29244). The staff issued

William D. Travers; Brian Richter Nrr/drip/rprp

2002-01-01T23:59:59.000Z

419

The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning  

SciTech Connect

Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial disposal sites if they have no remaining value. In order to achieve these objectives, Belgoprocess uses techniques and equipment that enable the high degrees of decontamination to be obtained, while based on commercially available technology. As an example, for concrete surfaces, where the contamination has not penetrated deeply, significant improvement in operation efficiency was achieved when developing dry hand held and automated floor and wall shaving systems as an alternative for scabbling. As it was also shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, an industrial automated dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. Moreover, a specific facility was developed and operations started for taking representative samples and monitoring concrete material in view of the final demolition and unconditional release of remaining structures of buildings after completing all dismantling and decontamination work.

Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms. B.

2003-02-27T23:59:59.000Z

420

Top Three Topics and Achievements by Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chairman represented CAB at discussions and community meetings with visitors from UK Nuclear Decommissioning Authority to SRS. A CAB member represented the CAB at an...

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

University Launches Website for FIU Research Sponsored by EM...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisor for Environmental Management David Huizenga (left) and Mark Lesinski, U.K.'s Nuclear Decommissioning Authority (NDA) Executive Director for Delivery, renewed the...

422

Decontamination and decommissioning of the Argonne National Laboratory East Area radioactively contaminated surplus facilities: Final report  

Science Conference Proceedings (OSTI)

ANL has decontaminated and decommissioned (D and D) seven radiologically contaminated surplus facilities at its Illinois site: a ''Hot'' Machine Shop (Building 17) and support facilities; Fan House No. 1 (Building 37), Fan House No. 2 (Building 38), the Pangborn Dust Collector (Building 41), and the Industrial Waste Treatment Plant (Building 34) for exhaust air from machining of radioactive materials. Also included were a Nuclear Materials Storage Vault (Building 16F) and a Nuclear Research Laboratory (Building 22). The D and D work involved dismantling of all process equipment and associated plumbing, ductwork, drain lines, etc. After radiation surveys, floor and wall coverings, suspended ceilings, room partitions, pipe, conduit and electrical gear were taken down as necessary. In addition, underground sewers were excavated. The grounds around each facility were also thoroughly surveyed. Contaminated materials and soil were packaged and shipped to a low-level waste burial site, while nonactive debris was buried in the ANL landfill. Clean, reusable items were saved, and clean metal scrap was sold for salvage. After the decommissioning work, each building was torn down and the site relandscaped. The project was completed in 1985, ahead of schedule, with substantial savings.

Kline, W.H.; Fassnacht, G.F.; Moe, H.J.

1987-07-01T23:59:59.000Z

423

The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change Mitigation Policies  

E-Print Network (OSTI)

, construction, commissioning, operation, modifications, and eventually decommissioning of a nuclear power plantA Comparison of International Regulatory Organizations and Licensing Procedures for New Nuclear the safety regulation and the licensing of new nuclear power plants. The paper considers both design safety

424

M Cauldwell UK Ltd | Open Energy Information  

Open Energy Info (EERE)

Cauldwell UK Ltd Cauldwell UK Ltd Jump to: navigation, search Name M Cauldwell UK Ltd Place United Kingdom Sector Wind energy Product UK-based private developer, Mark Cauldwell, involved in the development of a wind farm in Lincolnshire, UK. References M Cauldwell UK Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. M Cauldwell UK Ltd is a company located in United Kingdom . References ↑ "M Cauldwell UK Ltd" Retrieved from "http://en.openei.org/w/index.php?title=M_Cauldwell_UK_Ltd&oldid=348539" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

425

Decontamination & Decommissioning Equipment Tracking System (DDETS)  

SciTech Connect

At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned.

Cook, S.

1994-07-01T23:59:59.000Z

426

An overview of U.S. decommissioning experience -- A basic introduction  

Science Conference Proceedings (OSTI)

This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

Boing, L.E.

1998-03-09T23:59:59.000Z

427

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - main report. Final report  

SciTech Connect

The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), which is a boiling water reactor (BWR), located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low- level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

428

Radionuclide characterization at US commercial light-water reactors for decommissioning assessment: Distributions, inventories, and waste disposal considerations  

SciTech Connect

A continuing research program, conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission, characterizing radionuclide concentrations associated with US light-water reactors has been conducted for more than a decade. The research initially focused upon sampling and analytical measurements for the purpose of establishing radionuclide distributions and inventories for decommissioning assessment, since very little empirical data existed. The initial phase of the research program examined radionuclide concentrations and distributions external to the reactor vessel at seven US light water reactors. Later stages of the research program have examined the radionuclide distributions in the highly radioactive reactor internals and fuel assembly. Most recently, the research program is determining radionuclide concentrations in these highly radioactive components and comparing empirical results with those derived from the several nonempirical methodologies employed to estimate radionuclide inventories for disposal classification. The results of the research program to date are summarized, and their implications and significance for the decommissioning process are noted.

Abel, K.H.; Robertson, D.E.; Thomas, C.W.

1992-09-01T23:59:59.000Z

429

www.epsrc.ac.uk www.epsrc.ac.uk  

E-Print Network (OSTI)

; ultra- precision manufacturing; advanced metrology; additive manufacturing and intelligent automation valued the contribution of UK universities to economic growth at £3 billion. In addition, we continue to invest in centres of excellence dedicated to tackling issues at the heart of 21st century manufacturing

Zharkova, Valentina V.

430

Engineering Evaluation/Cost Analysis (EE/CA) for Decommissioning of TAN-607 Hot Shop Area  

SciTech Connect

Test Area North (TAN) -607, the Technical Support Facility, is located at the north end of the Idaho National Laboratory (INL) Site. U.S. Department of Energy Idaho Operations Office (DOE-ID) is proposing to decommission the northern section of the TAN-607 facility, hereinafter referred to as TAN-607 Hot Shop Area, under a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA). Despite significant efforts by the United States (U.S.) Department of Energy (DOE) to secure new business, no future mission has been identified for the TAN-607 Hot Shop Area. Its disposition has been agreed to by the Idaho State Historical Preservation Office documented in the Memorandum of Agreement signed October 2005 and it is therefore considered a surplus facility. A key element in DOE's strategy for surplus facilities is decommissioning to the maximum extent possible to ensure risk and building footprint reduction and thereby eliminating operations and maintenance cost. In addition, the DOE's 2006 Strategic Plan is ''complete cleanup of the contaminated nuclear weapons manufacturing and testing sites across the United States. DOE is responsible for the risk reduction and cleanup of the environmental legacy of the Nation's nuclear weapons program, one of the largest, most diverse, and technically complex environmental programs in the world. The Department will successfully achieve this strategic goal by ensuring the safety of the DOE employees and U.S. citizens, acquiring the best resources to complete the complex tasks, and managing projects throughout the United States in the most efficient and effective manner.'' TAN-607 is designated as a historical Signature Property by DOE Headquarters Advisory Council on Historic Preservation and, as such, public participation is required to determine the final disposition of the facility. The decommissioning action will place the TAN-607 Hot Shop Area in a final configuration that will be protective of human health and the environment. Decommissioning the TAN-607 Hot Shop Area is consistent with the joint DOE and U.S. Environmental Protection Agency (EPA) Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation and Liability Act, which establishes the CERCLA NTCRA process as the preferred approach for decommissioning surplus DOE facilities. Under this policy, a NTCRA may be taken when DOE determines that the action will prevent, minimize, stabilize, or eliminate a risk to human health and/or the environment. When DOE determines that a CERCLA NTCRA is necessary, DOE is authorized to evaluate, select, and implement the removal action that DOE determines is most appropriate to address the potential risk posed by the release or threat of release. This action is taken in accordance with applicable authorities and in conjunction with EPA and the State of Idaho pursuant to Section 5.3 of the Federal Facility Agreement and Consent Order. In keeping with the joint policy, this engineering evaluation/cost analysis (EE/CA) was developed in accordance with CERCLA as amended by the ''Superfund Amendments and Reauthorization Act of 1986'' and in accordance with the ''National Oil and Hazardous Substances Pollution Contingency Plan.'' This EE/CA is consistent with the remedial action objectives (RAOs) of the Final Record of Decision, Test Area North, Operable Unit 1-10 and supports the overall remediation goals established through the Federal Facility Agreement and Consent Order for Waste Area Group 1. Waste Area Group 1 is located at TAN.

J. P. Floerke

2007-02-05T23:59:59.000Z

431

Engineering Evaluation/Cost Analysis (EE/CA) for Decommissioning of TAN-607 Hot Shop Area  

SciTech Connect

Test Area North (TAN) -607, the Technical Support Facility, is located at the north end of the Idaho National Laboratory (INL) Site. U.S. Department of Energy Idaho Operations Office (DOE-ID) is proposing to decommission the northern section of the TAN-607 facility, hereinafter referred to as TAN-607 Hot Shop Area, under a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA). Despite significant efforts by the United States (U.S.) Department of Energy (DOE) to secure new business, no future mission has been identified for the TAN-607 Hot Shop Area. Its disposition has been agreed to by the Idaho State Historical Preservation Office documented in the Memorandum of Agreement signed October 2005 and it is therefore considered a surplus facility. A key element in DOE's strategy for surplus facilities is decommissioning to the maximum extent possible to ensure risk and building footprint reduction and thereby eliminating operations and maintenance cost. In addition, the DOE's 2006 Strategic Plan is ''complete cleanup of the contaminated nuclear weapons manufacturing and testing sites across the United States. DOE is responsible for the risk reduction and cleanup of the environmental legacy of the Nation's nuclear weapons program, one of the largest, most diverse, and technically complex environmental programs in the world. The Department will successfully achieve this strategic goal by ensuring the safety of the DOE employees and U.S. citizens, acquiring the best resources to complete the complex tasks, and managing projects throughout the United States in the most efficient and effective manner.'' TAN-607 is designated as a historical Signature Property by DOE Headquarters Advisory Council on Historic Preservation and, as such, public participation is required to determine the final disposition of the facility. The decommissioning action will place the TAN-607 Hot Shop Area in a final configuration that will be protective of human health and the environment. Decommissioning the TAN-607 Hot Shop Area is consistent with the joint DOE and U.S. Environmental Protection Agency (EPA) Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation and Liability Act, which establishes the CERCLA NTCRA process as the preferred approach for decommissioning surplus DOE facilities. Under this policy, a NTCRA may be taken when DOE determines that the action will prevent, minimize, stabilize, or eliminate a risk to human health and/or the environment. When DOE determines that a CERCLA NTCRA is necessary, DOE is authorized to evaluate, select, and implement the removal action that DOE determines is most appropriate to address the potential risk posed by the release or threat of release. This action is taken in accordance with applicable authorities and in conjunction with EPA and the State of Idaho pursuant to Section 5.3 of the Federal Facility Agreement and Consent Order. In keeping with the joint policy, this engineering evaluation/cost analysis (EE/CA) was developed in accordance with CERCLA as amended by the ''Superfund Amendments and Reauthorization Act of 1986'' and in accordance with the ''National Oil and Hazardous Substances Pollution Contingency Plan.'' This EE/CA is consistent with the remedial action objectives (RAOs) of the Final Record of Decision, Test Area North, Operable Unit 1-10 and supports the overall remediation goals established through the Federal Facility Agreement and Consent Order for Waste Area Group 1. Waste Area Group 1 is located at TAN.

J. P. Floerke

2007-02-05T23:59:59.000Z

432

A Review of the Costs of Nuclear Power Michael T. Hogue, Research Analyst  

E-Print Network (OSTI)

long-term option for the future of the College's Reactor. 10. The College runs a small CONSORT nuclear reactor at Silwood Park. Ultimate responsibility for funding its end of life decommissioning currently of the liability, or postponing decommissioning by extending the life of the Reactor. The Paper proposed a method

Provancher, William

433

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Main report, draft report for comment. Volume 1  

Science Conference Proceedings (OSTI)

On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

1994-09-01T23:59:59.000Z

434

Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall  

E-Print Network (OSTI)

Nuclear Renaissance Requires Nuclear Enlightenment W J Nuttall Judge Business School, Cambridge University, Trumpington Street Cambridge, CB2 1AG UK Abstract Nuclear energy was developed by technocratic as a result of global anthropogenic climate change, nuclear power might actually represent a means to preserve

Aickelin, Uwe

435

PNE UK Wind | Open Energy Information  

Open Energy Info (EERE)

UK Wind Place United Kingdom Sector Wind energy Product UK-based joint venture looking to develop a 300MW portfolio of wind farm projects across England, Scotland and Wales....

436

PNE WIND UK | Open Energy Information  

Open Energy Info (EERE)

venture between PNE Wind and New Energy Development Ltd for the development of 300MW of wind farms in the UK and Ireland. References PNE WIND UK1 LinkedIn Connections...

437

Technology needs for decommissioning and decontamination  

Science Conference Proceedings (OSTI)

This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

Bundy, R.D.; Kennerly, J.M.

1993-12-01T23:59:59.000Z

438

DOE Awards Contract for Decontamination & Decommissioning Project for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decontamination & Decommissioning Project Decontamination & Decommissioning Project for the East Tennessee Technology Park DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park April 29, 2011 - 12:00pm Addthis Media Contact Mike Koentop (865) 576-0885 www.oakridge.doe.gov Oak Ridge, Tenn. - As part of its ongoing commitment to cleaning up the legacy of the Cold War at sites across the weapons complex, the U.S. Department of Energy has awarded a contract for the remaining environmental cleanup at the East Tennessee Technology Park (ETTP) to URS | CH2M Oak Ridge, LLC. The $2.2 billion contract will complete cleanup and provide support functions at ETTP, while supporting local jobs and area small businesses. "Today's contract announcement means that we can continue to meet our

439

Guides: Design/Engineering for Deactivation & Decommissioning | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guides: Design/Engineering for Deactivation & Guides: Design/Engineering for Deactivation & Decommissioning Guides: Design/Engineering for Deactivation & Decommissioning To ensure development of appropriate levels of engineering detail, DOE-EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for tailoring a D&D project's engineering/design to meet the objectives of the CD milestones. The enhanced rigor in planning and systematic, forward looking approach to engineering/design recommended in this guidance is intended to ensure that the level of detail in technical planning and technical development, integrated with other project aspects such as safety basis modifications, leads to a high confidence that the engineered system as a whole will function as designed. As the level of

440

PROJECT MANGEMENT PLAN EXAMPLES Deactivation to Decommissioning Transition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Decommissioning Transition to Decommissioning Transition Example Example 80 1.5 OPERATIONAL TRANSITION AND DEACTIVATION STRATEGY According to the U.S. Department of Energy (DOE) Order 430.1A Life Cycle Asset Management (LCAM), the life cycle of a facility makes several transitions over the course of it's existence. The typical stages or phases include operation, (standby), deactivation, S&M, decontamination and decommissioning (D&D). The life cycle phases may occur as a straight through process or with long interim periods. In Fig. 1.4, "Facility Disposition Scenarios and Associated Hazard Profiles" (Ref. DOE-STD-1120-98), Scenario 2 demonstrates the life cycle phasing that most closely represents that of the 9206 Complex. Since the ultimate disposition of Building 9206 (and associated buildings and operations) is not known, a decision was made to

Note: This page contains sample records for the topic "uk nuclear decommissioning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE Awards Contract for Decontamination & Decommissioning Project for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Awards Contract for Decontamination & Decommissioning Project DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park April 29, 2011 - 12:00pm Addthis Media Contact Mike Koentop (865) 576-0885 www.oakridge.doe.gov Oak Ridge, Tenn. - As part of its ongoing commitment to cleaning up the legacy of the Cold War at sites across the weapons complex, the U.S. Department of Energy has awarded a contract for the remaining environmental cleanup at the East Tennessee Technology Park (ETTP) to URS | CH2M Oak Ridge, LLC. The $2.2 billion contract will complete cleanup and provide support functions at ETTP, while supporting local jobs and area small businesses. "Today's contract announcement means that we can continue to meet our

442

Completion of decommissioning: Monitoring for site release and license termination  

SciTech Connect

To request termination of a license upon completion of dismantling or decommissioning activities, documenting any residual radioactivity to show that the levels are environmentally acceptable will be necessary. When the regulators approve the decommissioning plan, they establish what the release criteria for the decommissioned site will be at the time of the site release and license termination. The criteria are numeric guidelines for direct radiation in soils and on surfaces. If the regulatory body finds that the measured on-site values are below the guidelines, the site will be acceptable for unrestricted release (no radiological controls or future use). If areas are found above those values, more decontamination or cleanup of these areas may be required unless the regulatory body grants an exemption.

Boing, L.E.

1997-08-01T23:59:59.000Z

443

Roundtables Is nuclear energy different than other  

E-Print Network (OSTI)

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

Shrader-Frechette, Kristin

444

Western University Nuclear Radiation Safety Inspection Checklist  

E-Print Network (OSTI)

of Understanding (MOU) between USACE and the Nuclear Regulatory Commission (NRC) dated July 5, 2001, and subject for interagency consultation if the decommissioning criteria at 10 CFR Section 20.1402 are determined, resulting from the disposal of radiologically contaminated waste from the nearby Apollo Nuclear Fuel

Sinnamon, Gordon J.

445

Report on Waste Burial Charges Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities  

E-Print Network (OSTI)

was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, make any warranty, expressed or implied, or assumes any legal liability or responsibility for any third partys use or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the U.S. Nuclear Regulatory Commission. NUREG-1307, Revision 13, is not a substitute for NRC regulations, and compliance is not required. The approaches and/or methods described in this NUREG are provided for information only. Publication of this report does not necessarily A requirement placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is that licensees must annually adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is revised periodically, explains the formula that is acceptable to the NRC for determining the minimum decommissioning fund requirements for nuclear power plants. The sources of information used in the formula are identified, and the values developed for the estimation of radioactive waste burial/disposition costs, by site and by year, are given. Licensees may use the formula, coefficients, and burial/disposition adjustment factors from this report in their cost analyses,

unknown authors

2008-01-01T23:59:59.000Z

446

Summary of comments received from workshops on radiological criteria for decommissioning  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for site cleanup and decommissioning of NRC-licensed facilities. Open public meetings were held during 1993 in Chicago, IL, San Francisco, CA, Boston, MA, Dallas, TX, Philadelphia, PA, Atlanta, GA, and Washington, DC. Interested parties were invited to provide input on the rulemaking issues before the NRC staff develops a draft proposed rule. This report summarizes 3,635 comments categorized from transcripts of the seven workshops and 1,677 comments from 100 NRC docketed letters from individuals and organizations. No analysis or response to the comments is included. The comments reflect a broad spectrum of viewpoints on the issues related to radiological criteria for site cleanup and decommissioning. The NRC also held public meetings on the scope of the Generic Environmental Impact Statement (GEIS) during July 1993. The GEIS meetings were held in Washington, DC., San Francisco, CA, Oklahoma City, OK, and Cleveland, OH. Related comments from these meetings were reviewed and comments which differed substantially from those from the workshops are also summarized in the body of the report. A summary of the comments from the GEIS scoping meetings is included as an Appendix.

Caplin, J.; Page, G.; Smith, D.; Wiblin, C. [Advanced Systems Technology, Inc., Atlanta, GA (United States)

1994-01-01T23:59:59.000Z

447

Decontamination and decommissioning of the Kerr-McGee Cimarron Plutonium Fuel Plant  

SciTech Connect

This final report is a summary of the events that completes the decontamination and decommissioning of the Cimarron Corporation`s Mixed Oxides Fuel Plant (formally Sequoyah Fuels Corporation and formerly Kerr-McGee Nuclear Corporation - all three wholly owned subsidiaries of the Kerr-McGee Corporation). Included are details dealing with tooling and procedures for performing the unique tasks of disassembly decontamination and/or disposal. That material which could not be economically decontaminated was volume reduced by disassembly and/or compacted for disposal. The contaminated waste cleaning solutions were processed through filtration and ion exchange for release or solidified with cement for L.S.A. waste disposal. The L.S.A. waste was compacted, and stabilized as required in drums for burial in an approved burial facility. T.R.U. waste packaging and shipping was completed by the end of July 1987. This material was shipped to the Hanford, Washington site for disposal. The personnel protection and monitoring measures and procedures are discussed along with the results of exposure data of operating personnel. The shipping containers for both T.R.U. and L.S.A. waste are described. The results of the decommissioning operations are reported in six reports. The personnel protection and monitoring measures and procedures are contained and discussed along with the results of exposure data of operating personnel in this final report.

Not Available

1994-05-01T23:59:59.000Z

448

Summary of comments received on staff draft proposed rule on radiological criteria for decommissioning  

SciTech Connect

The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC licensed facilities. The NRC obtained comments on the scope, issues, and approaches through a series of workshops (57 FR 58727), Generic Environmental Impact Statement (GEIS) scoping meetings (58 FR 33570), a dedicated electronic bulletin board system (58 FR 37760), and written submissions. A summary of workshop and scope-meeting comments was published as NUREG/CR-6156. On February 2, 1994, the Commission published in the Federal Register (59 FR 4868) a notice that the NRC staff had prepared a ``staff draft`` proposed rule on radiological criteria for decommissioning. Copies of the staff draft were distributed to the Agreement States, participants in the earlier meetings, and other interested parties for comment. This report summarizes the comments identified from the 96 docketed letters received on the staff draft. No analysis or response is included in this report. The comments reflect a broad spectrum of viewpoints. Two subjects on which the commenters were in general agreement were (1) that the enhanced participatory rulemaking should proceed, and (2) that the forthcoming GEIS and guidance documents are needed for better understanding of the draft rule.

Caplin, J.; Page, G.; Smith, D.; Wiblin, C. [Advanced Systems Technology, Inc., Rockville, MD (United States)

1994-08-01T23:59:59.000Z

449

UNIQUE RADIOANALYTICAL PROTOCOLS FOR CHARACTERIZATION AND VERIFICATION DURING DECONTAMINATION AND DECOMMISSIONING  

Science Conference Proceedings (OSTI)

In order to successfully decontaminate, deactivate and decommission surplus Department of Energy (DOE) facilities throughout the Savannah River Site (SRS), a variety of characterizations must be completed to sufficiently identify and quantify potential contaminants of concern. The ultimate goal is to rapidly and efficiently characterize, decontaminate (if necessary), and verify that the remnants meet specified limits established by either an industrial worker model or a groundwater model. To meet this end, the Savannah River National Laboratory (SRNL) developed a series of radioanalytical strategies and methodologies which can be used to characterize targeted facilities and prove that decontamination has been sufficient. To our knowledge, this is the first application of this novel methodology within the DOE complex. This methodology has been successfully utilized with nearly 1000 samples from over a dozen facilities. The application of this approach to just a single facility shortened the schedule by 30 days and resulted in non-labor dollar savings of over $60K. Cost savings for a second facility was determined to be $375K. Based on the success of this methodology at SRS, this approach will be valuable to other nuclear facilities in the USA and abroad involved with the decontamination and decommissioning process.

Diprete, C; David Diprete, D; Wooten Simpson, W

2007-01-05T23:59:59.000Z

450

Capturing Process Knowledge for Facility Deactivation and Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Assistance Tech Assistance Savannah River National Laboratory- Assess Adequacy of Process Knowledge for D&D Guidance for Determining Adequacy of Process Knowledge Page 1 of 2 Savannah River National Laboratory South Carolina Capturing Process Knowledge for Facility Deactivation and Decommissioning Challenge The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. When such excess facilities are scheduled for deactivation and decommissioning (D&D), among the tasks the responsible project team is faced with include the evaluation and planning for the removal, characterization, and disposition of all legacy

451

IN SITU DECOMMISSIONING SENSOR NETWORK, MESO-SCALE TEST BED - PHASE 3 FLUID INJECTION TEST SUMMARY REPORT  

SciTech Connect

The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

Serrato, M.

2013-09-27T23:59:59.000Z

452

RADIOACTIVE WASTE MANAGEMENT COMMITTEE Working Party on Decommissioning and Dismantling (WPDD) PROCEEDINGS OF THE TOPICAL SESSION ON STAKEHOLDER INVOLVEMENT IN  

E-Print Network (OSTI)

Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original formatNEA/RWM/WPDD(2006)5 2 NEA/RWM/WPDD(2006)5 FOREWORD Set up by the Radioactive Waste Management Committee (RWMC), the WPDD brings together senior representatives of national organisations who have a broad overview of Decommissioning and Dismantling (D&D) issues through their work as regulators, implementers, R&D experts or policy makers. These include representatives from regulatory authorities, industrial decommissioners from the NEA Co-operative Programme on Exchange of Scientific and Technical Information on Nuclear Installation Decommissioning Projects (CPD), and cross-representation from the other NEA Committees. The EC is a member of the WPDD and the IAEA is participating as an observer. This broad participation provides good possibilities for the co-ordination efforts amongst activities in the international programmes. At its sixth meeting, in Paris, 14-16 November 2005, the WPDD held a topical session on the Stakeholder Involvement in Decommissioning Projects. The topical session was jointly planned and

Organisation Coopration; English Or. English; English Or. English

2005-01-01T23:59:59.000Z

453

Finding of no significant impact, decontamination and decommissioning of Battelle Columbus Laboratories in Columbus and West Jefferson, Ohio  

Science Conference Proceedings (OSTI)

This Environmental Assessment has been developed by the Department of Energy in accordance with the requirements of the National Environmental Policy Act of 1969 for the proposed decommissioning of contaminated areas at the Battelle Memorial Institute, Columbus, Ohio. The discussions in Section 1.0 provide general background information on the proposed action. Section 2.0 describes the existing radiological and non-radiological condition of the Battelle Columbus Laboratories. Section 3.0 identifies the alternatives considered for the proposed action and describes in detail the proposed decommissioning project. Section 4.0 evaluates the potential risks the project poses to human health and the environment. Section 5.0 presents the Department of Energy's proposed action. As a result of nuclear research and development activities conducted over a period of approximately 43 years performed for the Department of Energy, its predecessor agencies, and under commercial contracts, the 15 buildings became contaminated with varying amounts of radioactive material. The Department of Energy no longer has a need to utilize the facilities and is contractually obligate to remove that contamination such that they can be used by their owners without radiological restrictions. This Environmental Assessment for the Battelle Columbus Laboratories Decommissioning Project is consistent with the direction from the Secretary of Energy that public awareness and participation be considered in sensitive projects and is an appropriate document to determine action necessary to satisfy the requirements of the National Environmental Policy Act. 30 refs., 6 figs., 9 tabs.

Not Available

1990-01-01T23:59:59.000Z

454

Solargen Solutions UK | Open Energy Information  

Open Energy Info (EERE)

UK UK Jump to: navigation, search Name Solargen Solutions UK Place United Kingdom Zip NP 44 3AS Sector Renewable Energy, Solar Product String representation "SolarGen is a E ... s requirements." is too long. References Solargen Solutions UK[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solargen Solutions UK is a company located in United Kingdom . References ↑ "Solargen Solutions UK" Retrieved from "http://en.openei.org/w/index.php?title=Solargen_Solutions_UK&oldid=351378" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

455

Enertrag UK Ltd | Open Energy Information  

Open Energy Info (EERE)

Enertrag UK Ltd Enertrag UK Ltd Jump to: navigation, search Name Enertrag UK Ltd Place United Kingdom Sector Wind energy Product Involved throught the SPV Norfolk Offshore Wind in the development of Cromer Offshore Wind Farm. References Enertrag UK Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Enertrag UK Ltd is a company located in United Kingdom . References ↑ "Enertrag UK Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Enertrag_UK_Ltd&oldid=344939" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

456

RES UK Ireland Ltd | Open Energy Information  

Open Energy Info (EERE)

Ireland Ltd Ireland Ltd Jump to: navigation, search Name RES UK & Ireland Ltd Place County Antrim, Northern Ireland, United Kingdom Zip BT40 2SF Sector Services, Wind energy Product Wind farm development Ltd became known as RES UK and Ireland Ltd in February 2007. RES UK and Ireland also took control of B9 Energy Services' share of the company. References RES UK & Ireland Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. RES UK & Ireland Ltd is a company located in County Antrim, Northern Ireland, United Kingdom . References ↑ "RES UK & Ireland Ltd" Retrieved from "http://en.openei.org/w/index.php?title=RES_UK_Ireland_Ltd&oldid=350385

457

Nuclear Regulatory Commission issuances  

SciTech Connect

This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

NONE

1996-03-01T23:59:59.000Z

458

DOE-STD-1166-2003; Deactivation and Decommissioning Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-STD-1166-2003 September 2003 DOE STANDARD DEACTIVATION AND DECOMMISSIONING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1166-2003 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;