National Library of Energy BETA

Sample records for uic underground injection

  1. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Abstract Required fees and form...

  2. Underground Injection Control Permit Applications for FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tech/NETL Research | Department of Energy Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research October 20, 2015 - 8:14am Addthis Researchers from Virginia Tech are injecting CO2 into coal seams in three locations in Buchanan County, Va., as part of an NETL-sponsored CO2 storage research project associated with enhanced gas recovery. Researchers from Virginia Tech are

  3. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Authorized Injection Systems Webpage Author Oregon Department of...

  4. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  5. Massachusetts Natural Gas Underground Storage Injections All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  6. New Jersey Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) New Jersey Natural Gas ... Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground ...

  7. Hawaii Underground Injection Control Permitting Webpage | Open...

    Open Energy Info (EERE)

    Permitting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii...

  8. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Abstract Required...

  9. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Environmental Permit Handbook -...

  10. EPA - Underground Injection Control Classes of Wells webpage...

    Open Energy Info (EERE)

    Underground Injection Control Classes of Wells webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Underground Injection Control Classes of...

  11. Idaho Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Underground Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Underground Injection Control Program Webpage...

  12. Vermont Underground Injection Control Rule | Open Energy Information

    Open Energy Info (EERE)

    Underground Injection Control Rule Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Underground Injection Control...

  13. Rhode Island Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  14. Wisconsin Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  15. North Carolina Natural Gas Underground Storage Injections All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) North Carolina Natural ... Injections of Natural Gas into Underground Storage - All Operators North Carolina ...

  16. UIC permitting process for class IID and Class III wells: Protection of drinking water in New York State

    SciTech Connect (OSTI)

    Hillenbrand, C.J.

    1995-09-01

    The U.S. Environmental Protection Agency (EPA) Region II, Underground Injection Control (UIC) Program regulates injection wells in the State of New York to protect drinking water; UIC regulations can be found under Title 40 of the Code of Federal Regulations Parts 124, 144, 146 and 147. Operators of solution mining injection wells (UIC Class IIIG) and produced fluid disposal wells (UIC Class IID) are required to obtain an UIC permit for authorization to inject. The permitting process requires submittal of drinking water, geologic and proposed operational data in order to assure that pressure build-up within the injection zone will not compromise confining layers and allow vertical migration of fluid into Underground Sources of Drinking Water (USDW). Additional data is required within an Area of Review (AOR), defined as an area determined by the intersection of the adjusted potentiometric surface produced by injection and a depth 50 feet below the base of the lowermost USDW, or a radius of 1/4 mile around the injection well, whichever is greater. Locations of all wells in the AOR must be identified, and completion reports and plugging reports must be submitted. Requirements are set for maximum injection pressure and flow rates, monitoring of brine properties of the injection well and monitoring of water supply wells in the AOR for possible contamination. Any noncompliance with permit requirements constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action, including possible revocation of permit. Presently four Class IID wells are authorized under permit in New York State. The Queenston sandstone, Medina sandstone, Salina B, Akron dolomite and Oriskany sandstone have been used for brine disposal; the lower Ordovician-Cambrian section is currently being considered as an injection zone. Over one hundred Class IIIG wells are authorized under permit in New York State and all have been utilized for solution mining of the Syracuse salt.

  17. WAC - 173-218 Underground Injection Control Program | Open Energy...

    Open Energy Info (EERE)

    8 Underground Injection Control Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173-218 Underground Injection...

  18. Iowa Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Injections into Underground Storage (Million Cubic Feet) Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

  19. Utah Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Underground Injection Control Program Webpage Abstract Provides...

  20. Hawaii Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Program Webpage Author State of Hawaii Department...

  1. Oregon Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Webpage Abstract Provides overview of regulations...

  2. Oregon Fees for Underground Injection Control Program Fact Sheet...

    Open Energy Info (EERE)

    Fees for Underground Injection Control Program Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material:...

  3. Hawaii Underground Injection Control Permit Packet | Open Energy...

    Open Energy Info (EERE)

    PermittingRegulatory Guidance - Supplemental Material: Hawaii Underground Injection Control Permit PacketPermittingRegulatory GuidanceSupplemental Material Author State of...

  4. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  5. WSDE Underground Injection Control Well Registration Form | Open...

    Open Energy Info (EERE)

    Injection Control Well Registration Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit Application: WSDE Underground...

  6. State Assistance with Risk-Based Data Management: Inventory and needs assessment of 25 state Class II Underground Injection Control programs. Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    As discussed in Section I of the attached report, state agencies must decide where to direct their limited resources in an effort to make optimum use of their available manpower and address those areas that pose the greatest risk to valuable drinking water sources. The Underground Injection Practices Research Foundation (UIPRF) proposed a risk-based data management system (RBDMS) to provide states with the information they need to effectively utilize staff resources, provide dependable documentation to justify program planning, and enhance environmental protection capabilities. The UIPRF structured its approach regarding environmental risk management to include data and information from production, injection, and inactive wells in its RBDMS project. Data from each of these well types is critical to the complete statistical evaluation of environmental risk and selected automated functions. This comprehensive approach allows state Underground Injection Control (UIC) programs to effectively evaluate the risk of contaminating underground sources of drinking water, while alleviating the additional work and associated problems that often arise when separate data bases are used. CH2M Hill and Digital Design Group, through a DOE grant to the UIPRF, completed an inventory and needs assessment of 25 state Class II UIC programs. The states selected for participation by the UIPRF were generally chosen based on interest and whether an active Class II injection well program was in place. The inventory and needs assessment provided an effective means of collecting and analyzing the interest, commitment, design requirements, utilization, and potential benefits of implementing a in individual state UIC programs. Personal contacts were made with representatives from each state to discuss the applicability of a RBDMS in their respective state.

  7. Georgia Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 123 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground

  8. Idaho Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground

  9. Title 40 CFR 144 Underground Injection Control Program | Open...

    Open Energy Info (EERE)

    44 Underground Injection Control Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40 CFR 144...

  10. AGA Western Consuming Region Natural Gas Injections into Underground...

    U.S. Energy Information Administration (EIA) Indexed Site

    AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 ...

  11. Alaska Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into

  12. Connecticut Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 683 740 746 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of

  13. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections

  14. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 243 137 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of

  15. South Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 80 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas

  16. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground Storage

  17. H.A.R. 11-23 - Underground Injection Control | Open Energy Information

    Open Energy Info (EERE)

    3 - Underground Injection Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-23 - Underground Injection...

  18. EPA - UIC Well Classifications | Open Energy Information

    Open Energy Info (EERE)

    Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

  19. Pacific Region Natural Gas Injections into Underground Storage (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) Pacific Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 4,011 3,540 14,172 43,546 58,466 51,172 32,264 32,879 23,448 31,224 15,841 14,871 2015 5,947 15,411 23,160 28,448 37,851 21,448 19,718 17,633 22,413 27,233 13,622 8,742 2016 7,399 8,534 16,892 23,819 27,387 15,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. AGA Producing Region Natural Gas Injections into Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375

  1. South Central Region Natural Gas Injections into Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) South Central Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 43,713 72,210 68,273 129,736 166,816 139,578 127,533 106,014 152,936 188,366 105,938 79,339 2015 42,402 27,815 109,564 202,417 199,245 125,159 103,901 98,174 147,861 157,461 91,849 81,946 2016 39,777 68,898 128,188 129,929 126,477 69,075 - = No Data Reported; -- =

  2. University of Illinois Chicago UIC | Open Energy Information

    Open Energy Info (EERE)

    Chicago UIC Jump to: navigation, search Name: University of Illinois - Chicago (UIC) Place: Chicago, Illinois Zip: 60607-7113 Product: Public research university with a research...

  3. UAC R371-7 - Underground Injection Control Program | Open Energy...

    Open Energy Info (EERE)

    71-7 - Underground Injection Control Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: UAC R371-7 - Underground...

  4. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  5. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  6. The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine

    SciTech Connect (OSTI)

    1982-07-01

    This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not

  7. ,"U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5540us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" "Sourcekey","N5540US2" ...

  8. ,"U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5540us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" "Sourcekey","N5540US2" ...

  9. Mountain Region Natural Gas Injections into Underground Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 3,332 3,794 5,368 10,280 21,621 24,914 25,040 22,154 20,026 18,254 8,894...

  10. WSDE Online System for Registering UIC Wells webpage | Open Energy...

    Open Energy Info (EERE)

    developers to register their UIC wells online. Author Washington State Department of Ecology Published Washington State Department of Ecology, 2014 DOI Not Provided Check for DOI...

  11. Underground Injection Control Permit Applications for FutureGen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Program for Carbon Dioxide Geologic Sequestration ... repowered with oxy-combustion and carbon capture technology. ... of CO 2 by buried pipeline, and injection of CO 2 for ...

  12. ,"Rhode Island Natural Gas Underground Storage Injections All Operators (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Monthly","12/1996" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016"

  13. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  14. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  15. State and national energy environmental risk analysis systems for underground injection control. Final report, April 7, 1992--May 31, 1995

    SciTech Connect (OSTI)

    1995-05-01

    The purpose of this effort is to develop and demonstrate the concept of a national Energy and Environmental Risk Analysis System that could support DOE policy analysis and decision-making. That effort also includes the development and demonstration of a methodology for assessing the risks of groundwater contamination from underground injection operations. EERAS is designed to enhance DOE`s analytical capabilities by working with DOE`s existing resource analysis models for oil and gas. The full development of EERAS was not planned as part of this effort. The design and structure for the system were developed, along with interfaces that facilitate data input to DOE`s other analytical tools. The development of the database for EERAS was demonstrated with the input of data related to underground injection control, which also supported the risk assessment being performed. The utility of EERAS has been demonstrated by this effort and its continued development is recommended. Since the absolute risk of groundwater contamination due to underground injection is quite low, the risk assessment methodology focuses on the relative risk of groundwater contamination. The purpose of this methodology is to provide DOE with an enhanced understanding of the relative risks posed nationwide as input to DOE decision-making and resource allocation. Given data problems encountered, a broad assessment of all oil reservoirs in DOE`s resource database was not possible. The methodology was demonstrated using a sample of 39 reservoirs in 15 states. While data difficulties introduce substantial uncertainties, the results found are consistent with expectations and with prior analyses. Therefore the methodology for performing assessments appears to be sound. Recommendations on steps that can be taken to resolve uncertainties or obtain improved data are included in the report.

  16. RAPID/Roadmap/14-NM-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-NM-c) The Underground Injection Control (UIC) Permit process in New Mexico...

  17. Geomechanical effects on CO{sub 2} leakage through fault zones during large-scale underground injection

    SciTech Connect (OSTI)

    Rinaldi, A.P.; Rutqvist, J.; Cappa, F.

    2013-09-01

    The importance of geomechanics—including the potential for faults to reactivate during large scale geologic carbon sequestration operations—has recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO{sub 2} to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this work extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO{sub 2} to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO{sub 2} injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Consequently, even if some changes in permeability occur, this does not mean that the CO{sub 2} will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  18. Rapid Qualitative Risk Assessment for Contaminant Leakage From Coal Seams During Underground Coal Gasification and CO2 Injection

    SciTech Connect (OSTI)

    Friedmann, S J

    2004-07-02

    One of the major risks associated with underground coal gasification is contamination of local aquifers with a variety of toxic compounds. It is likely that the rate, volume, extent, and concentrations of contaminant plumes will depend on the local permeability field near the point of gasification. This field depends heavily on the geological history of stratigraphic deposition and the specifics of stratigraphic succession. Some coals are thick and isolated, whereas others are thinner and more regionally expressed. Some coals are overlain by impermeable units, such as marine or lacustrine shales, whereas others are overlain by permeable zones associated with deltaic or fluvial successions. Rapid stratigraphic characterization of the succession provides first order information as to the general risk of contaminant escape, which provides a means of ranking coal contaminant risks by their depositional context. This risk categorization could also be used for ranking the relative risk of CO{sub 2} escape from injected coal seams. Further work is needed to verify accuracy and provide some quantification of risks.

  19. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extract from saline aquifers deep underground. The goal is to learn what will happen when fluids pass through the material should power plants inject carbon dioxide underground. ...

  20. Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  1. Evaluation of injection well risk management potential in the Williston Basin

    SciTech Connect (OSTI)

    1989-09-01

    The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

  2. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pore Models Track Reactions in Underground Carbon Capture Pore Models Track Reactions in Underground Carbon Capture September 25, 2014 trebotich2 Computed pH on calcite grains at 1 micron resolution. The iridescent grains mimic crushed material geoscientists extract from saline aquifers deep underground to study with microscopes. Researchers want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of

  3. Dynamic Underground Stripping Demonstration Project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D. ); udel, K. . Dept. of Mechanical Engineering)

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92.

  4. Underground Coal Gasification Program

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  5. Vitrified underground structures

    DOE Patents [OSTI]

    Murphy, Mark T.; Buelt, James L.; Stottlemyre, James A.; Tixier, Jr., John S.

    1992-01-01

    A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

  6. Going underground. [Review

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Underground space is increasingly used for energy-saving and secure storage that is often less expensive and more aesthetically pleasing than conventional facilities. Petroleum, pumped hydro, water, and sewage are among the large-scale needs that can be met by underground storage. Individual buildings can store chilled water underground for summer cooling. Windowless aboveground buildings are suitable and even more efficient if they are underground. The discovery of ancient underground cities indicates that the concept can be reapplied to relieve urban centers and save energy as is already done to a large extent in China and elsewhere. A national commitment to solar energy will benefit from increased use of underground space. Kansas City is among several cities which are developing the subsurface with success, businesses and schools having found the underground environment to have many benefits. More construction experience is needed, however, to help US lenders overcome their reluctance to finance earth-sheltered projects. (DCK)

  7. Underground laboratories in Asia

    SciTech Connect (OSTI)

    Lin, Shin Ted; Yue, Qian

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  8. Alaska Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into

  9. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  10. Builders go underground

    SciTech Connect (OSTI)

    McGrath, D.J.

    1982-01-01

    The appeal of earth-sheltered housing increased last year when 1000 new underground houses brought the national total to about 5000. Innovative construction and management techniques help, such as the Terra-Dome's moldset and equipment, which the company sells to builders under a license arrangement. Attention is given to aesthetic appeal as well as to energy savings. The Everstrong company builds all-wood underground houses to cut down on humidity and increase resistance to natural disasters. Tight mortgage money has been a serious problem for underground as well as conventional builders. (DCK)

  11. Overview of the Dynamic Underground Stripping demonstration project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-08-01

    Dynamic Underground Stripping is a limited-scope demonstration of a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it combines steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. The system is targeted toward the removal of free-phase organics of all kinds. The LLNL gasoline spill is a convenient test site because much of the gasoline has been trapped below the water table, mimicking the behavior of dense organic liquids.

  12. Dynamic underground stripping to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.

    1995-09-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 26,500 liters (7000 gallons) of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat methods and vacuum extraction schemes for removing non-aqueous phase liquids (NAPLs) such as gasoline from deep subsurface plumes.

  13. Overview of the Dynamic Underground Stripping demonstration project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D. ); Udell, K. . Dept. of Mechanical Engineering)

    1992-08-01

    Dynamic Underground Stripping is a limited-scope demonstration of a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it combines steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. The system is targeted toward the removal of free-phase organics of all kinds. The LLNL gasoline spill is a convenient test site because much of the gasoline has been trapped below the water table, mimicking the behavior of dense organic liquids.

  14. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tour Oct. 16th CBFO's Joe Franco and EM's Mark Whitney discuss WIPP underground layout NWP's John Vandekraats describes roof bolting www.energy.govEM 7 Message from DOE...

  15. Science @WIPP: Underground Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field"

  16. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  17. Midwest Underground Technology | Open Energy Information

    Open Energy Info (EERE)

    Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind...

  18. Underground physics with DUNE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this paper we will focus on the underground physics with DUNE.« less

  19. The WIPP Underground Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2014 The WIPP Underground Ventilation System Since February, there has been considerable coverage about the WIPP Underground Ventilation System. On February 14, the ventilation system worked as designed, protecting human health and the environment. In normal exhaust mode, the ventilation system provides a continuous flow of fresh air to the underground tunnels and rooms that make up the disposal facility at WIPP. Air is supplied to the underground facility, located 2,150 feet below the

  20. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, B.M.; Smith, A.M.; Hanson, R.W.; Hodges, R.T.

    1998-08-04

    An apparatus is described for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment. 17 figs.

  1. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, Bradley M.; Smith, Ann Marie; Hanson, Richard W.; Hodges, Richard T.

    1998-01-01

    An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

  2. Underground Storage of Carbon Dioxide-as a Solid | U.S. DOE Office...

    Office of Science (SC) Website

    captured from power plant exhaust and other sources and injected underground into porous rock formations where it mixes with ambient salt water and may remain for 1000's of years. ...

  3. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  4. Economical wind protection - underground

    SciTech Connect (OSTI)

    Kiesling, E.W.

    1980-01-01

    Earth-sheltered buildings inherently posess near-absolute occupant protection from severe winds. They should sustain no structural damage and only minimal facial damage. Assuming that the lower-hazard risk attendant to this type of construction results in reduced insurance-premium rates, the owner accrues economic benefits from the time of construction. Improvements to aboveground buildings, in contrast, may not yield early economic benefits in spite of a favorable benefit-to-cost ratio. This, in addition to sensitivity to initial costs, traditionalism in residential construction, and lack of professional input to design, impede the widespread use of underground improvements and the subsequent economic losses from severe winds. Going underground could reverse the trend. 7 references.

  5. LUNA: Nuclear astrophysics underground

    SciTech Connect (OSTI)

    Best, A.

    2015-02-24

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions.

  6. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  7. Dynamic underground stripping demonstration project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution.

  8. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  9. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  10. Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech/NETL Research | Department of Energy Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research October 20, 2015 - 8:14am Addthis Researchers from Virginia Tech are injecting CO2 into coal seams in three locations in Buchanan County, Va., as part of an NETL-sponsored CO2 storage research project associated with enhanced gas recovery. Researchers from Virginia Tech are

  11. Dynamic Underground Stripping Demonstration Project. Interim progress report, 1991

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92.

  12. New York Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Underground Storage Volume (Million Cubic Feet) New York Natural Gas Underground Storage ... Underground Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  13. New Mexico Natural Gas Underground Storage Volume (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) New Mexico Natural Gas Underground Storage ... Underground Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  14. Underground house book

    SciTech Connect (OSTI)

    Campbell, S.

    1980-01-01

    Aesthetics, attitudes, and acceptance of earth-covered buildings are examined initially, followed by an examination of land, money, water, earth, design, heat, and interior factors. Contributions made by architect Frank Lloyd Wright are discussed and reviewed. Contemporary persons, mostly designers, who contribute from their experiences with underground structures are Andy Davis; Rob Roy; Malcolm Wells; John Barnard, Jr.; Jeff Sikora; and Don Metz. A case study to select the site, design, and prepare to construct Earthtech 6 is described. Information is given in appendices on earth-protected buildings and existing basements; financing earth-sheltered housing; heating-load calculations and life-cycle costing; and designer names and addresses. (MCW)

  15. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    2007-07-01

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  16. Multinational underground nuclear parks

    SciTech Connect (OSTI)

    Myers, C.W.; Giraud, K.M.

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  17. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:41 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Minnesota Natural Gas in ...

  18. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Michigan Natural Gas in ...

  19. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  20. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  1. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:54 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Tennessee Natural Gas in ...

  2. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  3. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:43 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Missouri Natural Gas in ...

  4. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  5. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  6. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:49 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Ohio Natural Gas in ...

  7. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:34 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Illinois Natural Gas in ...

  8. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:46 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Nebraska Natural Gas in ...

  9. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  10. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  11. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:37 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kentucky Natural Gas in ...

  12. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:57 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Virginia Natural Gas in ...

  13. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:29 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","California Natural Gas in ...

  14. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  15. ,"Oklahoma Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage ... 11:44:01 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage ...

  16. ,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Capacity ... 11:44:43 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity ...

  17. ,"Kansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Underground Storage Capacity ... 7:00:56 AM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity ...

  18. ,"Kansas Natural Gas Underground Storage Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Underground Storage ... 7:00:36 AM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage ...

  19. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  20. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity ... 7:01:01 AM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity ...

  2. ,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Underground Storage ... 7:00:40 AM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage ...

  3. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  6. ,"Virginia Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Underground Storage Capacity ... 11:44:46 AM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity ...

  7. ,"West Virginia Natural Gas Underground Storage Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Underground Storage ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Underground Storage ...

  8. ,"Virginia Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Underground Storage ... 11:44:05 AM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage ...

  9. ,"Minnesota Natural Gas Underground Storage Net Withdrawals ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Net ... 7:00:48 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Net ...

  10. ,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Capacity ... 7:00:58 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity ...

  11. ,"Minnesota Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage ... 7:00:37 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage ...

  12. Louisiana Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 17,712 15,346 15,364 11,228 15,333 18,647 19,527 17,703 19,665 19,333 15,705 14,621 1991 2,280 4,842 12,957 13,291 22,317 22,447 17,260 17,261 23,603 27,512 9,950 4,281 1992 7,699 4,109 13,109 16,478 29,243 21,440 20,695 21,713 23,276 24,685 7,374 3,230 1993 4,314 1,638 8,805 14,315 34,776 33,317 27,192 28,570 32,062 21,236 21,232 2,111 1994 3,737 9,288 9,922 26,592 34,270 23,811 30,757 28,317 24,211 15,673 13,387 4,560 1995

  13. Mississippi Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,750 3,607 4,330 6,127 5,544 4,224 6,928 5,497 4,867 4,368 3,234 2,683 1991 2,109 2,492 4,207 6,639 5,633 3,362 3,437 4,256 5,869 4,885 3,369 1,795 1992 1,096 3,138 2,980 2,951 5,887 9,079 6,978 4,305 7,046 4,637 4,536 2,471 1993 1,673 667 3,918 4,615 8,370 7,306 6,934 4,554 6,921 3,167 5,034 2,746 1994 3,660 5,153 6,296 6,337 5,829 3,779 7,746 7,154 4,569 5,564 4,790 4,095 1995 4,471 3,625 5,571 7,565 8,877 4,334 6,975 6,763

  14. Missouri Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,544 12 1,155 1,115 0 0 0 287 512 228 21 442 1991 669 0 0 2,142 701 120 299 306 216 222 225 70 1992 0 0 0 1,579 439 155 273 224 214 197 0 0 1993 0 0 0 1,558 1,054 462 108 323 211 221 556 218 1994 528 57 98 0 1,549 1,361 322 318 276 219 240 29 1995 0 191 610 59 669 0 0 376 484 144 180 65 1996 358 1,295 1,377 410 1,326 268 247 213 212 218 161 484 1997 1,025 621 88 466 1,207 121 440 387 248 223 254 0 1998 303 167 471 36 595 0 0

  15. Montana Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 137 138 399 945 1,030 1,589 2,636 2,459 2,918 1,868 224 305 1991 49 400 337 661 1,912 1,830 2,316 2,077 1,390 1,069 208 144 1992 94 209 651 983 2,344 1,142 1,727 1,673 1,209 1,045 508 123 1993 282 135 618 768 1,156 889 1,969 1,580 1,608 1,404 175 310 1994 267 118 585 1,090 1,929 2,511 1,794 1,632 2,256 1,750 409 348 1995 225 467 966 1,330 1,775 2,542 3,316 3,925 2,132 871 325 180 1996 171 319 392 1,087 1,169 3,866 3,549 3,819

  16. Nebraska Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 0 29 194 1,042 1,483 1,696 30 778 1,165 695 281 4 1991 5 0 112 1,421 2,977 2,197 163 265 1,023 340 412 0 1992 0 108 275 703 1,637 2,634 2,118 1,220 1,200 360 0 0 1993 0 0 162 1,050 2,814 4,060 2,435 1,851 1,518 586 0 10 1994 0 0 582 1,280 2,156 1,045 2,245 933 2,230 1,100 938 15 1995 27 148 490 478 727 920 346 207 408 120 0 0 1996 - 101 14 530 1,650 1,984 1,325 1,416 875 213 289 25 1997 302 267 721 615 796 885 271 1,005 1,123

  17. Utah Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 609 640 580 1970's 547 883 906 2,320 999 1,340 1,069 1,446 1,180 1,193 1980's 2,381 11,107 12,089 19,948 17,291 20,386 9,542 14,359 19,426 16,885 1990's 27,196 32,248 31,222 34,488 42,508 32,201 32,368 42,803 23,744 37,380 2000's 40,179 47,942 42,159 44,227 46,829 38,478 39,761 41,284 42,304 38,618 2010's 35,519 44,170 28,146 26,724 41,548 36,027

  18. Virginia Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 158 272 2,143 1970's 2,175 2,286 278 320 112 1,079 1980's 22 1990's 0 2,369 2,378 2000's 2,455 3,440 3,012 4,008 7,073 9,696 6,997 8,796 10,467 9,464 2010's 10,315 12,006 10,593 11,361 12,602 12,930

  19. Washington Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,270 974 1,827 1970's 6,688 7,442 9,608 8,598 7,993 12,009 13,858 15,540 7,358 14,332 1980's 14,408 11,083 5,344 6,218 12,002 7,847 6,269 6,884 5,415 12,921 1990's 14,296 14,214 13,294 19,575 18,705 17,815 20,124 20,018 23,136 19,227 2000's 24,424 25,176 25,378 26,357 22,194 22,562 21,997 26,184 25,304 26,411 2010's 25,968 27,946 25,183 28,208 29,058 25,789

  20. West Virginia Natural Gas Injections into Underground Storage (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 159,545 181,338 183,114 1970's 209,292 190,785 171,946 184,984 124,988 161,604 138,767 195,861 177,263 173,060 1980's 128,443 127,788 144,153 87,355 128,717 129,134 134,394 98,311 106,318 115,421 1990's 126,217 104,251 138,647 160,450 171,216 145,958 200,612 164,299 172,191 160,166 2000's 155,359 198,730 140,907 197,794 176,486 171,199 163,026 184,167 192,729 188,539 2010's 171,179 197,202 153,479

  1. Indiana Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,027 26,679 26,483 1970's 35,065 33,816 40,220 46,617 36,070 43,845 18,252 32,090 25,903 27,177 1980's 24,509 24,301 25,489 20,160 22,069 21,885 22,118 15,844 24,423 24,816 1990's 23,054 23,654 25,770 25,928 24,656 24,335 27,263 23,403 22,034 21,533 2000's 19,486 24,647 20,425 23,563 23,451 21,405 23,598 22,686 22,874 24,399 2010's 21,943 23,864 19,878 22,435 22,067 20,542

  2. Kansas Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,661 44,524 50,772 1970's 52,966 49,267 46,810 42,910 45,642 52,045 48,582 51,344 52,242 59,148 1980's 87,788 101,892 128,737 70,412 104,782 96,153 97,214 87,570 107,182 104,735 1990's 108,143 109,627 84,249 116,284 106,069 105,693 104,871 114,848 118,404 103,396 2000's 104,007 127,342 93,675 112,643 101,386 99,621 103,105 113,399 115,669 102,406 2010's 113,253 119,823 93,460 103,676 111,853 110,950

  3. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 26,084 28,993 31,726 1970's 38,968 46,139 51,437 54,392 50,903 70,609 69,954 69,097 72,674 68,961 1980's 49,142 67,518 64,789 42,090 63,617 62,202 43,698 42,388 55,774 55,277 1990's 66,195 47,425 49,367 48,117 59,831 58,561 69,498 57,073 65,267 55,134 2000's 55,348 75,165 49,577 70,497 66,037 61,190 65,956 70,682 77,503 71,972 2010's 85,167 77,526 64,483 60,782 80,129 80,247

  4. Maryland Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 12,465 10,520 5,281 1970's 10,421 11,746 7,920 11,328 11,016 6,830 19,012 16,820 19,121 19,715 1980's 16,907 18,753 19,476 16,298 16,154 17,362 16,330 16,539 14,653 18,548 1990's 19,431 22,508 19,502 15,314 15,316 15,610 17,448 15,510 14,627 18,802 2000's 15,341 19,786 15,445 19,166 16,347 18,026 14,947 20,309 16,517 15,088 2010's 14,384 15,592 10,582 14,165 20,362 17,373

  5. Michigan Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 222,800 255,365 257,737 1970's 344,524 296,475 275,460 299,766 287,776 322,960 342,010 372,262 390,610 424,176 1980's 290,497 354,911 371,216 227,107 379,036 325,729 366,672 268,325 341,649 414,819 1990's 415,309 354,996 390,465 476,312 470,220 377,121 503,138 424,651 391,041 343,675 2000's 402,150 543,881 312,348 519,235 475,423 404,258 386,208 410,421 467,589 462,022 2010's 393,814 457,240 307,948

  6. Mississippi Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,701 6,904 7,493 1970's 12,489 8,149 83,548 29,089 25,439 27,345 50,545 65,693 63,032 60,597 1980's 59,653 42,916 43,834 44,467 54,186 54,105 38,678 43,550 41,780 50,478 1990's 53,161 48,054 55,105 55,903 64,972 74,821 88,684 63,216 69,268 48,217 2000's 63,917 68,987 72,418 79,014 90,316 114,658 108,823 148,487 160,388 127,212 2010's 145,854 124,165 129,889 145,082 199,696 202,642

  7. Missouri Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,206 8,919 9,044 1970's 10,957 11,741 10,188 10,847 9,413 8,658 6,634 8,074 8,836 8,836 1980's 5,305 4,727 4,407 924 4,431 4,537 2,835 1,337 4,240 2,911 1990's 5,316 4,972 3,080 4,711 4,997 2,777 6,570 5,081 2,670 3,159 2000's 2,619 3,794 2,977 2,963 3,213 2,455 1,689 2,423 2,634 2,684 2010's 2,437 2,114 1,647 3,388 4,188 2,973

  8. Montana Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 19,919 17,398 20,409 1970's 20,891 18,668 8,801 16,969 19,791 13,090 12,507 15,908 16,351 23,254 1980's 29,751 30,147 25,180 33,262 39,814 36,786 22,084 22,894 13,782 10,479 1990's 14,648 12,392 11,708 10,894 14,690 18,054 19,871 18,219 23,876 20,232 2000's 15,571 33,998 39,809 35,082 31,339 29,118 42,492 26,512 18,394 57,631 2010's 35,577 17,582 26,813 21,426 15,290 19,826

  9. Ohio Natural Gas Injections into Underground Storage (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1 1 1 1 1 1 1 1 1 1 1 1 2008 1 1 1 1 1 1 1 1 1 1 1 1 2009 1 1 1 1 1 1 1 1 1 1 1 1 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 1 1 1 50 50 48 333 333 328 458 458 480 2012 414 374 414 818 845 818 1,262 1,262 1,221 1,802 1,743 1,802 2013 2,858 2,581 2,858 4,967 5,132 4,967 11,332 11,332 10,967 14,531 14,062 14,531 2014 21,359 19,292 21,359 27,630 28,551 27,630 42,842 42,842 41,460 52,080 50,400 52,080 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA

  10. Oregon Natural Gas Injections into Underground Storage (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 90,403 102,770 107,984 2000's 76,273 69,866 70,510 67,519 71,687

  11. Pennsylvania Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 826 773 826 800 826 800 826 826 800 826 800 826 2009 7,565 6,833 7,565 7,321 7,565 7,321 7,565 7,565 7,321 7,565 7,321 7,565 2010 15,835 14,303 15,835 26,860 27,756 26,860 38,452 38,452 37,211 53,202 51,485 53,202 2011 68,692 62,045 68,692 77,725 80,316 77,725 93,126 93,126 90,121 120,199 116,321 120,199 2012 143,632 134,365 143,632 156,230 161,438 156,230 180,639 180,639 174,812 205,886 199,244

  12. Tennessee Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 138,863 144,560 144,542 2000's 129,716 118,566 118,241 112,446

  13. Texas Natural Gas Injections into Underground Storage (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 107,415 97,020 107,415 103,950 107,415 103,950 107,415 107,415 103,950 107,415 103,950 107,415 2008 149,885 140,215 149,885 145,050 149,885 145,050 149,885 149,885 145,050 149,885 145,050 149,885 2009 171,430 154,840 171,430 165,900 171,430 165,900 171,430 171,430 165,900 171,430 165,900 171,430 2010 174,342 160,128 180,419 168,880 177,313 169,232 203,930 205,113 200,365 220,938 217,327 224,963 2011 233,045 201,629 239,067 245,578 257,399

  14. Utah Natural Gas Injections into Underground Storage (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 119 115 123 117 121 119 108 107 105 104 97 96 2013 85 81 90 82 84 80 82 83 81 85 80 78 2014 93 84 93 90 93 90 93 93 90 62 60 62 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,162 45,501

  15. West Virginia Natural Gas Injections into Underground Storage (Million

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 3,441 3,108 3,441 3,330 3,441 3,330 3,441 3,441 3,330 3,441 3,330 3,441 2008 4,526 4,234 4,526 4,380 4,526 4,380 4,526 4,526 4,380 4,526 4,380 4,526 2009 6,076 5,488 6,076 5,880 6,076 5,880 6,076 6,076 5,880 6,076 5,880 6,076 2010 7,544 6,900 7,606 8,245 8,558 8,405 10,065 10,068 9,859 12,372 12,016 12,136 2011 13,764 13,153 15,203 16,974 17,785 18,022 21,093 20,783 21,788 22,896 21,994 23,558 2012 25,375 24,058 25,054 25,441

  16. Wyoming Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 331 299 331 320 331 320 331 331 320 331 320 331 2008 405 378 405 392 405 392 405 405 392 405 392 405 2009 344 311 344 333 344 333 344 344 333 344 333 344 2010 457 414 460 474 480 444 475 484 460 461 451 457 2011 397 353 395 443 449 440 415 380 393 366 362 361 2012 743 675 723 637 648 622 867 859 827 904 888 861 2013 1,059 971 1,078 1,040 1,029 1,023 1,481 1,472 1,331 1,951 1,884 1,857 2014 2,046 1,848 2,046 1,710 1,767 1,710 2,294 2,294

  17. Iowa Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    1980's 61,413 48,918 61,121 49,523 44,355 64,993 52,084 45,128 55,076 58,386 1990's 44,471 57,278 65,818 64,184 70,926 70,785 61,060 61,132 70,001 73,398 2000's 69,893 80,546 ...

  18. Minnesota Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    1990's 1,256 1,285 1,372 1,762 1,556 1,478 1,655 1,417 1,291 1,384 2000's 1,375 1,669 1,218 1,521 1,471 1,418 1,255 1,380 1,493 1,405 2010's 1,046 1,454 1,010 1,451 1,549 1,044

  19. Washington Natural Gas Injections into Underground Storage (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,270 974 1,827 1970's 6,688 7,442 9,608 8,598 7,993 12,009 13,858 15,540 7,358 14,332 1980's...

  20. Washington Natural Gas Injections into Underground Storage (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 929 289 499 863 0 2,707 2,937 2,937 1,101 622 906 507 1991 833 586 299 3,139 1,705 2,716 2,138 291 308 0 1,447 753 1992...

  1. Wyoming Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,748 5,337 6,695 1970's 8,305 11,325 11,996 9,854 7,025 13,276 10,404 10,061 8,812 11,193 1980's 11,194 12,695 21,860 11,546 6,110 7,565 7,701 2,932 9,719 12,546 1990's 12,146 10,872 5,340 13,605 10,596 9,448 10,422 14,080 15,212 11,458 2000's 6,144 19,510 19,547 18,304 26,689 18,665 19,820 22,213 19,194 24,183 2010's 14,762 14,102 37,107 18,868 15,440 10,236

  2. Utah Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 217 15 3 133 1,503 1,503 7,253 6,393 5,871 3,255 768 282 1991 85 0 2,099 2,224 2,645 5,554 6,015 3,813 3,940 2,080 1,316 2,475 1992 389 1,210 2,719 3,032 3,970 3,612 3,759 4,834 3,898 3,111 506 182 1993 0 6 93 168 6,607 6,471 5,034 5,017 4,968 5,083 501 541 1994 45 195 3,861 2,050 6,133 4,069 5,508 6,269 8,509 4,218 1,026 624 1995 71 1,029 918 1,645 4,350 6,226 7,254 3,681 2,323 1,721 2,729 256 1996 7 276 904 1,589 5,596 6,757 6,824 4,746

  3. Washington Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 929 289 499 863 0 2,707 2,937 2,937 1,101 622 906 507 1991 833 586 299 3,139 1,705 2,716 2,138 291 308 0 1,447 753 1992 436 149 945 1,205 1,824 1,543 1,336 1,618 1,578 979 785 895 1993 750 383 2,192 1,363 4,359 1,112 2,036 1,280 2,258 340 326 3,176 1994 1,579 318 1,268 3,455 2,882 2,005 1,945 965 1,330 503 1,263 1,192 1995 541 827 1,671 1,661 2,601 2,020 1,565 829 2,494 464 1,696 1,447 1996 808 2,027 1,081 1,609 2,176 3,349

  4. West Virginia Natural Gas Injections into Underground Storage (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,636 3,056 7,714 11,094 19,622 17,419 16,104 16,323 13,930 7,415 6,785 4,120 1991 843 2,207 5,193 12,543 15,471 16,359 15,601 10,248 9,551 8,573 5,375 2,288 1992 1,013 1,191 1,116 9,299 25,331 21,514 19,498 21,430 15,698 16,466 5,155 936 1993 467 42 1,620 11,145 39,477 28,118 20,621 18,991 20,910 11,087 7,110 863 1994 331 2,543 4,529 21,836 25,960 28,392 28,083 23,234 21,272 9,826 3,695 1,516 1995 1,637 1,663 6,487 10,136

  5. Wyoming Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22 16 140 1,047 1,248 1,648 2,162 1,899 2,415 1,135 222 191 1991 56 467 479 368 908 1,922 2,233 1,628 1,090 1,135 423 164 1992 0 73 211 356 439 605 1,402 465 861 525 208 194 1993 8 15 557 1,247 1,443 2,426 2,423 1,875 1,433 1,533 482 163 1994 145 16 930 1,339 1,692 771 1,125 1,524 1,444 1,060 412 138 1995 17 76 89 67 863 1,452 1,588 1,896 1,849 1,265 236 52 1996 13 0 66 974 2,862 1,764 2,169 836 641 540 243 312 1997 157 0 47 372

  6. Nebraska Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,012 2,959 4,838 1970's 3,074 5,982 8,837 5,280 5,667 5,459 4,508 7,053 9,995 10,087 1980's 6,557 7,198 7,455 3,869 5,628 6,848 5,748 6,241 7,615 6,952 1990's 7,395 8,916 10,254 14,485 12,524 3,872 8,423 6,659 5,264 5,802 2000's 3,763 8,303 5,735 5,334 8,454 8,412 7,760 10,860 9,155 8,936 2010's 8,146 10,482 6,349 9,578 9,998 8,058

  7. New Mexico Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 383 74 383 1970's 398 5,067 12,589 4,160 1,005 2,378 472 39 1980's 2,871 2,801 19,894 2,500 4,033 14,552 11,531 14,892 19,407 14,036 1990's 22,352 21,563 18,963 16,369 18,551 14,712 11,953 12,936 16,821 17,459 2000's 16,529 18,263 12,032 13,544 13,422 16,131 18,011 22,390 16,132 21,094 2010's 18,643 19,738 22,732 14,077 14,010 26,085

  8. New York Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 42,344 44,978 41,874 1970's 45,802 48,026 32,777 40,277 56,403 43,207 42,565 53,768 51,620 46,439 1980's 41,857 57,610 55,213 43,106 59,702 48,748 49,185 42,616 56,332 53,490 1990's 63,690 63,411 62,265 68,532 66,627 60,947 76,475 67,135 63,298 57,442 2000's 61,763 66,179 64,381 79,757 71,554 69,022 68,290 75,186 69,946 89,822 2010's 99,802 92,660 75,635 79,917 94,858 87,575

  9. Ohio Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 142,717 169,955 168,142 1970's 182,405 188,916 163,884 179,078 152,580 183,032 146,228 188,721 199,851 193,251 1980's 169,268 177,387 193,275 129,541 156,006 138,801 163,093 143,588 162,801 132,898 1990's 154,452 134,060 160,009 175,630 191,660 161,350 198,642 200,327 191,831 182,142 2000's 179,728 206,841 174,175 193,194 186,313 176,524 150,608 180,397 185,095 175,526 2010's 178,746 182,167 146,552 166,098

  10. Oklahoma Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 47,438 46,871 53,945 1970's 57,142 66,666 59,061 88,000 70,076 87,459 88,577 104,347 109,076 110,354 1980's 112,403 111,148 104,572 75,872 105,055 87,860 84,072 84,031 95,241 98,370 1990's 95,274 94,221 97,468 151,249 123,576 94,809 117,067 132,489 165,631 121,312 2000's 136,287 179,459 110,539 152,536 128,902 125,362 140,895 130,927 162,457 115,885 2010's 145,951 140,729 95,877 127,670 160,232

  11. Oregon Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 189 5 46 1980's 4,148 4,944 1990's 5,894 5,853 6,114 6,202 5,956 4,447 4,416 6,259 5,673 7,605 2000's 8,892 10,487 16,746 10,194 9,101 13,138 12,449 13,195 15,088 10,570 2010's 8,658 11,976 8,732 12,176 15,858 9,06

  12. Pennsylvania Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 219,010 235,415 244,892 1970's 335,966 303,286 315,183 321,757 265,901 332,183 293,596 364,262 372,402 357,234 1980's 212,048 360,752 405,477 284,948 362,878 350,022 249,028 335,166 377,046 572,180 1990's 388,569 707,371 383,762 381,711 339,512 332,608 376,290 312,787 328,118 319,041 2000's 370,957 398,034 318,381 413,078 368,897 385,186 337,341 372,938 377,401 380,986 2010's 335,068 371,341 291,507

  13. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 8 12 26 71 106 95 103 93 85 55 25 14 1995 0 122 0 0 44 42 41 252 592 156 24 101 1996 231 185 141 192 390 670 318 395 440 166 63 160 1997 297 101 63 168 271 161 108 286 262 251 27 27 1998 26 0 81 245 188 623 25 203 139 613 76 0 1999 0 0 14 645 547 213 333 202 459 0 166 67 2000 48 534 44 51 232 606 166 0 0 42 12 286 2001 411 304 85 323 207 618 250 293 370 414 529 109 2002 711 278 182 349 240 54 357 139 106 318 515 536 2003 242 818

  14. Alaska Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,120 2,185 1,860 933 1,065 1,131 977 1,518 1,981 1,627 367 291 2014 701 337 1,062 1,084 903 2,078 831 997 774 678 976 1,255 2015 1,039 982 589 621 618 611 865 857 682 824 756 717 2016 496 748 752 1,540 2,065 1,970

  15. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 536 577 1970's 1,153 992 568 1,070 410 434 1990's 694 1,375 3,349 2,022 2,220 2,646 2000's 2,022 3,913 3,785 10,190 12,734 15,572 20,604 20,009 31,208 21,020 2010's 23,026 22,766 21,195 17,966 34,286 33,004

  16. Virginia Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    339 344 283 434 327 44 183 2003 51 220 70 276 458 504 482 823 671 147 102 203 2004 325 454 190 347 1,013 415 611 1,104 894 1,138 303 279 2005 599 566 319 458 699 560 923 747 783 ...

  17. California Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,676 4,631 11,774 22,230 26,798 17,079 11,773 10,071 10,383 17,080 11,528 1,051 1991 1,964 7,531 6,205 21,709 28,179 25,042 16,510 8,436 6,788 7,412 4,368 2,289 1992 1,926 6,570 5,706 17,569 17,167 26,308 19,985 14,876 21,087 11,679 3,331 1,835 1993 915 3,429 15,021 19,520 27,830 15,806 23,522 15,977 16,113 13,773 1,939 1,289 1994 870 494 6,150 20,903 28,804 21,822 18,914 11,381 26,575 14,221 2,254 3,522 1995 1,383 6,220 3,765

  18. Illinois Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,189 271 2,720 9,668 32,390 37,507 29,406 35,531 34,922 20,388 6,532 1,553 1991 4,412 442 309 9,233 31,471 30,144 30,332 35,249 33,602 26,760 7,536 2,741 1992 778 229 589 6,696 32,026 31,485 31,568 35,782 32,858 28,319 7,586 6,487 1993 219 53 1,527 13,439 36,040 35,265 34,281 36,399 41,709 28,438 11,331 1,815 1994 4,339 3,538 3,911 8,670 26,460 31,342 35,109 37,133 40,143 29,292 13,367 2,475 1995 208 379 3,672 9,006 36,015

  19. Indiana Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 997 821 771 1,207 1,916 1,673 2,268 3,772 4,202 2,896 1,993 539 1991 91 245 158 710 1,849 1,107 2,920 3,845 4,606 4,490 3,131 501 1992 98 349 429 1,076 1,611 2,638 5,174 4,168 5,309 3,579 926 413 1993 681 526 882 1,587 2,170 2,733 4,564 4,464 4,276 2,659 911 475 1994 328 565 519 609 934 2,541 5,229 4,565 4,175 3,340 1,546 305 1995 439 80 786 1,211 1,057 1,831 2,892 3,751 4,791 4,578 2,437 483 1996 262 870 948 968 1,028 2,560

  20. Kansas Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 7,635 3,835 6,654 5,480 4,038 7,424 13,042 13,023 16,981 12,047 11,053 6,933 1991 5,647 10,096 7,403 7,023 8,901 9,815 5,663 9,450 12,006 14,791 7,219 11,614 1992 6,014 7,237 5,144 3,501 8,711 5,088 6,556 12,676 12,171 9,476 3,696 3,978 1993 3,474 3,941 5,856 10,399 23,758 12,175 7,172 10,616 15,593 14,770 2,712 5,817 1994 3,919 3,957 8,082 8,386 13,732 9,332 12,132 14,307 11,682 8,641 4,889 7,010 1995 3,561 3,694 6,319 7,908 11,537

  1. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,591 7,852 5,644 4,269 4,991 5,462 7,829 7,379 7,268 5,324 3,591 2,996 1991 1,910 2,777 4,468 4,883 2,671 3,345 5,395 4,818 4,660 4,074 4,315 4,110 1992 5,509 3,635 2,314 2,151 1,697 2,787 4,724 4,202 5,539 10,882 3,272 2,656 1993 1,967 990 928 2,687 7,049 7,985 7,838 5,873 7,014 3,907 1,397 482 1994 431 928 1,526 6,100 10,571 9,346 9,742 7,138 4,696 4,684 3,438 1,230 1995 1,189 478 2,868 4,780 13,288 7,749 8,687 5,375 6,889

  2. Oklahoma Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 47,438 46,871 53,945 1970's 57,142 66,666 59,061 88,000 70,076 87,459 88,577 104,347 109,076 110,354 1980's 112,403 111,148...

  3. Tennessee Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 134 112 102 103 2 0 1999 6 0 0 0 143 107 76 104 105 57 0 0 2000 0 4 0 0 0 0 0 0 49 114 86 21 2001 0 0 0 103 113 32 63 47 62 100 32 4 2002 50 3 6 2 0 0 0 1 1 1 0 0 2003 0 0 0 0 42 76 75 95 2 46 0 0 2004 2 0 0 33 32 46 63 55 6 25 0 0 2005 0 2015 4 3 26 56 61 57 69 67 72 93 102 55 2016 3 25 37 19 27 38

  4. Texas Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 17,004 8,785 10,204 19,677 17,706 20,683 10,352 12,126 22,756 13,644 6,455 1991 15,296 7,922 10,668 19,418 15,195 17,722 9,489 19,572 16,485 9,703 16,161 13,277 1992 28,613 14,959 26,061 25,971 36,754 40,361 32,383 37,832 33,591 24,896 15,309 23,871 1993 10,338 4,336 10,991 24,985 30,856 19,793 22,155 23,862 26,751 20,149 16,519 10,678 1994 9,151 9,187 22,843 31,648 45,809 29,041 34,716 32,744 34,998 26,664 23,258 10,215 1995 12,078

  5. Alaska Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 15,054 11,675 9,161

  6. Arkansas Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,317 1,210 1,168 1970's 1,467 1,674 1,316 2,218 1,783 1,555 1,033 1,462 1,572 2,081 1980's 1,107 1,690 1,854 241 1,817 4,359 1,871 398 1,522 1,299 1990's 1,938 1,044 2,461 272 3,249 5,368 7,152 6,665 6,951 5,784 2000's 3,943 5,806 3,210 5,757 4,457 4,394 4,789 5,695 5,023 4,108 2010's 4,672 4,628 2,848 3,112 3,398 3,318

  7. California Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 71,148 58,085 77,617 1970's 80,260 89,373 118,758 92,331 129,945 105,167 107,749 109,760 108,432 100,522 1980's 93,556 99,397 112,916 97,424 103,983 124,099 89,891 130,990 120,167 140,933 1990's 147,074 136,433 148,039 155,135 155,910 144,312 104,238 145,511 172,343 128,420 2000's 110,172 189,640 124,641 166,879 211,010 190,055 168,957 214,469 237,364 199,763 2010's 226,810 263,067 218,663 182,046

  8. Colorado Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,391 6,849 8,663 1970's 8,757 5,839 8,502 10,673 11,444 13,420 16,987 21,717 20,630 25,334 1980's 32,974 25,291 32,861 26,361 26,228 26,722 24,313 24,083 25,898 28,165 1990's 27,674 30,584 23,061 51,132 31,185 39,717 37,808 39,389 39,789 37,828 2000's 31,601 36,951 37,980 40,146 38,320 38,588 35,836 38,619 39,034 45,861 2010's 43,250 51,469 59,096 66,935 72,510 69,983

  9. Illinois Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 119,125 143,180 153,497 1970's 190,661 214,871 237,098 233,112 232,284 294,689 235,310 293,311 236,669 253,320 1980's 197,385 141,824 217,536 122,620 194,327 165,688 156,754 125,066 166,713 199,165 1990's 213,076 212,232 214,404 240,515 235,778 263,409 241,129 227,785 225,089 238,325 2000's 225,524 231,097 246,574 249,228 246,747 260,515 242,754 243,789 260,333 259,421 2010's 247,458 258,690 249,953

  10. Tennessee Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,140 1970's 1,606 1,750 2,325 1990's 0 453 599 2000's 273 556 63 336 262 0 2010's 665

  11. Texas Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,836 31,597 33,943 1970's 36,805 36,850 87,251 46,592 54,705 54,333 61,110 85,913 91,373 82,325 1980's 109,242 124,439 141,811 135,309 145,916 125,560 121,631 121,245 146,758 161,181 1990's 175,039 170,908 340,602 221,412 310,273 274,724 305,914 312,254 344,461 291,802 2000's 311,995 482,270 363,682 415,541 395,115 345,945 356,273 362,593 401,600 435,089 2010's 460,453 437,440 378,438 394,375 474,392 494,37

  12. Midwest Region Natural Gas Injections into Underground Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 7,437 14,235 22,615 66,408 136,813 155,687 156,839 166,332 149,212 119,162 35,641 16,420 2015 7,171 4,815 20,994 74,813 ...

  13. Colorado Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 538 235 252 265 1,274 4,266 6,279 5,212 5,012 1,957 1,734 650 1991 992 654 483 61 2,494 3,876 4,219 4,449 5,296 3,296 ...

  14. Michigan Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    76,718 72,178 53,824 26,587 11,504 2,212 1991 1,032 3,107 15,520 34,937 50,769 ... 55,631 32,359 9,649 4,881 2009 2,827 3,212 12,072 48,476 76,810 78,890 79,555 63,194 ...

  15. AGA Eastern Consuming Region Natural Gas Injections into Underground...

    U.S. Energy Information Administration (EIA) Indexed Site

    36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 ... 1999 18,032 8,946 26,228 111,081 229,212 205,889 185,349 217,043 223,192 146,647 ...

  16. East Region Natural Gas Injections into Underground Storage ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 9,107 10,259 22,569 71,857 144,145 132,960 120,491 118,493 122,207 94,669 33,103 25,810 2015 8,423 5,281 16,253 88,445 ...

  17. Louisiana Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 47,474 33,037 58,753 1970's 110,680 132,263 84,201 151,287 81,960 149,966 132,724 144,053 ...

  18. Arkansas Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 0 0 0 46 104 473 527 481 279 28 0 0 1991 0 0 0 72 132 339 487 14 0 0 0 0 1992 0 0 0 0 0 510 852 665 434 0 0 0 1993 0 0 0 0 ...

  19. Injections of Natural Gas into Underground Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia 11,101 5,919 3,512 734 2,318 4,082 1990-2016 Wyoming 1,431 716 227 1,988 3,024 2,558 1990-2016 AGA Producing Region 1994-2014 AGA Eastern Consuming Region 1994-2014 ...

  20. Injections of Natural Gas into Underground Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AGA Producing Region 1,254,942 1,211,381 1,015,296 1,134,410 1,394,463 1994-2014 AGA Eastern Consuming Region 1,644,865 1,778,666 1,405,381 1,648,362 1,960,918 1994-2014 AGA ...

  1. Kansas Natural Gas Injections into Underground Storage (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,661 44,524 50,772 1970's 52,966 49,267 46,810 42,910 45,642 52,045 48,582 51,344 52,242...

  2. Lower 48 States Total Natural Gas Injections into Underground...

    U.S. Energy Information Administration (EIA) Indexed Site

    154,663 2014 67,600 104,037 132,997 321,828 527,860 504,311 462,167 445,872 467,828 451,675 199,417 141,558 2015 68,894 61,035 181,326 404,414 541,018 429,353 377,626 393,223 ...

  3. New Mexico Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 502 1,137 1,088 2,198 1,190 1,665 3,674 3,203 2,048 3,187 1,857 602 1991 341 245 267 3,130 3,097 3,033 1,930 790 3,099 ...

  4. Minnesota Natural Gas Injections into Underground Storage (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 0 0 69 477 330 112 133 48 61 27 0 0 1991 0 0 42 228 257 312 291 61 93 0 0 0 1992 0 0 0 0 391 307 299 250 126 0 0 0 1993 0 ...

  5. New York Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,869 1,563 3,711 4,231 6,916 10,157 8,932 7,141 5,172 2,549 1,879 1991 539 1,202 1,845 5,002 7,611 7,983 9,509 8,881 8,960 6,263 3,702 1,915 1992 965 83 455 4,003 9,753 9,677 11,054 9,933 6,960 5,600 2,866 916 1993 367 155 1,728 6,690 11,220 11,597 11,643 9,116 8,556 4,134 2,100 1,227 1994 170 658 1,345 10,036 10,214 12,914 11,583 10,095 5,457 2,869 707 579 1995 1,439 287 1,939 4,147 9,279 11,454 8,979 8,492 9,378 3,586 1,390

  6. Ohio Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,095 2,783 8,487 12,731 23,624 20,221 19,895 19,615 18,355 13,780 9,089 3,777 1991 474 569 2,278 13,918 24,470 20,782 18,348 18,211 16,615 12,371 5,205 819 1992 46 383 775 11,319 27,233 30,305 29,147 24,617 16,672 14,358 4,364 790 1993 152 278 1,376 10,017 30,894 32,804 30,187 28,001 26,720 12,055 3,036 109 1994 1,075 1,772 2,164 19,428 30,107 32,303 33,898 27,173 22,437 13,196 7,269 837 1995 617 1,176 1,782 7,066 28,599 32,073 31,206

  7. Oklahoma Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,366 3,193 6,903 5,872 11,548 13,440 11,689 10,380 8,709 8,453 8,353 2,367 1991 26 3,253 7,982 15,800 16,462 10,864 4,815 6,272 10,749 9,706 3,437 4,853 1992 1,358 3,452 5,980 8,163 10,270 11,596 17,116 11,326 13,627 11,199 2,570 812 1993 1,709 2,183 3,139 17,592 30,401 25,865 16,422 17,249 15,631 12,044 1,415 7,600 1994 692 1,521 7,130 20,751 26,772 15,711 17,419 13,891 9,370 6,950 2,330 1,038 1995 1,144 1,218 4,867 9,018

  8. Oregon Natural Gas Injections into Underground Storage (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 0 0 0 1,181 1,508 1,244 764 636 372 188 0 0 1991 0 0 0 0 713 1,554 1,458 1,092 674 339 23 0 1992 0 0 0 0 1,572 1,540 1,194 1,010 453 195 0 149 1993 0 0 0 0 1,636 1,291 1,175 1,036 575 487 0 0 1994 0 0 0 0 1,216 1,506 1,202 1,081 688 264 0 0 1995 0 182 0 867 1,179 1,034 695 0 490 0 0 0 1996 - - - - 841 1,365 1,318 509 121 262 - - 1997 0 24 0 0 1,300 1,681 1,301 1,178 411 97 267 0 1998 0 0 0 0 0 1,968 1,188 1,143 1,141 28 0 205 1999 0 0 0 0

  9. Pennsylvania Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,295 9,924 21,742 28,238 51,655 57,413 51,832 54,045 43,121 22,964 20,337 14,002 1991 73,993 63,063 44,655 46,683 64,031 52,754 59,771 61,123 70,362 55,270 57,416 58,249 1992 7,189 3,229 6,490 28,679 50,918 60,273 46,504 57,126 51,685 38,133 24,553 8,982 1993 5,815 1,906 9,046 31,461 62,602 58,643 54,419 47,350 54,543 27,811 19,970 8,144 1994 772 4,575 12,272 40,407 57,110 58,758 53,083 45,208 27,767 23,356 8,648 7,555 1995

  10. Virginia Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 158 272 2,143 1970's 2,175 2,286 278 320 112 1,079 1980's 22 1990's 0 2,369 2,378 2000's 2,455...

  11. Maryland Natural Gas Injections into Underground Storage (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 239 2,623 1,788 2,614 1,243 2,126 2,822 2,513 2,065 403 535 1991 63 182 612 1,414 1,596 1,606 1,492 2,061 9,642 963 1,273...

  12. Alabama Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,835 27,660 25,326 2000's 42,215 68,868 112,403 86,129 117,056 104,786 145,528 175,736 164,266 227,015 2010's 281,722 342,841 401,306 333,897 345,102 397,961

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 201,240 199,192 204,261 2000's 199,904 155,054 159,938 158,512 163,255 151,102 149,973 150,484 142,389 131,228 2010's 144,938 153,358 171,729 179,511 187,661

  13. Alaska Natural Gas Injections into Underground Storage (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 33,510 28,785 30,528 2000's 35,570 32,588 31,704 34,403 37,641 39,284 43,288 40,901 43,199 38,078 2010's 39,732 41,738 39,758 33,944 30,444 27,722

    Exports (No Intransit Deliveries) (Million Cubic Feet) Alaska Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 49,861 52,857 52,840 52,883 50,172 48,599

  14. Arkansas Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24,805 40,574 40,089 2000's 34,602 26,096 42,430 56,369 40,138 48,987 71,056 63,594 64,188 83,266 2010's 96,553 107,014 129,059 93,552 71,921 108,755

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 144,938 141,010 137,326 2000's 130,429 122,311 118,432 111,165 100,588 88,822 87,532 85,773 85,140 77,585 2010's 83,061 85,437 81,597 87,077 88,797 84,464

    Decade

  15. California Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643 10,998 2008 10,097 9,446 10,097 9,772 10,097 9,772 10,097 10,097 9,772 10,097 9,772 10,097 2009 8,665 7,827 8,665 8,386 8,665 8,386 8,665 8,665 8,386 8,665 8,386 8,665 2010 8,201 7,365 8,149 7,952 8,353 8,008 8,398 8,108 7,970 7,829 7,561 7,612 2011 8,049 7,489 8,071 8,160 8,075 7,881 7,969 7,945 7,553 7,732 7,705 7,721 2012 6,637 6,670 7,193 7,110 7,298

  16. Colorado Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,749 10,612 11,749 11,370 11,749 11,370 11,749 11,749 11,370 11,749 11,370 11,749 2008 13,919 13,021 13,919 13,470 13,919 13,470 13,919 13,919 13,470 13,919 13,470 13,919 2009 15,314 13,832 15,314 14,820 15,314 14,820 15,314 15,314 14,820 15,314 14,820 15,314 2010 15,782 14,647 16,011 15,735 16,593 16,175 15,971 16,569 16,311 18,014 16,022 17,299 2011 16,927 15,686 16,887 16,934 18,226 17,256 17,687 18,398 17,459 19,034 18,170 18,824

  17. Indiana Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 290,098 287,292 311,704 2000's 298,533 250,766 259,059 248,666

  18. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95,724 93,217 98,750 2000's 101,251 94,896 103,112 102,272

  19. Louisiana Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,273 1,150 1,273 1,232 1,273 1,232 1,273 1,273 1,232 1,273 1,232 1,273 2008 3,176 2,971 3,176 3,074 3,176 3,074 3,176 3,176 3,074 3,176 3,074 3,176 2009 34,023 30,730 34,023 32,926 34,023 32,926 34,023 34,023 32,926 34,023 32,926 34,023 2010 73,613 70,314 81,781 89,175 95,142 97,298 113,266 115,820 116,140 124,531 127,202 138,397 2011 148,007 137,530 162,508 166,079 175,171 167,273 180,068 186,223 184,020 194,658 191,968 194,801 2012

  20. Maryland Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA Cubic Feet)

    Price All Countries (Dollars per Thousand Cubic Feet) Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic

  1. Michigan Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,582 10,461 11,582 11,208 11,582 11,208 11,582 11,582 11,208 11,582 11,208 11,582 2008 11,106 10,389 11,106 10,747 11,106 10,747 11,106 11,106 10,747 11,106 10,747 11,106 2009 10,669 9,636 10,669 10,324 10,669 10,324 10,669 10,669 10,324 10,669 10,324 10,669 2010 10,380 9,332 10,257 9,862 10,157 9,849 10,039 10,268 9,918 10,149 9,801 9,972 2011 9,725 8,903 9,852 9,389 9,577 9,177 9,631 9,673 9,445 9,596 9,335 9,432 2012 9,387 8,797

  2. Minnesota Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,117 12,974 11,334 2000's 9,895 10,610 13,181 16,752 12,773 26,024 24,911 34,790 24,900 23,665 2010's 36,076 28,244 57,190 49,640 29,496 54,054 Cubic Feet)

    (Price) All Countries (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.05 2000's --

  3. Mississippi Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA Cubic Feet)

    Price All Countries (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Imports Price All Countries (Dollars per

  4. Missouri Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 NA NA NA NA NA NA NA NA NA NA NA NA 2009 NA NA NA NA NA NA NA NA NA NA NA NA 2010 NA NA NA NA NA NA NA NA NA NA NA NA 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  5. Montana Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,239 1,119 1,239 1,199 1,239 1,199 1,239 1,239 1,199 1,239 1,199 1,239 2008 1,229 1,150 1,229 1,189 1,229 1,189 1,229 1,229 1,189 1,229 1,189 1,229 2009 1,185 1,071 1,185 1,147 1,185 1,147 1,185 1,185 1,147 1,185 1,147 1,185 2010 1,083 973 1,091 1,085 1,094 1,056 1,132 1,113 1,076 1,112 1,070 1,054 2011 1,063 937 1,027 1,070 1,098 1,050 1,150 1,146 1,149 1,165 1,109 1,136 2012 1,209 1,134 1,184 1,268 1,240 1,085 1,354 1,383 1,361 1,483

  6. Nebraska Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,418 53,053 45,750 2000's 46,816 40,145 40,426 38,115 38,866

  7. New Mexico Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 4,588 4,144 4,588 4,440 4,588 4,440 4,588 4,588 4,440 4,588 4,440 4,588 2008 4,867 4,553 4,867 4,710 4,867 4,710 4,867 4,867 4,710 4,867 4,710 4,867 2009 5,146 4,648 5,146 4,980 5,146 4,980 5,146 5,146 4,980 5,146 4,980 5,146 2010 5,447 4,946 5,447 5,602 5,813 5,421 6,204 6,207 5,989 6,907 6,788 7,097 2011 6,815 5,986 7,359 6,875 7,130 6,835 8,707 8,723 8,422 8,954 8,564 8,702 2012 9,671 9,053 9,568 9,767 10,096 9,563 11,629

  8. New York Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA

    Price (Dollars per Thousand Cubic Feet) New York Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

  9. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  10. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  11. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  12. WIPP Begins Underground Decontamination Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yellow brattice cloth is suspended from the ceiling in this disposal room. It is rolled down to prevent air flow to the room. Brattice cloth also will serve as a barrier to decontaminate floors. WIPP UPDATE: March 13, 2015 WIPP Begins Underground Decontamination Activities Activities are underway in WIPP's underground facility to address the radioactive contamination that remains as a result of the February 14, 2014 event. Employees are using a modified piece of agricultural spraying equipment

  13. Virginia Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators Virginia Underground Natural ...

  14. New Jersey Natural Gas Underground Storage Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) New Jersey Natural Gas Underground Storage Withdrawals ... Withdrawals of Natural Gas from Underground Storage - All Operators New Jersey Underground ...

  15. New Mexico Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  16. New York Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  17. New Mexico Natural Gas in Underground Storage (Working Gas) ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New Mexico Underground Natural ...

  18. New York Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working ... Underground Working Natural Gas in Storage - All Operators New York Underground Natural ...

  19. Minnesota Natural Gas Underground Storage Net Withdrawals (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Storage Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas Underground ... Net Withdrawals of Natural Gas from Underground Storage - All Operators Minnesota ...

  20. Logistics background study: underground mining

    SciTech Connect (OSTI)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  1. ,"California Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: California Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CA2" "Date","California Natural Gas Underground Storage Net ...

  2. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  3. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...010TX2","N5020TX2","N5070TX2","N5050TX2","N5060TX2" "Date","Texas Natural Gas Underground Storage Volume (MMcf)","Texas Natural Gas in Underground Storage (Base Gas) (MMcf)","Texas ...

  4. 2009 underground/longwall mining buyer's guide

    SciTech Connect (OSTI)

    2009-06-15

    The guide lists US companies supplying equipment and services to underground mining operations. An index by product category is included.

  5. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  6. Method and apparatus for constructing an underground barrier wall structure

    DOE Patents [OSTI]

    Dwyer, Brian P.; Stewart, Willis E.; Dwyer, Stephen F.

    2002-01-01

    A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

  7. Earthquake damage to underground facilities (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    The potential seismic risk for an underground nuclear waste repository will be one of the ... Damage from documented nuclear events was also included in the study where applicable. ...

  8. ,"Mississippi Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  9. ,"Pennsylvania Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  10. ,"Tennessee Natural Gas Underground Storage Net Withdrawals ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","32006" ,"Release Date:","12...