Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Underground Injection Control Permit Applications for FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4  

NLE Websites -- All DOE Office Websites (Extended Search)

FG-RPT-017 FG-RPT-017 Revision 1 Underground Injection Control Permit Applications for FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4 SUPPORTING DOCUMENTATION March 2013 (Revised May 2013 in accordance with the U.S. Environmental Protection Agency's Completeness Review) Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-FE0001882. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

2

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

3

Underground Injection Control (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control (West Virginia) Injection Control (West Virginia) Underground Injection Control (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners

4

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

5

GRR/Section 14-OR-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-c - Underground Injection Control Permit GRR/Section 14-OR-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-c - Underground Injection Control Permit 14ORCUndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies 40 CFR 144.26: Federal UIC Regulations 40 CFR 144.83: Notification OAR 340-044: State UIC Regulations Triggers None specified Click "Edit With Form" above to add content 14ORCUndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

6

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

7

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

8

GRR/Section 14-WA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-c - Underground Injection Control Permit GRR/Section 14-WA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-c - Underground Injection Control Permit 14-WA-c - Underground Injection Control Permit.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Chapter 173-218 WAC Non-endangerment Standard Triggers None specified The Safe Drinking Water Act requires Washington to implement technical criteria and standards to protect underground sources of drinking water from contamination. Under Chapter 173-218 WAC, the Washington State Department of Ecology (WSDE) regulates and permits underground injection control (UIC) wells in Washington. The Environmental Protection Agency

9

Massachusetts Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

10

GRR/Section 14-AK-c - Alaska UIC Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-AK-c - Alaska UIC Permit GRR/Section 14-AK-c - Alaska UIC Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-c - Alaska UIC Permit 14AKCAlaskaUICPermit.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 14AKCAlaskaUICPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Underground Injection Control Permit is regulated by the Environmental Protection Agency. The EPA regulates Class V injection wells on Federal lands, many tribal lands, and in some states like Alaska. Injection wells are overseen by either a state or Tribal Agency or one of

11

Texas Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Injections into Underground Storage (Million Cubic Feet) Texas Natural Gas Injections into Underground...

12

Idaho Natural Gas Underground Storage Injections All Operators...  

Gasoline and Diesel Fuel Update (EIA)

Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

13

Connecticut Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

14

Alaska Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

15

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

16

Wisconsin Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

17

Georgia Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

18

New Jersey Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

19

South Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

20

North Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Illinois Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Illinois Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

22

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

23

Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project  

DOE Green Energy (OSTI)

Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

None

1989-06-01T23:59:59.000Z

24

Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project  

SciTech Connect

Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

1989-06-01T23:59:59.000Z

25

State and National Energy and Environmental Risk Analysis Systems for underground injection control. Summary annual report, April 1992--April 1993  

SciTech Connect

ICF Resources` project, entitled {open_quotes}State and National Energy and Environmental Risk Analysis Systems for Underground Injection Control{close_quotes} includes two primary tasks (development of state and national systems respectively) and a technology transfer element. The state system was designed to assist states with data management related to underground injection control (UIC). However, during the current period, external changes (primarily pending regulatory changes at the federal level) have made the risk assessment protocol aspect of the state system of increased importance relative to data management. This protocol would assess the relative risk of groundwater contamination due to UIC activities in various areas of the state. The risk assessment system could be used to assist states in allocating scarce resources and potentially could form the analytical basis of a state variance program to respond to pending federal regulatory changes. Consequently, a substantial portion of the effort to date has been focused on this aspect of the project, The national energy and environmental risk analysis system (EERAS) is designed to enhance DOE`s analytical capabilities. This concept will be demonstrated using UIC data. The initial system design for EERAS has been completed but may be revised based on input from DOE and on the pending UIC regulatory changes. Data have been collected and organized and can be input once the file structure is finalized. The further development options for EERAS defined as part of this project will allow for the full development of the system beyond the current prototype phase which will enhance DOE`s analytical capabilities for responding to regulatory initiatives and for evaluating the benefits of risk-based regulatory approaches.

Haas, M.R.

1993-04-01T23:59:59.000Z

26

Alaska Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

27

Rhode Island Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

28

one mile underground into a deep saline formation. The injection  

NLE Websites -- All DOE Office Websites (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

29

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

30

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

31

Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Injections into Underground Storage (Million Cubic Feet) Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,740 243 1,516 3,236 5,817 8,184 5,657 5,928 4,903 4,971 1,423 854 1991 1,166 155 231 1,829 4,897 8,985 6,518 8,058 11,039 10,758 2,782 860 1992 488 43 1,246 3,184 7,652 7,568 11,453 11,281 11,472 9,000 1,228 1,203 1993 0 0 733 5,547 6,489 7,776 10,550 10,150 12,351 8,152 2,437 0 1994 0 75 1,162 3,601 7,153 7,638 11,999 12,405 13,449 10,767 2,678 0 1995 0 0 251 1,041 5,294 9,889 12,219 17,805 13,756 8,855 1,283 391 1996 2 2 0 40 1,921 7,679 12,393 13,168 12,537 10,556 2,760 0

32

AGA Eastern Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223 247,897 166,356 39,330 28,875 1997 16,058 14,620 25,278 93,501 207,338 258,086 250,776 252,129 233,730 152,913 53,097 10,338 1998 21,908 13,334 48,068 139,412 254,837 234,427 234,269 207,026 178,129 144,203 52,518 28,342

33

GRR/Section 14-HI-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-HI-c - Underground Injection Control Permit GRR/Section 14-HI-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-c - Underground Injection Control Permit 14HIC - UndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Safe Drinking Water Branch Regulations & Policies Hawaii Administrative Rules Title 11, Chapter 23 Triggers None specified Click "Edit With Form" above to add content 14HIC - UndergroundInjectionControlPermit (1).pdf 14HIC - UndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The developer must receive an Underground Injection Control Permit from the

34

AGA Producing Region Natural Gas Injections into Underground Storage  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375 48,353 1997 45,327 35,394 89,625 83,137 107,821 99,742 71,360 95,278 116,634 117,497 49,750 33,170 1998 41,880 59,324 73,582 119,021 128,323 96,261 107,136 94,705 87,920 129,117 58,026 47,924 1999 35,830 50,772 49,673 80,879 110,064 100,132 72,348 67,286 103,587 79,714 66,465 32,984

35

AGA Western Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122 1997 6,982 4,857 15,669 28,479 47,040 49,438 38,542 31,080 29,596 23,973 10,066 1,975 1998 5,540 1,847 14,429 21,380 49,816 48,423 30,073 34,243 31,710 34,744 26,456 6,404 1999 4,224 3,523 10,670 17,950 41,790 42,989 40,381 26,942 30,741 20,876 18,806 4,642

36

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection - Does the DOGGR Approve the Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project After the end of the comment period and after reviewing any proposed revisions furnished by the Regional Board, the State Board decides whether to approve the Underground Injection Project. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.12_-_Does_the_DOGGR_Approve_the_Underground_Injection_Project&oldid=539630

37

The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine  

Science Conference Proceedings (OSTI)

This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not currently scheduled. There, are however, water quality standards that control the quantity and quality of wastewaters discharged into surface waters. These standards are established by the states in concert with EPA, and frequently result in NPDES conditions more restrictive than those based on effluent guidelines.

None

1982-07-01T23:59:59.000Z

38

GRR/Elements/14-CA-c.3 - Application For Proposed Underground Injection  

Open Energy Info (EERE)

CA-c.3 - Application For Proposed Underground Injection CA-c.3 - Application For Proposed Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.3 - Application For Proposed Underground Injection Project Under the Memorandum of Agreement Between State Water Resources Control Board and DOGGR geothermal operators must file an application for underground geothermal wastewater injection with the appropriate DOGGR district office. The application must include: A chemical analysis to characterize the proposed injection fluid; A chemical analysis from the proposed zone of injection considering the characteristics of the zone; and The depth, location, and injection formation of the proposed well. Logic Chain

39

GRR/Section 14-UT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-c - Underground Injection Control Permit GRR/Section 14-UT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-c - Underground Injection Control Permit 14UTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Utah Administrative Code R317-7 Triggers None specified Click "Edit With Form" above to add content Potential Roadblocks If the permit application does not adequately demonstrate that geothermal re-injection wells will be constructed and operated to be protective of any USDWs the issuance of a permit may be denied or delayed. 14UTCUndergroundInjectionControlPermit.pdf 14UTCUndergroundInjectionControlPermit.pdf

40

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

GRR/Section 14-ID-c - Underground Injection Control | Open Energy  

Open Energy Info (EERE)

4-ID-c - Underground Injection Control 4-ID-c - Underground Injection Control < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-ID-c - Underground Injection Control 14IDCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Regulations & Policies IDAPA 37.03.04 IDAPA 37.03.03 Triggers None specified Click "Edit With Form" above to add content Potential Roadblocks Extensive public comments can stretch the timeline since IDWR must respond to all comments, potentially hold a Fact Finding Hearing, and thoroughly review the input received in these processes prior to making a decision to issue or deny the permit. 14IDCUndergroundInjectionControlPermit.pdf

42

GRR/Section 14-CA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

14-CA-c - Underground Injection Control Permit 14-CA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-c - Underground Injection Control Permit 14CACUndergroundInjectionControl.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies Division 3, Chapter 4 of the California Public Resources Code Title 14, Division 2, Chapter 4 of the California Code of Regulations Title 40, Code of Federal Regulations, Part 144 Title 40, Code of Federal Regulations, Part 146 Triggers None specified Click "Edit With Form" above to add content 14CACUndergroundInjectionControl.pdf Error creating thumbnail: Page number not in range.

43

GRR/Section 14-NV-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

4-NV-c - Underground Injection Control Permit 4-NV-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-c - Underground Injection Control Permit 14NVCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Nevada Division of Minerals Nevada Division of Water Resources Bureau of Land Management Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 14NVCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

44

Compendium of Regulatory Requirements Governing Underground Injection of Drilling Wastes  

Science Conference Proceedings (OSTI)

This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies.

Puder, Markus G.; Bryson, Bill; Veil, John A.

2003-03-03T23:59:59.000Z

45

Underground Injection Control Program Rules and Regulations (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to preserve the quality of the groundwater of the State and thereby protect groundwater contamination from contamination by discharge from injection wells and...

46

GRR/Section 14-MT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-MT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-c - Underground Injection Control Permit 14MTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Triggers None specified Click "Edit With Form" above to add content 14MTCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

47

GRR/Section 14-CO-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-CO-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-c - Underground Injection Control Permit 14COCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Colorado Division of Water Resources Triggers None specified Click "Edit With Form" above to add content 14COCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The United States Environmental Protection Agency (EPA) has not delegated

48

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network (OSTI)

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

49

Compendium of regulatory requirements governing underground injection of drilling waste.  

Science Conference Proceedings (OSTI)

Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

Puder, M. G.; Bryson, B.; Veil, J. A.

2002-11-08T23:59:59.000Z

50

,"Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1973 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:12 PM"

51

,"Delaware Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

52

,"Idaho Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:51 PM"

53

,"South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050sc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050sc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:07 PM"

54

,"Alaska Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:46 PM"

55

,"Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

56

,"Georgia Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

57

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:30 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34349,10956 34380,12444

58

,"U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5540us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5540us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:33 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" "Sourcekey","N5540US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" 34515,2654035 34880,2371697 35246,2647124 35611,2532986

59

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:29 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34515,142243 34880,194185 35246,258468

60

,"U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5540us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5540us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:33 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" "Sourcekey","N5540US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" 34349,23610 34380,37290 34408,91769

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluation of land disposal and underground injection of shale oil wastewaters  

DOE Green Energy (OSTI)

Results indicate that the salinity of retort water, the principal wastewater generated by shale oil recovery operations, will be too high in most cases for irrigation of cover crops needed for effective stabilization by land disposal. Furthermore, large storage lagoons would be required to hold the retort water during the long winters encountered in the oil shale regions of Colorado, Wyoming and Utah. Land disposal cannot be carried out during prolonged periods of freezing weather. Additional problems which may arise with land disposal include air pollution from volatile constituents and groundwater pollution from refractory organics and dissolved salts in the retort water. Pretreatment requirements include the removal of ammonia which is present at toxic concentrations in retort water. Underground injection of retort water may be permitted in regions possessing favorable geological characteristics. It is anticipated that this method would be used as a last resort where effective or resonably priced treatment technology is not available. Regulatory restraints are expected to limit the use of underground injection for disposal of highly polluted shale oil wastewaters. Proving the confinement of injected wastes, a frequently difficult and expensive task, will be required to assure protection of drinking water resources.

Mercer, B.W.; Campbell, A.C.; Wakamiya, W.

1979-05-01T23:59:59.000Z

62

University of Illinois Chicago UIC | Open Energy Information  

Open Energy Info (EERE)

UIC UIC Jump to: navigation, search Name University of Illinois - Chicago (UIC) Place Chicago, Illinois Zip 60607-7113 Product Public research university with a research budget of more than USD 250m. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

The Ampersand 1 March 2002 UIC Honors College  

E-Print Network (OSTI)

the great cities of Chicago and London. Preparing to head across the Pond in May are: Rehan Ahmed, junior, Fri., March 29 Mitchell,Gates-Cambridge Scholarship Deadlines Five Honors College students were selected to spend 4 weeks studying in London this summer as part of UICs Great Cities London Program

Ben-Arie, Jezekiel

64

GRR/Section 14-FD-c - EPA UIC Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-FD-c - EPA UIC Process GRR/Section 14-FD-c - EPA UIC Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-FD-c - EPA UIC Process 14FDCEPAUICProcess.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Regulations & Policies 40 CFR 144.24 40 CFR 144.25 40 CFR 144.26 40 CFR 144.84 Triggers None specified Click "Edit With Form" above to add content 14FDCEPAUICProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The United States Environmental Protection Agency's UIC Program is responsible for regulating construction, operation, permitting, and closure

65

Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2  

Science Conference Proceedings (OSTI)

The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

Cappa, F.; Rutqvist, J.

2010-06-01T23:59:59.000Z

66

State and National Energy and Environmental Risk Analysis Systems for underground injection control. Quarterly report, April 1, 1994--July 31, 1994  

SciTech Connect

This task involves developing a preliminary national energy and environmental risk analysis system (EERAS). An analytical methodology for nationwise estimation of potential for USDW contamination from underground injection and the current and future resource potential associated with these areas of concern will be developed.

Not Available

1994-07-15T23:59:59.000Z

67

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

68

UIC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UIC Regional High School UIC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Illinois Regions UIC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Ramirez Email: chicago.regional.science.bowl@gmail.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

69

UIC Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UIC Regional Middle UIC Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Illinois Regions UIC Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Ramirez Email: chicago.regional.science.bowl@gmail.com Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 24

70

OVERVIEW: UNDERGROUND INJECTION  

E-Print Network (OSTI)

collected, edited and integrated large amounts of information to create this technical reference document. During development of the original overview in 1991, the detailed editorial/technical assistance of Tom Belk (Office of Drinking Water), Marc Herman (Supe rfund Branch, Region VIII) an d Marion Yoder (Office of Regional C ounsel, Region VIII) helped to improve the readability of this document. Virginia Rose (Drinking Water Branch) made the original document possible by retyping numerous drafts containing never-ending changes.

unknown authors

2001-01-01T23:59:59.000Z

71

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent...

72

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) The...

73

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

74

Evaluation of injection well risk management potential in the Williston Basin  

SciTech Connect

The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

Not Available

1989-09-01T23:59:59.000Z

75

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

76

Underground Layout Configuration  

SciTech Connect

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

77

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground...  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection Project < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List...

78

Vitrified underground structures  

DOE Patents (OSTI)

A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

Murphy, Mark T. (Kennewick, WA); Buelt, James L. (Richland, WA); Stottlemyre, James A. (Richland, WA); Tixier, Jr., John S. (Richland, WA)

1992-01-01T23:59:59.000Z

79

UIC report12  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Department of Chemistry and Physics University of Illinois at Chicago Chicago State University 845 West Taylor St. 9501 South King Drive. SCI 309 Chicago, IL 60607 Chicago,...

80

Collection and analyses of physical data for deep injection wells in Florida.  

E-Print Network (OSTI)

??Deep injection wells (DIW) in Florida are regulated by the U.S. Environmental Protection Agency (USEPA) and the state of Florida through the Underground Injection Control (more)

Gao, Jie.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Elastic and elastoplastic finite element simulations of injection into porous reservoirs.  

E-Print Network (OSTI)

??Underground gas injection has attracted remarkable attention for natural gas storage and carbon dioxide (CO2) geologic sequestration applications. Injection of natural gas into depleted hydrocarbon (more)

Chamani, Amin

2013-01-01T23:59:59.000Z

82

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

83

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

84

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

85

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: ? Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). ? Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). ? Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). ? Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

86

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Injection Control (West Virginia) Underground Injection Control (West Virginia) This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners or operators of these injection wells must be authorized either by permit or rule by the Director. October 16, 2013 Underground Gas Storage Reservoirs (West Virginia) Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements, inspection of facilities and penalties. October 16, 2013 Tax Exemption for Wind Energy Generation In March 2007, West Virginia enacted legislation

87

A Guidance Document for Kentucky's Oil and Gas Operators  

SciTech Connect

The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

Bender, Rick

2002-03-18T23:59:59.000Z

88

A Guidance Document for Kentucky's Oil and Gas Operators  

SciTech Connect

The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

Bender, Rick

2002-03-18T23:59:59.000Z

89

Use of ICP/MS with Ultrasonic Nebulizer for Routine Determination  

E-Print Network (OSTI)

wastes resulting from uranium solution extraction processes. Underground ore bodies depleted total suspended solids TWC Texas Water Commission U uranium AV-5 #12;U3O8 oxide of uranium UIC underground injection control ULD uranium location database UMTRA Uranium Mill Tailings Remedial Action

90

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 2003, p. 36723675 Vol. 69, No. 6 0099-2240/03/$08.00 0 DOI: 10.1128/AEM.69.6.36723675.2003  

E-Print Network (OSTI)

wastes resulting from uranium solution extraction processes. Underground ore bodies depleted total suspended solids TWC Texas Water Commission U uranium AV-5 #12;U3O8 oxide of uranium UIC underground injection control ULD uranium location database UMTRA Uranium Mill Tailings Remedial Action

Lovley, Derek

91

Regulation of Hydraulic Fracturing (or lack thereof)  

E-Print Network (OSTI)

: "subsurface emplacement of fluids by well injection." 42 U.S.C. § 300h(d)(1). #12;UIC Program Requirements, EPA has concluded that the injection of hydraulic fracturing fluids into [coalbed methane] wells poses Water Act The federal Safe Drinking Water Act prohibits "underground injection" that is not authorized

Boufadel, Michel

92

Vibrations from underground blasting  

SciTech Connect

The Bureau of Mines has investigated vibration levels produced by blasting at four underground sites to establish how such factors as type of explosive, delay blasting, charge weight, and geology affect amplitudes of ground motion. A summary of the work is presented and the results of further analysis of the data are discussed. Square root scaling was found applicable to two of the underground sites and could be applied with minor error to all the sites. Comparison of empirical propagation equations in the different rock types indicates that although the site effect is apparent, the combined data may be used as a basis for engineering estimates of vibration amplitudes from subsurface blasting in many different rock types. Recommendations for predicting and minimizing vibration amplitudes from underground blasts are given.

Snodgrass, J.J.; Siskind, D.E.

1964-01-01T23:59:59.000Z

93

Quick egress from deep underground  

SciTech Connect

A method of storage of missiles deep underground in a protected environment capable of withstanding nuclear blasts while allowing access for maintenance and rapid egress when necessary-- even after exposure to severe environments due to an explosion at or near the surface of the earth. To accomplish this, the objects to be stored are contained in a closed container of positive buoyancy in quicksand. A shaft is excavated in the earth and filled with sand. The water content of the sand backfill is controlled and maintained at that percentage of saturation which will provide the best compromise between rapidity and ease of container egress on one hand and resistance to hostile surface environments on the other. Means for the introduction of additional water at the bottom of the sand-filled shaft are provided. When the sand column is fluidized by the injection of water at the bottom thereof, quicksand is formed in the shaft and the container can be drawn to the bottom by a tether line. When water injection is stopped, the sand returns to its normal solid condition and provides a protective layer for the buried container while restraining it in its deep buried position. The sand, in its normal tightly packed solid condition also acts to preserve the egress path to the surface by preventing the entry of dislodged earth material in the attack environment. To access the container for maintenance or for use of the contents, the shaft is again fluidized allowing the container to float to the surface.

Funston, N.E.

1976-09-21T23:59:59.000Z

94

Underground Infrastructure Research and Education  

E-Print Network (OSTI)

productivity, environmental improvement and renewal of the aging underground infrastructure. OrganizationalCenter for Underground Infrastructure Research and Education CUIRE Board Members Sam Arnaout Pipe Association Tim Kennedy, AMERON NOV Chad Kopecki, Dallas Water Utilities David Marshall, Tarrant

Texas at Arlington, University of

95

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

96

Underground barrier construction apparatus with soil-retaining shield  

DOE Patents (OSTI)

An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

Gardner, Bradley M. (Idaho Falls, ID); Smith, Ann Marie (Pocatello, ID); Hanson, Richard W. (Spokane, WA); Hodges, Richard T. (Deer Park, WA)

1998-01-01T23:59:59.000Z

97

Animals that Hide Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

98

Underground Wells (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

99

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 12750 of 29,416 results. 41 - 12750 of 29,416 results. Rebate Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) The Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations... http://energy.gov/savings/wastewater-regulations-national-pollutant-discharge-elimination-system-npdes-permits Page National Electricity Delivery Division (NEDD) Timely, accurate and defensible policy and market analysis is a key ingredient to building and sustaining successful programs at DOE.

100

Wastewater Regulations for National Pollutant Discharge Elimination System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Regulations for National Pollutant Discharge Elimination Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

102

Underground Distribution Sensors  

Science Conference Proceedings (OSTI)

Rising costs of new infrastructure, increasing demand, and a declining number of available workers will drive utilities to operate as efficiently as possible. The practice of overbuilding infrastructure to improve or maintain reliability will be viewed as cost-inefficient. Utilities will be forced to operate distribution systems more dynamically and efficiently. Distribution sensors will help provide the needed information to utilities to achieve the goal of dynamic efficiency. The Underground Distributi...

2009-03-31T23:59:59.000Z

103

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

SciTech Connect

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Newmark, Robin L. (Pleasanton, CA); Udell, Kent (Berkeley, CA); Buetnner, Harley M. (Livermore, CA); Aines, Roger D. (Livermore, CA)

1995-01-01T23:59:59.000Z

104

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

DOE Patents (OSTI)

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

1995-09-12T23:59:59.000Z

105

Distribution Grounding of Underground Facilities  

Science Conference Proceedings (OSTI)

This report describes Phase I of a two-phase project to assess industry practices and standards for grounding and bonding of medium-voltage underground residential distribution (URD) and underground commercial distribution (UCD) circuits and worker safety in worksites with these systems.The report includes an overview of the issues and concerns associated with underground distribution systems safety and, in particular, worker safety in worksites. It identifies the industry and utility ...

2013-12-20T23:59:59.000Z

106

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

107

UIC Developing Drug for SARS  

NLE Websites -- All DOE Office Websites (Extended Search)

but their backbones. When viruses mutate, as they frequently do, thwarting the action of drugs, the mutations typically occur in these sidechains. "By targeting the backbone, we...

108

CO2 Sequestration in Unmineable Coal with Enhanced Coal Bed Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities (2012 - Current) New injection pumping system installation and troubleshooting UIC permit modification - 1,400 psig UIC permit extension - Dec. 31, 2013...

109

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

110

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

111

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

112

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

113

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

114

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

115

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

116

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

117

Illinois Natural Gas Underground Storage Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Illinois Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

118

LLNL Capabilities in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

Friedmann, S J; Burton, E; Upadhye, R

2006-06-07T23:59:59.000Z

119

Increased Power Flow Guidebook - Underground Cables  

Science Conference Proceedings (OSTI)

Utilities must consider a number of factors when evaluating uprating and upgrading options for underground transmission cables. This comprehensive guidebook documents the state-of-science for increasing power flow capacities of underground transmission cables. It provides an overview of underground transmission cable ratings and uprating techniques so that the maximum utilization can be obtained from the existing underground transmission infrastructure.

2003-12-01T23:59:59.000Z

120

Water intrusion in underground structures  

E-Print Network (OSTI)

This thesis presents a study of the permissible groundwater infiltration rates in underground structures, the consequences of this leakage and the effectiveness of mitigation measures. Design guides and codes do not restrict, ...

Nazarchuk, Alex

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill  

Science Conference Proceedings (OSTI)

Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

1994-07-01T23:59:59.000Z

122

Sensors for Underground Distribution Systems  

Science Conference Proceedings (OSTI)

A variety of different sensors are needed for underground distribution applications. These include sensors for temperature monitoring to track possible overload issues and other issues that can cause heating in underground systems (for example, arcing), sensors for fault detection and characterization, and sensors for voltage and current monitoring to support a wide range of applications (for example, SCADA, volt/var control, and load flow management). In 2008, EPRI evaluated the present state of medium-...

2010-03-31T23:59:59.000Z

123

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

124

Chemical tailoring of steam to remediate underground mixed waste contaminents  

DOE Patents (OSTI)

A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

1999-01-01T23:59:59.000Z

125

Indiana Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 997 821 771 1,207 1,916 1,673 2,268 3,772 4,202 2,896 1,993 539 1991 91 245 158 710 1,849 1,107 2,920 3,845 4,606 4,490 3,131 501 1992 98 349 429 1,076 1,611 2,638 5,174 4,168 5,309 3,579 926 413 1993 681 526 882 1,587 2,170 2,733 4,564 4,464 4,276 2,659 911 475 1994 328 565 519 609 934 2,541 5,229 4,565 4,175 3,340 1,546 305 1995 439 80 786 1,211 1,057 1,831 2,892 3,751 4,791 4,578 2,437 483 1996 262 870 948 968 1,028 2,560 4,317 6,153 3,943 3,112 2,407 696 1997 609 435 815 546 893 2,117 3,322 3,775 4,610 3,523 2,584 175 1998 648 87 86 508 1,235 1,495 2,999 4,082 4,578 3,026 2,710 581

126

Louisiana Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 17,712 15,346 15,364 11,228 15,333 18,647 19,527 17,703 19,665 19,333 15,705 14,621 1991 2,280 4,842 12,957 13,291 22,317 22,447 17,260 17,261 23,603 27,512 9,950 4,281 1992 7,699 4,109 13,109 16,478 29,243 21,440 20,695 21,713 23,276 24,685 7,374 3,230 1993 4,314 1,638 8,805 14,315 34,776 33,317 27,192 28,570 32,062 21,236 21,232 2,111 1994 3,737 9,288 9,922 26,592 34,270 23,811 30,757 28,317 24,211 15,673 13,387 4,560 1995 3,922 3,407 18,010 20,556 23,957 33,196 27,885 16,834 27,100 25,285 5,363 4,060 1996 7,445 9,971 7,106 16,287 22,178 26,529 35,343 38,303 39,009 27,599 10,386 8,996 1997 10,921 11,877 35,874 23,219 30,520 31,455 30,290 31,277 36,960 34,440 13,787 11,704

127

Wyoming Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22 16 140 1,047 1,248 1,648 2,162 1,899 2,415 1,135 222 191 1991 56 467 479 368 908 1,922 2,233 1,628 1,090 1,135 423 164 1992 0 73 211 356 439 605 1,402 465 861 525 208 194 1993 8 15 557 1,247 1,443 2,426 2,423 1,875 1,433 1,533 482 163 1994 145 16 930 1,339 1,692 771 1,125 1,524 1,444 1,060 412 138 1995 17 76 89 67 863 1,452 1,588 1,896 1,849 1,265 236 52 1996 13 0 66 974 2,862 1,764 2,169 836 641 540 243 312 1997 157 0 47 372 1,205 2,308 3,418 2,734 2,461 986 222 170 1998 23 0 8 265 1,430 3,462 2,814 2,015 2,621 1,499 926 150 1999 0 0 573 1,322 2,151 1,668 2,300 1,377 1,064 519 360 124

128

Virginia Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 303 22 31 220 304 296 185 322 301 225 78 84 1999 326 59 50 220 278 267 249 236 414 109 45 125 2000 127 269 47 282 291 224 222 222 350 299 62 60 2001 83 244 244 434 532 402 274 322 362 275 242 25 2002 95 92 0 186 683 339 344 283 434 327 44 183 2003 51 220 70 276 458 504 482 823 671 147 102 203 2004 325 454 190 347 1,013 415 611 1,104 894 1,138 303 279 2005 599 566 319 458 699 560 923 747 783 834 2,614 595 2006 587 274 376 275 377 615 1,035 837 1,422 308 374 517 2007 202 314 1,140 800 1,090 647 863 556 1,213 1,125 115 729 2008 532 962 491 1,000 950 1,040 980 1,167 950 833 471 1,092

129

Injections of Natural Gas into Underground Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 272,001 466,852 440,062 373,435 371,989 420,828 1973-2013 Alaska 1,895 1,065 1,131 977 1,518 1,981 2013-2013 Lower 48 States 270,106 465,787 438,931 372,458 370,471 418,848 2011-2013 Alabama 2,934 2,058 1,226 2,464 1,142 1,743 1994-2013 Arkansas 213 515 402 406 433 204 1990-2013 California 21,631 36,229 28,781 15,933 13,891 20,028 1990-2013 Colorado 2,863 5,575 7,902 8,359 10,862 9,051 1990-2013 Illinois 15,713 28,662 35,608 33,014 36,051 39,558 1990-2013 Indiana 461 2,204 2,677 2,868 3,774 5,015 1990-2013

130

Oklahoma Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,366 3,193 6,903 5,872 11,548 13,440 11,689 10,380 8,709 8,453 8,353 2,367 1991 26 3,253 7,982 15,800 16,462 10,864 4,815 6,272 10,749 9,706 3,437 4,853 1992 1,358 3,452 5,980 8,163 10,270 11,596 17,116 11,326 13,627 11,199 2,570 812 1993 1,709 2,183 3,139 17,592 30,401 25,865 16,422 17,249 15,631 12,044 1,415 7,600 1994 692 1,521 7,130 20,751 26,772 15,711 17,419 13,891 9,370 6,950 2,330 1,038 1995 1,144 1,218 4,867 9,018 18,190 15,120 9,480 6,202 10,541 14,552 2,750 1,727 1996 871 3,814 4,043 9,051 19,783 12,404 11,191 17,682 19,846 13,803 1,849 2,730 1997 3,164 3,776 11,894 14,013 19,122 13,736 7,711 12,725 17,542 22,393 4,205 2,208

131

West Virginia Natural Gas Injections into Underground Storage (Million  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,636 3,056 7,714 11,094 19,622 17,419 16,104 16,323 13,930 7,415 6,785 4,120 1991 843 2,207 5,193 12,543 15,471 16,359 15,601 10,248 9,551 8,573 5,375 2,288 1992 1,013 1,191 1,116 9,299 25,331 21,514 19,498 21,430 15,698 16,466 5,155 936 1993 467 42 1,620 11,145 39,477 28,118 20,621 18,991 20,910 11,087 7,110 863 1994 331 2,543 4,529 21,836 25,960 28,392 28,083 23,234 21,272 9,826 3,695 1,516 1995 1,637 1,663 6,487 10,136 25,124 25,049 23,910 12,599 18,493 16,438 2,473 1,948 1996 3,579 5,076 2,329 20,784 34,294 29,814 32,943 20,814 28,469 17,457 2,164 2,890 1997 1,987 2,401 2,869 6,756 25,269 32,158 27,135 24,684 20,412 14,862 4,930 836

132

Washington Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 929 289 499 863 0 2,707 2,937 2,937 1,101 622 906 507 1991 833 586 299 3,139 1,705 2,716 2,138 291 308 0 1,447 753 1992 436 149 945 1,205 1,824 1,543 1,336 1,618 1,578 979 785 895 1993 750 383 2,192 1,363 4,359 1,112 2,036 1,280 2,258 340 326 3,176 1994 1,579 318 1,268 3,455 2,882 2,005 1,945 965 1,330 503 1,263 1,192 1995 541 827 1,671 1,661 2,601 2,020 1,565 829 2,494 464 1,696 1,447 1996 808 2,027 1,081 1,609 2,176 3,349 1,470 2,279 1,441 655 1,978 1,252 1997 2,356 844 100 1,041 6,091 3,816 1,351 399 2,304 257 1,145 313 1998 2,718 32 296 937 4,485 3,086 967 3,957 1,836 722 1,817 2,284

133

Oregon Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 0 0 0 1,181 1,508 1,244 764 636 372 188 0 0 1991 0 0 0 0 713 1,554 1,458 1,092 674 339 23 0 1992 0 0 0 0 1,572 1,540 1,194 1,010 453 195 0 149 1993 0 0 0 0 1,636 1,291 1,175 1,036 575 487 0 0 1994 0 0 0 0 1,216 1,506 1,202 1,081 688 264 0 0 1995 0 182 0 867 1,179 1,034 695 0 490 0 0 0 1996 - - - - 841 1,365 1,318 509 121 262 - - 1997 0 24 0 0 1,300 1,681 1,301 1,178 411 97 267 0 1998 0 0 0 0 0 1,968 1,188 1,143 1,141 28 0 205 1999 0 0 0 0 13 2,018 2,119 1,316 1,546 0 593 0 2000 0 0 0 0 894 2,101 2,270 2,074 720 720 103 11 2001 0 0 0 0 2,151 2,561 2,295 1,860 845 0 775 0

134

Utah Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 217 15 3 133 1,503 1,503 7,253 6,393 5,871 3,255 768 282 1991 85 0 2,099 2,224 2,645 5,554 6,015 3,813 3,940 2,080 1,316...

135

Utah Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 609 640 580 1970's 547 883 906 2,320 999 1,340 1,069 1,446 1,180 1,193 1980's 2,381 11,107...

136

Alabama Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 8 12 26 71 106 95 103 93 85 55 25 14 1995 0 122 0 0 44 42 41 252 592 156 24 101 1996 231 185 141 192 390 670 318 395 440 166 63 160 1997 297 101 63 168 271 161 108 286 262 251 27 27 1998 26 0 81 245 188 623 25 203 139 613 76 0 1999 0 0 14 645 547 213 333 202 459 0 166 67 2000 48 534 44 51 232 606 166 0 0 42 12 286 2001 411 304 85 323 207 618 250 293 370 414 529 109 2002 711 278 182 349 240 54 357 139 106 318 515 536 2003 242 818 564 938 1,089 821 970 633 1,283 1,128 606 1,098 2004 201 619 736 845 1,429 1,595 571 894 1,718 3,022 636 468 2005 976 1,778 917 855 1,230 797 1,687 804 2,301 2,019 1,364 845

137

Injections of Natural Gas into Underground Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 466,852 440,062 373,435 371,989 420,828 339,960 1973-2013 Alaska 1,065 1,131 977 1,518 1,981 1,627 2013-2013 Lower 48 States 465,787 438,931 372,458 370,471 418,848 338,332 2011-2013 Alabama 2,058 1,226 2,464 1,142 1,743 896 1994-2013 Arkansas 515 402 406 433 204 110 1990-2013 California 36,229 28,781 15,933 13,891 20,028 14,296 1990-2013 Colorado 5,575 7,902 8,359 10,862 9,051 8,258 1990-2013 Illinois 28,662 35,608 33,014 36,051 39,558 35,792 1990-2013 Indiana 2,204 2,677 2,868 3,774 5,015 3,670 1990-2013

138

Colorado Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 538 235 252 265 1,274 4,266 6,279 5,212 5,012 1,957 1,734 650 1991 992 654 483 61 2,494 3,876 4,219 4,449 5,296 3,296 2,611 2,153 1992 0 301 61 53 158 2,168 4,187 6,308 5,942 2,708 395 779 1993 1,476 514 1,328 277 3,434 5,426 4,400 5,097 4,898 19,867 1,773 2,642 1994 349 561 1,525 594 6,187 1,887 5,096 5,311 5,305 1,318 1,652 1,401 1995 1,508 1,548 1,831 1,379 3,769 6,416 6,446 4,716 4,341 2,877 3,680 1,206 1996 1,050 3,496 1,026 1,484 3,363 5,288 5,602 4,106 4,955 2,693 2,316 2,429 1997 1,773 489 1,563 1,182 6,370 5,785 6,044 5,081 5,610 3,253 1,570 669 1998 884 80 2,100 615 6,732 4,651 4,354 6,274 6,162 3,100 3,713 1,125

139

Kentucky Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,591 7,852 5,644 4,269 4,991 5,462 7,829 7,379 7,268 5,324 3,591 2,996 1991 1,910 2,777 4,468 4,883 2,671 3,345 5,395 4,818 4,660 4,074 4,315 4,110 1992 5,509 3,635 2,314 2,151 1,697 2,787 4,724 4,202 5,539 10,882 3,272 2,656 1993 1,967 990 928 2,687 7,049 7,985 7,838 5,873 7,014 3,907 1,397 482 1994 431 928 1,526 6,100 10,571 9,346 9,742 7,138 4,696 4,684 3,438 1,230 1995 1,189 478 2,868 4,780 13,288 7,749 8,687 5,375 6,889 4,882 1,009 1,369 1996 625 2,061 2,137 2,635 6,489 14,262 13,389 10,275 8,975 4,913 1,788 1,948 1997 1,674 1,585 1,826 3,461 8,209 9,043 7,464 6,799 8,296 5,231 2,932 553

140

Ohio Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,095 2,783 8,487 12,731 23,624 20,221 19,895 19,615 18,355 13,780 9,089 3,777 1991 474 569 2,278 13,918 24,470 20,782 18,348 18,211 16,615 12,371 5,205 819 1992 46 383 775 11,319 27,233 30,305 29,147 24,617 16,672 14,358 4,364 790 1993 152 278 1,376 10,017 30,894 32,804 30,187 28,001 26,720 12,055 3,036 109 1994 1,075 1,772 2,164 19,428 30,107 32,303 33,898 27,173 22,437 13,196 7,269 837 1995 617 1,176 1,782 7,066 28,599 32,073 31,206 24,033 18,978 13,053 2,159 608 1996 826 2,927 1,712 16,095 30,586 37,488 36,425 29,901 24,140 15,350 2,100 1,091 1997 1,494 1,211 2,351 11,510 34,696 38,150 34,738 32,628 24,009 15,174 3,656 709

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utah Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 217 15 3 133 1,503 1,503 7,253 6,393 5,871 3,255 768 282 1991 85 0 2,099 2,224 2,645 5,554 6,015 3,813 3,940 2,080 1,316 2,475 1992 389 1,210 2,719 3,032 3,970 3,612 3,759 4,834 3,898 3,111 506 182 1993 0 6 93 168 6,607 6,471 5,034 5,017 4,968 5,083 501 541 1994 45 195 3,861 2,050 6,133 4,069 5,508 6,269 8,509 4,218 1,026 624 1995 71 1,029 918 1,645 4,350 6,226 7,254 3,681 2,323 1,721 2,729 256 1996 7 276 904 1,589 5,596 6,757 6,824 4,746 3,130 1,729 596 214 1997 319 928 4,246 3,658 4,481 8,422 8,176 5,300 3,235 2,823 1,129 86 1998 0 0 999 1,310 3,551 4,004 3,501 3,561 3,993 1,954 799 73

142

California Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,676 4,631 11,774 22,230 26,798 17,079 11,773 10,071 10,383 17,080 11,528 1,051 1991 1,964 7,531 6,205 21,709 28,179...

143

California Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 71,148 58,085 77,617 1970's 80,260 89,373 118,758 92,331 129,945 105,167 107,749 109,760 108,432...

144

Ohio Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 142,717 169,955 168,142 1970's 182,405 188,916 163,884 179,078 152,580 183,032 146,228 188,721...

145

Ohio Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,095 2,783 8,487 12,731 23,624 20,221 19,895 19,615 18,355 13,780 9,089 3,777 1991 474 569 2,278 13,918 24,470 20,782...

146

Michigan Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 222,800 255,365 257,737 1970's 344,524 296,475 275,460 299,766 287,776 322,960 342,010 372,262...

147

Michigan Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,245 1,582 10,686 31,603 52,870 66,300 76,718 72,178 53,824 26,587 11,504 2,212 1991 1,032 3,107 15,520 34,937 50,769...

148

Colorado Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,391 6,849 8,663 1970's 8,757 5,839 8,502 10,673 11,444 13,420 16,987 21,717 20,630 25,334...

149

Colorado Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 538 235 252 265 1,274 4,266 6,279 5,212 5,012 1,957 1,734 650 1991 992 654 483 61 2,494 3,876 4,219 4,449 5,296 3,296...

150

Injections of Natural Gas into Underground Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Alaska 1973-1975 Lower 48 States 3,421,813 2,825,427 2011-2012 Alabama 20,009 31,208 21,020 23,026 22,766 21,195 1968-2012 Arkansas 5,695 5,023 4,108 4,672 4,628 2,848 1967-2012 California 214,469 237,364 199,763 226,810 263,067 218,663 1967-2012 Colorado 38,619 39,034 45,861 43,250 51,469 59,096 1967-2012 Connecticut 1973-1996 Delaware 1967-1975 Georgia 1974-1975 Idaho 1974-1975 Illinois 243,789 260,333 259,421 247,458 258,690 249,953 1967-2012 Indiana 22,686 22,874 24,399 21,943 23,864 19,878 1967-2012 Iowa 70,329 70,022 79,012 76,407 77,783 66,774 1967-2012 Kansas 113,399 115,669 102,406 113,253 119,823 93,460 1967-2012 Kentucky 70,682 77,503 71,972 85,167 77,526 64,483 1967-2012

151

Injections of Natural Gas into Underground Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Alaska 1973-1975 Lower 48 States 3,421,813 2,825,427 2011-2012 Alabama 20,009 31,208 21,020 23,026 22,766 21,195 1968-2012 Arkansas 5,695 5,023 4,108 4,672 4,628 2,848 1967-2012 California 214,469 237,364 199,763 226,810 263,067 218,663 1967-2012 Colorado 38,619 39,034 45,861 43,250 51,469 59,096 1967-2012 Connecticut 1973-1996 Delaware 1967-1975 Georgia 1974-1975 Idaho 1974-1975 Illinois 243,789 260,333 259,421 247,458 258,690 249,953 1967-2012 Indiana 22,686 22,874 24,399 21,943 23,864 19,878 1967-2012 Iowa 70,329 70,022 79,012 76,407 77,783 66,774 1967-2012 Kansas 113,399 115,669 102,406 113,253 119,823 93,460 1967-2012 Kentucky 70,682 77,503 71,972 85,167 77,526 64,483 1967-2012

152

Illinois Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 119,125 143,180 153,497 1970's 190,661 214,871 237,098 233,112 232,284 294,689 235,310 293,311...

153

New Mexico Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 383 74 383 1970's 398 5,067 12,589 4,160 1,005 2,378 472 39 1980's 2,871 2,801 19,894 2,500...

154

New Mexico Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 502 1,137 1,088 2,198 1,190 1,665 3,674 3,203 2,048 3,187 1,857 602 1991 341 245 267 3,130 3,097 3,033 1,930 790 3,099...

155

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

156

North Carolina Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

157

South Carolina Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

158

New Jersey Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

159

North Carolina Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

160

Rhode Island Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

South Carolina Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

162

New Jersey Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

163

Rhode Island Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

164

2009 underground/longwall mining buyer's guide  

Science Conference Proceedings (OSTI)

The guide lists US companies supplying equipment and services to underground mining operations. An index by product category is included.

NONE

2009-06-15T23:59:59.000Z

165

The Basics of Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

... interstate pipeline companies rely heavily on underground storage to facilitate load balancing and system ... costs. "Open Access ... independent operators ...

166

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

167

Underground Transmission Systems Reference Book  

Science Conference Proceedings (OSTI)

The Underground Transmission Systems Reference Book covers all stages of cable system design and operation, from initial planning studies to failure analysis. It contains contributions from many of the industry's experts and represents practices from all parts of the United States.

1993-03-01T23:59:59.000Z

168

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_sum_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:04:06 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage - All Operators" "Sourcekey","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Net Withdrawals (MMcf)","U.S. Total Natural Gas Injections into Underground Storage (MMcf)","U.S. Natural Gas Underground Storage Withdrawals (MMcf)"

169

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Underground Transmission Vault Inspection Using Robotic Techniques  

Science Conference Proceedings (OSTI)

Underground power lines require inspection and maintenance to ensure long-term performance and reliable operation. In addition to terminations at both ends of the underground lines, access to the lines for inspection and maintenance is obtained through underground vaults or manholes. General practices require utility personnel to enter the vaults for visual inspection and to make the necessary measurements using portable instruments.The Electric Power Research Institute has developed the ...

2013-11-22T23:59:59.000Z

171

Method and apparatus for constructing an underground barrier wall structure  

SciTech Connect

A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

Dwyer, Brian P. (Albuquerque, NM); Stewart, Willis E. (W. Richland, WA); Dwyer, Stephen F. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

172

,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

173

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

174

,"California Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","62013"...

175

,"California Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","62013" ,"Release...

176

,"California Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","62013" ,"Release...

177

,"Ohio Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

178

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

179

Cover story: Digging up the hacking underground  

Science Conference Proceedings (OSTI)

The hacking underground is driven by three things: money, information, and reputation. Danny Bradbury takes a walk through its dark tunnels

Danny Bradbury

2010-09-01T23:59:59.000Z

180

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CFD Simulation of Underground Coal Gasification.  

E-Print Network (OSTI)

??Underground Coal Gasification (UCG) is a process in which coal is converted to syngas in-situ. UCG has gained popularity recently as it could be used (more)

Sarraf Shirazi, Ahad

2012-01-01T23:59:59.000Z

182

,"West Virginia Natural Gas Underground Storage Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

183

Existing and Proposed Underground Storage Facilities  

U.S. Energy Information Administration (EIA)

Energy Information Administration 158 Natural Gas 1996: Issues and Trends Table F1. Summary of Existing Underground Natural Gas Storage, by Region and Type of ...

184

,"Michigan Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

185

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967"...

186

,"Kansas Natural Gas Underground Storage Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

187

,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

188

,"Oklahoma Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

189

,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

190

,"Indiana Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

191

,"Colorado Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

192

Massachusetts Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

193

,"Minnesota Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

194

,"Arkansas Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

195

,"Nebraska Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

196

,"Louisiana Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

197

,"Missouri Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

198

,"Maryland Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

199

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

200

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

202

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

203

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

204

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

205

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

206

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

207

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

208

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

209

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

210

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

211

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

212

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

213

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

214

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

215

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

216

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

217

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

218

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

219

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

220

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

222

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

223

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

224

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

225

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

226

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

227

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

228

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

229

,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

230

Underground storage tank management plan  

Science Conference Proceedings (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

231

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997  

Science Conference Proceedings (OSTI)

The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

Chugh, Y.P.

1997-12-31T23:59:59.000Z

232

No Slide Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Porse and Bruce Kobelski Porse and Bruce Kobelski U.S. Environmental Protection Agency Office of Ground Water and Drinking Water October 5, 2010 Considerations for Rule Finalization and Implementation of the Underground Injection Control (UIC) Program for Carbon Dioxide Geologic Sequestration (GS) Wells 2010 Regional Carbon Sequestration Partnerships Annual Review 2 Presentation Overview  Topics to be covered include:  GS Rule Development and Finalization  Class VI Permitting and Primacy Applications After Rule Promulgation  Guidance Development and Available Tools  Rule Implementation Workshops 3 GS Rule Development and Finalization  UIC Program Background  GS Rulemaking Update 4 UIC Program Background  1974 Safe Drinking Water Act (SDWA; Reauthorized in 1996)

233

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

234

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

235

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

236

The Value of Underground Storage in Today's Natural Gas Industry  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii The Value of Underground Storage in Today's Natural Gas Industry Preface The Value of Underground Storage in Today's Natural ...

237

Texas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Natural Gas Underground Storage Capacity (Million...

238

Texas Natural Gas Underground Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Texas Natural Gas Underground Storage Net...

239

Texas Natural Gas Underground Storage Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Texas Natural Gas Underground Storage Withdrawals...

240

Underground storage of natural gas, liquid hydrocarbons, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Rules and Regulations for Underground Storage Facilities Used...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum...

242

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

243

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

244

Alaska Natural Gas Underground Storage Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

245

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

246

Alaska Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 9302013 Next Release Date: 10312013 Referring Pages: Underground Base Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Base...

247

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

248

Alaska Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

9302013 Next Release Date: 10312013 Referring Pages: Underground Working Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Working...

249

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

250

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

251

Louisiana Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Louisiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

252

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

253

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

254

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

255

Washington Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Washington Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

256

Iowa Natural Gas Underground Storage Acquifers Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

257

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

258

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

259

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

260

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

262

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

263

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

264

Tennessee Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Tennessee Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

265

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

266

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

267

Oregon Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

268

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

269

Colorado Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

270

Montana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

271

Minnesota Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

272

Arkansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

273

Minnesota Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Minnesota Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

274

Iowa Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

275

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

276

Nebraska Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

277

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

278

Texas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

279

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

280

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pennsylvania Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Pennsylvania Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

282

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

283

Kentucky Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

284

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

285

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

286

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

287

Michigan Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

288

Ohio Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

289

Mississippi Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Mississippi Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

290

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

291

Underground radio technology saves miners and emergency response...  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital...

292

Depleted Argon from Underground Sources  

Science Conference Proceedings (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

293

Underground-desiccant cooling system  

DOE Green Energy (OSTI)

The Underground-Desiccant Cooling System relies on the successful coordination of various components. The central feature of the system is a bed of silica gel which will absorb moisture from house air until the gel has become saturated. When this point has been reached, the silica gel must be regenerated by passing hot air through it. For this project, the hot air is produced by air-type solar collectors mounted on the roof and connected with the main air-handling system by means of ducts attached to the outside of the house. As the air is dehumidified its temperature is raised somewhat by the change of state. The dried but somewhat heated air, after leaving the silica gel bed, passes through a rock bin storage area and then past a water coil chiller before being circulated through the house by means of the previously existing ductwork. The cooling medium for both the rock bin and the chiller coil is water which circulates through underground pipes buried beneath the back yard at a depth of about 10 to 12 ft. When the silica gel is being regenerated by the solar collectors, house air bypasses the desiccant bed but still passes through the rock bin and the chiller coil and is cooled continuously. The system is designed for maximum flexibility so that full use can be made of the solar collectors. Ducting is arranged so that the collectors provide heat for the house in the winter and there is also a hot-water capability year-round.

Finney, O.

1982-10-01T23:59:59.000Z

294

The Graduate Student's Guide to UIC  

E-Print Network (OSTI)

of Technology Transfer 3-2985 www.gmu.edu/research/techtransfer.html Director, Jennifer Murphy Student Health

Illinois at Chicago, University of

295

UIC Graduate College 2011 Dean's Scholar Award  

E-Print Network (OSTI)

Department Division Banjeer Pallavi PhD Sociology Behavioral and Social Sciences Nadjowski Cynthia PhD Psychology Behavioral and Social Sciences Markovic Alexander PhD Anthropology Behavioral and Social Sciences Griffith Margaret PhD Communication Behavioral and Social Sciences Salerno Jessica PhD Psychology

Illinois at Chicago, University of

296

UIC POLICIES AND PROCEDURES NUMBER Human Resources  

E-Print Network (OSTI)

facilities used by employees readily accessible and useable by individuals with disabilities; and job accommodation, can perform the essential functions of the employment position that such individual holds or desires. Essential Function - those functions that the individual who holds the position must be able

Illinois at Chicago, University of

297

ENGINEERING STUDY ON UNDERGROUND CONSTRUCTION OF NUCLEAR POWER REACTORS  

SciTech Connect

The advantages, disadvantages, and cost of constructing a auclear power reactor underground are outlinedData on underground construction of hydroelectric plants, other structures, and underground reactor projects in Norway and Sweden are reviewed. A hypothetical underground Experimental Boiling Water Reactor design and sketch are given with cost estimates(T.R.H.)

Beck, C.

1958-04-15T23:59:59.000Z

298

,"Washington Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Net Withdrawals (MMcf)" 32888,-1451 32919,-3625 32947,-1954 32978,-938 33008,0 33039,2640 33069,2937 33100,2937 33131,1069 33161,205 33192,81...

299

Best practices for underground diesel emissions  

Science Conference Proceedings (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

300

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"California Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:37 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CA2"...

302

,"California Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:08 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060CA2"...

303

Massachusetts Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

304

Georgia Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

305

Connecticut Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Connecticut Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

306

Delaware Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

307

Wisconsin Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

308

,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:28 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060TX2"...

309

Underground Storage of Natural Gas (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

310

Underground infrastructure damage for a Chicago scenario  

SciTech Connect

Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

311

First Edition Underground Distribution Reference Book  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is developing a first edition of the Underground Distribution Systems Reference (Bronze Book). This report will join the EPRI series of transmission and distribution technical reference reports, commonly known by the color of their covers. The report will be a desk and field compendium on the general principles involved in the planning, design, manufacture, installation design, installation, testing, operation, and maintenance of underground distribution syste...

2009-12-22T23:59:59.000Z

312

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

313

Depleted argon from underground sources  

Science Conference Proceedings (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

314

3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II  

Science Conference Proceedings (OSTI)

Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

Chase, J.

2000-05-12T23:59:59.000Z

315

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

316

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

317

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

318

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

319

Potential underground risks associated with CAES.  

Science Conference Proceedings (OSTI)

CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

2010-10-01T23:59:59.000Z

320

New Texas Oil Project Will Help Keep Carbon Dioxide Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Forced cooling of underground electric power transmission lines : design manual  

E-Print Network (OSTI)

The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

Brown, Jay A.

1978-01-01T23:59:59.000Z

322

Missouri Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Missouri Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990...

323

Wyoming Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808...

324

Washington Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Washington Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990...

325

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations  

E-Print Network (OSTI)

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations Ignasi in forthcoming publications. Keywords-grounding analysis; earthing analysis, underground substations; I to a river (at substations next to hydroelectric dams), or the grounding system of a buried electrical

Colominas, Ignasi

326

Montana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Montana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

327

Utah Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Utah Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

328

Virginia Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Virginia Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

329

Kansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

330

Alabama Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Alabama Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

331

Michigan Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Michigan Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

332

Maryland Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Maryland Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

333

Arkansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Arkansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

334

Iowa Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Iowa Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

335

Colorado Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Colorado Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

336

Illinois Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Illinois Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

337

Nebraska Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Nebraska Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

338

Texas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Texas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

339

Ohio Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Ohio Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

340

Missouri Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Missouri Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oklahoma Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oklahoma Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

342

Indiana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Indiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

343

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

344

Oregon Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oregon Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

345

Kentucky Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kentucky Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

346

Underground Natural Gas Storage Wells in Bedded Salt (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

347

New Mexico Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) New Mexico Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

348

Estimates of Peak Underground Working Gas Storage Capacity in...  

U.S. Energy Information Administration (EIA) Indexed Site

Administration report, The Basics of Underground Storage, http:www.eia.doe.govpuboilgasnaturalgasanalysispublicationsstoragebasicsstoragebasics.html. 2 Working gas is...

349

No Slide Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Sean Porse Sean Porse U.S. Environmental Protection Agency Office of Ground Water and Drinking Water November 17, 2009 Geologic Sequestration of Carbon Dioxide EPA's Notice of Data Availability and Request for Comments 2009 Regional Carbon Sequestration Partnerships Annual Review 2 EPA's GS Rulemaking Outline  Underground Injection Control (UIC) Program Background  Proposal  The Notice of Data Availability and Request for Comment  Overview  Brief Comment Summary  Schedule 3 UIC Program Background  The 1974 Safe Drinking Water Act (SDWA; Reauthorized in 1996)  Federal regulations for protection of Underground Sources of Drinking Water (USDWs)  USDW defined:  Any aquifer or portion of an aquifer that contains water that is less than 10,000 PPM total dissolved solids or contains a volume of water such that it

350

Commercial-Scale Tests Demonstrate Secure CO2 Storage in Underground Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CommerCial-SCale TeSTS DemonSTraTe CommerCial-SCale TeSTS DemonSTraTe SeCure Co 2 STorage in unDergrounD FormaTionS Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO 2 ) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO 2 and studying CO 2 behavior to a greater extent than the project operators would have pursued on their own - creating a mutually beneficial public/private partnership. The most significant outcome from both field projects is that CO 2 leakage has not been observed, nor is there any indication that CO 2 will leak in the future.

351

Magnetic detection of underground pipe using timed-release marking droplets  

DOE Patents (OSTI)

A system 10 and method of detecting an underground pipe 12 injects magnetic marking droplets 16 into the underground pipe 12 which coat the inside of the pipe 12 and may be detected from aboveground by a magnetometer 28. The droplets 16 include a non-adhesive cover 32 which allows free flow thereof through the pipe 12, with the cover 32 being ablatable for the timed-release of a central core 30 containing magnetic particles 30a which adhere to the inside of the pipe 12 and are detectable from aboveground. The rate of ablation of the droplet covers 32 is selectively variable to control a free flowing incubation zone 12a for the droplets 16 and a subsequent deposition zone 12b in which the magnetic particles 30a are released for coating the pipe 12.

Powell, James R. (Shoreham, NY); Reich, Morris (Kew Garden Hills, NY)

1996-12-17T23:59:59.000Z

352

October 15, 2001 PRE-INSULATED UNDERGROUND PIPE FOR STEAM  

E-Print Network (OSTI)

SERVICE PART 1 ­ GENERAL 1.01 SUMMARY Underground steam and condensate distribution systems includingOctober 15, 2001 02558-1 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE SERVICE CONSTRUCTION STANDARD SPECIFICATION SECTION 02558 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE

353

A Method for Detecting Miners in Underground Coal Mine Videos  

Science Conference Proceedings (OSTI)

Detecting miners in underground coal mine videos is significant for the production safety. But, the miners are very similar to the background in underground coal mine videos, it is difficult to detect. In this paper, we proposed a method to detect miners ... Keywords: moving detection, miner detection, underground coal mine video

Limei Cai; Jiansheng Qian

2009-12-01T23:59:59.000Z

354

Utilization of Oil Shale Retorting Technology and Underground Overview  

Science Conference Proceedings (OSTI)

The paper analyzes the world's oil shale development and status of underground dry distillation technology and, through case studies proved the advantages of underground dry distillation technology. Global oil shale resource-rich, many countries in the ... Keywords: oil shale, ground retorting, underground dry distillation, shale oil, long slope mining

Chen Shuzhao; Guo Liwen; Xiao Cangyan; Wang Haijun

2011-02-01T23:59:59.000Z

355

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

356

Underground Structure Monitoring with Wireless Sensor Networks  

E-Print Network (OSTI)

University of Science and Technology {limo, liu}@cse.ust.hk ABSTRACT Environment monitoring in coal mines, Underground, Coal Mine 1. INTRODUCTION A Wireless Sensor Network (WSN) is a self-organized wireless network and widths of several meters) has been a crucial task to ensure safe working conditions in coal mines where

Liu, Yunhao

357

Electrical Safety Practices in Underground Transmission Systems  

Science Conference Proceedings (OSTI)

This report addresses utility safety practices relating to underground transmission cables and provides analytical approaches and worked examples for induced voltages and currents for several scenarios that may be encountered by utilities.BackgroundSafety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public ...

2012-12-20T23:59:59.000Z

358

Robotic location of underground chemical sources  

Science Conference Proceedings (OSTI)

This paper describes current progress in a project to develop robotic systems for locating underground chemical sources. There are a number of economic and humanitarian applications for this technology. Finding unexploded ordinance, land mines, and sources ... Keywords: Chemical diffusion, Chemical source location, De-mining, Robotics

R. Andrew Russell

2004-01-01T23:59:59.000Z

359

Underground Energy Storage Program. 1983 annual summary  

DOE Green Energy (OSTI)

The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

Kannberg, L.D.

1984-06-01T23:59:59.000Z

360

Science and Technology Gaps in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid acceleration of coal-gas-fired electric power and other high value products. In summary, UCG has several important economic and environmental benefits relevant to India's energy goals: (1) It requires no purchase of surface gasifiers, reducing capital expense substantially. (2) It requires no ash management, since ash remains in the subsurface. (3) It reduces the cost of pollution management and emits few black-carbon particulates. (4) It greatly reduces the cost of CO2 separation for greenhouse gas management, creating the potential for carbon crediting through the Kyoto Clean Development Mechanism. (5) It greatly reduces the need to mine and transport coal, since coal is used in-situ.

Upadhye, R; Burton, E; Friedmann, J

2006-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

362

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

363

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

364

Blasting to stabilize abandoned underground mines in eastern and midwestern coal fields: A feasibility study. Open File Report  

SciTech Connect

The study was designed to assist individuals involved with problem of abandoned mines that are subsiding. The study analyzed the practicality and desirability of using blasting to stabilize subsiding abandoned underground mines. Application of blasting to subsidence problems could provide a valuable alternative technology to classical methods of injecting fill material into abandoned mines to fill voids and prevent subsidence. By blasting, subsidence can be induced in a controlled manner, completed, and the site returned to its desired usage.

1991-05-22T23:59:59.000Z

365

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

366

Rotary steerable motor system for underground drilling  

Science Conference Proceedings (OSTI)

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

367

Greenhouse of an underground heat accumulation system  

SciTech Connect

A greenhouse of an underground heat accumulation system is described wherein the radiant energy of the sun or wasted thermal energy is accumulated in the soil below the floor of the greenhouse over a prolonged period of time, and spontaneous release of the accumulated energy into the interior of the greenhouse begins in the wintertime due to a time lag of heat transfer through the soil. The release of the accumulated energy lasts throughout the winter.

Fujie, K.; Abe, K.; Uchida, A.

1983-11-01T23:59:59.000Z

368

Bangkok area grid extensions go underground  

SciTech Connect

To reinforce electricity supply in the growing load center of Bangkok, the Metropolitan Electricity Authority is constructing a 230-kV underground, oil-filled cable system from Bangkapi substation, located on the outskirts of the city, to Chidlom substation in the heart of the city's business area. The project covers design, supply, and delivery to site of all the materials and equipments, installation, assembly of equipment and commissioning tests of the system.

1976-12-01T23:59:59.000Z

369

Electrical Safety Practices of Underground Transmission Systems  

Science Conference Proceedings (OSTI)

Safety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public and are diligent about monitoring compliance. However, underground transmission cables present unique requirements that might not be covered in existing utility safety practices. This report addresses the grounding requirements and induced voltage calculation procedures that should be considered when performing operation, mainten...

2010-12-23T23:59:59.000Z

370

Underground particle fluxes in the Soudan mine.  

E-Print Network (OSTI)

This is a summary of our knowledge of the underground particle fluxes in the vicinity of Soudan 2 and of the future MINOS detector. It includes a brief description of the measured muon fluxes and of the gamma ray spectra deduced from measurements of 238 U, 232 Th and 40 K concentrations in the rock. Counting rates in gaseous and scintillation detectors are estimated. Some data on what is known about the chemical composition of the local rocks are included; these are relevant to an understanding of the underground muon rates and also to a calculation of low energy neutron fluxes. 1 Introduction As plans for the MINOS detector and for the excavation of a new detector hall progress, some people have begun asking what is known of the fluxes of various particles underground. The muon flux is relevant for possibly calibrating and certainly for monitoring the long term behavior of the detector. It will likely be the determining factor in the eventual trigger rate if the MINOS det...

Keith Ruddick; Keith Ruddick; Th

1996-01-01T23:59:59.000Z

371

Slit injection device  

DOE Patents (OSTI)

A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

Alger, Terry W. (Livermore, CA); Schlitt, Leland G. (Livermore, CA); Bradley, Laird P. (Livermore, CA)

1976-06-15T23:59:59.000Z

372

Rich catalytic injection  

SciTech Connect

A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

Veninger, Albert (Coventry, CT)

2008-12-30T23:59:59.000Z

373

GRR/Section 4-OR-d - Exploration Injection Permit | Open Energy Information  

Open Energy Info (EERE)

4-OR-d - Exploration Injection Permit 4-OR-d - Exploration Injection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-d - Exploration Injection Permit 04ORDExplorationInjectionPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-044-0012: Authorization of Underground Injection Triggers None specified Click "Edit With Form" above to add content 04ORDExplorationInjectionPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-OR-d.1 - Is this New Injection Activity or a Renewal? The developer must follow one of two different procedures if the developer

374

Beam injection into RHIC  

SciTech Connect

During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

1997-07-01T23:59:59.000Z

375

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

376

Recovery of heavy crude oil or tar sand oil or bitumen from underground formations  

SciTech Connect

This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

McKay, A.S.

1989-07-11T23:59:59.000Z

377

Underground Transmission Cable System Installation and Construction Practices Manual  

Science Conference Proceedings (OSTI)

Installation and construction remain the most expensive implementation components of underground transmission cable systems. Recent advancements in underground transmission have led to more demand for best practices and innovative ways to reduce installation and construction costs in a cable project. EPRI has funded many projects over the years to improve the efficiency and reduce the cost of underground transmission cable installation. Other organizations such as Association of Edison Illuminating Compa...

2009-12-22T23:59:59.000Z

378

,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

379

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

380

,"Ohio Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pipelines and Underground Gas Storage (Iowa) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of...

382

Reaching Underground Sources (from MIT Energy Initiative's Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaching Underground Sources (from MIT Energy Initiative's Energy Futures, Spring 2012) American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Reaching...

383

U.S. Natural Gas Pipeline and Underground Storage Expansions ...  

U.S. Energy Information Administration (EIA)

Pipeline transportation and underground storage are vital and complementary components of the U.S. natural gas system. While mainline gas transmission ...

384

,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

385

,"Michigan Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013"...

386

Idaho Natural Gas Underground Storage Net Withdrawals All Operators...  

Annual Energy Outlook 2012 (EIA)

Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

387

PNNL offers 'virtual tour' of Shallow Underground Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL offers 'virtual tour' of Shallow Underground Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

388

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

389

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Twitter YouTube NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile...

390

Alaska Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

391

Connecticut Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

392

Delaware Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

393

Georgia Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

394

Wisconsin Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

395

Estimate of Maximum Underground Working Gas Storage Capacity in ...  

U.S. Energy Information Administration (EIA)

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update This report provides an update to an estimate for U.S. aggregate ...

396

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301935" ,"Release Date:","9302013" ,"Next Release Date:","10312013" ,"Excel File Name:","ngstorsumd...

397

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013"...

398

NETL: News Release - Storing Liquefied Natural Gas in Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 22, 2003 Storing Liquefied Natural Gas in Underground Salt Caverns Could Boost Global LNG Trade Novel Process May be Half the Cost of Conventional Liquid Tank Terminals...

399

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

400

,"New Mexico Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"New Mexico Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","82013" ,"Release...

402

,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

403

Underground Energy Storage Program. 1984 annual summary  

DOE Green Energy (OSTI)

Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.

Kannberg, L.D.

1985-06-01T23:59:59.000Z

404

Method of locating underground mines fires  

DOE Patents (OSTI)

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

405

CO2 Injection Begins in Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Begins in Illinois Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. "Establishing long-term, environmentally safe and secure underground CO2 storage is a critical component in achieving successful commercial

406

Geysers injection modeling  

DOE Green Energy (OSTI)

Our research is concerned with mathematical modeling techniques for engineering design and optimization of water injection in vapor-dominated systems. The emphasis in the project has been on the understanding of physical processes and mechanisms during injection, applications to field problems, and on transfer of numerical simulation capabilities to the geothermal community. This overview summarizes recent work on modeling injection interference in the Southeast Geysers, and on improving the description of two-phase flow processes in heterogeneous media.

Pruess, K.

1994-04-01T23:59:59.000Z

407

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

408

Underground coal gasification using oxygen and steam  

Science Conference Proceedings (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

409

Tennessee Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

1 2002 2003 2004 2005 2006 View History Net Withdrawals -337 131 9 -42 426 16 1968-2006 Injections 556 63 336 262 0 1968-2005 Withdrawals 219 194 344 220 426 16 1968-2006...

410

Cash, Money Laundering, and the Size of Underground Economy  

E-Print Network (OSTI)

Givenavastempiricalevidencethatcashiswidelyusedinthe underground economy, inter-governmental bodies like FATF recommend policy measures aimed at limitation of cash and at combat of money laundering. We show that there is no simple monotone relationship between policy and the size of underground economy, so that the policy has at best a limited scope.

Alexei Deviatov

2009-01-01T23:59:59.000Z

411

Underground Transmission Construction: Vault and Manhole Design and Current Practices  

Science Conference Proceedings (OSTI)

Underground transmission (UT) cable systems are alternatives to overhead transmission lines, especially if the costs in design and construction of the UT cable systems are further reduced. Among the major activities of an underground transmission cable project, vault (manhole) designs and related safety issues need to be addressed. Manhole design and construction account for one of the major costs in a cable project.

2009-12-08T23:59:59.000Z

412

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

413

Underground Event Mitigation: State-of-Science Workshop Report  

Science Conference Proceedings (OSTI)

This report summarizes a workshop on underground event mitigation held in Phoenix, Arizona, in October 2002. EPRI sponsored the workshop to present a comprehensive review of the state of the science and knowledge of underground events and mitigation measures and to provide a forum for discussion of future needs of the utility industry and directions for further EPRI-sponsored work in this area.

2002-11-25T23:59:59.000Z

414

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground Storage (Base...

415

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

416

The Strip and Underground Mine Reclamation Act (Montana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on strip and underground mining activities for coal and uranium, and authorizes the Department of Environmental Quality to administer a

417

U.S. Natural Gas Salt Underground Storage Activity-Injects (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 10,956 12,444 13,738 13,524 14,931 10,472 12,153 9,236 12,757 10,248 10,991 10,792 1995 13,745 13,232 15,992 17,283 17,654 14,528 10,998 9,778 23,267 21,484 16,206 20,016 1996 23,488 23,256 21,012 29,831 18,909 20,523 20,268 20,540 22,624 16,908 15,716 25,394 1997 20,945 14,876 21,608 21,581 27,492 22,410 15,072 22,801 26,605 29,839 25,383 18,699 1998 18,091 17,783 23,444 30,168 25,873 21,482 26,158 24,084 24,200 44,723 22,501 18,461 1999 19,390 16,158 17,906 28,378 29,410 22,024 16,494 23,088 23,680 23,005 21,254 18,866 2000 15,558 22,648 23,516 24,379 27,001 30,582 29,501 23,710 30,559 28,773 21,222 18,466

418

U.S. Natural Gas Non-Salt Underground Storage Injections (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 23,610 37,290 91,769 272,229 412,511 370,551 398,280 363,275 332,730 213,939 94,314 43,538 1995 30,839 30,821 88,264 159,247 351,714 395,761 348,399 282,995 319,462 252,016 79,450 32,731 1996 25,996 73,383 59,375 196,997 354,267 389,563 397,787 379,756 375,662 258,861 74,521 60,957 1997 47,422 39,996 108,965 183,536 334,707 384,856 345,606 355,687 353,354 264,545 87,529 26,783 1998 51,238 56,722 112,635 249,644 407,102 357,628 345,321 311,891 273,558 263,342 114,499 64,208 1999 38,695 47,084 68,665 181,533 351,657 326,986 281,583 288,182 333,841 224,232 151,411 43,988 2000 43,575 60,268 115,756 167,409 285,859 318,412 342,631 280,889 339,865 300,117 86,316 47,273

419

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 3220 of 28,905 results. 11 - 3220 of 28,905 results. Download Conversion Plan http://energy.gov/cio/downloads/conversion-plan Download EIS-0488: Draft Environmental Impact Statement Cameron Liquefaction Project, Cameron Parish, Louisiana http://energy.gov/nepa/downloads/eis-0488-draft-environmental-impact-statement Rebate Arkansas Underground Injection Control Code (Arkansas) The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the... http://energy.gov/savings/arkansas-underground-injection-control-code-arkansas Rebate Flood Plain and Floodway Management Act (Montana) The state regulates flood-prone lands and waters to prevent and alleviate flooding threats to life and health and reduce private and public economic

420

Method of pressurizing and stabilizing rock by periodic and repeated injections of a settable fluid of finite gel strength  

DOE Patents (OSTI)

A finite region of overpressure can be created in solid underground formations by the periodic injection of a fluid that has finite gel strength that subsequently, after each injection, partially sets--i.e., equivalently becomes a very much stronger gel. A region of overpressure is a region in which the static, locked in pressure is larger than what was there before. A region of overpressure can be used to prevent a roof of a tunnel from caving by adding compressive stresses in the roof. A sequence of regions of overpressure can be used to lift an arch or dome underground, squeeze off water or gas flows, stabilize dams, foundations, large underground rooms, etc. In general, the stress or pressure distribution in rock can be altered and engineered in a fashion that is more advantageous than what would have been the case without overstressing. 3 figs.

Colgate, S.A.

1983-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementation of Implementation of EPA's Class VI Geologic Sequestration Program Bruce Kobelski and Mary Rose Bayer Pittsburgh, PA November 15, 2011 U.S. Environmental Protection Agency UIC Program Background * 1974 Safe Drinking Water Act (SDWA; reauthorized in 1996) - Federal regulations to ensure protection of Underground Sources of Drinking Water (USDWs) * USDWs are defined as - Any aquifer or portion of an aquifer that contains water that is less than 10,000 ppm total dissolved solids or contains a volume of water such that it is a present, or viable future source for a Public Water Supply System * The UIC Program regulates injection of all fluids - liquid, gas, or slurry - Some natural gas storage, oil and gas production, and hydraulic fracturing fluids are exempted

422

Yet Another Fault Injection Technique : by Forward Body Biasing Injection  

E-Print Network (OSTI)

expensive fault injection tech- niques, like clock or voltage glitches, are well taken into accountYet Another Fault Injection Technique : by Forward Body Biasing Injection K. TOBICH1,2, P. MAURINE1 Injection, Electromag- netic Attacks, RSA, Chinese Remainder Theorem 1 Introduction Fault injection

423

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

424

Geostock's containment method reduces underground storage leakage  

SciTech Connect

Geostock's hydraulic containment method of safely containing liquid hydrocarbons in unlined underground storage caverns, so that there is no danger of leakage into the surrounding ground makes use of the surrounding ground water, whose static head is kept higher than the pressure of the stored product. For leakage prevention, the static head must be larger than the potential of the stored product plus a safety margin. The safety margin involves a shape factor, dependent on the size and shape of the cavity (examples are given), and a factor which allows for unforeseen conditions. The depth required for the ground water to possess a sufficiently large static head depends on the type and pressure of the stored product, the hydrogeological environment, and the geometry of the facility. Geostock has used the hydraulic containment method in a domestic heating oil facility at May sur Orne, Fr., and also in three propane storage facilities in France.

Not Available

1980-06-23T23:59:59.000Z

425

THE RHIC INJECTION SYSTEM.  

SciTech Connect

The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

1999-03-29T23:59:59.000Z

426

Underground nuclear energy complexes - technical and economic advantages  

SciTech Connect

Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

2010-01-01T23:59:59.000Z

427

Applications of TIERRAS for underground particle cascade simulations  

SciTech Connect

In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

Tueros, M. J.

2010-11-24T23:59:59.000Z

428

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

429

Illinois CO2 Injection Project Moves Another Step Forward | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward March 15, 2010 - 1:00pm Addthis Washington, DC - The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide (CO2) injection test site is an important step forward for the carbon capture and storage (CCS) project's planned early 2011 startup. The survey - essential to determine the geometry and internal structures of the deep underground saline reservoir where CO2 will be injected - was completed by the Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance CCS technologies nationwide. CCS is seen by many experts as a

430

An optimal leakage detection strategy for underground pipelines using magnetic induction-based sensor networks  

Science Conference Proceedings (OSTI)

It is difficult to detect small leakages in underground pipelines with high accuracy and low-energy cost due to the inaccessible underground environments. To this end, the Magnetic Induction (MI)-based wireless sensor network for underground pipeline ... Keywords: deployment and activation of sensors, energy consumption, estimation accuracy, leakage detection and localization, underground pipelines

Xin Tan, Zhi Sun

2013-08-01T23:59:59.000Z

431

Analysis of the Changing Microbial Phase in an Underground River Anaerobic Digestion Reactor  

Science Conference Proceedings (OSTI)

The underground river anaerobic fermentation system was adopted in this experiment was that a pipeline buried underground just like an underground river. The hydrolysis, acidification and degradation of initial fermentation were carried out when raw ... Keywords: underground river anaerobic digestion reactor, microbial phase, methane-producing bacteria, dominant bacteria

Bingbing Li; Xiao Bo; Zhiquan Hu

2009-10-01T23:59:59.000Z

432

Utah Natural Gas in Underground Storage - Change in Working Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2...

433

Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944...

434

Utah Natural Gas in Underground Storage (Working Gas) (Million...  

Annual Energy Outlook 2012 (EIA)

Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993...

435

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

436

Prince George's County Underground Storage Act (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prince George's County Underground Storage Act (Maryland) Prince George&#039;s County Underground Storage Act (Maryland) Prince George's County Underground Storage Act (Maryland) < Back Eligibility Commercial Retail Supplier Tribal Government Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the surface of a maximum of 12,000 acres of land, and may be owned by a public body. A permit from the Department of the Environment, along with an order from the Public Service Commission, is required prior to the use of eminent domain. The Act contains further information on eminent domain, landowner, and property

437

DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Underground Med Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines were used at Los Alamos Scientific Laboratory to transport liquid wastes from Technical Areas 1, 3, 48, and 43 to a chemical waste treatment plant (Technical Area 45). NM.02-1 Site Disposition: Eliminated - Remedial action being performed by another DOE office NM.02-1

438

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

439

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

440

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

Maxwell, Bruce D.

442

California Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1...

443

Ohio Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467...

444

Underground Facility at Nevada National Security Site | National...  

National Nuclear Security Administration (NNSA)

for Our Jobs Our Jobs Working at NNSA Blog U1A Underground Facility at Nevada National Security Site Home > About Us > Our Programs > Defense Programs > Office of Research,...

445

One-man video verite: thoughts on Scenes from underground  

E-Print Network (OSTI)

This thesis considers the making of a documentary videotape on the Red Line Subway Extension project in Cambridge and Somerville, Massachusetts entitled Scenes From Underground. It traces my initial plans for an expository ...

Strongin, Barry

1984-01-01T23:59:59.000Z

446

Michigan Natural Gas Underground Storage Salt Caverns Capacity ...  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's:

447

Michigan Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

448

Operations modeling and analysis of an underground coal mine  

Science Conference Proceedings (OSTI)

In general, it is quite difficult to describe and model operations and conveyance systems precisely in underground coal mines because of geological components, poor visibility, unreliable installed facilities, and difficult work conditions. In this study, ...

Kanna Miwa; Soemon Takakuwa

2011-12-01T23:59:59.000Z

449

Second Panel of Disposal Rooms Completed in WIPP Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 DOENews -2- Underground waste disposal panels are arranged in parallel sets of seven rooms each. Each set of seven...

450

Alaska Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Volume (Million Cubic Feet) Alaska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 16,578 28,110 27,940 28,203...

451

Alaska Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 17,902 17,902 83,592...

452

Alaska Natural Gas Underground Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -380...

453

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 5:36:07 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGAEPG0SACW0NUSMMCF","NA1394NUS8"...

454

Colorado Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

455

U.S. Working Natural Gas Underground Storage Depleted Fields...  

Annual Energy Outlook 2012 (EIA)

Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

456

U.S. Working Natural Gas Underground Storage Acquifers Capacity...  

Gasoline and Diesel Fuel Update (EIA)

Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

457

Illinois Natural Gas in Underground Storage (Base Gas) (Million...  

Gasoline and Diesel Fuel Update (EIA)

Base Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 571,959 571,959...

458

Illinois Natural Gas in Underground Storage (Working Gas) (Million...  

Gasoline and Diesel Fuel Update (EIA)

Working Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 234,149...

459

New Mexico Natural Gas Number of Underground Storage Depleted...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

460

New Mexico Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 20,204 20,204...

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"New Mexico Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:22 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NM2" "Date","New...

462

New Mexico Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

463

,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:22 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NM2" "Date","New...

464

,"New Mexico Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:54 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

465

New Mexico Natural Gas Number of Underground Storage Acquifers...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

466

,"New Mexico Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:53 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

467

New Mexico Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

468

Texas Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 134,707 134,707...

469

Underground-Energy-Storage Program, 1982 annual report  

DOE Green Energy (OSTI)

Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

Kannberg, L.D.

1983-06-01T23:59:59.000Z

470

EPRI Underground Transmission Systems Reference Book (Green Book)  

Science Conference Proceedings (OSTI)

This report is an updated edition of the Underground Transmission Systems Reference Book, which was originally published in 1992. Published in the first edition with a green cover, the book has become commonly known throughout the industry as the Green Book. The book provides a desk and field compendium on the general principles involved in the planning, design, manufacture, installation design, installation, testing, operation, and maintenance of underground cable systems.

2007-03-29T23:59:59.000Z

471

Underground Transmission Cable System Construction and Installation Practices Manual  

Science Conference Proceedings (OSTI)

A reliable underground transmission line depends on reliable cable system manufacturing, design, construction, installation, and operation and maintenance. Construction and installation remain the most expensive component to implement. Recent advances in underground transmission have led to more demand for best practices and innovative ways to reduce construction and installation costs in a cable project. The Electric Power Research Institute (EPRI) has funded many projects over the years to improve the ...

2010-12-03T23:59:59.000Z

472

Future Inspection and Monitoring of Underground Transmission Lines  

Science Conference Proceedings (OSTI)

Underground transmission lines have performed reliably for the power transmission industry. Nonetheless, there are opportunities to improve on-line condition assessment of the underground cable systems. Some of these opportunities can be realized by incorporating improved sensors, more efficient power sources to the sensors, enhanced data collection systems, and better integration with utilities operations systems. This report describes technologies that can be applied in future inspection and monitoring...

2009-12-01T23:59:59.000Z

473

Applications of Increased Power Flow Strategies for Underground Cables  

Science Conference Proceedings (OSTI)

In 2003, the Electric Power Research Institute (EPRI) recognized that there were no detailed resources on the topic of increased power flow (sometimes called uprating) for underground cable systems. Transmission cables were often the focus of evaluations where utilities were seeking to get the greatest improvement in load transfer for a given investment. The 2003 EPRI report, Increased Power Flow Guidebook: Underground Cables, describes basic cable rating principles and ...

2013-11-21T23:59:59.000Z

474

The underground electromagnetic pulse: Four representative models  

Science Conference Proceedings (OSTI)

I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.

Wouters, L.F.

1989-06-01T23:59:59.000Z

475

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

476

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

477

Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996  

SciTech Connect

The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

NONE

1996-12-31T23:59:59.000Z

478

Optimization of Injection Scheduling in  

E-Print Network (OSTI)

- of wells,and (2) allocating a total speci6cd injection rate among chosen injectors. The alloca- tion is defined as the fieldwide break- through lindex, B. Injection is optimized by choosing injection wells questions: (1) Which wells should be made injectors? (2) How should the total nquired injection rate

Stanford University

479

Prediction of Underground Argon Content for Dark Matter Experiments  

E-Print Network (OSTI)

In this paper, we demonstrate the use of physical models to evaluate the production of $^{39}$Ar and $^{40}$Ar underground. Considering both cosmogenic $^{39}$Ar production and radiogenic $^{40}$Ar production in situ and from external sources, we can derive the ratio of $^{39}$Ar to $^{40}$Ar in underground sources. We show for the first time that the $^{39}$Ar production underground is dominated by stopping negative muon capture on $^{39}$K and ($\\alpha,n)$ induced subsequent $^{39}$K(n,p)$^{39}$Ar reactions. The production of $^{39}$Ar is shown as a function of depth. We demonstrate that argon depleted in $^{39}$Ar can be obtained only if the depth of the underground resources is greater than 500 m.w.e. below the surface. Stopping negative muon capture on $^{39}$K dominates over radiogenic production at depths of less than 2000 m.w.e., and that production by muon-induced neutrons is subdominant at any depth. The depletion factor depends strongly on both radioactivity level and potassium content in the rock. We measure the radioactivity concentration and potassium concentration in the rock for a potential site of an underground argon source in South Dakota. Depending on the probability of $^{39}$Ar and $^{40}$Ar produced underground being dissolved in the water, the upper limit of the concentration of $^{39}$Ar in the underground water at this site is estimated to be in a range of a factor of 1.6 to 155 less than the $^{39}$Ar concentration in the atmosphere. The calculation tools presented in this paper are also critical to the dating method with $^{39}$Ar.

D. -M. Mei; Z. -B. Yin; J. Spaans; M. Koppang; A. Hime; C. Keller; V. M. Gehman

2009-12-29T23:59:59.000Z

480

Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1993--September 1994  

Science Conference Proceedings (OSTI)

Preliminary environmental risk assessment on the FGD by-products to be placed underground is virtually complete. The initial mixes for pneumatic and hydraulic placement have been selected and are being subject to TCLP, ASTM, and modified SLP shake tests as well as ASTM column leaching. Results of these analyses show that the individual coal combustion residues, and the residues mixes, are non-hazardous in character. Based on available information, including well logs obtained from Peabody Coal Company, a detailed study of the geology of the placement site was completed. The study shows that the disposal site in the abandoned underground mine workings at depths of between 325 and 375 feet are well below potable groundwater resources. This, coupled with the benign nature of the residues and residues mixtures, should alleviate any concern that the underground placement will have adverse effects on groundwater resources. Seven convergence stations were installed in the proposed underground placement area of the Peabody Coal Company No. 10 mine. Several sets of convergence data were obtained from the stations. A study of materials handling and transportation of coal combustion residues from the electric power plant to the injection site has been made. The study evaluated the economics of the transportation of coal combustion residues by pneumatic trucks, by pressure differential rail cars, and by SEEC, Inc. collapsible intermodal containers (CICs) for different annual handling rates and transport distances. The preliminary physico-chemical characteristics and engineering properties of various FBC fly ash-spent bed mixes have been determined, and long-term studies of these properties are continuing.

Chugh, Y.P.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "uic underground injection" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Underground Energy Storage Program. 1985 annual summary  

DOE Green Energy (OSTI)

Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (> 100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, monitoring of the University of Alabama Student Recreation Center in Tuscaloosa, Alabama, and limited numerical modeling efforts. The first long-cycle test at the University of Minnesota field test facility was completed. It consisted of approximately 59 days of heated water injection, 64 days of storage, and 58 days of heated water recovery. Chemistry of the recovered water was close to what was expected. Limited experimentation was done to characterize physical and chemical processes at the ATES test facility. A chill ATES monitoring project, initiated at the Student Recreation Center on the University of Alabama campus, continued during the reporting period. Numerical modeling efforts were continued at a minimum level to support field studies. The chill ATES facility at the University of Alabama Student Recreation Center was simulated with the Unconfined Aquifer Thermal Energy Storage (UCATES) model to examine the effect of different injection/recovery patterns on the system's thermal performance.

Raymond, J.R.; Kannberg, L.D.

1986-08-01T23:59:59.000Z

482

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

483

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

484

Office of Enforcement Final Notice of Violation to Pacific Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Final Notice of Violation to Pacific Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Office of Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Pursuant to section 234C of the Atomic Energy Act, as amended, 42 U.S.C. § 2282c, and the Department of Energy's (DOE) regulations at 10 C.F.R. Part 851, Worker Safety and Health Program, DOE is issuing this Final Notice of Violation (FNOV) to Pacific Underground Construction, Inc. (PUC). The FNOV finds PUC liable for violating DOE's worker safety and health requirements. The FNOV is based upon the Office of Enforcement's July 23, 2008, Investigation Report and a careful and thorough review of all evidence presented to DOE by PUC, including your response to the Preliminary Notice

485

Underground radio technology saves miners and emergency response personnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital Alert Technologies, Inc. (Vital Alert) has launched a wireless, two-way real-time voice communication system that is effective through 1,000+ feet of solid rock. April 3, 2012 Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock strata and other solid media. Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock

486

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

487

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Oil Project Will Help Keep Carbon Dioxide Underground Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

488

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

489

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

490

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

491

UIC Graduate College 2012 Dean's Scholar Award Winners  

E-Print Network (OSTI)

Department Division Allison Rachel PhD Sociology Behavioral and Social Sciences Garelli Glenda PhD Urban Planning and Policy Behavioral and Social Sciences Michaels John PhD Anthropology Behavioral and Social Sciences Nowotny Jordan PhD Criminology, Law and Justice Behavioral and Social Sciences Wisneski Daniel Ph

Ben-Arie, Jezekiel

492

Gas tracer composition and method. [Process to determine whether any porous underground methane storage site is in fluid communication with a gas producing well  

SciTech Connect

A process is described for determining whether any porous underground gaseous methane storage sites is in fluid communication with a gas producing well, and if there is fluid communication, determining which site is in the fluid communication comprising injecting a different gaseous tracer mixture into each of the sites at some location in each of the site in an amount such that the presence of the tracer mixture will be detectable in the gaseous methane stored therein, each of the mixture having the properties of (1) not occurring in natural supplies of methane, (2) diffusing through any underground methane storage site in a manner very similar in rate to methane, and (3) being substantially insoluble in petroleum distillates, after a period of time sufficient for each of the tracer mixtures to diffuse through the underground site from its injection location to the well, withdrawing a sample gaseous product from the well, testing the sample gaseous product for the presence of each of the tracer mixtures.

Malcosky, N.D.; Koziar, G.

1987-09-01T23:59:59.000Z

493

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

494

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

495

Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology  

DOE Green Energy (OSTI)

The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

Hessel, R P; Aceves, S M; Flowers, D L

2006-03-06T23:59:59.000Z

496

Relevance of underground natural gas storage to geologic sequestration of carbon dioxide  

E-Print Network (OSTI)

2002). U.S. Natural Gas Storage. http://www.eia.doe.gov/oil_OF UNDERGROUND NATURAL GAS STORAGE TO GEOLOGIC SEQUESTRATIONof underground natural gas storage (UNGS), which started in

Lippmann, Marcelo J.; Benson, Sally M.

2002-01-01T23:59:59.000Z

497

Post-Injection Geophysical Evaluation of the Winding Ridge Site CRADA 98-F012, Final Report  

SciTech Connect

Acid mine drainage (AMD) from underground mines is a major environmental problem. The disposal of coal combustion by-products (CCB) is also a major national problem due to the large volumes produced annually and the economics associated with transportation and environmentally safe disposal. The concept of returning large volumes of the CCB to their point of origin, underground mines, and using the typically alkaline and pozzolanic attributes of the waste material for the remediation of AMD has been researched rather diligently during the past few years by various federal and state agencies and universities. As the result, the State of Maryland initiated a full-scale demonstration of this concept in a small, 5-acre, unmapped underground mine located near Friendsville, MD. Through a cooperative agreement between the State of Maryland and the U.S. Department of Energy, several geophysical techniques were evaluated as potential tools for the post-injection evaluation of the underground mine site. Three non-intrusive geophysical surveys, two electromagnetic (EM) techniques and magnetometry, were conducted over the Frazee Mine, which is located on Winding Ridge near Friendsville, MD. The EM surveys were conducted to locate ground water in both mine void and overburden. The presence of magnetite, which is naturally inherent to CCB'S due to the combustion process and essentially transparent in sedimentary rock, provided the reason for using magnetometry to locate the final resting place of the CCB grout.

Connie Lyons; Richard Current; Terry Ackman

1998-09-16T23:59:59.000Z

498

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

the injection well to^ production wells along high conductivity fractures. A powerful method for investigat- ing fields typically choose a configuration for injection wells after a number of development wells have of cooler injected fluids at producing wells. The goal of the current #12;- 10 - work is to provide

Stanford University

499

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

Science Conference Proceedings (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

500

Magneto-inductive networked rescue system (MINERS): taking sensor networks underground  

Science Conference Proceedings (OSTI)

Wireless underground networks are an emerging technology which have application in a number of scenarios. For example, in a mining disaster, flooding or a collapse can isolate portions of underground tunnels, severing wired communication links and preventing ... Keywords: magnetic, magneto-inductive, mining, network, search and rescue, triaxial, underground

Andrew Markham; Niki Trigoni

2012-04-01T23:59:59.000Z