National Library of Energy BETA

Sample records for uic process section

  1. UIC permitting process for class IID and Class III wells: Protection of drinking water in New York State

    SciTech Connect (OSTI)

    Hillenbrand, C.J.

    1995-09-01

    The U.S. Environmental Protection Agency (EPA) Region II, Underground Injection Control (UIC) Program regulates injection wells in the State of New York to protect drinking water; UIC regulations can be found under Title 40 of the Code of Federal Regulations Parts 124, 144, 146 and 147. Operators of solution mining injection wells (UIC Class IIIG) and produced fluid disposal wells (UIC Class IID) are required to obtain an UIC permit for authorization to inject. The permitting process requires submittal of drinking water, geologic and proposed operational data in order to assure that pressure build-up within the injection zone will not compromise confining layers and allow vertical migration of fluid into Underground Sources of Drinking Water (USDW). Additional data is required within an Area of Review (AOR), defined as an area determined by the intersection of the adjusted potentiometric surface produced by injection and a depth 50 feet below the base of the lowermost USDW, or a radius of 1/4 mile around the injection well, whichever is greater. Locations of all wells in the AOR must be identified, and completion reports and plugging reports must be submitted. Requirements are set for maximum injection pressure and flow rates, monitoring of brine properties of the injection well and monitoring of water supply wells in the AOR for possible contamination. Any noncompliance with permit requirements constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action, including possible revocation of permit. Presently four Class IID wells are authorized under permit in New York State. The Queenston sandstone, Medina sandstone, Salina B, Akron dolomite and Oriskany sandstone have been used for brine disposal; the lower Ordovician-Cambrian section is currently being considered as an injection zone. Over one hundred Class IIIG wells are authorized under permit in New York State and all have been utilized for solution mining of the Syracuse salt.

  2. EPA - UIC Well Classifications | Open Energy Information

    Open Energy Info (EERE)

    Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

  3. University of Illinois Chicago UIC | Open Energy Information

    Open Energy Info (EERE)

    Chicago UIC Jump to: navigation, search Name: University of Illinois - Chicago (UIC) Place: Chicago, Illinois Zip: 60607-7113 Product: Public research university with a research...

  4. WSDE Online System for Registering UIC Wells webpage | Open Energy...

    Open Energy Info (EERE)

    developers to register their UIC wells online. Author Washington State Department of Ecology Published Washington State Department of Ecology, 2014 DOI Not Provided Check for DOI...

  5. QuickSite Cross Section Processing

    Energy Science and Technology Software Center (OSTI)

    2003-05-27

    This AGEM-developed system produces cross sections by inputting data in both standard and custom file formats and outputting a graphic file that can be printed or further modified in a commercial graphic program. The system has evolved over several years in order to combine and visualize a changing set of field data more rapidly than was possible with commercially available cross section software packages. It uses some commercial packages to produce the input and tomore » modify the output files. Flexibility is provided by a dynamic set of programs that are customized to accept varying input and accomodate varying output requirements. There are two basic types of routines: conversion routines and cross section generation routines. The conversion routines convery various data files to logger file format which is compatible with a standard file format for LogPlot 98, a commonly used commercial log plotting program. The cross section routines generate cross sections and apply topography to these cross sections. All of the generation routines produce a standard graphic DXF file, which is the format used in AutoCAD and can then be modified in a number of available graphics programs.« less

  6. The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine

    SciTech Connect (OSTI)

    1982-07-01

    This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not

  7. Consultation with Indian Tribes in the Section 106 Review Process: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Handbook (ACHP, 2012) | Department of Energy Consultation with Indian Tribes in the Section 106 Review Process: A Handbook (ACHP, 2012) Consultation with Indian Tribes in the Section 106 Review Process: A Handbook (ACHP, 2012) Section 106 of the National Historic Preservation Act (NHPA) requires federal agencies to take into account the effects of their undertakings on historic properties and provide the Advisory Council on Historic Preservation (ACHP) reasonable opportunity to comment on

  8. Elastic Cross Sections for Electron Collisions with Molecules Relevant to Plasma Processing

    SciTech Connect (OSTI)

    Yoon, J.-S.; Song, M.-Y.; Kato, H.; Hoshino, M.; Tanaka, H.; Brunger, M. J.; Buckman, S. J.; Cho, H.

    2010-09-15

    Absolute electron-impact cross sections for molecular targets, including their radicals, are important in developing plasma reactors and testing various plasma processing gases. Low-energy electron collision data for these gases are sparse and only the limited cross section data are available. In this report, elastic cross sections for electron-polyatomic molecule collisions are compiled and reviewed for 17 molecules relevant to plasma processing. Elastic cross sections are essential for the absolute scale conversion of inelastic cross sections, as well as for testing computational methods. Data are collected and reviewed for elastic differential, integral, and momentum transfer cross sections and, for each molecule, the recommended values of the cross section are presented. The literature has been surveyed through early 2010.

  9. Application of three-dimensional digital image processing for reconstruction of microstructural volume from serial sections

    SciTech Connect (OSTI)

    Tewari, A.; Gokhale, A.M.

    2000-03-01

    Three-dimensional digital image processing is useful for reconstruction of microstructural volume from a stack of serial sections. Application of this technique is demonstrated via reconstruction of a volume segment of the liquid-phase sintered microstructure of a tungsten heavy alloy processed in the microgravity environment of NASA's space shuttle, Columbia. Ninety serial sections (approximately one micrometer apart) were used for reconstruction of the three-dimensional microstructure. The three-dimensional microstructural reconstruction clearly revealed that the tungsten grains are almost completely connected in three-dimensional space. Both the matrix and the grains are topologically co-continuous, although the alloy was liquid-phase sintered in microgravity. Therefore, absence of gravity did not produced a microstructure consisting of discrete isolated W grains uniformly dispersed in the liquid Ni-Fe alloy matrix at the sintering temperature.

  10. Email Update on the Status of the Section 1222 Review Process Sent to Interested Parties on September 3, 2015

    Broader source: Energy.gov [DOE]

    A brief email update on the status of the Section 1222 review process was sent to interested parties on September 3, 2015.

  11. Processing of Double-Differential Cross Sections in the New ENDF-VI Format.

    Energy Science and Technology Software Center (OSTI)

    1987-08-28

    Version 00 GROUPXS does file handling and processing of the double-differential continuum-emission cross sections stored in the new MF6 format of ENDF/VI. It treats the energy-angle data that are supposed to be represented by a Legendre-polynomial expansion in the center-of-mass system and can do the following: (1) Conversion of MF6 data from center-of-mass system to the laboratory system, with the possibility to continue the calculation with the options (2), (3), and (4). (2) Conversion ofmore » Legendre-polynomial representation into point-wise angular data, in MF6 format. (3) Conversion of data from MF6 into MF4 + MF5 (ENDF-V). (4) Calculation of group constants, scattering matrices and transfer matrices for arbitrary group structures with a fusion micro-flux weighting spectrum (PN-approximation). The code treats only continuum reaction types that are stored in the MF6 format with the restrictions as specified for the European Fusion File (EFF1). These restrictions are not inconvenient for the purpose of fusion neutronics calculations and they facilitate relatively simple processing .« less

  12. Consultation with Indian Tribes in the Section 106 Review Process: A Handbook (2012)

    Broader source: Energy.gov [DOE]

    This Advisory Council on Historic Preservation handbook is a reference for federal agency staff responsible for compliance with Section 106 of the National Historic Preservation Act, and for Tribal Historic Preservation Officers and tribal cultural resource managers.

  13. Consultation with Native Hawaiian Organizations in the Section 106 Review Process: A Handbook (ACHP, 2011)

    Broader source: Energy.gov [DOE]

    The National Historic Preservation Act (NHPA) requires that, in carrying out the requirements of Section 106, "Protection of Historic Properties," each federal agency must consult with any Native Hawaiian organization that attaches religious and cultural significance to historic properties that may be affected by the agency's undertakings.

  14. Consultation with Native Hawaiian Organizations in the Section 106 Review Process: A Handbook (2011)

    Broader source: Energy.gov [DOE]

    The National Historic Preservation Act (NHPA) requires that, in carrying out the requirements of Section 106, "Protection of Historic Properties," each federal agency must consult with any Native Hawaiian organization that attaches religious and cultural significance to historic properties that may be affected by the agency's undertakings.

  15. Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

  16. Section 08: Approval Process for Waste Shipment From Waste Generator Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Disposal at the WIPP Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP (40 CFR § 194.8) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP (40 CFR § 194.8) Table of Contents 8.0 Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP

  17. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the {gamma} process

    SciTech Connect (OSTI)

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kaeppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-15

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E{sub p}=2.75-9 MeV, close to the upper end of the respective Gamow window of the {gamma} process. We have determined cross sections for {sup 102}Pd(p, {gamma}){sup 103}Ag, {sup 104}Pd(p, {gamma}){sup 105}Ag, and {sup 105}Pd(p, n){sup 105}Ag, as well as partial cross sections of {sup 104}Pd(p, n){sup 104}Ag{sup g}, {sup 105}Pd(p, {gamma}){sup 106}Ag{sup m}, {sup 106}Pd(p, n){sup 106}Ag{sup m}, and {sup 110}Pd(p, n){sup 110}Ag{sup m} with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in {gamma}-process calculations.

  18. SECTION B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phases of the fee determination process consistent with Section B.2 of the subject contract. ... At the end of the rating period, after the determination of the award fee, the CBFO ...

  19. On Baryon-Antibaryon Cross Sections from Initial State Radiation Processes at BABAR and their Surprising Threshold Behavior

    SciTech Connect (OSTI)

    Pacetti, Simone

    2015-04-14

    BABAR has measured with unprecedented accuracy the e+e- → pp-bar and e+e- → ΛΛ-bar cross sections by means of the initial state radiation technique, which has the advantages of good efficiency and energy resolution, and full angular acceptance in the threshold region. A striking feature of these cross sections is their non-vanishing values at threshold. In the case of charged baryons, the phenomenon is well understood in terms of the Coulomb interaction between the outgoing baryon and antibaryon. However, such an effect is not expected for neutral baryons. We suggest a simple explanation for both charged and neutral baryon pairs based on Coulomb interactions at the valence quark level.

  20. Cross Section Measurements of High-p(T) Dilepton Final-State Processes Using a Global Fitting Method

    SciTech Connect (OSTI)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria U., Santander /Carnegie Mellon U.

    2006-12-01

    The authors present a new method for studying high-p{sub T} dilepton events (e{sup {+-}}e{sup {-+}}, {mu}{sup {+-}}{mu}{sup {-+}}, e{sup {+-}}{mu}{sup {-+}}) and simultaneously extracting the production cross sections of p{bar p} {yields} t{bar t}, p{bar p} {yields} W{sup +}W{sup -}, and p{bar p} {yields} Z{sup 0} {yields} {tau}{sup +}{tau}{sup -} at a center-of-mass energy of {radical}s = 1.96 TeV. They perform a likelihood fit to the dilepton data in a parameter space defined by the missing transverse energy and the number of jets in the event. The results, which use 360 pb{sup -1} of data recorded with the CDF II detector at the Fermilab Tevatron Collider, are {sigma}(t{bar t}) = 8.5{sub -2.2}{sup +2.7} pb, {sigma}(W{sup +}W{sup -}) = 16.3{sub -4.4}{sup +5.2} pb, and {sigma}(Z{sup 0} {yields} {tau}{sup +}{tau}{sup -}) = 291{sub -46}{sup +50} pb.

  1. SECTION H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Contract Section H Contract No. DE-AC27-08RV14800 Modification No. 360 H-i PART I - THE SCHEDULE SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 WORKFORCE ...

  2. SECTION E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Contract No. DE-AC27-01RV14136 Conformed Thru Modification No. A143 E - i SECTION E INSPECTION AND ACCEPTANCE WTP Contract Section E Contract No. DE-AC27-01RV14136 Conformed Thru...

  3. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K-1 SECTION J APPENDIX K CONTRACTOR'S TRANSITION PLAN (RESERVED) Contract No.: DE-RW0000005 QA:QA J-K-2

  4. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    L-1 Section J Appendix L MEMORANDUM FROM DAVID R. HILL, GENERAL COUNSEL, DATED NOVEMBER 30, 2006, SUBJECT: ONGOING LICENSING SUPPORT NETWORK ("LSN") OBLIGATIONS Contract No.: ...

  5. SECTION I

    National Nuclear Security Administration (NNSA)

    to Mod 0108 DE-NA0000622 Section I, Page i PART II - CONTRACT CLAUSES SECTION I CONTRACT CLAUSES TABLE OF CONTENTS I-1 FAR 52.202-1 DEFINITIONS (NOV 2013) (AS MODIFIED BY DEAR 952.202-1) (REPLACED MODS 020, 029, 0084) ................................................................................................................................ 1 I-2 FAR 52.203-3 GRATUITIES (APR 1984) ................................................................................................. 1 I-3 FAR

  6. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projectile and Target Z-scaling of Target K-vacancy Production Cross Sections at 10A MeV R. L. Watson, V. Horvat and K. E. Zaharakis Molecular Orbital Effects in Near-symmetric ...

  7. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J-1 SECTION J APPENDIX J PERFORMANCE EVALUATION AND MEASUREMENT PLAN (TO BE NEGOTIATED AFTER CONTRACT AWARD) Contract No.: DE-RW0000005 QA:QA J-J-2 Page Blank

  8. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAN RESOURCES (TO BE NEGOTIATED DURING CONTRACT TRANSITION) The personnel appendix required by DEAR Subpart 970.31 entitled "Contract Cost Principles and Procedures" as referenced in Section I Clause, DEAR 970.5232-2, "Payments and Advances" will be Appendix A of the contract. The personnel appendix will be negotiated between DOE OCRWM and the selected offeror during the contract transition period. Contract No.: DE-RW0000005

  9. Section 66

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CFCl 3 ) (CF 2 Cl 2 ) (CHFCl 2 ) CF 4 CCl 4 (CFCl 3 ) (CF 2 Cl 2 ) (CHFCl 2 ) SF 6 CF 4 CCl 4 Session Papers 277 Figure 1. Spectral absorption cross-sections of CF 4 between 1281 and 1284 cm . The experimental -1 conditions correspond to the surface, 5-km, and 19-km levels of the U.S. Standard Atmosphere. Figure 2. Spectral absorption cross-sections of CCl 4 between 755 and 810 cm . The experimental conditions -1 correspond to the surface, 5-km, and 19-km levels of the U.S. Standard Atmosphere.

  10. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 J-12-1 ATTACHMENT J-12 GOVERNMENT FURNISHED SERVICES AND INFORMATION TABLE J-12.1 GFS/I LIST FROM SECTION C (SOW) ID GFS/I GFS/I Due Contract Section GF0001 DOE will administer MOUs with other law enforcement agencies or other Federal agencies (e.g., U.S. Department of Defense [Yakima Training Center]). DOE will provide copies of MOUs and/or contracts to the MSC. As required C.2.1.1.1 GF0002 DOE will provide Federal Commissions for Hanford Patrol personnel. As required C.2.1.1.1 GF0003 DOE

  11. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC06-09RL14728 Modification 464 J-11-1 ATTACHMENT J-11 CONTRACT DELIVERABLES TABLE J-11.1 DELIVERABLE LIST FROM SECTION C (SOW) ID Deliverable DOE Contract Deliverable Due Contract Section Action Response Time a CD0001 Hanford Site Services and Interface Requirements Matrix Approve 30 days July 24, 2009; thereafter by request as applicable C.1.3 CD0002 Annual Forecast of Services and Infrastructure Review NA November 21, 2009; annually thereafter by November 31 C.1.3 CD0003

  12. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Modification No.0200 Section I I-1 PART II SECTION I CONTRACT CLAUSES TABLE OF CONTENTS CLAUSE I.1 - FAR 52.202-1 DEFINITIONS (NOV 2013); MODIFIED BY DEAR 952.202-1 9 CLAUSE I.2 - FAR 52.203-3 GRATUITIES (APR 1984) 9 CLAUSE I.3 - FAR 52.203-5 COVENANT AGAINST CONTINGENT FEES (MAY 2014) 10 CLAUSE I.4 - FAR 52.203-6 RESTRICTIONS ON SUBCONTRACTOR SALES TO THE GOVERNMENT (SEP 2006) 11 CLAUSE I.5 - FAR 52.203-7 ANTI-KICKBACK PROCEDURES (MAY 2014) 11 CLAUSE I.6 - FAR 52.203-8 CANCELLATION,

  13. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support expertise, including clearance and special access processing, ... DOE will monitor and provide reporting on the various stages of clearance actions, when ...

  14. Section 57

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is hypothesized that their statistics are scaled observed time series. From this step, ... A cloud classification process. Two simple statistics that time series of these means and ...

  15. Section 106 Archaeology Guidance

    Broader source: Energy.gov [DOE]

    The Advisory Council on Historic Preservation's Section 106 guidance is designed to assist federal agencies in making effective management decisions about archaeological resources in completing the requirements of Section 106 of the National Historic Preservation Act (16 U.S.C. 470f) and its implementing regulations (36 CFR Part 800). This guidance highlights the decision-making role of the federal agency in the Section 106 process. It is also designed for use by State and Tribal Historic Preservation Officers, Indian tribes, Native Hawaiian organizations, and cultural resource management professionals when assisting federal agencies to meet their responsibilities under Section 106.

  16. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M-1 Section J Appendix M Key Design, Licensing and Site Management M&O Milestone Chart Activity Planned Date Develop and Submit CD-2 (25%-30%) 08/2009 Submission of Construction Performance Specifications - Balance of Plant Support Facilities (OCRWM Start of Construction 3/2012) TBD Submission of Construction Performance Specifications - Initial Handling Facility (IHF) (OCRWM Start of Construction for IHF: 9/2013) TBD Submission of Construction Performance Specifications - Wet Handling

  17. Section L

    National Nuclear Security Administration (NNSA)

    Section L - Attachment F - Past Performance Cover Letter and Questionnaire Date: ________________ Dear _________________: Our firm is submitting a proposal for a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Contract for the management and operation of the Nevada National Security Site with an estimated value of approximately $550M per year. Our firm is seeking your assistance. We are asking you to complete the attached questionnaire evaluating our performance on

  18. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D-1 SECTION J APPENDIX D KEY PERSONNEL Name Position Doug Cooper General Manager John Donnell Repository Licensing Lead Al Ebner, PE, PhD Repository Design Lead Steve Piccolo Deputy General Manager Steve White Quality & Performance Assurance Lead George Clare Project Management & Integration Lead Mike Hitchler Preclosure Safety Analysis Lead Contract No.: DE-RW0000005 QA:QA J-D-2 POSITION DESCRIPTIONS OCRWM SPECIFIED KEY PERSONNEL 1. General Manager: Requires 10 years experience as a

  19. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H-1 SECTION J APPENDIX H CONTRACT GUIDANCE FOR PREPARATION OF DIVERSITY PLAN This Guidance is to assist the Contractor in understanding the information being sought by the Department for each of the Diversity elements and where these issues may already be addressed in the contract. To the extent these issues are already addressed in the contract, the Contractor need only cross reference the location. Contractor's Workforce The Department's contracts contain clauses on Equal Employment

  20. Section 89

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity Tests on the Microphysical Parameters of a 2-Dimensional Cirrus Model R.-F. Lin Department of Meteorology, Pennsylvania State University University Park, Pennsylvania Introduction Radiatively induced convection may serve a key role in the evolution of cirrus. A 2-dimensional cirrus model with a spatial resolution of 100 m is developed to investigate dynam- ical-radiative-microphysical interactions. It is assumed that the model domain represents part of a cross-section of cirrus

  1. A Modified Version of XLACS-II for Processing ENDF Data into Multigroup Neutron Cross Sections in AMPX Master Library Format.

    Energy Science and Technology Software Center (OSTI)

    1982-05-07

    XLACS-IIA calculates fine-group averaged neutron cross sections from ENDF data. Its primary purpose is to produce full range multigroup libraries for the XSDRN-PM program. It also serves this purpose in the AMPX system. Provisions are included for treating fast, resonance, and thermal ENDF/B data. Fine-group energy structures and expansion orders used to represent differential cross sections for XSDRN can be arbitrarily specified by the user. Cross sections can be averaged over an arbitrary user-supplied weightingmore » function or by any of several built-in weighting functions.« less

  2. Section 107

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Effect of Surface Topography and Surface Albedo Variation on the Radiation Environment of Palmer Station, Antarctic P. Ricchiazzi and C. Gautier Institute for Computational Earth System Science University of California, Santa Barbara Santa Barbara, California Abstract Radiative Transfer Model We present results from a 3-D radiative transfer simulation of The SAMCRT code treats surface-radiation processes in fine the radiation environment of Palmer Station, Antarctica. The detail, at the

  3. Section 19

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations and Applications of Data Taken with the Cloud Profiling Radar System J. M. Firda, S. M. Sekelsky, S. P. Lohmeier, R. E. McIntosh Microwave Remote Sensing Laboratory, University of Massachusetts Amherst, Massachusetts Introduction During the past year, the University of Massachusetts' Cloud Profiling Radar System (CPRS) team has been active in collecting and processing data. Participation in several field campaigns has produced new and interesting data sets. A classification software

  4. Section 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite-Derived Surface Characterization and Surface Fluxes Across the Southern Great Plains Cloud and Radiation Testbed Site W. Gao, R. L. Coulter, B. M. Lesht, J. Qiu, and M. L. Wesely Argonne National Laboratory Argonne, Illinois Introduction AVHRR-Derived Surface Atmospheric processes in the lower boundary layer are strongly modulated by energy and mass fluxes from and to the underlying surface. The atmosphere-surface interactions usually occur at small temporal (seconds to minutes) and

  5. Section 39

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e ' m 4 0 Q e (r)Br 2 n(r)dr Session Papers 161 Cloud Processing of Aerosols and Their Effects on Aerosol Radiative Properties Q. Liu and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The scavenging of aerosols by clouds and their removal from the atmosphere by precipitation are important sinks for atmospheric aerosols. It is estimated that, on the global scale, precipitation removes about 80% of the mass of aerosols

  6. Section 43

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Calculated and Measured Radiative Fluxes Under Altocumulus and Stratocumulus Cloud Layers D. Xia, S. K. Krueger and K. Sassen University of Utah Salt Lake City, Utah Introduction Properly accounting for the effects of clouds on radiative fluxes in numerical models of the atmosphere remains diffi- cult. The difficulty arises from the complexity of the processes that determine macroscopic cloud structure (cloud fraction, height, thickness, and water content) and from the need to know

  7. Section 61

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Treatment of Surface Evapotranspiration in a Mesoscale Numerical Model C-R Chen and P. J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma Norman, Oklahoma Surface evapotranspiration can affect the formation processes overestimated or underestimated by the PM method is mainly of low-level clouds and even precipitation. Accordingly, in controlled by the setting of stomatal resistance. Less surface daily short- and

  8. Stellar (n,{gamma}) cross sections of p-process isotopes. II. {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg

    SciTech Connect (OSTI)

    Marganiec, J.; Dillmann, I.; Pardo, C. Domingo; Kaeppeler, F.; Walter, S.

    2010-09-15

    The neutron-capture cross sections of {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg have been measured by means of the activation technique. The samples were irradiated in a quasistellar neutron spectrum of kT=25 keV, which was produced at the Karlsruhe 3.7-MV Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. Systematic uncertainties were investigated in repeated activations with different samples and by variation of the experimental parameters, that is, irradiation times, neutron fluxes, and {gamma}-ray counting conditions. The measured data were converted into Maxwellian-averaged cross sections at kT=30 keV, yielding 1214{+-}61, 624{+-}54, 590{+-}43, 511{+-}46, and 201{+-}11 mb for {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg, respectively. The present results either represent first experimental data ({sup 168}Yb, {sup 184}Os, and {sup 196}Hg) or could be determined with significantly reduced uncertainties ({sup 180}W and {sup 190}Pt). These measurements are part of a systematic study of stellar (n,{gamma}) cross sections of the stable p isotopes.

  9. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes; Preprint

    SciTech Connect (OSTI)

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T. A.; Duda, A. M.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-05-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  10. PART III-SECTION J

    National Nuclear Security Administration (NNSA)

    C SECTION J APPENDIX C TRANSITION PLAN Plan: [To be inserted by the Contracting Officer.] Requirements: In accordance with Section F, Deliverables During Transition, the Contractor shall submit a Transition Plan for the Contracting Officer's approval 10 days after Contract award. The Transition plan shall describe the process, details, schedule, and cost for providing an orderly transition during the Contract's Transition Term stated in Section F, F-3 Period of Performance. The Transition Plan

  11. RFP Section H and Section L Templates

    Broader source: Energy.gov [DOE]

    On April 26, 2011, two draft RFP Section H templates "Performance Requirements" and "Performance Evaluation and Measurement Plan" and one draft RFP Section L template "Proposal Preparation Instructions – Cover Letter and Volume I, Offer and Other Documents" were distributed for Procurement Director (PD), Head of Contracting Activity (HCA), General Counsel and National Nuclear Security Administration (NNSA) review and comment. All comments received were considered and changes were made as appropriate. The final version of the three aforementioned RFP Section H and L templates are available in STRIPES.

  12. SECTION L… ATTACHMENT H

    National Nuclear Security Administration (NNSA)

    III-SECTION J APPENDIX K TRANSITION PLAN To be Added at a Later Date

  13. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    E SECTION J APPENDIX E PERFORMANCE GUARANTEE AGREEMENT(S) [Note: To be inserted by the Contracting Officer prior to contract award. For Performance Guarantee Agreement(s) template, see Section L, Attachment A.]

  14. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    I SECTION J APPENDIX I SMALL BUSINESS SUBCONTRACTING PLAN [Note: To be inserted by the Contracting Officer prior to

  15. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    I SECTION J APPENDIX I SMALL BUSINESS SUBCONTRACTING PLAN Note: To be inserted by the Contracting Officer prior to...

  16. 14655 Section D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Contract No. DE-AC06-05RL14655 A000 PART I - THE SCHEDULE SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 PACKAGING......

  17. PART III ? SECTION J

    National Nuclear Security Administration (NNSA)

    B, Page 1 SECTION J APPENDIX B AWARD FEE PLAN Note: To be inserted by the Contracting Officer after contract award....

  18. PART III ? SECTION J

    National Nuclear Security Administration (NNSA)

    M, Page 1 SECTION J APPENDIX M CONTRACTOR COMMITMENTS, AGREEMENTS, AND UNDERSTANDINGS Note: To be inserted by the Contracting Officer after contract award....

  19. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  20. 14655 Section D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Contract No. DE-AC06-05RL14655 A000 PART I - THE SCHEDULE SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 PACKAGING......................................................................................................................................1 D.2 MARKING ..........................................................................................................................................1 D-i River Corridor Closure Contract Section D Contract No. DE-AC06-05RL14655 A000 PART I

  1. 14655 Section H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section H Contract No. DE-AC06-05RL14655 H-i PART I - THE SCHEDULE SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 INCUMBENT EMPLOYEES HIRING PREFERENCES ................................................................... 1 H.2 PAY AND BENEFITS ....................................................................................................................... 1 H.3 LABOR RELATIONS

  2. Section 1251 Report Update

    National Nuclear Security Administration (NNSA)

    ... Processing Facility (UPF) and the Chemistry and Metallurgy Research Replacement (CMRR). ... Processing Facility (UPF) and the Chemistry and Metallurgy Research Replacement ...

  3. 14655 Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I Contract No. DE-AC06-05RL14655 A099 I-i PART II - CONTRACT CLAUSES SECTION I CONTRACT CLAUSES River Corridor Closure Contract Section I Contract No. DE-AC06-05RL14655 649 I-1 PART II - CONTRACT CLAUSES SECTION I CONTRACT CLAUSES I.1 FAR 52.252-2 CLAUSES INCORPORATED BY REFERENCE (FEB 1998) This contract incorporates one or more clauses by reference, with the same force and effect as if they were given in full text. Upon request, the Contracting Officer will make their full text available.

  4. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2004TU02 6Li(p, ): coincidence yields, deduced S-factors low 1, S-factors from ...

  5. 7Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 12162015) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1997GO13 7Li(pol. p, ): total , S-factor for capture to third-excited state 0 - ...

  6. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    E SECTION J APPENDIX E PERFORMANCE GUARANTEE AGREEMENT(S) Note: To be inserted by the Contracting Officer prior to contract award. For Performance Guarantee Agreement(s) template,...

  7. Section 1703 Loan Program

    Broader source: Energy.gov [DOE]

    Section 1703 of Title XVII of the Energy Policy Act of 2005 authorizes the U.S. Department of Energy to support innovative clean energy technologies that are typically unable to obtain conventional private financing due to high technology risks.

  8. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    J, Page 1 SECTION J APPENDIX J DIVERSITY PLAN GUIDANCE In accordance with Section I clause DEAR 970.5226-1, Diversity Plan, this Appendix provides guidance to assist the Contractor in understanding the information being sought by the Department of Energy, National Nuclear Security Administration (DOE/NNSA) for each of the diversity elements within the clause. The Contractor shall submit a Diversity Plan to the Contracting Officer for approval within 90 days after the effective date of this

  9. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/14/11 Page 1 of 9 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-IN (06/14/11) SECTION II GENERAL PROVISIONS FOR INTERNATIONAL COMMERCIAL TRANSACTIONS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I OF THIS CONTRACT. IN01 ACCEPTANCE OF TERMS AND CONDITIONS This Contract

  10. Section 1251 Report Update

    National Nuclear Security Administration (NNSA)

    November 2010 Update to the National Defense Authorization Act of FY2010 Section 1251 Report New START Treaty Framework and Nuclear Force Structure Plans 1. Introduction This paper updates elements of the report that was submitted to Congress on May 13, 2010, pursuant to section 1251 of the National Defense Authorization Act for Fiscal Year 2010 (Public Law 111-84) ("1251 Report"). 2. National Nuclear Security Administration and modernization of the complex - an overview From FY 2005

  11. Cross Sections for Electron Collisions with Methane

    SciTech Connect (OSTI)

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  12. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, Mod 420 J.6-1 ATTACHMENT J.6 SMALL BUSINESS SUBCONTRACTING PLAN Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.6, Mod 420 J.6-2 SMALL BUSINESS SUBCONTRACTING PLAN for United States Department of Energy Plateau Remediation Contract Submitted by: CH2M HILL PLATEAU REMEDIATION COMPANY Prime Contractor FISCAL YEARS 2009-2018 (Base and Option Period) CONTRACT NUMBER DE-AC06-08RL14788 Revision 4 December 30, 2014 Plateau Remediation Contract Section J Contract

  13. Transverse section radionuclide scanning system

    DOE Patents [OSTI]

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  14. 9Be Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9Be(p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1997ZA06 9Be(p, ), (p, d): S-factor 16 - 390 keV X4 01232013 1973SI27 9Be(p, ...

  15. 4He Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1974KR07 4He(p, p): 0.5 - 3 X4 10232014 2004PU02 4He(p, p): ( 128.7) ...

  16. 14655 Section C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Contract No. DE-AC06-05RL14655 226 C-i PART I - THE SCHEDULE SECTION C - STATEMENT OF WORK TABLE OF CONTENTS C.1 PURPOSE, OVERVIEW, END-STATES, AND ORGANIZATION ................................................... 1 C.1.1 PURPOSE AND OVERVIEW ................................................................................................ 1 C.1.2 END-STATES ........................................................................................................................ 1 C.1.3

  17. 14655 Section E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Contract No. DE-AC06-05RL14655 A000 PART I - THE SCHEDULE SECTION E INSPECTION AND ACCEPTANCE TABLE OF CONTENTS E.1 FAR 52.246-5 INSPECTION OF SERVICES - COST REIMBURSEMENT (APR 1984) .................1 E.2 FIELD INSPECTION ..........................................................................................................................1 E.3 DOE INSPECTION ............................................................................................................................2 E.4

  18. RAPID/Roadmap/14-NM-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-NM-c) The Underground Injection Control (UIC) Permit process in New Mexico...

  19. Section 106 Archaeology Guidance (ACHP, 2009)

    Broader source: Energy.gov [DOE]

    The Advisory Council on Historic Preservation's Section 106 guidance is designed to assist federal agencies in making effective management decisions about archaeological resources in completing the requirements of Section 106 of the National Historic Preservation Act (16 U.S.C. 470f) and its implementing regulations (36 CFR Part 800). This guidance highlights the decision-making role of the federal agency in the Section 106 process. It is also designed for use by State and Tribal Historic Preservation Officers, Indian tribes, Native Hawaiian organizations, and cultural resource management professionals when assisting federal agencies to meet their responsibilities under Section 106.

  20. 19F Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1990WA10 19F(p, n): σ < 30 X4 04/26/2012 2008CO03 19F(p, γ): σ Ecm = 200 - 700 keV X4 05/14/2014 1979SU13 19F(p, γ): σ 0.2 - 1.2 X4 05/06/2014 2006COZY 19F(p, γ1): capture yield 200 - 800 keV thin target 12/08/2014 19F(p, γ): capture yield thick target 19F(p, α2γ): capture yield thin target, thick target 2008CO03 19F(p, γ1): reaction cross section Ecm = 200 - 800 keV thin target, thick target

  1. Part III - Section J

    National Nuclear Security Administration (NNSA)

    Corporation Contract No. DE-AC04-94AL85000 Modification No. 585 Attachment 2 Page 1 of 5 Part III - Section J Appendix G List of Applicable Directives and NNSA Policy Letters In addition to the list of applicable directives referenced below, the contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. This List excludes directives that have been granted an exemption from the

  2. Part III - Section J

    National Nuclear Security Administration (NNSA)

    M280 Attachment 1 Page 1 of 5 Part III - Section J Appendix G List of Applicable Directives and NNSA Policy Letters In addition to the list of applicable directives referenced below, the contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. DIRECTIVE NUMBER DATE DOE DIRECTIVE TITLE APPH Chapter X Revision 10 09/08/98 Accounting Practices & Procedures Handbook Chapter

  3. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    L, Page 1 SECTION J APPENDIX L SPECIAL FINANCIAL INSTITUTION AGREEMENT FOR USE WITH THE PAYMENTS-CLEARED FINANCING ARRANGEMENT Note: (1) The Contractor shall enter into a new banking agreement(s) during the Transition Term of the Contract, utilizing the format contained in this Appendix and include other applicable Contract terms and conditions. (2) Items in brackets [ ] below are provided for clarification and will be removed from the document prior to execution. Agreement entered into this,

  4. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, Modification 332 J.7-1 ATTACHMENT J.7 SMALL DISADVANTAGED BUSINESS PARTICIPATION PROGRAM TARGETS Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.7, Modification 332 J.7-2 Small Disadvantaged Business (SDB) Participation Program Targets ATTACHMENT J.7 SMALL DISADVANTAGED BUSINESS PARTICIPATION PROGRAM TARGETS (a) OFFEROR - CH2M HILL Plateau Remediation Company - Prime: AREVA Federal Services, LLC; Fluor Federal Services, Inc. (base period only); East

  5. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Revision 3, 420 J.8-1 ATTACHMENT J.8 ADVANCE UNDERSTANDING OF COSTS In accordance with the Section H Clause entitled, Advance Understanding of Costs, this attachment sets forth the basis for determining the allowability of costs associated with expenditures that have cost implications under the Contract, that are not identified in other documents requiring the review and approval of the contracting officer. Unless a date is provided within an item of cost identified below, all items within

  6. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 J-1 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J -- LIST OF ATTACHMENTS TABLE OF CONTENTS Attachment Number Title of Attachment Modification Number Number of Pages J.1 ABBREVIATIONS AND ACRONYM LIST 0 6 J.2 REQUIREMENTS SOURCES AND IMPLEMENTING DOCUMENTS 331 8 J.3 HANFORD SITE SERVICES AND INTERFACE REQUIREMENTS MATRIX 246 107 J.4 PERFORMANCE EVALUATION AND MEASUREMENT PLAN (PEMP) 249 50 J.5 PERFORMANCE GUARANTEE AGREEMENT 0 3 J.6 SMALL BUSINESS SUBCONTRACTING PLAN

  7. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8RL14655 640 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF ATTACHMENTS TABLE OF CONTENTS ATTACHMENT J-1 TABLE OF RIVER CORRIDOR CLOSURE CONTRACT WORK SCOPE ATTACHMENT J-2 DOE DIRECTIVES APPLICABLE TO THE RIVER CORRIDOR CLOSURE CONTRACT ATTACHMENT J-3 PERFORMANCE GUARANTEE AGREEMENTS ATTACHMENT J-4 SMALL BUSINESS SUBCONTRACTING PLAN ATTACHMENT J-5 SMALL DISADVANTAGED BUSINESS PARTICIPATION PROGRAM TARGETS ATTACHMENT J-6 ADVANCE AGREEMENT, PERSONNEL, AND RELATED

  8. Part III - Section J

    National Nuclear Security Administration (NNSA)

    92995 Budget Formulations Process DOE M 140.1-1B 33001 Interface with the Defense Nuclear Facilities Safety Board DOE O 142.2A, Admin Chg 1 dated 62713 121506 Voluntary...

  9. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (11-03-2010) Title: Standard Terms & Conditions for International Commercial Transactions Owner: Procurement Policy & Quality Dept Initial Release Date: 11/3/10 Page 1 of 8 PPQD-TMPLT-008R01 Template Release Date: 12/01/09 Printed copies of this document are uncontrolled. Before using a printed copy to perform work, verify the version against the electronic document to ensure you are using the correct version. SANDIA CORPORATION SF 6432-IN (11-03-2010) SECTION II GENERAL PROVISIONS FOR

  10. Section II INT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN (01-12-2010) Title: Standard Terms & Conditions for International Commercial Transactions Owner: Procurement Policy & Quality Dept Initial Release Date: 01/12/10 Page 1 of 6 PPQD-TMPLT-008R01 Template Release Date: 12/01/09 Printed copies of this document are uncontrolled. Before using a printed copy to perform work, verify the version against the electronic document to ensure you are using the correct version. SANDIA CORPORATION SF 6432-IN (01-12-2010) SECTION II GENERAL PROVISIONS

  11. HASQARD Section 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HASQARD Section 4.2.4, Volume 2, Revision 3 requires: "The field custodian shall seal the cap of the individual sample container so that any tampering is easy to detect. Custody seals shall be used to verify that sample integrity has been maintained during transport." The HASQARD Focus Group provides the following clarification to the requirement: Note: The presence of, or fixative residue from, custody seals can interfere with the functionality of equipment used during analysis (e.g.,

  12. HASQARD Section 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    text of the sixth paragraph in HASQARD Volume 2, Revision 3, Section 4.2.4 is revised to say: "Custody seals shall be used to verify that sample integrity has been maintained during transport. The field custodian shall seal the cap of the individual sample container so that any tampering is easy to detect. In lieu of using a custody seal directly applied to sample containers, the sample container may be placed inside a secondary container that is sealed with a custody seal. Custody tape

  13. 10Be Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be(p, X) (Current as of 03/01/2016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1970GO04 10Be(p, γ0): σ 0.6 - 6.3 θ = 0°, θ = 90° 06/05/2012 1987ERZY 10Be(p, n): σ 0.9 - 2 X4 05/15/2012 The following references may be related but not included. 1991GOZV Back to (p, X) Main Page Back to (α, X) Main Page Back to Datacomp Home Page Last modified: 02 March 2016

  14. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Modification 476 J.2-1 ATTACHMENT J.2 REQUIREMENTS SOURCES AND IMPLEMENTING DOCUMENTS The following lists are provided in accordance with the Section I Clause entitled, DEAR 970.5204-2, Laws, Regulations, and DOE Directives. LIST A: APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS Table J.2.1 Code of Federal Regulations (CFR) Document Number Title 10 CFR 63 Disposal of High-Level Radioactive Wastes in a Geologic Repository at Yucca Mountain, Nevada 10 CFR 71 Packaging And Transportation Of

  15. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, Revision 5 J.10-1 ATTACHMENT J.10 WAGE DETERMINATIONS - SERVICE CONTRACT ACT (SCA) AND DAVIS-BACON ACT Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.10, Revision 5 J.10-2 SERVICE CONTRACT ACT WAGE DETERMINATION WD 05-2569 (Rev.-18) was first posted on www.wdol.gov on 07/14/2015 ***************************************************************************** REGISTER OF WAGE DETERMINATIONS UNDER | U.S. DEPARTMENT OF LABOR THE SERVICE CONTRACT ACT | EMPLOYMENT

  16. Cross-Section Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section Measurement of 2 H(n,np)n at 16 MeV in Symmetric Constant Relative Energy Configurations Alexander Hoff Couture A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy. Chapel Hill 2011 Approved by: T. B. Clegg, Advisor C. R. Howell, Advisor H. J. Karwowski, Reader J. Lu, Reader J. Engel, Reader c 2011 Alexander Hoff Couture ALL

  17. Section L, Paragraph L-4

    National Nuclear Security Administration (NNSA)

    D SECTION L ATTACHMENT D CROSS REFERENCE MATRIX Section L Section M Offeror's Proposal Criterion 1: PAST PERFORMANCE L-15 (a) M-3 (a) Criterion 2: SITE ORGANIZATION AND...

  18. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1985NE05 6Li(α, γ): γ thick target yield resonance X4 02/15/2012 1966FO05 6Li(α, γ): σ 0.9 - 3.0 2 < Eγ < 4 MeV, 4 < Eγ < 7 MeV, thick target capture γ-ray yield, capture γ-ray yield of 2.43 MeV resonance 02/29/2012 1989BA24 6Li(α, γ): σ 1.085, 1.175 X4 02/15/2012 1979SP01 6Li(α, γ): thick target yield curve for 718 keV γ-rays 1140 - 1250 keV 1175 keV resonance 07/19/2011

  19. 19F Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2008UG01 19F(α, p): yield curves, σ 792 - 1993 keV X4 09/14/2011 2005UG04 19F(α, p1γ): excitation curve 1238 - 2009 keV 1 11/30/2011 19F(α, p0): excitation curve 1 19F(α, p1): excitation curve 1 1984CS01 19F(α, α): σ 1.5 - 3.7 X4 09/14/2011 1994CH36 19F(α, α): σ 1.5 - 4.5 X4 09/14/2011 2000WR01 19F(α, n): neutron yields and σ 2.28 - 3.10 X4 09/14/2011 1977VA10 19F(α, n): differential

  20. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  1. 10B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 01/21/2015) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1992MC03 10B(α, α): σ relative to Rutherford scattering 1 - 3.3 X4 05/02/2012 1969GA01 10B(α, p), (α α'): relative σ at θ = 90° for Eγ = 1.0 - 3.5 0.170 MeV, 3.088 MeV, 3.682 MeV, 3.852 MeV, 0.717 MeV 06/18/2012 1973VA25 10B(α, n): laboratory differential σ 1.0 - 5.0 for n0: θ = 0°, θ = 90°, θ = 160° X4 04/04/2011 for n1: θ = 0°, θ = 90° for n23: θ = 0°, θ = 90° 10B(α, n):

  2. 11B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B(α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1991WA02 11B(α, n): thick-target yield of Eα = 411, 605 and 606 keV resonance 350 - 2400 keV 1 X4 04/04/2011 11B(α, n): for 606-keV resonance 1 11B(α, n): for 411-keV resonance after subtraction of the 605-keV resonance 1 11B(α, n): S-factor 1 11B(α, n): S-factor for thick-target 400 - 500 keV 1 11B(α, n): S-factor for thin-target 1 1966MA04, Errata 11B(α, n): excitation curve < 4.5 for

  3. 11C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C(p, X) (Current as of 03/01/2016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2013SO11 11C(p, γ): deduced astrophysical reaction rates and S-factors X4 12/14/2015 2003LI51 11C(p, γ): deduced S-factor low X4 09/12/2011 2003TA02 11C(p, γ): deduced S-factor 0 - 0.7 X4 09/12/2011 2003KU36 11C(p, p): elastic scattering σ ~ 0.2 - 3.2 θcm = 180° 09/08/2011 Back to (p, X) Main Page Back to (α, X) Main Page Back to Datacomp Home Page Last modified: 02 March

  4. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2001NE15 12C(p, γ): σ, deduced S(E) ratio < 160 keV X4 10/28/2014 1993CH02 12C(p, X): σ for η production ≤ 0.9 GeV X4 03/07/2012 1974RO29 12C(p, γ): σ 150 - 3000 keV X4 08/27/2013 1951GO1B 12C(p, p): yield curve of elastic scattering 0.2 - 4.0 θ = 164° 11/05/2014 1976ME22 12C(p, p): absolute σ 0.3 - 2.0 X4 08/07/2013 2008BU19 12C(p, γ): σ, deduced S-factors. 354, 390, 460, 463, 565,

  5. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03/01/2016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2001NE15 13C(p, γ): σ, deduced S(E) ratio < 160 keV X4 09/12/2011 1994KI02 13C(p, γ): γ-ray yield, calculated S(E) 120 - 950 keV X4 09/12/2011 2008HE11 13C(p, γ): reaction yield at the resonance 448.5-keV for a fresh target and after an integrated charge of 1C 435 - 470 keV σ X4 11/07/2011 1991BR19 13C(p, γ): reaction yield near the resonance 0.44 - 0.6 483.3-keV, 0.55-MeV X4 11/07/2011

  6. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2006JO11 13C(α, n): deduced S(E) ~ 0 - 1 from (1993BR17), from (1993DR08) X4 08/04/2011 2001HE22 13C(α, n): S(E) 0 - 2 S-factor 11/15/2011 2003KA51 13C(α, n): deduced S-factors, reaction rate Ecm ~ 200 - 800 keV X4 05/01/2012 1993DR08 13C(α, n): excitation function and S(E) ~ 275 - 1075 keV σ, S-factor X4 08/04/2011 2008HE11 13C(α, n): σ, reaction yields and S(E) Ecm = 320 - 700 keV σ, Table

  7. 14N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2003MU12 14N(p, γ): deduced astrophysical S-factors < 600 keV X4 05/06/2013 1990WA10 14N(p, n): σ < 30 X4 04/26/2012 2005CO16, 2006BE50 14N(p, γ): σ, deduced astrophysical S-factors, resonance strength 70 - 228 keV X4 05/08/2013 2006LE13 14N(p, γ): σ, deduced astrophysical S-factors 70 - 228 keV X4 05/30/2013 2005BR04, 2005BR15 14N(p, γ): astrophysical S-factors ~ 0.1 - 2.5 1 08/15/2013 2004FO02,

  8. 14N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1971CO27 14N(α, γ): thick target yield 0.5 - 1.2 1 08/04/2011 2000GO43 14N(α, γ): resonance yields, deduced astrophysical reaction rates 550 - 1300 keV X4 03/01/2012 1973RO03 14N(α, γ): γ-ray yield 1.0 - 3.2 1 04/30/2012 1980MA26 14N(α, α): σ 1.5, 1.6 X4 03/01/2012 2007CH25 14N(α, γ): deduced resonance parameters 1620 - 1775 keV X4 03/01/2012 1994YE11 14N(α, α): σ(θ)/σ(Rutherford) 2

  9. 16O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1973MC12 16O(p, α): σ threshold - 7.7 X4 10/17/2012 1981DY03 16O(p, pα): σ for production of γ-rays threshold - 23 4.44-MeV γ-rays X4 03/15/2011 16O(p, p'): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1997MO27 16O(p, p), (p, γ): elastic, capture σ Ecm = 200 - 3750 keV X4 03/28/2013 1973RO34 16O(p, γ): S(E) 0.3 - 3.1 S-Factor X4 05/10/2011 16O(p, γ): differential σ for the DC → ground

  10. 18O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2003DA19 18O(α, γ): deduced resonance strengths ~ 470 - 770 keV X4 02/13/2012 1978TR05 18O(α, γ): excitation function for the 1.27 MeV secondary γ-ray transition 0.6 - 2.3 θγ = 0° 02/29/2012 1990VO06 18O(α, γ): resonance γ yields < 0.78 X4 02/13/2012 1973BA10 18O(α, n): σ with target thickness 1 - 5 6 keV, 13 keV 06/06/2011 1956BO61 18O(α, n): neutron yields 1.8 - 5.3 0° - 30° X4

  11. SECTION J, APPENDIX B - PEP

    National Nuclear Security Administration (NNSA)

    SECTION J APPENDIX B PERFORMANCE EVALUATION PLAN Replaced by Mods 002, 016, 020, 029, 0084 Intentionally left blank for Internet posting purposes. Section J, Appendix B, Page 1...

  12. SECTION J, APPENDIX B - PEP

    National Nuclear Security Administration (NNSA)

    SECTION J APPENDIX B PERFORMANCE EVALUATION PLAN Replaced by Mods 002, 016, 020, 029, 0084 Intentionally left blank for Internet posting purposes. Section J, Appendix B, Page 1

  13. 3H Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3H(α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2001TO07 3H(α, γ): deduced S-factor Ecm = 0.05 - 0.8 X4 01/09/2012 1994BR25 3H(α, γ): deduced σ and S-factor Ecm = 50 - 1200 keV X4 01/09/2012 1987SC18 3H(α, γ): σ, deduced S-factor Ecm = 79 - 464 keV X4 01/09/2012 1988SA13 3H(α, α): recoil σ 0.5 - 2.5 X4 01/09/2012 1987BU18 3H(α, γ): σ and S-factor 0.7 - 2 X4 01/09/2012 1968IV01 3H(α, α): elastic scattering σ 3 - 11 Table 9 X4

  14. 3He Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1982KR05 3He(α, γ): σ Ecm = 107 - 1266 keV X4 01/05/2012 1969NA24 3He(α, γ): σ and S-factor 164 - 245 keV σ, S(E) X4 07/19/2011 1984OS03 3He(α, γ): σ 165 - 1169 keV X4 01/05/2012 1982OS02 3He(α, γ): S-factor 165 - 1170 keV S34(Ecm) X4 07/19/2011 1988HI06 3He(α, γ): σ Ecm = 195 - 686 keV X4 01/05/2012 2007CO17 3He(α, γ): deduced σ and S-factor 220, 250, 400 keV X4 01/05/2012

  15. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  16. 10B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2010LA11 10B(p, α): deduced S(E) E(cm) = 0 - 0.15 1 11/30/2011 1993AN06 10B(p, α): α yield E(cm) = 17 - 134 keV X4 11/07/2011 1993AN09 10B(p, α): absolute fusion σ and S(E) E(cm) = 48 - 159 keV X4 11/07/2011 1972SZ02 10B(p, α): total reaction σ and S(E) 60 - 180 keV 1 X4 03/03/2011 1983WI09 10B(p, γ): γ yield, capture σ(E) 0.07 - 2.2 X4 11/07/2011 2003TO21 10B(pol. p, γ): σ, deduced

  17. 11B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 12/17/2015) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2004RO27, 2004SP03 11B(p, α): deduced σ, S-factor Ecm ~ 0 - 1 X4 11/07/2012 2010LA11 11B(p, α): deduced S-factor E(cm) = 0 - 0.6 1 11/30/2011 2000KE10 11B(pol. p, γ): σ, deduced S-factor < 100 keV X4 11/07/2012 1993AN06 11B(p, α): α yield E(cm) = 17 - 134 keV X4 11/29/2012 1979DA03 11B(p, 3α): σ 35.4 - 1500 keV X4 07/30/2014 1992CE02 11B(p, γ): deduced S-factor 40 - 180 keV X4 03/07/2012

  18. 12C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2009MA70 12C(α, γ0): σ 0 - 2.27 X4 05/01/2012 2012OU01 12C(α, γ): deduced S-factor Ecm = 0.3 - 3.5 X4 02/12/2015 1997KU18 12C(α, γ): analyzed S-factor Ecm = 0.9 - 3 X4 05/10/2012 1987RE02 12C(α, γ): σ, deduced S-factor 0.94 - 2.84 X4 05/09/2012 2001HA31 12C(α, γ): deduced S-factors Ecm = 0.95 - 2.78 E1, E2 06/18/2012 2001KU09 12C(α, γ): deduced S-factor Ecm = 0.95 - 2.8 X4 05/09/2012

  19. 14C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C(p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1969SI04 14C(p, γ): γ-rays yield for 230 - 690 keV Eγ ≥ 2.8 MeV 08/15/2013 1990GO25 14C(p, γ): σ, deduced S-factor 250 - 740 keV X4 10/28/2014 1968HE12 14C(p, γ): γ-ray yield 0.6 - 2.7 γ0 01/06/2015 1991WA02 14C(p, n): σ 1.0 - 1.55 X4 10/28/2014 1968HA27 14C(p, p): σ at θcm = 1.0 - 2.7 39.2°, 54.7°, 90°, 125.3°, 161.4° 08/15/2013 1971KU01 14C(p, γ0): excitation function at θ = 90° 1.3 - 2.6 1

  20. 15N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1990WA10 15N(p, n): σ < 30 X4 04/26/2012 1982RE06 15N(p, α): σ 78 - 810 keV X4 09/12/2011 1979ZY02 15N(p, α0): σ, deduced S-factor 93 - 418 keV X4 09/12/2011 2010LE21, 2013DE03 15N(p, γ): σ, S-factors 130 - 1800 keV X4 05/01/2012 & 02/01/2016 2012IM02 15N(p, γ), (p, αγ): σ, S-factors 0.14 - 1.80 X4 02/01/2016 1974RO37 15N(p, γ), (p, αγ): σ 150 - 2500 keV X4 09/12/2011 1968GO07

  1. 15N Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 05/14/2012) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2002WI18 15N(α γ): σ 461 - 2642 keV X4 09/12/2011 1997WI12 15N(α γ): σ 0.65 - 2.65 X4 09/12/2011 1995WI26 15N(α γ): σ 0.67 - 0.69 X4 09/12/2011 1969AI01 15N(α γ): γ-ray excitation curve for 3.0 ≤ Eγ ≤ 7.0 MeV 2.5 - 3.2 1 11/30/2011 1977DI08 15N(α, γ): γ-ray excitation curve near Eα = 3.15 MeV for transitions to 3146 - 3158 keV five low-lying states, 4.65 MeV (13/2+) state

  2. 16O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6O(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1971TO06 16O(α, γ): σ 0.85 - 1.8 X4 09/15/2011 1953CA44 16O(α, α): σ 0.94 - 4.0 X4 09/15/2011 1997KU18 16O(α, γ): analyzed S-factor 1 - 3.25 X4 05/10/2012 1980MA27 16O(α, α): σ 1.305 - 1.330; 2.950 - 3.075 X4 02/14/2012 16O(α, γ): σ 1.37, 2.6, 2.9, 3.036 1987HA24 16O(α, γ): σ Ecm = 1.7 - 2.35 X4 02/14/2012 1990LE06 16O(α, α): σ 1.8 - 5 X4 03/12/2011 1985JA17 16O(α, α): σ 2

  3. 17O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2010SE11 17O(p, α): nuclear excitation function 0 - 0.7 1 06/22/2011 1973RO03 17O(p, γ): γ-ray yield 0.15 - 1.4 1 08/01/2012 2015BU02 17O(p, γ): total S(E)-factors 0.17 - 0.53 X4 03/03/2016 2012SC16, 2014DI01 17O(p, γ): σ, deduced S-factors Ecm = 0.2 - 0.4 X4 03/03/2016 1973RO34 17O(p, γ): S(E) 0.3 - 1.9 S-Factor X4 06/22/2011 17O(p, γ): σ for the γ-ray transition 0.94 → 0 MeV 17O(p, γ):

  4. 17O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2013BE11; see also 2012BEZP 17O(α, n), (α, γ): σ, S-factors 0.8 - 2.3 X4 02/12/2015 1973BA10 17O(α, n): neutron yields with target thickness 0.9 - 5.3 ~ 2.5 keV, 6 keV, 13 keV, ~ 35 keV 06/06/2011 1976MC12 17O(α, n1): yield of 1.63-MeV γ's 1.4 - 2.3 θγ = 50° 04/28/2011 17O(α, n0): yield of neutrons θn = 120° 17O(α, n1): yield of 1.63-MeV γ's 1.825 - 1.885 θγ = 0° 05/03/2011 17O(α,

  5. 18O Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8O(p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2008LA06 18O(p, α): deduced S-factor Ecm = 0 - 1.5 θα = 46° 12/03/2012 1990CH32 18O(p, α): σ < 2 X4 10/04/2012 1990VO06 18O(p, γ): resonance γ yields < 0.22 X4 02/13/2012 2008LA13 18O(p, α): deduced σ 0 - 250 keV X4 10/20/2014 1973BA31 18O(p, n): total neutron-production σ < 5 1 X4 05/10/2011 1990WA10 18O(p, n): σ < 30 X4 04/26/2012 1979LO01 18O(p, α): σ 72 - 935 keV X4

  6. Endangered Species Act Section 7 Consultation Handbook | Open...

    Open Energy Info (EERE)

    section 7 processes and providing examples of various types of consultations. Author Fish and Wildlife Service and the National Marine Fisheries Service Published Fish and...

  7. Vermont Agency of Natural Resources Section 401 Water Quality...

    Open Energy Info (EERE)

    document outlines the Agency of Natural Resources coordination process with respect to Clean Water Act Section 401 water quality certification decisions. Author Vermont...

  8. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, April, May, June 1980

    SciTech Connect (OSTI)

    Hutchinson, D.L.

    1980-08-01

    The Retort No. 18 burn was terminated on May 11, 1980. A total of 5547 barrels of shale oil or 46 percent of in-place resource was recovered from the retort. The EPA-DOE/LETC post-burn core sampling program is underway on Retort No. 16. Eleven core holes (of 18 planned) have been completed to date. Preliminary results indicate excellent core recovery has been achieved. Recovery of 702 ft of core was accomplished. The Prevention of Significant Deterioration (PSD) permit application was submitted to the EPA regional office in Denver for review by EPA and Utah air quality officials. The application for an Underground Injection Control (UIC) permit to authorize GKI to inject retort wastewater into the Mesa Verde Formation is being processed by the State of Utah. A hearing before the Board of Oil, Gas and Mining is scheduled in Salt Lake City, Utah, for July 22, 1980. Re-entry drilling on Retort No. 24 is progressing and placement of surface equipment is underway. Retort No. 25 blasthole drilling was completed and blast preparations are ongoing. Retort No. 25 will be blasted on July 18, 1980. The retort will be similar to Retort No. 24, with improvements in blasthole loading and detonation. US Patent No. 4,205,610 was assigned to GKI for a shale oil recovery process. Rocky Mountain Energy Company (RME) is evaluating oil shale holdings in Wyoming for application of the GKI process there.

  9. Section L, Paragraph L-4

    National Nuclear Security Administration (NNSA)

    D SECTION L ATTACHMENT D CROSS REFERENCE MATRIX Section L Section M Offeror's Proposal Criterion 1: PAST PERFORMANCE L-15 (a) M-3 (a) Criterion 2: SITE ORGANIZATION AND QUALIFICATIONS OF KEY PERSONNEL L-15 (b)(1) M-3 (b)(1) L-15 (b)(2) M-3 (b)(2) Criterion 3: SMALL BUSINESS PARTICIPATION L-15 (c) M-3 (c)

  10. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect (OSTI)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  11. PART III … SECTION J

    National Nuclear Security Administration (NNSA)

    B, Page 1 SECTION J APPENDIX B AWARD FEE PLAN [Note: To be inserted by the Contracting Officer after contract award.]

  12. PART III … SECTION J

    National Nuclear Security Administration (NNSA)

    M, Page 1 SECTION J APPENDIX M CONTRACTOR COMMITMENTS, AGREEMENTS, AND UNDERSTANDINGS [Note: To be inserted by the Contracting Officer after contract award.]

  13. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    0007749 SECTION J, APPENDIX A: STATEMENT OF WORK TABLE OF CONTENTS CHAPTER I. OBJECTIVES, SCOPE, AND REQUIREMENTS ......................................................................... 1 1.0 OBJECTIVE .................................................................................................................................................. 1 2.0 BACKGROUND

  14. Consultation with Indian Tribes in the Section 106 Review Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indian tribe that attaches religious and cultural significance to historic properties that ... 106 and for Tribal Historic Preservation Officers and tribal cultural resource managers. ...

  15. Section H: Special Contract Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .........14 H.17 Conditional Payment Of Fee Process ......H.17 Conditional Payment of Fee Process If the Fee Determining Official (FDO) or designee ...

  16. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SRR-ESH-2013-00054 Revision 1 August 28, 2013 Page 1 of 6 Consent Order of Dismissal, Section III.7 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 7,845 kgals Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B b) Process volume of saltstone grout disposed and vault/disposal unit location (including cell

  17. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SRR-ESH-2014-00039 Revision 1 August 28, 2014 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 8,770 kgals Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal unit location

  18. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SRR-ESH-2014-00076 Revision 1 Posted Date: December 2, 2014 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 9,066 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal

  19. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SRR-ESH-2015-00014 Revision 1 Posted Date: May 29, 2015 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 9,894 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal unit

  20. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SRR-ESH-2015-00110 Revision 1 Post Date: February 29, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 10, 722 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cells 5A and 5B b) Process volume of saltstone grout disposed and

  1. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SRR-ESH-2016-00025 Revision 1 Post Date: May 27, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 10, 744 kgal SDU 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells A and B SDU 5, Cells A and B b) Process volume of saltstone grout disposed and vault/disposal

  2. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SRR-ESH-2016-00052 Revision 1 Post Date: August 26, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 11,143 kgal SDU 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells A and B SDU 5, Cells A and B b) Process volume of saltstone grout disposed and vault/disposal

  3. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SRR-ESH-2016-00068 Revision 0 Post Date: August 26, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 11,610 kgal SDU 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells A and B SDU 5, Cells A and B b) Process volume of saltstone grout disposed and vault/disposal

  4. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SRR-ESH-2015-00052 Revision 1 Post Date: August 28, 2015 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 9,948 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal unit

  5. SECTION M_Evaluation Factors

    National Nuclear Security Administration (NNSA)

    EVALUATION OF PROPOSALS .....................................................................................2 M-2 BASIS FOR CONTRACT AWARD ...................................................................................3 M-3 TECHNICAL AND MANAGEMENT CRITERIA ..........................................................3 M-4 COST CRITERION .............................................................................................................6 Section M, Page 2 M-1 EVALUATION OF PROPOSALS

  6. SECTION J - TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    Conformed to Mod 0108 DE-NA0000622 Section J Page i PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF APPENDICES TABLE OF CONTENTS Appendix A Statement of Work (Replaced by Mod 002; Modified Mod 016; Replaced Mod 029) Appendix B Performance Evaluation Plan (Replaced by Mods 002, 016, 020, 029, 0084) Appendix C Contractor's Transition Plan Appendix D Sensitive Foreign Nations Control Appendix E Performance Guarantee Agreement(s) Appendix F National Work Breakdown

  7. RFP Section H Clause Templates

    Office of Energy Efficiency and Renewable Energy (EERE)

    On May 3, 2011, twenty two draft Section H clause templates were distributed for Procurement Director (PD), Head of Contracting Activity (HCA), General Counsel and National Nuclear Security Administration (NNSA) review and comment. All comments received were considered and changes were made as appropriate including the elimination of six clauses. The final version of the sixteen RFP Section H clause templates identified below will be available in STRIPES.

  8. RFP Section L Attachment Templates

    Broader source: Energy.gov [DOE]

    On March 29,2010, six draft RFP Section L Attachment templates (Past Performance Information Questionnaire, Past Performance Questionnaire Cover Letter, Letter of Commitment, Past Performance Reference Information Form, ESH&Q Past Performance Information Form, and Resume Format) were distributed for Procurement Director (PD) and Head of Contracting Activity (HCA) review and comment. All comments received were considered and changes were made as appropriate. The final versions of the six aforementioned RFP Section L Attachment templates will be e-mailed directly to the Procurement Directors and made available in the STRIPES Library. For RFP's generated in STRIPES, the Section L Attachments should be identified in clause DOE-L-1033 and the file with each Attachment should be attached to the RFP.

  9. Transition section for acoustic waveguides

    DOE Patents [OSTI]

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  10. SECTION M_Evaluation Factors

    National Nuclear Security Administration (NNSA)

    EVALUATION OF PROPOSALS................................................................2 M-2 BASIS FOR CONTRACT AWARD.............................................................3 M-3 TECHNICAL AND MANAGEMENT CRITERIA...........................................3 M-4 COST CRITERION.................................................................................5 Section M, Page 2 M-1 EVALUATION OF PROPOSALS (a) This acquisition will be conducted using the policies and procedures in Federal

  11. SECTION M_Evaluation Factors

    National Nuclear Security Administration (NNSA)

    TABLE OF CONTENTS M-1 EVALUATION OF PROPOSALS......................................................................176 M-2 BASIS FOR CONTRACT AWARD...................................................................177 M-3 TECHNICAL AND MANAGEMENT CRITERIA..........................................177 M-4 COST CRITERION.............................................................................................179 Section M, Page 176 M-1 EVALUATION OF PROPOSALS (a) This acquisition will be

  12. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    Mod 002; Modified Mod 016; Replaced Mod 029; Modified Mod 0049) Honeywell FM&T, LLC Contract No. DE-NA0000622 SECTION J APPENDIX A STATEMENT OF WORK 09/19/12 TABLE OF CONTENTS CHAPTER I. OBJECTIVES, SCOPE, AND REQUIREMENTS ......................................................................... 1 1.0 OBJECTIVE .................................................................................................................................................. 1 2.0 BACKGROUND

  13. Cross Sections for (p, X)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections for (p, X) Reaction for Nuclei A = 3 - 20 Go to the Text Only below if you prefer to view the nuclides in a text list. 20Ne 19F 16O 17O 18O 14N 15N 11C 12C 13C 14C 10B 11B 7Be 9Be 10Be 6Li 7Li 3He 4He Note: Comments, and corrections are welcome. Please email us. List of available cross section data for A = 3 - 20 nuclides: Helium: 3He, 4He Lithium: 6Li, 7Li Beryllium: 7Be, 9Be, 10Be Boron: 10B, 11B Carbon: 11C, 12C, 13C, 14C Nitrogen: 14N, 15N Oxygen: 16O, 17O, 18O Fluorine: 19F

  14. Cross Sections for (α, X)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections for (α, X) Reaction for Nuclei A = 3 - 20 Go to the Text Only below if you prefer to view the nuclides in a text list. 20Ne 19F 16O 17O 18O 14N 15N 12C 13C 10B 11B 9Be 10Be 6Li 7Li 3He 4He 3H Note: Comments, and corrections are welcome. Please email us. List of available cross section data for A = 3 - 20 nuclides: Hydrogen: 3H Helium: 3He, 4He Lithium: 6Li, 7Li Beryllium: 9Be, 10Be Boron: 10B, 11B Carbon: 12C, 13C Nitrogen: 14N, 15N Oxygen: 16O, 17O, 18O Fluorine: 19F Neon: 20Ne

  15. PART III … SECTION J

    National Nuclear Security Administration (NNSA)

    18 Section J Appendix F List of Applicable Laws, Regulations, and DOE Directives In addition to the list of applicable directives referenced below, the Contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. This List excludes directives that have been granted an exemption from the CRD in whole or in part. For those Directives whereby the Contractor has been granted an

  16. Petroleum processing handbook

    SciTech Connect (OSTI)

    McKetta, J.J. )

    1992-01-01

    It is time that many of the petroleum processes currently in use be presented in a well-organized, easy-to-read and understandable manner. This handbook fulfills this need by covering up-to-date processing operations. Each chapter is written by a world expert in that particular area, in such a manner that it is easily understood and applied. The handbook is conveniently divided into four sections: products, refining, manufacturing processes, and treating processes. Each of the processing chapters contain information on plant design as well as significant chemical reactions. Wherever possible, shortcut methods of calculations are included along with nomographic methods of solution. In the front of the book are two convenient sections that will be very helpful to the reader. These are (1) conversion to and from SI units, and (2) cost indexes that will enable the reader to update any cost information. Sections have been processed separately for inclusion on the data base.

  17. F-Area Hazardous Waste Management Facility Corrective Action Report, Third and Fourth Quarter 1997. Volume 1

    SciTech Connect (OSTI)

    1998-03-01

    SRS monitors groundwater quality at the F-Area HWMF and provides results of this monitoring to the SCDHEC semiannually as required by the RCRA permit. SRS also performs monthly sampling in accordance with Section of the UIC application.

  18. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  19. Recommended Dosimetry Cross Section Compendium.

    Energy Science and Technology Software Center (OSTI)

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  20. Turbine airfoil having outboard and inboard sections

    SciTech Connect (OSTI)

    Mazzola, Stefan; Marra, John J

    2015-03-17

    A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.

  1. EIS-0391-FEIS-Volume3-Section_1-2-2012

    Office of Environmental Management (EM)

    SECTION 1 OVERVIEW OF THE PUBLIC COMMENT PROCESS 1-1 SECTION 1 OVERVIEW OF THE PUBLIC COMMENT PROCESS This section of this Comment-Response Document (CRD) describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM EIS) and the procedures used to respond to public comments. Section 1.1 summarizes the organization of this CRD. Section 1.2 discusses the public comment process and

  2. Part IV: Section D - Packaging and Marking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PART I SECTION D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M901 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking ...

  3. Section 999: Annual Plans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 10, 2013 Draft 2014 Annual Plan Section 999: Draft 2014 Annual Plan July 8, 2013 2013 Annual Plan Section 999: 2013 Annual Plan August 3, 2012 2012 Annual Plan Section ...

  4. OpenEI Community - Section 7

    Open Energy Info (EERE)

    http:en.openei.orgcommunityblogidaho-meeting-2comments endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 Geothermal Regulatory Roadmap Wed, 05 Sep...

  5. Regulatory Review Comment Section | Department of Energy

    Office of Environmental Management (EM)

    Radiation Protection of the Public and the Environment Regulatory Review Comment Section Regulatory Review Comment Section DOE Comments on Radiation Protection (Atomic Energy ...

  6. Vermont Section 401 Water Quality Certification Application ...

    Open Energy Info (EERE)

    Abstract Application required for Section 401 water quality certification under the Clean Water Act. Form Type ApplicationNotice Form Topic Section 401 Water Quality...

  7. Section 3: Office Portfolio Management, Bioenergy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio Management 3-1 Last revised: March 2015 Section 3: Office Portfolio Management This section describes how the U.S. Department of Energy's (DOE's) Bioenergy Technologies ...

  8. Electron Photon Interaction Cross Sections

    Energy Science and Technology Software Center (OSTI)

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  9. Elastic scattering and total cross sections

    SciTech Connect (OSTI)

    Cahn, R.N.

    1990-03-01

    This report discusses concepts of elastic scattering and cross sections of proton-proton interactions. (LSP)

  10. Automatic rapid attachable warhead section

    DOE Patents [OSTI]

    Trennel, A.J.

    1994-05-10

    Disclosed are a method and apparatus for automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly. 10 figures.

  11. Automatic rapid attachable warhead section

    DOE Patents [OSTI]

    Trennel, Anthony J.

    1994-05-10

    Disclosed are a method and apparatus for (1) automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, (2) automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, (3) manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and (4) automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly.

  12. Part V: Section H: Special Contract Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC36-08GO28308 Modification M801 Section H - Page 2 of 50 PART I SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 No Third Party Beneficiaries...

  13. Section 12 | OpenEI Community

    Open Energy Info (EERE)

    Contributor 4 September, 2012 - 21:36 Idaho Meeting 2 endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 The second Idaho GRR meeting was held today...

  14. Section 7 | OpenEI Community

    Open Energy Info (EERE)

    Contributor 4 September, 2012 - 21:36 Idaho Meeting 2 endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 The second Idaho GRR meeting was held today...

  15. Spontaneous Potential (book section) | Open Energy Information

    Open Energy Info (EERE)

    Reference LibraryAdd to library Book Section: Spontaneous Potential (book section) Author NA Published NA, The date "NA" was not understood.The date "NA" was not understood....

  16. OpenEI Community - Section 12

    Open Energy Info (EERE)

    http:en.openei.orgcommunityblogidaho-meeting-2comments endangered species Fauna Fish and Wildlife Flora FWS Section 12 Section 7 Wed, 05 Sep 2012 04:36:43 +0000 Kyoung 488...

  17. NAABB Full Final Report Section I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT SECTION I FULL FINAL REPORT SECTION I FULL FINAL REPORT SECTION I Program Overview Table of Contents Executive Summary ........................................................................................ iv Synopsis .......................................................................................................... 1 Perspective 1. NAABB was Preceded by the Aquatic Species Program ................ 29 Perspective 2. NAABB and the National Research Council Report on Sustainable

  18. SNL RML recommended dosimetry cross section compendium

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  19. Part IV: Section D - Packaging and Marking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PART I SECTION D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M901 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking 1 DE-AC36-08GO28308 Modification M901 Section D - Page 1 of 1 PART I SECTION D PACKAGING AND MARKING D.1 Packaging Preservation, packaging, and packing for shipment or mailing of all work delivered hereunder shall be in accordance with good commercial practice and adequate to insure acceptance by common carrier and

  20. Part IV: Section E - Inspection and Acceptance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SECTION E INSPECTION AND ACCEPTANCE DE-AC36-08GO28308 Modification M901 Section E - Page ii PART I SECTION E INSPECTION AND ACCEPTANCE TABLE OF CONTENTS E.1 FAR 52.246-9 Inspection of Research and Development (Short Form) (Apr 1984) 1 E.2 Acceptance 1 E.3 Certification 1 DE-AC36-08GO28308 Modification M901 Section E - Page 1 of 1 PART I SECTION E INSPECTION AND ACCEPTANCE E.1 FAR 52.246-9 Inspection of Research and Development (Short Form) (Apr 1984) The Government has the right to inspect and

  1. Large Pt processes in ppbar collisions at 2 TeV: measurement of ttbar production cross section in ppbar collisions at s**(1/2) = 1.96 TeV in the dielectron final states at the D0 experiment

    SciTech Connect (OSTI)

    Kumar, Ashish; /Delhi U.

    2005-10-01

    The measurement of the top-antitop pair production cross section in p{bar p} collisions at {radical}s = 1.96 TeV in the dielectron decay channel using 384 pb{sup -1} of D0 data yields a t{bar t} production cross-section of {sigma}{sub t{bar t}} = 7.9{sub -3.8}{sup +5.2}(stat){sub -1.0}{sup +1.3}(syst) {+-} 0.5 (lumi) pb. This measurement [98] is based on 5 observed events with a prediction of 1.04 background events. The cross-section corresponds to the top mass of 175 GeV, and is in good agreement with the Standard Model expectation of 6.77 {+-} 0.42 pb based on next-to-next-leading-order (NNLO) perturbative QCD calculations [78]. This analysis shows significant improvement from our previous cross-section measurement in this channel [93] with 230 pb{sup -1} dataset in terms of significantly better signal to background ratio and uncertainties on the measured cross-section. Combination of all the dilepton final states [98] yields a yields a t{bar t} cross-section of {sigma}{sub t{bar t}} = 8.6{sub -2.0}{sup +2.3}(stat){sub -1.0}{sup +1.2}(syst) {+-} 0.6(lumi) pb, which again is in good agreement with theoretical predictions and with measurements in other final states. Hence, these results show no discernible deviation from the Standard Model. Fig. 6.1 shows the summary of cross-section measurements in different final states by the D0 in Run II. This measurement of cross-section in the dilepton channels is the best dilepton result from D0 till date. Previous D0 result based on analysis of 230 pb{sup -1} of data (currently under publication in Physics Letters B) is {sigma}{sub t{bar t}} = 8.6{sub -2.7}{sup +3.2}(stat){sub -1.1}{sup +1.1}(syst) {+-} 0.6(lumi) pb. It can be seen that the present cross-section suffers from less statistical uncertainty. This result is also quite consistent with CDF collaboration's result of {sigma}{sub t{bar t}} = 8.6{sub -2.4}{sup +2.5}(stat){sub -1.1}{sup +1.1}(syst) pb. These results have been presented as D0's preliminary results in

  2. Gas-absorption process

    DOE Patents [OSTI]

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  3. Protecting Historic Properties: A Citizen's Guide to Section 106 Review (ACHP, 2015)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Section 106 of the National Historic Preservation Act of 1966 requires federal agencies to consider the effects of projects they carry out, approve, or fund on historic properties. The Section 106 review process is defined in Advisory Council on Historic Preservation (ACHP) regulations at 36 CFR Part 800, "Protection of Historic Properties." This ACHP publication explains how the public can become involved in the Section 106 process.

  4. Protecting Historic Properties: A Citizen's Guide to Section 106 Review (2015)

    Broader source: Energy.gov [DOE]

    Section 106 of the National Historic Preservation Act of 1966 requires federal agencies to consider the effects of projects they carry out, approve, or fund on historic properties. The Section 106 review process is defined in Advisory Council on Historic Preservation (ACHP) regulations at 36 CFR Part 800, "Protection of Historic Properties." This ACHP publication explains how the public can become involved in the Section 106 process.

  5. Vertically stabilized elongated cross-section tokamak

    DOE Patents [OSTI]

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  6. Expandable mixing section gravel and cobble eductor

    DOE Patents [OSTI]

    Miller, Arthur L. (Kenyon, MN); Krawza, Kenneth I. (Lakeville, MN)

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  7. A Multigroup Reaction Cross-Section Collapsing Code and Library of 154-Group Fission-Product Cross Sections.

    Energy Science and Technology Software Center (OSTI)

    1983-03-23

    Version 01/02 The code reads multigroup cross sections from a compatible data file and collapses user-selected reaction cross sections to any few-group structure using one of a variety of user neutron flux spectrum options given below: Option Flux description 1 Built-in function including Maxwellian, fission, fusion and slowing-down regions and requiring user-specified parameters and energy-region boundaries. 2 Set of log-log flux-energy interpolation points read from input cross-section data file. 3 Set of log-log flux-energy interpolationmore » points read from user-supplied card input. 4 - 6 Histogram flux values read from user-supplied card input in arbitrary group structure in units of flux-per unit-energy, flux-per-unit lethargy, or integral group flux. LAFPX-E may be used to collapse any set of multigroup reaction cross sections furnished in the required format. However, the code was developed for, and is furnished with, a library of 154-group fission-product cross sections processed from ENDF/B-IV with a typical light water reactor (LWR) flux spectrum and temperature. Four-group radiative capture cross sections produced for LWR calculations are tabulated in the code documentation and are incorporated in the EPRI-CINDER data library, RSIC Code Package CCC-309.« less

  8. Montana Watershed Protection Section Contacts Webpage | Open...

    Open Energy Info (EERE)

    contact information for the Watershed Protection Section of the Water Quality Planning Bureau. Author Montana Water Quality Planning Bureau Published State of Montana, Date Not...

  9. ACHP - Section 106 Regulations Flowchart Explanatory Material...

    Open Energy Info (EERE)

    Explanatory Material Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: ACHP - Section 106 Regulations Flowchart Explanatory Material Abstract This...

  10. Microsoft Word - SECTION D.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupational Medical Services at Hanford D-1 PART I - THE SCHEDULE SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 PACKAGING ......

  11. Cal. PRC Section 21065 - Environmental Quality Definitions |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 21065 - Environmental Quality DefinitionsLegal Abstract Contains...

  12. RPM Sections - RPM-2 RPM-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clock History Browse Pages Blog Labels Attachments Index Recent updates RSS feed builder Home RPM Sections Asset Management Information Technology (Assets) Lifecycle Management...

  13. Part IV: Section F - Deliveries or Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F DELIVERIES OR PERFORMANCE DE-AC36-08GO28308 Modification M933 Section F - Page ii PART I SECTION F DELIVERIES OR PERFORMANCE TABLE OF CONTENT F.1 Term of Contract 1 F.2 Principal Place of Performance 1 F.3 FAR 52.242-15 Stop-Work Order (Aug 1989) (Alternate 1) (Apr 1984) 1 DE-AC36-08GO28308 Modification M933 Section F - Page 1 of 2 PART I SECTION F DELIVERIES OR PERFORMANCE F.1 Term of Contract (a) This contract shall be effective as specified in Block No. 28, Award Date, of SF 33, and shall

  14. Part IV: Section G - Contract Administration Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G CONTRACT ADMINISTRATION DATA DE-AC36-08GO28308 Modification M901 Section G - Page ii PART I SECTION G CONTRACT ADMINISTRATION DATA TABLE OF CONTENTS G.1 Contracting Officer's Representative(s) 1 G.2 Contract Administration 1 G.3 Modification Authority 1 G.4 Monthly Cost Reports 1 G.5 Indirect Charges 2 DE-AC36-08GO28308 Modification M901 Section G - Page 1 of 2 PART I SECTION G CONTRACT ADMINISTRATION DATA G.1 Contracting Officer's Representative(s) Contracting Officer's Representative(s)

  15. Photodetachment process for beam neutralization

    DOE Patents [OSTI]

    Fink, J.H.; Frank, A.M.

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.

  16. METAL MEDIA FILTERS, AG-1 SECTION FI

    SciTech Connect (OSTI)

    Adamson, D.

    2012-05-23

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  17. Part V: Section H - Special Contract Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H SPECIAL CONTRACT REQUIREMENTS DE-AC36-08GO28308 Modification M962 Section H - Page 2 of 52 PART I SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 No Third Party Beneficiaries ............................................................................................. 4 H.2 Reserved ............................................................................................................................ 4 H.3 Employee Compensation: Pay and Benefits

  18. Part VI: Section I - Contract Clauses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC36-08GO28308 Modification M1033 Section I - Page ii PART II SECTION I CONTRACT CLAUSES TABLE OF CONTENTS I.1 52.252-2 -- Clauses Incorporated by Reference (Feb 1998) ............................................................... 1 I.2 52.202-1 -- Definitions (Nov 2013) .................................................................................................... 1 I.3 52.203-3 -- Gratuities (Apr 1984)

  19. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  20. SECTION V. SUPERCONDUCTING CYCLOTRON AND INSTRUMENTATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H SECTION J APPENDIX H KEY PERSONNEL [Note: To be inserted by the Contracting Officer after

    B, Page 1 SECTION L ATTACHMENT B LISTING OF KEY PERSONNEL TITLE NAME [Note: Add/remove extra rows if needed]

    A, Page 1 SECTION L ATTACHMENT A PERFORMANCE GUARANTEE AGREEMENT For value received, and in consideration of, and in order to induce the United States (the Government) to enter into Contract [insert Contract number] for the management and operation of the Nevada National Security Site

  1. EPAct Section 242 Comments and DOE Responses

    Office of Energy Efficiency and Renewable Energy (EERE)

    On July 2, 2014 in the Federal Register, the U.S. Department of Energy (DOE) published and requested comment on draft guidance for implementing Section 242 of the Energy Policy Act of 2005 (EPAct...

  2. Section 311 Revised Template August 2012

    Broader source: Energy.gov [DOE]

    Attached are 3 revised templates for sending the Section 311 notices to Congress as prescribed in Acquisition Letter (AL) 2012-07 and Financial Assistance Letter (FAL) 2012-01.

  3. Guidance for EPAct 2005 Section 242 Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance for EPAct 2005 Section 242 Program I. Purpose In the Energy Policy Act of 2005 (EPAct 2005; Public Law 109-58) Congress established a new program to support the expansion ...

  4. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSECTIONS(AT)fnal.gov convenors: Alessandro Curioni (alessandro.curioni(AT)yale.edu) and Sam Zeller (gzeller(AT)fnal.gov) Cross Sections at MiniBooNE, Meetings, Reference Articles,...

  5. Microsoft Word - Section F (Mod 616).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on or before September 30, 2016. The period of performance for the Recovery Act work specified in Section C and Table J-1 shall be for the period of performance beginning...

  6. Section 311 Revised Template January 24 2013

    Broader source: Energy.gov [DOE]

    Attached are 3 revised templates for sending the Section 311 notices to Congress as prescribed in Acquisition Letter (AL) 2012-07 and Financial Assistance Letter (FAL) 2012-01.

  7. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect (OSTI)

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  8. Section 311 Revised Template January 4 2013

    Broader source: Energy.gov [DOE]

    Attached are 3 revised templates for sending the Section 311 notices to Congress as prescribed in Acquisition Letter (AL) 2012-07 and Financial Assistance Letter (FAL) 2012-01.

  9. Department of Energy (DOE) and Section 508

    Broader source: Energy.gov [DOE]

    In 1998, the Congress amended the Rehabilitation Act to require that all Federal agencies make electronic and information technology accessible to people with disabilities.  Under Section 508 (29 U...

  10. Guidance for EPAct 2005 Section 242 Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance for EPAct 2005 Section 242 Program I. Purpose In the Energy Policy Act of 2005 (EPAct 2005; Public Law 109-58) Congress established a new program to support the expansion of hydropower energy development at existing dams and impoundments through an incentive payment procedure. Under section 242 of EPAct 2005, the Secretary of Energy is directed to provide incentive payments to the owner or authorized operator of qualified hydroelectric facilities for electric energy generated and sold

  11. Section 999 Program Library | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil & Gas » Offshore Drilling » Section 999 Program Library Section 999 Program Library Cost-Shared Program Publications October 2, 2013 UDAC Meeting - October 2013 October 2, 2013 URTAC Meeting - October 2013 September 10, 2013 Draft 2014 Annual Plan More Ultra-Deepwater Advisory Committee (UDAC) Activities and Products January 27, 2014 UDAC 2014 Report November 27, 2013 UDAC Meeting - December 16, 2013 November 20, 2013 UDAC Meeting - December 9, 2013 More Unconventional Resources

  12. Deuterium target data for precision neutrino-nucleus cross sections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; Hill, Richard J.

    2016-06-23

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, FA(q2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to rA2 = 0.46(22)fm2, with a much larger uncertainty than determined inmore » the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(νμn → μ-p)|Ev=1GeV = 10.1(0.9)×10-39cm2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less

  13. American Bar Association Section on Environment | Open Energy...

    Open Energy Info (EERE)

    Bar Association Section on Environment Jump to: navigation, search Name: American Bar Association Section on Environment Place: Chicago, Illinois Zip: 60610 Product: The Section of...

  14. Simultaneous evaluation of interrelated cross sections by generalized least-squares and related data file requirements

    SciTech Connect (OSTI)

    Poenitz, W.P.

    1984-10-25

    Though several cross sections have been designated as standards, they are not basic units and are interrelated by ratio measurements. Moreover, as such interactions as /sup 6/Li + n and /sup 10/B + n involve only two and three cross sections respectively, total cross section data become useful for the evaluation process. The problem can be resolved by a simultaneous evaluation of the available absolute and shape data for cross sections, ratios, sums, and average cross sections by generalized least-squares. A data file is required for such evaluation which contains the originally measured quantities and their uncertainty components. Establishing such a file is a substantial task because data were frequently reported as absolute cross sections where ratios were measured without sufficient information on which reference cross section and which normalization were utilized. Reporting of uncertainties is often missing or incomplete. The requirements for data reporting will be discussed.

  15. LLNL Section I Clauses/Prescriptions

    National Nuclear Security Administration (NNSA)

    AC52-06NA27344 LLNL Section I, Page 56 Part II - Contract Clauses Section I I-1 CONTRACT CLAUSES Unless conditionally "Noted", all contract clauses are hereby incorporated by full text. The references cited herein are from the Federal Acquisition Regulation (FAR) (48 CFR Chapter 1) and the Department of Energy Acquisition Regulation (DEAR) (48 CFR Chapter 9). Note: The titles and page locations of the clauses are as follows: CLAUSE TITLE PAGE I001 FAR 52.202-1 DEFINITIONS (JUL 2004)

  16. Precise neutron inelastic cross section measurements

    SciTech Connect (OSTI)

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  17. SECTION J, APPENDIX L - DIVERSITY PLAN GUIDANCE

    National Nuclear Security Administration (NNSA)

    L, Page 1 SECTION J APPENDIX L [Note: The Diversity Plan shall be submitted to the Contracting Officer in accordance with DEAR 970.5226-1] DIVERSITY PLAN GUIDANCE 12/1/10 In accordance with the Contract's Section I Clause entitled "DEAR 970.5226-1, Diversity Plan," this Appendix provides guidance to assist the Contractor in understanding the information being sought by the Department of Energy, National Nuclear Security Administration (DOE/NNSA) for each of the clause's Diversity

  18. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect (OSTI)

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  19. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect (OSTI)

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  20. NREL: Process Development and Integration Laboratory - Process Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Integration Design Features Process Development and Integration Design Features The cluster tool and transport pod are at the heart of the research approach used within the Process Development and Integration Laboratory. In developing this approach, scientists in the National Center for Photovoltaics worked closely with their industry counterparts to design a system with maximum functionality and flexibility. In this section, we refer to the schematic below to illustrate a process

  1. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect (OSTI)

    Kahler, Albert C. III

    2012-06-28

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  2. Navy's Section 2922a Legislation Success Stories

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—features U.S. Department of Navy success stories in relation to Section 2922a legislation, which involves contracts for energy or fuel for military installations.

  3. IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section Knowledge on Oscillation Knowledge on Oscillation Measurements Measurements M. Sorel, IFIC (CSIC and U. of Valencia) IDS-NF, RAL, Jan 16-17 2008 M. Sorel - IFIC (Valencia U. & CSIC) 2 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA M. Sorel - IFIC (Valencia U. & CSIC) 3 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA Beta

  4. Clean Water Act (excluding Section 404)

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    This Reference Book contains a current copy of the Clean Water Act (excluding Section 404) and those regulations that implement the statutes and appear to be most relevant to US Department of Energy (DOE) activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Updates that include important new requirements will be provided periodically. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  5. Quality Quantification of Evaluated Cross Section Covariances

    SciTech Connect (OSTI)

    Varet, S.; Dossantos-Uzarralde, P.

    2015-01-15

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the {sup 85}Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations.

  6. Major developments in section 404-permitting

    SciTech Connect (OSTI)

    Ahrens, M.; Orr, S.

    2009-06-15

    Mountain coal mining in the Central Appalachians faces increased challenge under the Clean Water Act (CWA). These challenges have included the US Environmental Protection Agency's (EPA) increased involvement in permitting under Section 404 of the CWA; active opposition by environmental groups to Section 404 permits; and proposed federal legislation to reduce the availability of these permits. These recent challenges culminated in a June 11, 2009, Memorandum of Understanding (MoU) between the PEA, the Department of Interior (DoI) and the Army Corps of Engineers (Corps) that will limit the use of general permits for mountaintop coal mining and increase the scrutiny applied to individual permits, while also providing a coordinated approach for reviewing the backlog of pending permit application. By entering into the MoU, the federal agencies aim to reduce the environmental impacts of mountaintop coal mining while increasing certainty and transparency for permit applications. Challenges to Section 404 permitting for mountaintop coal mining are dynamic and new developments occur almost daily. This article provides a snapshot of the current climate.

  7. Neutron Capture Cross Sections for the Re/Os Clock

    SciTech Connect (OSTI)

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Voss, F.; Wisshak, K.; Mengoni, A.; Cennini, P.; Chiaveri, E.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2005-05-24

    The radioactive decay of 187Re {yields} 187Os (t1/2 = 43 Gyr) is suited for dating the onset of heavy-element nucleosynthesis. The radiogenic contribution to the 187Os abundance is the difference between the natural abundance and the corresponding s-process component. This component can be obtained via the well-established {sigma}N systematics using the neighboring s-only isotope 186Os, provided the neutron-capture cross sections of both isotopes are known with sufficient accuracy. We report on a new set of experiments performed with a C6D6 detector array at the n{sub T}OF neutron spallation facility of CERN. The capture cross sections of 186Os, 187Os, and 188Os have been measured in the neutron-energy range between 1 eV and 1 MeV, and Maxwellian-averaged cross sections were deduced for the relevant thermal energies from kT=5 keV to 100 keV.

  8. RFP Section L Technical Proposal Preparation Instruction and Section M Evaluation Criteria Templates

    Broader source: Energy.gov [DOE]

    On March 29, 2010, and April 1, 2010, fourteen draft RFP Section L Technical Proposal Preparation Instruction and Section M Evaluation Criteria templates (Past Performance, Transition, Organization Structure and Approach, Key Personnel (written proposal and oral presentation), Key Personnel (written proposal), Relevant Experience, and Environment Safety and Health) were distributed for Procurement Director (PD) and Head of Contracting Activity (HCA) review and comment. All comments received were considered and changes were made as appropriate. The final version of the fourteen aforementioned RFP Section L and M templates are available in STRIPES as part of the series of DOE-L-1024 or DOE-M-1005 clauses.

  9. Clean Water Act (Section 404) and Rivers and Harbors Act (Sections 9 and 10)

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This Reference Book contains a current copy of the Clean Water Act (Section 404) and the Rivers and Harbors Act (Sections 9 and 10) and those regulations that implement those sections of the statutes and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Updates that include important new requirements will be provided periodically. Questions concerning this Reference Book may be directed to Mark Petts, IH-231 (FTS 896-2609 or Commercial 202/586-2609).

  10. Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process Selection Process Fellowships will be awarded based on academic excellence, relevance of candidate's research to the laboratory mission in fundamental nuclear science and relevance to Global Security or Science of Campaign missions. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email The Seaborg internal advisory committee will judge applications based on academic excellence, relevance of the

  11. Proposal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Process Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Testbed Description Proposal Process Terms and Conditions Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  12. Microsoft Word - Section 5 September 2007.doc

    Office of Legacy Management (LM)

    Project Schedules and Milestones September 2007 Site Management Plan Page 5-1 5.0 Project Schedules and Milestones (FY 2008-2010) 5.1 Establishing Project Schedules and Milestones As stated in Section 1.1.2, the SMP establishes the overall plan for remedial actions at the MMTS and milestones against which progress can be measured. The SMP also documents the overall plan for remedial actions at the MVP Site, which was deleted from the NPL on February 28, 2000. The SMP was first prepared in 1995

  13. SECTION IV. ATOMIC AND MOLECULAR SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IV. ATOMIC AND MOLECULAR SCIENCE Cross Sections for Cu K-Vacancy Production in Fast Heavy Ion Collisions R.L. Watson, J.M. Blackadar and V. Horvat Enhancement of the Cu Kα x-ray Diagram Lines in Fast Heavy Ion Collisions R.L. Watson, V. Horvat and J.M. Blackadar K-shell Ionization by Secondary Electrons V. Horvat, R.L. Watson and J.M. Blackadar Target-atom Inner-shell Vacancy Distributions Created in Collisions with Heavy Ion Projectiles V. Horvat, R.L. Watson and J.M. Blackadar Systematics of

  14. Cross Sections for Nuclei A = 3 - 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections with Proton and Alpha Induced Reactions for Nuclei A = 3 - 20 I. Introduction: We have scanned the NSR from 1910-present for various articles with proton and alpha induced reactions. We have used the program Plot Digitizer 2.5.0 to extract the excitation functions from figures in the articles. In some cases the uncertainties are provided in the figures, we have noted this in comments, but we have made no attempt to extract the uncertainties. In cases where the data are given in

  15. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  16. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  17. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  18. FLUORINATION PROCESS

    DOE Patents [OSTI]

    McMillan, T.S.

    1957-10-29

    A process for the fluorination of uranium metal is described. It is known that uranium will react with liquid chlorine trifluoride but the reaction proceeds at a slow rate. However, a mixture of a halogen trifluoride together with hydrogen fluoride reacts with uranium at a significantly faster rate than does a halogen trifluoride alone. Bromine trifluoride is suitable for use in the process, but chlorine trifluoride is preferred. Particularly suitable is a mixture of ClF/sub 3/ and HF having a mole ratio (moles

  19. Scientific computations section monthly report, November 1993

    SciTech Connect (OSTI)

    Buckner, M.R.

    1993-12-30

    This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.

  20. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, Bhushan L.; Wolf, Abraham

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample prior to introduction of a molding medium in the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  1. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, B.L.; Wolf, A.

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  2. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect (OSTI)

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  3. Special Section Guest Editorial: Laser Damage

    SciTech Connect (OSTI)

    Gruzdev, Vitaly E.; Shinn, Michelle D.

    2012-11-09

    Laser damage of optical materials, first reported in 1964, continues to limit the output energy and power of pulsed and continuous-wave laser systems. In spite of some 48 years of research in this area, interest from the international laser community to laser damage issues remains at a very high level and does not show any sign of decreasing. Moreover, it grows with the development of novel laser systems, for example, ultrafast and short-wavelength lasers that involve new damage effects and specific mechanisms not studied before. This interest is evident from the high level of attendance and presentations at the annual SPIE Laser Damage Symposium (aka, Boulder Damage Symposium) that has been held in Boulder, Colorado, since 1969. This special section of Optical Engineering is the first one devoted to the entire field of laser damage rather than to a specific part. It is prepared in response to growing interest from the international laser-damage community. Some papers in this special section were presented at the Laser Damage Symposium; others were submitted in response to the general call for papers for this special section. The 18 papers compiled into this special section represent many sides of the broad field of laser-damage research. They consider theoretical studies of the fundamental mechanisms of laser damage including laser-driven electron dynamics in solids (O. Brenk and B. Rethfeld; A. Nikiforov, A. Epifanov, and S. Garnov; T. Apostolova et al.), modeling of propagation effects for ultrashort high-intensity laser pulses (J. Gulley), an overview of mechanisms of inclusion-induced damage (M. Koldunov and A. Manenkov), the formation of specific periodic ripples on a metal surface by femtosecond laser pulses (M. Ahsan and M. Lee), and the laser-plasma effects on damage in glass (Y. Li et al). Material characterization is represented by the papers devoted to accurate and reliable measurements of absorption with special emphasis on thin films (C. Mühlig and S

  4. Top quark pair production cross section at Tevatron (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Top quark pair production cross section at Tevatron Citation Details In-Document Search Title: Top quark pair production cross section at Tevatron You are accessing ...

  5. Idaho Section 319 Grant Application | Open Energy Information

    Open Energy Info (EERE)

    to library Form: Idaho Section 319 Grant Application Abstract This page provides access to an online form Section 319 Project Application for grants for watershed and aquifer...

  6. Hawaii DOH Hazardous Waste Section Webpage | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Hazardous Waste Section Webpage Abstract This webpage...

  7. Category:Hydropower Regulatory Roadmap Sections | Open Energy...

    Open Energy Info (EERE)

    Community Login | Sign Up Search Category Edit History Category:Hydropower Regulatory Roadmap Sections Jump to: navigation, search RAPID Toolkit Add.png Add a Section Pages in...

  8. EPA Coastal Zone Act Reauthorization Amendments (CZARA) Section...

    Open Energy Info (EERE)

    Section 6217 Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Coastal Zone Act Reauthorization Amendments (CZARA) Section 6217 Webpage...

  9. TEC Working Group Topic Groups Section 180(c) Key Documents ...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Section 180(c) Key Documents Key Documents Briefing Package for Section 180(c) Implementation - July 2005 PDF icon Executive Summary...

  10. Delegation of Authority Regarding Section 106 Review of Undertakings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    assist DOE in carrying out its Section 106 compliance responsibilities. In order to streamline DOE's compliance with Section 106 and its implementing regulations, "Protection of...