National Library of Energy BETA

Sample records for typical meteorological year

  1. NREL Releases Updated Typical Meteorological Year Data Set - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Releases Updated Typical Meteorological Year Data Set May 1, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today released an updated typical meteorological year (TMY) data set derived from the 1991-2005 National Solar Radiation Data Base update. The TMY3 data and user's manual are available at http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3. The new data sets update and expand the TMY2 data sets released by NREL in 1994. The TMY3 data

  2. Year Global Normal Irradiance Direct Normal Irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1991, 1992, early 1993. TMY Typical Meteorological Year Annual Daytime Average Values - - - - - - - - - - - - - - kWhm 2 d - - - - - - - - - - - - - - - - - - - - - - - - Wm2 ...

  3. A One-Year Study of the Diurnal Cycle of Meteorology, Clouds...

    Office of Scientific and Technical Information (OSTI)

    The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, ...

  4. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  5. Wintertime meteorology of the Grand Canyon region

    SciTech Connect (OSTI)

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  6. Hanford Meteorological Station - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Station Hanford Meteorological Station Real Time Met Data from Around the ... The HMS provides a range of Hanford Site weather forecast products, real-time ...

  7. Career Map: Meteorological Technician | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meteorological Technician Career Map: Meteorological Technician Two Meteorological Technicians work from a boat on the base of an offshore wind turbine. Meteorological Technician Position Title Meteorological Technician Alternate Title(s) Meteorological Instrumentation Technician, MET Services Technician, MET Tower Installation Technician, Field Technician Education & Training Level Entry-level, bachelor's degree generally not expected Education & Training Level Description Most

  8. Solar Resource and Meteorological Assessment Project (SOLRMAP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource and Meteorological Assessment Project (SOLRMAP) Solar and Meteorological Station Options: Configurations and Specifications July 1, 2009 (revised) Steve Wilcox and ...

  9. Finnish Meteorological Institute Doppler Lidar (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Finnish Meteorological Institute Doppler Lidar Title: Finnish Meteorological Institute Doppler Lidar This doppler lidar system provides co-polar and cross polar attenuated ...

  10. Meteorological Services Annual Data Report for 2014

    SciTech Connect (OSTI)

    Heiser J.; Smith, S.

    2015-01-21

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2014. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  11. Meteorological services annual data report for 2012

    SciTech Connect (OSTI)

    Heiser J.; Smith, S.

    2013-02-01

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2012. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  12. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American ...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 22 NN (Engineering) 23 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11

  8. YEAR

    National Nuclear Security Administration (NNSA)

    2 YEAR 2014 Males 57 Females 25 PAY PLAN YEAR 2014 SES 3 EJ/EK 4 EN 04 2 NN (Engineering) 20 NQ (Prof/Tech/Admin) 53 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 9 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 3 Hispanic Female (H F) 5 White Male (W M) 43 White Female (W F) 10 DIVERSITY TOTAL WORKFORCE

  9. YEAR

    National Nuclear Security Administration (NNSA)

    93 YEAR 2014 Males 50 Females 43 PAY PLAN YEAR 2014 EJ/EK 3 NN (Engineering) 13 NQ (Prof/Tech/Admin) 74 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 5 African American Female (AA F) 6 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 6 Hispanic Female (H F) 14 White Male (W M) 39 White Female (W F) 21 DIVERSITY

  10. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 11 Females 2 PAY PLAN YEAR 2014 SES 2 EJ/EK 1 EN 04 1 NN (Engineering) 5 NQ (Prof/Tech/Admin) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 10 White Female (W F) 2 DIVERSITY TOTAL WORKFORCE GENDER

  11. YEAR

    National Nuclear Security Administration (NNSA)

    9 YEAR 2014 Males 9 Females 10 YEAR 2014 SES 7 ED 1 EJ/EK 1 EN 05 1 NQ (Prof/Tech/Admin) 8 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 5 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 3 White Male (W M) 7 White Female (W F) 1 PAY PLAN DIVERSITY TOTAL

  12. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 92 Females 43 YEAR 2014 SES 8 EX 1 EJ/EK 4 EN 05 9 EN 04 12 EN 03 2 NN (Engineering) 57 NQ (Prof/Tech/Admin) 42 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 9 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 12 Hispanic Female (H F) 7 White Male (W M) 66 White Female (W F) 22 PAY PLAN

  13. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2014 Males 517 Females 46 PAY PLAN YEAR 2014 SES 2 EJ/EK 2 EN 04 1 NN (Engineering) 11 NQ (Prof/Tech/Admin) 218 NU (Tech/Admin Support) 2 NV (Nuc Mat Courier) 327 YEAR 2014 American Indian Alaska Native Male (AIAN M) 14 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 18 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 8 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 76 Hispanic Female (H F) 21 White Male

  14. YEAR

    National Nuclear Security Administration (NNSA)

    89 YEAR 2014 Males 98 Females 91 PAY PLAN YEAR 2014 SES 14 EX 1 EJ/EK 3 EN 05 1 EN 04 4 EN 03 1 NN (Engineering) 32 NQ (Prof/Tech/Admin) 130 NU (Tech/Admin Support) 2 GS 15 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 5 African American Female (AA F) 14 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 7 Hispanic Male (H M) 7 Hispanic Female (H F) 10 White Male

  15. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 162 Females 81 PAY PLAN YEAR 2014 SES 26 EJ/EK 3 EN 05 7 NN (Engineering) 77 NQ (Prof/Tech/Admin) 108 NU (Tech/Admin Support) 22 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 0 White Male (W M) 154 White Female (W F)

  16. YEAR

    National Nuclear Security Administration (NNSA)

    74 YEAR 2014 Males 96 Females 78 PAY PLAN YEAR 2014 SES 8 EJ/EK 4 EN 04 11 EN 03 1 NN (Engineering) 34 NQ (Prof/Tech/Admin) 113 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 5 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 25 Hispanic Female (H F) 25 White Male (W M) 61 White

  17. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2014 Males 7 Females 7 PAY PLAN YEAR 2014 SES 1 NQ (Prof/Tech/Admin) 7 GS 15 1 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 3 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER

  18. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2014 Males 72 Females 144 PAY PLAN YEAR 2014 SES 8 EJ/EK 1 NQ (Prof/Tech/Admin) 198 NU (Tech/Admin Support) 9 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 10 African American Female (AA F) 38 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 3 Hispanic Male (H M) 15 Hispanic Female (H F) 33 White Male (W M) 44 White Female (W F) 68 DIVERSITY TOTAL

  19. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJ/EK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (Prof/Tech/Admin) 44 NU (Tech/Admin Support) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White

  20. YEAR

    National Nuclear Security Administration (NNSA)

    446 YEAR 2014 Males 1626 Females 820 YEAR 2014 SES 97 EX 2 ED 1 SL 1 EJ/EK 84 EN 05 38 EN 04 162 EN 03 18 NN (Engineering) 427 NQ (Prof/Tech/Admin) 1216 NU (Tech/Admin Support) 66 NV (Nuc Mat Courier) 327 GS 15 2 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 27 American Indian Alaskan Native Female (AIAN F) 24 African American Male (AA M) 90 African American Female (AA F) 141 Asian American Pacific Islander Male (AAPI M) 63 Asian American Pacific Islander Female

  1. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (Prof/Tech/Admin) 29 NU (Tech/Admin Support) 5 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female

  2. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (Prof/Tech/Admin) 9 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 4 African American Female (AA F) 4 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5

  3. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 20 PAY PLAN YEAR 2014 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 1 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 4 Hispanic Female (H F) 7 White Male (W M) 13 White Female (W F) 11

  4. YEAR

    National Nuclear Security Administration (NNSA)

    White Male (W M) 26 White Female (W F) 16 DIVERSITY TOTAL WORKFORCE GENDER Livermore Field ... YEARS OF FEDERAL SERVICE SUPERVISOR RATIO AGE Livermore Field Office As of March 22, 2014 ...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (Prof/Tech/Admin) 13 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City

  6. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (Prof/Tech/Admin) 27 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 21 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16

  7. YEAR

    National Nuclear Security Administration (NNSA)

    17 Females 18 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 NQ (Prof/Tech/Admin) 30 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 6 White Male (W M) 10 White Female (W F) 3 DIVERSITY TOTAL WORKFORCE GENDER Associate

  8. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (Prof/Tech/Admin) 25 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13

  9. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  13. ALMA imaging of gas and dust in a galaxy protocluster at redshift 5.3: [C II] emission in 'typical' galaxies and dusty starbursts ?1 billion years after the big bang

    SciTech Connect (OSTI)

    Riechers, Dominik A.; Carilli, Christopher L.; Capak, Peter L.; Yan, Lin; Scoville, Nicholas Z.; Smol?i?, Vernesa; Schinnerer, Eva; Yun, Min; Cox, Pierre; Bertoldi, Frank; Karim, Alexander

    2014-12-01

    We report interferometric imaging of [C II]({sup 2} P {sub 3/2}?{sup 2} P {sub 1/2}) and OH({sup 2}?{sub 1/2} J = 3/2?1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 ?m continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}?{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 10{sup 10} M {sub ?}, and a star formation rate (SFR) surface density of ?{sub SFR} = 530 M {sub ?} yr{sup 1} kpc{sup 2}. This suggests that AzTEC-3 forms stars at ?{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}?{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ?95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ?} yr{sup 1}, consistent with a UV-based estimate of 22 M {sub ?} yr{sup 1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.

  14. Technical Work Plan For: Meteorological Monitoring Data Analysis

    SciTech Connect (OSTI)

    R. Green

    2006-02-06

    The meteorological monitoring and analysis program has five objectives. (1) Acquire qualified meteorological data from YMP meteorological monitoring network using appropriate controls on measuring and test equipment. Because this activity is monitoring (i.e., recording naturally occurring events) pre-test predictions are not applicable. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The meteorological monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. (2) Process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. (3) Develop analyses or calculations to provide information to data requesters and provide data sets as requested. (4) Provide precipitation amounts to Site Operations to support requirements to perform inspections in the Stormwater Pollution Prevention Plan (implemented in LP-OM-050Q-BSC) following storm events of greater than 0.5 inches. The program also provides meteorological data during extreme weather conditions (e.g., high winds, rainstorms, etc.) to support decisions regarding worker safety. (5) Collect samples of precipitation for chemical and isotopic analysis by the United States Geological Survey (USGS). The BSC ES&H Environmental Compliance organization is responsible for performing this work. Data from calendar-year periods are submitted to the TDMS to provide YMP users with qualified meteorological data for scientific modeling and analyses, engineering designs of surface facilities, performance assessment analyses, and operational safety issues.

  15. Description of the RDCDS Meteorological Component

    SciTech Connect (OSTI)

    Pekour, Mikhail S.; Berg, Larry K.

    2007-10-01

    This report provides a detailed description of the Rapidly Deployable Chemical Defense System (RDCDS) Meteorological Component. The Meteorological Component includes four surface meteorological stations, miniSODAR, laptop computers, and communications equipment. This report describes the equipment that is used, explains the operation of the network, and gives instructions for setting up the Component and replacing defective parts. A detailed description of operation and use of the individual sensors, including the data loggers is not covered in the current document, and the interested reader should refer to the manufacturer’s documentation.

  16. Interim report on the meteorological database

    SciTech Connect (OSTI)

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives.

  17. Surface Meteorological Instruments for TWP (SMET) Handbook

    SciTech Connect (OSTI)

    Ritsche, MT

    2009-01-01

    The TWP Surface Meteorology station (SMET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure and rainfall amount.

  18. New Surface Meteorological Measurements at SGP,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM, March 22 - 26, 2004 1 New Surface Meteorological Measurements at SGP, and Their Use ... Work is in progress to combine the MWR-scaling and time-lag corrections into a new ARM ...

  19. Meteorological Observations for Renewable Energy Applications at Site 300

    SciTech Connect (OSTI)

    Wharton, S; Alai, M; Myers, K

    2011-10-26

    In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

  20. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    SciTech Connect (OSTI)

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  1. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  2. Meteorological Support at the Savanna River Site

    SciTech Connect (OSTI)

    Addis, Robert P.

    2005-10-14

    The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located in South Carolina.

  3. ARM Surface Meteorology Systems Instrument Handbook

    SciTech Connect (OSTI)

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg).

  4. Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect (OSTI)

    Aluzzi, F J

    2012-02-27

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

  5. Impact of incremental changes in meteorology on thermal compliance and power system operations

    SciTech Connect (OSTI)

    Miller, B.A.; Alavian, V.; Bender, M.D.

    1992-02-01

    The sensitivity of the TVA reservoir and power supply systems to extreme meteorology was evaluated using a series of mathematical models to simulate the relationship between incremental changes in meteorology, associated changes in water temperature, and power plant generation. Single variable analysis techniques were applied at selected TVA facilities for representative average and extreme weather conditions. In the analysis, base case simulations were first conducted for each representative year using observed meteorology (i.e., the no change condition). The impacts of changes in meteorology were subsequently analyzed by uniformly constant at their respective base case values. Project results are generally presented in terms of deviations from base case conditions for each representative year. Based on an analysis of natural flow and air temperature patterns at Chickamauga Dam, 1974 was selected to represent extreme cold-wet conditions; 1965 as reflecting average conditions; and 1986 as an example of an extremely hot-dry year. The extreme years (i.e., 1974 and 1986) were used to illustrate sensitivities beyond historical conditions; while the average year provided a basis for comparison. Observed reservoir conditions, such as inflows, dam releases, and reservoir elevations for each representative year, were used in the analysis and were assumed to remain constant in all simulations. Therefore, the Lake Improvement Plan (which was implemented in 1991) and its consequent effects on reservoir operations were not incorporated in the assessment. In the model simulations, computed water temperatures were based on vertically well-mixed conditions in the reservoirs.

  6. Climatological summary of wind and temperature data for the Hanford Meteorology Monitoring Network

    SciTech Connect (OSTI)

    Glantz, C.S.; Schwartz, M.N.; Burk, K.W.; Kasper, R.B.; Ligotke, M.W.; Perrault, P.J.

    1990-09-01

    This document presents climatological summaries of wind and temperature data collected at the twenty-five monitoring stations operated by the Hanford Meteorology Monitoring Network. The climatological analyses presented here involve hourly averaged wind data collected over an 8-year period beginning in 1982 (fewer wind data are available for the several monitoring stations that began full-time operation after 1982) and hourly averaged air temperature data collected over 2-year period beginning in mid-1988. The tables and figures presented in this document illustrate the spatial and temporal variation of meteorological parameters across the Hanford Site and the surrounding areas. This information is useful for emergency response applications, routine meteorological forecasting, planning and scheduling operations, facility design, and environmental impact studies.

  7. Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs

    SciTech Connect (OSTI)

    Pleim, Jonathan; Mathur, Rohit; Rao, S. T.; Fast, Jerome D.; Backlanov, Alexander

    2014-04-01

    This is a conference summary report that will be published in the Bulletin of the American Meteorological Society.

  8. Meteorological Towers Display for Windows NT

    Energy Science and Technology Software Center (OSTI)

    1999-05-20

    The Towers Display Program provides a convenient means of graphically depicting current wind speed and direction from a network of meteorological monitoring stations. The program was designed primarily for emergency response applications and, therefore, plots observed wind directions as a transport direction, i.e., the direction toward which the wind would transport a release of an atmospheric contaminant. Tabular summaries of wind speed and direction as well as temperature, relative humidity, and atmospheric turbulence measured atmore » each monitoring station can be displayed. The current implementation of the product at SRS displays data from eight Weather INformation and Display (WIND) System meteorological towers at SRS, meteorological stations established jointly by SRS/WSRC and the Augusta/Richmond County Emergency Management Agency in Augusta, GA, and National Weather Service stations in Augusta, GA. Wind speed and direction are plotted in a Beaufort scale format at the location of the station on a geographic map of the area. A GUI provides for easy specification of a desired date and time for the data to be displayed.« less

  9. A Visualization Tool for Meteorological Data

    Energy Science and Technology Software Center (OSTI)

    1999-09-28

    Graphical user interfaces (GUIs) have been buit to visualize surface and upper-meteorology data for any global location and time of interest. The user selects a domain (geographic location and bounding range) and time of interest using the Gui, and a file containing coded observations is accessed and decoded. two styles of the GUI have been built, depending on whether surface or upper air visualization is desired. The former indicates weather conditions near the earth''s surface,more » while the latter illustrates a vertical profile of atmospheric conditions.« less

  10. Energy conservation in typical Asian countries

    SciTech Connect (OSTI)

    Yang, M.; Rumsey, P.

    1997-06-01

    Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

  11. EM Laboratory Meteorologist to Lead American Meteorological Society

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – In a first for DOE, a Department-affiliated meteorologist has been named president-elect of the American Meteorological Society (AMS).

  12. ARM Surface Meteorology Systems Instrument Handbook

    SciTech Connect (OSTI)

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable: • Winds: 10 meters • Temperature and Relative Humidity: 2 meters • Barometric Pressure: 1 meter. Depending upon the geographical location, different models and types of sensors may be used to measure the core variables due to the conditions experienced at those locations. Most sites have additional sensors that measure other variables that are unique to that site or are well suited for the climate of the location but not at others.

  13. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect (OSTI)

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  14. The data collection component of the Hanford Meteorology Monitoring Program

    SciTech Connect (OSTI)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  15. ARM - PI Product - Finnish Meteorological Institute Doppler Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsFinnish Meteorological Institute Doppler Lidar Citation DOI: 10.54391177194 What is this? ARM Data Discovery Browse Data Comments? We would love to hear from you Send...

  16. Minicomputer Capabilities Related to Meteorological Aspects of Emergency Response

    SciTech Connect (OSTI)

    Rarnsdell, J. V.; Athey, G. F.; Ballinger, M. Y.

    1982-02-01

    The purpose of this report is to provide the NRC staff involved in reviewing licensee emergency response plans with background information on the capabilities of minicomputer systems that are related to the collection and dissemination of meteorological infonmation. The treatment of meteorological information by organizations with existing emergency response capabilities is described, and the capabilities, reliability and availability of minicomputers and minicomputer systems are discussed.

  17. Analysis of 2014 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect (OSTI)

    Aluzzi, Fernando J.

    2015-02-25

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, N.Y. and the Kesselring Site Operations (KSO) facility near Ballston Spa, N.Y. are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the U.S. Environmental Protection Agency (EPA), which regulates both sites. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2014.

  18. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements

    SciTech Connect (OSTI)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-09

    The Urban Dispersion Program is a multi-year project, funded by the U.S. Department of Homeland Security, to better understand the flow and dispersion of airborne contaminants through and around the deep street canyons of New York City. The first tracer and meteorological field study was a limited study conducted during March 2005 near the Madison Square Garden in midtown Manhattan. Six safe, inert, gaseous perfluorocarbon tracers were released simultaneously at five street-level locations during two experimental days. In addition to collecting tracer data, meteorological data were also collected. Brookhaven National Laboratory conducted the bulk of the tracer and meteorological field efforts with Pacific Northwest National Laboratory and Stevens Institute of Technology assisting by measuring the vertical profile of winds. The Environmental Protection Agency worked with Brookhaven National Laboratory in accomplishing the personal exposure component of the study. This report presents some results from this analysis. In general, different release locations showed vastly different plume footprints for tracer materials, and the situation was made very complex with upwind and/or crosswind transport of tracer near street-level for the different release locations. Overall wind speeds and directions upwind and over the city were generally constant throughout each of the two experimental periods.

  19. The Meteorological Monitoring program at a former nuclear weapons plant

    SciTech Connect (OSTI)

    Maxwell, D.R.; Bowen, B.M.

    1994-02-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

  20. Management of meteorological data at a former nuclear weapons facility

    SciTech Connect (OSTI)

    Dickerman, C.L.; Maxwell, D.R.

    1995-03-01

    The purposes of the Climatological Data Management and Meteorological Monitoring programs at the Rocky Flats Environmental Technology Site (Site), are to support Emergency Response (ER) programs at the Site for use in assessing the transport, diffusion, and deposition of effluents actually or potentially released into the atmosphere by Site operations, to provide information for on-site and off-site projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. Also, maintenance of a meteorological monitoring network, which includes measuring, archiving, analyzing, interpreting, and summarizing resulting data is required for successfully generating monthly and annual environmental monitoring reports and for providing assistance for on-site and off-site projects. Finally, the Meteorological Monitoring Program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Response operations.

  1. Catalog of the Oak Ridge National Laboratory Meteorological Tape Library

    SciTech Connect (OSTI)

    Bell, M.A.

    1983-08-01

    This report gives a complete inventory of the data tapes in the ORNL Meteorological Tape Library (OMTL). The attributes of each tape, including location of the weather station (city and state), station number, standard data format, dates covered, data set name(s), and job control language considerations (record format, record length, blocksize, tape label, and tape density), are listed for each tape. In addition, a description of some of the special characteristics of each of the available standard meteorological data formats is presented.

  2. Fast Company covers "Just Your Typical New Mexico Image Recognition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A ... covers new technique that may make solar panel production less expensive The ...

  3. Recycling and processing of several typical crosslinked polymer...

    Office of Scientific and Technical Information (OSTI)

    Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling Citation Details In-Document...

  4. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  5. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  6. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    SciTech Connect (OSTI)

    C.T. Bastian

    2003-03-28

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES&H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters.

  7. Poster Sessions J. Dudhia Mesoscale and Microscale Meteorology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Dudhia Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research Boulder, CO 80307-3000 Introduction The concept of an Integrated Data Assimilation and Sounding System (IDASS) ensures that the needs of data collection are partly determined by the requirements of an assimilating mesoscale model. Hence, the sounding strategy is geared towards allowing the model to do the best possible job in representing the atmosphere over CART sites, for example. It is not clear a

  8. Meteorological field measurements at potential and actual wind turbine sites

    SciTech Connect (OSTI)

    Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

    1982-09-01

    An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

  9. Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Relationship to Adiabacity Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences and Relationship to Adiabacity Kim, Byung-Gon Kangnung National University Schwartz, Stephen Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties The microphysical properties of continental stratus clouds observed over SGP appear to be substantially influenced by micrometeorological

  10. Estimation of solar radiation from Australian meteorological observations

    SciTech Connect (OSTI)

    Moriarty, W.W. )

    1991-01-01

    A carefully prepared set of Australian radiation and meteorological data was used to develop a system for estimating hourly or instantaneous broad direct, diffuse and global radiation from meteorological observations. For clear sky conditions relationships developed elsewhere were adapted to Australian data. For cloudy conditions the clouds were divided into two groups, high clouds and opaque (middle and low) clouds, and corrections were made to compensate for the bias due to reporting practices for almost clear and almost overcast skies. Careful consideration was given to the decrease of visible sky toward the horizon caused by the vertical extent of opaque clouds. Equations relating cloud and other meteorological observations to the direct and diffuse radiation contained four unknown quantities, functions of cloud amount and of solar elevation, which were estimated from the data. These were proportions of incident solar radiation passed on as direct and as diffuse radiation by high clouds, and as diffuse radiation by opaque clouds. When the resulting relationships were used to estimate global, direct and diffuse radiation on a horizontal surface, the results were good, especially for global radiation. Some discrepancies between estimates and measurements of diffuse and direct radiation were probably due to erroneously high measurements of diffuse radiation.

  11. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect (OSTI)

    Sailor, D.J.

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4{degree}C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  12. Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the Red Sea

    SciTech Connect (OSTI)

    Kalenderski, S.; Stenchikov, G.; Zhao, Chun

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  13. Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada

    SciTech Connect (OSTI)

    Taha, Haider; Hammer, Hillel; Akbari, Hashem

    2002-04-30

    The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area

  14. ARM Mobile Facility Surface Meteorology Handbook - October 2008

    SciTech Connect (OSTI)

    MT Ritsche

    2008-10-30

    The ARM Mobile Facility Surface Meteorology station (AMF MET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure, and rain-rate. Additional sensors may be added to or removed from the base set of sensors depending upon the deployment location, climate regime or programmatic needs. Additionally, sensor types may change depending upon the climate regime of the deployment. These changes/additions are noted in the Deployment Locations and History section.

  15. Uses of upper-air meteorological data for air quality data analysis and modeling

    SciTech Connect (OSTI)

    Lindsey, C.G.; Dye, T.S.; Ray, S.E.; Roberts, P.T.

    1996-12-31

    A series of regional-scale field studies have been conducted in recent years to study meteorological and photochemical processes that lead to ozone episodes (periods of high ozone concentration) and other types of reduced air quality. An important component of these studies has been to increase the temporal and spatial resolution of aloft measurements of winds, temperatures, and related parameters over those provided by the twice-per-day National Weather Service (NWS) balloon sounding network. Supplemental upper-air stations deployed for these studies have been equipped with a variety of observing systems, including rawinsonde sounding systems, Doppler radar wind profilers, radio acoustic sounding systems (RASS, for temperature profiling), Doppler acoustic sounders (sodar), tethersondes, lidar, and aircraft-based measurements, among others. The upper-air data collected during these programs have been used.

  16. Typical Oak Ridge cemesto houses and city bus | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Typical Oak Ridge cemesto ... Typical Oak Ridge cemesto houses and city bus Typical Oak Ridge cemesto houses and city bus

  17. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  18. Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD

    SciTech Connect (OSTI)

    Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.

    1997-09-01

    An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

  19. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  20. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect (OSTI)

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  1. Multifractional analysis and simulation of the global meteorological network

    SciTech Connect (OSTI)

    Tessier, Y.; Lovejoy, S.; Schertzer, D.

    1994-12-01

    Taking the example of the meteorological measuring network, it is shown how the density of stations can be characterized by multifractral analysis techniques are applied (including new ones designed to take into account the spherical geometry) to systematically test the limitsand types of network multiscaling. These techniques start with a network density defined by grids or circles and proceed to systematically degrade their resolution (no a priori scaling assumptions are necessary). The multiscale is found to hold over roughly the range 20 000 to 200 km (limited by the finite number of stations-here about 8000). Special attention is paid to qualitative changes in the scaling behavior occurring at very low and high density regions that the authors argue are associated with multifractural phase transitions. It is argued that the density was produced by a universal multifractal process, and the three corresponding universal multifractal parameters are estimated. The minimum and maximum orders of singularities present in the network are estimated, as well as the minimum- and maximum-order statistical moments that can be reliably estimated. The results are then used to simulate the effects of the finite number of stations on a network with the same statistical properties, and hence to quantitatively show that the observed breaks in the multiscaling can be accounted for by the finiteness. A growing number of geophysical fields have been shown to exhibit multiscaling properties over various ranges, and in this paper it is discussed how the bias introduced by the network clustering can be removed by new `multifractal objective analysis` procedures.

  2. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  3. Meteorological measurements in the vicinity of a coal burning power plant

    SciTech Connect (OSTI)

    Crescenti, G.H.; Gaynor, J.E.

    1995-05-01

    High concentrations of sulfur dioxide (SO2) are commonly observed during the cool season in the vicinity of a 2.5 GW coal burning power plant located in the Mae Moh Valley of northern Thailand. The power plant is the source for nearly all of the observed SO2 since there are no other major industrial activities in this region. These high pollution fumigation events occur almost on a daily basis, usually lasting for several hours between late morning and early afternoon. One-hour average SO2 concentrations commonly exceed 1,000 micrograms/cu m. As a result, an increase in the number of respiratory type health complaints have been observed by local clinics during this time of the year. Meteorological data were acquired from a variety of observing platforms during an intensive field study from December 1993 to February 1994. The measurements included horizontal and vertical wind velocity, air temperature, relative humidity, and solar radiation. In addition, turbulent flux measurements were acquired by a sonic anemometer. SO2 measurements were made at seven monitoring sites scattered throughout the valley. These data were used to examine the atmospheric processes which are responsible for these high pollution fumigation events.

  4. Interim report on the meteorological database. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives.

  5. Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; William Cable; Vladimir Romanovsky

    2014-12-04

    Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

  6. Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; William Cable; Vladimir Romanovsky

    Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

  7. Meteorological Integration for the Biological Warning and Incident Characterization (BWIC) System: General Guidance for BWIC Cities

    SciTech Connect (OSTI)

    Shaw, William J.; Wang, Weiguo; Rutz, Frederick C.; Chapman, Elaine G.; Rishel, Jeremy P.; Xie, YuLong; Seiple, Timothy E.; Allwine, K Jerry

    2007-02-16

    The U.S. Department of Homeland Security (DHS) is responsible for developing systems to detect the release of aerosolized bioagents in urban environments. The system that accomplishes this, known as BioWatch, is a robust first-generation monitoring system. In conjunction with the BioWatch detection network, DHS has also developed a software tool for cities to use to assist in their response when a bioagent is detected. This tool, the Biological Warning and Incident Characterization (BWIC) System, will eventually be deployed to all BioWatch cities to aid in the interpretation of the public health significance of indicators from the BioWatch networks. BWIC consists of a set of integrated modules, including meteorological models, that estimate the effect of a biological agent on a city’s population once it has been detected. For the meteorological models in BWIC to successfully calculate the distribution of biological material, they must have as input accurate meteorological data, and wind fields in particular. The purpose of this document is to provide guidance for cities to use in identifying sources of good-quality local meteorological data that BWIC needs to function properly. This process of finding sources of local meteorological data, evaluating the data quality and gaps in coverage, and getting the data into BWIC, referred to as meteorological integration, is described. The good news for many cities is that meteorological measurement networks are becoming increasingly common. Most of these networks allow their data to be distributed in real time via the internet. Thus, cities will often only need to evaluate the quality of available measurements and perhaps add a modest number of stations where coverage is poor.

  8. Meteorological and pollutant profiles under very stable conditions

    SciTech Connect (OSTI)

    Wesely, M.L.; Coulter, R.L.

    1983-01-01

    The nocturnal boundary layer (NBL) can become very stable, with wind and temperature increasing rapidly with height and a local wind maximum often occurring near the top of the boundary layer. The wind speed, potential temperature, moisture, and ozone profiles in the NBL above flat terrain were studied by Argonne National Laboratory in the early morning and late evening during the Central Illinois Rainfall Convection Experiment (CIRCE) in July, 1979, with sensors carried aloft by a tethered kytoon. One aim was to examine closely the shape of profiles at heights of about 20 to 200 m by taking measurements at closely spaced height intervals. The tethered balloon was held at each level for a time sufficient for all sensors to come to equilibrium with the local atmosphere; this typically required 2 to 5 min at each level. It was possible to detect changes in spatial trends in profiles in real time, so that smaller height intervals could be used if the changes seemed important. As a result, greater resolution was achieved than is normally obtained with instruments attached to towers or to free balloons.

  9. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  10. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  11. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-12-31

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  12. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-01-01

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  13. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  14. Meteorological conditions during the winter validation study at Rocky Flats, Colorado: An overview

    SciTech Connect (OSTI)

    Hodgin, C.R.

    1991-11-06

    The objective for the Winter Validation Study was to gather field data for validation of the Terrain-Responsive Atmospheric Code (TRAC) under winter time meteorological conditions. Twelve tracer tests were conducted during a two-week period in February 1991. Each test lasted 12 hours, with releases of SF{sub 6} tracer from the Rocky Flats Plant near Golden, Colorado. The tests included ground-based and airborne sampling to 16 km from the release point. This presentation summarizes meteorological conditions during the testing period. Forty six viewgraphs are included.

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    2 40 -4.76% YEAR 2013 2014 Males 37 35 -5.41% Females 5 5 0% YEAR 2013 2014 SES 2 2 0% EJEK 5 4 -20.00% EN 05 5 7 40.00% EN 04 6 6 0% EN 03 1 1 0% NN...

  16. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 67 -15.19% YEAR 2013 2014 Males 44 34 -22.73% Females 35 33 -5.71% YEAR 2013 2014 SES 6 4 -33.33% EJEK 1 1 0% EN 05 9 8 -11.11% EN 04 6 5 -16.67% NN...

  17. THE NEW YORK MIDTOWN DISPERSION STUDY (MID-05) METEOROLOGICAL DATA REPORT.

    SciTech Connect (OSTI)

    REYNOLDS,R.M.; SULLIVAN, T.M.; SMITH, S.; CASSELLA, V.

    2007-01-01

    The New York City midtown dispersion program, MID05, examined atmospheric transport in the deep urban canyons near Rockefeller Center. Little is known about air flow and hazardous gas dispersion under such conditions, since previous urban field experiments have focused on small to medium sized cities with much smaller street canyons and examined response over a much larger area. During August, 2005, a series of six gas tracer tests were conducted and sampling was conducted over a 2 km grid. A critical component of understanding gas movement in these studies is detailed wind and meteorological information in the study zone. To support data interpretation and modeling, several meteorological stations were installed at street level and on roof tops in Manhattan. In addition, meteorological data from airports and other weather instrumentation around New York City were collected. This document describes the meteorological component of the project and provides an outline of data file formats for the different instruments. These data provide enough detail to support highly-resolved computational simulations of gas transport in the study zone.

  18. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Puget Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.

  19. Partial Support for the Federal Committee for Meteorological Services and Supporting Research

    SciTech Connect (OSTI)

    Williamson, Samuel P

    2012-04-30

    DOE E-link Report Number DOE/ER62778 1999-2012 Please see attached Final Technical Report (size too large to post here). Annual Products Provided to DOE: Federal Plan for Meteorological Services and Supporting Research; National Hurricane Operations Plan; Interdepartmental Hurricane Conference Summary Report. All reports and publications can be found on the OFCM website, www.ofcm.noaa.gov.

  20. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona's Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  1. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona`s Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  2. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY2001 THRU CY2004

    SciTech Connect (OSTI)

    FAUROTE, J.M.

    2004-09-30

    Investigation into the meteorological influences on vapor incidents in the tank farms to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems.

  3. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    SciTech Connect (OSTI)

    Vuichard, N.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.

  4. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 35 -5.41% ↓ YEAR 2013 2014 Males 27 25 -7.41% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 11 10 -9.09% ↓ NN (Engineering) 8 8 0% / NQ (Prof/Tech/Admin) 14 15 7.14% ↑ NU (Tech/Admin Support) 2 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 3 3 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  5. Y YEAR

    National Nuclear Security Administration (NNSA)

    5 79 -7.06% ↓ YEAR 2013 2014 Males 59 57 -3.39% ↓ Females 26 22 -15.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 3 -25.00% ↓ EN 05 3 2 -33.33% ↓ EN 04 22 22 0% / EN 03 8 8 0% / NN (Engineering) 16 15 -6.25% ↓ NQ (Prof/Tech/Admin) 28 26 -7.14% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 5 4 -20.00% ↓ African American Female (AA,F) 3 2

  6. Y YEAR

    National Nuclear Security Administration (NNSA)

    91 81 -10.99% ↓ YEAR 2013 2014 Males 67 56 -16.42% ↓ Females 24 25 4.17% ↑ YEAR 2013 2014 SES 1 2 100% ↑ EJ/EK 9 8 -11.11% ↓ EN 04 25 22 -12.00% ↓ NN (Engineering) 24 20 -16.67% ↓ NQ (Prof/Tech/Admin) 29 26 -10.34% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander

  7. Y YEAR

    National Nuclear Security Administration (NNSA)

    21 -4.55% ↓ YEAR 2013 2014 Males 10 8 -20.00% ↓ Females 12 13 8.33% ↑ YEAR 2013 2014 SES 10 7 -30.00% ↓ EX 0 2 100% ↑ EJ/EK 1 1 0% / EN 05 0 1 100% ↑ EN 04 0 1 100% ↑ NQ (Prof/Tech/Admin) 9 8 -11.11% ↓ NU (Tech/Admin Support) 1 1 0% / ED 00 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 1 1 0% / African American Female (AA,F) 5 4 -20.00% ↓ Asian

  8. Y YEAR

    National Nuclear Security Administration (NNSA)

    41 155 9.93% ↑ YEAR 2013 2014 Males 92 106 15.22% ↑ Females 49 49 0% / YEAR 2013 2014 SES 8 8 0% / EX 1 1 0% / EJ/EK 4 4 0% / EN 05 11 10 -9.09% ↓ EN 04 11 14 27.27% ↑ EN 03 2 5 150% ↑ NN (Engineering) 60 63 5.00% ↑ NQ (Prof/Tech/Admin) 44 50 13.64% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 7 10 42.86% ↑ African American Female (AA,F) 13 11 -15.38% ↓ Asian American

  9. Y YEAR

    National Nuclear Security Administration (NNSA)

    563 560 -0.53% ↓ YEAR 2013 2014 Males 518 514 -0.77% ↓ Females 45 46 2.22% ↑ YEAR 2013 2014 SES 2 2 0% / EJ/EK 2 2 0% / EN 04 1 1 0% / NN (Engineering) 11 11 0% / NQ (Prof/Tech/Admin) 218 221 1.38% ↑ NU (Tech/Admin Support) 1 2 100% ↑ NV (Nuc Mat Courier) 328 321 -2.13% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 15 15 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 19 18 -5.26% ↓ African American Female (AA,F) 1 1 0% /

  10. Y YEAR

    National Nuclear Security Administration (NNSA)

    97 180 -8.63% ↓ YEAR 2013 2014 Males 105 89 -15.24% ↓ Females 92 91 -1.09% ↓ YEAR 2013 2014 SES 14 13 -7.14% ↓ EX 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 4 2 -50.00% ↓ EN 03 1 1 0% / EN 00 0 3 100% ↑ NN (Engineering) 35 27 -22.86% ↓ NQ (Prof/Tech/Admin) 135 126 -6.67% ↓ NU (Tech/Admin Support) 2 2 0% / GS 15 0 1 100% ↑ GS 13 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 1 -50.00% ↓ American Indian Alaskan Native Female (AIAN,F) 0 0 0% /

  11. Y YEAR

    National Nuclear Security Administration (NNSA)

    *Total number of Employees 122 112 -8.20% ↓ YEAR 2013 2014 Males 90 84 -6.67% ↓ Females 32 28 -12.50% ↓ YEAR 2013 2014 SES 26 24 -7.69% ↓ EJ/EK 3 3 0% / EN 05 8 9 12.50% ↑ NN (Engineering) 48 47 -2.08% ↓ NQ (Prof/Tech/Admin) 30 26 -13.33% ↓ NU (Tech/Admin Support) 7 3 -57.14% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29%

  12. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 79 -5.95% ↓ YEAR 2013 2014 Males 59 55 -6.78% ↓ Females 25 24 -4.00% ↓ YEAR 2013 2014 SES 3 3 0% / EJ/EK 4 4 0% / EN 04 2 1 -50.00% ↓ NN (Engineering) 20 20 0% / NQ (Prof/Tech/Admin) 55 51 -7.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 10 10 0% / African American Female (AA,F) 9 8 -11.11% ↓ Asian American Pacific Islander Male (AAPI,M) 2 2 0% / Asian American Pacific

  13. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 87 -1.14% ↓ YEAR 2013 2014 Males 46 46 0% / Females 42 41 -2.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 2 -50.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 68 70 2.94% ↑ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 5 5 0% / African American Female (AA,F) 5 6 20.00% ↑ Asian American Pacific Islander Male (AAPI,M) 0 0 0% / Asian

  14. Y YEAR

    National Nuclear Security Administration (NNSA)

    1 14 27.27% ↑ YEAR 2013 2014 Males 9 12 33.33% ↑ Females 2 2 0% / YEAR 2013 2014 SES 2 2 0% / EJ/EK 1 1 0% / EN 04 0 1 100% ↑ EN 00 0 1 100% ↑ NN (Engineering) 5 5 0% / NQ (Prof/Tech/Admin) 3 4 33.33% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 164 -8.38% ↓ YEAR 2013 2014 Males 100 92 -8.00% ↓ Females 79 72 -8.86% ↓ YEAR 2013 2014 SES 8 8 0% / EJ/EK 4 3 -25.00% ↓ EN 04 11 11 0% / EN 03 1 1 0% / EN 00 0 2 100% ↑ NN (Engineering) 39 32 -17.95% ↓ NQ (Prof/Tech/Admin) 111 104 -6.31% ↓ NU (Tech/Admin Support) 5 3 -40.00% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 2 100% ↑ American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 4 3 -25.00% ↓ African American

  16. Y YEAR

    National Nuclear Security Administration (NNSA)

    40 36 -10.00% ↓ YEAR 2013 2014 Males 18 18 0% / Females 22 18 -18.18% ↓ YEAR 2013 2014 SES 3 2 -33.33% ↓ EJ/EK 1 1 0% / EN 03 1 1 0% / NN (Engineering) 3 3 0% / NQ (Prof/Tech/Admin) 30 27 -10.00% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 1 1 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  17. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 30 -11.76% ↓ YEAR 2013 2014 Males 16 14 -12.50% ↓ Females 18 16 -11.11% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 1 -66.67% ↓ NQ (Prof/Tech/Admin) 29 27 -6.90% ↓ NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific Islander

  18. Y YEAR

    National Nuclear Security Administration (NNSA)

    9 209 -8.73% ↓ YEAR 2013 2014 Males 76 76 0% / Females 153 133 -13.07% ↓ YEAR 2013 2014 SES 9 6 -33.33% ↓ EJ/EK 1 1 0% / NQ (Prof/Tech/Admin) 208 194 -6.73% ↓ NU (Tech/Admin Support) 11 8 -27.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 2 -33.33% ↓ African American Male (AA,M) 10 10 0% / African American Female (AA,F) 39 36 -7.69% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American

  19. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 80 -8.05% ↓ YEAR 2013 2014 Males 62 57 -8.06% ↓ Females 25 23 -8.00% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 27 24 -11.11% ↓ EN 03 1 0 -100% ↓ NN (Engineering) 26 25 -3.85% ↓ NQ (Prof/Tech/Admin) 26 24 -7.69% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 2 -33.33% ↓ African American Female (AA,F) 3 3 0% / Asian

  20. Y YEAR

    National Nuclear Security Administration (NNSA)

    502 2381 -4.84% ↓ YEAR 2013 2014 Males 1663 1593 -4.21% ↓ Females 839 788 -6.08% ↓ YEAR 2013 2014 SES 104 90 -13.46% ↓ EX 2 4 100% ↑ SL 1 0 -100% ↓ EJ/EK 88 73 -17.05% ↓ EN 05 40 41 2.50% ↑ EN 04 169 157 -7.10% ↓ EN 03 18 21 100% ↑ EN 00 0 6 100% ↑ NN (Engineering) 441 416 -5.67% ↓ NQ (Prof/Tech/Admin) 1239 1190 -3.95% ↓ NU (Tech/Admin Support) 66 57 -13.64% ↓ NV (Nuc Mat Courier) 328 321 -2.13% ↓ GS 15 1 2 100% ↑ GS 13 2 2 0% / GS 10 3 1 -66.67% ↓ YEAR 2013

  1. Y YEAR

    National Nuclear Security Administration (NNSA)

    80 83 3.75% ↑ YEAR 2013 2014 Males 48 50 4.17% ↑ Females 32 33 3.13% ↑ YEAR 2013 2014 SES 2 1 -50.00% ↓ EJ/EK 8 7 -12.50% ↓ EN 04 11 9 -18.18% ↓ EN 03 1 1 0% / NN (Engineering) 24 27 12.50% ↑ NQ (Prof/Tech/Admin) 32 33 3.13% ↑ NU (Tech/Admin Support) 2 5 150% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 2 2 0% / Asian American

  2. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 27 -3.57% ↓ YEAR 2013 2014 Males 18 17 -5.56% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 4 3 -25.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 9 9 0% / NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 4 4 0% / African American Female (AA,F) 3 4 33.33% ↑ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian

  3. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual photovoltaic module shipments, 2004-2014 (peak kilowatts) Year Modules 2004 143,274 2005 204,996 2006 320,208 2007 494,148 2008 920,693 2009 1,188,879 2010 2,644,498 2011 3,772,075 2012 4,655,005 2013 4,984,881 2014 6,237,524 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports.

  4. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    dollars per peak watt) Year Modules 2004 $2.99 2005 $3.19 2006 $3.50 2007 $3.37 2008 $3.49 2009 $2.79 2010 $1.96 2011 $1.59 2012 $1.15 2013 $0.75 2014 $0.87 Table 4. Average value of photovoltaic modules, 2004-2014 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Dollars are not adjusted for inflation.

  5. The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility

    SciTech Connect (OSTI)

    Maxwell, D.R.

    1995-12-31

    The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations.

  6. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  7. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  12. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-11-10

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2010-04-26

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  15. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-03-16

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  16. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2009-07-22

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-14

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-13

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  20. DOE-SC-ARM-TR-184 Aerosol Observing System Surface Meteorology_AOSMET_Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Aerosol Observing System Surface Meteorology Instrument Handbook J Kyrouac April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  1. Ewan O'Connor FMI (Finnish Meteorological Ins7tute), Helsinki, Finland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5/16 Diagnosing boundary layer properties from remote-sensing observations Ewan O'Connor FMI (Finnish Meteorological Ins7tute), Helsinki, Finland University of Reading, Reading, UK Boundary Layer * Friction-only * Classical fluid dynamics * Atmospheric stability * Atmospheric * Include convection, cloud * Include coast, cities 3/15/16 What is a boundary layer? * Classical fluid dynamics: the layer in a nearly inviscid fluid next to a surface in which frictional drag associated with that surface

  2. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opposition - Dataset | Department of Energy Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition - Dataset Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition - Dataset Excel file and dataset for VMT and the Price of Gasoline Typically Move in Opposition fotw#906_web.xlsx (51.4 KB) More Documents & Publications Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline - Dataset Fact

  3. Fast Company covers "Just Your Typical New Mexico Image Recognition Startup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spun Off From A Government Lab" (Not) just your typical Lab spin off Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Far from Silicon Valley, Descartes Labs aims to turn a national research facility's AI research into new ways of understanding the world. July 30, 2015 Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Descartes Labs cofounders Mark

  4. Six- and three-hourly meteorological observations from 223 USSR stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A.; Kaiser, D.P.

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  5. 24 m meteorological tower data report period: January through December, 1996

    SciTech Connect (OSTI)

    Freeman, D.; Bowen, J.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

    1997-12-01

    This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. This report presents results of the monitoring for January--December, 1996, providing: a status of the measurement systems during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

  6. Salt Repository Project site study plan for meteorology/air quality: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    The Site Study Plan for Meteorology/Air Quality describes a field program consisting of continuous measurements of wind speed and direction, temperature, humidity, dew point, and pressure neede for later modeling and dose calculations. These measurements will include upper level winds, vertical temperature structure, and vertical wind speed. All measurements will be made at a site located within the 9-m/sup 2/ site area but remote from the ESF. The SSP describes the need for each study; its design and design rationale; analysis, management, and use of data; schedule of field activities, organization of field personnel and sample management and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document. Although titled Meteorology/Air Quality, this SSP addresses only meteorology, as there are no air quality data needs in the SCP. A correction to the title will be made in a later revision. 27 refs., 6 figs., 3 tabs.

  7. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vuichard, N.; Papale, D.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less

  8. EVALUATION OF TROQUE VS CLOSURE BOLT PRELOAD FOR A TYPICAL CONTAINMENT VESSEL UNDER SERVICE CONDITIONS

    SciTech Connect (OSTI)

    Smith, A.

    2010-02-16

    Radioactive material package containment vessels typically employ bolted closures of various configurations. Closure bolts must retain the lid of a package and must maintain required seal loads, while subjected to internal pressure, impact loads and vibration. The need for insuring that the specified preload is achieved in closure bolts for radioactive materials packagings has been a continual subject of concern for both designers and regulatory reviewers. The extensive literature on threaded fasteners provides sound guidance on design and torque specification for closure bolts. The literature also shows the uncertainty associated with use of torque to establish preload is typically between 10 and 35%. These studies have been performed under controlled, laboratory conditions. The ability to insure required preload in normal service is, consequently, an important question. The study described here investigated the relationship between indicated torque and resulting bolt load for a typical radioactive materials package closure using methods available under normal service conditions.

  9. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opposition | Department of Energy 6: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition SUBSCRIBE to the Fact of the Week The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when purchasing vehicles. The graph below shows a three-month moving average

  10. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect (OSTI)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  11. Final report on the meteorological database, December 1944--1949. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Stage, S.A.; Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.; Berg, L.K.

    1993-11-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. A number of computer programs are being developed by the HEDR Project to estimate doses and confidence ranges associated with radionuclides transported through the atmosphere and the Columbia River. One computer program is the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). RATCHET combines release data with information on atmospheric conditions including wind direction and speed. The RATCHET program uses these data to produce estimates of time-integrated air concentrations and surface contamination. These estimates are used in calculating dose by the Dynamic EStimates of Concentrations And Radionuclides in Terrestrial EnvironmentS (DESCARTES) and the Calculations of Individual Doses from Environmental Radionuclides (CIDER) computer programs. This report describes the final status of the meteorological database used by RATCHET. Data collection procedures and the preparation and control of the meteorological database are described, along with an assessment of the data quality.

  12. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    SciTech Connect (OSTI)

    Zhang, Yi; Terletska, Hanna; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to KxFe2-ySe2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator. Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.

  15. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yi; Terletska, Hanna; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to KxFe2-ySe2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator. Moreover our resultsmore » demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  16. Candidate wind-turbine-generator site summarized meteorological data for December 1976-December 1981. [Program WIND listed

    SciTech Connect (OSTI)

    Sandusky, W.F.; Renne, D.S.; Hadley, D.L.

    1982-09-01

    Summarized hourly meteorological data for 16 of the original 17 candidate and wind turbine generator sites collected during the period from December 1976 through December 1981 are presented. The data collection program at some individual sites may not span this entire period, but will be contained within the reporting period. The purpose of providing the summarized data is to document the data collection program and provide data that could be considered representative of long-term meteorological conditions at each site. For each site, data are given in eight tables and a topographic map showing the location of the meteorological tower and turbine, if applicable. Use of information from these tables, along with information about specific wind turbines, should allow the user to estimate the potential for long-term average wind energy production at each site.

  17. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    one year to the next (i.e., February 2001 data were compared with February 2000 data). ... GDP and VMT Trends, 1960-2015 Month-Year 3-month Moving Average Gas Price Change From ...

  18. Hanford Meteorological Station computer codes: Volume 2, The PROD computer code

    SciTech Connect (OSTI)

    Andrews, G.L.; Buck, J.W.

    1987-09-01

    At the end of each work shift (day, swing, and graveyard), the Hanford Meteorological Station (HMS), operated by Pacific Northwest Laboratory, issues a forecast of the 200-ft-level wind speed and direction and the weather for use at B Plant and PUREX. These forecasts are called production forecasts. The PROD computer code is used to archive these production forecasts and apply quality assurance checks to the forecasts. The code accesses an input file, which contains the previous forecast's date and shift number, and an output file, which contains the production forecasts for the current month. A data entry form consisting of 20 fields is included in the program. The fields must be filled in by the user. The information entered is appended to the current production monthly forecast file, which provides an archive for the production forecasts. This volume describes the implementation and operation of the PROD computer code at the HMS.

  19. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    SciTech Connect (OSTI)

    Werth, D.; O'Steen, L.

    2008-02-11

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  20. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect (OSTI)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  1. Regional analysis of non-methane hydrocarbons and meteorology of the rural southeast United States

    SciTech Connect (OSTI)

    Hagerman, L.M.

    1996-11-01

    Measurements of non-methane hydrocarbons, as well as ozone, meteorological and trace gas data, were made at four rural sites located within the southeastern United States as a part of the Southern Oxidants Study. Fifty-six C2-C10 hydrocarbons were collected from 1200-1300 local time, once every six days from September 1992 through October 1993. The measurements were made in an effort to enhance the understanding of the behavior and trends of ozone and other photochemical oxidants in this region. The light molecular weight alkanes (ethane, propane, n-butane, iso-butane), ethene and acetylene display a seasonal variation with a winter maximum and summer minimum. Isoprene was virtually non-existent during the winter at all sites, and averaged from 9.8 ppbC (Yorkville, GA) to 21.15 ppbC (Centreville, AL) during the summer. The terpene concentration was greatest in the summer with averages ranging between 3.19 ppbC (Centreville, AL) to 6.38 ppbC (Oak Grove, MS), but was also emitted during the winter months, with a range of 1.25 to 1.9 ppbC for all sites. Propylene-equivalent concentrations were calculated to account for differences in reaction rates between the hydroxyl radical and individual hydrocarbons, and to thereby estimate their relative contribution to ozone, especially in regards to the highly reactive biogenic compounds such as isoprene. It was calculated that biogenics represent at least 65% of the total non-methane hydrocarbon sum at these four sites during the summer season when considering propylene-equivalent concentrations. An ozone episode which occurred from July 20 to July 24 1993 was used as an example to show ozone profiles at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data.

  2. Efficacy of Aerosol-Cloud Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs. Pt. Reyes

    SciTech Connect (OSTI)

    Dunn, M.; Schwartz, S.; Kim, B.-G.; Miller, M.; Liu, Y.; Min, Q.

    2008-03-10

    Several studies have demonstrated that cloud dynamical processes such as entrainment mixing may be the primary modulator of cloud optical properties in certain situations. For example, entrainment of dry air alters the cloud drop size distribution by enhancing drop evaporation. However, the effect of entrainment mixing and other forms or turbulence is still quite uncertain. Although these factors and aerosol-cloud interactions should be considered together when evaluating the efficacy of aerosol indirect effects, the underlying mechanisms appear to be dependent upon each other. In addition, accounting for them is impossible with the current understanding of aerosol indirect effect. Therefore, careful objective screening and analysis of observations are needed to determine the extent to which mixing related properties affect cloud optical properties, apart from the aerosol first indirect effect. This study addresses the role of aerosol-cloud interactions in the context of varying meteorological conditions based on ARM data obtained at the Southern Great Plains (SGP) site in Oklahoma and at Pt. Reyes, California. Previous analyses of the continental stratiform clouds at the SGP site have shown that the thicker clouds of high liquid water path (LWP) tend to contain sub adiabatic LWPs. These sub adiabatic LWPs, which result from active mixing processes, correspond to a lower susceptibility of the clouds to aerosol-cloud interactions, and, hence, to reduced aerosol indirect effects. In contrast, the consistently steady and thin maritime stratus clouds observed at Pt. Reyes are much closer to adiabatic. These clouds provide an excellent benchmark for the study of the aerosol influence on modified marine clouds relative to continental clouds, since they form in a much more homogeneous meteorological environment than those at the continental site.

  3. Effects of downscaled high-resolution meteorological data on the PSCF identification of emission sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Meng -Dawn; Kabela, Erik D.

    2016-04-30

    The Potential Source Contribution Function (PSCF) model has been successfully used for identifying regions of emission source at a long distance in this study, the PSCF model relies on backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In this study, we investigated the impacts of grid resolution and Planetary Boundary Layer (PBL) parameterization (e.g., turbulent transport of pollutants) on the PSCF analysis. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YUS) parameterization schemes were selected to model the turbulent transport in the PBL within the Weather Research and Forecasting (WRF version 3.6) model. Two separate domain grid sizesmore » (83 and 27 km) were chosen in the WRF downscaling in generating the wind data for driving the HYSPLIT calculation. The effects of grid size and PBL parameterization are important in incorporating the influ- ence of regional and local meteorological processes such as jet streaks, blocking patterns, Rossby waves, and terrain-induced convection on the transport of pollutants by a wind trajectory. We found high resolution PSCF did discover and locate source areas more precisely than that with lower resolution meteorological inputs. The lack of anticipated improvement could also be because a PBL scheme chosen to produce the WRF data was only a local parameterization and unable to faithfully duplicate the real atmosphere on a global scale. The MYJ scheme was able to replicate PSCF source identification by those using the Reanalysis and discover additional source areas that was not identified by the Reanalysis data. In conclusion, a potential benefit for using high-resolution wind data in the PSCF modeling is that it could discover new source location in addition to those identified by using the Reanalysis data input.« less

  4. SAND2009-37487C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    output for power purchase agreements (PPA), or to monitor a system's health in real-time. ... typical meteorological year (TMY) data, real-time data from instruments, satellite ...

  5. Tropical Western Pacific: A Year in Darwin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Australian BMRC (Bureau of Meteorology Research Centre) -University of Wales EMERALD-2 (Egrett Microphysics Experiment with RAdiation Lidar and Dynamics) aircraft...

  6. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of IO Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for...

  7. Radionuclide air emissions annual report for calendar year 1994

    SciTech Connect (OSTI)

    Not Available

    1995-04-04

    This report presents the results of the Pinellas Plant air sampling program for the year of 1994. Topics discussed include: site description; source description; air emissions data; dose assessments; description of dose model; summary of input parameters of dose model; unplanned releases; and diffuse emissions. Included in the attachments of this document are: non-radon individual dose assessment; non-radon population dose assessment; summary of stack flow rate measurements; HOTSPOT computer model run; and meteorological data for the Pinellas Plant for 1994.

  8. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of I/O Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for each year between storage and network destinations (systems within and outside of NERSC). Traffic for the current year is an estimate derived by scaling the known months traffic up to 12 months. The years shown are calendar years. The first graph shows the overall growth in network traffic to storage over the years.

  9. LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods

    SciTech Connect (OSTI)

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E.

    1997-04-01

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.

  10. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2012-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  12. Candidate wind-turbine generator site cumulative meteorological data summary and data for January 1982 through September 1982

    SciTech Connect (OSTI)

    Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.; Bradymire, S.L.; Gregory, J.L.

    1983-08-01

    Summarized cumulative hourly meteorological data for 20 new sites selected in early 1980 as part of the expanded candidate site program are presented. The reporting period is July 1980 through September 1982. The data collection program at some individual sites may not span this entire period, but will be contained within the reporting period. The purpose of providing the summarized data is to document the data collection program and to provide data that could be considered representative of longer-term meteorological conditions at each site. For each site, data are given in eight tables and in a topographic map showing the approximated location of the meteorological tower and turbine, if applicable. Use of the information from these tables, along with information about specific wind turbines, should allow the user to estimate the potential for longer-term average wind energy production at each site. Two appendices of other data are provided. Appendix A contains summarized data collected at new and original sites during the period January 1982 through September 1982. Appendix B contains cumulative summarized data for those original sites selected in 1976 with data collection programs continuing into 1982.

  13. Analyses of High Pressure Molten Debris Dispersion for a Typical PWR Plant

    SciTech Connect (OSTI)

    Osamu KAawabata; Mitsuhiro Kajimoto [Japan Nuclear Energy Safety Organization (Japan)

    2006-07-01

    In such severe core damage accident, as small LOCAs with no ECCS injection or station blackout, in which the primary reactor system remains pressurized during core melt down, certain modes of vessel failure would lead to a high pressure ejection of molten core material. In case of a local failure of the lower head, the molten materials would initially be ejected into the cavity beneath the pressure vessel may subsequently be swept out from the cavity to the containment atmosphere and it might cause the early containment failure by direct contact of containment steel liner with core debris. When the contribution of a high-pressure scenario in a core damage frequency increases, early conditional containment failure probability may become large. In the present study, the verification analysis of PHOENICS code and the combining analysis with MELCOR and PHOENICS codes were performed to examine the debris dispersion behavior during high pressure melt ejection. The PHOENICS code which can treat thermal hydraulic phenomena, was applied to the verification analysis for melt dispersion experiments conducted by the Purdue university in the United States. A low pressure melt dispersion experiment at initial pressure 1.4 MPas used metal woods as a molten material was simulated. The analytical results with molten debris dispersion mostly from the model reactor cavity compartment showed an agreement with the experimental result, but the analysis result of a volumetric median diameter of the airborne debris droplets was estimated about 1.5 times of the experimental result. The injection rates of molten debris and steam after reactor vessel failure for a typical PWR plant were analyzed using the MELCOR code. In addition, PHOENICS was applied to a 3D analysis for debris dispersion with low primary pressure at the reactor vessel failure. The analysis result showed that almost all the molten debris were dispersed from the reactor vessel cavity compartment by about 45 seconds after the

  14. 50 Years of Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 Years of Space science-innovationassetsimagesicon-science.jpg 50 Years of Space Since 1943, some of the world's smartest and most dedicated technical people have ...

  15. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    SciTech Connect (OSTI)

    Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

    2008-03-03

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

  16. 70 years after Trinity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 years after Trinity 70 years after Trinity Though the world has seen many changes since Trinity, one thing has remained constant: Los Alamos remains essential to our nation's ...

  17. Secretary Moniz's First Year

    Broader source: Energy.gov [DOE]

    We're looking back at some of the biggest moments from Energy Secretary Ernest Moniz's first year in office.

  18. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  19. Fiscal Year Ended

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year Ended September 30, 2014 Report to Congress July 2016 United States Department of Energy Washington, DC 20585 Department of Energy | July 2016 Report on Uncosted Balances for Fiscal Year Ended 2014| Page iii Executive Summary As required by the Energy Policy Act of 1992 (Public Law 102-486), the Department of Energy is submitting a Report on Uncosted Balances for Fiscal Year Ended 2014. This report presents the results of the Department's annual analysis of uncosted obligation

  20. 2013 Year in Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Year in Review i 2013 YIR May 2014 Year-in-Review: 2013 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy DOE / 2013 Year in Review ii 2013 YIR For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific

  1. Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year 2007 Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year 2007 Department of Energy Report and Agency ...

  2. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    SciTech Connect (OSTI)

    Jasoni, Richard L; Larsen, Jessica D; Lyles, Brad F.; Healey, John M; Cooper, Clay A; Hershey, Ronald L; Lefebre, Karen J

    2013-04-01

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 31013.9 mm for the sagebrush site and 34715.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started

  3. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan

    2013-06-20

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  4. Allocation Year Rollover process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocatio Year Rollover process Allocation Year Rollover process December 23, 2013 by Francesca Verdier Allocation Year 2013 (AY13) ends at 23:59:59 on Monday, January 13, 2014. AY14 runs from Tuesday, January 14, 2014 through Monday, January 12, 2015. The major features of the rollover are: charging acroess the AY boundary: All batch jobs will continue running during the rollover. Time accrued before midnight will be charged to AY13 repos; time accrued after midnight will be charged to AY14

  5. Performance of a new wind updating system for a prognostic meteorological model in the environs of Mexico City

    SciTech Connect (OSTI)

    Williams, M.D.

    1993-12-31

    Los Alamos National Laboratory and Institute Mexicano del Petroleo are completely a joint study of options for improving air quality in Mexico City. The US Department of Energy supported the efforts of the Los Alamos investigators, while PEMEX supported the efforts of the Mexican researchers. One of the first steps in the process was to develop an understanding of the existing air quality situation. In this context we have modified a three-dimensional, prognostic, higher order turbulence model for atmospheric circulation (HOTMAC) to treat domains which include an urbanized area. This sophisticated meteorological model is required because of the complexity of the terrain and the relative paucity of meteorological data. Mexico City lies at an elevation of approximately 7500 feet above sea level in a ``U`` shaped basin which opens to the north. The city occupies a major part of the southwest portion of the basin. Upper level winds are provided by rawinsondes at the airport, while low-level winds are measured at several sites within the city. Many of the sites have obstructed upwind fetches for a variety of directions. During the wintertime when the worst air quality episodes occur, the winds are frequently light, and out of the northeast at lower levels, while above 1000 meters above the surface they are usually from the southwest. This means the winds are light within the city, but significant slope winds develop which influence the behavior of the pollutants. Frequently, the winds in the basin change as a seabreeze penetrates the basin from the northeast. The seabreeze produces a much different wind regime after its arrival in the late afternoon or early evening. This makes it important to update the winds in a realistic fashion.

  6. Welcome Year in Review

    National Nuclear Security Administration (NNSA)

    Training Meeting Orlando, Florida-May 23-25, 2006 Sponsored by the U.S. Department of Energy & the U.S. Nuclear Regulatory Commission Welcome & Year In Review Peter Dessaules...

  7. Year 2000 awareness

    SciTech Connect (OSTI)

    Holmes, C.

    1997-11-01

    This report contains viewgraphs on the challenges business face with the year 2000 software problem. Estimates, roadmaps, virtual factory software, current awareness, and world wide web references are given.

  8. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect (OSTI)

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  9. YEAR IN REVIEW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amped Up Newsletter Volume 1, No. 1 | February 2015 2014 ANNUAL REPORT 2014 YEAR IN REVIEW Volume 1, No. 1, January/February 2015 What's Happening @ EERE IN THIS ISSUE A Message from Dave.......................................... 2 EERE All Hands Meeting ..................................... 3 Staffing Update ..................................................... 4 2014 Success Stories .......................................... 6 Sustainable Transportation ............................ 6 Renewable

  10. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

  11. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2008 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  12. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  13. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-09-27

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  15. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    SciTech Connect (OSTI)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data parameterizations on

  16. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: Results from DISCOVER-AQ California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-02

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno–Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) andmore » an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m–3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O/C = 0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O/C = 0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O/C = 0.33; BBOA2: 20 % of total OA, O/C = 0.60) most likely associated with residential space heating from wood combustion, and semivolatile oxygenated OA (SV

  17. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Young, D. E.; Kim, H.; Parworth, C.; Zhou, S.; Zhang, X.; Cappa, C. D.; Seco, R.; Kim, S.; Zhang, Q.

    2015-12-15

    The San Joaquin Valley (SJV) in California experiences persistent air quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physico-chemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air quality models. moreAerosol Mass Spectrometer (HR-ToF-AMS) and an Ionicon Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 ?g m?3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA; O / C = 0.09) associated with local traffic, cooking OA (COA; 28 % of total OA; O / C = 0.19) associated with food cooking activities, two biomass burning OAs (BBOA1; 13 % of total OA; O / C = 0.33 and BBOA2; 20 % of total OA; O / C = 0.60) most likely associated with residential space heating from wood combustion, and semi-volatile oxygenated OA (SV-OOA; 16 % of total OA; O / C = 0.63) and low volatility oxygenated OA (LV-OOA; 24 % of total OA; O / C = 0.90) formed via chemical reactions in the atmosphere. Large differences in aerosol chemistry at Fresno were observed between the current campaign (winter 2013) and a

  18. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-02

    The San Joaquin Valley (SJV) in California experiences persistent air-quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physicochemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air-quality models. During January and February 2013, a ground supersite was installed at the Fresno–Garland California Air Resources Board (CARB) monitoring station, where comprehensive, real-time measurements of PM and trace gases were performed using instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) andmore » an Ionicon proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 µg m−3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA, O / C  =  0.09) associated with local traffic, cooking OA (COA; 18 % of total OA, O / C  =  0.19) associated with food cooking activities, two biomass burning OA (BBOA1: 13 % of total OA, O / C  =  0.33; BBOA2: 20 % of total OA, O / C  =  0.60) most likely

  19. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends

    SciTech Connect (OSTI)

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael; Gershunov, Alexander; Gutowski, Jr., William J.; Gyakum, John R.; Katz, Richard W.; Lee, Yun -Young; Lim, Young -Kwon; Prabhat, -

    2015-05-22

    This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic to planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more

  20. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael; Gershunov, Alexander; Gutowski, Jr., William J.; Gyakum, John R.; Katz, Richard W.; et al

    2015-05-22

    This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so

  1. Typical BWR/4 MSIV closure ATWS analysis using RAMONA-3B code with space-time neutron kinetics

    SciTech Connect (OSTI)

    Neymotin, L.; Saha, P.

    1984-01-01

    A best-estimate analysis of a typical BWR/4 MSIV closure ATWS has been performed using the RAMONA-3B code with three-dimensional neutron kinetics. All safety features, namely, the safety and relief valves, recirculation pump trip, high pressure safety injections and the standby liquid control system (boron injection), were assumed to work as designed. No other operator action was assumed. The results show a strong spatial dependence of reactor power during the transient. After the initial peak of pressure and reactor power, the reactor vessel pressure oscillated between the relief valve set points, and the reactor power oscillated between 20 to 50% of the steady state power until the hot shutdown condition was reached at approximately 1400 seconds. The suppression pool bulk water temperature at this time was predicted to be approx. 96/sup 0/C (205/sup 0/F). In view of code performance and reasonable computer running time, the RAMONA-3B code is recommended for further best-estimate analyses of ATWS-type events in BWRs.

  2. Analysis of a typical BWR/4 MSIV closure ATWS using RAMONA-3B and TRAC-BD1 codes

    SciTech Connect (OSTI)

    Hsu, C.J.; Neymotin, L.; Saha, P.

    1984-01-01

    Analysis of a typical BWR/4 Anticipated Transient Without Scram (ATWS) has been performed using two advanced, best-estimate computer codes, namely, RAMONA-3B and TRAC-BD1. The transient was initiated by an inadvertant closure of all Main Steam Isolation Valves (MSIVs) with subsequent failure to scram the reactor. However, all other safety features namely, the safety and relief valves, recirculation pump trip, high pressure coolant injection and the standby liquid (boron) control system were assumed to work as designed. No other operator action was assumed. It has been found that both RAMONA-3B (with three-dimensional neutron kinetics) and TRAC-BD1 (with point kinetics) yielded similar results for the global parameters such as reactor power, system pressure and the suppression pool temperature. Both calculations showed that the reactor can be brought to hot shutdown in approximately twenty to twenty-five minutes with borated water mass flow rate of 2.78 kg/s (43 gpm) with 23800 ppM of boron. The suppression pool water temperature (assuming no pool cooling) at this time could be in the range of 170 to 205/sup 0/F. An additional TRAC-BD1 calculation with RAMONA-3B reactor power indicates that the thermal-hydraulic models in RAMONA-3B, although simpler than those in TRAC-BD1, can adequately represent the system behavior during the ATWS-type transient.

  3. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily...

  4. Planning for Years to Come

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning for Years to Come Planning for Years to Come LANL's Governing Policy on the Environment August 1, 2013 Water sampling tour for the Association of Experiential Education ...

  5. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  6. Season and diurnal variations of peroxyacetyl nitrate (PAN) in a suburban area of central Italy and their relation with the meteorological conditions and the concentration of other photochemical oxidants and their precursors

    SciTech Connect (OSTI)

    Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A. )

    1988-09-01

    Peroxyacetyl nitrate (PAN), is a photochemical oxidant formed in the atmosphere when large amounts of hydrocarbons (HC) and NO{sub x} are emitted in air and exposed to the UV radiation coming from the sun. Its formation proceeds through the conversion of HC, mainly olefins, into aldehydes that, after oxidation into peroxyradicals, react with NO{sub 2} to give this gaseous pollutant. Although the amount of PAN in air represents a suitable index for measuring photochemical smog and photochemical episodes can easily be observed in many Italian cities, almost no data have been collected in their country. In this paper the authors present the results obtained during a two years monitoring campaign carried in a suburban area of Central Italy placed downwind to Rome. Seasonal and daily trends of PAN will be reported together with the meteorological parameters and the change in concentration of other photochemical oxidants (ozone), its precursors (HC and aldehydes) and some acidic species. The results indicate that PAN, formed within the city, is transported into site together with other oxidants.

  7. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Aggregate Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate

  8. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Concurrent Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage

  9. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  10. Solid waste 30-year volume summary

    SciTech Connect (OSTI)

    Valero, O.J.; Armacost, L.L.; DeForest, T.J.; Templeton, K.J.; Williams, N.C.

    1994-06-01

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford`s Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m{sup 3} of LLMW and TRU/TRUM waste will be managed at Hanford`s SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m{sup 3} of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D&D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford`s future solid waste management requirements.