Sample records for types electron muon

  1. Electrons from Muon Decay in Bound State

    E-Print Network [OSTI]

    Rashid M. Djilkibaev; Rostislav V. Konoplich

    2009-02-12T23:59:59.000Z

    We present results of a study of the muon decay in orbit (DIO) contribution to the signal region of muon - electron conversion. Electrons from DIO are the dominant source of background for muon - electron conversion experiments because the endpoint of DIO electrons is the same as the energy of electrons from elastic muon - electron conversion. The probability of DIO contribution to the signal region was considered for a tracker with Gaussian resolution function and with a realistic resolution function obtained in the application of pattern recognition and momentum reconstruction Kalman filter based procedure to GEANT simulated DIO events. It is found that the existence of non Gaussian tails in the realistic resolution function does not lead to a significant increase in DIO contribution to the signal region. The probability of DIO contribution to the calorimeter signal was studied in dependence on the resolution, assuming a Gaussian resolution function of calorimeter. In this study the geometrical acceptance played an important role, suppressing DIO contribution of the intermediate range electrons from muon decay in orbit.

  2. Radiation Testing of Electronics for the CMS Endcap Muon System

    E-Print Network [OSTI]

    B. Bylsma; D. Cady; A. Celik; L. S. Durkin; J. Gilmore; J. Haley; V. Khotilovich; S. Lakdawala; J. Liu; M. Matveev; B. P. Padley; J. Roberts; J. Roe; A. Safonov; I. Suarez; D. Wood; I. Zawisza

    2012-08-20T23:59:59.000Z

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  3. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect (OSTI)

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01T23:59:59.000Z

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  4. High-energy electrons from the muon decay in orbit: radiative corrections

    E-Print Network [OSTI]

    Szafron, Robert

    2015-01-01T23:59:59.000Z

    We determine the $\\mathcal{O}(\\alpha)$ correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. The correction suppresses the background by about 20\\%.

  5. Identification problems of muon and electron events in the Super-Kamiokande detector

    E-Print Network [OSTI]

    K Mitsui; T Kitamura; T Wada; K Okei

    2002-09-18T23:59:59.000Z

    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.

  6. A Theory of Pattern Recognition for the Discrimination between Muon and Electron in the Super-Kamiokande

    E-Print Network [OSTI]

    V. I. Galkin; A. M. Anokhina; E. Konishi; A. Misaki

    2007-03-29T23:59:59.000Z

    The standard Super-Kamiokande analysis uses an estimator for particle identification by which it discriminates electrons (electron nutrinos) from muons (muon nutrinos). Use of this estimator has led to the claim of a significant deficiency of muons (muon nutrinos), suggesting the existence of neutrino oscillations. We investigate three areas of concern for the Super-Kamiokande estimator: the separation of the spatial part from the angular part in the probability functions, the neglect of fluctuations in the Cherenkov light in different physical processes due to the charged particles concerned, and the point-like approximation for the emission of Cherenkov light. We show that the first two factors are important for the consideration of stochastic processes in the generation of the Cherenkov light, and that the point-like assumption oversimplifies the estimation of the Cherenkov light quantities. We develop a new discrimination procedure for separating electron neutrinos from muon neutrinos, based on detailed simulations carried out with GEANT~3.21 and with newly derived mean angular distribution functions for the charged particles concerned (muons and electrons/positrons), as well as the corresponding functions for the relative fluctuations. These angular distribution functions are constructed introducing a ``moving point'' approximation. The application of our procedure between the discrimination between electron and muon to the analysis of the experimental data in SK will be made in a subsequent paper.

  7. A Discrimination Procedure between Muon and Electron in Superkamiokande Experiment Based on the Angular Distribution Function Method

    E-Print Network [OSTI]

    V. I. Galkin[1; A. M. Anokhina[1; E. Konishi[2; A. Misaki{3

    2007-03-29T23:59:59.000Z

    In the previous paper, we construct the angular distribution functions for muon and electron as well as their relative fluctuation functions to find suitable discrimination procedure between muon and electron in Superkamiokande experiment. In the present paper, we are able to discriminate muons from electrons in Fully Contained Events with a probability of error of less than several %. At the same time, our geometrical reconstruction procedure, considering only the ring-like structure of the Cherenkov image, gives an unsatisfactory resolution for 1GeV electron and muon, with a mean vertex position error, delta r, of 5-10 m and a mean directional error, delta theta, of about 6-20 degrees. In contrast, a geometrical reconstruction procedure utilizing the full image and using a detailed approximation of the event angular distribution works much better: for a 1 GeV electron, delta r is about 2 m and delta theta is about 3 degrees; for a 1GeV muon, delta r is about 3 m and delta theta is about 5 degrees. At 5 GeV, the corresponding values are about 1.4 m and about 2 degree for electron and are about 2.9m and about 4.3 degrees for muon. The numerical values depend on a single PMT contribution threshold. The values quoted above are the minima with respect to this threshold. Even the methodologically correct approach we have adopted, based on detailed simulations using closer approximations than those adopted in the SK analysis, cannot reproduce the accuracies for particle discrimination, momentum resolution, interaction vertex location, and angular resolution obtained by the SK simulations, suggesting the assumptions in these may be inadequate.

  8. Letter of intent: a muon to electron conversion experiment at Fermilab

    SciTech Connect (OSTI)

    Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; /Boston U.; Marciano, W.J.; Semertzidis, Y.; Yamin, P.; /Brookhaven; Kolomensky, Yu.G.; /UC, Berkeley; Ankenbrandt, C.M.; Bernstein, R.H.; Bogert, D.; /Fermilab /Idaho State U. /Illinois U., Urbana /Moscow, INR /Massachusetts U., Amherst /MUONS Inc., Batavia /Syracuse U. /Virginia U.

    2007-09-01T23:59:59.000Z

    We are writing this letter to express our interest in pursuing an experiment at Fermilab to search for neutrinoless conversion of muons into electrons in the field of a nucleus, which is a lepton flavor-violating (LFV) reaction. The sensitivity goal of this experiment represents an improvement of more than a factor of 10,000 over existing limits. It would provide the most sensitive test of LFV, a unique and essential window on new physics unavailable at the high energy frontier. We present a conceptual scheme that would exploit the existing Fermilab Accumulator and Debuncher rings to generate the required characteristics of the primary proton beam. The proposal requires only modest modifications to the accelerator complex beyond those already planned for the NOvA experiment, with which this experiment would be fully compatible; however, it could also benefit significantly from possible upgrades such as the 'Project X' linac. We include the conceptual design of the muon beam and the experimental apparatus, which use the previously proposed MECO experiment as a starting point.

  9. Front-end Electronics Test for the LHCb Muon Wire Chambers

    E-Print Network [OSTI]

    Nobrega, R; Carboni, G; Massafferri, A; Santovetti, E

    2007-01-01T23:59:59.000Z

    This document describes the apparatus and procedures implemented to test Multi Wire Proportional Chambers (MWPC) after front-end assembly for the LHCb Muon Detector. Results of measurements of key noise parameters are also described. Given a fully equipped chamber, this system is able to diagnose every channel performing an analysis of front-end output drivers’ response and noise rate versus threshold. Besides, it allows to assess if the noise rate at the experiment threshold region is within appropriate limits. Aiming at an automatic, fast and user-friendly system for mass production tests of MWPC, the project has foreseen as well electronic identification of every chamber and front-end board, and data archiving in such a way to make it available to the Experiment Control System (ECS) while in operation.

  10. Search for pair production of the scalar top quark in the electron+muon final state

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Altona, A.; Alverson, G.; Alves, G.A.

    2010-09-01T23:59:59.000Z

    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark ({tilde t}{sub 1}) in p{bar p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb{sup -1}. The scalar top quarks are assumed to decay into a b quark, a charged lepton, and a scalar neutrino ({tilde {nu}}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the (M{sub {tilde t}{sub 1}}, M{sub {tilde {nu}}}) mass plane.

  11. Search for Higgs boson production in trilepton and like-charge electron-muon final states with the D0 detector

    E-Print Network [OSTI]

    D0 Collaboration

    2013-02-22T23:59:59.000Z

    We present a search for Higgs bosons in multilepton final states in pp-bar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider, using the full Run II data set with integrated luminosities of up to 9.7 fb-1. The multilepton states considered are two electron plus muon, electron with two muons, muon with two hadronic tau leptons, and like-charge electron-muon pairs. These channels directly probe the HVV (V=W,Z) coupling of the Higgs boson in production and decay. The muon with two hadronic tau lepton channel is also sensitive to H to tau lepton pair decays. Upper limits at the 95% C.L on the rate of standard model Higgs boson production are derived in the mass range 100 Higgs boson model.

  12. Muon Reconstruction and Identification in CMS

    SciTech Connect (OSTI)

    Everett, A. [Purdue University, West Lafayette, IN, 47906 (United States)

    2010-02-10T23:59:59.000Z

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  13. On the Capability Of Super-Kamiokande Detector To Define the Primary Parameters Of Muon And Electron Events

    E-Print Network [OSTI]

    V. I. Galkin; A. M. Anokhina; E. Konishi; A. Misaki

    2008-08-06T23:59:59.000Z

    We develop a new discrimination procedure for separating electron neutrinos from muon neutrinos, based on detailed simulations carried out with GEANT3.21 and with mean angular distribution functions and their relative fluctuations. Using our procedure we are able to discriminate muons from electrons in Fully Contained Events in Super-Kamioknade Experiment with a probability of error ofless than several %. Also we have checked geometrical resolution on both cases, considering only the ring-like structure of the Cherenkov image and a geometrical reconstruction procedure utilizing the full distribution. Even the methodologically correct approach we have adopted, we cannot reproduce the accuracies for particle discrimination, momentum resolution, interaction vertex location, and angular resolution obtained by the Super-Kamiokande Collaboration.

  14. Muon spin rotation in heavy-electron pauli-limit superconductors

    SciTech Connect (OSTI)

    Michal, V. P., E-mail: vincent.michal@cea.fr [INAC/SPSMS, Commissariat a l'Energie Atomique (France)

    2012-11-15T23:59:59.000Z

    The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the muon spin rotation ({mu}SR) experiment. Based on the Ginzburg-Landau expansion for the superconductor free energy, we study the evolution with respect to the external field of the static linewidth both in the limit of independent vortices (low magnetic field) with a variational expression for the order parameter and in the near H{sub c2}{sup P}(T) regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in the Ginzburg-Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field are predicted as a result of the superconductor spin response around a vortex core that dominates the usual charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling vortex lattice properties recently observed in CeCoIn{sub 5}.

  15. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley; ,

    2012-04-05T23:59:59.000Z

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

  16. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect (OSTI)

    Minakata, H.; /Tokyo Metropolitan U.; Nunokawa, H.; /Rio de Janeiro, Pont. U. Catol.; Parke, Stephen J.; /Fermilab; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01T23:59:59.000Z

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  17. RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM

    E-Print Network [OSTI]

    Leskovar, B.

    2010-01-01T23:59:59.000Z

    1980 RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS10548 RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS™**"* ' Reliability Considerations of Electronics Components

  18. Development of a Portable Muon Witness System

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01T23:59:59.000Z

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with associated electronics to measure energy depositions in coincidence in the two paddles. For this particular application of the prototype, the measurements performed concentrated on a broad investigation of the dependence of the muon flux on depth underground. These tests were conducted inside at Building 3420/1307 and underground at Building 3425 at the Pacific Northwest National Laboratory. The second half of this report analyzes modifications to the electronics of the BLCRD to make this detector portable. Among other modifications, a battery powered version of these electronics is proposed for the final Muon Witness design.

  19. Search for Heavy Bottomlike Quarks Decaying to an Electron or Muon and Jets in pp? Collisions at ?s=1.96??TeV

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We report the most sensitive direct search for pair production of fourth-generation bottomlike chiral quarks (b?)[(b prime)] each decaying promptly to tW. We search for an excess of events with an electron or muon, at least ...

  20. RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM

    E-Print Network [OSTI]

    Leskovar, B.

    2010-01-01T23:59:59.000Z

    fai'ijre rate characteristics for electronics components.and J. T. Redforn, Array Electronics and Signal Processing,Physics of Failure in Electronics, Vol. 3, pp 238-263, 1964.

  1. RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM

    E-Print Network [OSTI]

    Leskovar, B.

    2010-01-01T23:59:59.000Z

    to the designer of high-reliability equipment and systems.HDBK-217B, Reliability Prediction of Electronic Equipment,217B-Reliability Prediction of Electronic Equipment provides

  2. The LHCb Muon System

    E-Print Network [OSTI]

    Lenzi, Michela

    2005-01-01T23:59:59.000Z

    The ability to provide fast muon triggering and efficient offline muon identification is an essential feature of the LHCb experiment. The muon detector is required to have a high efficiency over a large area and an appropriate time resolution to identify the bunch crossing for level–0 triggers. The LHCb muon detector consists of five stations equipped with 1368 Multi Wire Proportional Chambers and 12 Gas Electron Multiplier chambers. The technical design of the chambers is briefly presented and the Quality Control procedures during the various construction steps are described. The method developed for gas gain uniformity measurement is also described together with the results on efficiency of detectors fully equipped with the front–end electronics, obtained from tests with cosmic rays.

  3. Muon-proton Scattering

    E-Print Network [OSTI]

    E. Borie

    2013-02-05T23:59:59.000Z

    A recent proposal to measure the proton form factor by means of muon-proton scattering will use muons which are not ultrarelativistic (and also not nonrelativistic). The usual equations describing the scattering cross section use the approximation that the scattered lepton (usually an electron) is ultrarelativistic, with v/c approximately equal to 1. Here the cross section is calculated for all values of the energy. It agrees with the standard result in the appropriate limit.

  4. Muon Collider Progress: Accelerators

    E-Print Network [OSTI]

    Michael S. Zisman

    2011-09-14T23:59:59.000Z

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  5. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF

    E-Print Network [OSTI]

    Fernández, C; Fouz-Iglesias, M C; Marin, J; Oller, J C; Willmott, C

    2002-01-01T23:59:59.000Z

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  6. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect (OSTI)

    Ochoa Ricoux, Juan Pedro; /Caltech

    2009-10-01T23:59:59.000Z

    We perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, a process which would manifest a nonzero value of the {theta}{sub 13} mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of {nu}{sub e} charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in {theta}{sub 13}. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  7. Automatic Radar Antenna Scan Type Recognition in Electronic

    E-Print Network [OSTI]

    Barshan, Billur

    Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

  8. Flexible Electronics New Devices on Nearly Any Type of Substrate

    E-Print Network [OSTI]

    Rogers, John A.

    Flexible Electronics ­ New Devices on Nearly Any Type of Substrate by Angelika Boeer published: 2011-07-06 Flexible electronic devices ­ this is a fascinating topic and becoming more and more such as display systems, flexible and stretchable electronics, or other, no-waver-based devices. Sign up

  9. Stochastic cooling in muon colliders

    SciTech Connect (OSTI)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01T23:59:59.000Z

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

  10. MUON ACCELERATION

    SciTech Connect (OSTI)

    BERG,S.J.

    2003-11-18T23:59:59.000Z

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  11. Muon Cooling via Ionization Andrea Kay Forget

    E-Print Network [OSTI]

    Cinabro, David

    decay, as a result of their short lives many of the known cooling techniques (electron, stochastic this cooling technique has never been used many bugs need to be worked out, such as the setup and layout for muon ionization cooling to work efficiently. I. INTRODUCTION Muons need a faster beam cooling technique

  12. Muon capture at PSI

    E-Print Network [OSTI]

    Peter Winter

    2010-12-17T23:59:59.000Z

    Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calculate related processes such as solar pp-fusion or neutrino-deuteron scattering. The MuSun experiment will deduce Lambda_d to better than 1.5%. The experiment uses the MuCap detection setup with a new time projection chamber operated with deuterium at 30K and several hardware upgrades. The system is currently fully commissioned and the main physics data taking will start in 2011.

  13. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the delta m**2 about equals 1-eV**2 region

    SciTech Connect (OSTI)

    Schmitz, David W.; /Columbia U.

    2008-01-01T23:59:59.000Z

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the {Delta}m{sup 2} {approx} 1 eV{sup 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  14. Muon Cooling and Future Muon Facilities

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2006-11-24T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for achieving the highest lepton-antilepton collision energies and the most precise measurements of the parameters of the neutrino mixing matrix. The performance and cost of these future facilities depends sensitively on how well a beam of muons can be cooled. The recent progress of muon-cooling prototype tests and design studies nourishes the hope that such facilities can be built during the next decade.

  15. SNM detection by active muon interrogation

    SciTech Connect (OSTI)

    Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  16. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect (OSTI)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11T23:59:59.000Z

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  17. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.; The MEGA Collaboration

    1993-05-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  18. Rare muon processes

    SciTech Connect (OSTI)

    Cooper, M.D.

    1993-01-01T23:59:59.000Z

    The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

  19. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29T23:59:59.000Z

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  20. Precision Muon Physics

    E-Print Network [OSTI]

    Gorringe, T P

    2015-01-01T23:59:59.000Z

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiment...

  1. ATLAS Muon Detector Commissioning

    E-Print Network [OSTI]

    E. Diehl; for the ATLAS muon collaboration

    2009-10-15T23:59:59.000Z

    The ATLAS muon spectrometer consists of several major components: Monitored Drift Tubes (MDTs) for precision measurements in the bending plane of the muons, supplemented by Cathode Strip Chambers (CSC) in the high eta region; Resistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs) for trigger and second coordinate measurement in the barrel and endcap regions, respectively; an optical alignment system to track the relative positions of all chambers; and, finally, the world's largest air-core magnetic toroid system. We will describe the status and commissioning of the muon system with cosmic rays and plans for commissioning with early beams.

  2. Muon Fluence Measurements for Homeland Security Applications

    SciTech Connect (OSTI)

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10T23:59:59.000Z

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  3. Test Facility for Full-Equipped Chambers for the LHCb Muon Detector

    E-Print Network [OSTI]

    Nóbrega, Rafael

    2007-01-01T23:59:59.000Z

    The LHCb Muon System is made up by more than 1300 chambers of 20 different types, resulting in more than 120k readout channels. In order to guarantee high-quality performance during the experiment it is of crucial importance to get a complete knowledge of the fully equipped detector functionalities.A complete test system was built and a C++ ROOT software was developed to allow carring out a variety of studies on the many LHCb Muon chambers. Such system provides full control of the frontend, the high-voltage and the acquisition electronics and makes available a number of procedures to study the chambersâ?? performance. It was used for studies and a quality control on the chambers before and during the final positioning on the detector. In this note an overview of the hardware setup and of the software will be given. Results of measurements related to front-end channels characteristics will be presented.

  4. Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level alignment

    E-Print Network [OSTI]

    Peters, Achim

    Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level Electronic coupling in a hybrid structure made of ZnMgO and a spirobifluorene derivative SP6 is inves- tigated in the situation where the energy level alignment at the organic/inorganic interface revealed

  5. Precision Muon Physics

    E-Print Network [OSTI]

    T. P. Gorringe; D. W. Hertzog

    2015-06-04T23:59:59.000Z

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  6. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01T23:59:59.000Z

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  7. Muon Cooling Channels Eberhard Keil

    E-Print Network [OSTI]

    Keil, Eberhard

    Muon Cooling Channels Eberhard Keil Katharinenstr. 17, DE-10711 Berlin, Germany Abstract Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield

  8. TETRA MUON COOLING RING

    SciTech Connect (OSTI)

    KAHN,S.A.FERNOW,R.C.BALBEKOV,V.RAJA,R.USUBOV,Z.

    2003-11-18T23:59:59.000Z

    We give a brief overview of recent simulation activities on the design of neutrino factories. Simulation work is ongoing on many aspects of a potential facility, including proton drivers, pion collection and decay channels, phase rotation, ionization cooling, and muon accelerators.

  9. Design of the Muon Lifetime Experiment By Steve Kliewer

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    the lifetime of the Muon particle. This planned device will use 4, low voltage, classroom safe scintillator detectors and a data acquisition electronics board developed by Quarknet of FermiLab. Analysis, low voltage, classroom safe, detectors 2. DAQ: use the electronics developed by Quarknet (QNET2) 3

  10. Muon Cooling and Future Muon Facilities: The Coming Decade

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2009-10-21T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the neutrino mixing matrix. The performance and cost of these depend sensitively on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built in the decade to come.

  11. Muon capture for the front end of a muon collider

    SciTech Connect (OSTI)

    Neuffer, D.; /Fermilab; Yoshikawa, C.; /MUONS Inc., Batavia

    2011-03-01T23:59:59.000Z

    We discuss the design of the muon capture front end for a {mu}{sup +}-{mu}{sup -} Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.

  12. High field solenoids for muon cooling

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling · M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider

  13. Superconducting solenoids for the Muon collider

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    muon collider has superconducting solenoids as an integralLBNL-44303 SCMAG-690 Superconducting Solenoids for the MuonDE-AC03-76SFOOO98. J Superconducting Solenoids for the Muon

  14. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01T23:59:59.000Z

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  15. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16T23:59:59.000Z

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  16. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    SciTech Connect (OSTI)

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11T23:59:59.000Z

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  17. Features of the electronic spectrum in a type-I core - shell quantum dot

    SciTech Connect (OSTI)

    Igoshina, S E; Karmanov, A A [Penza State University, Penza (Russian Federation)

    2013-01-31T23:59:59.000Z

    The model is proposed, which allows one to solve the problem of finding the energy spectrum and the wave function of an electron in a type-I core - shell quantum dot. It is shown that the size of the core and shell can serve as control parameters for the optimisation of the energy structure of the quantum dot in order to obtain the real structures with desired electrophysical and optical properties. (quantum dots)

  18. Muon Cooling, Muon Colliders, and the MICE Experiment

    E-Print Network [OSTI]

    Daniel M. Kaplan on behalf of the MAP; MICE collaborations

    2013-07-15T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the Higgs boson and the neutrino mixing matrix. The performance and cost of these depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built during the coming decade. The status of the key technologies and their various demonstration experiments is summarized.

  19. Muon Cooling, Muon Colliders, and the MICE Experiment

    E-Print Network [OSTI]

    Kaplan, Daniel M

    2013-01-01T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the Higgs boson and the neutrino mixing matrix. The performance and cost of these depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built during the coming decade. The status of the key technologies and their various demonstration experiments is summarized.

  20. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01T23:59:59.000Z

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  1. Doped H(2)-Filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Jansson, A.; Hu, M.; Moretti, A.; Popovic, M.; /Fermilab; Alsharo'a, M.; Johnson, R.P.; Neubauer, M.; Sah, R.; /Muons Inc., Batavia; Rose, D.V.; /Voss Sci., Albuquerque

    2009-05-01T23:59:59.000Z

    RF cavities pressurized with hydrogen gas may provide effective muon beam ionization cooling needed for muon colliders. Recent 805 MHz test cell studies reported below include the first use of SF{sub 6} dopant to reduce the effects of the electrons that will be produced by the ionization cooling process in hydrogen or helium. Measurements of maximum gradient in the Paschen region are compared to a simulation model for a 0.01% SF{sub 6} doping of hydrogen. The observed good agreement of the model with the measurements is a prerequisite to the investigation of other dopants.

  2. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MAP; MICE Collaborations

    2014-12-10T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  3. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Kaplan, Daniel M

    2014-01-01T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  4. Optimising a Muon Spectrometer for Measurements at the ISIS Pulsed Muon Source

    E-Print Network [OSTI]

    Giblin, S R; King, P J C; Tomlinson, S; Jago, S J S; Randall, L J; Roberts, M J; Norris, J; Howarth, S; Mutamba, Q B; Rhodes, N J; Akeroyd, F

    2014-01-01T23:59:59.000Z

    This work describes the development of a state-of-the-art muon spectrometer for the ISIS pulsed muon source. Conceived as a major upgrade of the highly successful EMU instrument, emphasis has been placed on making effective use of the enhanced flux now available at the ISIS source. This has been achieved both through the development of a highly segmented detector array and enhanced data acquisition electronics. The pulsed nature of the ISIS beam is particularly suited to the development of novel experiments involving external stimuli, and therefore the ability to sequence external equipment has been added to the acquisition system. Finally, the opportunity has also been taken to improve both the magnetic field and temperature range provided by the spectrometer, to better equip the instrument for running the future ISIS user programme.

  5. Muon ID - taking care of lower momenta muons

    SciTech Connect (OSTI)

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2005-12-01T23:59:59.000Z

    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta for low momenta single muons particles is described.

  6. Muon catalyzed fusion

    SciTech Connect (OSTI)

    Breunlich, W.H.; Cargnelli, M.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K.M.

    1986-01-01T23:59:59.000Z

    This paper presents an overview of the program and results of our experiment performed by a European-American collatoration at the Swiss Institute of Nuclear Research. Systematic investigations of the low temperature region (23K to 300K) reveal a surprisingly rich physics of mesoatomic and mesomolecular processes, unparalleled in other systems of isotopic hydrogen mixtures. A dramatic density dependence of the reaction rates is found. The rich structure in the time spectra of the fusion neutrons observed at low gas density yields first evidence for new effects, most likely strong contributions from reactions of hot muonic atoms. The important question of muon losses due to He sticking is investigated by different methods and over a wide range of tritium concentrations.

  7. Compact Muon Production and Collection Scheme for High-Energy Physics Experiments

    E-Print Network [OSTI]

    Stratakis, Diktys

    2015-01-01T23:59:59.000Z

    The relative immunity of muons to synchrotron radiation suggests that they might be used in place of electrons as probes in fundamental high-energy physics experiments. Muons are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. However, the large angle and energy dispersion of the initial beams as well as the short muon lifetime limits many potential applications. Here, we describe a fast method for manipulating the longitudinal and transverse phase-space of a divergent pion-muon beam to enable efficient capture and downstream transport with minimum losses. We also discuss the design of a handling system for the removal of unwanted secondary particles from the target region and thus reduce activation of the machine. The compact muon source we describe can be used for fundamental physics research in neutrino experiments.

  8. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Yagmur Tourun

    2010-01-08T23:59:59.000Z

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  9. Statistical analysis of the dynamics of secondary electrons in the flare of a high-voltage beam-type discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V. [National Research Tomsk State University, 36, Lenin Ave., 634050 Tomsk (Russian Federation)

    2014-09-15T23:59:59.000Z

    In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.

  10. Low-energy muons via frictional cooling

    E-Print Network [OSTI]

    Yu Bao; Allen Caldwell; Daniel Greenwald; Guoxing Xia

    2010-01-18T23:59:59.000Z

    Low-energy muon beams are useful for a range of physics experiments. We consider the production of low-energy muon beams with small energy spreads using frictional cooling. As the input beam, we take a surface muon source such as that at the Paul Scherrer Institute. Simulations show that the efficiency of low energy muon production can potentially be raised to 1%, which is significantly higher than that of current schemes.

  11. The MICE Muon Beam Line

    SciTech Connect (OSTI)

    Apollonio, Marco [High Energy Physics Group, Department of Physics, Imperial College London SW7 2AZ (United Kingdom)

    2011-10-06T23:59:59.000Z

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  12. UNDERGROUND MUONS IN SUPER-KAMIOKANDE

    E-Print Network [OSTI]

    Tokyo, University of

    HE 4.1.23 UNDERGROUND MUONS IN SUPER-KAMIOKANDE The Super-Kamiokande Collaboration, presented by J The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been for muons ver- sus zenith angle in Super-Kamiokande. The lled region is for muons with more than 1.7 Ge

  13. IEEE Power Electronics Specialists Conference, PESC-97, 39-45, St. Louis, 1997. A MHz Electronic Ballast for Automotive-Type HID Lamps

    E-Print Network [OSTI]

    Ballast for Automotive-Type HID Lamps Michael Gulko and Sam Ben-Yaakov* Power Electronics Laboratory lamps designated for automotive headlight applications was investigated theoretically, by simulation and experimentally. The study reveals that a based ballast (CS-PPRI) complies with the automotive requirement of very

  14. Spin decoherence in n-type GaAs: The effectiveness of the third-body rejection method for electron-electron scattering

    SciTech Connect (OSTI)

    Marchetti, Gionni, E-mail: gionnimarchetti@gmail.com; Hodgson, Matthew, E-mail: matthew.hodgson@york.ac.uk; D'Amico, Irene, E-mail: irene.damico@york.ac.uk [Department of Physics, University of York, York, Heslington YO10 5DD (United Kingdom)

    2014-10-28T23:59:59.000Z

    We study the spin decoherence in n-type bulk GaAs for moderate electronic densities at room temperature using the Ensemble Monte Carlo method. We demonstrate that a technique called “third-body rejection method” devised by B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977) can be successfully adapted to Ensemble Monte Carlo method and used to tackle the problem of the electron-electron contribution to spin decoherence in the parameter region under study, where the electron-electron interaction can be reasonably described by a Yukawa potential. This scattering technique is employed in a doping region where one can expect that multiple collisions may play a role in carrier dynamics. By this technique, we are able to calculate spin relaxation times which are in very good agreement with the experimental results found by Oertel et al., Appl. Phys. Lett. 93, 13 (2008). Through this method, we show that the electron-electron scattering is overestimated in Born approximation, in agreement with previous results obtained by C. A. Kukkonen and H. Smith, Phys. Rev. B 8, 4601 (1973).

  15. Concept paper Photoactivation switch from type II to type I reactions by electron-rich micelles for

    E-Print Network [OSTI]

    Gao, Jinming

    increased the generation of O2 ·- through the electron transfer pathway over 1 O2 production through energy of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Neck Surgery, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard

  16. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    SciTech Connect (OSTI)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01T23:59:59.000Z

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  17. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L. [University of Mississippi-Oxford, University, MS 38677 (United States)

    2010-03-30T23:59:59.000Z

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  18. Electron irradiation of Co, Ni, and P-doped BaFe2As2type iron-based superconductors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ± superconductivity in the multiband iron-based superconductors [1, 2], with a sign-changing order parameter betweenElectron irradiation of Co, Ni, and P-doped BaFe2As2­type iron-based superconductors Cornelis-scale point-like disorder on superconductivity in these materials [5, 6]. In particular, interband scattering

  19. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants

    E-Print Network [OSTI]

    V. N. Zirakashvili; F. Aharonian

    2007-10-26T23:59:59.000Z

    %context {Recent observations of hard X-rays and very high energy gamma-rays from a number of young shell type supernova remnants indicate the importance of detailed quantitative studies of energy spectra of relativistic electrons formed via diffusive shock acceleration accompanied by intense nonthermal emission through synchrotron radiation and inverse Compton scattering.} %aim {The aim of this work was derivation of exact asymptotic solutions of the kinetic equation which describes the energy distribution of shock-accelerated electrons for an arbitrary energy-dependence of the diffusion coefficient.} %method {The asymptotic solutions at low and very high energy domains coupled with numerical calculations in the intermediate energy range allow analytical presentations of energy spectra of electrons for the entire energy region.} %results {Under the assumption that the energy losses of electrons are dominated by synchrotron cooling, we derived the exact asymptotic spectra of electrons without any restriction on the diffusion coefficient. We also obtained simple analytical approximations which describe, with accuracy better than ten percent, the energy spectra of nonthermal emission of shock-accelerated electrons due to the synchrotron radiation and inverse Compton scattering.} %conclusions {The results can be applied for interpretation of X-ray and gamma-ray observations of shell type supernova remnants, as well as other nonthermal high energy source populations like microquasars and large scale synchrotron jets of active galactic nuclei.

  20. Precision Muon Reconstruction in Double Chooz

    E-Print Network [OSTI]

    Double Chooz collaboration; Y. Abe; J. C. dos Anjos; J. C. Barriere; E. Baussan; I. Bekman; M. Bergevin; T. J. C. Bezerra; L. Bezrukov; E. Blucher; C. Buck; J. Busenitz; A. Cabrera; E. Caden; L. Camilleri; R. Carr; M. Cerrada; P. -J. Chang; E. Chauveau; P. Chimenti; A. P. Collin; E. Conover; J. M. Conrad; J. I. Crespo-Anadón; K. Crum; A. Cucoanes; E. Damon; J. V. Dawson; D. Dietrich; Z. Djurcic; M. Dracos; M. Elnimr; A. Etenko; M. Fallot; F. von Feilitzsch; J. Felde; S. M. Fernandes; V. Fischer; D. Franco; M. Franke; H. Furuta; I. Gil-Botella; L. Giot; M. Göger-Neff; L. F. G. Gonzalez; L. Goodenough; M. C. Goodman; C. Grant; N. Haag; T. Hara; J. Haser; M. Hofmann; G. A. Horton-Smith; A. Hourlier; M. Ishitsuka; J. Jochum; C. Jollet; F. Kaether; L. N. Kalousis; Y. Kamyshkov; D. M. Kaplan; T. Kawasaki; E. Kemp; H. de Kerret; D. Kryn; M. Kuze; T. Lachenmaier; C. E. Lane; T. Lasserre; A. Letourneau; D. Lhuillier; H. P. Lima Jr; M. Lindner; J. M. López-Casta no; J. M. LoSecco; B. Lubsandorzhiev; S. Lucht; J. Maeda; C. Mariani; J. Maricic; J. Martino; T. Matsubara; G. Mention; A. Meregaglia; T. Miletic; R. Milincic; A. Minotti; Y. Nagasaka; Y. Nikitenko; P. Novella; M. Obolensky; L. Oberauer; A. Onillon; A. Osborn; C. Palomares; I. M. Pepe; S. Perasso; P. Pfahler; A. Porta; G. Pronost; J. Reichenbacher; B. Reinhold; M. Röhling; R. Roncin; S. Roth; B. Rybolt; Y. Sakamoto; R. Santorelli; A. C. Schilithz; S. Schönert; S. Schoppmann; M. H. Shaevitz; R. Sharankova; S. Shimojima; V. Sibille; V. Sinev; M. Skorokhvatov; E. Smith; J. Spitz; A. Stahl; I. Stancu; L. F. F. Stokes; M. Strait; A. Stüken; F. Suekane; S. Sukhotin; T. Sumiyoshi; Y. Sun; R. Svoboda; K. Terao; A. Tonazzo; H. H. Trinh Thi; G. Valdiviesso; N. Vassilopoulos; C. Veyssiere; M. Vivier; S. Wagner; H. Watanabe; C. Wiebusch; L. Winslow; M. Wurm; G. Yang; F. Yermia; V. Zimmer

    2014-08-15T23:59:59.000Z

    We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

  1. Introduction to Mini Muon Tracker

    SciTech Connect (OSTI)

    Borozdin, Konstantin N. [Los Alamos National Laboratory

    2012-08-13T23:59:59.000Z

    Using a mini muon tracker developed at the Los Alamos National Laboratory we performed experiments of simple landscapes of various materials, including TNT, 9501, lead, tungsten, aluminium, and water. Most common scenes are four two inches thick step wedges of different dimensions: 12-inch x 12-inch, 12-inch x 9-inch, 12-inch x 6-inch, and 12-inch x 3-inch; and a one three inches thick hemisphere of lead with spherical hollow, and a similar full lead sphere.

  2. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30T23:59:59.000Z

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  3. On the study of the Higgs properties at a muon collider

    E-Print Network [OSTI]

    Mario Greco

    2015-03-17T23:59:59.000Z

    The discovery of the Higgs particle at 125 GeV is demanding a detailed knowledge of the properties of this fundamental component of the Standard Model. To that aim various proposals of electron and muon colliders have been put forward for precision studies of the partial widths of the various decay channels. It is shown that in the case of a Higgs factory through a muon collider, sizeable radiative effects - of order of 50% - must be carefully taken into account for a precise measurement of the leptonic and total widths of the Higgs particle. Similar effects do not apply in the case of Higgs production in electron-positron colliders.

  4. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10T23:59:59.000Z

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  5. Commissioning of the ATLAS Muon Trigger Selection

    E-Print Network [OSTI]

    Elisa Musto

    2010-09-30T23:59:59.000Z

    The performance of the three-level ATLAS muon trigger as evaluated by using LHC data is presented. Events have been selected by using only the hardware-based Level-1 trigger in order to commission and to subsequently enable the (software-based) selections of the High Level Trigger. Studies aiming at selecting prompt muons from J/{\\psi} and at reducing non prompt muon contamination have been performed. A brief overview on how the muon triggers evolve with increasing luminosity is given.

  6. Superconducting helical solenoid systems for muon cooling experiment at Fermilab

    SciTech Connect (OSTI)

    Kashikhin, Vladimir S.; Andreev, Nikolai; /Fermilab; Johnson, Rolland P.; /MUONS Inc., Batavia; Kashikhin, Vadim V.; Lamm, Michael J.; Romanov, Gennady; Yonehara, Katsuya; Zlobin, Alexander V.; /Fermilab

    2007-08-01T23:59:59.000Z

    Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented.

  7. Electron decay at IceCube

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01T23:59:59.000Z

    In this paper we apply the formalism of Accelerated Quantum Dynamics (AQD) to the radiative stopping of highly relativistic electrons in ice. We compute the lifetime of electrons to decay into muons as well as the spectrum of the emitted muons. The energy of the emitted muon depends on the deceleration of the electron and this correlation can be used to tag the event and confirm the prediction. The results predict the acceleration-induced decay of electrons at IceCube energies. This experimental setting has the potential to establish the existence of the Unruh effect as well investigate the role of high acceleration in particle physics.

  8. The Program in Muon and Neutrino Physics Super Beams, Cold Muon Beams, Neutrino Factory and the Muon Collider

    E-Print Network [OSTI]

    Raja, R; Gallardo, J; Geer, S; Kaplan, D; McDonald, K F; Palmer, R; Sessler, Andrew M; Skrinsky, A N; Summers, D; Tigner, Maury; Tollestrup, Alvin V; Wurtele, J S; Zisman, M S; Raja, Rajendran

    2001-01-01T23:59:59.000Z

    We outline in detail a staging scenario for realizing the Neutrino Factory and the Muon Collider. As a first stage we envisage building an intense proton source that can be used to perform high intensity conventional neutrino beam experiments ("Superbeams"). While this is in progress, we perform R&D in collecting, cooling and accelerating muons which leads to the next two stages of "Cold Muon Beams" and the Neutrino Factory. Further progress in Muon Cooling especially in the area of emittance exchange will lead us to the Muon Collider. A staged scenario such as this opens up new physics avenues at each step and will provide a long range base program for particle physics.

  9. Many types of electronic products such as computers, cathode ray tubes (CRT), fax machines, printers, LCD monitors, microwave ovens, VCRs, stereos, and cell phones contain hazardous

    E-Print Network [OSTI]

    George, Steven C.

    lead and mercury. Recycling electronic waste (eWaste) protects our environment from heavy metal" or "Universal Waste ­ Electronic Waste" and include the date when the waste was first generated. eWaste mustMany types of electronic products such as computers, cathode ray tubes (CRT), fax machines

  10. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab'sSpace andFermilabMuons

  11. A Scenario for the Fine Structures of Solar Type IIIb Radio Bursts Based on the Electron Cyclotron Maser Emission

    E-Print Network [OSTI]

    Wang, C B

    2015-01-01T23:59:59.000Z

    A scenario based on the electron cyclotron maser emission is proposed for the fine structures of solar radio emission in the present discussion. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro-frequency by ultra low frequency waves, which is a key parameter for excitation of the electron cyclotron maser instability, may lead to the intermittent emission of radio waves. As an example, the explanation of the observed fine-structure components in the solar type IIIb burst is discussed in detail. Three primary issues of the type IIIb bursts are addressed: 1) what is the physical mechanism that results in the intermittent emission elements that form a chain in the dynamic spectrum of type IIIb bursts, 2) what causes the split pair (or double stria) and the triple stria, 3) why in the events of fundamental-harmonic pair emission there is only IIIb-III, but IIIb-IIIb or III-IIIb cases are very rarely observed.

  12. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    SciTech Connect (OSTI)

    R. Raja et al.

    2001-08-08T23:59:59.000Z

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  13. A Detector Scenario for the MuonCollider Cooling Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    : Meson Lab at Fermilab: Power Supplies (two floors) Cooling Apparatus Muon Beamline shielding shieldingA Detector Scenario for the Muon­Collider Cooling Experiment C. Lu, K.T. McDonald and E.J. Prebys the emittance of the muon beam to 3% accuracy before and after the muon cooling apparatus. 1 #12; Possible site

  14. Electronic Structure of LaOFeP - a Different Type of High Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports -ElectronicElectronicSuperconductor

  15. Muon simulation codes MUSIC and MUSUN for underground physics

    E-Print Network [OSTI]

    V. A. Kudryavtsev

    2008-10-25T23:59:59.000Z

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  16. Identifying Nuclear Materials Using Tagged Muons

    E-Print Network [OSTI]

    C. L. Morris; J. D. Bacon; K. Borodzin; J. M. Durham; J. M. Fabritius II; E. Guardincerri; A. Hecht; E. C. Milner; H. Miyadera; J. O. Perry; D. Poulson

    2014-06-04T23:59:59.000Z

    Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

  17. Identifying Nuclear Materials Using Tagged Muons

    E-Print Network [OSTI]

    Morris, C L; Borodzin, K; Durham, J M; Fabritius, J M; Guardincerri, E; Hecht, A; Milner, E C; Miyadera, H; Perry, J O; Poulson, D

    2014-01-01T23:59:59.000Z

    Experimental results from a new technique that uses neutrons generated by stopped cosmic-ray muons to identify nuclear materials are described. The neutrons are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of uranium objects tagged using muon tracking detectors located above or to the side of the objects. The specificity of the technique to significant quantities of nuclear material along with its insensitivity to spatial details may provide a new method for the task of warhead verification for future arms reduction treaties.

  18. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-05-15T23:59:59.000Z

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  19. Calibration of Muon Reconstruction Algorithms Using an External Muon Tracking System at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2011-05-06T23:59:59.000Z

    To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6 degrees.

  20. Tunable electronic structures of p-type Mg doping in AlN nanosheet

    SciTech Connect (OSTI)

    Peng, Yuting; Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Zhang, Heng; Wang, Tianxing; Wei, Shuyi [Department of Physics, Henan Normal University, Xinxiang, Henan 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2014-07-28T23:59:59.000Z

    The p-type impurity properties are investigated in the Mg-doped AlN nanosheet by means of first-principles calculations. Numerical results show that the transition energy levels reduce monotonously with the increase in Mg doping concentration in the Mg-doped AlN nanosheet systems, and are lower than that of the Mg-doped bulk AlN case for the cases with larger doping concentration. Moreover, Mg substituting Al atom is energy favorably under N-rich growth experimental conditions. These results are new and interesting to further improve p-type doping efficiency in the AlN nanostructures.

  1. Muon capture rates within the projected QRPA

    E-Print Network [OSTI]

    Danilo Sande Santos; Arturo R. Samana; Francisco Krmpoti?; Alejandro J. Dimarco

    2012-03-03T23:59:59.000Z

    The conservation of the number of particles within the QRPA plays an important role in the evaluation muon capture rates in all light nuclei with A \\precsim 30 . The violation of the CVC by the Coulomb field in this mass region is of minor importance, but this effect could be quite relevant for medium and heavy nuclei studied previously. The extreme sensitivity of the muon capture rates on the 'pp' coupling strength in nuclei with large neutron excess when described within the QRPA is pointed out. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are much more robust for such a purpose.

  2. Theoretical survey of muon catalyzed fusion

    SciTech Connect (OSTI)

    Leon, M.

    1988-01-01T23:59:59.000Z

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H/sub 2/ densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec./sup 1/ The muon spends essentially all of its time in either the (d..mu..) ground state, waiting for transfer to a (t..mu..) ground state to occur, or in the (t..mu..) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs.

  3. Underground Muons in Super-KAMIOKANDE

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; presented by J. G. Learned

    1997-05-24T23:59:59.000Z

    The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been collecting data since April 1996. It is located at a depth of roughly 2.7 kmwe in a zinc mine under a mountain, and has an effective area for detecting entering-stopping and through-going muons of about $1238 m^2$ for muons of $>1.7 GeV$. These events are collected at a rate of 1.5 per day from the lower hemisphere of arrival directions, with 2.5 muons per second in the downgoing direction. We report preliminary results from 229 live days analyzed so far with respect to zenith angle variation of the upcoming muons. These results do not yet have enough statistical weight to discriminate between the favored hypothesis for muon neutrino oscillations and no-oscillations. We report on the search for astrophysical sources of neutrinos and high energy neutrino fluxes from the sun and earth center, as might arise from WIMP annihilations. None are found. We also present a topographical map of the overburden made from the downgoing muons. The detector is performing well, and with several years of data we should be able to make significant progress in this area.

  4. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Suerfu, Burkhant

    2015-01-01T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  5. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31T23:59:59.000Z

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  6. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect (OSTI)

    Leon, M. [comp.

    1994-01-01T23:59:59.000Z

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  7. The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams,

    E-Print Network [OSTI]

    The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams, Neutrino Factory.1 Neutrino Oscillation Physics . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1 3.1.1 Evidence-oscillation physics at a Neutrino Factory . . . . . . . . . . . . . . . 3 - 16 iii #12;3.4 Physics that can be done

  8. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20T23:59:59.000Z

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  9. Diffusive Shock Acceleration of Electrons and Radio Emission from Large Diameter Shell-Type Supernova Remnants

    E-Print Network [OSTI]

    A. I. Asvarov

    2000-01-21T23:59:59.000Z

    In present study I examine the capability of diffusive shock acceleration mechanism to explain existing data on radio emission from evolved large diameter shell-type adiabatic supernova remnants (SNRs). Time-dependent ''onion-shell'' model for the radio emission of SNRs is developed, which is based on the assumptions: a) acceleration takes place from thermal energies and test-particle approximation is valid; b) the problem of injection is avoided by introducing, like Bell (1978), two injection parameters; c) to take into consideration very late stages of SNR evolution the analytic approximation of Cox and Andersen (1982) for the shell structure is used; c)no radiative cooling. Constructed Surface Brightness - Diameter $(\\Sigma -D)$ tracks are compared with the empirical $\\Sigma -D$ diagram. The main conclusion of the study is that the DSA mechanism is capable of explaining all the statistics of radio SNRs including very large diameter remnants and giant galactic loops.

  10. Muon Acceleration - RLA and FFAG

    SciTech Connect (OSTI)

    Alex Bogacz

    2011-10-01T23:59:59.000Z

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  11. arXiv:0711.2528v2[astro-ph]23Jan2008 Production of Neutrinos and Secondary Electrons in Cosmic

    E-Print Network [OSTI]

    of secondary electrons in a young shell-type SNR, RX J1713.7-3946, which is a measure of the age, the spectral-mG fields recently invoked to explain the X-ray flux variations are unlikely to extend over a large fractionCube-like detector that are induced by muon neutrinos from high-energy -ray sources such as RX J1713.7-3946, Vela Jr

  12. Muon Emittance Exchange with a Potato Slicer

    E-Print Network [OSTI]

    Summers, D J; Acosta, J G; Cremaldi, L M; Oliveros, S J; Perera, L P; Neuffer, D V

    2015-01-01T23:59:59.000Z

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 microseconds, one quarter of a synchrotron oscillation period. A linear long ...

  13. Muon spin depolarization in nonmagnetic metals doped with paramagnetic impurities

    SciTech Connect (OSTI)

    Heffner, R.H.

    1980-01-01T23:59:59.000Z

    The diffusion of muons and their magnetic interactions are treated by describing the physics to be learned from experiments which measure muon depolarization in metallic hosts doped with dilute concentrations of magnetic impurities. (GHT)

  14. Use of dielectric material in muon accelerator RF cavities

    E-Print Network [OSTI]

    French, Katheryn Decker

    2011-01-01T23:59:59.000Z

    The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

  15. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect (OSTI)

    Schwellenbach, D. [NSTec; Dreesen, W. [NSTec; Green, J. A. [NSTec; Tibbitts, A. [NSTec; Schotik, G. [NSTec; Borozdin, K. [LANL; Bacon, J. [LANL; Midera, H. [LANL; Milner, C. [LANL; Morris, C. [LANL; Perry, J. [LANL; Barrett, S. [UW; Perry, K. [UW; Scott, A. [UW; Wright, C. [UW; Aberle, D. [NSTec

    2013-03-18T23:59:59.000Z

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  16. Muon (g-2) Technical Design Report

    E-Print Network [OSTI]

    J. Grange; V. Guarino; P. Winter; K. Wood; H. Zhao; R. M. Carey; D. Gastler; E. Hazen; N. Kinnaird; J. P. Miller; J. Mott; B. L. Roberts; J. Benante; J. Crnkovic; W. M. Morse; H. Sayed; V. Tishchenko; V. P. Druzhinin; B. I. Khazin; I. A. Koop; I. Logashenko; Y. M. Shatunov; E. Solodov; M. Korostelev; D. Newton; A. Wolski; R. Bjorkquist; N. Eggert; A. Frankenthal; L. Gibbons; S. Kim; A. Mikhailichenko; Y. Orlov; D. Rubin; D. Sweigart; D. Allspach; G. Annala; E. Barzi; K. Bourland; G. Brown; B. C. K. Casey; S. Chappa; M. E. Convery; B. Drendel; H. Friedsam; T. Gadfort; K. Hardin; S. Hawke; S. Hayes; W. Jaskierny; C. Johnstone; J. Johnstone; V. Kashikhin; C. Kendziora; B. Kiburg; A. Klebaner; I. Kourbanis; J. Kyle; N. Larson; A. Leveling; A. L. Lyon; D. Markley; D. McArthur; K. W. Merritt; N. Mokhov; J. P. Morgan; H. Nguyen; J-F. Ostiguy; A. Para; C. C. Polly M. Popovic; E. Ramberg; M. Rominsky; D. Schoo; R. Schultz; D. Still; A. K. Soha; S. Strigonov; G. Tassotto; D. Turrioni; E. Villegas; E. Voirin; G. Velev; D. Wolff; C. Worel; J-Y. Wu; R. Zifko; K. Jungmann; C. J. G. Onderwater; P. T. Debevec; S. Ganguly; M. Kasten; S. Leo; K. Pitts; C. Schlesier; M. Gaisser; S. Haciomeroglu; Y-I. Kim; S. Lee; M-J Lee; Y. K. Semertzidis; K. Giovanetti; V. A. Baranov; V. N. Duginov; N. V. Khomutov; V. A. Krylov; N. A. Kuchinskiy; V. P. Volnykh; C. Crawford; R. Fatemi; W. P. Gohn; T. P. Gorringe; W. Korsch; B. Plaster; A. Anastasi; D. Babusci; S. Dabagov; C. Ferrari; A. Fioretti; C. Gabbanini; D. Hampai; A. Palladino; G. Venanzoni; T. Bowcock; J. Carroll; B. King; S. Maxfield; K. McCormick; A. Smith; T. Teubner; M. Whitley; M. Wormald; R. Chislett; S. Kilani; M. Lancaster; E. Motuk; T. Stuttard; M. Warren; D. Flay; D. Kawall; Z. Meadows; T. Chupp; R. Raymond; A. Tewlsey-Booth; M. J. Syphers; D. Tarazona; C. Ankenbrandt; M. A. Cummings; R. P. Johnson; C. Yoshikawa; S. Catalonotti; R. Di Stefano; M. Iacovacci; S. Mastroianni; S. Chattopadhyay; M. Eads; M. Fortner; D. Hedin; N. Pohlman; A. de Gouvea; H. Schellman; L. Welty-Rieger; T. Itahashi; Y. Kuno; K. Yai; F. Azfar; S. Henry; G. D. Alkhazov; V. L. Golovtsov; P. V. Neustroev; L. N. Uvarov; A. A. Vasilyev; A. A. Vorobyov; M. B. Zhalov; L. Cerrito; F. Gray; G. Di Sciascio; D. Moricciani; C. Fu; X. Ji; L. Li; H. Yang; D. Stöckinger; G. Cantatore; D. Cauz; M. Karuza; G. Pauletta; L. Santi; S. Bae\\ssler; M. Bychkov; E. Frlez; D. Pocanic; L. P. Alonzi; M. Fertl; A. Fienberg; N. Froemming; A. Garcia; D. W. Hertzog J. Kaspar; P. Kammel; R. Osofsky; M. Smith; E. Swanson; T. van Wechel; K. Lynch

    2015-01-27T23:59:59.000Z

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  17. Progress in Absorber R&D for Muon Cooling

    E-Print Network [OSTI]

    D. M. Kaplan; E. L. Black; M. Boghosian; K. W. Cassel; R. P. Johnson; S. Geer; C. J. Johnstone; M. Popovic; S. Ishimoto; K. Yoshimura; L. Bandura; M. A. Cummings; A. Dyshkant; D. Hedin; D. Kubik; C. Darve; Y. Kuno; D. Errede; M. Haney; S. Majewski; M. Reep; D. Summers

    2001-08-17T23:59:59.000Z

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  18. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    E-Print Network [OSTI]

    Adams, D; Alekou, A; Apollonio, M; Asfandiyarov, R; Back, J; Barber, G; Barclay, P; de Bari, A; Bayes, R; Baynham, D E; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Bradshaw, T W; Bravar, U; Bross, A D; Capponi, M; Carlisle, T; Cecchet, G; Charnley, G; Cobb, J H; Colling, D; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Fayer, S; Filthaut, F; Fish, A; Fitzpatrick, T; Fletcher, R; Forrest, D; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gourlay, S; Grant, A; Graulich, J S; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Harrison, P; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kolev, D; Kuno, Y; Kyberd, P; Lau, W; Leaver, J; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Lucchini, G; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nugent, J C; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Palmer, R B; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Richards, A; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rubinov, P; Rucinski, R; Rusinov, I; Sakamoto, H; Sanders, D A; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Summers, D J; Takahashi, M; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Vankova, G; Verguilov, V; Virostek, S; Vretenar, M; Walaron, K; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Zisman, M

    2013-01-01T23:59:59.000Z

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  19. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

    2012-05-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  20. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  1. Cosmic-ray Muon Flux In Belgrade

    SciTech Connect (OSTI)

    Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V. [Institute of Physics, University of Belgrade, Belgrade (Serbia and Montenegro); Puzovic, J.; Anicin, I. [Faculty of Physics, University of Belgrade, Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    Two identical plastic scintillator detectors, of prismatic shape (50x23x5)cm similar to NE102, were used for continuous monitoring of cosmic-ray intensity. Muon {delta}E spectra have been taken at five minute intervals, simultaneously from the detector situated on the ground level and from the second one at the depth of 25 m.w.e in the low-level underground laboratory. Sum of all the spectra for the years 2002-2004 has been used to determine the cosmic-ray muon flux at the ground level and in the underground laboratory.

  2. Physics Opportunities with Muon Beams: Neutrino Factories and Muon Colliders

    E-Print Network [OSTI]

    McDonald, Kirk

    phase rotation No.1 42 m rf mini­cooling drift 160 m phase rotation No.2 cooling 80 m Linac 2 Ge in future accelerators result in more cost­ effective technology, that is capable of extension to 10's of Te ionization cooling; realizes it won't work for e or p; proposes electron cooling (with Spitzer). ffl (1960

  3. Physics Opportunities with Muon Beams: Neutrino Factories and Muon Colliders

    E-Print Network [OSTI]

    McDonald, Kirk

    targetphase rotation No.1 42 m rf mini-cooling drift 160 m phase rotation No.2 cooling 80 m Linac 2 Ge (with manifestations of higher dimensions). ­ ... And more .... · Will our investment in future cooling; realizes it won't work for e or p; proposes electron cooling (with Spitzer). · (1960) Melissinos

  4. Alpha-muon sticking and chaos in muon-catalysed "in flight" d-t fusion

    E-Print Network [OSTI]

    Sachie Kimura; Aldo Bonasera

    2006-07-31T23:59:59.000Z

    We discuss the alpha-muon sticking coefficient in the muon-catalysed ``in flight" d-t fusion in the framework of the Constrained Molecular Dynamics model. Especially the influence of muonic chaotic dynamics on the sticking coefficient is brought into focus. The chaotic motion of the muon affects not only the fusion cross section but also the $\\mu-\\alpha$ sticking coefficient. Chaotic systems lead to larger enhancements with respect to regular systems because of the reduction of the tunneling region. Moreover they give smaller sticking probabilities than those of regular events. By utilizing a characteristic of the chaotic dynamics one can avoid losing the muon in the $\\mu$CF cycle. We propose the application of the so-called ``microwave ionization of a Rydberg atom" to the present case which could lead to the enhancement of the reactivation process by using X-rays.

  5. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    SciTech Connect (OSTI)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac; Bruno R. Autin; Valeri I. Balbekov; Vernon D. Barger; Odette Benary; J. Bennett; Michael S. Berger; J. Scott Berg; Martin Berz; Edgar Black; Alain Blondel; S. Alex Bogacz; M. Bonesini; Stephen B. Bracker; Alan D. Bross; Luca Bruno; Elizabeth J. Buckley-Geer; Allen Caldwell; Mario Campanelli; Kevin W. Cassel; Swapan Chattopadhyay; Weiren Chou; David B. Cline; Linda R. Coney; Janet M. Conrad; John N. Corlett; Lucien Cremaldi; Mary Anne Cummings; Christine Darve; Fritz DeJongh; et. al.

    2003-08-01T23:59:59.000Z

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.

  6. Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts

    E-Print Network [OSTI]

    Reetanjali Moharana; Nayantara Gupta

    2012-05-27T23:59:59.000Z

    In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

  7. Neutrino Radiation Challenges and Proposed Solutions for Many-TeV Muon Colliders

    E-Print Network [OSTI]

    B. J. King

    2000-05-03T23:59:59.000Z

    Neutrino radiation is expected to impose major design and siting constraints on many-TeV muon colliders. Previous predictions for radiation doses at TeV energy scales are briefly reviewed and then modified for extension to the many-TeV energy regime. The energy-cubed dependence of lower energy colliders is found to soften to an increase of slightly less than quadratic when averaged over the plane of the collider ring and slightly less than linear for the radiation hot spots downstream from straight sections in the collider ring. Despite this, the numerical values are judged to be sufficiently high that any many-TeV muon colliders will likely be constructed on large isolated sites specifically chosen to minimize or eliminate human exposure to the neutrino radiation. It is pointed out that such sites would be of an appropriate size scale to also house future proton-proton and electron-positron colliders at the high energy frontier, which naturally leads to conjecture on the possibilities for a new world laboratory for high energy physics. Radiation dose predictions are also presented for the speculative possibility of linear muon colliders. These have greatly reduced radiation constraints relative to circular muon colliders because radiation is only emitted in two pencil beams directed along the axes of the opposing linacs.

  8. Mitigating Radiation Impact on Superconducting Magnets of the Higgs Factory Muon Collider

    E-Print Network [OSTI]

    Mokhov, Nikolai; Kashikhin, Vadim V; Striganov, Sergei I; Tropin, Igor S; Zlobin, Alexander V

    2015-01-01T23:59:59.000Z

    Recent discovery of a Higgs boson boosted interest in a low-energy medium-luminosity Muon Collider as a Higgs Factory (HF). A preliminary design of the HF storage ring (SR) is based on cos-theta Nb3Sn superconducting (SC) magnets with the coil inner diameter ranging from 50 cm in the interaction region to 16 cm in the arc. The coil cross-sections were chosen based on the operation margin, field quality and quench protection considerations to provide an adequate space for the beam pipe, helium channel and inner absorber (liner). With the 62.5-GeV muon energy and 2 x 10^12 muons per bunch, the electrons from muon decays deposit about 300 kW in the SC magnets, or unprecedented 1 kW/m dynamic heat load, which corresponds to a multi-MW room temperature equivalent. Based on the detailed MARS15 model built and intense simulations, a sophisticated protection system was designed for the entire SR to bring the peak power density in the SC coils safely below the quench limit and reduce the dynamic heat load to the cold ...

  9. Measurement of electron neutrino CCQE-like cross-section in MINERvA

    E-Print Network [OSTI]

    Jeremy Wolcott; for the MINERvA collaboration

    2015-01-21T23:59:59.000Z

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross-section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present a preliminary result from the MINERvA experiment on the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross-section for a CCQE-like process. The result is given both as differential cross-sections vs. the electron energy, electron angle, and $Q^{2}$, as well as a total cross-section vs. neutrino energy.

  10. Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam

    SciTech Connect (OSTI)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2014-06-07T23:59:59.000Z

    The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17?MeV. For the n-type thin films, nanodots with a diameter of less than 10?nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

  11. BNL -66968 CAP-265-Muon-99C

    E-Print Network [OSTI]

    Harilal, S. S.

    stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system on the Be window. We describe beam optics, the liquid lithium pressure vessel, pump options, power supplies stages of 1 cooling is obtained by passing the beam though a conducting light metal rod which acts

  12. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03T23:59:59.000Z

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  13. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection

    SciTech Connect (OSTI)

    Meyaard, David S., E-mail: meyaad@rpi.edu; Lin, Guan-Bo; Ma, Ming; Fred Schubert, E. [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Cho, Jaehee [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Semiconductor Physics Research Center, School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Han, Sang-Heon; Kim, Min-Ho; Shim, HyunWook; Sun Kim, Young [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)] [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2013-11-11T23:59:59.000Z

    A GaInN light-emitting diode (LED) structure is analyzed that employs a separate epitaxial growth for the p-type region, i.e., the AlGaN electron-blocking layer (EBL) and p-type GaN cladding layer, followed by wafer or chip bonding. Such LED structure has a polarization-inverted EBL and allows for uncompromised epitaxial-growth optimization of the p-type region, i.e., without the need to consider degradation of the quantum-well active region during p-type region growth. Simulations show that such an LED structure reduces electron leakage, reduces the efficiency droop, improves hole injection, and has the potential to extend high efficiencies into the green spectral region.

  14. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Blundell, S. J.; Lancaster, T. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S. [Cryogenic Limited, 30 Acton Park Industrial Estate, The Vale, Acton, London W3 7QE (United Kingdom); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Salman, Z. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-07-15T23:59:59.000Z

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  15. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31T23:59:59.000Z

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  16. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    E-Print Network [OSTI]

    Burkhant Suerfu; Christopher G. Tully

    2015-01-28T23:59:59.000Z

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials.

  17. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect (OSTI)

    Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01T23:59:59.000Z

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  18. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect (OSTI)

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01T23:59:59.000Z

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  19. Relativistic QRPA calculation of muon capture rates

    E-Print Network [OSTI]

    T. Marketin; N. Paar; T. Niksic; D. Vretenar

    2009-03-30T23:59:59.000Z

    The relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from $^{12}$C to $^{244}$Pu, for which experimental values are available. The microscopic theoretical framework is based on the Relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the PN-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the PN-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value $g_A = 1.262$ by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  20. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  1. Progress in Muon Cooling Research and Development

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MuCool Collaboration

    2003-01-29T23:59:59.000Z

    The MuCool R&D program is described. The aim of MuCool is to develop all key pieces of hardware required for ionization cooling of a muon beam. This effort will lead to a more detailed understanding of the construction and operating costs of such hardware, as well as to optimized designs that can be used to build a Neutrino Factory or Muon Collider. This work is being undertaken by a broad collaboration including physicists and engineers from many national laboratories and universities in the U.S. and abroad. The intended schedule of work will lead to ionization cooling being well enough established that a construction decision for a Neutrino Factory could be taken before the end of this decade based on a solid technical foundation.

  2. An update of muon capture on hydrogen

    E-Print Network [OSTI]

    S. Pastore; F. Myhrer; K. Kubodera

    2014-05-06T23:59:59.000Z

    The successful precision measurement of the rate of muon capture on a proton by the MuCap Collaboration allows for a stringent test of the current theoretical understanding of this process. Chiral perturbation theory, which is a low-energy effective field theory that preserves the symmetries and the pattern of symmetry breaking in the underlying theory of QCD, offers a systematic framework for describing $\\mu p$ capture and provides a basic test of QCD at the hadronic level. We describe how this effective theory with no free parameters reproduces the measured capture rate. A recent study has addressed new sources of uncertainties that were not considered in the previous works, and we review to what extent these uncertainties are now under control. Finally, the rationale for studying muon capture on the deuteron and some recent theoretical developments regarding this process are discussed.

  3. Recent results from COMPASS muon scattering measurements

    SciTech Connect (OSTI)

    Capozza, Luigi [Irfu/SPhN - CEA Saclay, 91190 Gif-sur-Yvette (France); Collaboration: COMPASS Collaboration

    2012-10-23T23:59:59.000Z

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  4. Radiation effects in a muon collider ring and dipole magnet protection

    E-Print Network [OSTI]

    Mokhov, N V; Novitski, I; Zlobin, A V

    2011-01-01T23:59:59.000Z

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 1034 cm-2s-1. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  5. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01T23:59:59.000Z

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  6. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    E-Print Network [OSTI]

    Rob Roy Fletcher; Linda Coney; Gail Hanson

    2011-05-03T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  7. atmospheric muon generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and energy spectrum are simulated according to a specific model of primary cosmic ray flux, with constraints from measurements of the muon flux with underground experiments. As...

  8. atlas muon endcap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trigger, an additional fast read-out (FRO) chain with moderate spatial resolution but low latency is necessary. To conduct fast track reconstruction and muon pt determination...

  9. Status of the International Muon Ionization Cooling Experiment (MICE)

    E-Print Network [OSTI]

    Zisman, Michael S.

    2008-01-01T23:59:59.000Z

    target mechanism in the ISIS ring. MUON BEAM LINE Althoughthose located within the ISIS shielded enclosure are beingdelay installation until the next ISIS shutdown (planned for

  10. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07T23:59:59.000Z

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  11. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect (OSTI)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15T23:59:59.000Z

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen K? x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-?m scale three-dimensional fine structures were resolved.

  12. Three-dimensional instability of dust ion-acoustic solitary waves in a magnetized dusty plasma with two different types of nonisothermal electrons

    SciTech Connect (OSTI)

    Shalaby, M.; Khaled, M. A. [Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566 (Egypt); EL-Labany, S. K.; EL-Shamy, E. F. [Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, Damietta El-Gedida 34517 (Egypt)

    2010-11-15T23:59:59.000Z

    The nonlinear propagation of dust ion-acoustic solitary waves (DIASWs) in a magnetized dusty plasma which consists of two different types of nonisothermal electrons, hot adiabatic inertial ions fluid and immobile negatively charged dust particles is studied. The modified Zakharov-Kuznetsov (MZK) equation, describing the small but finite amplitude DIASWs, is derived using a reductive perturbation method. The combined effects of the external magnetic field, obliqueness (i.e., the propagation angle), and the two-temperature nonisothermal electrons, which are found to significantly modify the basic properties of DIASWs, are explicitly examined. The three-dimensional instability of DIASWs is also analyzed using the small-k (long wavelength plane wave) perturbation expansion technique. The results show that the external magnetic field, the propagation angle, and the two-temperature nonisothermal electrons have strong effects on the instability criterion as well as the growth rate.

  13. Muons for a Muon-Collider Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    . ­ LANL has experience with superconductng magnets in high radiation areas. · Other Radiological Issues951 Long Term: Provide a facility to test key components of the front-end of a muon collider-term radiological issues. 6 #12;Why BNL? The BNL AGS has proton beam parameters conditions closest to those

  14. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect (OSTI)

    Torun, Yagmur

    2013-03-20T23:59:59.000Z

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  15. Muon Figures: 2001/04/19 Chris Waltham

    E-Print Network [OSTI]

    Learned, John

    wall is a less dense mix of gabbro and granite. The depths of various parts of the detector are given environment around SNO. The solid curved line is the hanging wall - foot wall interface at the level of SNO) and replaced with back#12;ll. The grid is 1000' (#25;300m) square. p Muon Track Light from Muon Xf PSUP Impact

  16. Helical channel design and technology for cooling of muon beams

    SciTech Connect (OSTI)

    Yonehara, K; /Fermilab; Derbenev, Y.S.; /Jefferson Lab; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01T23:59:59.000Z

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  17. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    SciTech Connect (OSTI)

    Muir, B R; McEwen, M R [Measurement Science and Standards, National Research Council, Ottawa, ON (Canada)

    2014-06-01T23:59:59.000Z

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  18. Neutrinos from STORed Muons - nuSTORM

    SciTech Connect (OSTI)

    Bross, Alan [Fermilab

    2013-02-27T23:59:59.000Z

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly, give tantalizing hints of new physics. Models beyond the nSM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or “sterile." Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this talk, I will describe the facility, nuSTORM, and an appropriate far detector for neutrino oscillation searches at short baseline. I will present sensitivity plots that indicate that this experimental approach can provide well over 5 s confirmation or rejection of the LSND/MinBooNE results. In addition I will explain how the facility can be used to make neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments and, in general, add significantly to the study of neutrino interactions. The unique n beam available at the nuSTORM facility has the potential to be transformational in our approach to n interaction physics, offering a “n light source” to physicists from a number of disciplines. Finally, I will describe how nuSTORM can be used to facilitate accelerator R&D for future muon-based accelerator facilities.

  19. SU?C?105?05: Reference Dosimetry of High?Energy Electron Beams with a Farmer?Type Ionization Chamber

    SciTech Connect (OSTI)

    Muir, B; Rogers, D [Carleton University, Ottawa, ON (Canada)] [Carleton University, Ottawa, ON (Canada)

    2013-06-15T23:59:59.000Z

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer?type NE2571 ion chamber for high?energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber in high?energy electron beams and in a cobalt?60 reference field. Calculated water?to?air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose?to?water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon?electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high?energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.

  20. Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ

    E-Print Network [OSTI]

    Alfred Tang; Glenn Horton-Smith; Vitaly A. Kudryavtsev; Alessandra Tonazzo

    2006-08-25T23:59:59.000Z

    Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux and rate are tabulated. Plots of average energy and angular distributions are given. Implications on muon tracker design for future experiments are discussed.

  1. The muon system of the Daya Bay Reactor antineutrino experiment

    E-Print Network [OSTI]

    Daya Bay Collaboration

    2014-11-28T23:59:59.000Z

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  2. Positive muon and the positron as probes of defects

    SciTech Connect (OSTI)

    Lynn, K G

    1980-01-01T23:59:59.000Z

    The positive muon and the positron are each being used nowadays to investigate defects in condensed matter. A brief summary of the experimental methods employed with each particle is given in this paper. Similarities and differences between the behavior of the two leptons when implanted in consensed matter are pointed out, and by means of a comparison between muon and positron data in Al it is shown that the combination of muon and positron experiments can serve as a useful new probe of defects in solids.

  3. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-02-01T23:59:59.000Z

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  4. The determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection. Part 2

    SciTech Connect (OSTI)

    Parish, K.J.; Applegate, D.V.; Postlethwait, P.D.; Boparai, A.S.; Reedy, G.T.

    1994-12-01T23:59:59.000Z

    Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for polychlorinated biphenyl (PCB) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign} and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory testing, a nonradioactive simulated Type 17V RFP sludge was prepared at Argonne National Laboratory-East (ANL-E). This sludge has a composition similar to that expected from field samples. In an earlier effort, a simplified method was developed for extraction, cleanup of extract, and determination of PCBs in samples of simulated sludge spiked with Aroclors 1254 and 1260. The simplified method has now been used to determine the presence and quantities of other Aroclors in the simulated sludge, namely, Aroclors 10 1 6, 1221, 1232, 1242, and 1248. The accuracy and precision of the data for these Aroclors were found to be similar to the data for sludges spiked with Aroclors 1254 and 1260. Since actual sludges may vary in composition, the method was also verified by analyzing another source of Type IV simulated sludge, prepared by Argonne National Laboratory-West (ANL-W).

  5. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect (OSTI)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01T23:59:59.000Z

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  6. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    E-Print Network [OSTI]

    MICE Collaboration

    2012-03-23T23:59:59.000Z

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  7. Muon Acceleration in Cosmic-ray Sources

    E-Print Network [OSTI]

    Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

    2012-08-09T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

  8. HIGH FIELD SOLENOID FOR MUON COOLING.

    SciTech Connect (OSTI)

    KAHN, S.A.; ALSHARO'A, M.; HANLET, P.; JOHNSON, R.P.; KUCHNIR, M.; NEWSHAM, F.; GUPTA, R.C.; PALMER, R.B.; WILLEN, E.

    2006-06-26T23:59:59.000Z

    Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS conductor based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we address how to mitigate the high Lorentz stresses associated with this high field magnet.

  9. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P [Fermilab; Andreopoulos, C [Rutherford; Auty, D J [Sussex U.; Ayres, D S [Argonne; Backhouse, C [Oxford U.; Barr, G [Oxford U.; Bishai, M [Brookhaven; Blake, A [Cambridge U.; Bock, G J [Fermilab; Boehnlein, D J [/Fermilab; Bogert, D [Fermilab; Harvard U., Phys. Dept.

    2011-07-05T23:59:59.000Z

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ??? production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ??? events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3?. The best fit to oscillation yields |?m?2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 ??) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS ?? and ??? measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  10. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    E-Print Network [OSTI]

    Riggi, S; Bandieramonte, M; Becciani, U; Costa, A; La Rocca, P; Massimino, P; Petta, C; Pistagna, C; Riggi, F; Sciacca, E; Vitello, F

    2013-01-01T23:59:59.000Z

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are here discussed. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full Geant4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  11. The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy

    SciTech Connect (OSTI)

    Arikan, Nihat [Ahi Evran Üniversitesi E?itim Fakültesi, ?lkö?retim Bölümü, K?r?ehir (Turkey); Özduran, Mustafa [Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, K?r?ehir (Turkey)

    2014-10-06T23:59:59.000Z

    The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comes from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.

  12. Production of Neutrinos and Secondary Electrons in Cosmic Sources

    E-Print Network [OSTI]

    C. -Y. Huang; M. Pohl

    2008-01-23T23:59:59.000Z

    We study the individual contribution to secondary lepton production in hadronic interactions of cosmic rays (CRs) including resonances and heavier secondaries. For this purpose we use the same ethodology discussed earlier \\cite{Huang07}, namely the Monte Carlo particle collision code DPMJET3.04 to determine the multiplicity spectra of various secondary particles with leptons as the final decay states, that result from inelastic collisions of cosmic-ray protons and Helium nuclei with the interstellar medium of standard composition. By combining the simulation results with parametric models for secondary particle (with resonances included) for incident cosmic-ray energies below a few GeV, where DPMJET appears unreliable, we thus derive production matrices for all stable secondary particles in cosmic-ray interactions with energies up to about 10 PeV. We apply the production matrices to calculate the radio synchrotron radiation of secondary electrons in a young shell-type SNR, RX J1713.7-3946, which is a measure of the age, the spectral index of hadronic cosmic rays, and most importantly the magnetic field strength. We find that the multi-mG fields recently invoked to explain the X-ray flux variations are unlikely to extend over a large fraction of the radio-emitting region, otherwise the spectrum of hadronic cosmic rays in the energy window 0.1-100 GeV must be unusually hard. We also use the production matrices to calculate the muon event rate in an IceCube-like detector that are induced by muon neutrinos from high-energy $\\gamma$-ray sources such as RX J1713.7-3946, Vela Jr. and MGRO J2019+37. At muon energies of a few TeV, or in other word, about 10 TeV neutrino energy, an accumulation of data over about five to ten years would allow testing the hadronic origin of TeV $\\gamma$-rays.

  13. atmospheric muon flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Sarcevic 1997-10-15 9 Measurement of the atmospheric muon flux with the ANTARES detector CERN Preprints Summary: ANTARES is a submarine neutrino telescope deployed in the...

  14. atmospheric muon charge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the CMS detector HEP - Experiment (arXiv) Summary: A measurement is presented of the flux ratio of positive and negative muons from cosmic ray interactions in the atmosphere,...

  15. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays

    E-Print Network [OSTI]

    The ATLAS Collaboration

    2010-08-02T23:59:59.000Z

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  16. R&D Toward a Neutrino Factory and Muon Collider

    E-Print Network [OSTI]

    Zisman, Michael S

    2011-01-01T23:59:59.000Z

    the need for a future 6D cooling experiment. A community-and planning for a future 6D muon cooling experiment. Tablepossible 6D cooling experiment at some future time. However,

  17. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    of Various Cases for Superconducti ng Magnets Inside andTransactions on Applied Superconductivity 7, No 2. P 642 (LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUON

  18. Superconducting magnets for muon capture and phase rotation

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    LBNL-43998 SC-MAG-683 SUPERCONDUCTING MAGNETS FOR MUONDE-AC03-76SF00098. Green SUPERCONDUCTING MAGNETS FOR MUONet ai, "The Use of Superconducting Solenoids in a Muon

  19. Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts

    SciTech Connect (OSTI)

    Pechhacker, R.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)

    2012-11-15T23:59:59.000Z

    A beam of super-thermal, hot electrons was injected into maxwellian plasma with a density gradient along a magnetic field line. 1.5D particle-in-cell simulations were carried out which established that the EM emission is produced by the perpendicular component of the beam injection momentum. The beam has a positive slope in the distribution function in perpendicular momentum phase space, which is the characteristic feature of a cyclotron maser. The cyclotron maser in the overdense plasma generates emission at the electron cyclotron frequency. The frequencies of generated waves were too low to propagate away from the injection region, hence the wavelet transform shows a pulsating wave generation and decay process. The intensity pulsation frequency is twice the relativistic cyclotron frequency. Eventually, a stable wave packet formed and could mode couple on the density gradient to reach frequencies of the order of the plasma frequency that allowed for propagation. The emitted wave is likely to be a z-mode wave. The total electromagnetic energy generated is of the order of 0.1% of the initial beam kinetic energy. The proposed mechanism is of relevance to solar type III radio bursts, as well as other situations, when the injected electron beam has a non-zero perpendicular momentum, e.g., magnetron.

  20. Interpretation of the atmospheric muon charge ratio in MINOS

    E-Print Network [OSTI]

    Philip Schreiner; Maury Goodman

    2007-06-04T23:59:59.000Z

    MINOS is the first large magnetic detector deep underground and is the first to measure the muon charge ratio with high statistics in the region near 1 TeV.\\cite{bib:adamson} An approximate formula for the muon charge ratio can be expressed in terms of $\\epsilon_\\pi$ = 115 GeV, $\\epsilon_K$ = 850 GeV and $\\ec$. The implications for K production in the atmosphere will be discussed.

  1. Assessment of Solder Interconnect Integrity in Dismantled Electronic Components from N57 and B61 Tube-Type Radars

    SciTech Connect (OSTI)

    Rejent, J.A.; Vianco, P.T.; Woodrum, R.A.

    1999-07-01T23:59:59.000Z

    Aging analyses were performed on solder joints from two radar units: (1) a laboratory, N57 tube-type radar unit and (2) a field-returned, B61-0, tube-type radar unit. The cumulative temperature environments experienced by the units during aging were calculated from the intermetallic compound layer thickness and the mean Pb-rich phase particle size metrics for solder joints in the units, assuming an aging time of 35 years for both radars. Baseline aging metrics were obtained from a laboratory test vehicle assembled at AS/FM and T; the aging kinetics of both metrics were calculated from isothermal aging experiments. The N57 radar unit interconnect board solder joints exhibited very little aging. The eyelet solder joints did show cracking that most likely occurred at the time of assembly. The eyelet, SA1126 connector solder joints, showed some delamination between the Cu pad and underlying laminate. The B61 field-returned radar solder joints showed a nominal degree of aging. Cracking of the eyelet solder joints was observed. The Pb-rich phase particle measurements indicated additional aging of the interconnects as a result of residual stresses. Cracking of the terminal pole connector, pin-to-pin solder joint was observed; but it was not believed to jeopardize the electrical functionality of the interconnect. Extending the stockpile lifetime of the B61 tube-type radar by an additional 20 years would not be impacted by the reliability of the solder joints with respect to further growth of the intermetallic compound layer. Additional coarsening of the Pb-rich phase will increase the joints' sensitivity to thermomechanical fatigue.

  2. Measurement of cosmic muon charge ratio with the Large Volume Detector

    E-Print Network [OSTI]

    N. Yu. Agafonova; M. Aglietta; P. Antonioli; G. Bari; R. Bertoni; V. V. Boyarkin; E. Bressan; G. Bruno; V. L. Dadykin; E. A. Dobrynina; R. I. Enikeev; W. Fulgione; P. Galeotti; M. Garbini; P. L. Ghia; P. Giusti; E. Kemp; A. S. Malgin; B. Miguez; A. Molinario; R. Persiani; I. A. Pless; V. G. Ryasny; O. G. Ryazhskaya; O. Saavedra; G. Sartorelli; M. Selvi; G. C. Trinchero; C. Vigorito; V. F. Yakushev; A. Zichichi

    2015-02-14T23:59:59.000Z

    The charge ratio ${k \\equiv \\mu^+/\\mu^-}$ for atmospheric muons has been measured using Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have the energy at the sea level greater than 1.3 TeV. The muon charge ratio was defined using the number of the decays of stopping positive muons in the LVD iron structure and the decays of positive and negative muons in scintillator. We have obtained the value of the muon charge ratio ${k}$ ${= 1.26 \\pm 0.04(stat) \\pm 0.11(sys)}$.

  3. Muon transfer from hydrogen to helium

    SciTech Connect (OSTI)

    Bystritskii, V.M.; Dzhelepov, V.P.; Petrukhin, V.I.; Rudenko, A.I.; Suvorov, V.M.; Filchenkov, V.V.; Khovanskii, N.N.; Khomenko, B.A.

    1983-04-01T23:59:59.000Z

    It is found that ..mu../sup -/ mesons stopped in a gas mixture of hydrogen, helium, and xenon (hydrogen pressure about 20 atmospheres, helium and xenon densities relative to hydrogen 0.05--2 and approx.10/sup -4/ respectively) are transferred from the p..mu.. atoms in the ground state to helium atoms at a rate lambda/sub He/ = (3.6 +- 1.0)x10/sup 8/ sec/sup -1/. The result is in good agreement with the calculations in which a novel mesic-molecular mechanism of p..mu..-atom charge exchange with helium nuclei is taken into account. The dependence of the probability for p..mu..-atom formation in the ground state on the helium density is measured. An analysis of this dependence and a comparison of it with the corresponding data for ..pi../sup -/ mesons indicate that muons can also be transferred from excited levels of p..mu.. atoms at a rate higher than in the case of p..pi.. atoms (transfer constant ..lambda../sub ..mu../ = 3.8 +- 0.3 compared with ..lambda../sub ..pi../ = 1.84 +- 0.09).

  4. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    SciTech Connect (OSTI)

    FERNOW,R.C.

    1999-03-25T23:59:59.000Z

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  5. Muon density enhancement with a tapered capillary method

    SciTech Connect (OSTI)

    Tomono, D.; Ishida, K.; Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kojima, T. M.; Ikeda, T.; Iwai, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Tokuda, M. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kanazawa, Y. [Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan); Matsuda, Y. [Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Iwasaki, M. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Yamazaki, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan)

    2011-10-06T23:59:59.000Z

    The focusing effect of a muon beam with a tapered capillary method has been investigated in a range from 4.2 MeV to 9.2 MeV (i.e. from 30 MeV/c to 45 MeV/c in momentum). We injected the muon beam into a pair of narrowing (tapered) plates and tubes made of glass, copper and gold-coated copper, and measured the energy distribution of the muon leaving from the outlet. The plates were tilted from an inlet of 40 mm to an outlet of 20 mm. The density enhancement was more prominent with the plates made of heavier elements. The largest beam density enhancement at 10 mm downstream of the outlet was 1.3 with the gold-coated copper narrowing plates. The enhancement was composed of muons scattered with a small angle. Their energy was slightly less than that of the initial beam. This effect did not depend on the surface roughness. The result strongly suggests a simple and effective way to increase the muon beam density for a small target.

  6. Status of neutrino factory and muon collider R and D

    SciTech Connect (OSTI)

    Zisman, M.S.

    2001-06-17T23:59:59.000Z

    A significant worldwide R and D effort is presently directed toward solving the technical challenges of producing, cooling, accelerating, storing, and eventually colliding beams of muons. Its primary thrust is toward issues critical to a Neutrino Factory, for which R and D efforts are under way in the U.S., via the Neutrino Factory and Muon Collider Collaboration (MC); in Europe, centered at CERN; and in Japan, at KEK. Under study and experimental development are production targets handling intense proton beams (1-4 MW), phase rotation systems to reduce beam energy spread, cooling channels to reduce transverse beam emittance for the acceleration system, and storage rings where muon decays in a long straight section provide a neutrino beam for a long-baseline (3000 km) experiment. Critical experimental activities include development of very high gradient normal conducting RF (NCRF) and superconducting RF (SCRF) cavities, high-power liquid-hydrogen absorbers, and high-field superconducting solenoids. Components and instrumentation that tolerate the intense decay products of the muon beam are being developed for testing. For a high-luminosity collider, muons must be cooled longitudinally as well as transversely, requiring an emittance exchange scheme. In addition to the experimental R and D effort, sophisticated theoretical and simulation tools are needed for the design. Here, the goals, present status, and future R and D plans in these areas will be described.

  7. A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    SciTech Connect (OSTI)

    Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

    2011-08-17T23:59:59.000Z

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

  8. Charge Separation for Muon Collider Cooling

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow; R.C.

    2011-03-28T23:59:59.000Z

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  9. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect (OSTI)

    Bowring, D.L.; DeMello, A.J.; Lambert, A.R.; Li, D.; Virostek,, S.; Zisman, M.; Kaplan, D.; Palmer, R.B.

    2012-05-20T23:59:59.000Z

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  10. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01T23:59:59.000Z

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  11. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect (OSTI)

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01T23:59:59.000Z

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  12. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01T23:59:59.000Z

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  13. Improvements to the LC Muon tracking and identification software

    SciTech Connect (OSTI)

    Milstene, C.; Fisk, G.; Para, A.

    2005-03-01T23:59:59.000Z

    This note summarizes the evolution of the Muon-ID package originally written by R. Markeloff at NIU. The original method used a helical swimmer to extrapolate the tracks from the interaction point and to collect hits in all sub-detectors: the electromagnetic and hadronic calorimeters and muon detector. The package was modified to replace the swimmer by a stepper which does account for both the effects of the magnetic field and for the losses by ionization in the material encountered by the particle. The modified package shows a substantial improvement in the efficiency of muon identification. Further improvement should be reached by accounting for stochastic processes via the utilization of a Kalman filter.

  14. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect (OSTI)

    Bogdanova, L. N. [Institute of Theoretical and Experimental Physics, State Scientific Center of Russian Federation (Russian Federation); Bom, V. R. [Delft University of Technology (Netherlands); Demin, A. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Demin, D. L. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Eijk, C. W. E. van [Delft University of Technology (Netherlands); Filchagin, S. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Filchenkov, V. V.; Grafov, N. N. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation)], E-mail: grafov@nusun.jinr.ru; Grishechkin, S. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Gritsaj, K. I.; Konin, A. D. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Kuryakin, A. V. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Medved', S. V. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Musyaev, R. K. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Rudenko, A. I. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation); Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Yukhimchuk, S. A.; Zinov, V. G. [Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems (Russian Federation)] (and others)

    2009-02-15T23:59:59.000Z

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  15. A Staged Muon Accelerator Facility For Neutrino and Collider Physics

    E-Print Network [OSTI]

    Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

    2015-01-01T23:59:59.000Z

    Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

  16. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Annarita Margiotta

    2006-02-01T23:59:59.000Z

    A new parameterisation of atmospheric muons deep underwater (or ice) is presented. It takes into account the simultaneous arrival of muons in bundle giving the multiplicity of the events and the muon energy spectrum as a function of their lateral distribution in a shower.

  17. MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York)

    E-Print Network [OSTI]

    McDonald, Kirk

    MUON COLLIDER PROGRESS Robert B. Palmer (BNL, Upton, Long Island, New York) Abstract A complete scheme for muon production, cooling, ac- celeration and storage in a collider ring is presented. Pa and phase rotation yields bunch trains of both muon signs. Six di- mensional cooling reduces

  18. R&D Proposal for the National Muon Acccelerator Program

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  19. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect (OSTI)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24T23:59:59.000Z

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

  20. Underground Muon Counters as a Tool for Composition Analyses

    E-Print Network [OSTI]

    A. D. Supanitsky; A. Etchegoyen; G. Medina-Tanco; I. Allekotte; M. Gómez Berisso; M. C. Medina

    2008-10-13T23:59:59.000Z

    The transition energy from galactic to extragalactic cosmic ray sources is still uncertain, but it should be associated either with the region of the spectrum known as the second knee or with the ankle. The baseline design of the Pierre Auger Observatory was optimized for the highest energies. The surface array is fully efficient above $3 \\times 10^{18}$ eV and, even if the hybrid mode can extend this range below $10^{18}$ eV, the second knee and a considerable portion of the wide ankle structure are left outside its operating range. Therefore, in order to encompass these spectral features and gain further insight into the cosmic ray composition variation along the transition region, enhancements to the surface and fluorescence components of the baseline design are being implemented that will lower the full efficiency regime of the Observatory down to $\\sim 10^{17}$ eV. The surface enhancements consist of a graded infilled area of standard Auger water Cherenkov detectors deployed in two triangular grids of 433 m and 750 m of spacing. Each surface station inside this area will have an associated muon counter detector. The fluorescence enhancement, on the other hand, consists of three additional fluorescence telescopes with higher elevation angle ($30^\\circ-58^\\circ$) than the ones in operation at present. The aim of this paper is threefold. We study the effect of the segmentation of the muon counters and find an analytical expression to correct for the under counting due to muon pile-up. We also present a detailed method to reconstruct the muon lateral distribution function for the 750 m spacing array. Finally, we study the mass discrimination potential of a new parameter, the number of muons at 600 m from the shower axis, obtained by fitting the muon data with the above mentioned reconstruction method.

  1. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung [W& M

    2014-11-01T23:59:59.000Z

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  2. Muon-Induced Background Study for Underground Laboratories

    E-Print Network [OSTI]

    D. -M. Mei; A. Hime

    2005-12-06T23:59:59.000Z

    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from $\\sim$1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.

  3. Lowest Order Hadronic Contribution to the Muon g-2

    E-Print Network [OSTI]

    Christopher Aubin; Tom Blum

    2005-09-20T23:59:59.000Z

    We present the most recent lattice results for the lowest-order hadronic contribution to the muon anomalous magnetic moment using 2+1 flavor improved staggered fermions. A precise fit to the low-q^2 region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory with the inclusion of the vector particles as resonances, to evaluate the vacuum polarization. We discuss the preliminary fit results and attendant systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons.

  4. SIMULATIONS OF A MUON LINAC FOR A NEUTRINO FACTORY

    SciTech Connect (OSTI)

    Kevin Beard, Alex Bogacz ,Slawomir Bogacz, Vasiliy Morozov, Yves Roblin

    2011-04-01T23:59:59.000Z

    The Neutrino Factory baseline design involves a complex chain of accelerators including a single-pass linac, two recirculating linacs and an FFAG. The first linac follows the capture and bunching section and accelerates the muons from about 244 to 900 MeV. It must accept a high emittance beam about 30 cm wide with a 10% energy spread. This linac uses counterwound, shielded superconducting solenoids and 201 MHz superconducting cavities. Simulations have been carried out using several codes including Zgoubi, OptiM, GPT, Elegant and G4beamline, both to determine the optics and to estimate the radiation loads on the elements due to beam loss and muon decay.

  5. Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. III. Case study of the beryllium dimer

    E-Print Network [OSTI]

    Micha? Lesiuk; Micha? Przybytek; Monika Musia?; Bogumi? Jeziorski; Robert Moszynski

    2015-01-20T23:59:59.000Z

    In this paper we present results of ab-initio calculations for the beryllium dimer with basis set of Slater-type orbitals (STOs). Nonrelativistic interaction energy of the system is determined using the frozen-core full configuration interaction calculations combined with high-level coupled cluster correction for inner-shell effects. Newly developed STOs basis sets, ranging in quality from double to sextuple zeta, are used in these computations. Principles of their construction are discussed and several atomic benchmarks are presented. Relativistic effects of order ${\\alpha}^2$ are calculated perturbatively by using the Breit-Pauli Hamiltonian and are found to be significant. We also estimate the leading-order QED effects. Influence of the adiabatic correction is found to be negligible. Finally, the interaction energy of the beryllium dimer is determined to be 929.0$\\,\\pm\\,$1.9 $cm^{-1}$, in a very good agreement with the recent experimental value. The results presented here appear to be the most accurate ab-initio calculations for the beryllium dimer available in the literature up to date and probably also one of the most accurate calculations for molecular systems containing more than four electrons.

  6. Computational Needs for Muon Accelerators J. Scott Berg a

    E-Print Network [OSTI]

    Berg, J. Scott

    Computational Needs for Muon Accelerators J. Scott Berg a a Brookhaven National Laboratory that are transported can have energy spreads of ±30% or more. The required emittances necessitate accurate tracking or a model which includes end fields; and accurately design and simulate a beam line where the transported

  7. A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS

    E-Print Network [OSTI]

    McDonald, Kirk

    856 A MUON STORAGE RING FOR NEUTRINO OSCILLATIONS EXPERIMENTS David Cline University of Wisconsin, Madison, Wl 53706 David Neuffer Fermilab,* Batavia, IL 60510 ABSTRACT · + decay in a ~- Storage Ring can as a possible first ~ storage ring. INTRODUCTION Recent experimental reports 1'2 of a non-zero ~ mass and of e

  8. Radiative corrections to real and virtual muon Compton scattering revisited

    E-Print Network [OSTI]

    N. Kaiser

    2010-03-04T23:59:59.000Z

    We calculate in closed analytical form the one-photon loop radiative corrections to muon Compton scattering $\\mu^- \\gamma \\to \\mu^- \\gamma $. Ultraviolet and infrared divergencies are both treated in dimensional regularization. Infrared finiteness of the (virtual) radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off $\\lambda$. We find that the anomalous magnetic moment $\\alpha/2\\pi$ provides only a very small portion of the full radiative corrections. Furthermore, we extend our calculation of radiative corrections to the muon-nucleus bremsstrahlung process (or virtual muon Compton scattering $\\mu^-\\gamma_0^* \\to \\mu^- \\gamma $). These results are particularly relevant for analyzing the COMPASS experiment at CERN in which muon-nucleus bremsstrahlung serves to calibrate the Primakoff scattering of high-energy pions off a heavy nucleus with the aim of measuring the pion electric and magnetic polarizabilities. We find agreement with an earlier calculation of these radiative corrections based on a different method.

  9. Integration and commissioning of the ATLAS Muon spectrometer

    E-Print Network [OSTI]

    Alberto Belloni; for the ATLAS collaboration

    2008-10-16T23:59:59.000Z

    The ATLAS experiment at the Large Hadron Collider (LHC) at CERN is currently waiting to record the first collision data in spring 2009. Its muon spectrometer is designed to achieve a momentum resolution of 10% pT(mu) = 1 TeV/c. The spectrometer consists of a system of three superconducting air-core toroid magnets and is instrumented with three layers of Monitored Drift Tube chambers (Cathode Strip Chambers in the extreme forward region) as precision detectors. Resistive Plate Chambers in the barrel and Thin Gap Chambers in the endcap regions provide a fast trigger system. The spectrometer passed important milestones in the last year. The most notable milestone was the installation of the inner layer of endcap muon chambers, which constituted the last big piece of the ATLAS detector to be lowered in the ATLAS cavern. In addition, during the last two years most of the muon detectors were commissioned with cosmic rays while being assembled in the underground experimental cavern. We will report on our experience with the precision and trigger chambers, the optical spectrometer alignment system, the level-1 trigger, and the ATLAS data acquisition system. Results of the global performance of the muon system from data with magnetic field will also be presented.

  10. Neutrino-induced upward stopping muons in Super-Kamiokande

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration

    1999-12-01T23:59:59.000Z

    A total of 137 upward stopping muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 516 detector live days. The measured muon flux is 0.39+/-0.04(stat.)+/-0.02(syst.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 0.73+/-0.16(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. Using our previously-published measurement of the upward through-going muon flux, we calculate the stopping/through-going flux ratio R}, which has less theoretical uncertainty. The measured value of R=0.22+/-0.02(stat.)+/-0.01(syst.) is significantly smaller than the value 0.37^{+0.05}_{-0.04}(theo.) expected using the best theoretical information (the probability that the measured R is a statistical fluctuation below the expected value is 0.39%). A simultaneous fitting to zenith angle distributions of upward stopping and through-going muons gives a result which is consistent with the hypothesis of neutrino oscillations with the parameters sin^2 2\\theta >0.7 and 1.5x10^{-3} Super-Kamiokande using the contained atmospheric neutrino events.

  11. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12T23:59:59.000Z

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  12. AMIGA, Auger Muons and Infill for the Ground Array

    E-Print Network [OSTI]

    Etchegoyen, A

    2007-01-01T23:59:59.000Z

    The Pierre Auger Observatory is planned to be upgraded so that the energy spectrum of cosmic rays can be studied down to 0.1 EeV and the muon component of showers can be determined. The former will lead to a spectrum measured by one technique from 0.1 EeV to beyond 100 EeV while the latter will aid identification of the primary particles. These enhancements consist of three high elevation telescopes (HEAT) and an infilled area having both surface detectors and underground muon counters (AMIGA). The surface array of the Auger Observatory will be enhanced over a 23.5 km2 area by 85 detector pairs laid out as a graded array of water-Cherenkov detectors and 30 m2 buried muon scintillator counters. The spacings in the array will be 433 and 750 m. The muon detectors will comprise highly segmented scintillators with optical fibres ending on multi-anode phototubes. The AMIGA complex will be centred 6.0 km away from the fluorescence detector installation at Coihueco and will be overlooked by the HEAT telescopes. We de...

  13. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Murata, Tomoya

    2015-01-01T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  14. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Tomoya Murata; Toru Sato

    2015-01-23T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  15. The Solenoid Muon Capture System for the MELC Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    calculation of the magnetic field for the MELC setup are presented. Production of muon from pion decay as low as --~2 Tesla. In the vicinity of the solenoid axis there are targets, consisting of thin tungsten production backward is determined by the location of targets along the solenoid axis and by spacing of target

  16. Muon Performance in the Presence of High Pile-up in ATLAS

    E-Print Network [OSTI]

    Tülin Varol

    2012-12-03T23:59:59.000Z

    In 2012, the LHC is operated at sqrt(s) = 8 TeV in a mode leading up to 40 inelastic pp collisions per bunch crossing. The identification and reconstruction of muons produced in hard collisions is difficult in this challenging environment. Di-muon decays of Z bosons have been used to study the muon momentum resolution as well as the muon identification and reconstruction efficiencies of the ATLAS detector as a function of the muon transverse momentum from 15 GeV to 100 GeV and the number of inelastic collisions per event. These studies show that the muon momentum resolution, muon identification and reconstruction efficiencies are independent of the amount of pile-up present in an event.

  17. Influence of Young-type interference on the forward-backward asymmetry in electron emission from H{sub 2} in collisions with 80-MeV bare C ions

    SciTech Connect (OSTI)

    Misra, Deepankar; Kelkar, A.; Kadhane, U.; Kumar, Ajay; Tribedi, Lokesh C.; Fainstein, P. D. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos De Bariloche (Argentina)

    2006-12-15T23:59:59.000Z

    We use the forward-backward angular asymmetry in the electron emission cross sections in fast ion impact ionization of H{sub 2} as a probe of the inversion symmetric coherence in homonuclear diatomic molecules. The electron energy dependence of the asymmetry parameter for H{sub 2} exhibits oscillatory structure due to Young-type interference in contrast to atomic targets such as He. The asymmetry parameter technique provides a self-normalized method to reveal the interference oscillation independent of theoretical models and complementary measurements on atomic H target.

  18. The scattering of muons in low Z materials

    SciTech Connect (OSTI)

    D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

    2005-12-03T23:59:59.000Z

    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionization cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionization cooling will work better than would be predicted by Geant 4.7.0p01.

  19. Reducing backgrounds in the higgs factory muon collider detector

    SciTech Connect (OSTI)

    Mokhov, N. V.; Tropin, I. S.

    2014-06-01T23:59:59.000Z

    A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

  20. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17T23:59:59.000Z

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  1. Design of Helical Cooling Channel for Muon Collider

    SciTech Connect (OSTI)

    Yonehara, Katsuya; /Fermilab

    2010-07-30T23:59:59.000Z

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 10{sup 5} emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  2. A Pionic Hadron Explains the Muon Magnetic Moment Anomaly

    E-Print Network [OSTI]

    Rainer W. Schiel; John P. Ralston

    2007-10-01T23:59:59.000Z

    A significant discrepancy exists between experiment and calculations of the muon's magnetic moment. We find that standard formulas for the hadronic vacuum polarization term have overlooked pionic states known to exist. Coulomb binding alone guarantees $\\pi^+ \\pi^-$ states that quantum mechanically mix with the $\\rho$ meson. A simple 2-state mixing model explains the magnetic moment discrepancy for a mixing angle of order $\\alpha \\sim 10^{-2}$. The relevant physical state is predicted to give a tiny observable bump in the ratio R(s) of $e^+ e^-$ annihilation at a low energy not previously searched. The burden of proof is reversed for claims that conventional physics cannot explain the muon's anomalous moment.

  3. A search for two body muon decay signals

    E-Print Network [OSTI]

    R. Bayes; J. Bueno; Yu. I. Davydov; P. Depommier; W. Faszer; M. C. Fujiwara; C. A. Gagliardi; A. Gaponenko; D. R. Gill; A. Grossheim; P. Gumplinger; M. D. Hasinoff; R. S. Henderson; A. Hillairet; J. Hu; D. D. Koetke; R. P. MacDonald; G. M. Marshall; E. L. Mathie; R. E. Mischke; K. Olchanski; A. Olin; R. Openshaw; J. -M. Poutissou; R. Poutissou; V. Selivanov; G. Sheffer; B. Shin; T. D. S. Stanislaus; R. Tacik; R. E. Tribble

    2015-03-10T23:59:59.000Z

    Lepton family number violation is tested by searching for $\\mu^+\\to e^+X^0$ decays among the 5.8$\\times 10^8$ positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive $X^0$ bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic $\\mu^+\\to e^+X^0$ decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order $10^{-5}$ are obtained for bosons with masses of 13 - 80 MeV/c$^2$ and with different decay asymmetries. For bosons with masses less than 13 MeV/c$^{2}$ the asymmetry dependence is much stronger and the 90% limit on the branching ratio varies up to $5.8 \\times 10^{-5}$. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.

  4. The scattering of muons in low Z materials

    E-Print Network [OSTI]

    MuScat Collaboration; D. Attwood; P. Bell; S. Bull; T. McMahon; J. Wilson; R. Fernow; P. Gruber; A. Jamdagni; K. Long; E. McKigney; P. Savage; M. Curtis-Rouse; T. R. Edgecock; M. Ellis; J. Lidbury; W. J. Murray; P. Norton; K. Peach; K. Ishida; Y. Matsuda; K. Nagamine; S. Nakamura; G. M. Marshall; S. Benveniste; D. Cline; Y. Fukui; K. Lee; Y. Pischalnikov; S. Holmes; A. Bogacz

    2005-12-02T23:59:59.000Z

    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.

  5. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo [Los Alamos National Laboratory

    2012-08-13T23:59:59.000Z

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  6. Measurement of the nucleon structure function using high energy muons

    SciTech Connect (OSTI)

    Meyers, P.D.

    1983-12-01T23:59:59.000Z

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.

  7. Study of high field superconducting solenoids for muon beam cooling

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Barzi, E.; Kashikhin, V.S.; Lamm, Michael J.; /FERMILAB; Sadovskiy, Y.; /Moscow Phys. Eng. Inst.; Zlobin, Alexander V; /Fermilab

    2007-08-01T23:59:59.000Z

    The final beam cooling stages of a possible Muon Collider may require DC solenoid magnets with magnetic fields of 40-50 T in an aperture of 40-50 mm. In this paper we study possible solutions towards creating DC fields of that order using available superconductors. Several magnetic and mechanical designs, optimized for the maximum performance are presented and compared in terms of cost and size.

  8. Muon-induced backgrounds in the CUORICINO experiment

    SciTech Connect (OSTI)

    Andreotti, E.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J. W.; Bellini, F.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Canonica, L.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Creswick, R. J.; Domizio, S. Di; Dolinski, M. J.; Ejzak, L.; Faccini, R.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Kadel, R.; Kazkaz, K.; Kraft, S.; Kogler, L.; Kolomensky, Yu. G.; Maiano, C.; Maruyama, R. H.; Martinez, C.; Martinez, M.; Mizouni, L.; Morganti, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Risegari, L.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Tomei, C.; Ventura, G.; Vignati, M.

    2010-04-15T23:59:59.000Z

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO siteand operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV.kg.yr) (95percent c.l.) was obtained on the cosmicray induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations.

  9. Optical Alignment System for the PHENIX Muon Tracking Chambers

    E-Print Network [OSTI]

    J. Murata; A. Al-Jamel; R. L. Armendariz; M. L. Brooks; T. Horaguchi; N. Kamihara; H. Kobayashi; D. M. Lee; T. -A. Shibata; W. E. Sondheim

    2002-12-26T23:59:59.000Z

    A micron-precision optical alignment system (OASys) for the PHENIX muon tracking chambers is developed. To ensure the required mass resolution of vector meson detection, the relative alignment between three tracking station chambers must be monitored with a precision of 25$\\mu$m. The OASys is a straightness monitoring system comprised of a light source, lens and CCD camera, used for determining the initial placement as well as for monitoring the time dependent movement of the chambers on a micron scale.

  10. Search for a W' boson decaying to a muon and a neutrino in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-07-01T23:59:59.000Z

    A new heavy gauge boson, W', decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 inverse picobarns. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon-neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W'. The W' mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.

  11. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    E-Print Network [OSTI]

    D. B. Ion; M. L. D. Ion; Reveica Ion-Mihai

    2011-01-24T23:59:59.000Z

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility parameters attain their limiting value X=1. Hence, the SHE-region is characterized by the absence of a classical barrier toward spontaneous muon and pion emissions. Numerical estimations on the yields for the natural muonic radioactivities of the transuranium elements as well numerical values for barrier heights are given only for even-even parent nuclei. Some experimental results from LCP-identification emission spectrum are reviewed. Also, the experimental results obtained by Khryachkov et al, using new spectrometer for investigation of ternary nuclear fission, are presented. The OPERA-experiment proposed to perform search for muonic radioactivity from lead nuclei, in the low background conditions offered by the Gran Sasso underground Laboratory (LNGS), is discussed.

  12. Cosmic ray muon charge ratio in the MINOS far detector

    SciTech Connect (OSTI)

    Beall, Erik B; /Minnesota U.

    2005-12-01T23:59:59.000Z

    The MINOS Far Detector is a 5.4 kiloton (5.2 kt steel plus 0.2 kt scintillator plus aluminum skin) magnetized tracking calorimeter located 710 meters underground in the Soudan mine in Northern Minnesota. MINOS is the first large, deep underground detector with a magnetic field and thus capable of making measurements of the momentum and charge of cosmic ray muons. Despite encountering unexpected anomalies in distributions of the charge ratio (N{sub {mu}{sup +}}/N{sub {mu}{sup -}}) of cosmic muons, a method of canceling systematic errors is proposed and demonstrated. The result is R{sub eff} = 1.346 {+-} 0.002 (stat) {+-} 0.016 (syst) for the averaged charge ratio, and a result for a rising fit to slant depth of R(X) = 1.300 {+-} 0.008 (stat) {+-} 0.016 (syst) + (1.8 {+-} 0.3) x 10{sup -5} x X, valid over the range of slant depths from 2000 < X < 6000 MWE. This slant depth range corresponds to minimum surface muon energies between 750 GeV and 5 TeV.

  13. Lateral Distribution for Aligned Events in Muon Groups Deep Underground

    E-Print Network [OSTI]

    A. L. Tsyabuk; R. A. Mukhamedshin; Yu. V. Stenkin

    2007-01-09T23:59:59.000Z

    The paper concerns the so-called aligned events observed in cosmic rays. The phenomenon of the alignment of the most energetic subcores of gamma-ray--hadron ($\\gamma-h$) families (particles of the highest energies in the central EAS core) was firstly found in the "Pamir" emulsion chamber experiment and related to a coplanar particle production at $E_0>10^{16}$ eV. Here a separation distribution (distances between pairs of muons) for aligned events has been analyzed throughout muon groups measured by Baksan Underground Scintillation Telescope (BUST) for threshold energies $0.85 \\div 3.2$ TeV during a period of 7.7 years. Only muon groups of multiplicity $m\\geq 4$ with inclined trajectories for an interval of zenith angles $50^\\circ - 60^\\circ$ were selected for the analysis. The analysis has revealed that the distribution complies with the exponential law. Meanwhile the distributions become steeper with the increase of threshold energy. There has been no difference between the lateral distribution of all the groups and the distribution of the aligned groups.

  14. Open-Midplane Dipoles for a Muon Collider

    SciTech Connect (OSTI)

    Weggel, R.; Gupta, R.; Kolonko, J., Scanlan, R., Cline, D., Ding, X., Anerella, M., Kirk, H., Palmer, B., Schmalzle, J.

    2011-03-28T23:59:59.000Z

    For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1 x 10{sup -4} and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet. A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

  15. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo [Los Alamos National Laboratory

    2012-04-11T23:59:59.000Z

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  16. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science...

  17. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    E-Print Network [OSTI]

    Bowring, D.L.

    2014-01-01T23:59:59.000Z

    ON A CAVITY WITH BERYLLIUM WALLS FOR MUON IONIZATION COOLINGFabricating a cavity with beryllium walls would mitigatepillbox RF cavity with beryllium walls, in order to evaluate

  18. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01T23:59:59.000Z

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  19. Constraints on the energy spectra of charged particles predicted in some model interactions of hadrons with help of the atmospheric muon flux

    E-Print Network [OSTI]

    Dedenko, L G; Roganova, T M

    2015-01-01T23:59:59.000Z

    It has been shown that muon flux intensities calculated in terms of the EPOS LHC and EPOS 1.99 models at the energy of 10^4 GeV exceed the data of the classical experiments L3+Cosmic, MACRO and LVD on the spectra of atmospheric muons by a factor of 1.9 and below these data at the same energy by a factor of 1.8 in case of the QGSJET II-03 model. It has been concluded that these tested models overestimate (underestimate in case of QGSJET II-03 model) the production of secondary particles with the highest energies in interactions of hadrons by a factor of ~1.5. The LHCf and TOTEM accelerator experiments show also this type of disagreements with these model predictions at highest energies of secondary particles.

  20. The Effect of Extending the Length of the Coupling Coils in a MuonIonization Cooling Channel

    SciTech Connect (OSTI)

    Green, Michael A.

    2007-11-10T23:59:59.000Z

    RF cavities are used to re-accelerate muons that have beencooled by absorbers that are in low beta regions of a muon ionizationcooling channel. A superconducting coupling magnet (or magnets) arearound or among the RF cavities of a muon ionization-cooling channel. Thefield from the magnet guides the muons so that they are kept within theiris of the RF cavities that are used to accelerate the muons. Thisreport compares the use of a single short coupling magnet with anextended coupling magnet that has one or more superconducting coils aspart of a muon-cooling channel of the same design as the muon ionizationcooling experiment (MICE). Whether the superconducting magnet is shortand thick or long and this affects the magnet stored energy and the peakfield in the winding. The magnetic field distribution also affects is themuon beam optics in the cooling cell of a muon coolingchannel.

  1. Proposal for the award of thin-walled precision aluminium alloy tubes for the Atlas Muon Spectrometer

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    Proposal for the award of thin-walled precision aluminium alloy tubes for the Atlas Muon Spectrometer

  2. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2013-05-23T23:59:59.000Z

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  3. Nuclear Instruments and Methods in Physics Research A 538 (2005) 159177 Muon acceleration in FFAG rings

    E-Print Network [OSTI]

    Keil, Eberhard

    2005-01-01T23:59:59.000Z

    Nuclear Instruments and Methods in Physics Research A 538 (2005) 159­177 Muon acceleration in FFAG August 2004 Available online 3 November 2004 Abstract Muon acceleration from 6 or 10 to 20 GeV in fixed-field alternating gradient (FFAG) rings is considered. The novel physics issues associated with non-scaling FFAG

  4. Semi-analytic approximations for production of atmospheric muons and neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2001-04-19T23:59:59.000Z

    Simple approximations for fluxes of atmospheric muons and muon neutrinos are developed which display explicitly how the fluxes depend on primary cosmic ray energy and on features of pion production. For energies of approximately 10 GeV and above the results are sufficiently accurate to calculate response functions and to use for estimates of systematic uncertainties.

  5. Muon-induced backgrounds in the CUORICINO experiment

    SciTech Connect (OSTI)

    Andreotti, E; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carbone, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Creswick, R J; Domizio, S D; Dolinski, M J; Ejzak, L; Faccini, R; Farach, H A; Ferri, E; Ferroni, F; Firoini, E; Foggetta, L; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Kadel, R; Kazkaz, K; Kraft, S; Kogler, L; Kolomensky, Y G; Maiano, C; Maruyama, R H; Martinez, C; Martinez, M; Mizouni, L; Morganti, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Tomei, C; Ventura, G; Vignati, M

    2009-11-16T23:59:59.000Z

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO site and operated during 3 months of the CUORICINO experiment. From these measurements, an upper limit of 0.0021 counts/keV {center_dot} kg {center_dot} yr (95% C.L.) was obtained on the cosmic ray induced background in the neutrinoless double beta decay region of interest. The measurements were compared to Geant4 simulations, which are similar to those that will be used to estimate the backgrounds in CUORE.

  6. Holographic calculation of hadronic contributions to muon g-2

    SciTech Connect (OSTI)

    Hong, Deog Ki; Matsuzaki, Shinya [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Doyoun [Frontier Physics Research Division and Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2010-04-01T23:59:59.000Z

    Using the gauge-gravity duality, we compute the leading order hadronic (HLO) contribution to the anomalous magnetic moment of muon, a{sub {mu}}{sup HLO}. Holographic renormalization is used to obtain a finite vacuum polarization. We find a{sub {mu}}{sup HLO}=470.5x10{sup -10} in anti-de Sitter/QCD with two light flavors, which is compared with the currently revised BABAR data estimated from e{sup +}e{sup -{yields}{pi}+{pi}-} events, a{sub {mu}}{sup HLO}[{pi}{pi}]=(514.1{+-}3.8)x10{sup -10}.

  7. The New Muon g-2 Experiment at Fermilab

    E-Print Network [OSTI]

    J. Grange for the E989 collaboration

    2015-01-28T23:59:59.000Z

    Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.

  8. Muon Collider Final Cooling in 30-50 T Solenoids

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow, R.C.; Lederman, J.

    2011-03-28T23:59:59.000Z

    Muon ionization cooling to the required normalized rms emittance of 25 microns transverse, and 72 mm longitudinal, can be achieved with liquid hydrogen in high field solenoids, provided that the momenta are low enough. At low momenta, the longitudinal emittance rises from the negative slope of energy loss versus energy. Assuming initial emittances that have been achieved in six dimensional cooling simulations, optimized designs are given using solenoid fields limited to 30, 40, and 50 T. The required final emittances are achieved for the two higher field cases. Preliminary simulations of transverse cooling in hydrogen, at low energies, suggests that muon collider emittance requirements can be met using solenoid fields of 40 T or more. It might also be acceptable with 30 T. But these simulations did not include hydrogen windows,matching or reacceleration, whose performance, with one exception, was based on numerical estimates. Full simulations of more stages are planned. The design and simulation of hydrogen windows must be included, and space charge effects, and absorber heating, calculated.

  9. Parametric-resonance ionization cooling of muon beams

    SciTech Connect (OSTI)

    Morozov, V. S.; Derbenev, Ya. S.; Afanasev, A.; Johnson, R. P.; Erdelyi, B.; Maloney, J. A. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Muons, Inc., Batavia, Illinois 60510 (United States) and George Washington University, Washington, D.C. 20052 (United States); Muons, Inc., Batavia, Illinois 60510 (United States); Northern Illinois University, DeKalb, Illinois 60115 (United States)

    2012-12-21T23:59:59.000Z

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. Combining muon ionization cooling with parametric resonant dynamics should allow an order of magnitude smaller final equilibrium transverse beam emittances than conventional ionization cooling alone. In this scheme, a half-integer parametric resonance is induced in a cooling channel causing the beam to be naturally focused with the period of the channel's free oscillations. Thin absorbers placed at the focal points then cool the beam's angular divergence through the usual ionization cooling mechanism where each absorber is followed by RF cavities. A special continuous-field twin-helix magnetic channel with correlated behavior of the horizontal and vertical betatron motions and dispersion was developed for PIC. We present the results of modeling PIC in such a channel using GEANT4/G4beamline. We discuss the challenge of precise beam aberration control from one absorber to another over a wide angular spread.

  10. Measurement of electron production from cosmic rays in the ATLAS detector

    E-Print Network [OSTI]

    Kraus, Jana

    The special topology of cosmic events traversing all subdetectors offers the unique opportunity to investigate the combined performance of the ATLAS detector in identifying and reconstructing particles before first proton collisions at the LHC. Through interaction with the inner detector material or through decays high-energy electrons can be produced from the traversing cosmic muons. A sample of 3.5 million cosmic ray events with a high-level trigger track candidate in the central part of the inner detector is used as a basis to extract the electrons from the different processes. To separate the electrons from the large background of muon bremsstrahlung among the about 10000 candidates, the characteristic properties of electrons in the detector are exploited accounting for the special nature of cosmic events. The resulting extraction of about 34 electrons mainly originating from ionisations enables an observation and investigation of real electrons in

  11. A parameterisation of the flux and energy spectrum of single and multiple muons in deep water/ice

    E-Print Network [OSTI]

    M. Bazzotti; S. Biagi; G. Carminati; S. Cecchini; T. Chiarusi; G. Giacomelli; A. Margiotta; M. Sioli; M. Spurio

    2009-10-22T23:59:59.000Z

    In this paper parametric formulas are presented to evaluate the flux of atmospheric muons in the range of vertical depth between 1.5 to 5 km of water equivalent (km w.e.) and up to 85^o for the zenith angle. We take into account their arrival in bundles with different muon multiplicities. The energy of muons inside bundles is then computed considering the muon distance from the bundle axis. This parameterisation relies on a full Monte Carlo simulation of primary Cosmic Ray (CR) interactions, shower propagation in the atmosphere and muon transport in deep water [1]. The primary CR flux and interaction models, in the range in which they can produce muons which may reach 1.5 km w.e., suffer from large experimental uncertainties. We used a primary CR flux and an interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment.

  12. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    E-Print Network [OSTI]

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2015-01-01T23:59:59.000Z

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5-8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  13. Measurement of the Charge Ratio of Cosmic Muons using CMS Data

    E-Print Network [OSTI]

    M. Aldaya; P. Garcia-Abia

    2008-10-20T23:59:59.000Z

    We have performed the measurement of the cosmic ray muon charge ratio, as a function of the muon momentum, using data collected by the CMS experiment, exploiting the capabilities of the muon barrel drift tube (DT) chambers. The cosmic muon charge ratio is defined as the ratio of the number of positive- to negative-charge muons. Cosmic ray muons result from the interaction of high-energy cosmic-ray particles (mainly protons and nuclei), entering the upper layers of the atmosphere, with air nuclei. Since these collisions favour positive meson production, there is an asymmetry in the charge composition and more positive muons are expected. The data samples were collected at the \\textit{Magnet Test and Cosmic Challenge} (MTCC). While the MTCC itself was a crucial milestone in the CMS detector construction, not having physics studies among its primary goals, it provided the first opportunity to obtain physics results and test the full analysis chain using real data in CMS before the LHC startup, together with a complementary check of the detector performance.

  14. Electronic structure and thermoelectric properties of p-type Ag-doped Mg?Sn and Mg?Sn{sub 1-x}Si{sub x} (x=0.05, 0.1)

    SciTech Connect (OSTI)

    Kim, Sunphil; Jin, Hyungyu [Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Wiendlocha, Bartlomiej, E-mail: wiendlocha@fis.agh.edu.pl [Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow (Poland); Tobola, Janusz [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow (Poland); Heremans, Joseph P., E-mail: heremans.1@osu.edu [Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-10-21T23:59:59.000Z

    An experimental and theoretical study of p-type Ag-doped Mg?Sn and Mg?Sn{sub 1-x}Si{sub x} (x=0.05, 0.1) is presented. Band structure calculations show that behavior of Ag in Mg?Sn depends on the site it occupies. Based on Bloch spectral functions and density of states calculations, we show that if Ag substitutes for Sn, it is likely to form a resonant level; if it substitutes for Mg, a rigid-band-like behavior is observed. In both cases, the doped system should exhibit p-type conductivity. Experimentally, thermoelectric, thermomagnetic, and galvanomagnetic properties are investigated of p-type Mg?Sn{sub 1–x}Si{sub x} (x=0, 0.05, 0.1) samples synthesized by a co-melting method in sealed crucibles. Ag effectively dopes the samples p-type, and thermoelectric power factors in excess of 20?W cm?¹K?² are observed in optimally doped samples. From the measured Seebeck coefficient, Nernst coefficient, and mobility, we find that the combination of acoustic phonon scattering, optical phonon scattering and defect scattering results in an energy-independent scattering rate. No resonant-like increase in thermopower is observed, which correlates well with electronic structure calculations assuming the location of Ag on Mg site.

  15. Physics validation studies for muon collider detector background simulations

    SciTech Connect (OSTI)

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01T23:59:59.000Z

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron interaction cross sections for boron. While corrections to the data files themselves are simple to implement and distribute, it is quite possible, however, that coding changes may be required in G4beamline or even in GEANT4 to fully correct nuclear interactions. Regardless, these studies are ongoing and future results will be reflected in updated releases of G4beamline.

  16. A new method for imaging nuclear threats using cosmic ray muons

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Aberle, Derek; Green, J. Andrew; McDuff, George G. [National Security Technologies, Los Alamos, NM 87544 (United States)] [National Security Technologies, Los Alamos, NM 87544 (United States); Luki?, Zarija [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)] [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States)] [Southern Methodist University, Dallas, TX 75205 (United States)

    2013-08-15T23:59:59.000Z

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  17. Muon decays in the Earth's atmosphere, time dilatation and relativity of simultaneity

    E-Print Network [OSTI]

    J. H. Field

    2009-01-22T23:59:59.000Z

    Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere decaying simultaneously are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames, whereas the decays of muons with different proper frames show relativity of simultaneity when observed from different inertial frames.

  18. MIPP Plastic Ball electronics upgrade

    SciTech Connect (OSTI)

    Baldin, Boris; /Fermilab

    2009-01-01T23:59:59.000Z

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  19. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, John R; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Siân; Shearer, Craig; Yang, Guangliang; Zimmerman, Colin

    2014-01-01T23:59:59.000Z

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  20. Characterising encapsulated nuclear waste using cosmic-ray muon tomography

    E-Print Network [OSTI]

    Anthony Clarkson; David J. Hamilton; Matthias Hoek; David G. Ireland; John R. Johnstone; Ralf Kaiser; Tibor Keri; Scott Lumsden; David F. Mahon; Bryan McKinnon; Morgan Murray; Siân Nutbeam-Tuffs; Craig Shearer; Guangliang Yang; Colin Zimmerman

    2014-10-27T23:59:59.000Z

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the UK Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.

  1. CP-safe Gravity Mediation and Muon g-2

    E-Print Network [OSTI]

    Sho Iwamoto; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-02-03T23:59:59.000Z

    We propose a CP-safe gravity mediation model, where the phases of the Higgs B parameter, scalar trilinear couplings and gaugino mass parameters are all aligned. Since all dangerous CP violating phases are suppressed, we are now safe to consider low-energy SUSY scenarios. As an application, we consider a gravity mediation model explaining the observed muon $g-2$ anomaly. The CP-safe property originates in two simple assumptions: SUSY breaking in the K\\"ahler potential and a shift symmetry of a SUSY breaking field $Z$. As a result of the shift symmetry, the imaginary part of $Z$ behaves as a QCD axion, leading to an intriguing possibility: the strong CP problem in QCD and the SUSY CP problem are solved simultaneously.

  2. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J. [Imperial College London, Department of Physics, London (United Kingdom); STFC/RAL/ISIS, Chilton, Didcot, Oxon (United Kingdom); Aslaninejad, M. [Imperial College London, Department of Physics, London (United Kingdom); Berg, J. Scott [BNL, Upton, Long Island, New York (United States); Kelliher, D. J.; Machida, S. [STFC/ASTeC/RAL, Chilton, Didcot, Oxon (United Kingdom)

    2010-03-30T23:59:59.000Z

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  3. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect (OSTI)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01T23:59:59.000Z

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  4. STUDY OF RARE PROCESSES INDUCED BY 209-GeV MUONS

    E-Print Network [OSTI]

    Smith, W.H.

    2010-01-01T23:59:59.000Z

    the Chicago cyclotron magnet (CCM) just upstream of thethe Chicago cyclo­ tron magnet (CCM) for targetting on theshield V» A M Q Neutrino beam CCM P Muon Laboratory XBL80I0-

  5. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01T23:59:59.000Z

    2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

  6. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C. [Muons, Inc.; Ankenbrandt, Charles M. [Muons, Inc.; Johnson, Rolland P. [Muons, Inc.; Derbenev, Yaroslav [JLAB; Morozov, Vasiliy [JLAB; Neuffer, David [FNAL; Yonehara, K. [FNAL

    2013-12-01T23:59:59.000Z

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  7. Improvement of the Track-based Alignment Procedure of the CMS Muon System

    E-Print Network [OSTI]

    Amin, Nick Jogesh

    2013-12-02T23:59:59.000Z

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is used to explore subatomic interactions through proton-proton collisions. The resulting out- burst of particles from these high energy collisions is then tracked...

  8. A parameterisation of single and multiple muons in the deep water or ice

    E-Print Network [OSTI]

    Y. Becherini; A. Margiotta; M. Sioli; M. Spurio

    2005-07-19T23:59:59.000Z

    Atmospheric muons play an important role in underwater/ice neutrino detectors. In this paper, a parameterisation of the flux of single and multiple muon events, their lateral distribution and of their energy spectrum is presented. The kinematics parameters were modelled starting from a full Monte Carlo simulation of the interaction of primary cosmic rays with atmospheric nuclei; secondary muons reaching the sea level were propagated in the deep water. The parametric formulas are valid for a vertical depth of 1.5-5 km w.e. and up to 85 deg for the zenith angle, and can be used as input for a fast simulation of atmospheric muons in underwater/ice detectors.

  9. A Test Stand for the Muon Trigger Development for the CMS Experiment at the LHC 

    E-Print Network [OSTI]

    Lakdawala, Samir

    2013-05-02T23:59:59.000Z

    Compact Muon Solenoid (CMS) is one of the flagship experiments in particle physics operating at the Large Hadron Collider (LHC). CMS was built to search for signatures of Higgs bosons, supersymmetry, and other new phenomena. The coming upgrade...

  10. Modeling the high-field section of a muon helical cooling channel

    SciTech Connect (OSTI)

    Zlobin, A.V.; Barzi, E.; Kashikhin, V.S.; Lamm, M.J.; Lombardo, V.; Lopes, M.L.; Yu, M.; /Fermilab; Johnson, R.P.; Flanagan, G.; Kahn, S.A.; Turenne, M.; /MUONS Inc., Batavia

    2010-05-01T23:59:59.000Z

    This paper describes the conceptual design and parameters of a short model of a high-field helical solenoid for muon beam cooling. Structural materials choices, fabrication techniques and first test results are discussed.

  11. 20 - 50 GeV muon storage rings for a neutrino factory

    SciTech Connect (OSTI)

    Rees, G.H.; /Rutherford; Johnstone, C.; /Fermilab; Meot, F.; /DAPNIA, Saclay

    2006-07-01T23:59:59.000Z

    Muon decay rings are under study as part of an International Scoping Study (ISS) for a future Neutrino Factory. Both isosceles triangle- and racetrack-shaped rings are being considered for a 20 GeV muon energy, but with upgrade potentials of 40 or 50 GeV. Both rings are designed with long straights to optimize directional muon decay. The neutrinos from muon decay pass to one or two distant detectors; the racetrack ring has one very long production straight aligned with one detector while the triangular ring has two straights which can be aligned with two detectors. Decay ring specifications and lattice studies are the primary topic of this paper. Injection, collimation, and the RF system are covered in a second contribution to these proceedings.

  12. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1993-12-01T23:59:59.000Z

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  13. A magnetic spectrometer measurement of the charge ratio of energetic cosmic ray muons

    E-Print Network [OSTI]

    Bateman, Benjamin Jefferson

    1967-01-01T23:59:59.000Z

    A MAGNETIC SPECTROIIETER MEASUREPIENT OF THE CHARGE PATIO OF ENEIFGFTIC COSMIC RAY MUONS A Thesis BENJAMIN JEF1'EIHSON BATFIKN, JR. Submdtted to the Graduate College of the Texas AAM University in Daltial full'Ills, 'ent of the requirellents... magnet ~ 2 Schematic representation of the magnets, counters and spark chambers to form a spectrometer-telescope. A typical muon trajectory is shown. . . . . . . . ~ 3 End view of the eighteen-lamina magnet. 4 The winding process 5 The complete...

  14. Large-acceptance linac for accelerating l9w-energy muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S [Los Alamos National Laboratory; Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    We propose a high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field. The acceleration starts immediately after collection of pions from a target by solenoidal magnets and brings muons to a kinetic energy of about 200 MeV over a distance of the order of 10 m. At this energy, both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. The project presents unique challenges - a very large energy spread in a highly divergent beam, as well as pion and muon decays - requiring large longitudinal and transverse acceptances. One potential solution incorporates a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. While the primary applications of such a linac are for homeland defense and industry, it can provide muon fluxes high enough to be of interest for physics experiments.

  15. Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. III. Case study of the beryllium dimer

    E-Print Network [OSTI]

    Lesiuk, Micha?; Musia?, Monika; Jeziorski, Bogumi?; Moszynski, Robert

    2014-01-01T23:59:59.000Z

    In this paper we present results of ab-initio calculations for the beryllium dimer with basis set of Slater-type orbitals (STOs). Nonrelativistic interaction energy of the system is determined using the frozen-core full configuration interaction calculations combined with high-level coupled cluster correction for inner-shell effects. Newly developed STOs basis sets, ranging in quality from double to sextuple zeta, are used in these computations. Principles of their construction are discussed and several atomic benchmarks are presented. Relativistic effects of order ${\\alpha}^2$ are calculated perturbatively by using the Breit-Pauli Hamiltonian and are found to be significant. We also estimate the leading-order QED effects. Influence of the adiabatic correction is found to be negligible. Finally, the interaction energy of the beryllium dimer is determined to be 929.0$\\,\\pm\\,$1.9 $cm^{-1}$, in a very good agreement with the recent experimental value. The results presented here appear to be the most accurate ab-...

  16. Search for Diffuse Astrophysical Neutrino Flux Using Ultra-High-Energy Upward-Going Muons in Super-Kamiokande I

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; M. E. C. Swanson

    2007-02-07T23:59:59.000Z

    Many astrophysical models predict a diffuse flux of high-energy neutrinos from active galactic nuclei and other extra-galactic sources. At muon energies above 1 TeV, the upward-going muon flux induced by neutrinos from active galactic nuclei is expected to exceed the flux due to atmospheric neutrinos. We have performed a search for this astrophysical neutrino flux by looking for upward-going muons in the highest energy data sample from the Super-Kamiokande detector using 1679.6 live days of data. We found one extremely high energy upward-going muon event, compared with an expected atmospheric neutrino background of 0.46 plus or minus 0.23 events. Using this result, we set an upper limit on the diffuse flux of upward-going muons due to neutrinos from astrophysical sources in the muon energy range 3.16-100 TeV.

  17. A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent

    SciTech Connect (OSTI)

    Reichhart, L.; Ghag, C. [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom)] [School of Physics and Astronomy, SUPA University of Edinburgh, UK and High Energy Physics Group, Department of Physics and Astronomy, University College London (United Kingdom); Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal)] [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)] [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom)] [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); and others

    2013-08-08T23:59:59.000Z

    We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub ?0.28}{sup +0.21})×10{sup ?3} neutrons/muon/(g/cm{sup 2}) has been obtained.

  18. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    SciTech Connect (OSTI)

    Adamson, P [Fermilab; Auty, D J [Sussex U.; Ayres, D S [Argonne; Backhouse, C [Oxford U.; Barr, G [Oxford U.; Betancourt, M [Minnesota U.

    2011-10-27T23:59:59.000Z

    The authors report the results of a search for ?e appearance in ?? beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin2 (?23 sin2 (?13) < 0.12 (0.20) at 90% confidence level for ? = 0 and the normal (inverted) neutrino mass hierarchy, with a best fit of 2 sin2?23) sin 2 (2?13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The ?13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  19. RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM

    E-Print Network [OSTI]

    Leskovar, B.

    2010-01-01T23:59:59.000Z

    March 1971. W. Workman, Failure Analysis Techniques, Physicsdetermined. The failure analysis is used to improve deviceTechniques of failure analysis are well established.

  20. New constraints on muon-neutrino to electron-neutrino transitions in MINOS

    SciTech Connect (OSTI)

    Adamson, P.; /Fermilab; Andreopoulos, C.; /Rutherford; Auty, D.J.; /Sussex U.; Ayres, D.S.; /Argonne; Backhouse, C.; /Oxford U.; Barr, G.; /Oxford U.; Bernstein, R.H.; /Fermilab; Betancourt, M.; /Minnesota U.; Bhattarai, P.; /Minnesota U., Duluth; Bishai, M.; /Brookhaven; Blake, A.; /Cambridge U. /Fermilab

    2010-06-01T23:59:59.000Z

    This letter reports results from a search for {nu}{sub {mu}}{yields}{nu}{sub {mu}} transitions by the MINOS experiment based on a 7 x 1020 protons-on-target exposure. Our observation of 54 candidate e events in the Far Detector with a background of 49.1 {+-} 7.0(stat.) {+-} 2.7(syst.) events predicted by the measurements in the Near Detector requires 2 sin2(2{theta}13) sin2{theta}23 < 0.12 (0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at {delta}CP = 0. The experiment sets the tightest limits to date on the value of {theta}13 for nearly all values of {delta}CP for the normal neutrino mass hierarchy and maximal sin2(2{theta}23).

  1. A search for excited electrons with the Compact Muon Solenoid detector

    E-Print Network [OSTI]

    Sudano, Elizabeth Jane Dusinberre

    2012-01-01T23:59:59.000Z

    various sums of trigger tower energies are computed for theof the transverse energy of the tower and a bit denoting thethe ratio of energy in the hadronic towers behind the shower

  2. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P [Fermilab; Auty, D J [Sussex U.; Ayres, D S [Argonne; Backhouse, C [Oxford U.; Barr, G [Oxford U.; Betancourt, M [Minnesota U.

    2011-10-27T23:59:59.000Z

    The authors report the results of a search for ?e appearance in ?? beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin2 (?23 sin2 (?13) 2?23) sin 2 (2?13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The ?13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  3. "MECHANICAL STRUCTURE & FRONT END ELECTRONICS FOR THE RUN-9 STAR MUON TELESCOPE PROTOTYPE "

    E-Print Network [OSTI]

    Llope, William J.

    to construct equipment for the STAR Experiment at Brookhaven National Laboratory. This equipment is intended fabrication order handling and qualification, and assistance with the final assembly of the detector

  4. Crystal and electronic structures of CaAl{sub 2}Si{sub 2}-type rare-earth copper zinc phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu)

    SciTech Connect (OSTI)

    Blanchard, Peter E.R.; Stoyko, Stanislav S.; Cavell, Ronald G. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Mar, Arthur, E-mail: arthur.mar@ualberta.c [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2011-01-15T23:59:59.000Z

    The quaternary rare-earth phosphides RECuZnP{sub 2} (RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 {sup o}C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl{sub 2}Si{sub 2}-type structure (Pearson symbol hP5, space group P3-bar m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP{sub 2} and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP{sub 2} model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP{sub 2} (RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e{sup -} per formula unit, as demonstrated by the formation of a solid solution in GdCu{sub x}Zn{sub 2-x}P{sub 2} (1.0{<=}x{<=}1.3), while still retaining the CaAl{sub 2}Si{sub 2}-type structure. Because the Cu 2p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP{sub 2} (RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms. -- Graphical abstract: The absence of a band gap in the semimetallic quaternary rare-earth phosphides RECuZnP{sub 2} permits the formation of a solid solution such as GdCu{sub x}Zn{sub 2-x}P{sub 2} through hole-doping of the valence band. Display Omitted

  5. Progress on muon parametric-resonance ionization cooling channel development

    SciTech Connect (OSTI)

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, K.B. Beard, R.P. Johnson, B. Erdelyi, J.A. Maloney

    2012-07-01T23:59:59.000Z

    Parametric-resonance Ionization Cooling (PIC) is intended as the final 6D cooling stage of a high-luminosity muon collider. To implement PIC, a continuous-field twin-helix magnetic channel was developed. A 6D cooling with stochastic effects off is demonstrated in a GEANT4/G4beamline model of a system where wedge-shaped Be absorbers are placed at the appropriate dispersion points in the twin-helix channel and are followed by short rf cavities. To proceed to cooling simulations with stochastics on, compensation of the beam aberrations from one absorber to another is required. Initial results on aberration compensation using a set of various-order continuous multipole fields are presented. As another avenue to mitigate the aberration effect, we optimize the cooling channel's period length. We observe a parasitic parametric resonance naturally occurring in the channel's horizontal plane due to the periodic beam energy modulation caused by the absorbers and rf. We discuss options for compensating this resonance and/or properly combining it with the induced half-integer parametric resonance needed for PIC.

  6. Muon Catalyzed Fusion in 3 K Solid Deuterium

    E-Print Network [OSTI]

    P. E. Knowles; A. Adamczak; J. M. Bailey; G. A. Beer; J. L. Beveridge; M. C. Fujiwara; T. M. Huber; R. Jacot-Guillarmod; P. Kammel; S. K. Kim; A. R. Kunselman; G. M. Marshall; C. J. Martoff; G. R. Mason; F. Mulhauser; A. Olin; C. Petitjean; T. A. Porcelli; J. Zmeskal

    1997-02-20T23:59:59.000Z

    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of $\\mu d$ and the hyperfine transition rate have been measured: $\\tilde{\\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \\mu/s$, and $\\tilde{\\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \\mu /s$. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.

  7. Muon spin rotation studies of niobium for superconducting RF applications

    E-Print Network [OSTI]

    Grassellino, A; Kolb, P; Laxdal, R; Lockyer, N S; Longuevergne, D; Sonier, J E

    2013-01-01T23:59:59.000Z

    In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small grain 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.

  8. Neutrino factory and muon collider collaboration R and D activities

    SciTech Connect (OSTI)

    Zisman, Michael S.; Neutrino Factory and Muon Collider Collaborat

    2001-03-22T23:59:59.000Z

    The Neutrino Factory and Muon Collider Collaboration (MC) comprises about 140 U.S. and non-U.S. accelerator and particle physicists. The MC is carrying out an R and D program aimed at validating the critical design concepts required for the construction of such machines. We are committed to encouraging international cooperation and coordination of the R and D effort. Main activities of the MC include a Targetry program, a MUCOOL program, a component development program, and a theory and simulation effort. Moreover, the MC has participated in several feasibility studies for a complete Neutrino Factory facility, with the aim of identifying any additional R and D activities needed to prepare a Zeroth-order Design Report (ZDR) in about two years and a Conceptual Design report (CDR) about two years thereafter. In this paper, the R and D goals in each area will be indicated, and the present status and future plans of the R and D program will be described.

  9. Anomalous Lagrangians and the radiative muon capture in hydrogen

    E-Print Network [OSTI]

    J. Smejkal; E. Truhlik; F. C. Khanna

    2005-04-29T23:59:59.000Z

    The structure of an anomalous Lagrangian of the pi-rho-omega-a_1 system is investigated within the hidden local SU(2)_R x SU(2)_L symmetry approach. The interaction of the external electromagnetic and weak vector and axial-vector fields with the above hadron system is included. The Lagrangian of interest contains the anomalous Wess-Zumino term following from the well known Wess-Zumino-Witten action and six independent homogenous terms. It is characterized by four constants that are to be determined from a fit to the data on various elementary reactions. Present data allows one to extract the constants with a good accuracy. The homogenous part of the Lagrangian has been applied in the study of anomalous processes that could enhance the high energy tail of the spectrum of photons, produced in the radiative muon capture in hydrogen. It should be noted that recently, an intensive search for such enhancement processes has been carried in the literature, in an attempt to resolve the so called "g_P puzzle": an about 50 % difference between the theoretical prediction of the value of the induced pseudoscalar constant g_P and its value extracted from the high energy tail of the photon spectrum, measured in the precision TRIUMF experiment. Here, more details on the studied material are presented and new results, obtained by using the Wess-Zumino term, are provided.

  10. Electron Electric Dipole Moment from CP Violation in the Charged Higgs Sector

    E-Print Network [OSTI]

    David Bowser-Chao; Darwin Chang; Wai-Yee Keung

    1997-12-02T23:59:59.000Z

    The leading contributions to the electron (or muon) electric dipole moment due to CP violation in the charged Higgs sector are at the two-loop level. A careful analysis of the model-independent contribution is provided. We also consider specific scenarios to demonstrate how charged Higgs sector CP violation can naturally give rise to large electric dipole moments. Numerical results show that the electron electric dipole moment in such models can lie at the experimentally accessible level.

  11. Is the electron stationary in the ground state of the Dirac hydrogen atom in Bohm's Theory?

    E-Print Network [OSTI]

    B. J. Hiley

    2014-12-18T23:59:59.000Z

    We show that, in the relativistic Bohm model of a Dirac-like particle, the electron in the ground state of the hydrogen atom is moving, unlike the prediction for the case of a Schr\\"{o}dinger-like particle, where the electron is stationary. This accounts for the empirically observed dilation of the decay time of the muon in the ground state of muonium.

  12. Electron radiography

    DOE Patents [OSTI]

    Merrill, Frank E.; Morris, Christopher

    2005-05-17T23:59:59.000Z

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  13. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N., E-mail: yuvavil@mail.ru; Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation); Takibaev, J. S. [Al-Farabi Kazakh National University (Kazakhstan)

    2009-11-15T23:59:59.000Z

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  14. Production of neutrinos and secondary electrons in cosmic sources C.-Y. Huang *, M. Pohl

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    -type SNR, RX J1713.7-3946, which is a measure of the age, the spectral index of hadronic cosmic rays to explain the X-ray flux variations are unlikely to extend over a large fraction of the radio hard. We also use the production matrices to calculate the muon event rate in an IceCube-like detector

  15. MUON CAPTURE IN THE FRONT END OF THE IDS NEUTRINO D. Neuffer, Fermilab, Batavia, IL 60510, USA

    E-Print Network [OSTI]

    McDonald, Kirk

    paper discusses the muon capture and cooling system. In this system we follow ref. [2], and set 201 to (nearly) equal central energies, and initiates ionization cooling. The muons are then accelerated to high the scope of a future neutrino Factory facility. INTRODUCTION The goal of the IDS Neutrino Factory

  16. Measurement of the charge ratio of atmospheric muons with the CMS detector

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2010-08-01T23:59:59.000Z

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  17. Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons

    E-Print Network [OSTI]

    Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

    2014-01-01T23:59:59.000Z

    Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

  18. Compact storage ring to search for the muon electric dipole moment

    E-Print Network [OSTI]

    A. Adelmann; K. Kirch; C. J. G. Onderwater; T. Schietinger

    2009-06-25T23:59:59.000Z

    We present the concept of a compact storage ring of less than 0.5 m orbit radius to search for the electric dipole moment of the muon ($d_\\mu$) by adapting the "frozen spin" method. At existing muon facilities a statistics limited sensitivity of $d_\\mu \\sim 5 \\times 10^{-23} \\ecm$ can be achieved within one year of data taking. Reaching this precision would demonstrate the viability of this novel technique to directly search for charged particle EDMs and already test a number of Standard Model extensions. At a future, high-power muon facility a statistical reach of $d_\\mu \\sim 5 \\times 10^{-25} \\ecm$ seems realistic with this setup.

  19. ATLAS Great Lakes Tier-2 Computing and Muon Calibration Center Commissioning

    E-Print Network [OSTI]

    Shawn McKee

    2009-10-15T23:59:59.000Z

    Large-scale computing in ATLAS is based on a grid-linked system of tiered computing centers. The ATLAS Great Lakes Tier-2 came online in September 2006 and now is commissioning with full capacity to provide significant computing power and services to the USATLAS community. Our Tier-2 Center also host the Michigan Muon Calibration Center which is responsible for daily calibrations of the ATLAS Monitored Drift Tubes for ATLAS endcap muon system. During the first LHC beam period in 2008 and following ATLAS global cosmic ray data taking period, the Calibration Center received a large data stream from the muon detector to derive the drift tube timing offsets and time-to-space functions with a turn-around time of 24 hours. We will present the Calibration Center commissioning status and our plan for the first LHC beam collisions in 2009.

  20. Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector

    E-Print Network [OSTI]

    The MACRO Collaboration; M. Ambrosio et al

    1998-07-09T23:59:59.000Z

    We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

  1. Measurement of helium-3 and deuterium stopping power ratio for negative muons

    E-Print Network [OSTI]

    V. M. Bystritsky; V. V. Gerasimov; J. Wozniak

    2006-07-07T23:59:59.000Z

    The measurement method and results measuring of the stopping power ratio of helium-3 and deuterium atoms for muons slowed down in the D/$^3$He mixture are presented. Measurements were performed at four values of pure $^3$He gas target densities, $\\phi_{He} = 0.0337, 0.0355, 0.0359, 0.0363$ (normalized to the liquid hydrogen density) and at a density 0.0585 of the D/$^3$He mixture. The experiment was carried out at PSI muon beam $\\mu$E4 with the momentum P$\\mu =34.0$ MeV/c. The measured value of the mean stopping ratio $S_{^3He/D}$ is $1.66\\pm 0.04$. This value can also be interpreted as the value of mean reduced ratio of probabilities for muon capture by helium-3 and deuterium atoms.

  2. Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele, Department of Physics, University of California, Berkeley;

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Simulation of the Ionization Cooling of Muons in Linear RF Systems G. Penn, J.S. Wurtele National Labs, Berkeley, CA 94720 Abstract Ionization cooling of muon beams is a crucial component of the proposed muon collider and neutrino factory. Cur- rent studies of cooling channels predominantly use simula

  3. Long-range ordering of reduced magnetic moments in the spin-gap compound CeOs{sub 2}Al{sub 10} as seen via muon spin relaxation and neutron scattering

    SciTech Connect (OSTI)

    Adroja, D. T.; Hillier, A. D.; Kockelmann, W. A.; Anand, V. K.; Stewart, J. R.; Taylor, J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX (United Kingdom); Deen, P. P. [Institute Laue-Langevin, BP 156, 6 Rue Jules Horowitz, 38042 Grenoble Cedex (France); Strydom, A. M. [Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Muro, Y.; Kajino, J.; Takabatake, T. [Department of Quantum Matter, ADSM, and IAMR, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2010-09-01T23:59:59.000Z

    We have carried out neutron diffraction, muon spin relaxation ({mu}SR), and inelastic neutron scattering (INS) investigations on a polycrystalline sample of CeOs{sub 2}Al{sub 10} to investigate the nature of the phase transition observed near 29 K in the resistivity and heat capacity. Our {mu}SR data clearly reveal coherent frequency oscillations below 28 K, indicating the presence of an internal field at the muon site, which confirms the long-range magnetic ordering of the Ce moment below 28 K. Upon cooling the sample below 15 K, unusual behavior of the temperature-dependent {mu}SR frequencies may indicate either a change in the muon site, consistent with the observation of superstructure reflections in electron diffraction, or a change in the ordered magnetic structure. Neutron diffraction data do not reveal any clear sign of either magnetic Bragg peaks or superlattice reflections. Furthermore, INS measurements clearly reveal the presence of a sharp inelastic excitation near 11 meV between 5 and 26 K, due to opening of a gap in the spin-excitation spectrum, which transforms into a broad response at and above 30 K. The magnitude of the spin gap (11 meV) as derived from the INS peak position agrees very well with the gap value as estimated from the bulk properties.

  4. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2015-04-28T23:59:59.000Z

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6--18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  5. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hörandel; J. Milke

    2008-10-27T23:59:59.000Z

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  6. amiga auger muons: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VO. J. E. Ruz; J. D. Santander-Vela; E. Garca; V. Espigares; S. Leon; L. Verdes-Montenegro 2008-10-14 17 AUGER ELECTRON SPECTROSCOPY University of California eScholarship...

  7. Prompt muon-induced fission: a probe for nuclear energy dissipation

    E-Print Network [OSTI]

    Volker E. Oberacker

    1999-05-04T23:59:59.000Z

    We solve the time-dependent Dirac equation for a muon which is initially bound to a fissioning actinide nucleus. The computations are carried out on a 3-D cartesian lattice utilizing the Basis-Spline collocation method. The muon dynamics is sensitive to the nuclear energy dissipation between the outer fission barrier and the scission point. From a comparison with experimental data we find a dissipated energy of about 10 MeV and a fission time delay due to friction of order $2 \\times 10^{-21}$ s.

  8. Track fitting by Kalman Filter method for a prototype cosmic ray muon detector

    E-Print Network [OSTI]

    Tapasi Ghosh; Subhasis Chattopadhyay

    2009-08-06T23:59:59.000Z

    We have developed a track fitting procedure based on Kalman Filter technique for an Iron Calorimeter (ICAL) prototype detector when the detector is flushed with single muon tracks. The relevant track parameters i.e., momentum, direction and charge are reconstructed and analyzed. This paper discusses the design of the prototype detector, its geometry simulation by Geant4, and the detector response with the cosmic ray muons. Finally we show the resolution of reconstructed momenta and also the charge identification efficiency of $\\mu^+$ and $\\mu^-$ events in the magnetized ICAL.

  9. Investigations of fast neutron production by 190 GeV/c muon interactions on graphite target

    E-Print Network [OSTI]

    Chazal, V; Cook, B; Henrikson, H; Jonkmans, G; Paic, A; Mascarenhas, N; Vogel, P; Vuilleumier, J L

    2002-01-01T23:59:59.000Z

    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon target. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.

  10. Shadowing in inelastic scattering of muons on carbon, calcium and lead at low x$_{Bj}$

    E-Print Network [OSTI]

    Adams, M R; Anthony, P L; Averill, D A; Baker, M D; Baller, B R; Banerjee, A; Bhatti, A A; Bratzler, U; Braun, H M; Breidung, H; Busza, W; Carroll, T J; Clark, H L; Conrad, J M; Davisson, R; Derado, I; Dhawan, S K; Dietrich, F S; Dougherty, W; Dreyer, T; Eckardt, V; Ecker, U; Erdmann, M; Fang, G Y; Figiel, J; Finlay, R W; Gebauer, H J; Geesaman, D F; Griffioen, K A; Guo, R S; Haas, J; Halliwell, C; Hantke, D; Hicks, K H; Hughes, V W; Jackson, H E; Jaffe, D E; Jancso, G; Jansen, D M; Jin, Z; Kaufman, S; Kennedy, R D; Kinney, E R; Kirk, T; Kobrak, H G E; Kotwal, A V; Kunori, S; Lord, J J; Lubatti, H J; McLeod, D; Madden, P; Magill, S; Manz, A; Melanson, H; Michael, D G; Montgomery, H E; Morfín, J G; Nickerson, R B; Novák, J; O'Day, S; Olkiewicz, K; Osborne, L; Otten, R; Papavassiliou, V; Pawlik, B; Pipkin, F M; Potterveld, D H; Ramberg, E J; Röser, A; Ryan, J J; Salgado, C W; Salvarani, A; Schellman, H; Schmitt, M; Schmitz, N; Schüler, K P; Siegert, G; Skuja, A; Snow, G A; Soldner, S; Rembold, U; Spentzouris, P; Stier, H E; Stopa, P; Swanson, R A; Venkataramania, H; Wilhelm, M; Wilson, R; Wittek, W; Wolbers, S A; Zghiche, A; Zhao, T

    1995-01-01T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  11. Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    E-Print Network [OSTI]

    Fermilab E665 Collaboration

    1995-05-10T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  12. Muon decays in the Earth's atmosphere, differential aging and the paradox of the twins

    E-Print Network [OSTI]

    J. H. Field

    2009-02-05T23:59:59.000Z

    Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere, decaying simultaneously, are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames. The analysis of this example reveals the underlying physics of the differential aging effect in Langevin's travelling-twin thought experiment.

  13. Flesh and Blood, or Merely Ghosts? Some Comments on the Multi-Muon Study at CDF

    E-Print Network [OSTI]

    Matthew J. Strassler

    2008-11-17T23:59:59.000Z

    A recent paper by the CDF collaboration suggests (but does not claim) an anomalous event sample containing muons produced with large impact parameter, often with high multiplicity and at small angles from one another. This curious hint of a signal is potentially consistent with the hidden valley scenario, as well as with some other classes of models. Despite its tenuous nature, this hint highlights the experimental difficulties raised by such signals, and merits some consideration. Some of the simplest interpretations of the data, such as a light neutral particle decaying to muon and/or tau pairs, are largely disfavored; three-body decays to $\\tau\\tau\

  14. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01T23:59:59.000Z

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  15. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blum, Thomas [Univ. of Connecticut, Storrs, CT (United States); Brookhaven National Lab., Upton, NY (United States); Chowdhury, Saumitra [Univ. of Connecticut, Storrs, CT (United States); Hayakawa, Masashi [Nagoya Univ. (Japan); Nishina Center, RIKEN, Wako, Saitama (Japan); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01T23:59:59.000Z

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  16. Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector

    E-Print Network [OSTI]

    The AMANDA collaboration; M. Ackermann

    2005-08-24T23:59:59.000Z

    A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

  17. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    E-Print Network [OSTI]

    S. Aiello; F. Ameli; M. Anghinolfi; G. Barbarino; E. Barbarito; F. Barbato; N. Beverini; S. Biagi; B. Bouhadef; C. Bozza; G. Cacopardo; M. Calamai; C. Calì; A. Capone; F. Caruso; A. Ceres; T. Chiarusi; M. Circella; R. Cocimano; R. Coniglione; M. Costa; G. Cuttone; C. D'Amato; A. D'Amico; G. De Bonis; V. De Luca; N. Deniskina; G. De Rosa; F. Di Capua; C. Distefano; P. Fermani; L. A. Fusco; F. Garufi; V. Giordano; A. Gmerk; R. Grasso; G. Grella; C. Hugon; M. Imbesi; V. Kulikovskiy; G. Larosa; D. Lattuada; K. P. Leismueller; E. Leonora; P. Litrico; A. Lonardo; F. Longhitano; D. Lo Presti; E. Maccioni; A. Margiotta; A. Martini; R. Masullo; P. Migliozzi; E. Migneco; A. Miraglia; C. M. Mollo; M. Mongelli; M. Morganti; P. Musico; M. Musumeci; C. A. Nicolau; A. Orlando; R. Papaleo; C. Pellegrino; M. G. Pellegriti; C. Perrina; P. Piattelli; C. Pugliatti; S. Pulvirenti; A. Orselli; F. Raffaelli; N. Randazzo; G. Riccobene; A. Rovelli; M. Sanguineti; P. Sapienza; V. Sciacca; I. Sgura; F. Simeone; V. Sipala; F. Speziale; M. Spina; A. Spitaleri; M. Spurio; S. M. Stellacci; M. Taiuti; G. Terreni; L. Trasatti; A. Trovato; C. Ventura; P. Vicini; S. Viola; D. Vivolo

    2014-12-03T23:59:59.000Z

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.

  18. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13T23:59:59.000Z

    A 1.2?×?1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  19. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    SciTech Connect (OSTI)

    Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S. [International Center for Elementary Particle Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan); Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570 (Japan); Faculty of Software and Information Technology, Aomori University, 2-3-1 Kobata, Aomori, Aomori 030-0943 (Japan)

    2007-02-15T23:59:59.000Z

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the {pi}-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The {mu}{sup +}+{mu}{sup -} data show good agreement in the 1{approx}30 GeV/c range, but a large disagreement above 30 GeV/c. The {mu}{sup +}/{mu}{sup -} ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).].

  20. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2015-01-01T23:59:59.000Z

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6 -- 18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discove...

  1. Search for Dark Matter WIMPs using Upward-Going Muons in

    E-Print Network [OSTI]

    Tokyo, University of

    Search for Dark Matter WIMPs using Upward-Going Muons in Super{Kamiokande S. Desai, for the Super{Kamiokande searches for Weakly Interacting Massive Particles (WIMPs) with the Super-Kamiokande detector using neutrino, for the Super{Kamiokande Collaboration the Universe as a cosmological relic from the Big Bang. The most likely

  2. Search for Muon Neutrino Oscillations in Kamiokande and Super-Kamiokande

    E-Print Network [OSTI]

    Tokyo, University of

    Search for Muon Neutrino Oscillations in Kamiokande and Super-Kamiokande ( ) 9 #12;Acknowledgments.Totsuka, spokesman of Kamiokande and Super-Kamiokande ex- periments. His deep insight into physics and experiments was indispensable to Kamiokande and Super-Kamiokande experiments. I also thank to ICRR stas, Prof. Y.Suzuki, Prof. T

  3. Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g-2)_?$: Quo vadis? Workshop. Mini proceedings

    E-Print Network [OSTI]

    Maurice Benayoun; Johan Bijnens; Tom Blum; Irinel Caprini; Gilberto Colangelo; Henryk Czy?; Achim Denig; Cesareo A. Dominguez; Simon Eidelman; Christian S. Fischer; Paolo Gauzzi; Yuping Guo; Andreas Hafner; Masashi Hayakawa; Gregorio Herdoiza; Martin Hoferichter; Guangshun Huang; Karl Jansen; Fred Jegerlehner; Benedikt Kloss; Bastian Kubis; Zhiqing Liu; William Marciano; Pere Masjuan; Harvey B. Meyer; Tsutomu Mibe; Andreas Nyffeler; Vladimir Pascalutsa; Vladyslav Pauk; Michael R. Pennington; Santiago Peris; Christoph F. Redmer; Pablo Sanchez-Puertas; Boris Shwartz; Evgeny Solodov; Dominik Stoeckinger; Thomas Teubner; Marc Unverzagt; Marc Vanderhaeghen; Magnus Wolke

    2014-07-21T23:59:59.000Z

    We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{\\mu}$: Quo vadis?, both held in Mainz from April 1$^{\\rm rst}$ to 5$^{\\rm th}$ and from April 7$^{\\rm th}$ to 10$^{\\rm th}$, 2014, respectively.

  4. Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy

    SciTech Connect (OSTI)

    Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

    2012-01-01T23:59:59.000Z

    The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

  5. Neutron production by cosmic-ray muons at shallow depth J. Busenitz,1

    E-Print Network [OSTI]

    Piepke, Andreas G.

    neutrino and proton decay experiments, as well as dark matter searches even though often at greater depth for cold dark matter 3 , and is presently at shallow depth; muon-induced neutrons repre- sent a major at a shallow depth of 32 meters of water equivalent has been measured. The Palo Verde neutrino detector

  6. Comparison of Zgoubi and S-Code regarding the FFAG Muon acceleration. J. Fourrier

    E-Print Network [OSTI]

    Boyer, Edmond

    Comparison of Zgoubi and S-Code regarding the FFAG Muon acceleration. J. Fourrier IN2P3, LPSC designs have been done and tracking studies are on their way using codes such as MAD, S-Code or Zgoubi. In order to cross-check results so obtained, we have performed comparisons between S-Code and Zgoubi

  7. Measuring Muon-Induced Neutrons with Liquid Scintillation Detector at Soudan Mine

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei

    2014-11-26T23:59:59.000Z

    We report a direct detection of muon-induced high energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan Mine for about two years. The detector response to energy from a few MeV up to $\\sim$ 20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 MeV to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the muon-induced fast neutron flux is determined to be $(2.3 \\pm 0.52 (sta.) \\pm 0.99 (sys.) ) \\times10^{-9}$ cm$^{-2}$s$^{-1}$ (E$_{n}$ $>$ 20 MeV), in a reasonable agreement with the model prediction. The muon flux is found to be ($1.65\\pm 0.02 (sta.) \\pm 0.1 (sys.) ) \\times10^{-7}$ cm$^{-2}$s$^{-1}$ (E$_{\\mu}$ $>$ 1 GeV), consistent with other measurements. As a result, the muon-induced high energy gamma-ray flux is simulated to be 7.08 $\\times$10$^{-7}$cm$^{-2}$s$^{-1}$ (E$_{\\gamma}$ $>$ 1 MeV) for the depth of Soudan.

  8. Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present the first measurement of the mass of the top quark in a sample of tt? ???? bb? qq? events (where ?=e,?) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons ...

  9. Muon-spin spectroscopy of the organometallic spin-1/2 kagome-lattice compound Cu(1,3-benzenedicarboxylate)

    E-Print Network [OSTI]

    Marcipar, Lital

    Using muon-spin resonance, we examine the organometallic hybrid compound Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)], which has structurally perfect spin-1/2 copper kagome planes separated by pure organic linkers. This ...

  10. Muon Reconstruction Efficiency, Momentum Scale and Resolution in $pp$ Collisions at 8 TeV with ATLAS

    E-Print Network [OSTI]

    Maximilian Goblirsch-Kolb; for the ATLAS Collaboration

    2014-08-29T23:59:59.000Z

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the Inner Detector and the Muon Spectrometer, which provide independent measurements of the muon momentum. This paper summarizes the performance of the combined muon reconstruction in terms of reconstruction efficiency, momentum scale and resolution. Data-driven techniques are used to derive corrections to be applied to the simulation in order to reproduce the reconstruction efficiency, momentum scale and resolution observed in experimental data, and to assess systematic uncertainties on these quantities. The dataset analysed corresponds to an integrated luminosity of $20.4$ $\\text{fb}^{\\text{-1}}$ from $pp$ collisions at $\\sqrt{s}$ = 8 TeV recorded in 2012.

  11. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Jourde, Kevin; Marteau, Jacques; d'Ars, Jean de Bremond; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe

    2015-01-01T23:59:59.000Z

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring...

  12. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Kevin Jourde; Dominique Gibert; Jacques Marteau; Jean de Bremond d'Ars; Serge Gardien; Claude Girerd; Jean-Christophe Ianigro

    2015-04-09T23:59:59.000Z

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring of the volcano's activity since muon tomography provides continuous data taking, provided the muon detectors are sufficiently well designed and autonomous. Recent measurements on La Soufri\\`ere of Guadeloupe (Lesser Antilles, France) show, over a one year period, large modulations of the crossing muon flux, correlated with an increase of the activity in the dome. In order to firmly establish the sensitivity of the method and of our detectors and to disentangle the effects on the muon flux modulations induced by the volcano's hydrothermal system from those induced by other sources, e.g. atmospheric temperature and pressure, we perform a dedicated calibration experiment inside a water tower tank. We show how the method is fully capable of dynamically following fast variations in the density.

  13. CLIC Project Overview (In Conjunction with the Muon Collider Workshop)

    SciTech Connect (OSTI)

    Latina, Andrea

    2009-06-10T23:59:59.000Z

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  14. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect (OSTI)

    Sundaralingam, N.

    1993-06-08T23:59:59.000Z

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  15. A Software Suite for Testing the Performance of the Optical Trigger Motherboard Electronics System for the CMS Experiment at the LHC 

    E-Print Network [OSTI]

    Schneider, Austin William

    2013-09-28T23:59:59.000Z

    in turn decay into other lighter particles that can be identified as they pass through the surrounding detector. The two largest experiments at the LHC, CMS [2] and ATLAS [3], announced the discovery of the Higgs boson in July of 2012. This discovery has... system trigger electronics The muon system is a key detector sub-system of CMS; it detects muons, a product of one of the main decay channels of the Higgs boson and critical for triggering at CMS. Monte-Carlo simulations of the CMS experiment show...

  16. Prompt muon-induced fission: a sensitive probe for nuclear energy dissipation and fission dynamics

    E-Print Network [OSTI]

    Volker E. Oberacker; A. Sait Umar; Feodor F. Karpeshin

    2004-03-30T23:59:59.000Z

    Following the formation of an excited muonic atom, inner shell transitions may proceed without photon emission by inverse internal conversion, i.e. the muonic excitation energy is transferred to the nucleus. In actinides, the 2p -> 1s and the 3d -> 1s muonic transitions result in excitation of the nuclear giant dipole and giant quadrupole resonances, respectively, which act as doorway states for fission. The nuclear excitation energy is typically 6.5 - 10 MeV. Because the muon lifetime is long compared to the timescale of prompt nuclear fission, the motion of the muon in the Coulomb field of the fissioning nucleus may be utilized to learn about the dynamics of fission.

  17. Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute(Armenia)

    2011-07-01T23:59:59.000Z

    A search for groups of collimated muons is performed using a data sample collected by the CMS experiment at the LHC, at a centre-of-mass energy of 7 TeV, and corresponding to an integrated luminosity of 35 inverse picobarns. The analysis searches for production of new low-mass states decaying into pairs of muons and is designed to achieve high sensitivity to a broad range of models predicting leptonic jet signatures. With no excess observed over the background expectation, upper limits on the production cross section times branching fraction times acceptance are set, ranging from 0.1 to 0.5 pb at the 95% CL depending on event topology. In addition, the results are interpreted in several benchmark models in the context of supersymmetry with a new light dark sector exploring previously inaccessible parameter space.

  18. A Decisive Disappearance Search at High-$?m^2$ with Monoenergetic Muon Neutrinos

    E-Print Network [OSTI]

    S Axani; G Collin; JM Conrad; MH Shaevitz; J Spitz; T Wongjirad

    2015-06-18T23:59:59.000Z

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\\Delta m^2\\sim1 \\mathrm{eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 m to 152 m from the source. This design allows a sensitive search for $\

  19. A Decisive Disappearance Search at High-$\\Delta m^2$ with Monoenergetic Muon Neutrinos

    E-Print Network [OSTI]

    Axani, S; Conrad, JM; Shaevitz, MH; Spitz, J; Wongjirad, T

    2015-01-01T23:59:59.000Z

    "KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\\Delta m^2\\sim1 \\mathrm{eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment is to be located at the J-PARC Materials and Life Science Facility's spallation neutron source, which represents the world's most intense source of charged kaon decay-at-rest monoenergetic (236 MeV) muon neutrinos. The detector vessel, designed to measure the charged current interactions of these neutrinos, will be 3 m in diameter and 120 m long, extending radially at a distance of 32 m to 152 m from the source. This design allows a sensitive search for $\

  20. A range muon tomography performance study for the detection of explosives

    SciTech Connect (OSTI)

    Cuellar, Leticia [Los Alamos National Laboratory; Borozdin, Konstantin N [Los Alamos National Laboratory; Chung, Andrew [Los Alamos National Laboratory; Nicolas, Hengartner W [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Schultz, Larry J [Los Alamos National Laboratory; Reimus, Nathaniel P [Los Alamos National Laboratory; Bacon, Jeffrey D [Los Alamos National Laboratory; Vogan - Mc Neil, Wendy [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Soft cosmic ray tomography has been shown to successfully discriminate materials with various density levels due to their ability to deeply penetrate matter, allowing sensitivity to atomic number, radiation length and density. Because the multiple muon scattering signal from high Z-materials is very strong, the technology is well suited to the detection of the illicit transportation of special and radiological nuclear materials. In addition, a recent detection technique based on measuring the lower energy particles that do not traverse the material (range radiography), allows to discriminate low and medium Z-materials. This is shown in [4] using Monte Carlo simulations. More recently, using a mini muon tracker developed at Los Alamos National Laboratory, we performed various experiments to try out the radiation length technology. This paper presents the results from real experiments and evaluates the likelihood that soft cosmic ray tomography may be applied to detect high-explosives.

  1. Precision muon decay measurements and improved constraints on the weak interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hillairet, A.; Bayes, R.; Bueno, J. F.; Davydov, Yu. I.; Depommier, P.; Faszer, W.; Gagliardi, C. A.; Gaponenko, A.; Gill, D. R.; Grossheim, A.; Gumplinger, P.; Hasinoff, M. D.; Henderson, R. S.; Hu, J.; Koetke, D. D.; MacDonald, R. P.; Marshall, G. M.; Mathie, E. L.; Mischke, R. E.; Olchanski, K.; Olin, A.; Openshaw, R.; Poutissou, J.-M.; Poutissou, R.; Selivanov, V.; Sheffer, G.; Shin, B.; Stanislaus, T. D. S.; Tacik, R.; Tribble, R. E.; TWIST Collaboration

    2012-05-01T23:59:59.000Z

    The TWIST Collaboration has completed its measurement of the three muon decay parameters ? , ? , and P? ? . This paper describes our determination of ? , which governs the shape of the overall momentum spectrum, and ? , which controls the momentum dependence of the parity-violating decay asymmetry. The results are ?=0.749?77±0.000?12(stat)±0.000?23(syst) and ?=0.750?49±0.000?21(stat)±0.000?27(syst) . These are consistent with the value of 3/4 given for both parameters in the standard model, and each is over a factor of 10 more precise than the measurements published prior to TWIST. Our final results on ? , ? , and P? ? have been incorporated into a new global analysis of all available muon decay data, resulting in improved model-independent constraints on the possible weak interactions of right-handed particles.

  2. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect (OSTI)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-06-19T23:59:59.000Z

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  3. Test of candidate light distributors for the muon (g$-$2) laser calibration system

    E-Print Network [OSTI]

    A. Anastasi; D. Babusci; F. Baffigi; G. Cantatore; D. Cauz; G. Corradi; S. Dabagov; G. Di Sciascio; R. Di Stefano; C. Ferrari; A. T. Fienberg; A. Fioretti; L. Fulgentini; C. Gabbanini; L. A. Gizzi; D. Hampai; D. W. Hertzog; M. Iacovacci; M. Karuza; J. Kaspar; P. Koester; L. Labate; S. Mastroianni; D. Moricciani; G. Pauletta; L. Santi; G. Venanzoni

    2015-04-01T23:59:59.000Z

    The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.

  4. Studies of high-field sections of a muon helical cooling channel with coil separation

    SciTech Connect (OSTI)

    Lopes, M.L.; Kashikhin, V.S.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab

    2011-03-01T23:59:59.000Z

    The Helical Cooling Channel (HCC) was proposed for 6D cooling of muon beams required for muon collider and some other applications. HCC uses a continuous absorber inside superconducting magnets which produce solenoidal field superimposed with transverse helical dipole and helical gradient fields. HCC is usually divided into several sections each with progressively stronger fields, smaller aperture and shorter helix period to achieve the optimal muon cooling rate. This paper presents the design issues of the high field section of HCC with coil separation. The effect of coil spacing on the longitudinal and transverse field components is presented and its impact on the muon cooling discussed. The paper also describes methods for field corrections and their practical limits. The magnetic performance of the helical solenoid with coil separation was discussed in this work. The separation could be done in three different ways and the performances could be very different which is important and should be carefully described during the beam cooling simulations. The design that is currently being considered is the one that has the poorest magnetic performance because it presents ripples in all three components, in particular in the helical gradient which could be quite large. Moreover, the average gradient could be off, which could affect the cooling performance. This work summarized methods to tune the gradient regarding the average value and the ripple. The coil longitudinal thickness and the helix period can be used to tune G. Thinner coils tend to reduce the ripples and also bring G to its target value. However, this technique reduces dramatically the operational margin. Wider coils can also reduce the ripple (not as much as thinner coils) and also tune the gradient to its target value. Longer helix periods reduce ripple and correct the gradient to the target value.

  5. Test of candidate light distributors for the muon (g$-$2) laser calibration system

    E-Print Network [OSTI]

    Anastasi, A; Baffigi, F; Cantatore, G; Cauz, D; Corradi, G; Dabagov, S; Di Sciascio, G; Di Stefano, R; Ferrari, C; Fienberg, A T; Fioretti, A; Fulgentini, L; Gabbanini, C; Gizzi, L A; Hampai, D; Hertzog, D W; Iacovacci, M; Karuza, M; Kaspar, J; Koester, P; Labate, L; Mastroianni, S; Moricciani, D; Pauletta, G; Santi, L; Venanzoni, G

    2015-01-01T23:59:59.000Z

    The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.

  6. Progress Towards Completion of the MICE Demonstration of Muon Ionization Cooling

    E-Print Network [OSTI]

    ,

    2013-01-01T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) at the Rutherford Appleton Laboratory aims to demonstrate $\\approx$ 10% ionization cooling of a muon beam by its interaction with low-Z absorber materials followed by restoration of longitudinal momentum in RF linacs. MICE Step IV, including the first LH2 or LiH absorber cell sandwiched between two particle tracking spectrometers, is the collaboration's near-term goal. Two large superconducting spectrometer solenoids and one focus coil solenoid will provide a magnetic field of $\\approx$4 T in the tracker and absorber-cell volumes. The status of these components is described, as well as progress towards Steps V and VI, including the eight RF cavities to provide the required 8 MV/m gradient in a strong magnetic field; this entails an RF drive system to deliver 2 MW, 1 ms pulses of 201 MHz frequency at 1 Hz repetition rate, the distribution network to deliver 1 MW to each cavity with correct RF phasing, diagnostics to determine the gradient and the muon transit phase...

  7. Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II

    E-Print Network [OSTI]

    Kobayashi, Dai; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS experiment at the Large Hadron Collider (LHC) has taken data at a centre-of-mass energy between 900 GeV and 8 TeV during Run I (2009-2013). The LHC delivered an integrated luminosity of about 20fb-1 in 2012, which required dedicated strategies to guard the highest possible physics output while reducing effectively the event rate. The Muon High Level Trigger has successfully adapted to the changing environment of a low luminosity in 2010 to the luminosities encountered in 2012. The selection strategy has been optimized for the various physics analyses involving muons in the final state. We will present the excellent performance achieved during Run I. In preparation for the next data taking period (Run II) several hardware and software upgrades to the ATLAS Muon Trigger have been performed to deal with the increased trigger rate expected at higher center of mass energy and increased instantaneous luminosity. We will highlight the development of novel algorithms that have been developed to maintain a h...

  8. Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II

    E-Print Network [OSTI]

    Kobayashi, Dai; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS experiment at the Large Hadron Collider (LHC) has taken data at a centre-of-mass energy between 900 GeV and 8 TeV during Run I (2009-2013). The LHC delivered an integrated luminosity of about 20 fb?1 in 2012, which required dedicated strategies to guard the highest possible physics output while reducing effectively the event rate. The Muon High Level Trigger has successfully adapted to the changing environment of a low luminosity in 2010 to the luminosities encountered in 2012. The selection strategy has been optimized for the various physics analyses involving muons in the final state. We will present the excellent performance achieved during Run I. In preparation for the next data taking period (Run II) several hardware and software upgrades to the ATLAS Muon Trigger have been performed to deal with the increased trigger rate expected at higher center of mass energy and increased instantaneous luminosity. We will highlight the development of novel algorithms that have been developed to maintain ...

  9. Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction

    E-Print Network [OSTI]

    A. Cervera; A. Laing; J. Martin-Albo; F. J. P. Soler

    2010-04-02T23:59:59.000Z

    A Neutrino Factory producing an intense beam composed of nu_e(nubar_e) and nubar_mu(nu_mu) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters, theta_13 and delta_CP . Using the `wrong-sign muon' signal to measure nu_e to nu_mu(nubar_e to nubar_mu) oscillations in a 50 ktonne Magnetised Iron Neutrino Detector (MIND) sensitivity to delta_CP could be maintained down to small values of theta_13. However, the detector efficiencies used in previous studies were calculated assuming perfect pattern recognition. In this paper, MIND is re-assessed taking into account, for the first time, a realistic pattern recognition for the muon candidate. Reoptimisation of the analysis utilises a combination of methods, including a multivariate analysis similar to the one used in MINOS, to maintain high efficiency while suppressing backgrounds, ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses.

  10. Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table

    E-Print Network [OSTI]

    Dimitra Atri; Adrian L. Melott

    2011-05-09T23:59:59.000Z

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the ~ 1 GeV flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ray spectra with 10 GeV - 1 PeV primaries. This will enable us to compute the radiation dose on terrestrial planetary surfaces from a number of astrophysical sources.

  11. Study of high pressure gas filled RF cavities for muon collider

    E-Print Network [OSTI]

    Yonehara, Katsuya

    2015-01-01T23:59:59.000Z

    Muon collider is a considerable candidate of the next-generation high-energy lepton collider machine. Operating an RF cavity in a multi-Tesla magnet is a critical requirement in a muon accelerator and a cooling channel. However, the maximum RF gradient in a vacuum RF cavity is strongly limited by an external magnetic field. Dense hydrogen gas filled RF cavity has been proposed since it is functional of generating a high RF accelerating gradient in a strong magnetic field and making an ionization cooling process at the same time. A critical issue of the cavity is a beam- induced plasma that consumes a considerable amount of RF power. The gas filled RF test cell was made and measured the RF loading due to a beam-induced plasma by using an intense proton beam at Fermilab. By doping an electronegative gas in dense hydrogen, the plasma loading effect is significantly mitigated. The result shows that the cavity is functional with a muon collider beam. Recent progress is shown in this presentation.

  12. High energy neutrino astronomy using upward-going muons in Super-Kamiokande-I

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; K. Abe

    2006-07-26T23:59:59.000Z

    We present the results from several studies used to search for astrophysical sources of high-energy neutrinos using the Super-Kamiokande-I (April 1996 to July 2001) neutrino-induced upward-going muon data. The data set consists of 2359 events with minimum energy 1.6 GeV, of which 1892 are through-going and 467 stop within the detector. The results of several independent analyses are presented, including searches for point sources using directional and temporal information and a search for signatures of cosmic-ray interactions with the interstellar medium in the upward-going muons. No statistically significant evidence for point sources or any diffuse flux from the plane of the galaxy was found, so specific limits on fluxes from likely point sources are calculated. The 90% C.L. upper limits on upward-going muon flux from astronomical sources which are located in the southern hemisphere and always under the horizon for Super-Kamiokande are 1~4x10^{-15} cm^{-2} s^{-1}.

  13. Muon content of ultra-high-energy air showers: Yakutsk data versus simulations

    E-Print Network [OSTI]

    A. V. Glushkov; I. T. Makarov; M. I. Pravdin; I. E. Sleptsov; D. S. Gorbunov; G. I. Rubtsov; S. V. Troitsky

    2008-02-18T23:59:59.000Z

    We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2\\cdot 10^{19} eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, ``light'' and ``heavy''. Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \\sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>10^{19} eV is 0.52^{+0.19}_{-0.20} at 95% confidence level.

  14. First Measurement of the Transverse-Target Single-Spin Asymmetry in Exclusive Muon-Production of ?0 Mesons at COMPASS

    E-Print Network [OSTI]

    Kiefer, Jasmin

    First Measurement of the Transverse-Target Single-Spin Asymmetry in Exclusive Muon-Production of ?0 Mesons at COMPASS

  15. Measurements of the Higgs boson mass and width in the four-lepton final state and electron reconstruction in the CMS experiment at the LHC

    E-Print Network [OSTI]

    Dalchenko, Mykhailo; Charlot, Claude

    This thesis document reports measurements of the mass and width of the new boson re- cently discovered at the Large Hadron Collider (LHC), candidating to be the Standard Model Higgs boson. The analysis uses proton-proton collision data recorded by the Compact Muon Solenoid (CMS) detector at the LHC, corresponding to integrated luminosities of $5.1~fb^{?1}$ at $7~$TeV center of mass energy and $19.7~fb^{?1}$ at $8~$TeV center of mass energy. Set of events selecting Higgs boson via the $H\\to ZZ$ decay channel, where both $Z$ bosons decay to electron or muon lepton pairs, is used for the Higgs boson properties measurements. A precise measurement of its mass has been performed and gives $125.6\\pm0.4\\mbox{(stat)}\\pm0.2\\mbox{(syst)}~$GeV. Constraints on the Higgs boson width were established using its off-shell production and decay to a pair of $Z$ bosons, where one $Z$ boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The obtained result is an upper limit on the Hi...

  16. Novel linac structures for low-beta ions and for muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  17. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on theAward Types Types of

  18. An electron front end for the Fermilab multi-species 8 GeV SCRF linac

    SciTech Connect (OSTI)

    Philippe R.-G. Piot; G W Foster

    2004-07-08T23:59:59.000Z

    Fermilab is considering a 8 GeV superconducting linac whose primary mission is to serve as an intense H{sup -} injector for the main injector. This accelerator is also planned to be used for accelerating various other species (e.g. electrons, protons and muons). In the present paper we investigate the possibility of such a linac to accelerate high-brightness electron beam up to {approx} 7 GeV. We propose a design for the electron front end based on a photoinjector and consider the electron beam dynamics along the linac. Start-to-end simulations of the full accelerator for electrons are presented. Finally the potential applications of such an electron beam are outlined.

  19. Electron Neutrinos at T2K

    E-Print Network [OSTI]

    Melissa George

    2010-06-07T23:59:59.000Z

    Tokai-to-Kamioka T2K is a long baseline neutrino oscillation experiment, looking for sub-dominant muon neutrino to electron neutrino oscillations. One of the primary aims of the T2K experiment is to narrow down the current limit on the value of theta13 (which if this value large enough, suggests CP violation in the neutrino sector) and to find whether theta23 is maximal, which is crucial for constraining neutrino mass models. T2K produces a high power neutrino beam at the J-PARC facility on the east coast of Japan, and this beam is then characterised by the near detector ND280 280 m from the start of the beam, the far detector (Super-Kamiokande), a 50 kton water Cherenkov detector, then detects the beam at the oscillation maximum of 295 km on Japan's west coast. T2K will be the first experiment to really study the electron neutrino appearance measurement - whose result will be sensitive to theta13 arguably the main physics goal of T2K. The ND280 detector is imperative to this measurement and will be used to understand the electron neutrino appearance background. The status of the T2K experiment and the predicted performance for the electron neutrino appearance measurement is presented here.

  20. Neutrino-induced upward-going muons in Super-Kamiokande

    E-Print Network [OSTI]

    A. Habig; for the Super-Kamiokande Collaboration

    1999-05-05T23:59:59.000Z

    Upward-going muons observed by the Super-Kamiokande detector are produced by high-energy atmospheric neutrinos which interact in rock around the detector. Those which pass completely through the detector have a mean parent neutrino energy of ~100 GeV, while those which range out inside the detector come from neutrinos of mean energy ~10 GeV. The neutrino baseline varies with the observed muon zenith angle, allowing for an independent test via nu-mu disappearance of the neutrino oscillations observed in the Super-Kamiokande contained events. 614 upward through-going and 137 upward stopping muons were observed over 537 (516) live days, resulting in a flux of Phi_t=1.74\\pm0.07(stat.)\\pm0.02(sys.), Phi_s=0.380\\pm0.038(stat.)^{+0.019}_{-0.016}(sys.) x10^{-13}cm^{-2}s^{-1}sr^{-1}. The observed stopping/through-going ratio R=0.218\\pm0.023(stat.)^{+0.014}_{-0.013}(syst.) is 2.9 sigma lower than the expectation of 0.368^{+0.049}_{-0.044}(theo.). Both the shape of the zenith angle distribution of the observed flux and this low ratio are inconsistent with the null oscillation hypothesis, but are compatible with the previously observed nu-mu nu-tau oscillations. Taken as a whole, the addition of these higher energy nu-mu data to the contained neutrino events provides a better measurement of the oscillation parameters, narrowing the allowed parameter range to sin^22theta >~0.9 and 1.5x10^{-3}eV^2 <~ \\Delta m^2 <~6x10^{-3} at 90% confidence.

  1. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01T23:59:59.000Z

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  2. First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2014-01-01T23:59:59.000Z

    When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or Diffuse Supernova Neutrino Background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6 -- 18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code FLUKA and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiok...

  3. Measurement of the flux and zenith-angle distribution of upward through-going muons by Super-Kamiokande

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration

    1999-03-18T23:59:59.000Z

    A total of 614 upward through-going muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 537 detector live days. The measured muon flux is 1.74+/-0.07(stat.)+/-0.02(sys.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 1.97+/-0.44(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. The absolute measured flux is in agreement with the prediction within the errors. However, the zenith angle dependence of the observed upward through-going muon flux does not agree with no-oscillation predictions. The observed distortion in shape is consistent with the \

  4. was a decisive one as in the studies of hyperon rare decays at FNAL (E715 and E761 experi ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic

    E-Print Network [OSTI]

    Titov, Anatoly

    ­ ments), in the studies of the muon catalyzed nuclear fusion at PSI, or in the studies of exotic nuclei nuclear fusion reactions was successfully carried out in the muon channel of the SC. The muon beam is also intensity (1¯A) make this accelerator valuable even in the up­to­date nuclear studies. For example

  5. High-Rate Glass Resistive Plate Chambers For LHC Muon Detectors Upgrade

    E-Print Network [OSTI]

    Laktineh, I; Cauwenbergh, S; Combret, C; Crotty, I; Haddad, Y; Grenier, G; Guida, R; Kieffer, R; Lumb, N; Mirabito, L; Schirra, F; Seguin, N; Tytgat, M; Van der Donckt, M; Wang, Y; Zaganidis, N

    2012-01-01T23:59:59.000Z

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detector in LHC experiments is behind the absence of such detectors in the high TJ regions in both CMS and ATLAS detectors. RPCs made with low resistivity glass plates (10ID O.cm) could be an adequate solution to equip the high TJ regions extending thus both the trigger efficiency and the physics performance. Different beam tests with single and multi-gap configurations using the new glass have shown that such detectors can operate at few thousands Hzlcm2 with high efficiency( > 90%).

  6. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Keisuke Harigaya; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-01-29T23:59:59.000Z

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  7. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Harigaya, Keisuke; Yokozaki, Norimi

    2015-01-01T23:59:59.000Z

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  8. Analysis of the multigroup model for muon tomography based threat detection

    SciTech Connect (OSTI)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-14T23:59:59.000Z

    We compare different algorithms for detecting a 5?cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5?cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  9. Lattice QCD Studies of the Leading Order Hadronic Contribution to the Muon $g-2$

    E-Print Network [OSTI]

    Anthony Francis; Vera Gülpers; Gregorio Herdoíza; Georg von Hippel; Hanno Horch; Benjamin Jäger; Harvey B. Meyer; Eigo Shintani; Hartmut Wittig

    2014-12-23T23:59:59.000Z

    The anomalous magnetic moment of the muon, $g_\\mu-2$, is one of the most promising observables to identify hints for physics beyond the Standard Model. QCD contributions are currently responsible for the largest fraction of the overall theoretical uncertainty in $g_\\mu-2$. The possibility to determine these hadronic contributions from first principles through lattice QCD calculations has triggered a number of recent studies. Recent proposals to improve the accuracy of lattice determinations are reported. We present an update of our studies of the leading-order hadronic contribution to $g_\\mu-2$ with improved Wilson fermions.

  10. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions National ScienceModeling ofMore Heat thanMuon

  11. An additional study of multi-muon events produced in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Fermilab

    2011-11-01T23:59:59.000Z

    We present one additional study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. We use a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 3.9 fb{sup -1}. We investigate the distribution of the azimuthal angle between the two trigger muons in events containing at least four additional muon candidates to test the compatibility of these events with originating from known QCD processes. We find that this distribution is markedly different from what is expected from such QCD processes and this observation strongly disfavours the possibility that multi-muon events result from an underestimate of the rate of misidentified muons in ordinary QCD events.

  12. An additional study of multi-muon events produced in {\\boldmath $p\\bar{p}$} collisions at {\\boldmath $\\sqrt{s}=1.96$} TeV

    E-Print Network [OSTI]

    CDF Collaboration

    2011-12-21T23:59:59.000Z

    We present one additional study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. We use a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 3.9 fb$^{-1}$. We investigate the distribution of the azimuthal angle between the two trigger muons in events containing at least four additional muon candidates to test the compatibility of these events with originating from known QCD processes. We find that this distribution is markedly different from what is expected from such QCD processes and this observation strongly disfavours the possibility that multi-muon events result from an underestimate of the rate of misidentified muons in ordinary QCD events.

  13. Synthesis, structural characterization and properties of SrAl{sub 4?x}Ge{sub x}, BaAl{sub 4?x}Ge{sub x}, and EuAl{sub 4?x}Ge{sub x} (x?0.3–0.4)—Rare examples of electron-rich phases with the BaAl{sub 4} structure type

    SciTech Connect (OSTI)

    Zhang, Jiliang; Bobev, Svilen, E-mail: bobev@udel.edu

    2013-09-15T23:59:59.000Z

    Three solid solutions with the general formula AEAl{sub 4?x}Ge{sub x} (AE=Eu, Sr, Ba; 0.32(1)?x?0.41(1)) have been synthesized via the aluminum self-flux method, and their crystal structures have been established from powder and single-crystal X-ray diffraction. They are isotypic and crystallize with the well-known BaAl{sub 4} structure type, adopted by the three AEAl{sub 4} end members. In all structures, Ge substitutes Al only at the 4e Wyckoff site. Results from X-rays photoelectron spectroscopy on EuAl{sub 4?x}Ge{sub x} and EuAl{sub 4} indicate that the interactions between the Eu{sup 2+} cations and the polyanionic framework are enhanced in the Ge-doped structure, despite the slightly elevated Fermi level. Magnetic susceptibility measurements confirm the local moment magnetism, expected for the [Xe]4f{sup 7} electronic configuration of Eu{sup 2+} and suggest strong ferromagnetic interactions at cryogenic temperatures. Resistivity data from single-crystalline samples show differences between the title compounds, implying different bonding characteristics despite the close Debye temperatures. A brief discussion on the observed electron count and homogeneity ranges for AEAl{sub 4?x}Ge{sub x} (AE=Eu, Sr, Ba) is also presented. - Graphical abstract: AEAl{sub 4?x}Ge{sub x} (AE=Eu, Sr, Ba; 0.32(1)?x?0.41(1)), three “electron-rich” phases with BaAl{sub 4} structure type have been synthesized and characterized. Display Omitted - Highlights: • Three BaAl{sub 4}-type ternary aluminum germanides have been synthesized with Eu, Sr and Ba. • Eu, Sr and Ba cations have no apparent influence on the solubility of Ge. • The Ge atoms substitute Al on one of two framework sites, thereby strengthening the interactions between the cations and the polyanionic framework.

  14. Data Management Plan Types of Data

    E-Print Network [OSTI]

    Tam, Tin-Yau

    Data Management Plan Types of Data The research described herein will lead to the discovery of new will be followed by electrochemistry, Raman spectroscopy and optical spectroscopy. All data will be stored electronically in word processing documents. Data Standards All data will be stored in an electronic format

  15. Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c

    SciTech Connect (OSTI)

    Schmelling, M.; /Heidelberg, Max Planck Inst.; Hashim, N.O.; /Kenyatta U. Coll.; Grupen, C.; /Siegen U.; Luitz, S.; /SLAC; Maciuc, F.; /Heidelberg, Max Planck Inst.; Mailov, A.; /Siegen U.; Muller, A.-S.; /Karlsruhe, Inst. Technol.; Sander, H.-G.; /Mainz U., Inst. Phys.; Schmeling, S.; /CERN; Tcaciuc, R.; /Siegen U.; Wachsmuth, H.; /CERN; Zuber, K.; /Dresden, Tech. U.

    2012-09-14T23:59:59.000Z

    The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10{sup 15} eV.

  16. Electron tube

    DOE Patents [OSTI]

    Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)

    2011-12-20T23:59:59.000Z

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  17. Updated Estimate of the Muon Magnetic Moment Using Revised Results from e+e- Annihilation

    E-Print Network [OSTI]

    Davier, M; Höcker, A; Zhang, Z; Davier, Michel

    2003-01-01T23:59:59.000Z

    A new evaluation of the hadronic vacuum polarization contribution to the muon magnetic moment is presented. We take into account the reanalysis of the low-energy e+e- annihilation cross section into hadrons by the CMD-2 Collaboration. The agreement between e+e- and tau spectral functions in the pi pi channel is found to be much improved. Nevertheless, significant discrepancies remain in the center-of-mass energy range between 0.85 and 1.0 GeV, so that we refrain from averaging the two data sets. The values found for the lowest-order hadronic vacuum polarization contributions are a_mu[had,LO] = (696.3 +- 6.2[exp] +- 3.6[rad])e-10 (e+e- -based) and a_mu[had,LO] = (711.0 +- 5.0[exp] +- 0.8[rad] +- 2.8[SU2])e-10 (tau-based), where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The corresponding Standard Model predictions for the muon magnetic anomaly read a_mu = (11,659,180.9 +- 7.2[had] +- 3.5[LBL] +- 0.4[QED+EW])e-10 (e+...

  18. A Novel Method for Transport and Cooling of a Muon Beam Based on Magnetic Insulation

    SciTech Connect (OSTI)

    Stratakis, Diktys; Gallardo, Juan C.; Palmer, Robert B. [Department of Physics, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2010-11-04T23:59:59.000Z

    Unwanted field emission is a well known problem for high-gradient accelerating structures as it can cause damage and initiate breakdown. Recent experiments indicated that the deleterious effects of field-emission are greatly enhanced in the presence of external magnetic fields. In the context of designing a muon accelerator this imposes numerous constraints since rf cavities need to operate within strong magnetic fields in order to successfully transport the beam. Here, a novel design of a magnetically insulated cavity in which the walls are parallel to the magnetic field lines is presented. We show that with magnetic insulation, damage from field emission can be significantly suppressed. Effects of coil positioning errors on the cavity performance are discussed and the required magnetic field strength to achieve insulation is estimated. We present a conceptual design of a muon collider cooling lattice with magnetic insulated cavities and cross-check its performance to the one with pillbox cavities. Finally an experiment to test magnetic insulation is described.

  19. Design and performance of the alignment system for the CMS muon endcaps

    SciTech Connect (OSTI)

    Hohlmann, Marcus; Baksay, Gyongyi; Browngold, Max; Dehmelt, Klaus; Guragain, Samir; Andreev, Valery; Yang, Xiaofeng; Bellinger, James; Carlsmith, Duncan; Feyzi, Farshid; Loveless, Richard J.; /Florida Inst. Tech. /UCLA /Wisconsin U., Madison /UC, Davis /Fermilab /St. Petersburg, INP /UC, Riverside

    2006-12-01T23:59:59.000Z

    The alignment system for the CMS Muon Endcap detector employs several hundred sensors such as optical 1-D CCD sensors illuminated by lasers and analog distance- and tilt-sensors to monitor the positions of one sixth of 468 large Cathode Strip Chambers. The chambers mounted on the endcap yoke disks undergo substantial deformation on the order of centimeters when the 4T field is switched on and off. The Muon Endcap alignment system is required to monitor chamber positions with 75-200 {micro}m accuracy in the R? plane, {approx}400 {micro}m in the radial direction, and {approx}1 mm in the z-direction along the beam axis. The complete alignment hardware for one of the two endcaps has been installed at CERN. A major system test was performed when the 4T solenoid magnet was ramped up to full field for the first time in August 2006. We present the overall system design and first results on disk deformations, which indicate that the measurements agree with expectations.

  20. A Coil Manufacturing Procedure for the ALICE Muon Arm Dipole Magnet

    E-Print Network [OSTI]

    Swoboda, D; CERN. Geneva

    1998-01-01T23:59:59.000Z

    A large Dipole Magnet is required for the Muon Arm spectrometer of the ALICE experiment[1,2]. The main parameters and basic design options of the dipole magnet have been described in [3]. The coils of the magnet will be wound from hollow Aluminium conductor of 50x50 mm² cross-section with a 30 mm diameter cooling hole in the centre. Different manufacturing techniques may be envisaged for the fabrication of the excitation coils. In this note we propose a procedure to construct the coils from straight extruded bars of half turn length. The different steps necessary to bend a half turn are described. A method to form complete turns, pancakes and the total coil is explained. A possible insulation process is presented. Advantages and critical areas of the coil construction process are highlighted in the conclusions. References [1]ALICE TP, CERN/LHCC 95-71 [2]ALICE TP Addendum, CERN/LHCC 96-32 [3]A Warm Magnet for the ALICE Muon Arm, ALICE 96/24, W.Flegel, D.Swoboda, CERN List of Figures Figure 1 Coil ...

  1. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01T23:59:59.000Z

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  2. Optimization of the baseline and the parent muon energy for a low energy neutrino factory

    E-Print Network [OSTI]

    Amol Dighe; Srubabati Goswami; Shamayita Ray

    2012-10-05T23:59:59.000Z

    We discuss the optimal setup for a low energy neutrino factory in order to achieve a 5\\sigma-discovery of a nonzero mixing angle \\theta_{13}, a nonzero CP phase \\delta_{CP}, and the mass hierarchy. We explore parent muon energies in the range 5--16 GeV, and baselines in the range 500--5000 km. We present the results in terms of the reach in sin^2\\theta_{13}, emphasizing the dependence of the optimal baseline on the true value of \\delta_{CP}. We show that the sensitivity of a given setup typically increases with parent muon energy, reaching saturation for higher energies. The saturation energy is larger for longer baselines; we present an estimate of this dependence. In the light of the recent indications of a large \\theta_{13}, we also determine how these preferences would change if indeed a large \\theta_{13} is confirmed. In such a case, the baselines ~2500 km (~1500 km) may be expected to lead to hierarchy determination (\\delta_{CP} discovery) with the minimum exposure.

  3. GUT-inspired supersymmetric model for h ? ? ? and the muon g - 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajaib, M. Adeel; Gogoladze, Ilia; Shafi, Qaisar

    2015-05-01T23:59:59.000Z

    We study a grand unified theories inspired supersymmetric model with nonuniversal gaugino masses that can explain the observed muon g-2 anomaly while simultaneously accommodating an enhancement or suppression in the h??? decay channel. In order to accommodate these observations and mh?125 to 126 GeV, the model requires a spectrum consisting of relatively light sleptons whereas the colored sparticles are heavy. The predicted stau mass range corresponding to R???1.1 is 100 GeV?m?˜?200 GeV. The constraint on the slepton masses, particularly on the smuons, arising from considerations of muon g-2 is somewhat milder. The slepton masses in this case are predicted to lie in the few hundred GeV range. The colored sparticles turn out to be considerably heavier with mg˜?4.5 TeV and mt˜??3.5 TeV, which makes it challenging for these to be observed at the 14 TeV LHC.

  4. Measurement of muon plus proton final states in ? ? interactions on hydrocarbon at ‹ E? › = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.; Betancourt, M.; Aliaga, L.; Altinok, O.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M.?J.; Butkevich, A.; Martinez Caicedo, D.?A.; et al

    2015-04-01T23:59:59.000Z

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore »inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  5. Measurement of muon plus proton final states in ? ? interactions on hydrocarbon at ‹ E? › = 4.2 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walton, T.; Betancourt, M.; Aliaga, L.; Altinok, O.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M.?J.; Butkevich, A.; Martinez Caicedo, D.?A.; Carneiro, M.?F.; Castromonte, C.?M.; Christy, M.?E.; Chvojka, J.; da Motta, H.; Datta, M.; Devan, J.; Dytman, S.?A.; Díaz, G.?A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Fiorentini, G.?A.; Gago, A.?M.; Gallagher, H.; Gran, R.; Harris, D.?A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Kulagin, S.?A.; Le, T.; Maher, E.; Manly, S.; Mann, W.?A.; Marshall, C.?M.; Martin Mari, C.; McFarland, K.?S.; McGivern, C.?L.; McGowan, A.?M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J.?G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J.?K.; Norrick, A.; Osta, J.; Paolone, V.; Park, J.; Patrick, C.?E.; Perdue, G.?N.; Rakotondravohitra, L.; Ransome, R.?D.; Ray, H.; Ren, L.; Rodrigues, P.?A.; Ruterbories, D.; Schellman, H.; Schmitz, D.?W.; Simon, C.; Snider, F.?D.; Sobczyk, J.?T.; Solano Salinas, C.?J.; Tagg, N.; Tice, B.?G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Ziemer, B.?P.

    2015-04-01T23:59:59.000Z

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  6. STUDY OF GRAPHITE TARGETS INTERACTING WITH THE 24 GeV PROTON BEAM OF THE BNL MUON TARGET EXPERIMENT*

    E-Print Network [OSTI]

    McDonald, Kirk

    experiment, graphite and carbon-carbon composite targets were exposed to the AGS beam and their response materials for the future muon collider/neutrino factory carbon-based solid targets have been considered for the experiment are ATJ graphite and the anisotropic carbon-carbon composite. Each target consists of a pair of 16

  7. Study of upward-going muons in Super-Kamiokande Doctral Program in Fundamental Science and Energy Technology

    E-Print Network [OSTI]

    Tokyo, University of

    Study of upward-going muons in Super-Kamiokande Choji Saji Doctral Program in Fundamental Science.Miyata. They always encouraged and supported me. I acknowledge Prof. Y.Totsuka, spokesman of the Super-Kamiokande.Matsuno, Dr. A.L.Stachyra and Mr. D.Shantanu. I would like to thank all the Super-Kamiokande collaborators

  8. KT McDonald Muon Accelerator Program Advisory Committee Review (FNAL) July 11, 2012 1 Target and Absorbers

    E-Print Network [OSTI]

    McDonald, Kirk

    Advisory Committee Review (FNAL) July 11, 2012 2 Mission Target: · Maximum production of ± of energies particles in He-gas-cooled tungsten beads ­ inside solenoid magnets. · Low-Z solid/liquid muon absorbers includes the production target and the magnetized pion-decay channel. This system is about 50 m long

  9. The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision

    SciTech Connect (OSTI)

    Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.

    2009-02-01T23:59:59.000Z

    We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned with the new Mu2e experimental requirements. The (g-2) experiment itself is based on the solid foundation of E821 at BNL, with modest improvements related to systematic error control. We outline the motivation, conceptual plans, and details of the tasks, anticipated budget, and timeline in this proposal.

  10. First principles study of the structural, elastic, electronic and phonon properties of CdX{sub 2}O{sub 4} (X=Al, Ga, In) spinel-type oxides

    SciTech Connect (OSTI)

    Candan, Abdullah [Central Research and Practice Laboratory (AH?LAB), Ahi Evran University, 40100 K?r?ehir (Turkey); U?ur, Gökay [Department of Physics, Faculty of Science, Gazi University, 06500 Ankara (Turkey)

    2014-10-06T23:59:59.000Z

    We have performed ab-initio calculations of the structural, electronic, elastic and dynamical properties for the spinel compounds CdX{sub 2}O{sub 4} (X=Al, Ga, In) using the plane wave pseudo-potential method within the generalized gradient approximation (GGA). The calculated lattice parameters, elastic constants for these compounds are in good agreement with the previous calculated values. The computed direct band gaps of CdAl{sub 2}O{sub 4}, CdGa{sub 2}O{sub 4} and CdIn{sub 2}O{sub 4} are 2.90 eV, 1.92 eV and 1.16 eV, respectively. The lattice vibrations were calculated by direct method. The calculated phonon dispersion curves show that all compounds are dynamically stable in the spinel structure.

  11. RHIC PRESSURE RISE AND ELECTRON CLOUD.

    SciTech Connect (OSTI)

    Zhang, S Y; Blaskiewicz, M; Cameron, P; Drees, P; Afischer, W; Gassner, D; Gullotta, J; He, P; Hseuh, H; Chuang, H; Iriso-Aziz, U; Lee, R; Mackay, W; Woerter, B; Ptitsyn, V; Ponnaiyan, V; Roser, T; Satogata, T; Smart, L; Trbojevic, D

    2003-05-12T23:59:59.000Z

    In RHIC high intensity operation, two types of pressure rise are currently of concern. The first type is at the beam injection, which seems to be caused by the electron multipacting, and the second is the one at the beam transition, where the electron cloud is not the dominant cause. The first type of pressure rise is limiting the beam intensity and the second type might affect the experiments background for very high total beam intensity. In this article, the pressure rises at RHIC are described, and preliminary study results are reported. Some of the unsettled issues and questions are raised, and possible counter measures are discussed.

  12. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    E-Print Network [OSTI]

    D. J. Summers; L. M. Cremaldi; T. L. Hart; L. P. Perera; M. Reep; H. Witte; S. Hansen; M. L. Lopes; J. Reidy, Jr.

    2012-07-28T23:59:59.000Z

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  13. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect (OSTI)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  14. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    SciTech Connect (OSTI)

    Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; /Mississippi U.; Witte, H.; /Brookhaven; Hansen, S.; Lopes, M.L.; /Fermilab; Reidy Jr., J.; /Oxford High School

    2012-05-01T23:59:59.000Z

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  15. A comprehensive comparison for simulations of cosmic-ray muons underground

    SciTech Connect (OSTI)

    Villano, A. N.; Cushman, P.; Kennedy, A. [University of Minnesota, Minneapolis MN 55455 (United States)] [University of Minnesota, Minneapolis MN 55455 (United States); Empl, A.; Lindsay, S. [University of Arkansas at Little Rock, Little Rock AR 72204 (United States)] [University of Arkansas at Little Rock, Little Rock AR 72204 (United States)

    2013-08-08T23:59:59.000Z

    The two leading simulation frameworks used for the simulation of cosmic-ray muons underground are FLUKA and Geant4. There have been in the past various questions raised as to the equivalence of these codes regarding cosmogenically produced neutrons and radioactivity in an underground environment. Many experiments choose one of these frameworks, and because they typically have different geometries or locations, the issues relating to code comparison are compounded. We report on an effort to compare the results of each of these codes in simulations which have simple geometry that is consistent between the two codes. It is seen that in terms of integrated neutron flux and neturon capture statistics the codes agree well in a broad sense. There are, however, differences that will be subject of further study. Comparisons of the simulations to available data are considered and the difficulties of such comparisons are pointed out.

  16. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    SciTech Connect (OSTI)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T

    2007-02-15T23:59:59.000Z

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied.

  17. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider

    E-Print Network [OSTI]

    Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat

    2005-07-26T23:59:59.000Z

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross section in SM and MSSM with Higgs boson mass for various choices of MSSM parameters tan \\beta and m\\sub A. We observe that at fixed CM energy, in the SM, the total cross section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM case. The changes that occur for the MSSM case in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross section. The observed large deviations in cross section for different choices of Higgs mass suggest that the measurements of the cross section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

  18. A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.

    SciTech Connect (OSTI)

    MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

    2003-03-01T23:59:59.000Z

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  19. A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker

    SciTech Connect (OSTI)

    Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

    1999-03-29T23:59:59.000Z

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

  20. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY, Cyprus; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB

    2014-02-01T23:59:59.000Z

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?hvp. Our final result involving an estimate of the systematic uncertainty a ?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.

  1. Study of ?(1385) and ?(1321) hyperon and antihyperon production in deep inelastic muon scattering

    E-Print Network [OSTI]

    C. Adolph; M. Alekseev; V. Yu. Alexakhin; Yu. Alexandrov; G. D. Alexeev; A. Amoroso; A. Austregesilo; B. Badelek; F. Balestra; J. Barth; G. Baum; Y. Bedfer; A. Berlin; J. Bernhard; R. Bertini; K. Bicker; J. Bieling; R. Birsa; J. Bisplinghoff; P. Bordalo; F. Bradamante; C. Braun; A. Bravar; A. Bressan; M. Buechele; E. Burtin; L. Capozza; M. Chiosso; S. U. Chung; A. Cicuttin; M. L. Crespo; S. Dalla Torre; S. S. Dasgupta; S. Dasgupta; O. Yu. Denisov; S. V. Donskov; N. Doshita; V. Duic; W. Duennweber; M. Dziewiecki; A. Efremov; C. Elia; P. D. Eversheim; W. Eyrich; M. Faessler; A. Ferrero; A. Filin; M. Finger; M. Finger jr.; H. Fischer; C. Franco; N. du Fresne von Hohenesche; J. M. Friedrich; V. Frolov; R. Garfagnini; F. Gautheron; O. P. Gavrichtchouk; S. Gerassimov; R. Geyer; M. Giorgi; I. Gnesi; B. Gobbo; S. Goertz; S. Grabmueller; A. Grasso; B. Grube; R. Gushterski; A. Guskov; T. Guthoerl; F. Haas; D. von Harrach; F. H. Heinsius; F. Herrmann; C. Hess; F. Hinterberger; Ch. Hoeppner; N. Horikawa; N. d'Hose; S. Huber; S. Ishimoto; Yu. Ivanshin; T. Iwata; R. Jahn; V. Jary; P. Jasinski; R. Joosten; E. Kabuss; D. Kang; B. Ketzer; G. V. Khaustov; Yu. A. Khokhlov; Yu. Kisselev; F. Klein; K. Klimaszewski; J. H. Koivuniemi; V. N. Kolosov; K. Kondo; K. Koenigsmann; I. Konorov; V. F. Konstantinov; A. M. Kotzinian; O. Kouznetsov; M. Kraemer; Z. V. Kroumchtein; N. Kuchinski; F. Kunne; K. Kurek; R. P. Kurjata; A. A. Lednev; A. Lehmann; S. Levorato; J. Lichtenstadt; A. Maggiora; A. Magnon; N. Makke; G. K. Mallot; A. Mann; C. Marchand; A. Martin; J. Marzec; H. Matsuda; T. Matsuda; G. Meshcheryakov; W. Meyer; T. Michigami; Yu. V. Mikhailov; Y. Miyachi; A. Morreale; A. Nagaytsev; T. Nagel; F. Nerling; S. Neubert; D. Neyret; V. I. Nikolaenko; J. Novy; W. -D. Nowak; A. S. Nunes; A. G. Olshevsky; M. Ostrick; R. Panknin; D. Panzieri; B. Parsamyan; S. Paul; G. Piragino; S. Platchkov; J. Pochodzalla; J. Polak; V. A. Polyakov; J. Pretz; M. Quaresma; C. Quintans; S. Ramos; G. Reicherz; E. Rocco; V. Rodionov; E. Rondio; N. S. Rossiyskaya; D. I. Ryabchikov; V. D. Samoylenko; A. Sandacz; M. G. Sapozhnikov; S. Sarkar; I. A. Savin; G. Sbrizzai; P. Schiavon; C. Schill; T. Schlueter; A. Schmidt; K. Schmidt; L. Schmitt; H. Schmieden; K. Schoenning; S. Schopferer; M. Schott; O. Yu. Shevchenko; L. Silva; L. Sinha; S. Sirtl; S. Sosio; F. Sozzi; A. Srnka; L. Steiger; M. Stolarski; M. Sulc; R. Sulej; H. Suzuki; P. Sznajder; S. Takekawa; J. Ter Wolbeek; S. Tessaro; F. Tessarotto; F. Thibaud; S. Uhl; I. Uman; M. Vandenbroucke; M. Virius; L. Wang; T. Weisrock; M. Wilfert; R. Windmolders; W. Wislicki; H. Wollny; K. Zaremba; M. Zavertyaev; E. Zemlyanichkina; N. Zhuravlev; M. Ziembicki

    2013-10-16T23:59:59.000Z

    Large samples of \\Lambda, \\Sigma(1385) and \\Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \\Sigma(1385)^+, \\Sigma(1385)^-, \\bar{\\Sigma}(1385)^-, \\bar{\\Sigma}(1385)^+, \\Xi(1321)^-, and \\bar{\\Xi}(1321)^+ hyperons decaying into \\Lambda(\\bar{\\Lambda})\\pi were measured. The heavy hyperon to \\Lambda and heavy antihyperon to \\bar{\\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

  2. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, Michael (Berkeley, CA); Newman, Nathan (Montara, CA); Fu, Tracy (Berkeley, CA); Ross, Jennifer (Pleasanton, CA); Chan, James (Berkeley, CA)

    1997-01-01T23:59:59.000Z

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  3. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12T23:59:59.000Z

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  4. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect (OSTI)

    Nishimura, K.; Dey, B.; /Hawaii U. /UC, Riverside; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; /SLAC; Roberts, D.; /Maryland U.; Ruckman, L.; /Hawaii U.; Shtol, D.; /Novosibirsk, IYF; Varner, G.S.; /Hawaii U.; Va'vra, J.; Vavra, Jerry; /SLAC; ,

    2012-07-30T23:59:59.000Z

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  5. ELECTRONIC WARFARE NOVEMBER 2012

    E-Print Network [OSTI]

    US Army Corps of Engineers

    FM 3-36 ELECTRONIC WARFARE NOVEMBER 2012 DISTRIBUTION RESTRICTION: Approved for public release Electronic Warfare Contents Page PREFACE..............................................................................................................iv Chapter 1 ELECTRONIC WARFARE OVERVIEW ............................................................ 1

  6. The Design and Performance of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, Russell; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Sian; Shearer, Craig; Staines, Cassie; Yang, Guangliang; Zimmerman, Colin

    2013-01-01T23:59:59.000Z

    Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons are increasingly being exploited for the non-destructive assay of shielded containers in a wide range of applications. One such application is the characterisation of legacy nuclear waste materials stored within industrial containers. The design, assembly and performance of a prototype muon tomography system developed for this purpose are detailed in this work. This muon tracker comprises four detection modules, each containing orthogonal layers of Saint-Gobain BCF-10 2mm-pitch plastic scintillating fibres. Identification of the two struck fibres per module allows the reconstruction of the incoming and Coulomb-scattered muon trajectories. These allow the container content, with respect to the atomic number Z of the scattering material, to be determined through reconstruction of the scattering location and magnitude. On each detection layer, the light emitted by the fibre is detected by a single Hamamatsu H8500 MAPMT with two fibre...

  7. Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the standard model with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    An inclusive search for anomalous production of two prompt, isolated muons with the same electric charge is presented. The search is performed in a data sample corresponding to 1.6??fb[superscript -1] of integrated luminosity ...

  8. $B_s \\to ?^+ ?^-$ and the upward-going muon flux from the WIMP annihilation in the sun or the earth

    E-Print Network [OSTI]

    Seungwon Baek; Yeong Gyun Kim; P. Ko

    2005-06-13T23:59:59.000Z

    We consider the upward-going muon flux due to the WIMP annihilations in the cores of the sun and the earth, including the upper bound on the branching ratio for $B_s \\to \\mu^+ \\mu^-$ decay. We find that the constraint from $B_s \\to \\mu^+ \\mu^-$ is very strong in most parameter space, and exclude the supergravity parameter space regions where the expected upward-going muon fluxes are within the expected reach of AMANDA II.

  9. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. A stochastic mechanism of electron heating

    SciTech Connect (OSTI)

    Galinsky, V. L.; Shevchenko, V. I. [University of California, San Diego, ECE Department, La Jolla, California 92093-0407 (United States)

    2012-08-15T23:59:59.000Z

    Due to Landau resonant interaction with lower hybrid waves in the lower hybrid current drive scheme part of electrons are accelerated and, as a result of this, a tail of energetic electrons is formed on the electron distribution function. The same situation takes place in the problem of type III radio bursts when the suprathermal burst electrons acquire a plateau distribution due to excitation of plasma waves in the solar wind plasma. These distributions are unstable with respect to the cyclotron excitation of waves at anomalous Doppler resonance ('fan' instability). In this case, the tail electrons interact simultaneously with both (i) waves that accelerate or decelerate them (Cerenkov resonance) and (ii) waves excited in the process of the fan instability that led to their pitch angle diffusion. Because velocity diffusion lines of electrons formed due to heir interaction with each type of waves intersect, this interaction can lead not only to pitch angle diffusion but also to heating of electrons mainly in perpendicular direction. We investigated this mechanism of electron heating and studied the temporal evolution of the electron temperature and the energy of excited waves. Our results show significant enhancement of the electron perpendicular temperature T{sub Up-Tack} due to this stochastic heating mechanism.

  11. Assignment Types UTS LIBRARY

    E-Print Network [OSTI]

    University of Technology, Sydney

    Assignment Types UTS LIBRARY February 2013 Academic Writing Guide Part 2 ­ Assignment Types: This section outlines the basic types of written assignments, providing structural elements and examples. #12;2 II. Assignment Types 1. Essay Writing

  12. Experimental Investigation of Muon-catalyzed dt Fusion in Wide Ranges of D/T Mixture Conditions

    SciTech Connect (OSTI)

    Bom, V.R.; Eijk, C.W.E. van [Delft University of Technology, 2629 JB Delft (Netherlands); Demin, A.M.; Golubkov, A.N.; Grishechkin, S.K.; Klevtsov, V.G.; Kuryakin, A.V.; Musyaev, R.K.; Perevozchikov, V.V.; Vinogradov, Yu.I.; Yukhimchuk, A.A.; Zlatoustovskii, S.V. [Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, Sarov, Nizhni Novgorod oblast, 607200 (Russian Federation); Demin, D.L.; Filchenkov, V.V.; Grafov, N.N.; Gritsaj, K.I.; Konin, A.D.; Medved', S.V.; Rudenko, A.I.; Yukhimchuk, S.A. [Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 (Russian Federation)] [and others

    2005-04-01T23:59:59.000Z

    A vast program of the experimental investigation of muon-catalyzed dt fusion was performed on the Joint Institute for Nuclear Research phasotron. Parameters of the dt cycle were obtained in a wide range of the D/T mixture conditions: temperatures of 20-800 K, densities of 0.2-1.2 of the liquid hydrogen density (LHD), and tritium concentrations of 15-86%. In this paper, the results obtained are summarized.

  13. Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model

    E-Print Network [OSTI]

    Rodriguez, Lien; Rodriguez, Oscar

    2013-01-01T23:59:59.000Z

    We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

  14. Investigation of quasielastic muon-neutrino scattering on nuclei at E{sub v} < 1 GeV

    SciTech Connect (OSTI)

    Agababyan, N. M. [Joint Institute for Nuclear Research (Russian Federation); Ammosov, V. V. [Institute for High Energy Physics (Russian Federation); Atayan, M.; Grigoryan, N.; Gulkanyan, H. [Yerevan Physics Institute (Armenia); Ivanilov, A. A. [Institute for High Energy Physics (Russian Federation)], E-mail: ivanilov@ihep.ru; Karamyan, Zh. [Yerevan Physics Institute (Armenia); Korotkov, B. A. [Institute for High Energy Physics (Russian Federation)

    2007-10-15T23:59:59.000Z

    Quasielastic muon-neutrino scattering on nuclei of propane-Freon mixture at energies in the range E{sub v} < 1 GeV is studied. The multiplicity, momentum, and emission-angle distributions of final protons are measured along with the dependence of the mean values for these distributions on the neutrino energy in the range 0.2 < E{sub v} < 1 GeV.

  15. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    E-Print Network [OSTI]

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Brunner, J; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Teši?, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01T23:59:59.000Z

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

  16. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    E-Print Network [OSTI]

    IceCube Collaboration; M. G. Aartsen; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; D. Altmann; T. Anderson; C. Arguelles; T. C. Arlen; J. Auffenberg; X. Bai; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; J. Becker Tjus; K. -H. Becker; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; D. Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; F. Bos; D. Bose; S. Böser; O. Botner; L. Brayeur; H. -P. Bretz; A. M. Brown; J. Brunner; N. Buzinsky; J. Casey; M. Casier; E. Cheung; D. Chirkin; A. Christov; B. Christy; K. Clark; L. Classen; F. Clevermann; S. Coenders; D. F. Cowen; A. H. Cruz Silva; J. Daughhetee; J. C. Davis; M. Day; J. P. A. M. de André; C. De Clercq; S. De Ridder; P. Desiati; K. D. de Vries; M. de With; T. DeYoung; J. C. Díaz-Vélez; M. Dunkman; R. Eagan; B. Eberhardt; B. Eichmann; J. Eisch; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; J. Felde; T. Feusels; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; A. Franckowiak; K. Frantzen; T. Fuchs; T. K. Gaisser; R. Gaior; J. Gallagher; L. Gerhardt; D. Gier; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; G. Golup; J. G. Gonzalez; J. A. Goodman; D. Góra; D. Grant; P. Gretskov; J. C. Groh; A. Groß; C. Ha; C. Haack; A. Haj Ismail; P. Hallen; A. Hallgren; F. Halzen; K. Hanson; D. Hebecker; D. Heereman; D. Heinen; K. Helbing; R. Hellauer; D. Hellwig; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; F. Huang; W. Huelsnitz; P. O. Hulth; K. Hultqvist; S. Hussain; A. Ishihara; E. Jacobi; J. Jacobsen; G. S. Japaridze; K. Jero; O. Jlelati; M. Jurkovic; B. Kaminsky; A. Kappes; T. Karg; A. Karle; M. Kauer; A. Keivani; J. L. Kelley; A. Kheirandish; J. Kiryluk; J. Kläs; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; A. Koob; L. Köpke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; A. Kriesten; K. Krings; G. Kroll; M. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; J. L. Lanfranchi; D. T. Larsen; M. J. Larson; M. Lesiak-Bzdak; M. Leuermann; J. Lünemann; J. Madsen; G. Maggi; R. Maruyama; K. Mase; H. S. Matis; R. Maunu; F. McNally; K. Meagher; M. Medici; A. Meli; T. Meures; S. Miarecki; E. Middell; E. Middlemas; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; R. Nahnhauer; U. Naumann; H. Niederhausen; S. C. Nowicki; D. R. Nygren; A. Obertacke; S. Odrowski; A. Olivas; A. Omairat; A. O'Murchadha; T. Palczewski; L. Paul; Ö. Penek; J. A. Pepper; C. Pérez de los Heros; C. Pfendner; D. Pieloth; E. Pinat; J. Posselt; P. B. Price; G. T. Przybylski; J. Pütz; M. Quinnan; L. Rädel; M. Rameez; K. Rawlins; P. Redl; I. Rees; R. Reimann; M. Relich; E. Resconi; W. Rhode; M. Richman; B. Riedel; S. Robertson; J. P. Rodrigues; M. Rongen; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; H. -G. Sander; J. Sandroos; M. Santander; S. Sarkar; K. Schatto; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schöneberg; A. Schönwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; Y. Sestayo; S. Seunarine; R. Shanidze; M. W. E. Smith; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; N. A. Stanisha; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stößl; E. A. Strahler; R. Ström; N. L. Strotjohann; G. W. Sullivan; H. Taavola; I. Taboada; A. Tamburro; A. Tepe; S. Ter-Antonyan; A. Terliuk; G. Teši?; S. Tilav; P. A. Toale; M. N. Tobin; D. Tosi; M. Tselengidou; E. Unger; M. Usner; S. Vallecorsa; N. van Eijndhoven; J. Vandenbroucke; J. van Santen; M. Vehring; M. Voge; M. Vraeghe; C. Walck; M. Wallraff; Ch. Weaver; M. Wellons; C. Wendt; S. Westerhoff; B. J. Whelan; N. Whitehorn; C. Wichary; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; D. L. Xu; X. W. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; M. Zoll

    2014-10-27T23:59:59.000Z

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\\,GeV and 100\\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\\times 10^{-3}\\,\\mathrm{eV}^2$ and $\\sin^2\\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

  17. First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2014-04-13T23:59:59.000Z

    When muons travel through matter, their energy losses lead to nuclear breakup ("spallation") processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experiments, e.g., those seeking to detect solar neutrino or Diffuse Supernova Neutrino Background (DSNB) signals. Even though Super-Kamiokande has strong general cuts to reduce these spallation-induced backgrounds, the remaining rate before additional cuts for specific signals is much larger than the signal rates for kinetic energies of about 6 -- 18 MeV. Surprisingly, there is no published calculation of the production and properties of these backgrounds in water, though there are such studies for scintillator. Using the simulation code FLUKA and theoretical insights, we detail how muons lose energy in water, produce secondary particles, how and where these secondaries produce isotopes, and the properties of the backgrounds from their decays. We reproduce Super-Kamiokande measurements of the total background to within a factor of 2, which is good given that the isotope yields vary by orders of magnitude and that some details of the experiment are unknown to us at this level. Our results break aggregate data into component isotopes, reveal their separate production mechanisms, and preserve correlations between them. We outline how to implement more effective background rejection techniques using this information. Reducing backgrounds in solar and DSNB studies by even a factor of a few could help lead to important new discoveries.

  18. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    SciTech Connect (OSTI)

    Johnson, Rolland P.

    2008-05-07T23:59:59.000Z

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  19. Construction and performance of a silicon photomultiplier/extruded scintillator tail-catcher and muon-tracker

    E-Print Network [OSTI]

    The CALICE Collaboration

    2012-03-18T23:59:59.000Z

    A prototype module for an International Linear Collider (ILC) detector was built, installed, and tested between 2006 and 2009 at CERN and Fermilab as part of the CALICE test beam program, in order to study the possibilities of extending energy sampling behind a hadronic calorimeter and to study the possibilities of providing muon tracking. The "tail catcher/muon tracker" (TCMT) is composed of 320 extruded scintillator strips (dimensions 1000 mm x 50 mm x 5 mm) packaged in 16 one-meter square planes interleaved between steel plates. The scintillator strips were read out with wavelength shifting fibers and silicon photomultipliers. The planes were arranged with alternating horizontal and vertical strip orientations. Data were collected for muons and pions in the energy range 6 GeV to 80 GeV. Utilizing data taken in 2006, this paper describes the design and construction of the TCMT, performance characteristics, and a beam-based evaluation of the ability of the TCMT to improve hadronic energy resolution in a prototype ILC detector. For a typical configuration of an ILC detector with a coil situated outside a calorimeter system with a thickness of 5.5 nuclear interaction lengths, a TCMT would improve relative energy resolution by 6-16 % for pions between 20 and 80 GeV.

  20. PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES Programme name Electrical & Electronic Engineering

    E-Print Network [OSTI]

    Weyde, Tillman

    & Electronic Engineering Award MEng School School of Engineering and Mathematical Sciences Department or equivalent Department of Electrical and Electronic Engineering UCAS Code H604 Programme code USELEM Type in Electrical and Electronic Engineering is a four-year Master Undergraduate Programme. The main aim

  1. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining% accuracy. ­ 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive ­ Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships · Capital Costs (or

  2. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  3. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  4. Natural geometric representation for electron local observables

    SciTech Connect (OSTI)

    Minogin, V.G., E-mail: minogin@isan.troitsk.ru

    2014-03-15T23:59:59.000Z

    An existence of the quartic identities for the electron local observables that define orthogonality relations for the 3D quantities quadratic in the electron observables is found. It is shown that the joint solution of the quartic and bilinear identities for the electron observables defines a unique natural representation of the observables. In the natural representation the vector type electron local observables have well-defined fixed positions with respect to a local 3D orthogonal reference frame. It is shown that the natural representation of the electron local observables can be defined in six different forms depending on a choice of the orthogonal unit vectors. The natural representation is used to determine the functional dependence of the electron wave functions on the local observables valid for any shape of the electron wave packet. -- Highlights: •Quartic identities that define the orthogonality relations for the electron local observables are found. •Joint solution of quartic and bilinear identities defines a unique natural representation of the electron local observables. •Functional dependence of the electron wave functions on the electron local observables is determined.

  5. Why do we need the new BNL muon g - 2 experiment now?

    E-Print Network [OSTI]

    Hertzog, D W

    2007-01-01T23:59:59.000Z

    New final results from the CMD-2 and SND e+e- annihilation experiments, together with radiative return measurements from BaBar, lead to recent improvements in the standard model prediction for the muon anomaly. The uncertainty at 0.48 ppm--a largely data-driven result--is now slightly below the experimental uncertainty of 0.54 ppm. The difference, a_mu(expt)- a_mu(SM) = (27.6 +/- 8.4) x 10^-10, represents a 3.3 standard deviation effect. At this level, it is one of the most compelling indicators of physics beyond the standard model and, at the very least, a major constraint for speculative new theories such as SUSY or extra dimensions. Others at this Workshop detailed further planned standard model theory improvements to a_mu. Here I outline how BNL E969 will achieve a factor of 2 or more reduction in the experimental uncertainty. The new experiment is based on a proven technique and track record. I argue that this work must be started now to have maximal impact on the interpretation of the new physics antici...

  6. Strange and charm quark contributions to the anomalous magnetic moment of the muon

    E-Print Network [OSTI]

    Bipasha Chakraborty; C. T. H. Davies; G. C. Donald; R. J. Dowdall; J. Koponen; G. P. Lepage; T. Teubner

    2014-06-02T23:59:59.000Z

    We describe a new technique to determine the contribution to the anomalous magnetic moment of the muon coming from the hadronic vacuum polarization using lattice QCD. Our method reconstructs the Adler function, using Pad\\'{e} approximants, from its derivatives at $q^2=0$ obtained simply and accurately from time-moments of the vector current-current correlator at zero spatial momentum. We test the method using strange quark correlators on large-volume gluon field configurations that include the effect of up and down (at physical masses), strange and charm quarks in the sea at multiple values of the lattice spacing and multiple volumes and show that 1% accuracy is achievable. For the charm quark contributions we use our previously determined moments with up, down and strange quarks in the sea on very fine lattices. We find the (connected) contribution to the anomalous moment from the strange quark vacuum polarization to be $a_\\mu^s = 53.41(59) \\times 10^{-10}$, and from charm to be $a_\\mu^c = 14.42(39)\\times 10^{-10}$. These are in good agreement with flavour-separated results from non-lattice methods, given caveats about the comparison. The extension of our method to the light quark contribution and to that from the quark-line disconnected diagram is straightforward.

  7. SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE

    SciTech Connect (OSTI)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Abu-Zayyad, T. [Department of Physics, University of Wisconsin, River Falls, WI 54022 (United States); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Ahlers, M. [Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Auffenberg, J.; Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Bazo Alba, J. L.; Benabderrahmane, M. L.; Berdermann, J. [DESY, D-15735 Zeuthen (Germany); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Universite Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Becker, J. K. [Department of Physics, TU Dortmund University, D-44221 Dortmund (Germany)

    2010-02-10T23:59:59.000Z

    We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to +3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10{sup -3} erg cm{sup -2} (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10{sup -3} erg cm{sup -2} (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10{sup -3} erg cm{sup -2} (3 TeV-2.8 PeV) assuming an E {sup -2} flux.

  8. An atmospheric muon neutrino disappearance measurement with the MINOS far detector

    SciTech Connect (OSTI)

    Gogos, Jeremy Peter; /Minnesota U.; ,

    2007-12-01T23:59:59.000Z

    It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 {+-} 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin{sup 2} 2{theta}{sub 23} = 0.95{sub -0.32} and {Delta}m{sub 23}{sup 2} = 0.93{sub -0.44}{sup +3.94} x 10{sup -3} eV{sup 2}. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

  9. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    E-Print Network [OSTI]

    Claus, Richard; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf thro...

  10. Electrical/Electronic Engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electrical/Electronic Engineering Technology The Division of Engineering of Science in Electrical/Electronic Engineering Technology Get ready for a dynamic career in Electrical/Electronic Engineering Technology. Possible applications

  11. FREE-ELECTRON LASERS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Variable-Wiggler Free-Electron-Laser Oscillat.ion. Phys. :_.The Los Alamos Free Electron Laser: Accelerator Perfoemance.First Operation of a Free-Electron Laser. Phys . __ Rev~.

  12. FREE ELECTRON LASERS

    E-Print Network [OSTI]

    Colson, W.B.

    2008-01-01T23:59:59.000Z

    1984). Colson, W. B. , "Free electron laser theory," Ph.D.aspects of the free electron laser," Laser Handbook i,Quant. Elect. Bendor Free Electron Laser Conference, Journal

  13. Chapter 9: Electronics

    E-Print Network [OSTI]

    Spieler, Helmuth G

    2008-01-01T23:59:59.000Z

    R. Armstrong Contents Electronics 9.1 Introduction 9.2measurements 9.11 Digital electronics 9.11.1 Logic elementsProblems page 1 vii Electronics This chapter was contributed

  14. Types of Commissioning

    Broader source: Energy.gov [DOE]

    Several commissioning types exist to address the specific needs of equipment and systems across both new and existing buildings. The following commissioning types provide a good overview.

  15. Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-11-01T23:59:59.000Z

    A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

  16. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Wednesday, 25 April 2007 00:00 Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has...

  17. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in...

  18. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  19. 1 Industrial Electron Accelerators type ILU for Industrial Technologies

    E-Print Network [OSTI]

    equipment - in not protected premises. The dimensions of main units of the various ILU machines are shown the beam extraction device, air pipes of ventillation system and technological equipment are placed

  20. Electron Surfing Acceleration in Magnetic Reconnection

    E-Print Network [OSTI]

    Masahiro Hoshino

    2005-07-22T23:59:59.000Z

    We discuss that energetic electrons are generated near the X-type magnetic reconnection region due to a surfing acceleration mechanism. In a thin plasma sheet, the polarization electric fields pointing towards the neutral sheet are induced around the boundary between the lobe and plasma sheet in association with the Hall electric current. By using a particle-in-cell simulation, we demonstrate that the polarization electric fields are strongly enhanced in an externally driven reconnection system, and some electrons can be trapped by the electrostatic potential well of the polarization field. During the trapping phase, the electrons can gain their energies from the convection/inductive reconnection electric fields. We discuss that relativistic electrons with MeV energies are quickly generated in and around the X-type neutral region by utilizing the surfing acceleration.

  1. Study of electron-positron interactions

    SciTech Connect (OSTI)

    Abashian, A.; Gotow, K.; Philonen, L.

    1990-09-15T23:59:59.000Z

    For the past seven years, this group has been interested in the study of tests of the Standard Model of Electroweak interactions. The program has centered about the AMY experiment which examines the nature of the final state products in electron-positron collisions in the center of mass energy range near 60 GeV. Results of these measurements have shown a remarkable consistency with the predictions of the minimal model of 3 quark and lepton generations and single charged and neutral intermediate bosons. No new particles or excited states have been observed nor has any evidence for departures in cross sections or angular asymmetries from expectations been observed. These conclusions have been even more firmly established by the higher energy results from the LEP and SLC colliders at center of mass energies of about 90 GeV. Our focus is shifting to the neutrino as a probe to electroweak interactions. The relative merit of attempting to observe neutrinos from point sources versus observing neutrinos generally is not easy to predict. The improved ability to interpret is offset by the probably episodic nature of the emission and irreproducibility of the results. In this phase of development, it is best to be sensitive to both sources of neutrinos. As a second phase of our program at Virginia Tech, we are studying the feasibility of detecting cosmic ray neutrinos in a proposed experiment which we have called NOVA. the results of the test setup will be instrumental in developing an optimum design. A third program we are involved in is the MEGA experiment at Los Alamos, an experiment to place a limit on the rate of muon decay to electron plus photon which is forbidden by the Standard Model.

  2. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main classes of capital costs: 1. Depreciable Investment: · Investment allocated

  3. Observation of Disappearance of Muon Neutrinos in the NuMI Beam

    SciTech Connect (OSTI)

    Pavlovic, Zarko; /Texas U.

    2008-05-01T23:59:59.000Z

    The Main Injector Neutrino Oscillation Search (MINOS) is a two detector long-baseline neutrino experiment designed to study the disappearance of muon neutrinos. MINOS will test the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation hypothesis and measure precisely {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} oscillation parameters. The source of neutrinos for MINOS experiment is Fermilab's Neutrinos at the Main Injector (NuMI) beamline. The energy spectrum and the composition of the beam is measured at two locations, one close to the source and the other 735 km down-stream in the Soudan Mine Underground Laboratory in northern Minnesota. The precision measurement of the oscillation parameters requires an accurate prediction of the neutrino flux at the Far Detector. This thesis discusses the calculation of the neutrino flux at the Far Detector and its uncertainties. A technique that uses the Near Detector data to constrain the uncertainties in the calculation of the flux is described. The data corresponding to an exposure of 2.5 x 10{sup 20} protons on the NuMI target is presented and an energy dependent disappearance pattern predicted by neutrino oscillation hypotheses is observed in the Far Detector data. The fit to MINOS data, for given exposure, yields the best fit values for {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} to be (2.38{sub -0.16}{sup +0.20}) x 10{sup -3} eV{sup 2}/c{sup 4} and 1.00{sub -0.08}, respectively.

  4. Transmission-mode imaging in the environmental scanning electron microscope (ESEM)

    E-Print Network [OSTI]

    Staniewicz, Lech Thomas Leif

    2012-02-07T23:59:59.000Z

    to convert mov- ing electrons into visible light or by photographic plates for image recording. This type of electron microscope has been retrospectively called a transmis- sion electron microscope, or TEM - this is in contrast to other methods of electron... -built devices, but they are not used in SEMs and as such will not be detailed here. 1.2.3 Electron Sources There are two main types of electron sources - thermionic and field-emission. They differ in the manner by which they produce free electrons - thermionic...

  5. GEANT4 Simulation of a Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    E-Print Network [OSTI]

    Clarkson, Anthony; Hoek, Matthias; Ireland, David G; Johnstone, Russell; Kaiser, Ralf; Keri, Tibor; Lumsden, Scott; Mahon, David F; McKinnon, Bryan; Murray, Morgan; Nutbeam-Tuffs, Sian; Shearer, Craig; Staines, Cassie; Yang, Guangliang; Zimmerman, Colin

    2013-01-01T23:59:59.000Z

    Cosmic-ray muons are highly penetrative charged particles that are observed at sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be det...

  6. Search for Proton Decay into Muon plus Neutral Kaon in Super-Kamiokande I, II, and III

    E-Print Network [OSTI]

    Regis, C; Hayato, Y; Iyogi, K; Kameda, J; Koshio, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Ueno, K; Yokozawa, T; Kaji, H; Kajita, T; Kaneyuki, K; Lee, K P; Okumura, K; McLachlan, T; Labarga, L; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R A; Wongjirad, T; Ishizuka, T; Tasaka, S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Ieki, K; Ikeda, M; Kubo, H; Minamino, A; Murakami, A; Nakaya, T; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Miyake, M; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mori, T; Sakuda, M; Takeuchi, J; Kuno, Y; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Vagins, M R; Chen, S; Sui, H; Yang, Z; Zhang, H; Connolly, K; Dziomba, M; Wilkes, R J

    2012-01-01T23:59:59.000Z

    We have searched for proton into muon plus neutral kaon using data from a 91.7 kiloton-year exposure of Super-Kamiokande-I, a 49.2 kiloton-year exposure of Super-Kamiokande-II, and a 31.9 kiloton-year exposure of Super-Kamiokande-III. The number of candidate events in the data was consistent with the atmospheric neutrino background expectation and no evidence for proton decay in this mode was found. We set a partial lifetime lower limit of 1.6x10^33 years at the 90% confidence level.

  7. Search for Proton Decay into Muon plus Neutral Kaon in Super-Kamiokande I, II, and III

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; C. Regis; K. Abe; Y. Hayato; K. Iyogi; J. Kameda; Y. Koshio; Ll. Marti; M. Miura; S. Moriyama; M. Nakahata; S. Nakayama; Y. Obayashi; H. Sekiya; M. Shiozawa; Y. Suzuki; A. Takeda; Y. Takenaga; K. Ueno; T. Yokozawa; H. Kaji; T. Kajita; K. Kaneyuki; K. P. Lee; K. Okumura; T. McLachlan; L. Labarga; E. Kearns; J. L. Raaf; J. L. Stone; L. R. Sulak; M. Goldhaber; K. Bays; G. Carminati; W. R. Kropp; S. Mine; A. Renshaw; M. B. Smy; H. W. Sobel; K. S. Ganezer; J. Hill; W. E. Keig; J. S. Jang; J. Y. Kim; I. T. Lim; J. B. Albert; K. Scholberg; C. W. Walter; R. A. Wendell; T. Wongjirad; T. Ishizuka; S. Tasaka; J. G. Learned; S. Matsuno; S. N. Smith; T. Hasegawa; T. Ishida; T. Ishii; T. Kobayashi; T. Nakadaira; K. Nakamura; K. Nishikawa; Y. Oyama; K. Sakashita; T. Sekiguchi; T. Tsukamoto; A. T. Suzuki; Y. Takeuchi; K. Ieki; M. Ikeda; H. Kubo; A. Minamino; A. Murakami; T. Nakaya; Y. Fukuda; K. Choi; Y. Itow; G. Mitsuka; M. Miyake; P. Mijakowski; J. Hignight; J. Imber; C. K. Jung; I. Taylor; C. Yanagisawa; H. Ishino; A. Kibayashi; T. Mori; M. Sakuda; J. Takeuchi; Y. Kuno; S. B. Kim; H. Okazawa; Y. Choi; K. Nishijima; M. Koshiba; Y. Totsuka; M. Yokoyama; K. Martens; M. R. Vagins; S. Chen; H. Sui; Z. Yang; H. Zhang; K. Connolly; M. Dziomba; R. J. Wilkes

    2012-05-30T23:59:59.000Z

    We have searched for proton into muon plus neutral kaon using data from a 91.7 kiloton-year exposure of Super-Kamiokande-I, a 49.2 kiloton-year exposure of Super-Kamiokande-II, and a 31.9 kiloton-year exposure of Super-Kamiokande-III. The number of candidate events in the data was consistent with the atmospheric neutrino background expectation and no evidence for proton decay in this mode was found. We set a partial lifetime lower limit of 1.6x10^33 years at the 90% confidence level.

  8. The leading hadronic contribution to (g-2) of the muon: The chiral behavior using the mixed representation method

    E-Print Network [OSTI]

    Anthony Francis; Vera Guelpers; Gregorio Herdoiza; Hanno Horch; Benjamin Jaeger; Harvey B. Meyer; Hartmut Wittig

    2014-10-28T23:59:59.000Z

    We extend our analysis of the leading hadronic contribution to the anomalous magnetic moment of the muon using the mixed representation method to study its chiral behavior. We present results derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort with pion masses as low as 190 MeV. The data is analyzed also using the more standard four-momentum method. Both methods are systematically compared as the calculations approach the physical point.

  9. Electronics, Electrical Engineering

    E-Print Network [OSTI]

    SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

  10. Theoretical studies of electronically excited states

    SciTech Connect (OSTI)

    Besley, Nicholas A. [School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2014-10-06T23:59:59.000Z

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  11. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si

    E-Print Network [OSTI]

    Sun, Xiaochen

    Room temperature direct gap photoluminescence (PL) was observed from n-type tensile-strained epitaxial Ge-on-Si. The PL intensity increases with n-type doping due to a higher electron population in the direct ? valley as ...

  12. Study of the intrinsic electron neutrino component in the T2K neutrino beam with the near detector, ND280

    E-Print Network [OSTI]

    Sophie E. King

    2015-04-30T23:59:59.000Z

    T2K is an off-axis long baseline neutrino oscillation experiment optimised to measure theta13 and deltaCP using a muon neutrino beam. The most sensitive mode is to look for electron neutrino appearance, and the dominant background for such measurements is the intrinsic electron neutrino component in the beam itself. A selection is made using data from the off-axis near detector (ND280) to detect charged current (CC) electron neutrino interactions; these are split into events with no pions in the final state (nue CC0pi) and the remaining CC interactions (nue CCother). This strategy will both improve the constraint of the intrinsic background by this analysis and allow a measurement of the CC0pi cross section

  13. Types of Reuse

    Broader source: Energy.gov [DOE]

    The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

  14. Notice Type: Presolicitation

    E-Print Network [OSTI]

    components NAICS Code: 334 -- Computer and Electronic Product Manufacturing/334417 -- Electronic Connector Manufacturing Synopsis: Added: Aug 14, 2014 4:06 pm The Naval Research Laboratory has a requirement for 576 each MM4S-13420 MM4S Female 50-OHM Termination. (Microsoft IE required). Additional specifications

  15. Notice Type: Presolicitation

    E-Print Network [OSTI]

    components NAICS Code: 334 -- Computer and Electronic Product Manufacturing/334419 -- Other Electronic Component Manufacturing Synopsis: Added: Sep 03, 2014 2:53 pm The Naval Research Laboratory has a requirement for 1 each 6-18 GHz Activity Detection Module P/N: N13-4167. (Microsoft IE required). Additional

  16. Notice Type: Presolicitation

    E-Print Network [OSTI]

    : 334 -- Computer and Electronic Product Manufacturing/334419 -- Other Electronic Component Manufacturing Synopsis: Added: Jul 02, 2014 1:54 pm The Naval Research Laboratory has a requirement for 1 each No: 12072-2-RFB. (Microsoft IE required). Additional specifications and opening and closing dates

  17. Notice Type: Presolicitation

    E-Print Network [OSTI]

    equipment NAICS Code: 334 -- Computer and Electronic Product Manufacturing/334111 -- Electronic Computer Manufacturing Synopsis: Added: Sep 03, 2014 2:47 pm The Naval Research Laboratory has a requirement for 2 each-1-1-1-1. (Microsoft IE required). Additional specifications and opening and closing dates will appear in the RFQ

  18. Notice Type: Presolicitation

    E-Print Network [OSTI]

    components NAICS Code: 334 -- Computer and Electronic Product Manufacturing/334111 -- Electronic Computer Manufacturing Synopsis: Added: Sep 03, 2014 9:57 am The Naval Research Laboratory has a requirement for 2 each S required). Additional specifications and opening and closing dates will appear in the RFQ. The proposed

  19. Construction and test of high precision drift-tube (sMDT) chambers for the ATLAS muon spectrometer

    E-Print Network [OSTI]

    Sebastian Nowak; Oliver Korner; Hubert Kroha; Philipp Schwegler; Federico Sforza

    2014-07-01T23:59:59.000Z

    For the upgrade of the ATLAS muon spectrometer in March 2014 new muon tracking chambers (sMDT) with drift-tubes of 15 mm diameter, half of the value of the standard ATLAS Monitored Drift-Tubes (MDT) chambers, and 10~$\\mu$m positioning accuracy of the sense wires have been constructed. The new chambers are designed to be fully compatible with the present ATLAS services but, with respect to the previously installed ATLAS MDT chambers, they are assembled in a more compact geometry and they deploy two additional tube layers that provide redundant rack information. The chambers are composed of 8 layers of in total 624 aluminium drift-tubes. The assembly of a chamber is completed within a week. A semi-automatized production line is used for the assembly of the drift-tubes prior to the chamber assembly. The production procedures and the quality control tests of the single components and of the complete chambers will be discussed. The wire position in the completed chambers have been measured by using a coordinate measuring machine.

  20. First measurement of top quark pair production cross-section in muon plus hadronic tau final states

    SciTech Connect (OSTI)

    Sumowidagdo, Suharyo; /Florida State U.

    2007-11-01T23:59:59.000Z

    This dissertation presents the first measurement of top quark pair production cross-section in events containing a muon and a tau lepton. The measurement was done with 1 fb{sup -1} of data collected during April 2002 through February 2006 using the D0 detector at the Tevatron proton-antiproton collider, located at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois. Events containing one isolated muon, one tau which decays hadronically, missing transverse energy, and two or more jets (at least one of which must be tagged as a heavy flavor jet) were selected. Twenty-nine candidate events were observed with an expected background of 9.16 events. The top quark pair production cross-section is measured to be {sigma}(t{bar t}) = 8.0{sub -2.4}{sup +2.8}(stat){sub -1.7}{sup +1.8}(syst) {+-} 0.5(lumi) pb. Assuming a top quark pair production cross-section of 6.77 pb for Monte Carlo signal top events without a real tau, the measured {sigma} x BR is {sigma}(t{bar t}) x BR(t{bar t} {yields} {mu} + {tau} + 2{nu} + 2b) = 0.18{sub -0.11}{sup +0.13}(stat){sub -0.09}{sup +0.09}(syst) {+-} 0.01(lumi) pb.

  1. GUT-inspired SUSY and the muon g-2 anomaly: prospects for LHC 14 TeV

    E-Print Network [OSTI]

    Kowalska, Kamila; Sessolo, Enrico Maria; Williams, Andrew J

    2015-01-01T23:59:59.000Z

    We consider the possibility that the muon g-2 anomaly, $\\delta(g-2)$, finds its origins in low energy supersymmetry (SUSY). In the general MSSM the parameter space consistent with $\\delta(g-2)$ and correct dark matter relic density of the lightest neutralino easily evades the present direct LHC limits on sparticle masses and also lies to a large extent beyond future LHC sensitivity. The situation is quite different in GUT-defined scenarios where input SUSY parameters are no longer independent. We analyze to what extent the LHC can probe a broad class of GUT-inspired SUSY models with gaugino non-universality that are currently in agreement with the bounds from $\\delta(g-2)$, as well as with the relic density and the Higgs mass measurement. To this end we perform a detailed numerical simulation of several searches for electroweakino and slepton production at the LHC and derive projections for the LHC 14 TeV run. We show that, within GUT-scale SUSY there is still plenty of room for the explanation of the muon an...

  2. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    SciTech Connect (OSTI)

    Lyubushkin, Vladimir [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna (Russian Federation)

    2009-11-25T23:59:59.000Z

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (v{sub {mu}}n{yields}{mu}{sup -}p and v-bar{sub {mu}}p{yields}{mu}{sup +}n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total v{sub {mu}} (v-bar{sub {mu}}) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are <{sigma}{sub qel}>v{sub {mu}} = (0.92{+-}0.02(stat){+-}0.06(syst))x10{sup -38} cm{sup 2} and <{sigma}{sub qel}>v-bar{sub {mu}} = (0.81{+-}0.05(stat){+-}0.09(syst))x10{sup -38} cm{sup 2} for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is M{sub A} = 1.05{+-}0.02(stat){+-}0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q{sup 2} shape analysis of the high purity sample of v{sub {mu}} quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M{sub A} is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on M{sub A}, these results are compatible with the more precise NOMAD value.

  3. R-Axion: A New LHC Physics Signature Involving Muon Pairs

    SciTech Connect (OSTI)

    Goh, Hock-Seng; /UC, Berkeley /LBL, Berkeley; Ibe, Masahiro; /SLAC

    2012-04-12T23:59:59.000Z

    In a class of models with gauge mediated supersymmetry breaking, the existence of a light pseudo scalar particle, R-axion, with a mass in hundreds MeV range is predicted. The striking feature of such a light R-axion is that it mainly decays into a pair of muons and leaves a displaced vertex inside detectors once it is produced. In this talk, we show how we can search for the R-axion at the coming LHC experiments. The one main goal of the LHC experiments is discovering supersymmetry which has been anticipated for a long time to solve the hierarchy problem. Once the supersymmetric standard model (SSM) is confirmed experimentally, the next question is how the supersymmetry is broken and how the effects of symmetry breaking are mediated to the SSM sector. In most cases, such investigations on 'beyond the SSM physics' rely on arguments based on extrapolations of the observed supersymmetry mass parameters to higher energies. However, there is one class of models of supersymmetry breaking where we can get a direct glimpse of the structure of the hidden sector with the help of the R-symmetry. The R-symmetry plays an important role in rather generic models of spontaneous supersymmetry breaking. At the same time, however, it must be broken in some way in order for the gauginos in the SSM sector to have non-vanishing masses. One possibility of the gaugino mass generation is to consider models where the gaugino masses are generated as a result of the explicit breaking of the R-symmetries. Unfortunately, in those models, the R-symmetry leaves little trace for the collider experiments, since the mass of the R-axion is typically heavy and beyond the reach of the LHC experiments. In this talk, instead, we consider a class of models with gauge mediation where the R-symmetry in the hidden/messenger sectors is exact in the limit of the infinite reduced Planck scale, i.e. M{sub PL} {yields} {infinity}. In this case, the gaugino masses are generated only after the R-symmetry is broken spontaneously. We also assume that the R-symmetry is respected by the SSM sector as well as the origin of the higgsino mass {mu} and the Higgs mass mixing B{mu} at the classical level. We call this scenario, the minimal R-symmetry breaking scenario.

  4. Vortex pinning by inhomogeneities in type-II superconductors

    E-Print Network [OSTI]

    Chapman, Jon

    Vortex pinning by inhomogeneities in type-II superconductors S.J. Chapman #3;y G. Richardson zx of a curvilinear vortex in an inhomogeneous type-II superconducting material in the limit as the vortex core radius of the superconducting electrons acts as a pinning potential for the vortex, so that vortices will be attracted

  5. Electronic field permeameter

    DOE Patents [OSTI]

    Chandler, Mark A. (Madison, WI); Goggin, David J. (Austin, TX); Horne, Patrick J. (Austin, TX); Kocurek, Gary G. (Roundrock, TX); Lake, Larry W. (Austin, TX)

    1989-01-01T23:59:59.000Z

    For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.

  6. electronic reprint Acta Crystallographica Section B

    E-Print Network [OSTI]

    Vocadlo, Lidunka

    electronic reprint Acta Crystallographica Section B Structural Science ISSN 0108-7681 Structures, concluding that a CsCl-type structure would be the thermo- dynamically most stable phase for pressures calculations Lidunka Vocadlo, Geoffrey D. Price and I. G. Wood Copyright © International Union

  7. Design of thermal control systems for testing of electronics

    E-Print Network [OSTI]

    Sweetland, Matthew, 1970-

    2001-01-01T23:59:59.000Z

    In the electronic component manufacturing industry, most components are subjected to a full functional test before they are sold. Depending on the type of components, these functional tests may be performed at room ...

  8. Electronic properties of phenylated ligand-capped nanoparticle films

    E-Print Network [OSTI]

    Schilling, Thomas C

    2006-01-01T23:59:59.000Z

    An investigation was carried out of the electronic characteristics of drop-cast films comprised of phenylated ligand-capped gold nanoparticles. In homoligand-type films, the dominant mechanism of charge transfer was expected ...

  9. Search for excited muons in p anti-p collisions at s**(1/2) = 1.96- TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de

    2006-04-01T23:59:59.000Z

    We present the results of a search for the production of an excited state of the muon, {mu}*, in proton antiproton collisions at {radical}s = 1.96 TeV. The data have been collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 380 pb{sup -1}. We search for {mu}* in the process p{bar p} {yields} {mu}*{nu}, with the {mu}* subsequently decaying to a muon plus photon. No excess above the standard model expectation is observed in data. Interpreting our data in the context of a model that describes {mu}* production by four-fermion contact interactions and {mu}* decay via electroweak processes, we exclude production cross sections higher than 0.057 pb-0.112 pb at the 95% confidence level, depending on the mass of the excited muon. Choosing the scale for contact interactions to be {Lambda} = 1 TeV, excited muon masses below 618 GeV are excluded.

  10. Search for single production of scalar leptoquarks in p anti-p collisions decaying into muons and quarks with the D0 detector

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de

    2006-12-01T23:59:59.000Z

    We report on a search for second generation leptoquarks (LQ{sub 2}) which decay into a muon plus quark in p{bar p} collisions at a center-of-mass energy of {radical}s = 1.96 TeV in the D0 detector using an integrated luminosity of about 300 pb{sup -1}. No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction {beta} into a quark and a muon was determined for second generation scalar leptoquarks as a function of the leptoquark mass. This result has been combined with a previously published D0 search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark coupling, {lambda}. Assuming {lambda} = 1, lower limits on the mass of a second generation scalar leptoquark coupling to a u quark and a muon are m{sub LQ{sub 2}} > 274 GeV and m{sub LQ{sub 2}} > 226 GeV for {beta} = 1 and {beta} = 1/2, respectively.

  11. Gallium as a Possible Target Material for a Muon Collider or Neutrino Factory X. Ding, D. Cline, UCLA, Los Angeles, CA 90095, USA

    E-Print Network [OSTI]

    McDonald, Kirk

    .J. Weggel, Particle Beam Lasers, Inc., Northridge, CA 91324, USA V.B. Graves, ORNL, Oak Ridge, TN 37830, USA the peak for nickel), Liquid state at relatively low temperature (melting point = 29.8 C) , Potential plane at z = 50 m. For this analysis we select all pions and muons with 40

  12. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    SciTech Connect (OSTI)

    Muons, Inc.

    2011-05-24T23:59:59.000Z

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  13. Measurement of muon plus proton final states in $?_?$ Interactions on Hydrocarbon at $\\langle$$E_?$$\\rangle$ = 4.2 GeV

    E-Print Network [OSTI]

    T. Walton; M. Betancourt; L. Aliaga; O. Altinok; A. Bodek; A. Bravar; H. Budd; M. J. Bustamante; A. Butkevich; D. A. Martinez Caicedo; M. F. Carneiro; C. M. Castromonte; M. E. Christy; J. Chvojka; H. da Motta; M. Datta; J. Devan; S. A. Dytman; G. A. Díaz; B. Eberly; J. Felix; L. Fields; R. Fine; G. A. Fiorentini; A. M. Gago; H. Gallagher; R. Gran; D. A. Harris; A. Higuera; K. Hurtado; J. Kleykamp; M. Kordosky; S. A. Kulagin; T. Le; E. Maher; S. Manly; W. A. Mann; C. M. Marshall; C. Martin Mari; K. S. McFarland; C. L. McGivern; A. M. McGowan; B. Messerly; J. Miller; A. Mislivec; J. G. Morfín; J. Mousseau; T. Muhlbeier; D. Naples; J. K. Nelson; A. Norrick; J. Osta; V. Paolone; J. Park; C. E. Patrick; G. N. Perdue; L. Rakotondravohitra; R. D. Ransome; H. Ray; L. Ren; P. A. Rodrigues; D. Ruterbories; H. Schellman; D. W. Schmitz; C. Simon; F. D. Snider; J. T. Sobczyk; C. J. Solano Salinas; N. Tagg; B. G. Tice; E. Valencia; J. Wolcott; M. Wospakrik; G. Zavala; D. Zhang; B. P. Ziemer

    2015-04-06T23:59:59.000Z

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon and a proton and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70$^{\\circ}$ and proton kinetic energies greater than 110 MeV. The extracted cross section, when based completely on hadronic kinematics, is well-described by a simple relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multi-nucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  14. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  15. Matter & Energy Electronics

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

  16. Temperature effects on the electronic conductivity of single-walled carbon nanotubes

    E-Print Network [OSTI]

    Mascaro, Mark Daniel

    2007-01-01T23:59:59.000Z

    The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

  17. Geant4 simulation of the PSI LEM beam line: energy loss and muonium formation in thin foils and the impact of unmoderated muons on the $\\mu$SR spectrometer

    E-Print Network [OSTI]

    Khaw, Kim Siang; Crivelli, Paolo; Kirch, Klaus; Morenzoni, Elvezio; Salman, Zaher; Suter, Andreas; Prokscha, Thomas

    2015-01-01T23:59:59.000Z

    The PSI low-energy $\\mu$SR spectrometer is an instrument dedicated to muon spin rotation and relaxation measurements. Knowledge of the muon beam parameters such as spatial, kinetic energy and arrival-time distributions at the sample position are important ingredients to analyze the $\\mu$SR spectra. We present here the measured energy losses in the thin carbon foil of the muon start detector deduced from time-of-flight measurements. Muonium formation in the thin carbon foil (10 nm thickness) of the muon start detector also affect the measurable decay asymmetry and therefore need to be accounted for. Muonium formation and energy losses in the start detector, whose relevance increase with decreasing muon implantation energy ($<10$ keV), have been implemented in Geant4 Monte Carlo simulation to reproduce the measured time-of-flight spectra. Simulated and measured time-of-flight and beam spot agrees only if a small fraction of so called "unmoderated" muons which contaminate the mono-energetic muon beam of the $...

  18. Achromatic and Isochronous Electron Beam Transport for Free Electron Lasers

    E-Print Network [OSTI]

    Bengtsson, J.

    2011-01-01T23:59:59.000Z

    Beamlines for Free Electron Lasers," LBL-28880 Preprint (Thirteenth mtemational Free Electron Laser Conference, SantaTransport for Tunable Free Electron Lasers 1. Bengtsson and

  19. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

  20. Neutrinos in the Electron

    E-Print Network [OSTI]

    E. L. Koschmieder

    2006-09-26T23:59:59.000Z

    We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

  1. Dark Energy and Electrons

    E-Print Network [OSTI]

    Burra G. Sidharth

    2008-08-05T23:59:59.000Z

    In the light of recent developments in Dark Energy, we consider the electron in a such a background field and show that at the Compton wavelength the electron is stable, in that the Cassini inward pressure exactly counterbalances the outward Coulomb repulsive pressure thus answering a problem of the earlier electron theory.

  2. Notice Type: Presolicitation

    E-Print Network [OSTI]

    : 334 -- Computer and Electronic Product Manufacturing/334513 -- Instruments and Related Products Manufacturing for Measuring, Displaying, and Controlling Industrial Process Variables Synopsis: Added: Jul 19 QUADRUPOLE Mass Spectrometer. (Microsoft IE required). Additional specifications and opening and closing

  3. Notice Type: Presolicitation

    E-Print Network [OSTI]

    radiation equipment NAICS Code: 334 -- Computer and Electronic Product Manufacturing/334511 -- Search, Detection, Navigation, Guidance, Aeronautical, and Nautical System and Instrument Manufacturing Synopsis. (Microsoft IE required). Additional specifications and opening and closing dates will appear in the RFQ

  4. Notice Type: Presolicitation

    E-Print Network [OSTI]

    -- Computer and Electronic Product Manufacturing/334515 -- Instrument Manufacturing for Measuring and Testing Polarization P/N: WS-AA-2000S-ZZ-H. (Microsoft IE required). Additional specifications and opening and closing

  5. Notice Type: Presolicitation

    E-Print Network [OSTI]

    : 334 -- Computer and Electronic Product Manufacturing/334515 -- Instrument Manufacturing for Measuring-SMU and 1 each Ultra-Fast I-V Module P/N: 4225-PMU. (Microsoft IE required). Additional specifications

  6. LEFT The electron gun at the Diamond Synchrotron in

    E-Print Network [OSTI]

    Crowther, Paul

    | HowItWorks TECHNOLOGY "To convert the electronic signals into power, heat is created by kinetic energy as thermionic emission. Inside the gun there is a small filament that heats the cathode, which makes it release. There are two main types of electron gun: thermionic and field emission. The former are much more common

  7. User Guide for Disposal of Unwanted Items and Electronic Waste

    E-Print Network [OSTI]

    Mullins, Dyche

    User Guide for Disposal of Unwanted Items and Electronic Waste January 31, 2012 Jointly developed metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o and electronics of all types (working or not) o Furniture o Reusable/Recyclable items o Assets with UC Property

  8. SOLUTION-PROCESSED INORGANIC ELECTRONICS

    E-Print Network [OSTI]

    Bakhishev, Teymur

    2011-01-01T23:59:59.000Z

    Solution-Processed Graphene Electronics,” Nano Letters, vol.applications,” Organic Electronics, vol. 12, no. 2, pp. 249-design in organic electronics by dual-gate technology,” in

  9. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect (OSTI)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States) [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14T23:59:59.000Z

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  10. JLAB Electron Driver Capabilities

    SciTech Connect (OSTI)

    Kazimi, Reza [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2009-09-02T23:59:59.000Z

    Several schemes have been proposed for adding a positron beam option at the Continuous Electron Beam Facility (CEBAF) at Jefferson Laboratory (JLAB). They involve using a primary beam of electrons or gamma rays striking a target to produce a positron beam. At JLAB electron beams are produced and used in two different accelerators, CEBAF and the JLAB FEL (Free Electron Laser). Both have low emittance and energy spread. The CEBAF beam is polarized. The FEL beam is unpolarized but the injector can produce a higher current electron beam. In this paper we describe the characteristics of these beams and the parameters relevant for positron production.

  11. Disordered stoichiometric nanorods and ordered off-stoichiometric nanoparticles in n-type thermoelectric Bi?Te?.?Se?.?

    E-Print Network [OSTI]

    Carlton, Chris E.

    N-type Bi?Te?.?Se?.? bulk thermoelectric materials with peak ZT values up to ?1 were examined by transmission electron microscopy and electron diffraction. Two nanostructural features were found: (i) a structural modulation ...

  12. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    SciTech Connect (OSTI)

    Nishimura, K

    2012-07-01T23:59:59.000Z

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  13. Electron thermal conductivity owing to collisions between degenerate electrons

    E-Print Network [OSTI]

    P. S. Shternin; D. G. Yakovlev

    2006-08-17T23:59:59.000Z

    We calculate the thermal conductivity of electrons produced by electron-electron Coulomb scattering in a strongly degenerate electron gas taking into account the Landau damping of transverse plasmons. The Landau damping strongly reduces this conductivity in the domain of ultrarelativistic electrons at temperatures below the electron plasma temperature. In the inner crust of a neutron star at temperatures T scattering and becomes competitive with the the electron conductivity due to scattering of electrons by impurity ions.

  14. Performance of a Remotely Located Muon Radiography System to Identify the Inner Structure of a Nuclear Plant

    E-Print Network [OSTI]

    Fujii, H; Hashimoto, S; Ito, F; Kakuno, H; Kim, S H; Kochiyama, M; Nagamine, K; Suzuki, A; Takada, Y; Takahashi, Y; Takasaki, F; Yamashita, S

    2013-01-01T23:59:59.000Z

    The performance of a muon radiography system designed to image the inner structure of a nuclear plant located at a distance of 64 m was evaluated. We concluded absence of the fuel in the pressure vessel during the measurement period and succeeded in profiling the fuel material placed in the storage pool. The obtained data also demonstrated the sensitivity of the system to water level changes in the reactor well and the dryer-separator pool. It is expected that the system could reconstruct a 2 m cubic fuel object easily. By operating multiple systems, typically four identical systems, viewing the reactor from different directions simultaneously, detection of a 1 m cubic object should also be achievable within a few month period.

  15. Performance of a Remotely Located Muon Radiography System to Identify the Inner Structure of a Nuclear Plant

    E-Print Network [OSTI]

    H. Fujii; K. Hara; S. Hashimoto; F. Ito; H. Kakuno; S. H. Kim; M. Kochiyama; K. Nagamine; A. Suzuki; Y. Takada; Y. Takahashi; F. Takasaki; S. Yamashita

    2013-05-15T23:59:59.000Z

    The performance of a muon radiography system designed to image the inner structure of a nuclear plant located at a distance of 64 m was evaluated. We concluded absence of the fuel in the pressure vessel during the measurement period and succeeded in profiling the fuel material placed in the storage pool. The obtained data also demonstrated the sensitivity of the system to water level changes in the reactor well and the dryer-separator pool. It is expected that the system could reconstruct a 2 m cubic fuel object easily. By operating multiple systems, typically four identical systems, viewing the reactor from different directions simultaneously, detection of a 1 m cubic object should also be achievable within a few month period.

  16. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-04-01T23:59:59.000Z

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|T up to 40 GeV/c, the angular distributions are found to be nearlymore »isotropic.« less

  17. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01T23:59:59.000Z

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  18. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01T23:59:59.000Z

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|T up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  19. Typed Self-Optimization

    E-Print Network [OSTI]

    Brown, Matt

    2013-01-01T23:59:59.000Z

    type T y[O]. The operator IsIs is self-applicative, in thatargument t is any of Is[O] or IsIs, and otherwise behavesproof constant introduced by IsIs proves that the type of t

  20. Your Guide to Diabetes: Type 1 and Type 2

    E-Print Network [OSTI]

    Rau, Don C.

    Your Guide to Diabetes: Type 1 and Type 2 National Diabetes Information Clearinghouse #12;#12;Your Guide to Diabetes: Type 1 and Type 2 #12;#12;Contents Learn about Diabetes ............................................................ 1 What is diabetes? .............................................................. 2 What