National Library of Energy BETA

Sample records for types combustion turbine

  1. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

  2. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  3. The Relative Economic Merits of Storage and Combustion Turbines...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics Paul Denholm, Victor...

  4. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  5. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Presentation on...

  6. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  7. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  8. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O'Brien, Kevin C. (San Ramon, CA)

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  9. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  10. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  11. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect (OSTI)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  12. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  13. Experimental Investigations of Partially Premixed Hydrogen Combustion in Gas Turbine Environments

    E-Print Network [OSTI]

    North, Andrew

    2013-01-01

    H. Koch, ASME J. Eng. Gas Turbines and Power P. Patnaik, AMazzocchi, ASME J. of Eng. Gas Turbines and Power [3] K.M.Hydrogen Combustion in Gas Turbine Environments By Andrew

  14. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

  15. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  16. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  17. Waves Transmission and Generation in Turbine Stages in a Combustion-Noise Framework

    E-Print Network [OSTI]

    Nicoud, Franck

    Waves Transmission and Generation in Turbine Stages in a Combustion-Noise Framework M. Leyko SNECMA) and downstream (turbine) turbo-machinery stages; and (b) an additional source of noise, the indirect combustion waves when they accelerate in the downstream turbine stages. Candel1 showed that this source could

  18. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect (OSTI)

    T.E. Lippert; D.M. Bachovchin

    2004-03-31

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. In addition to kinetic modeling and experimental task, CFD modeling (by Texas A&M) of airfoil injection and its effects on blade aerodynamics and turbine performance. This report discusses validation of the model against single-vane combustion test data from Siemens Westinghouse, and parametric studies of injection reheat in a modern turbine. The best location for injection is at the trailing edge of the inlet guide vane. Combustion is incomplete at trailing edges of subsequent vanes. Recommendations for further development are presented.

  19. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect (OSTI)

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  20. A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines

    E-Print Network [OSTI]

    Daraio, Chiara

    Turbines Mirko R. Bothien, Nicolas Noiray, Bruno Schuermans Alstom, Baden, Switzerland Abstract Damping of thermoacoustically induced pressure pulsations in combustion chambers is a major focus of gas turbine operation turbines. Usually, however, the damping optimum is in a narrow frequency band at one operating condition

  1. Chemical Kinetics in Support of Syngas Turbine Combustion

    SciTech Connect (OSTI)

    Dryer, Frederick

    2007-07-31

    This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We adjusted emphasis of Task 2 to understand the source of these noted disparities because of their key importance to developing lean premixed combustion technologies of syngas turbine applications. In performing Task 3, we also suggest for the first time the very significant effect that metal carbonyls may have on syngas combustion properties. This work is fully detailed. The work on metal carbonyl effects is entirely computational in nature. Pursuit of experimental verification of these interactions was beyond the scope of the present work.

  2. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  3. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

  4. Axially staged combustion system for a gas turbine engine

    DOE Patents [OSTI]

    Bland, Robert J. (Oviedo, FL)

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  5. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect (OSTI)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  6. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  7. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  8. An investigation into the feasibility of an external combustion, steam injected gas turbine 

    E-Print Network [OSTI]

    Ford, David Bruce

    1981-01-01

    AN INVESTIGATION INTO THE FEASIBILITY OF AN EXTERNAL COMBUSTION, STEAM INJECTED GAS TURBINE A Thesis by DAVID BRUCE FORD Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May, 19SI Major Subject: Mechanical Engineering AN INVESTIGATION INTO THE FEASIBILITY OF AN EXTERNAL COMBUSTION i STEAM INJECTED GAS TURBINE A Thesis DAVID BRUCE FORD Approved as to style and content by: & cene 'u Co...

  9. Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines

    E-Print Network [OSTI]

    Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found and coupled with the LES solver of the gas phase. The equations used for each phase and the coupling terms

  10. On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers

    E-Print Network [OSTI]

    Daraio, Chiara

    On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers with the dynamics of standing and rotating azimuthal thermoacoustic modes in annular combustion chambers source intensity, the asymmetry in the system and the strength of the thermo-acoustic interaction

  11. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Isvoranu, Dragos D.; Cizmas, Paul G. A.

    2003-01-01

    This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore »used to investigate the flow and combustion in a one-stage turbine combustor.« less

  12. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01

    operation of gas turbines (especially combustion turbines inthe development of gas turbines, especially combustion gas

  13. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  14. Performance evaluation of a gas turbine cycle with a pulse combustion system

    SciTech Connect (OSTI)

    El-Gizawy, I.G.; Gadalla, M.A. [Helwan Univ., Cairo (Egypt). Mechanical Power Engineering Dept.

    1997-12-31

    This paper presents a comprehensive analysis of the effect of a pulse combustion system on the performance of a gas turbine cycle. The advantages of pulse combustors are numerous. The heat transfer is enhanced by the large oscillations resulting in the flowfield within the combustion zone. These oscillations arise from intrinsic combustion driven instabilities, similar to those that occur in rocket motors. The enhanced heat transfer means that a smaller combustion chamber (furnace) can be used to provide the same energy output. Moreover, a reduction in the No{sub x} level in the exhaust gases can be obtained without additional pollution control. The purpose of this paper, is to analyze theoretically the effect of pulse combustion system on the performance of a gas turbine cycle so that the resultant changes in performance can be estimated without experiment. In addition, this paper investigates the utilization of converting part of chemical energy of fuel into pressure energy in the combustion chamber of a gas turbine utilizing a pulse combustor. A computer code has been written to evaluate the cycle performance, thermodynamic characteristics of the cycle during operation as compared with a conventional cycle. The study describes the influence of the maximum possible pressure rise in combustion chamber, the heat addition ratio, maximum temperature and compressor pressure ratio on the performance parameters such as fuel consumption, net work output, excess air factor and thermal efficiency.

  15. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation 

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    1994-01-01

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  16. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  17. LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Vivek Khanna

    2002-09-30

    Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

  18. A recuperative external combustion open cycle gas turbine 

    E-Print Network [OSTI]

    Benson, Dan Thomas

    1979-01-01

    Annulus Turbine Exhaust Outer Gas Annulus B. B Shell ~ Heavy Fin Rivet nin Light Fin Outer Air Annulus Inner Air Annulus Outer Liner Divider Combustor Inner Liner Figure 4 RECOC Test Engine 13 Table 1 Solar T-62T-17 Gas Turbine MODEL... test engine, a Go-Power D312 water brake dynamometer was available. The power output was the product of the dynamometer torque reading multiplied by shaft speed. The heat imput rate was calculated by flowing fuel from the 2000 ml test vol'- ume...

  19. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    SciTech Connect (OSTI)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  20. Combined catalysts for the combustion of fuel in gas turbines

    DOE Patents [OSTI]

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  1. Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air 

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Mani, G.

    1983-01-01

    -'--I:~:::=+~:="'t-':::ty= 0 I---t--~~~~h;!:::::"" y~ .2 ,pa .? )/,. .(, ~-N--~-"IY;: .g Y.. I.e ,oR !?IIT/O ~ 1S'1~III!1S PREssuRE RI'1TIO 20 L , --:-3--:':5--?L..l...l.9A..l..l.lJl.....;lo.l..~? Figure 11: Effect of Bleed Air Rates (~) on ~hermal Efficiency... :-: 0.97 40 P, 147 psia P, = 15.0 psia > u c: .!!!20 o ",. EIO ~ A G; -= ~-r 10 20 40 60 80 100 120 140 net output work (Btu/lb-air) Figure 1: Simple Cycle; Brayton Cycle Gas Turbine and Performance Map. 411 ESL-IE-83...

  2. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect (OSTI)

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  3. Hot spot detection system for vanes or blades of a combustion turbine

    DOE Patents [OSTI]

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  4. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  5. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01

    of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

  6. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01

    Modeling for Gas Turbine Engines," 34th AIAA/ASME/SAE/ASEECombustion Instabilities in Gas Turbine Engines: Operationalcombustion systems in gas-turbine engines. However, as the

  7. Turbulent Combustion in Type Ia Supernova Models

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt

    2006-09-15

    We review the astrophysical modeling of type Ia supernova explosions and describe numerical methods to implement numerical simulations of these events. Some results of such simulations are discussed.

  8. Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  9. Dual-Fuel Combustion Turbine Provides Reliable Power to U.S. Navy Submarine Base New London in Groton, Connecticut

    SciTech Connect (OSTI)

    Halverson, Mark A.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB)

    2002-01-01

    In keeping with a long-standing tradition of running Base utilities as a business, the U.S. Navy Submarine Base New London installed a dual-fuel combustion turbine with a heat recovery boiler. The 5-megawatt (MW) gas- and oil-fired combustion turbine sits within the Lower Base area, just off the shores of the Thames River. The U.S. Navy owns, operates, and maintains the combined heat and power (CHP) plant, which provides power to the Navy?s nuclear submarines when they are in port and to the Navy?s training facilities at the Submarine Base. Heat recovered from the turbine is used to produce steam for use in Base housing, medical facilities, and laundries. In FY00, the Navy estimates that it will save over $500,000 per year as a result of the combined heat and power unit.

  10. Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors

    SciTech Connect (OSTI)

    Gong, Xun; An, Linan; Xu, Chengying

    2013-06-30

    The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300{degrees}C and pressure sensors up to 800oC. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in this project can survive harsh environments characterized by high temperatures (>1000{degrees}C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.

  11. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01

    of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2001. Vol. 123:

  12. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    SciTech Connect (OSTI)

    Denholm, Paul; Diakov, Victor; Margolis, Robert

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  13. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

    2012-03-27

    A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

  14. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect (OSTI)

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  15. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-05

    Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

  16. Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors 

    E-Print Network [OSTI]

    Waterland, A. F.

    1984-01-01

    A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

  17. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    SciTech Connect (OSTI)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

  18. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOE Patents [OSTI]

    Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  19. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01

    W. , " A Model For The Thermoacoustic Response of A premixedThe Calculation of Thermoacoustic Oscillations," Journal ofKeller , J. J. , " Thermoacoustic Oscillations in Combustion

  20. Multi-phase Combustion and Transport Processes Under the Influence of Acoustic Excitation

    E-Print Network [OSTI]

    Wegener, Jeffrey Lewis

    2014-01-01

    and Aeronautics: Combustion Instabilities in Gas Turbinefor combustion instability in lean premixed gas turbineBlust. Combustion instabilities in industrial gas turbines:

  1. LES Simulations of Turbulent Combustion in a Type Ia Supernovae

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    to be thermonuclear explosions of white dwarfs. SNIa are important sources of energy and chemical elements deposited of the burning are all determined by the speed of thermonuclear burning [27]. The problem of turbulent combustionE= _ S. Here #21; is the electron mean free path, E is a characteristic energy per unit mass, c

  2. Combustion Noise

    E-Print Network [OSTI]

    Dowling, Ann P.; Mahmoudi, Yasser

    2014-01-01

    Combustion noise is becoming increasingly important as a major noise source in aeroengines and ground based gas turbines. This is partially because advances in design have reduced the other noise sources, and partially because next generation...

  3. Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities

    E-Print Network [OSTI]

    Nicoud, Franck

    Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities A. KAUFMANN* and F of combustion instabilities in gas turbine combustors require the knowledge of flame transfer functions. Those flame) and for one case where a CFD code is necessary (a laminar Bunsen-type flame). © 2002

  4. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  5. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  6. Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel

    SciTech Connect (OSTI)

    Lieuwen, Tim; Santavicca, Dom; Yang, Vigor

    2012-03-31

    During the duration of this sponsorship, we broadened our understanding of combustion instabilities through both analytical and experimental work. Predictive models were developed for flame response to transverse acoustic instabilities and for quantifying how a turbulent flame responds to velocity and fuel/air ratio forcing. Analysis was performed on the key instability mechanisms controlling heat release response for flames over a wide range of instability frequencies. Importantly, work was done closely with industrial partners to transition existing models into internal instability prediction codes. Experimentally, the forced response of hydrogen-enriched natural gas/air premixed and partially premixed flames were measured. The response of a lean premixed flame was investigated, subjected to velocity, equivalence ratio, and both forcing mechanisms simultaneously. In addition, important physical mechanisms controlling the response of partially premixed flames to inlet velocity and equivalence ratio oscillations were analyzed. This final technical report summarizes our findings and major publications stemming from this program.

  7. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect (OSTI)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  8. Massively-Parallel Spectral Element Large Eddy Simulation of a Ring-Type Gas Turbine Combustor 

    E-Print Network [OSTI]

    Camp, Joshua Lane

    2012-07-16

    The average and fluctuating components in a model ring-type gas turbine combustor are characterized using a Large Eddy Simulation at a Reynolds number of 11,000, based on the bulk velocity and the mean channel height. A spatial filter is applied...

  9. Assessment of Dynamic Closure for Premixed Combustion LES

    E-Print Network [OSTI]

    Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan

    2015-08-04

    model 1. Introduction High efficiency and low emission can be achieved simultaneously for power plants used in transport sectors, specifically gas turbines, using lean turbulent premixed combustion. A strong interplay between thermochemical and fluid... stream_source_info Langella et al 2015 Combustion Theory and Modelling.pdf.txt stream_content_type text/plain stream_size 77455 Content-Encoding UTF-8 stream_name Langella et al 2015 Combustion Theory and Modelling.pdf.txt Content...

  10. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Lefebvre, A.H. , 1999, Gas Turbine Combustion (2 nd Ed. ),1981, “Hydrogen Combustion Test in a Small Gas Turbine,”Combustion Performance of Hydrogen in a Small Gas Turbine

  11. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  12. Combined Cycle Combustion Turbines

    E-Print Network [OSTI]

    and baseload · Can provide support for renewable power and serve as coal replacement · Becoming more flexible, Oregon and Washington ­ along with a few selected NERC regions: NPCC ­ the Northeastern US and Canada WECC - the West (the Northwest is included) TRE - most of Texas MRO ­ the upper Midwest US and Canada

  13. Advanced Combustion Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advanced Energy

  14. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  15. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  16. Low-pressure-ratio regenerative exhaust-heated gas turbine

    SciTech Connect (OSTI)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  17. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

  18. Gas turbine premixing systems

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  19. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  20. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    and robust combustion concept for gas turbines. The use of acombustion systems have been adopted by virtually every industrial gas turbinegas turbines is non-trivial due to the dynamic nature of the combustion

  1. Status of pulse combustion applications in (1) steam reforming of coal, (2) fluid bed combustion of coal, and (3) direct coal fired gas turbine

    SciTech Connect (OSTI)

    Durai-Swamy, K. [ThermoChem, Inc., Santa Fe Springs, CA (United States); Chandran, R.; Said, H.; Steedman, W.

    1994-12-31

    ThermoChem, Inc. has designed a 450 T/D wet coal gasification by indirect, pulse-combustor-heated, steam reforming process. The plant site is Gillette, Wyoming. Products from the demo project are: (1) High pressure steam for a K-Fuel coal upgrading plant and (2) Medium Btu syngas, which could be used for power generation or methanol production. The indirect heated steam reformer could also produce a char by-product (if desired) that could be used as a reductant in direct iron making (DRI) process. There has been interest for char production as well. ThermoChem is constructing a pulse assisted, atmospheric pressure fluid bed combustor unit (PAFBC) to produce 50,000 lb/hr of steam, at Clemson University in South Carolina. MTCI`s developing a pressurized pulse coal combustor coupled with bimodal ash agglomeration, sulfur capture and solids removal features, such that the hot flue gas can be directly expanded in a gas turbine to generate power. The status of these Clean Coal Technologies is presented in this paper.

  2. A Portable Expert System for Gas Turbine Maintenance 

    E-Print Network [OSTI]

    Quentin, G. H.

    1989-01-01

    Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

  3. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  4. Investigation of the combustion of liquid fuels in Rijke type pulse combustors

    SciTech Connect (OSTI)

    Zinn, B.T.; Daniel, B.R.; Bai, T.

    1990-01-01

    The synopsis summarizes the accomplishments of DOE Contract NO. AS04-85AL31881, which investigated the combustion of different liquid fuels in Rijke type pulse combustors. Interest in the development of a Rijke pulse combustor capable of burning liquid fuels was stimulated by earlier studies by the investigators of this program which had demonstrated that various coals can be burned efficiently and with low pollutant emissions in Rijke type pulse combustors. This research program consisted of three tasks. Task A was concerned with the development of a Rijke pulse combustor design capable of burning different liquid fuels, and determination of the performances of uninsulated and insulated versions of the developed Rijke pulse combustor when burning different liquid fuels under different operating conditions. Task B was concerned with the elucidation of the mechanisms responsible for driving the pulsations in the developed combustors, and Task C was concerned with the determination of the dependence of the combustor performance upon the amplitude of pulsations. The results of these studies are briefly discussed in the remainder of this document. 2 figs.

  5. Yale ME Turbine Test cell instructions Background

    E-Print Network [OSTI]

    Haller, Gary L.

    Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

  6. A Study of Advanced Materials for Gas Turbine Coatings at Elevated Temperatures Using Selected Microstructures and Characteristic Environments for Syngas Combustion

    SciTech Connect (OSTI)

    Ravinder Diwan; Patrick Mensah; Guoqiang Li; Nalini Uppu; Strphen Akwaboa; Monica Silva; Ebubekir Beyazoglu; Ogad Agu; Naresh Polasa; Lawrence Bazille; Douglas Wolfe; Purush Sahoo

    2011-02-10

    Thermal barrier coatings (TBCs) that can be suitable for use in industrial gas turbine engines have been processed and compared with electron beam physical vapor deposition (EBPVD) microstructures for applications in advanced gas turbines that use coal-derived synthesis gas. Thermo-physical properties have been evaluated of the processed air plasma sprayed TBCs with standard APS-STD and vertically cracked APS-VC coatings samples up to 1300 C. Porosity of these selected coatings with related microstructural effects have been analyzed in this study. Wet and dry thermal cycling studies at 1125 C and spalling resistance thermal cycling studies to 1200 C have also been carried out. Type I and Type II hot corrosion tests were carried out to investigate the effects of microstructure variations and additions of alumina in YSZ top coats in multi-layered TBC structures. The thermal modeling of turbine blade has also been carried out that gives the capability to predict in-service performance temperature gradients. In addition to isothermal high temperature oxidation kinetics analysis in YSZ thermal barrier coatings of NiCoCrAlY bond coats with 0.25% Hf. This can affect the failure behavior depending on the control of the thermally grown oxide (TGO) growth at the interface. The TGO growth kinetics is seen to be parabolic and the activation energies correspond to interfacial growth kinetics that is controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. The difference between oxidation behavior of the VC and STD structures are attributed to the effects of microstructure morphology and porosity on oxygen ingression into the zirconia and TGO layers. The isothermal oxidation resistance of the STD and VC microstructures is similar at temperatures up to 1200 C. However, the generally thicker TGO layer thicknesses and the slightly faster oxidation rates in the VC microstructures are attributed to the increased ingression of oxygen through the grain boundaries of the vertically cracked microstructures. The plasma sprayed TBC microstructure (VC and STD) with NiCoCrAlY-Hf bond coat are stable up to 1100 C. However, as with other TBC structures, a considerable amount of interdiffusion was observed in the different layers, although the TBC growth was self-limiting and parabolic. The addition of Hf to the VC microstructure appears to have some potential for the future development of robust TBCs with improved isothermal and service temperatures in advanced gas turbines.

  7. Numerical Study On A SPAR Type Floating Offshore Wind Turbine Using COUPLE-FAST Code 

    E-Print Network [OSTI]

    Peng, Cheng

    2015-03-03

    Floating offshore wind turbine (FOWT) attracts more and more attention for harnessing wind power over the surface of relatively deep ocean water, where steady and strong wind occurs. Although it has been shown that the knowledge gained from...

  8. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report

    SciTech Connect (OSTI)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  9. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  10. Predictive modeling of combustion processes

    E-Print Network [OSTI]

    Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

  11. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect (OSTI)

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  12. Method for detecting gas turbine engine flashback

    DOE Patents [OSTI]

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

  13. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    E-Print Network [OSTI]

    Grcar, Joseph F

    2008-01-01

    411–422. [9] I. Glassman, Combustion, 3rd Edition, AcademicB. Lewis, G. von Elbe, Combustion, Flames and Explosions ofin Ultra-Lean, Hydrogen-Air Combustion Joseph F. Grcar a a

  14. Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

    E-Print Network [OSTI]

    Littlejohn, David

    2008-01-01

    of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

  15. Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

    E-Print Network [OSTI]

    Littlejohn, David

    2008-01-01

    of Engineering for Gas Turbines and Power-Transactions ofCOLLOQUIM 11. IC ENGINE AND GAS TURBINE COMBUSTION SHORTInjector for Lean Premixed Gas Turbines D. Littlejohn and R.

  16. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  17. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Little, David Allen (Oviedo, FL)

    2001-01-01

    A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.

  18. Industry Motivated Advancements of Current Combustion Instability Model: The Conversion of

    E-Print Network [OSTI]

    Flandro, Gary A.

    INSTABILITY CHARACTERISTICS IN GAS TURBINES ...................- 5 - 1.5. COMBUSTION INSTABILITYIndustry Motivated Advancements of Current Combustion Instability Model: The Conversion of Volume to thank Dr. Flandro. His eternal knowledge of Combustion Instability has resonated in this work and his

  19. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  20. Economical Condensing Turbines

    E-Print Network [OSTI]

    Dean, J. E.

    1997-01-01

    Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown turbines reduce the pressure... of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: ? Letdown turbines produce power based upon steam requirements and not based upon power requirements, and ? If all...

  1. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  2. Influence of steel type on the propensity for tribochemical wear in boundary lubrication with a wind turbine gear oil

    SciTech Connect (OSTI)

    Evans, Ryan D.; Doll, Gary L.; Hager, C H; Howe, Jane Y

    2010-01-01

    Tribochemical wear may occur at the interface between a surface and a lubricant as a result of chemical and mechanical interactions in a tribological contact. Understanding the onset of tribochemical wear damage on component surfaces requires the use of high resolution techniques such as transmission electron microscopy (TEM). In this study, two steel types, case carburized AISI 3310 and through-hardened AISI 52100, were wear tested using a ball-on-disk rolling/sliding contact tribometer in fully formulated commercial wind turbine gearbox oil under boundary lubrication conditions with 10% slip. With the exception of steel type, all other test conditions were held constant. Conventional tribofilm analysis in the wear tracks was performed using X-ray photoelectron spectroscopy, and no significant composition differences were detected in the tribofilms for the different steel disk types. However, TEM analysis revealed significant tribochemical wear differences between the two steel types at multiple length scales, from the near-surface material microstructure (depth < 500 nm) to the tribofilm nanostructure. Nanometer-scale interfacial cracking and surface particle detachment was observed for the AISI 52100 case, whereas the tribofilm/substrate interface was abrupt and undamaged for the AISI 3310 case. Differences in tribofilm structure, including the location and orientation of MoS{sub 2} single sheet inclusions, were observed as a function of steel type as well. It is suggested that the tribochemical wear modes observed in these experiments may be origins of macroscopic surface-initiated damage such as micropitting in bearings and gears.

  3. Serial cooling of a combustor for a gas turbine engine

    DOE Patents [OSTI]

    Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  4. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    emissions from aircraft gas turbine engines. Paper No. 27-1.engines. The gas turbine engine which is used extensively inturbine combustor exhaust as a function of fuel type and engine

  5. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  6. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    SciTech Connect (OSTI)

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  7. Combustion 2000

    SciTech Connect (OSTI)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has s

  8. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOE Patents [OSTI]

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  9. Time varying voltage combustion control and diagnostics sensor

    DOE Patents [OSTI]

    Chorpening, Benjamin T. (Morgantown, WV); Thornton, Jimmy D. (Morgantown, WV); Huckaby, E. David (Morgantown, WV); Fincham, William (Fairmont, WV)

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  10. Combustion characteristics of alternative liquid fuels

    E-Print Network [OSTI]

    Chong, Cheng Tung

    2011-11-08

    atomizer are investigated using a phase Doppler anemometry (PDA) under non-reacting conditions. The droplet size and velocity distribution of biodiesels are compared to conventional fuels. For spray combustion investigations, a generic gas turbine...

  11. Combustion systems for power-MEMS applications

    E-Print Network [OSTI]

    Spadaccini, Christopher M. (Christopher Michael), 1974-

    2004-01-01

    As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this thesis presents the design, fabrication, experimental testing, and modeling of the combustion ...

  12. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  13. Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture

    E-Print Network [OSTI]

    Cooper, Doug

    to as Combustion Turbine Generators (CTGs). Each unit is connected to a Rentech Heat Recovery Steam Generator (HRSG) which captures waste heat from combustion turbine exhaust to produce steam for the campus's heatingActive NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade

  14. PHYSICS OF FLUIDS 25, 055107 (2013) Turbulent premixed combustion in V-shaped flames

    E-Print Network [OSTI]

    Gülder, Ömer L.

    2013-01-01

    industrial combustion systems such as, stationary gas turbines, lean premixed and prevaporized jet engines for simulating combustion in gas turbine engines. Second, although a large body of research has been devotedPHYSICS OF FLUIDS 25, 055107 (2013) Turbulent premixed combustion in V-shaped flames

  15. Combustion & Health 

    E-Print Network [OSTI]

    Hamilton, W.

    2012-01-01

    stream_source_info ESL-KT-12-10-18.pdf.txt stream_content_type text/plain stream_size 4107 Content-Encoding ISO-8859-1 stream_name ESL-KT-12-10-18.pdf.txt Content-Type text/plain; charset=ISO-8859-1 FFCOMBUSTION & HEALTH... Winifred J. Hamilton, PhD, SM Clear Air Through Energy Efficiency (CATEE) Galveston, TX October 9?11, 2012 FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? Biggest threat to world ecosystems (and to human health) ? Combustion of fossil fuels...

  16. Pressure-gain combustion

    SciTech Connect (OSTI)

    Richards, G.A.; Yip, J.; Gemmen, R.S.; Janus, M.C.; Norton, T. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-11-01

    Pulse combustion has been proposed for gas turbine applications in many early articles and more recently has been demonstrated to produce so-called ``pressure-gain`` in a small gas turbine. The basic concept is that the oscillatory combustion occurs as a constant-volume process, producing a gain in the stagnation pressure of air flowing through the combustor, rather than the pressure loss associated with conventional, steady combustion. If properly utilized, this pressure-gain could enhance simple-cycle gas turbine efficiency several percent, depending on the operating conditions. In addition, pulse combustors have demonstrated relatively low NO{sub x} pollutant levels in some applications. The combined potential for higher cycle efficiency and lower pollutant levels is the basis for the present investigation. Tests in progress at the Morgantown Energy Technology Center (METC) have considered a baseline pulse combustor configuration that has shown good oscillating performance, low NO{sub x} emissions, but disappointing results in terms of pressure-gain. However, a combination of numeric simulations and test data suggest that pressure-gain can be produced by a select combination of operating conditions and combustor geometry, but is especially sensitive to the combustor inlet geometry. Tests in progress will evaluate the effect of inlet geometry and operating pressure on both pollutant emissions and pressure-gain.

  17. Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1

    E-Print Network [OSTI]

    Liu, Feng

    1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

  18. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  19. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  20. Combustion instability modeling and analysis

    SciTech Connect (OSTI)

    Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  1. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  2. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 693702 COMPUTATIONAL AND EXPERIMENTAL STUDY OF A FORCED, TIME-

    E-Print Network [OSTI]

    Long, Marshall B.

    's cyclic history. Introduction Most practical combustion systems, such as gas turbines and industrial693 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 693 systems that help bridge the gap between laminar and turbulent combustion. In this study, we investigate

  3. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  4. Advanced coal-fueled gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  5. DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE Final Technical...

    Office of Scientific and Technical Information (OSTI)

    types of hydraulic turbines are presently used for harnessing hydropower, namely: Kaplan, Francis and Pelton and some of their modifications such as Bulb or Straflo turbines....

  6. Influence of hole shape on the performance of a turbine vane endwall film-cooling scheme

    E-Print Network [OSTI]

    Thole, Karen A.

    Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream industrial gas turbine engines. One means of achieving this goal is to increase the combustion temper- ature are so high in today's gas turbine engines that in the absence of complex cooling schemes the turbine

  7. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

  8. Integrating Gas Turbines with Cracking Heaters - Impact on Emissions and Energy Efficiency 

    E-Print Network [OSTI]

    Platvoet, E.

    2011-01-01

    Turbine Exhaust Gas (TEG) contains high levels of oxygen, typically 15 vol. percent, due to gas turbine blade material temperature limits. As such it can be used as an oxidant for combustion in cracking furnaces and reformers. Its high temperature...

  9. American Institute of Aeronautics and Astronautics Numerical Simulation of a Gas Turbine Combustor Using

    E-Print Network [OSTI]

    Roy, Subrata

    1 American Institute of Aeronautics and Astronautics Numerical Simulation of a Gas Turbine of combustion by using nanosecond pulsed plasma actuators for a gas turbine combustor. Moreau [2] and Corke et

  10. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T. (Denver, IA)

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  11. COMBUSTION RESEARCH Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    Turbine Engine Pollution," Progress in Energy and Combustionpollution, and are at the center of the field of fire safety. The art of combustion

  12. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  13. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

  14. Combustion and Flame 143 (2005) 613628 www.elsevier.com/locate/combustflame

    E-Print Network [OSTI]

    Long, Marshall B.

    2005-01-01

    combustion devices include gas turbines, furnaces, and internal combustion engines. While pre- mixedCombustion and Flame 143 (2005) 613­628 www.elsevier.com/locate/combustflame Soot formation volume fractions, as the fuel fraction increases. 2005 The Combustion Institute. Published by Elsevier

  15. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  16. Full hoop casing for midframe of industrial gas turbine engine

    DOE Patents [OSTI]

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  17. Sealed Combustion

    SciTech Connect (OSTI)

    2009-05-12

    This information sheet discusses the benefits of sealed combustion appliance units in order to ensure good indoor air quality.

  18. Singular perturbation problem in boundary/fractional combustion

    E-Print Network [OSTI]

    2015-08-18

    reaction-diffusion equation, where the reaction term is of combustion type. ... Free boundary problem, combustion theory, boundary reaction- diffusion, fractional ...

  19. Guide to Low-Emission Boiler and Combustion Equipment Selection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emission Boiler and Combustion Equipment Selection Guide to Low-Emission Boiler and Combustion Equipment Selection The guide provides background information about various types...

  20. Effect of Hydrocarbon Emissions From PCCI-Type Combustion On The Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL] [ORNL; Pihl, Josh A [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Parks, II, James E [ORNL

    2011-01-01

    Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench- reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  1. Effect of Hydrocarbon Emissions From PCCI-Type Combustion on the Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

    2011-01-01

    Core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  2. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  3. Cooling scheme for turbine hot parts

    DOE Patents [OSTI]

    Hultgren, Kent Goran (Winter Park, FL); Owen, Brian Charles (Orlando, FL); Dowman, Steven Wayne (Orlando, FL); Nordlund, Raymond Scott (Orlando, FL); Smith, Ricky Lee (Oviedo, FL)

    2000-01-01

    A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

  4. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01

    CombustionCombustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Coupled Droplet Combustion . . . . . . . . . . . . Burning

  5. NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2007-01-01

    Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG). One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out by varying the inlet mass flow while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effect of turbine matching between the NG and SG cases was approximately 10 C, and 8 to 14% for rotor inlet temperature and total cooling flows, respectively. These results indicate that turbine-compressor matching, before and after fuel change, must be included in turbine models. The last stage of the turbine, for the SG case, experienced higher inner wall temperatures than the corresponding case for NG, with the temperature of the vane approaching the maximum allowable limit. This paper was published by ASME as paper no. GT2007-27530.

  6. Control system for supercharged internal combustion engine

    SciTech Connect (OSTI)

    Kawamura, H.

    1988-05-24

    A control system for controlling an internal combustion engine is described having a supercharge including a rotatable shaft and an exhaust turbine driven by exhaust gas. The control system comprising: a rotary electric machine mounted on the rotatable shaft of the supercharger for imposing a load on the exhaust turbine of the supercharger; setting means for setting an engine brake mode of the internal combustion engine; and operating means for operating the rotary electric machine when the engine brake mode is set by the setting means.

  7. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  8. CONCEPTUAL DESIGN AND ECONOMICS OF A NOMINAL 500 MWe SECOND-GENERATION PFB COMBUSTION PLANT

    SciTech Connect (OSTI)

    A. Robertson; H. Goldstein; D. Horazak; R. Newby

    2003-09-01

    Research has been conducted under United States Department of Energy Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48 percent, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler, and the combustion of carbonizer syngas in a gas turbine combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design and an economic analysis was previously prepared for this plant. When operating with a Siemens Westinghouse W501F gas turbine, a 2400psig/1000 F/1000 F/2-1/2 in. Hg. steam turbine, and projected carbonizer, PCFB, and topping combustor performance data, the plant generated 496 MWe of power with an efficiency of 44.9 percent (coal higher heating value basis) and a cost of electricity 22 percent less than a comparable PC plant. The key components of this new type of plant have been successfully tested at the pilot plant stage and their performance has been found to be better than previously assumed. As a result, the referenced conceptual design has been updated herein to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine. The use of this advanced gas turbine, together with a conventional 2400 psig/1050 F/1050 F/2-1/2 in. Hg. steam turbine increases the plant efficiency to 48.2 percent and yields a total plant cost of $1,079/KW (January 2002 dollars). The cost of electricity is 40.7 mills/kWh, a value 12 percent less than a comparable PC plant.

  9. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    William D. Harris

    2012-01-11

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  10. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    Harris, William D

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  11. Computational Combustion

    SciTech Connect (OSTI)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  12. UCI Combustion Laboratory www.ucicl.uci.edu

    E-Print Network [OSTI]

    Mease, Kenneth D.

    be addressed for successful commercial operation of stationary gas turbines. The present work focuses on flashback and lean blow out of premixed jet flames in a combustor from a commercially available gas turbineUCI Combustion Laboratory www.ucicl.uci.edu Figure 3 shows the predicted extinction limits

  13. Lire la premire partie de la thse LES of combustor-turbine

    E-Print Network [OSTI]

    Mailhes, Corinne

    Lire la première partie de la thèse #12;Part II LES of combustor-turbine interactions 89 #12;#12;Chapter 5 Indirect combustion noise generation in a high-pressure turbine Contents 5.1 Motivation case: 2D entropy spot propagation in a periodic channel . . 95 5.4 Turbine stage simulation set

  14. Large-eddy Simulation of Realistic Gas Turbine Combustors , & Apte, S. V.

    E-Print Network [OSTI]

    Apte, Sourabh V.

    Large-eddy Simulation of Realistic Gas Turbine Combustors Moin, P. , & Apte, S. V. Center of reacting multiphase flows in practical gas-turbine combustion chambers involving complex physical phe specifically for gas-turbine applications. The non-dissipative, yet ro- bust numerical scheme for arbitrary

  15. Combustion instabilities in sudden expansion oxy-fuel flames

    SciTech Connect (OSTI)

    Ditaranto, Mario; Hals, Joergen

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  16. Dynamic Modelling and Control Design of Pre-combustion Power

    E-Print Network [OSTI]

    Foss, Bjarne A.

    principles. The pre- combustion gas power cycle plants consist of reformers and separation units, com and control design of two pre-combustion power cycles, i.e., a hydro- gen membrane reformer (HMR) based power- pressors, gas and steam turbines and a heat recovery system. Analysis of dynamic models at an early stage

  17. Gas turbine engines with particle traps

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

    1992-01-01

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  18. Internal combustion engine with compound air compression

    SciTech Connect (OSTI)

    Paul, M.A.; Paul, A.

    1991-10-15

    This patent describes an internal combustion engine in combination with a compound air compression system. It comprises: a reciprocator with at least one cylinder, at least one piston reciprocal in the cylinder and a combustion chamber formed in substantial part by portions of the piston and cylinder, the reciprocator having a drive shaft; a rotary compressor having a drive shaft mechanically coupled to the drive shaft of the reciprocator, the rotary compressor having a Wankel-type, three-lobe, epitrochiodal configuration sides having a conduit conjected to the reciprocator for supplying compressed air to the reciprocator; a turbocharged with a gas turbine and a turbocompressor, the turbocompressor having an air conduit connected to the expander side of the rotary compressor; and a bypass conduit with a valve means connecting the turbocharger to the reciprocator for supplying compressed air directly to the reciprocator wherein the drive shaft of the reciprocator and the drive shaft of the compressor have connecting means for transmitting mechanical energy to the reciprocator at mid to high operating speeds of the engine when the turbocharge supplies compressed air to the rotary compressor and, at least in part, drives the rotary compressor.

  19. Generating Resources Combined Cycle Combustion Turbine

    E-Print Network [OSTI]

    diverse sources and robust gas infrastructure. 3. Cost and Uncertainty Stable capital cost estimate capital costs, but costs have been declining rapidly, requiring a forecast of future cost declines (MW) Normalized overnight capital cost ($/kW) O&M costs fixed ($/kW-yr) and variable ($/MWh

  20. Technologies for Evaluating Fish Passage Through Turbines

    Broader source: Energy.gov [DOE]

    This report evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines.

  1. Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion Dagfinn combustion have been proposed as an alternative to conventional gas turbine cycles for achieving CO2-capture for CO2 sequestration purposes. While combustion instabilities is a problem in modern conventional gas

  2. Gas turbine engine with radial diffuser and shortened mid section

    DOE Patents [OSTI]

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  3. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    E-Print Network [OSTI]

    Grcar, Joseph F

    2008-01-01

    for Modeling Steady, Laminar, One-Dimensional PremixedType of Steady and Stable, Laminar, Premixed Flame in Ultra-to support another kind of laminar ?ame that is steady and

  4. Internal combustion engine system with fog injection and heat exchange

    SciTech Connect (OSTI)

    Munk, M.

    1987-10-27

    An improved turbine apparatus is described comprising: a turbine power generator, including a source of input air, and a source of fuel, a compressor which receives the input air, a combustion chamber which receives air from the output of the compressor and fuel from the source of fuel, a turbine which receives exhaust gases from the combustion chamber; and an electrical generator mechanically coupled with the turbine; a fogging device communicating with the input air. The fogging device is adapted to receive a fogger air supply and a fogger water supply, and to generate a fog in the input air, an adjustable heat exchanger for exchanging heat from the exhaust of the turbine to the input air to be fogged; and means for adjusting the level of heat exchange of the heat exchanger in accordance with properties of the input air and the level of fog being generated.

  5. Rotary-reciprocal combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-06

    This patent describes an internal combustion engine of the rotary-reciprocal type. It comprises a housing formed with a peripheral wall; a rotor; and a shaft for the rotor.

  6. Double-rotor rotary engine and turbine

    SciTech Connect (OSTI)

    Lin, A.S.

    1990-04-03

    This patent describes a double-rotor engine. It comprises: a base; a housing rotatably mounted to the base and forming a radial cylinder; an output shaft rotatably mounted concentric with the housing and having an arm rigidly extending therefrom within the housing; a piston slidingly engaging the cylinder and forming a combustion chamber with the cylinder; means for admitting a fuel-air mixture into the cylinder; means for releasing combustion products from the cylinder following operation of the expanding means; turbine means operatively connected between the base and the housing, the turbine means providing a torque reaction against the housing in response to flow of the combustion products from the releasing means; and stop means on the shaft for limiting the relative movement between the shaft and the housing.

  7. Sandia Energy - Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Home Transportation Energy Predictive Simulation of Engines Reacting Flow Experiments Turbulent Combustion Turbulent CombustionAshley Otero2015-10-30T01:39:47+00...

  8. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    Optical Measurement of Combustion Products by Zeeman Atomicand T. Hadeishi • . . • . • . • • . • Combustion Sources offrom Pulverized Coal Combustion J. Pennucci, R. Greif, F.

  9. Optimization of a Fully-Passive Flapping-Airfoil Turbine

    E-Print Network [OSTI]

    Optimization of a Fully-Passive Flapping-Airfoil Turbine Mémoire Jean-Christophe Veilleux Maîtrise. De telles oscillations pourraient ^etre utilis´ees afin de d´evelopper un nouveau type de turbine Reynolds de 500 000, ce type de turbine est optimis´e et amplement ´etudi´e afin de d´evelopper une

  10. Energy Saving in Ammonia Plant by Using Gas Turbine 

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  11. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry DISI Combustion DISI CombustionAshley Otero2015-10-28T02:44:30+00:00...

  12. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels Spray Combustion Spray CombustionAshley Otero2015-10-28T02:17:06+00:00 Fuel...

  13. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty Spray Combustion Spray CombustionAshley Otero2015-10-28T02:00:56+00:00...

  14. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  15. Turbulent combustion

    SciTech Connect (OSTI)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  16. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    SciTech Connect (OSTI)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical

  17. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  18. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    in air- craft gas turbine engines is one possible approachexample, both gas-turbine and diesel engines at idle or low-engines, diesel engines, gas turbines, and large steam

  19. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  20. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  1. Internal combustion engine system and method with reduced noxious emissions

    SciTech Connect (OSTI)

    Munk, M.

    1987-05-26

    An improved turbine apparatus is described comprising: a turbine power generator, including a source of input air, and a source of fuel, a compressor which receives the input air, a combustion chamber which receives air from the output of the compressor and fuel from the source of fuel, a turbine which receives exhaust gases from the combustion chamber; and an electrical generator mechanically coupled with the turbine. A fogging device communicates with the input air. The fogging device is adapted to receive a fogger air supply and a fogger water supply, and to generate a fog in the input air; means for sensing noxious emissions in the exhaust gases; and means for controlling the fogging device in accordance with the sensed noxious emissions.

  2. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect (OSTI)

    1995-06-01

    Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

  3. Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

  4. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  5. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  6. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  7. Single Rotor Turbine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  8. Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  9. Why the Accuracy of Analytical Instrumentation Affects Boiler Combustion Efficiency 

    E-Print Network [OSTI]

    McFadden, R. W.

    1984-01-01

    Combustion trim control systems are utilized to maximize the combustion efficiency of a boiler. The type and cost of a fuel, as well as the size of a boiler, should be considered when selecting the type of combustion trim control system...

  10. RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT)

    E-Print Network [OSTI]

    Bernstein, Joseph B.

    RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT) Yizhou Lu, T. M. Delorm, A. Christou of survivor functions R(t) of drive-trains, after 1 year of operation, between Offshore Wind Turbine (OWT) vs of the reliability of these 5 Types Surrogate failure rate data Onshore wind turbines (OT) 1-1.5MW CONCLUSIONS

  11. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  12. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  13. Simulation of lean premixed turbulent combustion

    E-Print Network [OSTI]

    2008-01-01

    turbulent methane combustion. Proc. Combust. Inst. , 29:in premixed turbulent combustion. Proc. Combust. Inst. ,for zero Mach number combustion. Combust. Sci. Technol. ,

  14. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    competition between gas turbines and compressed air energyby fuel type, prime mover (gas turbine versus steam turbine,cycle NGCT Natural gas combustion turbine NGST Natural gas

  15. Sandia Energy - Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics Combustion KineticsAshley Otero2015-10-28T02:45:13+00:00 The...

  16. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive DISI Combustion DISI CombustionAshley Otero2015-10-28T02:06:42+00:00 DISI engine in...

  17. Development and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simulation: Application to a cooled turbine blade

    E-Print Network [OSTI]

    Nicoud, Franck

    Simulation: Application to a cooled turbine blade F. Duchaine a,*, A. Corpron b , L. Pons b , V. Moureau b parameters. The coupled tool is then applied to a cooled turbine blade model where results demonstrate both walls is an important phenomenon in combustion chambers and a main design constraint in gas turbines

  18. Air-Breathing Propulsion Qualifier Question -2012 A gas turbine jet engine, shown schematically in Figure 1, is operated on a stationary test stand.

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Air-Breathing Propulsion Qualifier Question - 2012 A gas turbine jet engine, shown schematically compressor, a combustion chamber (combustor), a single stage turbine, and an ideally expanded nozzle (nozzle ratio ( C = Tt2 /Tt1 ), what is the turbine stagnation temperature ratio T = Tt4 /Tt3 ? (Suggestion

  19. 36 AUGUST | 2011 EnhancEd TurbinE

    E-Print Network [OSTI]

    Kusiak, Andrew

    36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected by asymmetric loads, variable wind speeds, and se- vere weather conditions which cause wind turbines to change their states. A typical wind turbine under- goes various states during its daily operations. The wind turbine

  20. Synfuel-powered turbines under test

    SciTech Connect (OSTI)

    Stadelman, J.R.

    1980-09-01

    The results of an extensive test program on 12 coal-derived and 3 oil shale-derived liquid fuels developed by Mobil Research and Development Corp., Westinghouse Electric Corp., and Electric Power Research Institute (EPRI), were reported at ASME's 25th Annual Gas Turbine Conference in New Orleans in Mar. 1980 in a two-part paper titled ''Combustion Effects of Coal Liquids and other Synthetic Fuels in Gas Turbine Combustors''. Investigators at the three firms concluded that the coal and shale liquids tested were basically satisfactory, from an operational standpoint, for use in present combustion turbines. According to J. R. Stadelman (Westinghouse Electr. Corp.), it is now known that the lower-nitrogen, lighter synthetic liquid fuels can be used in today's turbines when sufficient quantities are available; and a commercial-size plant may begin testing these fuels in early 1981 when three liquid-coal pilot plants will be in operation. The pilot plants will demonstrate the production of Gulf Oil Corp.'s solvent-refined coal (SRC-2), Exxon Corp.'s EDS (Exxon Donor Solvent) process fuel, and H-Coal fuel made by Dynalectron Corp.'s Hydrocarbon Research Inc. EPRI and the U.S. Department of Energy are supporting the development of such synthetic fuels.

  1. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA)

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  2. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.; Golan, L. [South Carolina Energy Research and Development Center, Clemson, SC (United States); Toma, M.; Mansour, M. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1996-12-31

    Various technologies are available for the combustion of high-sulfur, high-ash fuels, particularly coal. From performance, economic and environmental standpoints, fluidized bed combustion (FBC) is the leading candidate for utilization of high sulfur coals. ThermoChem, Inc., and the South Carolina Energy Research and Development Center (SCERDC) are installing a hybrid fluidized bed combustion system at Clemson University. This hybrid system, known as the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), will augment the University`s steam system by providing 50--60,000 lbs/hr of saturated process steam. The PAFBC, developed by Manufacturing and Technology Conversion International, Inc., (MTCI), integrates a pulse combustor with a bubbling-bed-type atmospheric fluidized bed coal combustor. The pulse combustion system imparts an acoustic effect that enhances combustion efficiency, SO{sub 2} capture, low NO{sub x} emissions, and heat transfer efficiency in the fluidized bed. These benefits of pulse combustion result in modestly sized PAFBC units with high throughput rates and lower costs when compared to conventional fluidized bed units.

  3. Partially Premixed Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partially Premixed Combustion Partially Premixed Combustion Published materials on partial premixed combustion (PPC) combined with Volvo's own combustion research provides...

  4. Combustion chemistry

    SciTech Connect (OSTI)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  5. Fuel Flexible Turbine System (FFTS) Program

    SciTech Connect (OSTI)

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

  6. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  7. Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995

    SciTech Connect (OSTI)

    1996-01-01

    This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

  8. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  9. POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES

    E-Print Network [OSTI]

    Texier, Benjamin - Institut de Mathématiques de Jussieu, Université Paris 7

    POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES GREGORY LYNG, MOHAMMADREZA ROOFI for traveling wave solutions of an abstract viscous combustion model including both Majda's model and the full-wave) approximation. Notably, our results apply to combustion waves of any type: weak or strong, detonations or defla

  10. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  11. Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power

    E-Print Network [OSTI]

    Brasington, Robert David, S.M. Massachusetts Institute of Technology

    2012-01-01

    Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

  12. Foam Cleaning of Steam Turbines 

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  13. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  14. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  15. Reaction and diffusion in turbulent combustion

    SciTech Connect (OSTI)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  16. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  17. Transport Properties for Combustion Modeling

    E-Print Network [OSTI]

    Brown, N.J.

    2010-01-01

    a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

  18. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  19. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  20. Cost analysis of NOx control alternatives for stationary gas turbines

    SciTech Connect (OSTI)

    Bill Major

    1999-11-05

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

  1. Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

  2. Sliding vane geometry turbines

    DOE Patents [OSTI]

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  3. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  4. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  5. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect (OSTI)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  6. Proceedings of the Combustion Institute, Volume 29, 2002/pp. 99105 NONLINEAR PRESSURE-HEAT RELEASE TRANSFER FUNCTION

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    hin- dering the development and operation of industrial gas turbines [1­5]. These instabilities99 Proceedings of the Combustion Institute, Volume 29, 2002/pp. 99­105 NONLINEAR PRESSURE describes an experimental study of the response of a premixed combustion process to imposed pressure

  7. Bifunctional pathways mediated by Pt clusters and Al2O3 in the catalytic combustion of dimethyl ether{

    E-Print Network [OSTI]

    Iglesia, Enrique

    generation with small turbines or fuel cells.5­7 We have recently examined the catalytic combustion of DME Mixtures of Pt clusters dispersed on c-Al2O3 and additional c-Al2O3 led to much higher DME combustion. The physical properties of dimethyl ether (DME) resemble those of liquefied petroleum gas (LPG), making

  8. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    relative to combustion in the single-pulse engine. FOOTNOTEto engine combustion have been conducted in a single- pulsecombustion in engines conducted in our laboratory by the use of the single pulse

  9. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    boundary layer for propane/air combustion on a platinumDuring FY 1979 the combustion of lean propane/ air mixturescombustion characteristics of a two-dimensional flow of premixed propane/

  10. Computational Tools to Assess Turbine Biological Performance

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2014-07-24

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  11. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  12. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  13. Wind turbine rotor aileron

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  14. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  15. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    types Oil & Gas Steam and Combustion Turbine/Diesel. Diesel.of Oil & Gas Steam plus Combustion Combustio Turbine/Diesel,Natural Gas Steam Combined Cycle Combustion Turbine/Diesel

  16. Lean Premixed Combustion/Active Control

    SciTech Connect (OSTI)

    D. J. Seery

    2000-02-01

    An experimental comparison between two contrasting fuel-air swirlers for industrial gas turbine applications was undertaken at the United Technologies Research Center. The first, termed an Aerodynamic nozzle, relied on the prevailing aerodynamic forces to stabilize the downstream combustion zone. The second configuration relied on a conventional bluff plate for combustion stability and was hence named a Bluff-Body nozzle. Performance mapping over the power curve revealed the acoustic superiority of the Bluff-Body nozzle. Two dimensional Rayleigh indices calculated from CCD images identified larger acoustic driving zones associated with the Aerodynamic nozzle relative to its bluff counterpart. The Bluff-Body's success is due to increased flame stabilization (superior anchoring ability) which reduced flame motion and thermal/acoustic coupling.

  17. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  18. Combustor for a low-emissions gas turbine engine

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Greenwood, Stuart A. (San Diego, CA); Dutta, Partha (San Diego, CA); Moon, Hee-Koo (San Diego, CA)

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  19. TURBINE BURNERS: Engine Performance Improvements;

    E-Print Network [OSTI]

    Heydari, Payam

    the expansion through the turbine for turbojet , turbofan , and stationary - power gas - turbine engines. StudyTURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High/WEIGHT Range highly undesirable Desirable Not Good #12;TURBINE BURNER CONCEPT Turbine burning has advantage

  20. The new air emission regulations for gas turbine

    SciTech Connect (OSTI)

    Solt, C.

    1998-07-01

    In the US, there are three new regulations now in development that will lower the limits for NO{sub x} emissions from gas turbines: (1) New National Ambient Air Quality Standards (NAAQS) for Particulate Matter, and Possibly revision to the Ozone standard (both of these new programs will target NO{sub x} emissions); (2) New regulations stemming from the Ozone Transport Assessment Group (OTAG) recommendations (again, NO{sub x} is the primary focus); (3) Revision of the New Source Performance Standard (NSPS) for gas turbines and a new rule that will impose new toxic emission requirements, (the Industrial Combustion Coordinated Rulemaking, stemming from revisions to Title III of the Clean Sir Act Amendments of 1990). The toxic rule should be of particular concern to the gas turbine industry in that it may impose the use of expensive toxic emission control techniques that may not provide any significant health benefits to the public. In addition, the European Community is currently drafting a new regulation for combustion sources that will require gas turbines to meet levels that are lower than any in Europe today. This paper will consider all 5 of these regulatory actions and will: review the proposed regulations; discuss timing for regulation development and implementation; assess the probable impact of each regulation; and provide opinions on the fate of each regulation. Both manufacturers and users of gas turbines should be aware of these proceedings and take an active role in the rule development.

  1. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect (OSTI)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  2. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    emissions from aircraft gas turbine engines. Paper No. 27-1.diesel) engines. The gas turbine engine which is usedhave been measured in gas turbine exhausts. The effect of

  3. Overview of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

    1995-12-31

    The proposed approach is to build on Westinghouse`s successful 501 series of gas turbines. The 501F offered a combined cycle efficiency of 54%; 501G increased this efficiency to 58%; the proposed single-shaft 400 MW class ATS combined cycle will have a plant cycle efficiency greater than 60%. Westinghous`s strategy is to build upon the next evolution of advances in combustion, aerodynamics, cooling, leakage control, materials, and mechanical design. Westinhouse will base its future gas turbine product line, both 50 and 60 Hz, on ATS technology; the 501G shows early influences of ATS.

  4. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    1994-12-01

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  5. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  7. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  8. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  9. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  10. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, Franklin A. (Berkeley, CA)

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  11. A Simplified Morphing Blade for Horizontal Axis Wind Turbines

    E-Print Network [OSTI]

    Recanati, Catherine

    by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades of the NREL Phase VI wind turbine is taken as a reference blade and has a fixed pitch. The optimization was evalu- ated for three types of blade, namely, morphing blade, blade with pitch control and fixed pitch

  12. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  13. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  14. American Institute of Aeronautics and Astronautics Foundation Models for Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    American Institute of Aeronautics and Astronautics 1 Foundation Models for Offshore Wind Turbines of alternative models for monopile pile foundations for shallow-water offshore wind turbines has on extreme loads) is the most common type of foundation used today for offshore wind turbines; the support structure connects

  15. Market penetration of wind turbine concepts over the years Anca D. Hansen1

    E-Print Network [OSTI]

    Market penetration of wind turbine concepts over the years Anca D. Hansen1 , Lars H. Hansen2 1 Risø wind turbine concepts over the years (1995-2005). A detailed overview is performed based on suppliers market data and concept evaluation for each individual wind turbine type sold by the suppliers

  16. Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion

    E-Print Network [OSTI]

    Sweetman, Bert

    Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion Lei Wang Department of spar-type floating offshore wind turbines is investigated in detail. Three conceptual designs based for siting offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating

  17. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  18. Pre-mixing apparatus for a turbine engine

    DOE Patents [OSTI]

    Lacy, Benjamin Paul (Greer, SC); Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy Steve (Simpsonville, SC); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Melton, Patrick Benedict (Horse Shoe, NC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC); Felling, David Kenton (Greenville, SC); Uhm, Jong Ho (Simpsonville, SC)

    2012-04-03

    A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.

  19. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect (OSTI)

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  20. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  1. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  2. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  3. Gas turbine diagnostic system

    E-Print Network [OSTI]

    Talgat, Shuvatov

    2011-01-01

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  4. Turbine disc sealing assembly

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  5. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  6. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  7. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  8. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  9. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  10. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA)

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  11. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  12. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  13. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  14. Fifteenth combustion research conference

    SciTech Connect (OSTI)

    NONE

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  15. Campus Energy Infrastructure Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Campus Energy Infrastructure Steam Turbine Gas Turbine University Substation High Pressure Natural,000 lbs/hr (with duct fire) Steam Turbine Chiller 2,000 tons Campus Heat Load 60 MMBtu/hr (average) Campus-hours) Generator Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller

  16. Wind Turbine Blockset General Overview

    E-Print Network [OSTI]

    Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

  17. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25,...

  18. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process that...

  19. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  20. Combustion Turbine CHP System for Food Processing Industry

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  1. Advanced Turbine Systems program conceptual design and product development. Quarterly report, February--April 1994

    SciTech Connect (OSTI)

    1995-02-01

    Task 8.5 (active clearance control) was replaced with a test of the 2600F prototype turbine (Task 8.1T). Test 8.1B (Build/Teardown of prototype turbine) was added. Tasks 4 (conversion of gas-fired turbine to coal-fired turbine) and 5 (market study) were kicked off in February. Task 6 (conceptual design) was also initiated. Task 8.1 (advanced cooling technology) now has an approved test plan. Task 8.4 (ultra low NOx combustion technology) has completed the code development and background gathering phase. Task 8.6 (two-phase cooling of turbine vanes) is proceeding well; initial estimates indicate that nearly 2/3 of required cooling flow can be eliminated.

  2. A Silicon-Based Micro Gas Turbine Engine for Power Generation

    E-Print Network [OSTI]

    Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

    2007-01-01

    This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

  3. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect (OSTI)

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  4. Pressure-gain combustion. Part 1: Model development

    SciTech Connect (OSTI)

    Narayanaswami, L. [Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States); Richards, G.A. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

    1996-07-01

    A model for aerodynamically valved pulse combustion is presented. Particular emphasis is placed on using the model equations to identify characteristic length and time scales relevant to the design of pressure-gain combustors for gas turbine applications. The model is a control volume description of conservation laws for several regions of the pulse combustor. Combustion is modeled as a bimolecular reaction. Mixing between the fresh charge and the combustion products is modeled using a turbulent eddy time estimated from the combustor geometry and flow conditions. The model equations identify two characteristic lengths, which should be held constant during combustor scaleup, as well as certain exceptions to this approach. The effect of ambient operating pressure and inlet air temperature is also discussed.

  5. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  6. Composite turbine bucket assembly

    DOE Patents [OSTI]

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  7. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  8. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  9. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  10. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  11. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  12. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  13. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells...

  14. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    E-Print Network [OSTI]

    Cole, Lord Kahil

    2012-01-01

    CombustionEquations . . . . . . . . . . Combustion and Ionizationpulsating detonations. Combustion Theory and Modeling, 9:

  15. Theoretical studies on hydrogen ignition and droplet combustion

    E-Print Network [OSTI]

    Del Álamo, Gonzalo

    2006-01-01

    1.2 Droplet Combustion . . . . . . . . . . . . .Combustion . . . . . . . . . . . . . . . . . . . . . . . . . .Lewis, B. and von Elbe, G. Combustion, Flames and Explosions

  16. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  17. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  18. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  19. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01

    Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

  20. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  1. Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  2. Dry low combustion system with means for eliminating combustion noise

    DOE Patents [OSTI]

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  3. Sandia Combustion Research: Technical review

    SciTech Connect (OSTI)

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  4. Four Lectures on Turbulent Combustion

    E-Print Network [OSTI]

    Peters, Norbert

    Four Lectures on Turbulent Combustion N. Peters Institut f¨ur Technische Mechanik RWTH Aachen Turbulent Combustion: Introduction and Overview 1 1.1 Moment Methods in Modeling Turbulence with Combustion and Velocity Scales . . . . . . . . . . . 11 1.4 Regimes in Premixed Turbulent Combustion

  5. Reduced Turbine Emissions Using Hydrogen-Enriched Fuels R.W. Schefer

    E-Print Network [OSTI]

    as an effective approach to NOx emissions reduction. In addition to pure hydrogen and air, mixtures of hydrogen-lean premixed combustion is an effective approach to NOx emissions reduction from gas turbine engines. Hydrogen a solution to the immediate need for NOx reduction, and also provides a transition strategy to a carbon free

  6. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The advantage of these advanced combustion systems is that the high concentration of CO2 in the flue gas reduces the cost and improves the performance of the CO2 capture...

  7. Pulse combustion: Commercial, industrial, and residential applications. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the evolution of pulse combustion, the types of pulse combustion burners and their applications, and selected fuels utilized. Topics include fuel combustion efficiency, energy conversion and utilization technologies, modeling of chemical kinetics, and dynamics and thermal characteristics of pulse combustors. Pulse combustion systems for water heaters, gas furnaces, industrial and residential boilers, commercial cooking equipment, and space heating devices are presented. (Contains 250 citations and includes a subject term index and title list.)

  8. Combustion Air Control 

    E-Print Network [OSTI]

    Hughart, C. L.

    1979-01-01

    to 100%. If the air and fuel controls are on automatic but the flue gas oxygen content cannot be lowered to 4% oxygen without the boiler smoking, burner problems may be suspected. The trouble may be traced to dirty or improperly assembled oil guns..., combustion air distribution problems, vaporizing steam control problems, oil viscosity, or flow control problems. It is very important to have all oil guns operating properly before proceeding with a combustion test. The minimum stack gas oxygen level you...

  9. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  10. FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan

    E-Print Network [OSTI]

    Dabiri, John O.

    FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan-dependent aerodynamics and fluid-structure interaction (FSI) simula- tions of a Darrieus-type vertical-axis wind turbine compared to the vertical-axis wind turbine (VAWT) designs. However, smaller-size VAWTs are more suitable

  11. Advanced turbine systems sensors and controls needs assessment study. Final report

    SciTech Connect (OSTI)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  12. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  13. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  14. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  15. Gas turbine topping combustor

    DOE Patents [OSTI]

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  16. Sandia Energy - Pressurized Combustion and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxy-fuel combustion. However, properly designing new pressurized combustion burners and boilers requires accurate data on coal devolatilization and combustion rates...

  17. Development of Advanced Combustion Technologies for Increased...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of fuel effects on low-temperature combustion, particularly HCCI PCCI combustion deer09gehrke.pdf More Documents & Publications The Role of Advanced Combustion in...

  18. Engine Combustion Network (ECN): Global sensitivity analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion Network (ECN): Global sensitivity analysis of Spray A for different combustion vessels Title Engine Combustion Network (ECN): Global sensitivity analysis of Spray...

  19. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  20. Constant Volume During Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constant Volume During Combustion Constant Volume During Combustion This presentation covers constant volume during combustion and discusses how it can alter the kinematics of...

  1. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

  2. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  3. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    Ext. 6782 Combustion -Generated Indoor Air Pollution Craigcontrol of air pollution from indoor combustion sources. Ifocused on combustion-generated indoor air pollution, namely

  4. Coal Combustion Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

  5. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.

    1993-07-20

    A multi bank power plant is described comprising at least a first and a second rotary internal combustion engine connectable together in series, each of the engines comprising: a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing and rotatable about a central axis; an output shaft extending axially from each the engine block, each output shaft being coaxial with the other; means for coupling the output shafts together so that the output shafts rotate together in the same direction at the same speed; at least one radially arranged cylinder assembly on each block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; a combustion chamber, means permitting periodic introduction of air and fuel into the combustion chamber, means for causing combustion of a compressed mixture of air and fuel within the combustion chamber, means permitting periodic exhaust of products of combustion of air and fuel from the combustion chamber, and means for imparting forces and motions of the piston within the cylinder to and from the cam track, the means comprising a cam follower operatively connected to the piston; wherein the cam track includes at least a first segment and at least a second segment thereof, the first segment having a generally positive slope wherein the segment has a generally increasing radial distance from the rotational axis of the engine block whereby as a piston moves outwardly in a cylinder on a power stroke while the cam follower is in radial register with the cam track segment, the reactive force of the respective cam follower against the cam track segment acts in a direction tending to impart rotation to the engine block.

  6. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N. (Albuquerque, NM)

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  7. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  8. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  9. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  10. Model Predictive Control Wind Turbines

    E-Print Network [OSTI]

    Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

  11. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  12. Combustion chamber noise suppressor

    SciTech Connect (OSTI)

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  13. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  14. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  15. Ceramic gas turbine shroud

    DOE Patents [OSTI]

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  16. Multiple piece turbine airfoil

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  17. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  18. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  19. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  20. Types of Hydropower Turbines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGEDepartmentfanVehicleLLCIllness at the Y-12

  1. Internal combustion rotary engine

    SciTech Connect (OSTI)

    Chen, S.P.

    1993-08-24

    An internal combustion rotary engine is described comprising: an internal combustion chamber wherein a combustible fuel-air mixture is ignited for producing a driving gas flow; a central rotor having an outer surface in which at least one group of curved channels circumferentially-and-axially extending without radially extending through the central rotor; and at least one annular rotor each enclosing the central rotor having an inner surface in which a corresponding number of curved channels circumferentially-and-axially extending without radially extending through the annular rotor; when the curved channels in the central rotor communicate with the curved channels in the annular rotor, the driving gas flow circumferentially-and-axially passing between the outer surface of the central rotor and the inner surface of the annular rotor for rotating the central rotor and the annular rotor in opposite directions.

  2. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  3. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  4. DNS of inhomogeneous reactants premixed combustion

    E-Print Network [OSTI]

    Lim, Kian Min

    2015-02-03

    of the combustion. This ushers in a new mode of combustion, called the inhomogeneous reactants premixed combustion. The present study investigates the effects of inhomogeneous reactants on premixed combustion, specifically on the interactions of an initially...

  5. Co-combustion feasibility study. Final report

    SciTech Connect (OSTI)

    Handcock, D.J.

    1995-01-01

    This report investigates the technical and economic feasibility of co-combusting municipal sewage sludge produced by the Saratoga County Sewer District No. 1 with paper mill sludge produced by the Cottrell Paper Company, Encore Paper Company, International Paper Company, Mohawk Paper Mills, and TAGSONS Papers at the Saratoga County Sewer District No. 1`s secondary wastewater treatment plant and recovering any available energy products. The co-combustion facility would consist of sludge and wood chip storage and conveying systems, belt filter presses, screw presses, fluidized-bed incinerators, venturi scrubbers and tray cooling systems, ash dewatering facilities, heat recovery steam generators, gas-fired steam superheaters, and a back-pressure steam turbine system. Clean waste wood chips would be used as an auxiliary fuel in the fluidized-bed incinerators. It is recommended that the ash produced by the proposed facility be beneficially used, potentially as a raw material in the manufacture of cement and/or as an interim barrier layer in landfills.

  6. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  7. Studies in combustion dynamics

    SciTech Connect (OSTI)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  8. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  9. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  10. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  11. Nanoparticle Emissions from Internal Combustion Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  12. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  13. Turbine vane structure

    DOE Patents [OSTI]

    Irwin, John A. (Greenwood, IN)

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  14. Proceedings of the Combustion Institute. Volume 30

    SciTech Connect (OSTI)

    NONE

    2005-01-15

    Papers discussed combustion theory and modelling, turbulent combustion, laser diagnostics and control, chemical kinetics, computational combustion, flames, detonations, droplet combustion, catalysis/materials synthesis, pulse detonations engines, diagnosis, engine combustion, heterogeneous combustion, pollutants (PAH and soot), kinetics, flame diagnosis, propulsion, laminar diffusion flames, lifted turbulent flames, nanoparticles, premixed turbulent flames, solid oxide fuel cells, laminar flames, stationary power systems, and plasma supported flames.

  15. Packed Bed Combustion: An Overview

    E-Print Network [OSTI]

    Hallett, William L.H.

    Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

  16. Low NOx system for gas turbines in cogen being developed

    SciTech Connect (OSTI)

    Not Available

    1994-12-19

    A catalytic combustion system that reduces NOx emissions from natural-gas turbines used to generate electricity is being developed for cogeneration systems built by AES Manufacturing Services Inc., Broken Arrow, OK. Each compact unit is mounted on an enclosed semi-trailer and contains two Kawasaki turbines with shaft-driven generators and a single heat-recovery boiler. Its net output is 3 MW of electricity and more than 28,000 lb/hr of high-pressure steam. At an industrial or commercial site where electrical capacity needs exceed 3 MW, several units may be installed in parallel. Currently, AES units can control NOx to about 25 ppm with traditional steam-injection technology. The paper describes conventional firing, testing that is under way, and the companies involved.

  17. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  18. Apparatus and method for combusting low quality fuel

    DOE Patents [OSTI]

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  19. Turbine blade tip gap reduction system

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  20. Turbine repair process, repaired coating, and repaired turbine component

    SciTech Connect (OSTI)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  1. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  2. Turbine seal assembly

    DOE Patents [OSTI]

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  3. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  4. Multiple piece turbine airfoil

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL)

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  5. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  6. Snubber assembly for turbine blades

    DOE Patents [OSTI]

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  7. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  8. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  9. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

    2012-01-01

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

  10. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  11. Wind Turbine Generator KanaKanapathipillai

    E-Print Network [OSTI]

    New South Wales, University of

    Wind Turbine Generator Noise KanaKanapathipillai Reliable and accurate measurement of wind turbine & Associates on wind turbine noise for a number of years. Treatment for Presbyopia Hooman M. Pour Presbyopia

  12. Automatic Control of Freeboard and Turbine Operation

    E-Print Network [OSTI]

    Automatic Control of Freeboard and Turbine Operation ­ Wave Dragon, Nissum Bredning Project: Sea of Freeboard and Turbine Operation Wave Dragon, Nissum Bredning by Jens Peter Kofoed & Peter Frigaard, Aalborg.........................................................................................................................10 TURBINE PERFORMANCE DATA

  13. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,1970, p. 545. R. Krutenat, Gas Turbine Materials ConferenceOVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone

  14. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    E-Print Network [OSTI]

    Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

  15. Theory and Performance of Tesla Turbines

    E-Print Network [OSTI]

    Romanin, Vincent D.

    2012-01-01

    through a Tesla turbine microchannel . . . . . . . . . . .1.2 History of the Tesla Turbine 1.3 BackgroundCFD) Solution of Flow Through a Tesla Turbine 4.1 Summary of

  16. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,military aircraft gas turbine engines as well as mar1ne andfeatures. Like the gas turbine engine, the EB·-PVD coater is

  17. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,FT4, JT9D and other gas turbines, and their use continues toOVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone

  18. Combustion powered linear actuator

    DOE Patents [OSTI]

    Fischer, Gary J. (Albuquerque, NM)

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  19. Modelling and control of wind turbines A. Pintea 1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    Modelling and control of wind turbines A. Pintea 1,2 , D. Popescu 1 , P. Borne 2 1 University an important challenge. From all types of renewable energy sources, wind turbines proved to be one of the cleanest and most reliable solutions for energy production. Wind energy conversion systems have in the last

  20. A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher

    E-Print Network [OSTI]

    Peraire, Jaime

    A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher , Mark Drela and Jaime Peraire and performance prediction of vertical axis wind turbines is presented. The model uses a 2D hybrid dynamic vortex perpendicular. z perpendicular to the plane (spanwise direction). I. Introduction Darrieus-type vertical axis

  1. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    SciTech Connect (OSTI)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  2. Internal combustion engine using premixed combustion of stratified charges

    DOE Patents [OSTI]

    Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  3. Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings 

    E-Print Network [OSTI]

    Iaquaniello, G.; Pietrogrande, P.

    1985-01-01

    stream_source_info ESL-IE-85-05-23.pdf.txt stream_content_type text/plain stream_size 22051 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-23.pdf.txt Content-Type text/plain; charset=ISO-8859-1 GAS TURBINE FIRED... HEATER INTEGRATION: ACHIEVE SIGNIFICANT ENERGY SAVINGS G. Iaquaniello**, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA, Rome, Italy ABSTRAer Faster payout will result if gas turbine exhaust is used...

  4. Reliable Gas Turbine Output: Attaining Temperature Independent Performance 

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    1992-01-01

    stream_source_info ESL-IE-92-04-10.pdf.txt stream_content_type text/plain stream_size 16831 Content-Encoding ISO-8859-1 stream_name ESL-IE-92-04-10.pdf.txt Content-Type text/plain; charset=ISO-8859-1 RELIABLE GAS TURBINE... OUTPUT; ATTAINING TEMPERATURE INDEPENDENT PERFORMANCE James E. Neeley, P.E. Power Plant Engineer Public Utility Commission of Texas Austin, Texas ABSTRACT Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas...

  5. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins...

  6. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion. acecroadmapjune2013.pdf More Documents & Publications Overview of the Advanced Combustion Engine...

  7. Fuel Effects on Mixing-Controlled Combustion Strategies for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion...

  8. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar...

  9. Assessment of Combustion and Turbulence Models for the Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion...

  10. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

  11. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

  12. IR-laser initiated combustion -- A step toward complete combustion

    SciTech Connect (OSTI)

    Laghai, A.; Nabavi, S.H.; Servati, H.B.; Syed, F.

    1996-09-01

    The new global environmental regulations for reducing the engine emissions from both moving and stationary sources, as well as improvement in fuel economy are the major motifs to obtain a perfect combustion process and exhaust aftertreatment methods. Infrared (IR)-Laser initiated combustion provides a very high initial temperature, which produces propagation of a turbulent thermopressure pulse that results in a fast burning and improved combustion. The role of IR is to maximize the heat generation efficiency.

  13. Internal combustion engine with rotary combustion chamber

    SciTech Connect (OSTI)

    Hansen, C.N.; Cross, P.C.

    1986-09-23

    This patent describes an internal combustion engine comprising: a block having at least one cylindrical wall surrounding a piston chamber, piston means located in the piston chamber means operable to reciprocate the piston means in the chamber, head means mounted on the block covering the chamber. The head means has an air and fuel intake passage, and exhaust gas passage, a rotary valve assembly operatively associated with the head means for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gas from rotary valve assembly and the piston chamber. The means has a housing with a bore open to the piston chamber accommodating the rotary valve assembly, the valve assembly comprising a cylindrical sleeve located in the bore, the sleeve having an inner surface, an ignition hole, and intake and exhaust ports aligned with the intake passage and exhaust gas passage, spark generating means mounted on the housing operable to generate a spark. The rotatable valving means is located within the sleeve for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gases out of the rotary valve assembly and piston chamber.

  14. Vehiculos de combustible flexible: brindando opciones en combustible...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    actualizada para convertidores de combustible alternativo de la EPA en su sitio web, www.epa.govotaq certdearmfrcisd0602.pdf. El E85 afecta el desempeo del...

  15. Advanced Combustion Technology to Enable High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions.

  16. Developing Biological Specifications for Fish Friendly Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Biological Specifications for Fish Friendly Turbines Developing Biological Specifications for Fish Friendly Turbines This factsheet explains studies conducted in a...

  17. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current...

  18. Developing Biological Specifications for Fish Friendly Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Biological Specifications for Fish Friendly Turbines The U.S. Department of Energy's Advanced Hydropower Turbine Sys- tem (AHTS) Program supports the research and...

  19. UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day

    2003-03-01

    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  20. Vehicle Technologies Office: Advanced Combustion Strategies

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office (VTO) funds research focused on developing a greater understanding of engine combustion and how emissions form within engine cylinders. This work includes research on low temperature combustion, dilute (lean-burn) gasoline combustion, and clean diesel combustion, all of which can substantially contribute to increasing efficiency and lowering emissions in internal combustion engines.

  1. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

  2. Tire gassification and combustion system

    SciTech Connect (OSTI)

    Nance, D.; Towne, G.A.

    1992-04-07

    This patent describes a system for disposing of a material such as vehicle tires and similar substantially organic matter and generating useful heat therefrom. It comprises gasification means for holding an amount of the material to be disposed while the material is allowed to partially combust and for containing combustible gas produced thereby, the gasification means comprising a substantially air tight gasification chamber having at least one access way for inserting the material therein; inlet means for receiving a controlled amount of oxygen containing gas into the gasification means, the inlet means comprising a tuyere disposed in the air tight gasification chamber and a blower connected to the tuyere; removal means for removing the combustible gas from the gasification means, the removal means comprising a gas outlet located above the tuyere in the gasification chamber such that substantially amounts of the combustible gases produced by the partially combusted material exits through the gas outlet; primary combustion means for receiving and mixing the combustible gas removed from the gasification means with an oxygen containing gas and burning the combustible gas; and means for directing the combustion products to a heat utilizing device.

  3. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and...

  4. Sandia Energy - Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and they form the basis for the creation of validated submodels that bridge fundamental energy sciences with applied device engineering and optimization. Turbulent-combustion-lab...

  5. OF CARBON FIBERS TURBINE BLADE

    E-Print Network [OSTI]

    THE USE IN WIND DESIGN: OF CARBON FIBERS TURBINE BLADE A SERI-8BLADE EXAMPLE Cheng Printed March 2000 The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng represent different volumes of carbon fibers in the blade, were also studied for two design options

  6. Investigations of swirl flames in a gas turbine model combustor

    SciTech Connect (OSTI)

    Meier, W.; Duan, X.R.; Weigand, P.

    2006-01-01

    The thermochemical states of three swirling CH{sub 4}/air diffusion flames, stabilized in a gas turbine model combustor, were investigated using laser Raman scattering. The flames were operated at different thermal powers and air/fuel ratios and exhibited different flame behavior with respect to flame instabilities. They had previously been characterized with respect to their flame structures, velocity fields, and mean values of temperature, major species concentrations, and mixture fraction. The single-pulse multispecies measurements presented in this article revealed very rapid mixing of fuel and air, accompanied by strong effects of turbulence-chemistry interactions in the form of local flame extinction and ignition delay. Flame stabilization is accomplished mainly by hot and relatively fuel-rich combustion products, which are transported back to the flame root within an inner recirculation zone. The flames are not attached to the fuel nozzle, and are stabilized approximately 10 mm above the fuel nozzle, where fuel and air are partially premixed before ignition. The mixing and reaction progress in this area are discussed in detail. The flames are short (<50 mm), especially that exhibiting thermoacoustic oscillations, and reach a thermochemical state close to adiabatic equilibrium at the flame tip. The main goals of this article are to outline results that yield deeper insight into the combustion of gas turbine flames and to establish an experimental database for the validation of numerical models.

  7. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony (Franklin Lakes, NJ)

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  8. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  10. Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-11-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

  11. Hybrid fluidized bed combuster

    DOE Patents [OSTI]

    Kantesaria, Prabhudas P. (Windsor, CT); Matthews, Francis T. (Poquonock, CT)

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  12. Sandia Energy - Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy ConversionEngine Combustion Home

  13. Sandia Energy - Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, SandiaCombustion Kinetics Home

  14. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEARSolarSpray Combustion Home

  15. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEARSolarSpray Combustion

  16. Combustion oscillation: Chemical control showing mechanistic link to recirculation zone purge time

    SciTech Connect (OSTI)

    Gemmen, R.S.; Richards, G.A.; Yip, M.J.; Norton, T.S.

    1995-12-01

    Active control mechanisms are being examined for lean premix combustion applications, such as gas turbine generators. Lean premix combustors are susceptible to large combustion oscillations, particularly when driven very lean to achieve low NOx. While past design work has been focussed on understanding the source of the oscillation and modifying the combustor to avoid such oscillations, commercial combustion designers have more recently considered applying new control elements. As part of the U.S. Department of Energy`s Advanced Gas Turbine Systems Program, the Morgantown Energy Technology Center is investigating various active control techniques. This paper presents results from experiments studying the effect of pilot fuel modulation on combustor oscillation and pollutant emissions for a pilot stabilized dump swirl combustor, typical of gas turbine combustors. The results show that a significant level of attenuation can be achieved in the combustor pressure oscillation (50 to 90 percent) while only moderately affecting pollutant emissions. The control mechanism producing the attenuation is shown to be purely chemical in nature, rather than fluid mechanic. In addition, the frequency region over which control is obtained is shown to be related to the recirculation zone purge time. For this reason, control can be achieved at control frequencies much lower than the frequency of oscillation.

  17. Influence of combustion conditions and coal properties on physical properties of fly ash generated from pulverized coal combustion

    SciTech Connect (OSTI)

    Hiromi Shirai; Hirofumi Tsuji; Michitaka Ikeda; Toshinobu Kotsuji

    2009-07-15

    To develop combustion technology for upgrading the quality of fly ash, the influences of the coal properties, such as the size of pulverized coal particles and the two-stage combustion ratio during the combustion, on the fly ash properties were investigated using our test furnace. The particle size, density, specific surface area (obtained by the Blaine method), and shape of fly ash particles of seven types of coal were measured. It was confirmed that the size of pulverized coal particles affects the size of the ash particles. Regarding the coal properties, the fuel ratio affected the ash particle size distribution. The density and shape of the ash particles strongly depended on their ash size. Our results indicated that the shape of the ash particles and the concentration of unburned carbon affected the specific surface area. The influence of the two-stage combustion ratio was limited. 8 refs., 13 figs., 3 tabs.

  18. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  19. Combustion Catalysts in Industry- An Update 

    E-Print Network [OSTI]

    Merrell, G. A.; Knight, R. S.

    1985-01-01

    combustibles in the refuse and help a plant attain emissions compliance requirements that are not always achieved with pollution-control equipment. Combustion catalysts promote the combustion process by lowering the ignition temperature of the fuel, allowing...

  20. Path planning during combustion mode switch

    DOE Patents [OSTI]

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  1. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01

    x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

  2. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01

    of indoor combustion-generated air pollution in residen-LBL-S9lS COMBUSTION-GENERATED INDOOR AIR POLLUTION Dr. C. D.L,BL-5918 COMBUSTION-GENERATED INDOOR AIR POLLUTION C. D.

  3. Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012

    SciTech Connect (OSTI)

    Tossas, L. A. M.; Leonardi, S.

    2013-07-01

    With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

  4. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  5. Gas turbines for coal-fired turbocharged PFBC boiler power plants

    SciTech Connect (OSTI)

    Wenglarz, R.; Drenker, S.

    1984-11-01

    A coal-fired turbocharged boiler using fluidized bed combustion at high pressure would be more compact than a pulverized coal fired boiler. The smaller boiler size could permit the utility industry to adopt efficient modular construction methods now widely used in other industries. A commercial turbocharger of the capacity needed to run a 250 MW /SUB e/ power plant does not exist; commercial gas turbines of the correct capacity exist, but they are not matched to this cycle's gas temperature of less than 538/sup 0/C (1000/sup 0/F). In order to avoid impeding the development of the technology, it will probably be desirable to use existing machines to the maximum extent possible. This paper explores the advantages and disadvantages of applying either standard gas turbines or modified standard gas turbines to the turbocharged boiler.

  6. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  7. NIST Home > Baldrige > Solar Turbines Select Language

    E-Print Network [OSTI]

    NIST Home > Baldrige > Solar Turbines * Select Language Powered by Translate Malcolm Baldrige National Quality Award 1998 Recipient Solar Turbines Incorporated With customers in 86 countries, Solar Turbines Incorporated is the world's largest supplier of midrange industrial gas turbine systems. The San

  8. 5th International Meeting Wind Turbine Noise

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 5th International Meeting on Wind Turbine Noise Denver 28 ­ 30 August 2013 Wind Turbine Noise Broadband noise generated aerodynamically is the dominant noise source for a modern wind turbine(Brooks et turbines . First, a wall pressure spectral model proposed recently by Rozenberg, Robert and Moreau

  9. AIAA 20033698 Aircraft Gas Turbine Engine

    E-Print Network [OSTI]

    Stanford University

    AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

  10. Installing Small Wind Turbines Seminar and Workshop

    E-Print Network [OSTI]

    Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

  11. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  12. Why Condensing Steam Turbines are More Efficient than Gas Turbines 

    E-Print Network [OSTI]

    Nelson, K. E.

    1988-01-01

    turbine at 75'rc adiabatic efficiency to a vacuum of 2"Hg. No steam is extracted. 15,7 ~Blu/hr STACK Figure 3. Enthalpy analysis of power plant cycle. Analyzing this system points to the steam turbine condenser as the source of inefficiency... it's thrown away. Why be concerned about throwing away something that has virtually no value? But there is concern. The steam turbine condenser is nearly always viewed as the source of inefficiency in the cycle. The problem is that the wrong thing...

  13. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  14. Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using...

  15. Sandia Energy - Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 and H2O (from flue gas recirculation) create very different physical and chemical properties of the combustion medium, influencing coal ignition and combustion rates....

  16. Optimizing Low Temperature Diesel Combustion | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Low Temperature Diesel Combustion Optimizing Low Temperature Diesel Combustion Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  17. Hydrogen engine and combustion control process

    DOE Patents [OSTI]

    Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

    1997-01-01

    Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

  18. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  19. Combustion Model for Engine Concept Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Engine Concept Development Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an...

  20. Particle Sensor for Diesel Combustion Monitoring | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Diesel Combustion Monitoring Particle Sensor for Diesel Combustion Monitoring 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of...

  1. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document:  ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  2. Future of Condition Monitoring for Wind Turbines | OpenEI Community

    Open Energy Info (EERE)

    Market Research Type Term Title Author Replies Last Post sort icon Blog entry Market Research Turbines Market is Expected to Reach USD 191.87 Billion by 2020 in terms of Revenue...

  3. Theoretical studies on hydrogen ignition and droplet combustion

    E-Print Network [OSTI]

    Del Álamo, Gonzalo

    2006-01-01

    the combustion of hydrogen and carbon monoxide. Combustionfor carbon-monoxide hydrogen oxygen kinetics. Combustion

  4. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01

    stabilities in Gas Turbine Engines: Operational Experience,within LREs and gas turbine engines has a long history ofair- breathing engines and turbines, and other devices

  5. Repowering with pressurized fluidized-bed combustion units

    SciTech Connect (OSTI)

    Goidich, S.J. ); Rubow, L.N. ); Kumar, S. . Environmental Services and Technologies Div.); Mukherjee, D. ); Childress, N.B. )

    1991-05-01

    Turbocharged pressurized fluidized bed combustion (PFBC) power plants operating with a gas turbine inlet temperature lower than 800{degrees}F can produce electricity more efficiently (34.2 vs. 33.5% net plant efficiency) and at a lower cost of electricity (87.8 vs. 96. 6 mill/kWh over 30 years) than conventional pulverized-coal-fired plants with scrubbers. Since the PFBC process produces lower NO{sub x} emissions than conventional pulverized-coal combustion systems and captures sulfur as part of the combustion process, and since major equipment components can be shop-assembled and shipped by barge, retrofit of an existing unit with a turbocharged PFBC boiler can be a cost-effective means for extending the life of the unit and meeting NSPS without retrofitting flue gas desulfurization systems. Using the Wisconsin Electric Power Company's Port Washington Unit 5 as an example, preliminary engineering and economic evaluations were made to investigate the merits of turbocharged PFBC retrofits. This report describes the conceptual designs of the new, major plant components; discusses how the new components are integrated with the existing balance-of-plant equipment; describes the proposed plant control system; and presents an overall economic evaluation. Because design and economic evaluations were prepared on the basis of a commercial design, first-of-a-kind costs and test programs are not included. 5 refs., 58 figs., 55 tabs.

  6. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect (OSTI)

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  7. Consider Steam Turbine Drives for Rotating Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment...

  8. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .D.3: D.4: Wind turbine parameters . . . . . . . . . . . .

  9. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

  10. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its...

  11. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .Wind Turbine . . . . . . . . . . . . . . . . . . . . . . .

  12. Understanding Trends in Wind Turbine Prices Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2012-01-01

    specific focus on the cost of wind turbines deployed onshoremovements inflating the cost of wind turbines imported intothe USD-denominated cost of wind turbines imported into the

  13. Enviro effects of hydrokinetic turbines on fish | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish 47fish-hkturbineinteractionseprijacobs...

  14. Combustor assembly for use in a turbine engine and methods of assembling same

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward

    2013-05-14

    A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.

  15. Structure and Combustion of Magnegases

    E-Print Network [OSTI]

    R. M. Santilli; A. K. Aringazin

    2001-12-20

    In this paper, we study the structure and combustion of magnegases$^{TM}$ (Patented and International Patents Pending), new clean fuels developed by one of us (R.M.S.) [1], which are produced as byproducts of recycling nonradioactive liquid feedstock such as antifreeze waste, engine oil waste, town sewage, crude oil, etc., and generally vary with the liquid used for their production. A new technology, called PlasmaArcFlow\\tm, flows the waste through a submerged electric arc between conventional electrodes. The arc decomposes the liquid molecules into their atomic constituents, and forms a plasma in the immediate vicinity of the electrodes at about 10,000$^o$ F. The technology then moves the plasma away from the electrodes, and controls its recombination into environmentally acceptable fuels. The new fuels possess a ew chemical structure first identified by one of us (R.M.S.), which is characterized by clusters of ordinary molecules and atoms under a new bond of electromagnetic nature. These clusters constitute a new chemical species different than the conventional molecules, since they are stable at ordinary conditions while exhibiting no infrared signature (other than those of conventional molecular constituents), thus confirming that the bond is not of valence type. For this reason the new chemical species is called ''Santilli's electromagnecules'' or ''magnecules''.

  16. Kerosene space heaters--combustion technology and kerosene characteristics

    SciTech Connect (OSTI)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to be highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.

  17. Multiple piece turbine blade

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL)

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  18. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  19. Sprayed skin turbine component

    DOE Patents [OSTI]

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  20. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  1. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION

    E-Print Network [OSTI]

    Moses, Elisha

    2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2815­2820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

  2. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    E-Print Network [OSTI]

    Teshome, Sophonias

    2012-01-01

    Related Works in Droplet Combustion . . . . . . . .of Acoustics on Droplet Combustion . . . . . . . . . . . .Fuel Droplet Combustion . . . . . . . . . . . . . . .

  3. Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2005-01-01

    small gas turbines, internal combustion engines, operatingsmall gas turbines, internal combustion engines, usingsmall gas turbines, and internal combustion engines, the

  4. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01

    small gas turbines, internal combustion engines, operatingsmall gas turbines, internal combustion engines, usingsmall gas turbines, and internal combustion engines must

  5. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Applied low temperature combustion to the Navistar 6.4L V8 engine with 0.2g NOx/bhp-hr operation attained at the rated 16.5 BMEP

  6. Rim seal for turbine wheel

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  7. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  8. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  9. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  10. The Combustion Institute 5001 Baum Boulevard

    E-Print Network [OSTI]

    Tennessee, University of

    The Combustion Institute 5001 Baum Boulevard Pittsburgh, Pennsylvania, USA 15213-1851 CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE CALL FOR PAPERS TECHNICAL MEETING - SPRING 2002 COMBUSTION 7-9, 2002 #12;CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE www.cssci.org CALL FOR PAPERS

  11. COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS

    E-Print Network [OSTI]

    Mukasyan, Alexander

    COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

  12. Coal air turbine {open_quotes}CAT{close_quotes} program invention 604. Fourth quarter project report, July 1995--September 1995

    SciTech Connect (OSTI)

    Foster-Pegg, R.W.

    1995-10-31

    A coal air turbine `CAT` generates electric power and heat from coal combustion. The purpose of this project is the conceptual design of a `CAT` plant, and to make a comparison of the capital cost and and cost of power and steam from the `CAT` plant with power produced by alternate plants at the same site. Three configurations investigated include: condensing plant utilizing coal fuel and a condenser tower, or river, for cooling; a cogeneration plant utilizing coal and a steam turbine; and a cogeneration plant utilizing steam export and injection with waste coal fuel.

  13. Encouraging Combined Heat and Power in California Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    combustion engine - CHP micro turbine - CHP gas turbine -power gas turbines, micro-turbines, and internal combustion

  14. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  15. Combustion Science for Cleaner Fuels

    SciTech Connect (OSTI)

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  16. Loop-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Slagle, Frank D. (Kingwood, WV); Notestein, John E. (Morgantown, WV)

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  17. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in incomplete combustion of organic matter (e.g., in engines and incinerators, when biomass burns in forest fires). PAHs may also be abundant in the universe, and are...

  18. Combustion modeling in waste tanks

    SciTech Connect (OSTI)

    Mueller, C.; Unal, C.; Travis, J.R. |

    1997-08-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

  19. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  20. How Does a Wind Turbine Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Does a Wind Turbine Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns...

  1. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    studied were vertical axis wind turbines, which are nottesting of vertical axis wind turbines (VAWT). For example,vertical axis turbines (VAWTs). Gradually, as the industry matured, most design concepts standardized on horizontal axis wind turbines (

  2. Reducing mode circulating fluid bed combustion

    DOE Patents [OSTI]

    Lin, Yung-Yi (Katy, TX); Sadhukhan, Pasupati (Katy, TX); Fraley, Lowell D. (Sugarland, TX); Hsiao, Keh-Hsien (Houston, TX)

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  3. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

  4. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Clifford E. Smith; Steven M. Cannon; Virgil Adumitroaie; David L. Black; Karl V. Meredith

    2005-01-01

    In this project, an advanced computational software tool was developed for the design of low emission combustion systems required for Vision 21 clean energy plants. Vision 21 combustion systems, such as combustors for gas turbines, combustors for indirect fired cycles, furnaces and sequestrian-ready combustion systems, will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. The simulation tool will greatly reduce the number of experimental tests; this is especially desirable for gas turbine combustor design since the cost of the high pressure testing is extremely costly. In addition, the software will stimulate new ideas, will provide the capability of assessing and adapting low-emission combustors to alternate fuels, and will greatly reduce the development time cycle of combustion systems. The revolutionary combustion simulation software is able to accurately simulate the highly transient nature of gaseous-fueled (e.g. natural gas, low BTU syngas, hydrogen, biogas etc.) turbulent combustion and assess innovative concepts needed for Vision 21 plants. In addition, the software is capable of analyzing liquid-fueled combustion systems since that capability was developed under a concurrent Air Force Small Business Innovative Research (SBIR) program. The complex physics of the reacting flow field are captured using 3D Large Eddy Simulation (LES) methods, in which large scale transient motion is resolved by time-accurate numerics, while the small scale motion is modeled using advanced subgrid turbulence and chemistry closures. In this way, LES combustion simulations can model many physical aspects that, until now, were impossible to predict with 3D steady-state Reynolds Averaged Navier-Stokes (RANS) analysis, i.e. very low NOx emissions, combustion instability (coupling of unsteady heat and acoustics), lean blowout, flashback, autoignition, etc. LES methods are becoming more and more practical by linking together tens to hundreds of PCs and performing parallel computations with fine grids (millions of cells). Such simulations, performed in a few weeks or less, provide a very cost-effective complement to experimental testing. In 5 years, these same calculations can be performed in 24 hours or less due to the expected increase of computing power and improved numerical techniques. This project was a four-year program. During the first year, the project included the development and implementation of improved chemistry (reduced GRI mechanism), subgrid turbulence (localized dynamic), and subgrid combustion-turbulence interaction (Linear Eddy) models into the CFD-ACE+ code. University expertise (Georgia Tech and University of California, Berkeley) was utilized to help develop and implement these advanced submodels into the unstructured, parallel CFD flow solver, CFD-ACE+. Efficient numerical algorithms that rely on in situ look-up tables or artificial neural networks were implemented for chemistry calculations. In the second year, the combustion LES software was evaluated and validated using experimental data from lab-scale and industrial test configurations. This code testing (i.e., alpha testing) was performed by CFD Research Corporation's engineers. During the third year, six industrial and academic partners used the combustion LES code and exercised it on problems of their choice (i.e., beta testing). Final feedback and optimizations were then implemented into the final release (licensed) version of the combustion LES software to the general public. An additional one-year task was added for the fourth year of this program entitled, ''LES Simulations of SIMVAL Results''. For this task, CFDRC performed LES calculations of selected DoE SIMVAL cases, and compared predictions with measurements from NETL. In addition to comparisons with NOx and CO exit measurements, comparisons were made to measured pressure oscillations. Potential areas of improvement for combustion and turbulence models were identified. In conclusion, this program advanced the state-of-the-art in combustion LES an

  5. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    envisioned floating offshore wind turbines. Finally, globalfloating turbine depths. [ 32 ] The combined impact of wind turbine

  6. Aerovalve pulse combustion: Technical note

    SciTech Connect (OSTI)

    Richards, G.A.; Gemmen, R.S.; Narayanaswami, L.

    1994-07-01

    The authors present a mathematical model and an experimental investigation of aerodynamically valved pulse combustion. The model uses a control-volume approach to solve conservation laws in several regions of a pulse combustor. Mixing between the fresh charge and combustion products is modeled as a two-step process, with the mixing occurring slowly for a specified eddy time during each cycle, and then changing to a higher rate. Results of model simulations demonstrate that eddy time plays a significant role in determining the frequency and amplitude of combustion oscillation. The authors show that short eddy times produce steady, rather than pulsating, combustion. And they show that changes to the mixing process alter the temperature-species history of combustion gases in a manner that could prevent or promote the formation of nitrogen oxides, depending on specific mixing rates. The relatively simple control-volume approach used in this model allows rapid investigation of a wide range of geometric and operating parameters, and also defines characteristic length and time scales relevant to aerovalve pulse combustion. Experimental measurements compare favorably to model predictions. The authors place particular emphasis on time-averaged pressure differences through the combustor, which act as an indicator of pressure gain performance. They investigate both operating conditions and combustor geometry, and they show that a complex interaction between the inlet and exit flows of a combustor makes it difficult to produce general correlations among the various parameters. They use a scaling rule to produce a combustor geometry capable of producing pressure gain.

  7. Understanding Trends in Wind Turbine Prices Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2012-01-01

    include some offshore wind turbines. That said, the factoffshore wind still accounts for a relatively small portion of Vestas’ turbine

  8. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    Turbine Blades,” in AWEA Windpower, (Atlanta, GA), pp. 1–22,turbine blades,” AWEA Windpower, Atlanta, GA, (presentation)

  9. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  10. Capstone Turbine Earthwise Energy Technologies

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    documented 22,600,000 #12;Single Stage Jet Engine · 1750 F Combustion · Recuperated · 3 Air Bearings #12;· 1/Digester Gas ·Sour Gas ·Liquid Fuel & Propane ·200 ­ 1000 kW net output ·Product Offerings #12;· Over $100M

  11. Exhaust gas recirculation system for an internal combustion engine

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  12. WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

  13. MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES

    E-Print Network [OSTI]

    APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

  14. Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

  15. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  16. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  17. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  18. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01

    J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

  19. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion...

  20. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01

    1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. ” US PatentIntroduction to Internal Combustion Engines (3rd Edition).