Powered by Deep Web Technologies
Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The effects and characteristics of hydrogen in SNG on gas turbine combustion using a diffusion type combustor  

Science Journals Connector (OSTI)

Abstract Converting coal to natural gas may be one of the alternative solutions for satisfying the demand for natural gas. However, synthetic natural gas (SNG) has not been proven effective in natural gas-fired power plants. In this research, several combustion tests using a diffusion type combustor were conducted to determine the effect of hydrogen content in SNG on gas turbine combustion. Three kinds of SNG with different H2 content up to 3%vol were used for the combustion tests. Even a small amount of hydrogen in SNG affects the flame structure: it shortened the flame length and enlarged the flame angle slightly. However, hydrogen content up to 3% in SNG did not affect the gas turbine combustion characteristics, which are emission performance and combustion efficiency. Due to a similarity with real gas turbine combustor conditions for power generation, a high pressure combustion test helped us verify the ambient pressure combustion tests conducted to determine the effect of hydrogen in SNG. In the high pressure combustion test, the pattern factors were identical even though the hydrogen content was varied from 0% to 3%.

Seik Park; Uisik Kim; Minchul Lee; Sungchul Kim; Dongjin Cha

2013-01-01T23:59:59.000Z

2

Gas turbine alternative fuels combustion characteristics  

SciTech Connect (OSTI)

An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained in terms of released heat and combustion gas emission values. The results were comparable to those obtained with the base fuels with variations being obtained with changing operating conditions. The release of carbon particles during the tests was minimal. 22 refs., 12 figs., 2 tabs.

Rollbuhler, R.J.

1989-02-01T23:59:59.000Z

3

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

4

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

5

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Environmental Management (EM)

congestion on the constrained Northeast power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food...

6

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

7

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

8

Understanding and Control of Combustion Dynamics in Gas Turbine Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control of Combustion Understanding and Control of Combustion Control of Combustion Understanding and Control of Combustion Dynamics in Gas Turbine Combustors Dynamics in Gas Turbine Combustors Georgia Institute of Technology Georgia Institute of Technology Ben T. Zinn, Tim Lieuwen, Yedidia Neumeier, and Ben Bellows SCIES Project 02-01-SR095 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/2002, 36 Month Duration) $452,695 Total Contract Value CLEMSONPRES.PPT, 10/28/2003, B.T. ZINN, T. LIEUWEN, Y. NEUMEIER Gas Turbine Need Gas Turbine Need * Need: Gas turbine reliability and availability is important factor affecting power plant economics - Problem: Combustion driven oscillations severely reduce part life, requiring substantially more frequent outages

9

GAS TURBINE REHEAT USING IN SITU COMBUSTION  

SciTech Connect (OSTI)

In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

2004-05-17T23:59:59.000Z

10

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect (OSTI)

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

11

Pressure pulsations in combustion chambers of large gas turbines  

SciTech Connect (OSTI)

Flame instabilities and pressure pulsations have been measured in three different types of gas turbine combustors. These are the single and twin silo (such as the ABB GT13E and the Siemens V94.2), the annular combustion chamber (ABB GT 13E2, Siemens V84.3A, etc), and the multi-can combustors common on GEC-EGT gas turbines. Pressure pulsations are mostly resonant. They are interpreted with help of an acoustical model. Non-resonant modes at low frequencies (flame flicker) are ascribed to imperfect mixing especially in premix burners. At higher frequencies they are often due to vortices from the burners. Modifications of the burners, changes in the geometry of the liners and the addition of acoustical dampers are means to abate flame instabilities and the associated resonances. Judicious ways to run the gas turbine can help to avoid them. The efficiency of acoustical dampers of the Helmholtz type has been investigated experimentally and with model predictions.

Verhage, A.J.L.; Stevens, P.M.P.

1998-07-01T23:59:59.000Z

12

Solid fuel combustion system for gas turbine engine  

DOE Patents [OSTI]

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

13

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

gasification-based combustion turbine systems. The paper dmws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy...-14, 1994 Coupled with gasification, combustion turbine power generation also may provide attractive opportunities for other fuels, such as low-value residual oils and petroleum coke. Residual oil firing of boilers in large steam turbine-based power...

Karp, A. D.; Simbeck, D. R.

14

Waves Transmission and Generation in Turbine Stages in a Combustion-Noise Framework  

E-Print Network [OSTI]

, the acoustic behavior of the turbine blade rows must be known to evaluate the noise due to combustionWaves Transmission and Generation in Turbine Stages in a Combustion-Noise Framework M. Leyko SNECMA-engines could have two different origins: (a) the well-known direct combustion noise,2 which is directly

Nicoud, Franck

15

Utilization and Mitigation of VAM/CMM Emissions by a Catalytic Combustion Gas Turbine  

Science Journals Connector (OSTI)

A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has ... Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalyti...

K. Tanaka; Y. Yoshino; H. Kashihara; S. Kajita

2013-01-01T23:59:59.000Z

16

ALCF Research Aimed at Safer, Cleaner Combustion for Gas Turbines | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Aimed at Safer, Cleaner Combustion for Gas Turbines Research Aimed at Safer, Cleaner Combustion for Gas Turbines December 3, 2013 Printer-friendly version Researchers from the Swiss Federal Institute of Technology (ETHZ) and the Argonne Leadership Computing Facility (ALCF) are using supercomputers to advance the development of safer and cleaner gas turbine engines by studying the operating conditions that can lead to a potentially dangerous phenomenon called autoignition. This phenomenon, which involves the spontaneous ignition of a combustible mixture without an external ignition source, can result in a premature combustion event, called flashback, that causes significant damage to the gas turbine. Understanding autoignition is critical to the design of turbines that operate with novel combustion strategies, such as lean

17

An investigation into the feasibility of an external combustion, steam injected gas turbine  

E-Print Network [OSTI]

output of the turbine without increasing the work required for compression. Second, the steam may be generated with waste 15 heat from the combustion process. In an internal combustion gas turbine, this would result in an increased work output per... which are: 1. Gas Turbine Engine 2. Heat Exchanger Unit 3. Steam Generator Unit 4. Dynamometer 26 A detailed description of the equipment used in the experiment will be presented in the section entitled Ap- paratus since the purpose...

Ford, David Bruce

2012-06-07T23:59:59.000Z

18

Types of Hydropower Turbines | Department of Energy  

Energy Savers [EERE]

type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding...

19

Chemical Kinetics in Support of Syngas Turbine Combustion  

SciTech Connect (OSTI)

This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We adjusted emphasis of Task 2 to understand the source of these noted disparities because of their key importance to developing lean premixed combustion technologies of syngas turbine applications. In performing Task 3, we also suggest for the first time the very significant effect that metal carbonyls may have on syngas combustion properties. This work is fully detailed. The work on metal carbonyl effects is entirely computational in nature. Pursuit of experimental verification of these interactions was beyond the scope of the present work.

Dryer, Frederick

2007-07-31T23:59:59.000Z

20

Study of Lean Premixed Methane Combustion with CO2 Dilution under Gas Turbine Conditions  

Science Journals Connector (OSTI)

In gas turbines, high air dilution is used in order to keep the turbine inlet temperature (TIT)(7) below the metallurgical temperature limit of the first turbine stages. ... It was shown that CO2 dilution could be an efficient method for increasing CO2 concentration in exhaust gas, thus making its capture easier. ... Efforts were focused on the impacts on cycle efficiency, combustion, gas turbine components, and cost. ...

Stéphanie de Persis; Gilles Cabot; Laure Pillier; Iskender Gökalp; Abdelakrim Mourad Boukhalfa

2012-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect (OSTI)

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

22

GEI 41040G - Specification for Fuel Gases for COmbustion in Heavy-Duty Gas Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbine Gas Turbine Revised, January 2002 GEI 41040G These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes the matter should be referred to the GE Company. © 1999 GENERAL ELECTRIC COMPANY Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines GEI 41040G Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines 2 TABLE OF CONTENTS I. INTRODUCTION 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

Condition Based Monitoring of Gas Turbine Combustion Components  

SciTech Connect (OSTI)

The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

2012-09-30T23:59:59.000Z

24

Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Instability and Blowout Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Characteristics of Fuel Flexible Gas Turbine Combustors Combustors Georgia Institute of Technology Georgia Institute of Technology Tim Lieuwen, Ben Zinn Bobby Noble, Qingguo Zhang DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES SCIES Project 03-01-SR111 Project Awarded (07/01/03, 36 Month Duration) Total Contract Value $376,722 . CLEMSON presentation, T.L., B.Z., B.N., Q.Z. Gas Turbine Need Gas Turbine Need * Need: Gas turbines with sufficient flexibility to cleanly and efficiently combust a wide range of fuels, particularly coal-derived gases - Problem: Inherent variability in composition and heating

25

Proceedings: EPRI Workshop on Condition and Remaining Life Assessment of Hot Gas Path Components of Combustion Turbines  

SciTech Connect (OSTI)

The severity of modern combustion turbine operation is a reflection of industry competition to achieve higher thermal efficiency. This competitive stance has resulted in new turbine designs and material systems that have at times outpaced condition and remaining life assessment (CARLA) technology. These proceedings summarize a two-day workshop on CARLA technology for hot section components of large combustion turbines.

None

2000-05-01T23:59:59.000Z

26

Modeling and Control of Lean Premixed Combustion Dynamics for Gas Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virginia Active Combustion Control Group Virginia Active Combustion Control Group Tech Virginia VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Reacting Flows Laboratory Modeling and Control of Lean Premixed Combustion Dynamics for Gas Turbines Virginia Tech Principal Investigator: Uri Vandsburger SCIES Project 02- 01- SR099 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, 36 Month Duration) $ 756,700 Total Contract Value ($ 603,600 DOE) Virginia Active Combustion Control Group Tech Virginia VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Reacting Flows Laboratory Gas Turbine Technology Needs DLN/LP Gas Turbines * Improved Combustion Stability * Improved Design Methodology With a focus on: - Thermoacoustics

27

Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines  

E-Print Network [OSTI]

Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found and coupled with the LES solver of the gas phase. The equations used for each phase and the coupling terms

28

Lean Catalytic Combustion for Ultra-low Emissions at High Temperature in Gas-Turbine Burners  

Science Journals Connector (OSTI)

This illustrates the weak point of current catalytic combustion technology: the unavailability of catalytic systems stable at the temperature of the gas turbine inlet temperature. ... The possible feeds are methane, gaseous fuels, and gasified biomasses. ... In particular, the paper presents current development status and design challenges being addressed by Siemens Westinghouse Power Corp. for large industrial engines (>200 MW) and by Solar Turbines for smaller engines (Turbine Systems (ATS) program. ...

Fabrizio D’Alessandro; Giovanna Pacchiarotta; Alberto Rubino; Mauro Sperandio; Pierluigi Villa; Arturo Manrique Carrera; Reza Fakhrai; Gianluigi Marra; Annalisa Congiu

2010-12-16T23:59:59.000Z

29

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors  

Science Journals Connector (OSTI)

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors ... Also, the application of oxy-combustion technology into gas turbines is possible; however, the combustion temperature will be increased tremendously, which needs more control to make safe the turbine blades. ... technologies, a simplified model of a power plant with two forms of CO2 capture was developed. ...

Mohamed A. Habib; Medhat Nemitallah; Rached Ben-Mansour

2012-11-19T23:59:59.000Z

30

Hydraulic Turbines: Types and Operational Aspects  

Science Journals Connector (OSTI)

The turbine is considered to be the heart of ... , the proper selection and operation of the turbine is very important.

Prof. Dr.-Ing Hermann-Josef Wagner…

2011-01-01T23:59:59.000Z

31

Improvement of combustion efficiency and emission characteristics of IC diesel engine operating on ESC cycle applying Variable Geometry Turbocharger (VGT) with vaneless turbine volute  

Science Journals Connector (OSTI)

Based on experimental data, the present study investigates the influence of turbine adjustment in a turbocharger with vaneless turbine volute on diesel combustion efficiency indices and emission characteristics. ...

D. Samoilenko; H. M. Cho

2013-08-01T23:59:59.000Z

32

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect (OSTI)

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

33

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect (OSTI)

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

34

Online, In Situ Monitoring of Combustion Turbines Using Wireless, Passive, Ceramic Sensors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Online, In Situ Monitoring of Combustion Online, In Situ Monitoring of Combustion Turbines Using Wireless, Passive, Ceramic Sensors Description The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is committed to strengthening America's energy security. Central to this mission is to increase the percentage of domestic fuels used to provide for the Nation's energy needs. To this end, DOE-NETL is supporting projects to develop technologies that will improve the efficiency, cost, and environmental performance

35

Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel - Georgia Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prediction of Combustion Stability Prediction of Combustion Stability and Flashback in Turbines with High- Hydrogen Fuel-Georgia Institute of Technology Background Georgia Institute of Technology (Georgia Tech), in collaboration with Pennsylvania State University and gas turbine manufacturers, is conducting research to improve the state-of-the-art in understanding and modeling combustion instabilities, one of the most critical problems associated with burning high-hydrogen content (HHC) fuels in

36

A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit  

Science Journals Connector (OSTI)

Abstract Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output.

Shi Su; Xinxiang Yu

2014-01-01T23:59:59.000Z

37

LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

Vivek Khanna

2002-09-30T23:59:59.000Z

38

ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE (CT)/COMBINED CYCLE (CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)  

SciTech Connect (OSTI)

Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

Leonard Angello

2002-04-01T23:59:59.000Z

39

Modular Turbine Control Software: A Control Software Architecture for the ABB Gas Turbine Family  

Science Journals Connector (OSTI)

ABB Power Generation’s family of gas turbines covers the power range of 35 to 270 MW with five basic turbine types, which vary in size, combustion technology and equipment. Each type comes in several variatons...

Dr. Christopher Ganz; Michael Layes

1998-01-01T23:59:59.000Z

40

Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines  

SciTech Connect (OSTI)

Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

Yiguang Ju; Frederick Dryer

2009-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced combustion technologies for gas turbine power plants  

SciTech Connect (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

42

Development of a plate-fin type gas turbine recuperator  

Science Journals Connector (OSTI)

A plate-fin type recuperator for a gas turbine/fuel cell hybrid power generation system was designed, manufactured, and tested. Performance analysis shows that the performance of the system is directly affecte...

Jae Su Kwak; Inyoung Yang

2006-07-01T23:59:59.000Z

43

16 - Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The historical development of gas turbine low \\{NOx\\} combustion from the pioneering NASA work in the early 1970s to the present generation of ultra-low \\{NOx\\} industrial gas turbine combustors is reviewed. The principles of operation of single digit ultra-low \\{NOx\\} gas turbine combustion for industrial applications are outlined. The review shows the potential has been demonstrated by several investigators using different flame stabilizers for \\{NOx\\} to be reduced to 1 ppm at 1700 K, 2 ppm at 1800 K and 3–4 ppm at 1900 K with no influence of operating pressure and with a practical operating flame stability margin. Under these conditions it is shown that no thermal \\{NOx\\} should occur and all the \\{NOx\\} is formed by the prompt \\{NOx\\} mechanisms. The elimination of thermal \\{NOx\\} makes the \\{NOx\\} emissions independent of residence time or reference velocity and independent of pressure. Also there is no influence of air inlet temperature for the same flame temperature. Where legislation requires emissions to be as low as can be achieved, emissions below 4 ppm in production engines are current technology and this review shows the potential to get even lower than this in the future.

G.E. Andrews

2013-01-01T23:59:59.000Z

44

ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)  

SciTech Connect (OSTI)

Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

Leonard Angello

2004-09-30T23:59:59.000Z

45

ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)  

SciTech Connect (OSTI)

Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

Leonard Angello

2004-03-31T23:59:59.000Z

46

Understanding and Control of Combustion Dynamics In Gas Turbine Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flashback Characteristics of Syngas-Type Fuels Under Steady and Pulsating Conditions Flashback Characteristics of Syngas-Type Fuels Under Steady and Pulsating Conditions Annual Report Reporting Period Start Date: January 1, 2006 Reporting Period End Date: December 31, 2006 Principal Investigators: Tim Lieuwen Date Report was issued: December 29, 2006 DOE Award Number: DE-FG26-04NT42176 School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 2 DISCLAIMER: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

47

Improving a Pre-Combustion CCS Concept in Gas Turbine Combined Cycle for CHP Production  

Science Journals Connector (OSTI)

Abstract This paper describes modifications to improve the feasibility of a pre-combustion CCS concept for a gas turbine combined cycle. A natural gas-fired greenfield combined heat and power (CHP) plant equipped with pre-combustion capture was used as a base case, for which various improvement options were identified, assessed and selected. The base case was modified using the selected improvement options, after which the investment costs were re-evaluated. The results showed that the investment cost can be reduced with 8% by excluding the pre-reformer and the low temperature water-gas-shift reactor from the reforming process. The exclusion of the pre-reformer did not affect the performance of the plant, but the exclusion of the low temperature water-gas-shift reactor led to higher CO2 emissions.

Marjut S. Suomalainen; Antti Arasto; Sebastian Teir; Sari Siitonen

2013-01-01T23:59:59.000Z

48

Comparative Investigation of Blade Lean Effect in Hydrogen?Fueled Combustion Turbine  

Science Journals Connector (OSTI)

Recently environmental problems have been actively researched all over the world. To overcome air pollution and fossil fuel exhaustion we have been investigating a hydrogen?fueled propulsion system. In the system hydrogen is injected from the turbine blade and/or vane surface. The system can realize higher power lighter weight and lower emission than conventional systems. However there exist many problems for the realization. One of them is the extremely high temperature region appearing on the wall. In the present study we clarify the effect of blade lean on the generation of high temperature region. The combusting turbulent flowfield around a normal a compound lean and a reverse compound lean blades are simulated using RANS and 5?step reduced combustion model. Comparing the numerical results it is confirmed that compound lean is promising to suppress the high temperature region.

R. Nakamura; M. Suzuki; M. Yamamoto

2011-01-01T23:59:59.000Z

49

Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov (indexed) [DOE]

DOElEA- 430 DOElEA- 430 LA-UR-02-6482 Nationat Nudea- Security Administration Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico December II,2002 Department of Energy National Nuclear Security Administration Los Alamos Site Office Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at LANL DOE LASO December 11, 2002 iii Contents ACRONYMS AND TERMS.......................................................................................................V EXECUTIVE SUMMARY ....................................................................................................... IX 1.0 PURPOSE AND NEED ........................................................................................................1

50

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect (OSTI)

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

51

An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines  

E-Print Network [OSTI]

of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

Ibrahim, Zuhair M. A.

2007-01-01T23:59:59.000Z

52

Numerical prediction of interaction between combustion, acoustics and vibration in gas turbines  

Science Journals Connector (OSTI)

The turbulent flame in the lean combustion regime in a gas turbine combustor generates significant thermo?acoustic instabilities. The flame can amplify fluctuations in the released heat and thus in the acoustic field as well. The induced pressure oscillations will drive vibrations of the combustor walls and burner parts. Stronger fluctuating pressure results in stronger fluctuations in the wall structure. Due to fatigue the remaining life time of the hard ware will be reduced significantly. This paper investigates modeling of acoustic oscillations and mechanical vibrations induced by lean premixed natural gascombustion. The mutual interaction of the combustion processes induced oscillating pressure field in the combustion chamber and induced vibration of the liner walls are investigated with numerical techniques. A partitioned procedure is used here: CFX?10 for the CFD analysis and Ansys?10 for the CSD analysis are coupled to give insight into a correlation between acoustic pressure oscillations and liner vibrations. These results will be compared with the available experimental data. The data are gathered in a purpose built 500 kW/5 bar premixed natural gas test rig.

Artur Pozarlik; Jim B. Kok

2008-01-01T23:59:59.000Z

53

Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

54

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect (OSTI)

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

55

ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)  

SciTech Connect (OSTI)

Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

Leonard Angello

2003-09-30T23:59:59.000Z

56

A new BML-based RANS modelling for the description of gas turbine typical combustion processes  

Science Journals Connector (OSTI)

The work is concentrated on the formulation and validation of integral models within RANS framework for the numerical prediction of the premixed and partially premixed flames occurring in gas turbine combustors. The premixed combustion modelling is based on the BML approach coupled to the mixing transport providing variable equivalence ratio. Chemistry is described by means of ILDM model solving transport equations for reaction progress variables conditioned on the flame front. Multivariate presumed PDF model is used for the turbulence-chemistry interaction treatment. Turbulence is modelled using the second moment closure (SMC) and the standard ?-? model as well. The influence of non-gradient turbulent transport is investigated comparing the gradient diffusion closure and the solution of the scalar flux transport equations. Different model combinations are assessed simulating several premixed and partially premixed flame configurations and comparing results to the experimental data. The proposed model provides good predictions particularly in combination with SMC.

A. Maltsev; A. Sadiki; J. Janicka

2004-01-01T23:59:59.000Z

57

On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers  

Science Journals Connector (OSTI)

...gas turbine combustor, it has...the dynamic pressure field which...requirements in real gas turbine applications...manner that high-amplitude...in annular gas turbines...bifurcations in gas turbine combustor. Int. J...effects on high-frequency...characteristics of pressure oscillations...

2013-01-01T23:59:59.000Z

58

Technical and Economic Analysis of Chemical Looping Combustion with Humid Air Turbine Power Cycle  

Science Journals Connector (OSTI)

Abstract Chemical looping combustion (CLC) is an innovative concept that offers potentially attractive option to capture CO2 with appreciably lower thermal efficiency penalties when compared to the tradition approaches. This paper presents process simulation, technical and economic analysis of the CLC integrated with humid air turbine (HAT) cycle for natural gas-fired power plant with CO2 capture. Aspen Plus® process simulator and Aspen Process Economic Analyzer® were employed for technical and economic analysis of the CLC-HAT and conventional HAT cycle.The analysis shows the CLC- HAT cycle has a thermal efficiency of 57 % at oxidizing temperature of 1,200 oC and reducer inlet temperature of 530 oC. The economic evaluation performed shows that a 50 MWth CLC-HAT plant with a projected lifetime of 30 y has a payback period of 6 y compared to 7 y for conventional HAT cycle. This indicates that CLC-HAT cycle is commercially viable with respect to CO2 capture cost.

Akeem Olaleye; Meihong Wang

2014-01-01T23:59:59.000Z

59

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect (OSTI)

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

60

Studying the advisability of using gas-turbine unit waste gases for heating feed water in a steam turbine installation with a type T-110/120-12.8 turbine  

Science Journals Connector (OSTI)

Results of calculation studying of a possibility of topping of a steam-turbine unit (STU) with a type T-110/120-12.8 turbine of the Urals Turbine Works (UTZ) by a gas-turbine unit (GTU) of 25-MW capacity the wast...

A. D. Trukhnii; G. D. Barinberg; Yu. A. Rusetskii

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Combustion  

SciTech Connect (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

62

Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors  

SciTech Connect (OSTI)

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Ahsan Choudhuri

2011-03-31T23:59:59.000Z

63

Heat loss reduction and hydrocarbon combustion in ultra-micro combustors for ultra-micro gas turbines  

Science Journals Connector (OSTI)

For the development of ultra-micro combustors for Ultra-Micro Gas Turbines (UMGT), heat loss reduction and hydrocarbon fuel use are the key issues. An approach for reducing the effect of heat loss in ultra-micro combustors was proposed. The heat loss ratio (HLR), which was defined as the ratio of heat loss rate from a combustor to heat release rate in the combustor, was related to the space heating rate (SHR), and experiments using some flat-flame ultra-micro combustors with hydrogen/air premixture exhibited the relation of HLR ? SHR?0.92/? (?, characteristic length of combustor). From the viewpoint of heat loss reduction, burning at high SHR in compact ultra-micro combustors is essential for a practical UMGT combustor. As for hydrocarbon combustion, the flat-flame burning method with and without catalyst was applied to propane fuel. The flat-flame combustor, having an inner diameter of 18.5 mm, a height of 3.5 mm, and a volume of 0.806 cm3, could form a propane flame successfully in the chamber without a catalyst and achieved an extremely high SHR of 3370 MW/(MPa m3). Flame stable region was wide enough, and the combustion efficiency achieved was more than 99.4% between the equivalence ratios of 0.5 and 0.7 at m ? a = 0.06 g / s . The flat-flame combustor using a Pt-impregnated porous plate showed catalytic combustion, but did not improve the combustion characteristic. On the other hand, the flat-flame combustor using a nozzle whose surface was covered with Pt showed a combination of catalytic and gas-phase combustion with improved combustion efficiency for a wider range of equivalence ratios, due to CO oxidation in the burned gas after gas-phase combustion in the chamber.

Takashi Sakurai; Saburo Yuasa; Taku Honda; Shoko Shimotori

2009-01-01T23:59:59.000Z

64

Turbines  

Science Journals Connector (OSTI)

... with his torical notes and some explanations of the principles involved in the working of turbines. This is fol lowed by three chapters on water-wheels, ... . This is fol lowed by three chapters on water-wheels, turbine pumps, and water ...

1922-02-09T23:59:59.000Z

65

Nutrient release from combustion residues of two contrasting herbaceous vegetation types  

E-Print Network [OSTI]

(muffle and flame burning) to combust herbaceous biomass from contrasting nutrient level sites to estimate caused by a fire is the combustion and charring of vegetation. Both C and N contained in plant biomassNutrient release from combustion residues of two contrasting herbaceous vegetation types Benjamin A

Florida, University of

66

Effect of ignition location on the in-process removal of combustion deposits from the output window of a gas turbine laser ignition system  

Science Journals Connector (OSTI)

The effect of ignition location on the effectiveness of combustion deposit removal from the reverse side of an optical window in a laser ignition system for use in gas turbines is presented. Such deposits consist of carbon and other by-products which accumulate on the walls of the chamber as a result of incomplete combustion. In laser based ignition systems this accumulation of combustion deposits has the potential to reduce the transmissive properties of the output window required for transmission of the laser radiation into the combustion chamber, adversely affecting the likelihood of successful ignition. In this work, a full empirical study into the in-process removal of combustion deposits from the reverse side of the optical window in a laser ignition system using a Q-switched Nd:YAG laser is presented, with an emphasis on the effect of ignition location on the effectiveness of combustion deposit removal. In addition, the mechanism of deposit removal is discussed.

J. Griffiths; J. Lawrence; P. Fitzsimons

2013-01-01T23:59:59.000Z

67

A new type of self-organization in combustion  

Science Journals Connector (OSTI)

... a solid-phase gasless combustion3 which proceeds with the formation of a melt or a flameless gas3'4. ... gas3'4. Flameless combustion has recently been described for several tetrazole compounds5.

A. I. Lesnikovich; V. V. Sviridov; G. V. Printsev; O. A. Ivashkevich; P. N. Gaponik

1986-10-23T23:59:59.000Z

68

Impact of SCIG and DFIG Type Wind Turbine on the Stability of Distribution Networks: static and dynamic  

E-Print Network [OSTI]

Impact of SCIG and DFIG Type Wind Turbine on the Stability of Distribution Networks: static fed induction generator (DFIG) type wind turbine in distribution networks. The analysis is carried out and DFIG type wind turbines have significant impact on the static voltage stability, power loss

Pota, Himanshu Roy

69

5 - Combustors in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: This chapter discusses combustion systems in gas turbines. It begins by reviewing basic design principles before discussing developments in technology such as advanced fuel staging and reheat combustion systems. The chapter also covers the impact of different natural gas types on combustor operations, including combustor design for low calorific gases and fuel oils.

P. Flohr; P. Stuttaford

2013-01-01T23:59:59.000Z

70

Thermochemical Gasification of Biomass: Fuel Conversion, Hot Gas Cleanup and Gas Turbine Combustion  

Science Journals Connector (OSTI)

Air-blown fluidized bed biomass gasification integrated with a gas- and steam turbine combined cycle (BIGCC) is a potentially attractive way to convert biomass into electricity and heat with a high efficiency.

J. Andries; W. de Jong; P. D. J. Hoppesteyn…

2002-01-01T23:59:59.000Z

71

Using Large Eddy Simulations to Understand Combustion Instabilities in Gas Turbines  

Science Journals Connector (OSTI)

This paper presents a study of the stability of a swirled premixed combustion chamber both with and without reaction using Large Eddy Simulation and a numerical solver able to handle complex geometries. It is ...

Thierry Poinsot; Jörg Schlüter…

2002-01-01T23:59:59.000Z

72

Aerodynamic effects on TLP type wind turbines and predictions of the electricity they generate  

Science Journals Connector (OSTI)

This research proposes a new offshore wind energy generation system that uses a tension ... and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be ...

Yasunori Nihei; Hiroyuki Fujioka

2011-06-01T23:59:59.000Z

73

Feasibility of the Application of a Spar-type Wind Turbine at a Moderate Water Depth  

Science Journals Connector (OSTI)

The feasibility of the application of a spar-type wind turbine at a moderate water depth is studied in this paper. In the oil and gas industries, spar-type offshore platforms are widely applied in deep water. The same idea is used in offshore wind technology to present the Hywind concept based on a catenary moored spar in deep water. The draft of the spar limits the application of spar-type wind turbines in shallow water. However, it is possible to design spar-type wind turbines for moderate water depths. The present article studies the feasibility and performance of such a design. A spar-type wind turbine at a moderate water depth called “ShortSpar” is introduced in the present article. A catenary moored spar-type support structure is applied as a base for the 5-MW NREL land-based turbine. The power performance, structural integrity and dynamic responses of a 5-MW catenary moored spar-type wind turbine in deep water (DeepSpar) have previously been studied. In the present article, the responses of the spar-type wind turbines, ShortSpar and DeepSpar, are compared. The HAWC2 code is used to carry out the coupled aero-hydro-servo-elastic analyses. Different environmental conditions are used to compare the responses. A dynamic link library (DLL) is used to feed the mooring forces at each time step into the HAWC2 code. The force-displacement relationships are obtained from the Simo-Riflex code. The comparison of the responses of ShortSpar and DeepSpar in different load cases indicates the feasibility of implementation of spar-type wind turbine in moderate water depths. The results show that the spar-type wind turbine at a moderate water depth exhibits good performance, and its responses are reasonable compared with those associated with a spar-type wind turbine in deep water. The total mass (the structural mass plus the ballast) of ShortSpar is 35% less than the mass of DeepSpar, while the statistical characteristics of the generated power are almost the same for both spars. This mass reduction for ShortSpar helps to achieve a more cost-effective solution for floating wind turbines at a moderate water depth.

Madjid Karimirad; Torgeir Moan

2012-01-01T23:59:59.000Z

74

The analysis and specification of large high-pressure, high-temperature valves for combustion turbine protection in second-generation PFB power plants: Topical report  

SciTech Connect (OSTI)

The purpose of this study was to provide a specification for the high-pressure/high-temperature valves for turbine overspeed protection in a commercial-scale second-generation pressurized fluidized bed combustion (PFBC) power plant. In the event of a loss of external (generator) load, the gas turbine rapidly accelerates from its normal operating speed. Protection from excessive overspeed can be maintained by actuation of fuel isolation and air bypass valves. A design specification for these valves was developed by analyses of the turbine/compressor interaction during a loss of load and analyses of pressure and flow transients during operation of the overspeed protection valves. The basis for these analyses was the Phase 1 plant conceptual design prepared in 1987.

Not Available

1994-08-01T23:59:59.000Z

75

METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

1982-05-01T23:59:59.000Z

76

LES Simulations of Turbulent Combustion in a Type Ia Supernovae  

E-Print Network [OSTI]

to be thermonuclear explosions of white dwarfs. SNIa are important sources of energy and chemical elements deposited of the burning are all determined by the speed of thermonuclear burning [27]. The problem of turbulent combustion. The mechanism and the speed of thermonuclear burning in SNIa remain an unsolved theoretical problem. A recent

New York at Stoney Brook, State University of

77

Polycyclic Aromatic Hydrocarbon Emissions from the Combustion of Alternative Fuels in a Gas Turbine Engine  

Science Journals Connector (OSTI)

? Centre of Excellence for Aerospace Particulate Emissions Reduction Research, Missouri University of Science and Technology, Rolla, Missouri 65409, United States ... Within the aviation sector, the development and certification of alternative drop-in fuels are progressing at a rapid pace: a standard specification for aviation fuel containing synthesized hydrocarbons was approved by ASTM in 2009,(4) Hydrogenated esters and fatty acids (HEFA), also often referred to as hydrotreated renewable jet (HRJ), qualified as a 50/50 blend with petroleum Jet A-1 in 2011,(4) and the Commercial Aviation Alternative Fuels Initiative (CAAFI) anticipate fully synthetic Fischer–Tropsch (FT) fuel to qualify in 2012. ... Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine – Part 1: Gaseous and Particulate Matter Emissions ...

Simon Christie; David Raper; David S. Lee; Paul I. Williams; Lucas Rye; Simon Blakey; Chris W. Wilson; Prem Lobo; Donald Hagen; Philip D. Whitefield

2012-04-25T23:59:59.000Z

78

8 - Radial-Inflow Turbines  

Science Journals Connector (OSTI)

Publisher Summary The inward-flow radial turbine covers tremendous ranges of power, rates of mass flow, and rotational speeds from very large Francis turbines used in hydroelectric power generation and developing hundreds of megawatts down to tiny closed cycle gas turbines for space power generation of a few kilowatts. The widespread adoption of variable geometry turbines for diesel engine turbochargers has been the major factor in increasing the commercial use of this technology. Variable area is commonly, but not exclusively, achieved by pivoting the nozzle vanes about an axis disposed in the span-wise direction. The most common radial-inflow turbine applications are turbochargers for internal combustion engines, natural gas, diesel, and gasoline powered units. The advantage of a turbocharger is that it compresses the air, thus letting the engine squeeze more air into a cylinder, and more air means that more fuel can be added. Applications of turbo expanders in the chemical industry abound in the petrochemical and chemical industries. Turbo expanders using radial-inflow turbines have a much higher ruggedness than turbo expanders using axial-flow turbines. The radial-inflow turbine for gas turbine application is basically a centrifugal compressor with reversed flow and opposite rotation. The performance of the radial-inflow turbine is being investigated with increased interest by the transportation and chemical industries. In the petrochemical industry, it is used in expander designs, gas liquefaction expanders and other cryogenic systems. The radial-inflow turbine’s greatest advantage is that the work produced by a single stage is equivalent to that of two or more stages in an axial turbine. Its cost is also much lower than that of a single- or multi-stage axial-flow turbine. The configurations and designs of the two types of radial-inflow turbine (cantilever and mixed-flow) are described. The thermodynamic and aerodynamic principles governing a radial-inflow turbine are summarized. The design and performance of a radial-inflow turbine are discussed. The potential problems (erosion; exducer blade vibration; noise) and types of losses in a radial-inflow turbine are described. Applications of radial-inflow turbines (e.g. turbochargers) are discussed.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

79

Chapter 9 - Hydraulic Turbines  

Science Journals Connector (OSTI)

This chapter covers the following topics: Features of hydraulic turbines; Early history and development; Efficiency of various types of turbine; Size of the various turbine types; The Pelton wheel turbine and controlling its speed; Energy losses; Reaction turbines; The Francis and the Kaplan turbines; Calculation of performance; Effect of size on the performance of hydraulic turbines; Cavitation and its avoidance; Calculation of the various specific speeds of turbines; The Wells turbine- Design and performance variables; Tidal power turbines- The SeaGen tidal turbine and its operational principles.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

80

A Control Methodology for DFIG Type Wind Turbines Connected to Distribution Networks  

E-Print Network [OSTI]

A Control Methodology for DFIG Type Wind Turbines Connected to Distribution Networks N. K. Roy, H.roy.h.pota.md.mahmud)@adfa.edu.au Ahstract-This paper proposes a decentralised controller design for doubly-fed induction generators (DFIGs in operating conditions. Index Terms-distributed generation (DG), DFIG, H= norm, linear quadratic Gaussian (LQG

Pota, Himanshu Roy

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

82

US National Technical Meeting of the Combustion Institute  

E-Print Network [OSTI]

potential to enhance combustion performance in gas turbines and scramjet engines. Extensive efforts have

Ju, Yiguang

83

Test on muddy soil reinforcement by negative pressure and electro-osmosis inside cover-bearing-type bucket foundation for offshore wind turbines  

Science Journals Connector (OSTI)

Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention...

Puyang Zhang ???; Hongyan Ding ???; Shaohua Zhai ???…

2013-02-01T23:59:59.000Z

84

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

85

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

86

Tests of a 4,000 kw. Gas-Turbine Set  

Science Journals Connector (OSTI)

... January 5, gives a description and test results of a 4,000 kw. combustion-turbine generating set, recently constructed by Messrs. Brown, Boveri and Co., Ltd., ... in emergencies, and consists of an axial-type air-compressor, a combustion chamber, a gas- ...

1940-01-20T23:59:59.000Z

87

Hydrogen Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

88

Experimental study of improved modal strain energy method for damage localisation in jacket-type offshore wind turbines  

Science Journals Connector (OSTI)

Abstract An improved modal strain energy method is proposed for damage localisation in jacket-type offshore wind turbines by defining a series of stiffness-correction factors that can be employed to calculate the modal strain energy (MSE) of the measured model without utilising the stiffness matrix of the finite element model (FEM) as an approximation. The theoretical contribution of this article is that the MSE of the measured model could be estimated with better accuracy, and the advantage of the proposed indicator is that it is more sensitive to damage locations than the traditional MSE method. Numerical studies on a tripod offshore jacket wind turbine reveal that the proposed method could locate the damage positions for jacket-type offshore wind turbines when limited number of lower-order modes is available, even when these modes are spatially incomplete. The performance of the proposed method is also investigated using real measurements from a steel jacket-type offshore wind turbine experiment conducted in a water tank of Ocean University of China. The experimental results demonstrated that the proposed method outperforms the traditional MSE method, and damages in jacket-type offshore wind turbines could be properly located utilising the first two measured modes excited by environmental loadings, such as waves, currents, or the vibration of the wind turbine.

Fushun Liu; Huajun Li; Wei Li; Bin Wang

2014-01-01T23:59:59.000Z

89

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

90

Influence of input momentum and losses in the turbine on the efficiency of a turbofan engine with periodic fuel combustion  

Science Journals Connector (OSTI)

It is shown that research carried out by leading aeroengine manufactures on the use of the thermodynamically high-efficient GTE cycle with the periodic fuel combustion is very urgent. The investigation results...

V. I. Bogdanov; A. K. Dormidontov

2009-09-01T23:59:59.000Z

91

Low-pressure-ratio regenerative exhaust-heated gas turbine  

SciTech Connect (OSTI)

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

92

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHV gas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gökalp; Etienne Lebas

2004-01-01T23:59:59.000Z

93

Test results of a catalytic combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted low \\{NOx\\} combustor has been developed which has the advantage of catalyst durability. Combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected. A combustor for multi-can type gas turbine of 10 MW class was designed and tested at high-pressure conditions using liquefied natural gas (LNG) fuel. This combustor is composed of a burner system and a premixed combustion zone in a ceramic type liner. The burner system consists of catalytic combustor segments and premixing nozzles. Catalyst bed temperature is controlled under 1000°C, premixed gas is injected from the premixing nozzles to catalytic combustion gas and lean premixed combustion is carried out in the premixed combustion zone. As a result of the combustion tests, \\{NOx\\} emission was lower than 5 ppm converted at 16% O2 at a combustor outlet temperature of 1350°C and a combustor inlet pressure of 1.33 MPa.

Y Ozawa; T Fujii; Y Tochihara; T Kanazawa; K Sagimori

1998-01-01T23:59:59.000Z

94

Combustion air preheating for refinery heaters using plate-type heat exchangers  

SciTech Connect (OSTI)

Combustion air preheating by recovering heat from combustion gases is a cost effective method of increasing the overall thermal efficiency of the refining and petrochemical processes. This paper presents the advantages of the plate-type air preheaters made of smooth plates without extended surfaces. These exchangers provide a relatively high heat transfer coefficient at a relatively low pressure drop, resulting in a flexible and compact design. The air preheater design can easily be integrated into the heater design. Top mounting with natural draft becomes possible for many applications, eliminating the need for I.D. fan and expensive ductwork. The economical extent of heat recovery function of the fuel fired is presented based on practical experience. The use of porcelain enameled (glass coated) plates and of stainless steel materials allows the operation of the air preheater below the acidic and water dew point. Finally the paper presents the experience of the Canadian refineries and petrochemical plants with plate-type heat exchangers used for combustion air preheating.

Dinulescu, M.

1987-01-01T23:59:59.000Z

95

Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...  

Office of Environmental Management (EM)

Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

96

Steam Turbines  

Science Journals Connector (OSTI)

... chapters take up the design of nozzles and blades, and descriptions of commercial types of turbines. The treatment of low-pressure, mixed pressure, bleeder, and marine ... . The treatment of low-pressure, mixed pressure, bleeder, and marine turbines occupies separate chapters. Of these, the section dealing with the marine ...

1917-09-20T23:59:59.000Z

97

Study on the Portable and Integrated Type Pore Plate Flow Measureing Device for Condensate Water of 300MW Steam Turbine  

Science Journals Connector (OSTI)

In order to insure the accuracy of steam turbine thermal test in power plant, the flowrate measurement accuracy of condensate water should be insured. In this paper, the portable and integrated type flow measuring device for condensate water of 300MW steam turbine flow is designed, which is based on the condensate water parameters and the specific pipeline conditions at the exit of the No. 5 low pressure heater for 300MW unit. A integration of non standard differential pressure orifice flow meter is designed in this paper Through calibration in standard experimental system, the reason of the large error is that the flow field is disturbed by the origin plate type downward welding connecting flanges. Then the welding neck flanges is designed for the connecting flanges. The distribution of connecting flanges of flow field is weaken, and the measurement accuracy can meet the demand of steam turbine thermal test.

Yong Li; Jia-yong Wang

2012-01-01T23:59:59.000Z

98

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network [OSTI]

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

99

NETL: Turbine Projects - Cost Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

100

Study on The Effect of Regenerative System on Power Type Relative Internal Efficiency of Nuclear Steam Turbine  

Science Journals Connector (OSTI)

Nuclear steam turbine use wet steam as working medium, which is unable to determine the enthalpy drop type relative internal efficiency through exhaust enthalpy of steam, but the power type relative internal efficiency avoids this question. This paper introduced the calculate method of power type relative internal efficience, and then took a 900MW nuclear steam turbine for example, calculated the power type relative internal efficiency when the factors of regenerative system are changed. The result shows that when the factors of regenerative system are changed in a large range, the power type relative internal efficiency is nearly changeless, so the effect of regenerative system on relative internal efficiency can be neglected. At last, the independence between relative internal efficiency and ideal cycle heat efficiency is calculated and analyzed.

Yong Li; Chao Wang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

102

NETL: Turbines - Oxy-Fuel Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

103

Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report  

SciTech Connect (OSTI)

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

104

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

105

E-Print Network 3.0 - advanced combustion systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of these include pulverized coal combustion... combustion in gas turbines and coal gasification-fuel cell systems hold out ... Source: Kammen, Daniel M. - Renewable and...

106

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2011  

Broader source: Energy.gov [DOE]

Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

107

Ceramics for ATS industrial turbines  

SciTech Connect (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

108

The wind-wave tunnel test of a tension-leg platform type floating offshore wind turbine  

Science Journals Connector (OSTI)

In this work a tension-leg platform (TLP) type floating offshore wind turbine (FOWT) system was proposed which was based on the National Renewable Energy Laboratory 5?MW offshore wind turbinemodel. Taking the coupled effect of dynamic response of the top wind turbine support tower structure and lower mooring system into consideration the 1/60 scale model test for investigating the coupled wind-wave effect on performance of the floating wind turbine system was done in Harbin Institute of Technology's wind tunnel and wave flume joint laboratory. In addition numerical simulations corresponding to the scale model tests have been performed by advanced numerical tools. The results of model tests and numerical simulations have a good agreement so the availability of the numerical model has been verified. Furthermore to improve the performance of the TLP system one tentative strategy adding mooring lines to the TLP system was proposed and the model test results of the two TLP systems were compared with each other. As a result the motion responses of the floating platform and the force levels of tension legs were effectively reduced by the additional mooring chains. The new TLP FOWT system might play an active and instructive role in the development of future FOWT system.

Nianxin Ren; Yugang Li; Jinping Ou

2012-01-01T23:59:59.000Z

109

Pyrolysis, combustion and steam gasification of various types of scrap tires for energy recovery  

Science Journals Connector (OSTI)

The energy recovery from carbonaceous materials is considered as reliable energy source. In this context, pyrolysis, combustion and gasification characteristics of scrap truck and car tire samples were investigated using a thermo-gravimetric analyzer ...

Jayaraman KANDASAMY; Iskender Gökalp

2014-12-05T23:59:59.000Z

110

Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.[Taken from https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion

111

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network [OSTI]

of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

Littlejohn, David

2008-01-01T23:59:59.000Z

112

Model test and simulation of modified spar type floating offshore wind turbine with three catenary mooring lines  

Science Journals Connector (OSTI)

Korea is a peninsula which is surrounded by the Yellow Sea (shallow sea) the southern sea and the East Sea (deep sea). These circumstances always make us consider that a platform could have good motion performances in both shallow and deep seas. In this paper the typical spar type platform of the Offshore Code Comparison Collaboration Hywind Floating Offshore Wind Turbine (FOWT) has been modified and a new concept FOWT platform is suggested for both seas. Its motion performances are evaluated by both 1:80 scale model tests and full scale numerical simulations.

2014-01-01T23:59:59.000Z

113

Development of a catalytically assisted combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted low \\{NOx\\} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000°C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300°C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000°C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20 MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NOx, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that \\{NOx\\} emission was lower than 10 ppm converted at 16% O2, combustion efficiency was almost 100% at 1300°C of combustor outlet temperature and 13.5 ata of combustor inlet pressure.

Yasushi Ozawa; Tomoharu Fujii; Mikio Sato; Takaaki Kanazawa; Hitoshi Inoue

1999-01-01T23:59:59.000Z

114

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

115

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

116

NETL: Combustion Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbines for APFBC Gas Turbines for APFBC FBC Repower Simple Description Detailed Description APFBC Specs GTs for APFBC Suited for Repowering Existing Power Plants with Advanced Pressurized Fluidized-Bed Combined Cycles APFBC combined cycles have high energy efficiency levels because they use modern, high-temperature, high-efficiency gas turbines as the core of a combined power cycle. This web page discusses a current U.S. Department of Energy project that is evaluating combustion turbines suited for repowering existing steam plants. The natural-gas-fueled version of the Siemens Westinghouse Power Corporation W501F. Modified versions of this gas turbine core are suited for operating in APFBC power plants. Contents: Introduction APFBC Repowering Considerations

117

An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types  

Science Journals Connector (OSTI)

Abstract An extended overview of the phase–mineral transformations of organic and inorganic matter during biomass combustion was conducted in Part I of the present work. The ash fusion and ash formation mechanisms of biomass types and sub-types during combustion are described in the present Part II. For that purpose the identified systematic associations based on the occurrence, content and origin of elements and phases in the biomass ash (BA) system, namely (1) Si–Al–Fe–Na–Ti (mostly glass, silicates and oxyhydroxides); (2) Ca–Mg–Mn (commonly carbonates, oxyhydroxides, glass, silicates and some phosphates and sulphates); and (3) K–P–S–Cl (normally phosphates, sulphates, chlorides, glass and some silicates and carbonates); were used as classification of \\{BAs\\} into four types (“S”, “C”, “K” and “CK”) and six sub-types with high, medium and low acid tendencies and their description was given. Then, topics related to ash fusion behaviour such as: some general considerations and observations about ash melting; ash fusion temperatures (AFTs) of biomass and their comparisons with coal; relationships between \\{AFTs\\} and inorganic composition of biomass and coal; and ash fusion mechanisms of biomass and coal are characterized. Further, issues connected with the ash formation mechanisms of BA types and sub-types are discussed. Subsequently, aspects related to potential applications of ash formation mechanisms for BA types and sub-types, namely some key technological problems (fusion, slagging and fouling predictions, low ash fusion temperatures, co-combustion and application of BA) and environmental risks (volatilization, capture and water leaching of hazardous elements) are described. Finally, it is emphasized that the application of this new classification approach based on combined phase–mineral and chemical composition of biomass and BA has not only fundamental importance, but also has potential applications in prediction of behaviour and properties connected with the innovative and sustainable utilization of biomass and BA. It is also demonstrated that the definitive utilization, technological and environmental advantages and challenges related to biomass and BA associate preferentially with their specific types and sub-types and they could be predictable to some extent by using the above or similar combined chemical and phase–mineral classification approaches.

Stanislav V. Vassilev; David Baxter; Christina G. Vassileva

2014-01-01T23:59:59.000Z

118

Test results of low NO[sub x] catalytic combustors for gas turbines  

SciTech Connect (OSTI)

Catalytic combustion is an ultralow NO[sub x] combustion method, so it is expected that this method will be applied to a gas turbine combustor, However, it is difficult to develop a catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, the authors designed a catalytic combustor in which premixed combustion was combined. By this device, it is possible to obtain combustion gas at a combustion temperature of 1,300 C while keeping the catalytic temperature below 1,000 C. After performing preliminary tests using LPG, the authors designed two types of combustor for natural gas with a capacity equivalent to one combustor used in a 20 MW class multican-type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NO[sub x] and high combustion efficiency in the range from 1,000 C to 1,300 C of the combustor exit gas temperature.

Ozawa, Y.; Hirano, J.; Sato, M. (Central Research Inst. of Electric Power Industry, Kanagawa (Japan)); Saiga, M.; Watanabe, S. (Kansai Electric Power Co., Inc., Hyogo (Japan))

1994-07-01T23:59:59.000Z

119

Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals  

Science Journals Connector (OSTI)

Underwater noise was recorded from three different types of wind turbines in Denmark and Sweden (Middelgrunden Vindeby and Bockstigen-Valar) during normal operation. Wind turbinenoise was only measurable above ambient noise at frequencies below 500 Hz. Total sound pressure level was in the range 109–127 dB re 1 ? ? Pa rms measured at distances between 14 and 20 m from the foundations. The 1/3-octave noise levels were compared with audiograms of harbor seals and harbor porpoises. Maximum 1/3-octave levels were in the range 106–126 dB re 1 ? ? Pa rms. Maximum range of audibility was estimated under two extreme assumptions on transmission loss (3 and 9 dB per doubling of distance respectively). Audibility was low for harbor porpoises extending 20–70 m from the foundation whereas audibility for harbor seals ranged from less than 100 m to several kilometers. Behavioral reactions of porpoises to the noise appear unlikely except if they are very close to the foundations. However behavioral reactions from seals cannot be excluded up to distances of a few hundred meters. It is unlikely that the noise reaches dangerous levels at any distance from the turbines and the noise is considered incapable of masking acoustic communication by seals and porpoises.

Jakob Tougaard; Oluf Damsgaard Henriksen; Lee A. Miller

2009-01-01T23:59:59.000Z

120

Advances in Diode Laser Absorption Sensors for Combustion and Propulsion  

Science Journals Connector (OSTI)

Progress is reported in the evolution of diode laser sensors for combustion and propulsion systems. Applications are diverse, ranging from IC engines and gas turbine combustors to...

Hanson, Ronald K

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Economical Condensing Turbines?  

E-Print Network [OSTI]

an engineer decide when to conduct an in depth study of the economics either in the company or outside utilizing professional engineers who are experts in this type of project. Condensing steam turbines may not be economical when the fuel is purchased...Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown...

Dean, J. E.

122

How Gas Turbine Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

123

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calibration and Validation of a Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool Preprint J.R. Browning University of Colorado-Boulder J. Jonkman and A. Robertson National Renewable Energy Laboratory A.J. Goupee University of Maine Presented at the Science of Making Torque from Wind Oldenburg, Germany October 9-11, 2012 Conference Paper NREL/CP-5000-56138 November 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

124

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

125

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

126

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

127

An Experimental Study on the Two-Stage Combustion Characteristics of a Direct-Injection-Type HCCI Engine  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, Hanyang University, 1271 Sa-1 Dong, Sangrok-gu Ansan-si, Gyenggi-do, 426-791, Korea ... This research was achieved using a direct-injection-type diesel method during the intake stroke in real single-cylinder engines, and observations were made regarding the cool and hot flame characteristics, according to the air:fuel ratio and engine speed (given in units of rpm), an additive that influences the auto-ignition and the start times, and the combustion and emission characteristics, according to these times. ... This work was supported by the “Development of techniques on the fundamental and practical use of a HCCI” project at Korea Automotive Technology Institute, 2004. ...

Kihyung Lee; Changsik Lee; Jeaduk Ryu; Hyungmin Kim

2005-02-12T23:59:59.000Z

128

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

129

Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1  

E-Print Network [OSTI]

1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

Liu, Feng

130

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

131

Generic turbine design study. Final report  

SciTech Connect (OSTI)

The purpose of Task 12, Generic Turbine Design Study was to develop a conceptual design of a combustion turbine system that would perform in a pressurized fluidized bed combustor (PFBC) application. A single inlet/outlet casing design that modifies the W251B12 combustion turbine to provide compressed air to the PFBC and accept clean hot air from the PFBC was developed. Performance calculations show that the net power output expected, at an inlet temperature of 59{degrees}F, is 20,250 kW.

Not Available

1993-06-01T23:59:59.000Z

132

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

133

Influence of hole shape on the performance of a turbine vane endwall film-cooling scheme  

E-Print Network [OSTI]

Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream industrial gas turbine engines. One means of achieving this goal is to increase the combustion temper- ature are so high in today's gas turbine engines that in the absence of complex cooling schemes the turbine

Thole, Karen A.

134

Technologies for Evaluating Fish Passage Through Turbines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies for Evaluating Fish Passage Through Turbines Technologies for Evaluating Fish Passage Through Turbines This report evaluated the feasibility of two types of...

135

Technological features and operating modes of bottom turbines  

Science Journals Connector (OSTI)

Technological features and the startup and operation modes of a power unit consisting of an R-type turbine and a bottom turbine connected to it are considered.

L. S. Ioffe

2010-09-01T23:59:59.000Z

136

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

Anderson, Byron P.

2011-01-01T23:59:59.000Z

137

Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory  

Science Journals Connector (OSTI)

...energy efficiency, gas turbine engines used in...designing circumvention strategies. We review results...energy: Both employ turbine engines that combust...more expansion of gas that creates more...for most materials development, the usual path...

Kristen A. Marino; Berit Hinnemann; Emily A. Carter

2011-01-01T23:59:59.000Z

138

NETL: Combustion Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abbreviations & Acronyms Abbreviations & Acronyms Reference Shelf Solicitations & Awards Abbreviations & Acronyms The Combustion Technologies Product uses a number of abbreviations and acronyms. This web page gives you a definition of frequently used terms, as follows: 1½-Generation PFBC -- A PFBC plant where the hot (about 1400ºF) PFBC exhaust gases are used as a vitiated air supply for a natural gas combustor supplying high-temperature gas (above 2000ºF) to a combustion turbine expander (synonym for "PFB-NGT"). 1st-Generation PFBC -- Commercial PFBC technology where an unfired low-temperature (below 1650ºF) ruggedized turbine expander expands PFBC exhaust gases (synonym for "PFB-EGT"). 2nd-Generation PFBC (see synonyms: "APFBC," "PFB-CGT") -- Advanced PFBC where a carbonizer (mild gasifier) provides hot (about 1400ºF) coal-derived synthetic fuel gas to a special topping combustor. The carbonizer char is burned in the PFBC, and the PFBC exhaust is used as a hot (about 1400ºF) vitiated air supply for the topping combustor. The syngas and vitiated air are burned in a topping combustor to provide high-temperature gas (above 1700ºF) to a combustion turbine expander.

139

NETL: Combustion Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nebraska Public Power District's Sheldon Station with APFBC Technology Nebraska Public Power District's Sheldon Station with APFBC Technology FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: APFBC Repowering Project Summary Key Features Site Layout Performance Environmental Characteristics Cost Other Combustion Systems Repowering Study Links: A related study is underway that would repower Sheldon Unit 1 and Unit 2 with gasification fluidized-bed combined cycle technology (GFBCC). CLICK HERE to find out more about repowering the Sheldon station with GFBCC instead. APFBC Repowering Project Summary Click on picture to enlarge Advanced circulating pressurized fluidized-bed combustion combined cycle systems (APFBC) are systems with jetting-bed pressurized fluidized-bed (PFB) carbonizer/gasifier and circulating PFBC combustor. The PFB carbonizer and PFBC both operate at elevated pressures (10 to 30 times atmospheric pressure) to provide syngas for operating a gas turbine topping combustor giving high cycle energy efficiency. The remaining char from the PFB carbonizer is burned in the pressurized PFBC. The combustion gas from the PFB also feeds thermal energy to the gas turbine topping combustor. This provides combined cycle plant efficiency on coal by providing the opportunity to generate electricity using both high efficiency gas turbines and steam.

140

NETL- High-Pressure Combustion Research Facility  

SciTech Connect (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2013-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NETL- High-Pressure Combustion Research Facility  

ScienceCinema (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2014-06-26T23:59:59.000Z

142

NETL: Turbines - Research&Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R & D R & D Turbines Research and Development NETL In-house R&D for Turbines The Combustion and Engine Dynamics Division within NETL's Office of Science and Technology provides skills, expertise, equipment, and facilities to conduct research and provides technical support for NETL product lines and programs in combustion science and technology and in the dynamics of prime movers or engines, such as gas turbines; fuel cells; internal combustion engines; or hybrid cycles that utilize fossil fuels, biomass, wastes, or other related fuel sources. Research is conducted with the primary goals of improving cycle efficiency, reducing capital cost, and improving environmental performance. Studies on supporting technologies, such as combustion instability, fuels versatility, and fluid and particle dynamics, are performed as well.

143

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

144

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

145

Small gas turbine technology  

Science Journals Connector (OSTI)

Small Gas Turbine Technology: Small gas turbine, in the power range up to 500 kW, requires a recuperated thermodynamic cycle to achieve an electrical efficiency of about 30%. This efficiency is the optimum, which is possible for a cycle pressure ratio of about 4–1. The cycle airflow is function of the power requirement. To increase the efficiency, in view to reduce the CO2 emission, it is mandatory to develop a more efficient thermodynamic cycle. Different thermodynamic cycles were examined and the final choice was made for an Intercooled, Recuperated cycle. The advantage of this cycle, for the same final electrical efficiency of about 35%, is the smaller cycle airflow, which is the most dimensional parameter for the important components as the heat exchanger recuperator and the combustion chamber. In parallel with the thermodynamic cycle it is necessary to develop the High Speed Alternator technology, integrated on the same shaft that the gas turbine rotating components, to achieve the constant efficiency at part loads, from 50% up to 100%, by the capacity to adjust the engine speed at the required load. To satisfy the stringent requirement in pollutant emissions of \\{NOx\\} and CO, the catalytic combustion system is the most efficient and this advance technology has to be proven. The major constraints for the small gas turbine technology development are the production cost and the maintenance cost of the unit. In the power range of 0–500 kW the gas turbine technology is in competition with small reciprocating engines, which are produced in large quantity for automotive industry, at a very low production cost.

Andre Romier

2004-01-01T23:59:59.000Z

146

E-Print Network 3.0 - air-cooled gas turbine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State University Collection: Engineering 27 Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using Summary:...

147

Aviation turbine fuels, 1980  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1980 are presented in this report. The samples represented are typical 1980 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 98 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5 and commercial type Jet A.

Shelton, E.M.

1981-03-01T23:59:59.000Z

148

Aviation turbine fuels, 1982  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

149

Aviation turbine fuels, 1979  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1979 are presented in this report. The samples represented are typical 1979 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 93 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1980-05-01T23:59:59.000Z

150

Aviation turbine fuels, 1981  

SciTech Connect (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1981 are presented in this report. The samples represented are typical 1981 production and were analyzed in the laboratories of 15 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 95 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1982-04-01T23:59:59.000Z

151

Topping PCFB combustion plant with supercritical steam pressure  

SciTech Connect (OSTI)

Research is being conducted to develop a new type of coal fired plant for electric power generation. This new type of plant, called a second generation or topping pressurized circulating fluidized bed combustion (topping PCFB) plant, offers the promise of efficiencies greater than 46 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized coal fired plants with scrubbers. The topping PCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed combustor (PCFB), and the combustion of carbonizer fuel gas in a topping combustor to achieve gas turbine inlet temperatures of 2,300 F and higher. After completing pilot plant tests of a carbonizer, a PCFB, and a gas turbine topping combustor, all being developed for this new plant, the authors calculated a higher heating value efficiency of 46.2 percent for the plant. In that analysis, the plant operated with a conventional 2,400 psig steam cycle with 1,000 F superheat and reheat steam and a 2.5 inch mercury condenser back pressure. This paper identifies the efficiency gains that this plant will achieve by using supercritical pressure steam conditions.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); White, J. [Parsons Power Group Inc., Reading, PA (United States)

1997-11-01T23:59:59.000Z

152

Evaluation of synthetic-fuel character effects on rich-lean stationary gas-turbine combustion systems. Volume 2. Full-scale test program. Final report  

SciTech Connect (OSTI)

The effect of burner geometric scale on the emissions and performance produced by staged, rich lean combustors was investigated. Tests were conducted using a 25-cm diameter burner and the results obtained were compared with results previously obtained using a similar, but smaller (12.5-cm diameter) burner. The larger burner employed a convectively-cooled rich-burn section; the size of the burner is the size of the burner cans employed in the 25 Megawatt FT4 industrial gas turbine. Scale effects are of concern in staged rich/lean combustors because of the suspected critical importance of quench air jet penetration and fuel injector spray distribution, both processes being scaled dependent. Tests were conducted both with No. 2 petroleum distillate and with a nitrogen-bearing, middle-distillate synthetic fuel produced by the H-Coal process. Measurements of burner exit temperature profile, liner temperature, gaseous emission, and smoke emissions are presented and the results compared with subscale test results.

Kennedy, J.B.; McVey, J.B.; Rosfjord, T.J.; Russel, P.; Beal, G.

1983-05-01T23:59:59.000Z

153

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect (OSTI)

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

154

Influence of the Type of Oxygen Carriers on the Performance of a Hybrid Solar Chemical Looping Combustion System  

Science Journals Connector (OSTI)

A thermal analysis of a hybrid solar chemical looping combustion (Hy-Sol-CLC) system is presented to identify the energetic performance of various combinations of fuel and oxygen carriers. ... (6, 13) However, the potential advantages and disadvantages of these alternative oxygen carriers and inert materials for use in Hy-Sol-CLC systems are yet to be evaluated. ... combustion has the advantage that no energy is lost for the sepn. of CO2. ...

Mehdi Jafarian; Maziar Arjomandi; Graham J. Nathan

2014-04-09T23:59:59.000Z

155

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

156

Aero Turbine | Open Energy Information  

Open Energy Info (EERE)

Aero Turbine Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine Energy Company Location Riverside County CA Coordinates 33.7437°, -115.9925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7437,"lon":-115.9925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

158

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

159

NETL: 2010 Conference Proceedings - University Turbine Systems Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Turbine Systems Research Workshop University Turbine Systems Research Workshop October 19-21, 2010 Table of Contents Disclaimer Presentations Tuesday, October 19, 2010 Keynote Presentations Combustion Aero/Heat Transfer Wednesday, October 20, 2010 Keynote Presentations Aerodynamics/Heat Transfer Materials Combustion Thursday, October 21, 2010 Keynote Presentations Combustion Materials and Aerodynamics/Heat Transfer Poster Presenters PRESENTATIONS Tuesday, October 19. 2010 Keynote Presentations GE Perspectives - Advanced IGCC/Hydrogen Gas Turbine Development [PDF-629KB] Reed Anderson, GE Energy Siemens Perspectives - Advanced IGCC/Hydrogen Gas Turbine Development [PDF-2.2MB] Joe Fadok, Siemens Energy, Inc DOE Advanced Turbines Program Overview [PDF-284KB] Richard Dennis, National Energy Technology Laboratory

160

THE EFFECTS OF CHANGING FUELS ON HOT GAS PATH CONDITIONS IN SYNGAS TURBINES  

SciTech Connect (OSTI)

Gas turbines in integrated gasification combined cycle power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may differ significantly from those in natural gas. Such differences can yield changes in the temperature, pressure, and corrosive species that are experienced by critical components in the hot gas path, with important implications in the design, operation, and reliability of the turbine. A new data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types. The approach used allows efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages. The vanes and blades were considered to be cooled in an open circuit, with air provided from the appropriate compressor stages. A constraint was placed on the maximum metal temperature and values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates for cases where the turbine was fired with natural gas, NG, or syngas, SG. One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case to comply with imposed temperature constraint. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out in which the inlet mass flow was varied while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effects of turbine matching between the NG and SG cases were increases for the SG case of approximately 7 and 13 % for total cooling flows and cooling flows for the first vane, respectively. In particular, for the SG case, the vane in the last stage of the turbine experienced inner wall temperatures that approached the maximum allowable limit.

Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Designing an ultrasupercritical steam turbine  

SciTech Connect (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

162

Advanced coal-fueled gas turbine systems  

SciTech Connect (OSTI)

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

163

The cogeneration steam turbine of the T-63/76-8.8 type for a series of PGU-300 combined cycle power plants  

Science Journals Connector (OSTI)

This paper describes in detail the design of the T-63/76–8.8 steam turbine manufactured by Ural Turbine Works (refurbished significantly), its electrohydraulic control and protection system made according to the ...

A. Ye. Valamin; A. Yu. Kultyshev; V. N. Bilan; A. A. Goldberg…

2012-12-01T23:59:59.000Z

164

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...for the development of efficient rotary compressors...essential ex- perience in high-temperature turbine...II. The Velox steam boiler had a combustion circuit...essential to flight at high altitudes. Under this...successful gas turbine (an efficient compressor and an efficient...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

165

High pressure test results of a catalytically assisted ceramic combustor for a gas turbine  

SciTech Connect (OSTI)

A catalytically assisted ceramic combustor for a gas turbine was designed to achieve low NOx emission under 5 ppm at a combustor outlet temperature over 1300 C. This combustor is composed of a burner system and a ceramic liner behind the burner system. The burner system consist of 6 catalytic combustor segments and 6 premixing nozzles, which are arranged in parallel and alternately. The ceramic liner is made up of the layer of outer metal wall, ceramic fiber, and inner ceramic tiles. Fuel flow rates for the catalysts and the premixing nozzles are controlled independently. Catalytic combustion temperature is controlled under 1000 C, premixed gas is injected from the premixing nozzles to the catalytic combustion gas and lean premixed combustion over 1300 C is carried out in the ceramic liner. This system was designed to avoid catalytic deactivation at high temperature and thermal and mechanical shock fracture of the honeycomb monolith of catalyst. A combustor for a 10 MW class, multican type gas turbine was tested under high pressure conditions using LNG fuel. Measurements of emission, temperature, etc. were made to evaluate combustor performance under various combustion temperatures and pressures. This paper presents the design features and the test results of this combustor.

Ozawa, Y.; Tochihara, Y.; Mori, N.; Yuri, I. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan); Kanazawa, T.; Sagimori, K. [Kansai Electric Power Co., Inc., Amagasaki, Hyogo (Japan)

1999-07-01T23:59:59.000Z

166

Gas turbine engines with particle traps  

DOE Patents [OSTI]

A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

1992-01-01T23:59:59.000Z

167

The Cascaded Humidified Advanced Turbine (CHAT)  

SciTech Connect (OSTI)

This paper introduces the Cascaded Humidified Advanced Turbine (CHAT) plant, a gas turbine based power generation plant utilizing intercooling, reheat, and humidification. It is based upon the integration of an existing heavy duty gas turbine with an additional shaft comprising industrial compressors and high pressure expander. CHAT capitalizes on the latest proven gas turbine technology, which, combined with a sophisticated thermal cycle configuration, results in substantial improvement in gas turbine efficiency, compared to a simple cycle, while still maintaining typical advantages and merits of a combustion turbine plant. Built with a commercial combustion turbine and available industrial compressors and expanders, the CHAT plant does not require extensive product development and testing. As a result, the CHAT power plant can be offered with specific capital costs up to 20 percent lower than the combined cycle plant, and with competing efficiency. Compared to a combined cycle plant, the CHAT plant offers lower emissions (due to air humidification) and other significant operating advantages with regard to start-up time and costs, better efficiency at part load, lower power degradation at higher ambient temperatures, and simpler operations and maintenance due to elimination of the complexities and costs associated with steam production. The CHAT plant also integrates very effectively with coal gasification and particularly well with the water quench design. This feature has been discussed in previous publications.

Nakhamkin, M.; Swensen, E.C. [Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States); Wilson, J.M.; Gaul, G. [Westinghouse Electric Corp., Orlando, FL (United States); Polsky, M. [Polsky Energy Corp., Northbrook, IL (United States)

1996-07-01T23:59:59.000Z

168

Fundamental Studies in Syngas Premixed Combustion Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies Studies in Syngas Premixed Combustion Dynamics Ahmed F. Ghoniem, Anuradha M. Annaswamy, Raymond L. Speth, H. Murat Altay Massachusetts Institute of Technology SCIES Project 05-01-SR121 Project Awarded (08/01/2005, 36 Month Duration) Needs & Objectives Gas Turbine Needs Flexibility to operate with variable syngas compositions Ensure stable operation over a wide range of conditions Reduce emissions of CO and NO x Project Objectives Study experimentally lean premixed syngas combustion

169

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

170

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

171

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

172

Volatile Organic Compounds — Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.5–10 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

173

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

174

Spontaneous Human Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spontaneous Human Combustion Spontaneous Human Combustion Name: S. Phillips. Age: N/A Location: N/A Country: N/A Date: N/A Question: One of our 8th grade students has tried to find information in our library about spontaneous human combustion, but to no avail. Could you tell us where we might locate a simple reference, or provide some in information about this subject for him. Replies: Sorry, but this is definitely "fringe science"...try asking in bookstores. I seem to recall one of those "believe it or not" type of TV shows did an episode on spontaneous human combustion a few years ago in which they reported on some British scientists who investigated this purported phenomenon. Remember that people (back in the Dark Ages, and before) used to believe in "spontaneous generation" of certain plants and animals because they were not aware of the reproduction methods used by those plants and animals.

175

Micro-HCCI Combustion: Experimental Characterization and Development of a  

E-Print Network [OSTI]

: The Micro-Gas Turbine Engine at the Massachusetts Institute of Technology [2]; The MEMS Rotary EngineMicro-HCCI Combustion: Experimental Characterization and Development of a Detailed Chemical Kinetic is developed and used to interpret the experimental results and to explore HCCI combustion with a free

Zachariah, Michael R.

176

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Broader source: Energy.gov (indexed) [DOE]

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

178

DOE Taps Universities for Turbine Technology Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. Development of high-efficiency, ultra-clean turbine systems requires significant advances in high temperature materials science, understanding of combustion phenomena, and innovative cooling techniques to maintain integrity of turbine components. Such necessary technology advancements are

179

A non linear model for combustion instability : analysis and quenching of the oscillations  

E-Print Network [OSTI]

- ing the oscillations. 1 Introduction Combustion instabilities phenomena in gas turbine are the focus, this correspond to a positive feedback coupling between the heat-release process and acoustics of the combustion. Landau, F. Bouziani and R. R. Bitmead Thermal part (combustion) Acoustics Fig. 1. Positive feedback

Boyer, Edmond

180

System issues and tradeoffs associated with syngas production and combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed/moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Casleton, K.H.; Richards, G.A.; Breault, R.W.

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

System Issues and Tradeoffs Associated with Syngas Production and Combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed=moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Kent H. Casleton; Ronald W. Breault; George A. Richards

2008-06-01T23:59:59.000Z

182

Aerodynamic interference between two Darrieus wind turbines  

SciTech Connect (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

183

Advanced Combustion Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

184

Combustion Noise  

E-Print Network [OSTI]

stabilize or destabilize the modes of the system, depending on the configuration of the combustor and the form of the coupling [26, 30]. In contrast to combustion instability, in broad-band combustion noise the unsteadiness in the rate of combustion... from th s in a mod on tempera , entropic a de of indir t frequenci r, open que sical theory assical expe s [14] who it by a spa d a transie le gases. A e bubble si idered as a flame was ent was o ng and dif depended udy it wa ion, ? ?,p r t? : (a...

Dowling, Ann P.; Mahmoudi, Yasser

2014-01-01T23:59:59.000Z

185

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

186

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network [OSTI]

MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can...

Bae, Yoon Hyeok

2013-04-23T23:59:59.000Z

187

Combustion Engine  

Broader source: Energy.gov [DOE]

Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

188

NETL: News Release - DOE-Fossil Energy: World's Most Advanced Gas Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 18, 2000 February 18, 2000 DOE-Fossil Energy: World's Most Advanced Gas Turbine Now Ready to Cross Commercial Threshold Secretary Richardson Cites Success of Government-Industry Partnership For natural gas turbines - the technology likely to dominate the growing market for new electric power generation - the future was unveiled today in Greenville, South Carolina. GE's MS7001H Advanced Gas Turbine The 4000-ton Model MS7001H advanced gas turbine is the size of a locomotive. Secretary of Energy Bill Richardson and U.S. Senator Ernest Hollings joined General Electric today in announcing that the company's newest H System™ gas turbine, the most advanced combustion turbine in the world, is ready to cross the commercial threshold. "Today, we are seeing the most advanced combustion turbine anywhere,

189

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect (OSTI)

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

190

Pulse combustion  

Science Journals Connector (OSTI)

Pulse combustion has been gaining increased interest because of its potential for higher combustion efficiency greater combustion intensity and lower pollutant emissions. Unsteady combustion causes increased mass momentum and heat transfer. As a result reactants mix faster heat release is accelerated and heat transfer is enhanced in unsteady reacting flows. Many of these phenomena were discovered long ago by engineers looking for the cause of often detrimental combustion instabilities. Much more recently some of these enhanced transfer properties have been used to design efficient and compact pulse combustors. Although to date successful commercialization on a large scale has been limited to home heating units (e.g. the Lenox Pulse Furnace) highly efficient pulse spray dryers (Bepex Unison Dryer) pulse calciners and pulse waste incinerators have been designed. Pulsations have also been applied to carbon black fluidized bed gasifiers. Not all these designs will become economically viable. However the development of tunable pulse combustors that can be acoustically matched to the changing resonance frequency of these pulse processes have made many of them more promising. Recent findings that pulsation can enhance burning even in turbulent flows lend further encouragement to the developers of novel pulse combustion devices.

Jechiel I. Jagoda

2000-01-01T23:59:59.000Z

191

NETL Publications: 2011 University Turbine Systems Research Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 University Turbine Systems Research Workshop 2011 University Turbine Systems Research Workshop October 25-27, 2011 PRESENTATIONS Tuesday, October 25, 2011 H2 Turbine Development for IGCC with CCS: Project Overviews and Technical Issues [PDF-1.12MB] Susan Scofield, Siemens Energy, Inc. GE Energy's DOE Advanced IGCC/Hydrogen Gas Turbine Program [PDF-1.16MB] Roger Schonewald, GE Energy DOE FE Hydrogen Turbine Program Overview [PDF-1.66MB] Richard Dennis, U.S. Department of Energy, National Energy Technology Laboratory Natural Gas Combined Cycle Power Generation [PDF-1.56MB] Robert Steele, Electric Power Research Institute Overview of Gas Turbine R&D at The Ohio State University [PDF-6.02MB] Meyer (Mike) Benzakein, Director of The Ohio State University's Center for Propulsion and Power An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels [PDF-1.61MB]

192

An Evaluation of Gas Turbines for APFBC Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

193

COMBUSTION RESEARCH - FY-1979  

E-Print Network [OSTI]

deposition due to the heat of combustion. The problem wedimensionless heat of combustion, QpYoxoolhw t transferredfraction of specie i heat of combustion per gram of fuel

,

2012-01-01T23:59:59.000Z

194

Cyclic deflagration-to-detonation transition in the flow-type combustion chamber of a pulse-detonation burner  

Science Journals Connector (OSTI)

The possibility of realization of a rapid cyclic deflagration-to-detonation transition (DDT) with a frequency of...DDT...? 20 ms after ignition. The results will be used in the development of a new type of indust...

S. M. Frolov; V. S. Aksenov; K. A. Avdeev…

2013-03-01T23:59:59.000Z

195

New gas turbine combustor supports emissions limits  

SciTech Connect (OSTI)

Gas Research Institute, in partnership with Allison Engine Co. of Indianapolis, has introduced a natural gas-fired, low-emissions combustor that it says will give customers of industrial gas turbines a least-cost approach for meeting US emissions regulations. The LE IV combustor uses dry, low-nitrogen oxides (DLN) technology to reduce emissions from the Allison 501K industrial gas turbine to 25 parts per million or less (corrected to 15 percent oxygen)--levels that are expected to meet pending federal emissions regulations. GRI is funding similar efforts with other manufacturers of turbines commonly used at pipeline compressor stations and industrial power generation sites. The Allison combustor features a dual operating mode. During the pilot mode of operation, fuel is directly injected into the combustor`s liner where it is consumed in a diffusion flame reaction. During higher power operation, the fuel and air are uniformly premixed in fuel-lean proportions to control NO{sub x} formation. In addition, optimum engine performance is maintained by the dry, lean-mixed combustion technology as it suppresses NO{sub x} formation in the turbine`s combustion section. An added advantage of the LE IV combustor is its ability to lower emissions without any adverse affect on engine performance and operations, according to GRI> The combustor is available as either a retrofit or as an option on a new engine.

NONE

1996-10-01T23:59:59.000Z

196

Microsoft Word - 41020_GE_Adv Combustion System_Factsheet_Rev01_10-03.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FACT SHEET FACT SHEET Advanced Combustion Systems for Next Generation Gas Turbines I.) Participants: Principal Investigator: General Electric, Air Force Research Lab II.) Description A. Objective: Develop a new gas turbine combustion system design with 50% lower emissions, and demonstrate it at sub-scale. The system will be compared with state-of- the-art lean premixed gas turbine NOx emissions at temperatures and pressures comparable to GE F-Class turbines. B. Background/Relevancy: Next generation turbine power plants will require high efficiency gas turbines with higher combustor pressures and firing temperatures than is currently available. These increases in the severity of gas turbine operating conditions will tend to increase NOx emissions. As the desire for higher efficiency drives combustor pressures

197

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

198

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

199

TGM Turbines | Open Energy Information  

Open Energy Info (EERE)

TGM Turbines TGM Turbines Jump to: navigation, search Name TGM Turbines Place Sertaozinho, Sao Paulo, Brazil Zip 14175-000 Sector Biomass Product Brazil based company who constructs and sells boilers for biomass plants. Coordinates -21.14043°, -48.005154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-21.14043,"lon":-48.005154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An experimental study of combustion and emissions of two types of woody biomass in a 12-MW reciprocating-grate boiler  

Science Journals Connector (OSTI)

Abstract The gaseous emissions of primary concern from biomass combustion are nitrogen oxides (NOX), carbon monoxide, and various unburned gaseous components. Detailed characterization of the gas in the hot reaction zones is necessary to study the release, formation, and evolution of the gas components. In the present study, gas temperature and concentration were measured in a 12-MWth biomass-fired reciprocating-grate boiler operated with over-fire air and flue-gas recirculation. Temperature measurement was combined with flue gas quenching and sample gas extraction using two water-cooled stainless-steel suction pyrometers. The concentration profiles of O2, NO, and CO were experimentally determined throughout the furnace, and the profile gas temperature was measured in several positions inside the furnace for the two types of woody biomass studied. For both fuels, the gas temperature varied between approximately 450 °C (average primary chamber temperature) and 1200 °C (average secondary chamber temperature). The concentration profiles of CO and O2 suggested no conclusive difference between the two types of biomass. However, the local mean concentrations of NO and NOX emission factors (measured in the stack) were higher for Greenery fuel due to its higher nitrogen content than that of Standard fuel.

Hamid Sefidari; Narges Razmjoo; Michael Strand

2014-01-01T23:59:59.000Z

202

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

203

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Broader source: Energy.gov [DOE]

Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

204

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of opportunity fuels will avoid greenhouse gas emissions from the combustion of natural gas and increase the diversity of fuel sources for U.S. industry. Introduction Gas turbines...

205

Infinity Turbine LLC | Open Energy Information  

Open Energy Info (EERE)

Turbine LLC Turbine LLC Jump to: navigation, search Name Infinity Turbine LLC Place Madison, Wisconsin Zip 53705 Product Wisconsin-based small turbine manufacturer focusing on small-scale binary turbine manufacturing. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

207

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

208

Plum Combustion | Open Energy Information  

Open Energy Info (EERE)

Plum Combustion Plum Combustion Jump to: navigation, search Name Plum Combustion Place Atlanta, Georgia Product Combustion technology, which reduces NOx-emissions. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Real-time Combustion Control and Diagnostics Sensor-Pressure Oscillation Monitor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Control and Diagnostics Combustion Control and Diagnostics Sensor-Pressure Oscillation Monitor Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing its patented "Real-Time Combustion Control and Diagnostics Sensor-Pressure Oscillation Monitor" technology. Disclosed is NETL's sensor system and process for monitoring and controlling the amplitude and/or frequencies of dynamic pressure oscillations in combustion systems during active combustion processes. The combustion control and diagnostics sensor (CCADS) is designed for gas turbine combustors that are operated near the fuel-lean flame extinction limit to minimize production of the atmospheric pollutant NOx. CCADS eliminates the problems of flashback,

210

Principles of Jet Propulsion and Gas Turbines  

Science Journals Connector (OSTI)

... the presentation of the basic theory of jet propulsion and the thermodynamics of the gas-turbine and rocket types of engine. The layout follows a logical sequence, on the whole ... reader is treated to the now well-known thermodynamic analysis of the power-producing gas turbine cycle, which seems rather misplaced in a book dealing with jet propulsion. In his ...

S. J. MOYES

1949-08-06T23:59:59.000Z

211

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT)  

E-Print Network [OSTI]

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT) Yizhou Lu, T. M. Delorm, A. Christou of the reliability of these 5 Types Surrogate failure rate data Onshore wind turbines (OT) 1-1.5MW CONCLUSIONS., Faulstich, S. & van Bussel G. J. W. Reliability & availability of wind turbine electrical & electronic

Bernstein, Joseph B.

212

Progress in NO sub x and CO emission reduction of gas turbines  

SciTech Connect (OSTI)

Extensive operating experience with hybrid burners assembled in large combustion chambers has been gained over the last 3 1/2 years. Operating results have been equally successful for newly installed gas turbines as well as units retrofitted with the dry low NO{sub x} burners. For new V94.2 and V84.2 gas turbines built by Siemens/KWU for 50 and 60 Hz applications, this combustion system has become a standard feature.

Maghon, H.; Berenbrick, P. (Siemens, KWV, Mulheim (DE)); Termuehlen, H.; Gartner, G. (Siemens Power Corp., Brandenton, FL (US))

1990-01-01T23:59:59.000Z

213

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

214

Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression  

SciTech Connect (OSTI)

The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical

Brun, Klaus; McClung, Aaron; Davis, John

2014-03-31T23:59:59.000Z

215

Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes  

Science Journals Connector (OSTI)

Abstract Offshore wind is an important source of renewable energy and is steadier and stronger than onshore wind. Offshore areas not only have strong winds but also contain other potential renewable energy sources, such as ocean waves and tidal currents. Therefore, it is interesting to investigate the possibility to utilise these energy potentials simultaneously, particularly the combination of wind and ocean wave energy due to their natural correlation. For this reason, previous researchers have examined the use of a floating wind turbine (FWT) and a wave energy converter (WEC) on a single platform (Aubault et al., 2011; Peiffer et al., 2011; Soulard and Babarit, 2012). In this paper, a combined concept involving a spar-type FWT and an axi-symmetric two-body WEC is considered and denoted as STC. With respect to operational conditions, a previous study (Muliawan et al., 2013) indicates that the STC not only reduces the total capital cost but also increases the total power production compared to the use of segregated FWT and WEC concepts. As with other floating systems, the STC must be designed to ensure serviceability and survivability during its entire service life. One of the design criteria is the ultimate limit state (ULS), which ensures that the entire STC system will have adequate strength to withstand the load effects imposed by extreme environmental actions. Therefore, in the present study, coupled (wave- and wind-induced response mooring) analysis is performed using SIMO/TDHMILL in the time domain to investigate such responses of the STC system as mooring tension, spar-tower interface bending moment, end stop force, and contact force at the Spar-Torus interface under extreme conditions. Environmental conditions that pertain to the northern North Sea metocean data are selected and include operational, survival and 50-year conditions. Finally, the ULS level responses that are capital cost indicators for both FWT alone and for the STC system are estimated and compared.

Made Jaya Muliawan; Madjid Karimirad; Zhen Gao; Torgeir Moan

2013-01-01T23:59:59.000Z

216

Turbulent combustion  

SciTech Connect (OSTI)

Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

217

Combustion & Health  

E-Print Network [OSTI]

FFCOMBUSTION & HEALTH Winifred J. Hamilton, PhD, SM Clear Air Through Energy Efficiency (CATEE) Galveston, TX October 9?11, 2012 FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? Biggest threat to world ecosystems (and to human health...) ? Combustion of fossil fuels for ? Electricity ? Industrial processes ? Vehicle propulsion ? Cooking and heat ? Other ? Munitions ? Fireworks ? Light ? Cigarettes, hookahs? FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? SCALE (think health...

Hamilton, W.

2012-01-01T23:59:59.000Z

218

Microsoft Word - 41890_PW_Catalytic Combustion_Factsheet_Rev01_12-03.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment of Rich Catalytic Combustion Deployment of Rich Catalytic Combustion DE-FC26-03NT41890 I. PROJECT PARTICIPANTS A. Prime: United Technologies Corporation through its Pratt and Whitney Division B. Sub-award: Precision Combustion, Incorporated II. PROJECT DESCRIPTION A. Objectives: Create an Implementation Plan and Integration Study for rich catalytic combustion as applied to industrial gas turbines fired on both natural gas and coal derived synthesis gas. The overall goal is a combustion system that will be capable of NOx less than 2 ppmvd. at 15% oxygen in an F-class gas turbine without exhaust gas after-treatment. B. Background/relevancy: The objective of the Turbines (HEET) program is to create the necessary technology base leading to Vision 21 (V21) goals. V21

219

Investigation of gasification chemical looping combustion combined cycle performance  

SciTech Connect (OSTI)

A novel combined cycle based on coal gasification and chemical looping combustion (CLC) offers a possibility of both high net power efficiency and separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from the combustion air to the fuel, and the avoidance of direct contact between fuel and combustion air. The fuel gas is oxidized by an oxygen carrier, an oxygen-containing compound, in the fuel reactor. The oxygen carrier in this study is NiO. The reduced oxygen carrier, Ni, in the fuel reactor is regenerated by the air in the air reactor. In this way, fuel and air are never mixed, and the fuel oxidation products CO{sub 2} and water vapor leave the system undiluted by air. All that is needed to get an almost pure CO{sub 2} product is to condense the water vapor and to remove the liquid water. When the technique is combined with gas turbine and heat recovery steam generation technology, a new type of combined cycle is formed which gives a possibility of obtaining high net power efficiency and CO{sub 2} separation. The performance of the combined cycle is simulated using the ASPEN software tool in this paper. The influence of the water/coal ratio on the gasification and the influence of the CLC process parameters such as the air reactor temperature, the turbine inlet supplementary firing, and the pressure ratio of the compressor on the system performance are discussed. Results show that, assuming an air reactor temperature of 1200{sup o}C, a gasification temperature of 1100 {sup o}C, and a turbine inlet temperature after supplementary firing of 1350{sup o}C, the system has the potential to achieve a thermal efficiency of 44.4% (low heating value), and the CO{sub 2} emission is 70.1 g/(kW h), 90.1% of the CO{sub 2} captured. 22 refs., 7 figs., 6 tabs.

Wenguo Xiang; Sha Wang; Tengteng Di [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of the Ministry of Education

2008-03-15T23:59:59.000Z

220

Advanced turbine systems program conceptual design and product development: Quarterly report, November 1993--January 1994  

SciTech Connect (OSTI)

This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

NONE

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes 2012 DOE Hydrogen and Fuel...

222

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

223

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

224

Combustion Control  

E-Print Network [OSTI]

using a liquid fuel. The air and fuel valve designs are vastly different, with different flow characteristics. These factors make the initial adjustment of the system difficult, and proper maintenance of ratio accuracy unlikely. Linked valves... casing of the fuel control regulator with the combustion air piping. The upstream pressure on the burner air orifice is applied to the main diaphragm of the pressure balanced regulator. Assuming sufficient gas pressure at the regulator inlet...

Riccardi, R. C.

1984-01-01T23:59:59.000Z

225

Luther College Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Luther College Wind Turbine Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Luther College Wind Energy Project LLC Developer Luther College Energy Purchaser Alliant Energy Location Decorah IA Coordinates 43.30919891°, -91.81617737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.30919891,"lon":-91.81617737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Williams Stone Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wind Turbine Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Williams Stone Developer Sustainable Energy Developments Energy Purchaser Williams Stone Location Otis MA Coordinates 42.232526°, -73.070952° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.232526,"lon":-73.070952,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Charlestown Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Charlestown Wind Turbine Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Developer MWRA Energy Purchaser Distributed generation - net metered Location Boston MA Coordinates 42.39094522°, -71.07094288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.39094522,"lon":-71.07094288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

AFCEE MMR Turbines | Open Energy Information  

Open Energy Info (EERE)

AFCEE MMR Turbines AFCEE MMR Turbines Jump to: navigation, search Name AFCEE MMR Turbines Facility AFCEE MMR Turbines Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AFCEE Developer Air Force Center for Engineering and the Environment Energy Purchaser Distributed generation - net metered Location Camp Edwards Sandwich MA Coordinates 41.75754733°, -70.54557323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.75754733,"lon":-70.54557323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Nature's Classroom Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Nature's Classroom Wind Turbine Nature's Classroom Wind Turbine Jump to: navigation, search Name Nature's Classroom Wind Turbine Facility Nature's Classroom Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Nature's Classroom Energy Purchaser Nature's Classroom Location Charlton MA Coordinates 42.113685°, -72.008475° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.113685,"lon":-72.008475,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Intermittency as a precursor to self Unsteady combustion in a confined, compressible flow  

E-Print Network [OSTI]

, gas turbine engines generation, as well as rocket engines used for space exploration and defense on the that describes the onset of combustion instability as a lock hydrodynamics and the acoustic field. The model burners which are used for cooking and heating, gas turbine engines used for propulsion and power

Shyamasundar, R.K.

231

Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi, Manikanda Rajagopal, Razi Nalim  

E-Print Network [OSTI]

-chamber internal combustion engines and in innovative pressure-gain combustors for gas turbine engines. Jet engines using low-cost, low-carbon natural gas need improved methods for ignition of lean mixtures rotor combustor. A wave rotor combustion chamber is best ignited with a jet of hot gas that may come

Zhou, Yaoqi

232

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

233

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

234

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995  

SciTech Connect (OSTI)

This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

NONE

1996-01-01T23:59:59.000Z

235

GC China Turbine Corp | Open Energy Information  

Open Energy Info (EERE)

GC China Turbine Corp GC China Turbine Corp Jump to: navigation, search Name GC China Turbine Corp Place Wuhan, Hubei Province, China Sector Wind energy Product China-base wind turbine manufacturer. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Marine Current Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Ltd Turbines Ltd Jump to: navigation, search Name Marine Current Turbines Ltd (MCT) Place Bristol, United Kingdom Zip BS34 8PD Sector Marine and Hydrokinetic Product Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in particular. Coordinates 51.454513°, -2.58791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.454513,"lon":-2.58791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

MHK Technologies/Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WWTurbine has developed and introduced a new commercially viable system for the extraction of Potential and Kinetic Energy from large fast moving water currents for conversion into Electric Energy Mooring Configuration Monopile Optimum Marine/Riverline Conditions min current velocity of 2 m s Technology Dimensions Technology Nameplate Capacity (MW) 0 5 3 0 MW Device Testing

238

Microsoft Word - 41521_PCI_RCL Combustion_Factsheet_Rev01-00-00-03.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RCL RCL TM System Study for Natural Gas and Coal-Derived Syngas (Precision Combustion, Inc.) 1 FACT SHEET (DRAFT 3/17/03) I. PROJECT PARTICIPANTS 1. Prime Participant: Precision Combustion, Inc. (PCI) 2. Other Participants: General Electric Power Systems, Pratt and Whitney Power Systems, Siemens Westinghouse Power Corporation, American Electric Power, Calpine. , II. PROJECT DESCRIPTION A. Objective(s): The objective of this project is to conduct a system study evaluating the potential impact on power generation turbines of a novel catalytic combustion technology ("Rich Catalytic/Lean burn" or "RCL(tm)" combustion). The study explores the potential for this improved combustion process for elimination of SCR aftertreatment, improved efficiency,

239

Advanced turbine systems: Studies and conceptual design  

SciTech Connect (OSTI)

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

240

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: News Release - Advanced Natural Gas Turbine Hailed as Top Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 30, 2003 December 30, 2003 Advanced Natural Gas Turbine Hailed as Top Power Project of 2003 Power Engineering Cites Product of Energy Department's Advanced Turbine Systems Program WASHINGTON, DC - A power plant featuring a next-generation gas turbine developed as part of the U.S. Department of Energy's advanced turbine systems program has been selected by Power Engineering magazine as one of three "2003 Projects of the Year." Baglan Bay Power Station Baglan Bay Power Station, South Wales, U.K. Photo courtesy of GE Power Systems The Baglan Bay Power Station near Cardiff, Wales, UK reached a major milestone for the global power industry when GE Power System's H System gas turbine debuted there earlier this year. The most advanced combustion turbine in the world, the H System is the first gas turbine combined-cycle

242

Wind Turbines Benefit Crops  

SciTech Connect (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2010-01-01T23:59:59.000Z

243

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

244

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

245

Chapter 18 - Future Trends in the Gas Turbine Industry  

Science Journals Connector (OSTI)

Abstract The future of gas turbine systems design development and the gas turbine business is steered by several factors. Business and political factors are a far greater influence on technology than the average engineer feels comfortable acknowledging. The major change in the gas turbine and gas turbine systems industries over the past several years has been the changes in turbine fuels strategy. In the power generation and land-based turbine sector, coal has lost its “number 1” place in the USA, due mostly to the advent of natural gas fracking exploration and production. Coal still remains number 1 in countries like China and much of Eastern Europe, because of those countries huge coal reserves. Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30% range with today’s steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40% range, with near-100% CO2 capture and near-zero \\{NOx\\} emissions. “I am enough of an artist to draw freely on my imagination. Imagination is more important that knowledge. Knowledge is limited. Imagination encircles.” —Albert Einstein

Claire Soares

2015-01-01T23:59:59.000Z

246

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents [OSTI]

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

247

Sliding vane geometry turbines  

SciTech Connect (OSTI)

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30T23:59:59.000Z

248

Wind Turbine Competition Introduction  

E-Print Network [OSTI]

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

249

Microsoft Word - 40913_SWPC_GT Reheat Insitu Combustion_Factsheet_Rev01_00-00-03.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0913_SWPC_GT REHEAT INSITU COMBUSTION_FACTSHEET_REV01_00-00-03.DOC 0913_SWPC_GT REHEAT INSITU COMBUSTION_FACTSHEET_REV01_00-00-03.DOC Gas Turbine Reheat Using In-Situ Combustion FACT SHEET I. PROJECT PARTICIPANTS A. Prime Participant: Siemens Westinghouse Power Corp. B. Sub-Award Participant: Texas A&M University II. PROJECT DESCRIPTION A. Objectives: The overall objective of this project is to develop a novel gas reheat concept for gas turbine engines, in which fuel is injected directly into the turbine through one or more stages of vanes and/or blades. The key research goals involved in concept selection are to understand the combustion kinetics (burnout, emissions), blade performance and effects on turbine power output and efficiency. The concept is being evaluated for maximum energy efficiency (full reheat) and as a means to achieve power boost

250

Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet at Supercritical Pressures  

E-Print Network [OSTI]

and sometimes exceeding 10 MPa. For example, current aviation gas turbines operate at conditions approaching 4 MPa, and the pressures in the liquid propellant rocket engine combustion chambers may reach up to 20

Gülder, �mer L.

251

Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power  

E-Print Network [OSTI]

Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

Brasington, Robert David, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

252

Method and system for controlled combustion engines  

DOE Patents [OSTI]

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

253

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

can significantly increase turbine efficiency. Exploratorymodel indicate that turbine efficiencies exceeding 75% canand experimental turbine efficiencies. The CFD solutions of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

254

Cost analysis of NOx control alternatives for stationary gas turbines  

SciTech Connect (OSTI)

The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

Bill Major

1999-11-05T23:59:59.000Z

255

Combustion chemistry  

SciTech Connect (OSTI)

This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

256

MHK Technologies/Open Centre Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group Limited Project(s) where this technology is utilized *MHK Projects/OpenHydro Alderney Channel Islands UK *MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Open-Centre Turbine is designed to be deployed directly on the seabed. The Open-Centre Turbine is a horizontal axis turbine with a direct-drive, permanent magnetic generator that has a slow-moving rotor and lubricant-free operation, which decreases maintenance and minimizes risk to marine life.

257

Gas turbine generators from India for Asian and world markets  

SciTech Connect (OSTI)

Bharat Heavy Electricals Ltd. (BHEL), in India, is an important producer of large industrial gas turbines in the Asian area. The company produces both GE frame type industrial gas turbines and Siemens design gas turbines for power generation service. Up to this time, BHEL has manufactured and supplied 68 gas turbine power generation units of GE design, ranging from Frame 1 to Frame 6 sizes, and two Siemens V94.2 gas turbines rated at 150 MW ISO. In addition, 15 gas turbine generating units are currently being manufactured. These include a large Frame 9 unit and a V94.2 gas turbine. This paper describes briefly some of the projects completed by the company.

NONE

1996-07-01T23:59:59.000Z

258

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

259

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

260

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

262

Dynamic analysis of tension leg platform for offshore wind turbine support as fluid-structure interaction  

Science Journals Connector (OSTI)

Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is ... and the dynamic characteristics of the TLP for offshore wind turbine

Hu Huang ? ?; She-rong Zhang ???

2011-03-01T23:59:59.000Z

263

Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project  

SciTech Connect (OSTI)

Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

2013-06-25T23:59:59.000Z

264

UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY  

SciTech Connect (OSTI)

The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

Lawrence P. Golan; Richard A. Wenglarz

2004-07-01T23:59:59.000Z

265

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace15daw.pdf More Documents & Publications Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines:...

266

High pressure test results of a catalytic combustor for gas turbine  

SciTech Connect (OSTI)

Recently, the use of gas turbine systems, such as combined cycle and cogeneration systems, has gradually increased in the world. But even when a clean fuel such as LNG (liquefied natural gas) is used, thermal NO{sub x} is generated in the high temperature gas turbine combustion process. The NO{sub x} emission from gas turbines is controlled through selective catalytic reduction processes (SCR) in the Japanese electric industry. If catalytic combustion could be applied to the combustor of the gas turbine, it is expected to lower NO{sub x} emission more economically. Under such high temperature and high pressure conditions, as in the gas turbine, however, the durability of the catalyst is still insufficient. So it prevents the realization of a high temperature catalytic combustor. To overcome this difficulty, a catalytic combustor combined with premixed combustion for a 1,300 C class gas turbine was developed. In this method, catalyst temperature is kept below 1,000 C, and a lean premixed gas is injected into the catalytic combustion gas. As a result, the load on the catalyst is reduced and it is possible to prevent the catalyst deactivation. After a preliminary atmospheric test, the design of the combustion was modified and a high pressure combustion test was conducted. As a result, it was confirmed that NO{sub x} emission was below 10 ppm (at 16 percent O{sub 2}) at a combustor outlet gas temperature of 1,300 C and that the combustion efficiency was almost 100%. This paper presents the design features and test results of the combustor.

Fujii, T.; Ozawa, Y.; Kikumoto, S.; Sato, M. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan); Yuasa, Y.; Inoue, H. [Kansai Electric Power Co., Inc., Amagasaki, Hyogo (Japan)

1998-07-01T23:59:59.000Z

267

Reaction and diffusion in turbulent combustion  

SciTech Connect (OSTI)

The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

1993-12-01T23:59:59.000Z

268

Applied Materials Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wind Turbine Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Applied Materials Developer Applied Materials Energy Purchaser Applied Materials Location Gloucester MA Coordinates 42.62895426°, -70.65153122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.62895426,"lon":-70.65153122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Portsmouth Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Wind Turbine Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Town of Portsmouth Energy Purchaser Town of Portsmouth Location Portsmouth RI Coordinates 41.614216°, -71.25165° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.614216,"lon":-71.25165,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Estimate steam-turbine losses to justify maintenance funds  

SciTech Connect (OSTI)

A procedure to estimate steam-turbine losses is described. The estimates are based on analytical calculations and field inspections of turbines with known performance deterioration resulting from their environment, not their construction. They are, therefore, applicable to many types of steam turbines. Common causes of deterioration are the following: solid particle erosion, deposits, increased clearances, and peening or damage from foreign material. Performance losses due to these factors are analyzed. An example of application is given.

Not Available

1982-05-01T23:59:59.000Z

271

Influences of energy economy on steam turbine design  

SciTech Connect (OSTI)

The pulp and paper industry uses condensing, backpressure, and automatic extraction types of steam turbines. Small drive turbines have better efficiency with multiple stages. The author presents a summary of some alternate steam turbine designs and shows the impact on operating energy costs. There is a summary of operating parameters for various cogeneration design options with illustration of the relative energy cost of each of the various designs.

Garner, J.W. (BE and K Engineering, Morrisville, NC (United States))

1993-11-01T23:59:59.000Z

272

Advanced Combustion | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

273

International Turbine Research Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turbine Research Wind Farm Turbine Research Wind Farm Jump to: navigation, search Name International Turbine Research Wind Farm Facility International Turbine Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer International Turbine Research Energy Purchaser Pacific Gas & Electric Co Location Pacheco Pass CA Coordinates 37.0445°, -121.175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0445,"lon":-121.175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

SPINTHIR: An ignition model for gas turbines  

E-Print Network [OSTI]

MCS 7 Chia Laguna, Cagliari, Sardinia, Italy, September 11-15, 2011 A PRACTICAL MODEL FOR THE HIGH-ALTITUDE RELIGHT OF A GAS TURBINE COMBUSTOR A. Neophytou*,1, E. Mastorakos*, E.S. Richardson**, S. Stow*** and M. Zedda*** em257@eng... :1916-1927, 2010. [7] Naegeli, D. W. and Dodge, L. G. Combust. Sci. Technol., 80:165-184, 1991. [8] Stow, S. and Zedda, M. and Triantaffylidis, A. and Garmory, A. and Mastorakos, E. and Mosbach, T. Conditional Moment Closure LES modelling of an aero-engine...

Neophytou, A; Mastorakos, E

2012-08-28T23:59:59.000Z

275

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

276

The railplug: Development of a new ignitor for internal combustion engines. Final report  

SciTech Connect (OSTI)

A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of {open_quotes}Star Wars{close_quotes} defense technology, specifically the railgun. The {open_quotes}railplug{close_quotes} is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NOx while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

Matthews, R.D.; Nichols, S.P.; Weldon, W.F.

1994-11-29T23:59:59.000Z

277

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

278

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

279

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

280

Technical review of Westinghouse`s Advanced Turbine Systems Program  

SciTech Connect (OSTI)

US DOE`s ATS program has the goals of increased efficiency of natural gas-fired power generation plants, decreased cost of electricity, and a decrease in harmful emissions. The Westinghouse ATS plant is based on an advanced gas turbine design combined with an advanced steam turbine and a high efficiency generator. Objectives of the ATS Program Phase 2 are to select the ATS cycle and to develop technologies required to achieve ATS Program goals: combustion, cooling, aerodynamics, leakage control, coatings, materials. This paper describes progress on each.

Diakunchak, I.S.; Bannister, R.L.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pioneer Asia Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Turbines Turbines Jump to: navigation, search Name Pioneer Asia Wind Turbines Place Madurai, Tamil Nadu, India Zip 625 002 Sector Wind energy Product Madurai-based wind energy division of the Pioneer Group. Coordinates 9.92544°, 78.1192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":9.92544,"lon":78.1192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Earth Turbines Inc | Open Energy Information  

Open Energy Info (EERE)

Turbines Inc Turbines Inc Jump to: navigation, search Name Earth Turbines Inc Place Hinesburg, Vermont Zip 5461 Sector Wind energy Product Start-up company developing small-scale wind technology for the residential and commercial market. Coordinates 44.335002°, -73.109687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.335002,"lon":-73.109687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

MHK Technologies/The Davis Hydro Turbine | Open Energy Information  

Open Energy Info (EERE)

Hydro Turbine Hydro Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Davis Hydro Turbine.jpg Technology Profile Primary Organization Blue Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Blue Energy Ocean Turbine acts as a highly efficient underwater vertical axis windmill Four fixed hydrofoil blades of the turbine are connected to a rotor that drives an integrated gearbox and electrical generator assembly The turbine is mounted in a durable concrete marine caisson that anchors the unit to the ocean floor and the structure directs flow through the turbine further concentrating the resource supporting the coupler gearbox and generator above the rotor These sit above the surface of the water and are readily accessible for maintenance and repair The hydrofoil blades employ a hydrodynamic lift principal that causes the turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is unidirectional on both the ebb and flow of the tide

284

Biomass Combustion Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Combustion Systems Inc Combustion Systems Inc Jump to: navigation, search Name Biomass Combustion Systems Inc Address 67 Millbrook St Place Worcester, Massachusetts Zip 01606 Sector Biomass Product Combustion systems for wood fuel Website http://www.biomasscombustion.c Coordinates 42.290195°, -71.799627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.290195,"lon":-71.799627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network [OSTI]

types Oil & Gas Steam and Combustion Turbine/Diesel. Diesel.of Oil & Gas Steam plus Combustion Combustio Turbine/Diesel,Natural Gas Steam Combined Cycle Combustion Turbine/Diesel

Coughlin, Katie

2013-01-01T23:59:59.000Z

286

Dongfang Steam Turbine Works DFSTW | Open Energy Information  

Open Energy Info (EERE)

Dongfang Steam Turbine Works DFSTW Dongfang Steam Turbine Works DFSTW Jump to: navigation, search Name Dongfang Steam Turbine Works (DFSTW) Place Deyang, Sichuan Province, China Zip 618000 Sector Wind energy Product Manufacturer of several kinds of steam turbines and accessory equipment. Manufactures wind turbines under licence from REpower. Coordinates 31.147209°, 104.375023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.147209,"lon":104.375023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

MHK Technologies/Zero Impact Water Current Turbine | Open Energy  

Open Energy Info (EERE)

Zero Impact Water Current Turbine Zero Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp GWEC Project(s) where this technology is utilized *MHK Projects/Green Wave Mendocino *MHK Projects/Green Wave San Luis Obispo Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Green Wave Zero Impact Water Current Turbine is a water current turbine that will revolutionize power generation as we know it Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Zero_Impact_Water_Current_Turbine&oldid=681718

288

MHK Technologies/Blue Motion Energy marine turbine | Open Energy  

Open Energy Info (EERE)

Motion Energy marine turbine Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile Primary Organization Blue Motion Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Description The Blue Motion Energy marine turbine however uses a patented system of seawalls A placed radial around the vertically mounted rotor B this way it is possible to funnel the current and significantly increase the flow velocity independent of the direction of the current Technology Dimensions Device Testing Date Submitted 59:30.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Blue_Motion_Energy_marine_turbine&oldid=681547

289

MHK Technologies/GreenFlow Turbines | Open Energy Information  

Open Energy Info (EERE)

GreenFlow Turbines GreenFlow Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GreenFlow Turbines.jpg Technology Profile Primary Organization Gulfstream Technologies Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Targeted at commercial sites with large water flow volume These hydro turbines range in size from 50kW to 750kW with many sites able to house multiple units Technology Dimensions Device Testing Date Submitted 55:53.9 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/GreenFlow_Turbines&oldid=681584

290

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

291

MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Davidson Hill Venturi DHV Turbine MHK Technologies/Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile Primary Organization Tidal Energy Pty Ltd Project(s) where this technology is utilized *MHK Projects/QSEIF Grant Sea Testing *MHK Projects/Stradbroke Island *MHK Projects/Tidal Energy Project Portugal Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Davidson Hill Venturi DHV Turbine is a horizontal axis turbine that utilizes a Venturi structure in front of the intake The device can be mounted on the seabed or can float slack moored in a tidal stream

292

Coatings for the protection of turbine blades from erosion  

SciTech Connect (OSTI)

Many types of turbines, including aircraft gas turbines, steam turbines, and power recovery turbines, suffer from solid particle erosion caused by a variety of materials ingested into the machines. Utilization of various laboratory erosion tests tailored to the specific application by using various erodents, temperatures, velocities, and angles of impact, have been shown to be effective in the development and selection of coatings for the erosion protection of turbine blades and other components. Detonation gun coatings have demonstrated their efficacy in providing substantial protection in many situations. It has now been shown that several tungsten carbide and chromium carbide Super D-Gun{trademark} coatings not only have better erosion resistance than their D-Gun analogs, but cause little or no degradation of the fatigue properties of the blade alloys. Nonetheless, caution should be employed in the application of any laboratory data to a specific situation and additional testing done as warranted by the turbine designer.

Walsh, P.N.; Quets, J.M.; Tucker, R.C. Jr. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States)

1995-01-01T23:59:59.000Z

293

MHK Technologies/SeaUrchin Vortex Reaction Turbine | Open Energy  

Open Energy Info (EERE)

SeaUrchin Vortex Reaction Turbine SeaUrchin Vortex Reaction Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaUrchin Vortex Reaction Turbine.jpg Technology Profile Primary Organization Elemental Energy Technologies Limited ABN 46 128 491 903 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A revolutionary vortex reaction turbine branded the SeaUrchin an advanced third generation marine turbine technology capable of delivering inexpensive small to large scale baseload or predictable electricity by harnessing the kinetic energy of free flowing ocean currents tides and rivers Technology Dimensions Device Testing Date Submitted 55:15.2

294

MHK Technologies/Gorlov Helical Turbine GHT | Open Energy Information  

Open Energy Info (EERE)

Gorlov Helical Turbine GHT Gorlov Helical Turbine GHT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine GHT.jpg Technology Profile Primary Organization Lucid Energy Technologies GCK Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Gorlov Helical Turbine GHT evolved from the Darrieus turbine design which was altered to have helical blades foils In the GHTs design the blades are twisted about the axis so that there is always a foil section at every possible angle of attack The optimal placement and angle of the blades allow the GHT to operate under a lift based principle Technology Dimensions

295

Chemical Looping Combustion  

Science Journals Connector (OSTI)

Chemical looping combustion (CLC) and looping cycles in general represent an important new ... technologies, which can be deployed for direct combustion as well as be used in gasification...2...stream suitable fo...

Edward John (Ben) Anthony

2012-01-01T23:59:59.000Z

296

Chemistry of Combustion Processes  

Science Journals Connector (OSTI)

The quantitative description and understanding of combustion processes needs extreme computational efforts and has at ... treatment can give a lot of insight into combustion processes, as demonstrated in the foll...

J. Warnatz

2000-01-01T23:59:59.000Z

297

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

298

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

SciTech Connect (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

299

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...1885; the Diesel engine, 1895...relating to heat cycles, such as regeneration...reheating came into general application...an ideal power cycle first found an...gas turbines for general prime mover purposes...type of power cycle which followed...turbine, the Diesel engine and the...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

300

Middelgrunden Wind Turbine Cooperative | Open Energy Information  

Open Energy Info (EERE)

Middelgrunden Wind Turbine Cooperative Middelgrunden Wind Turbine Cooperative Jump to: navigation, search Name Middelgrunden Wind Turbine Cooperative Place Copenhagen, Denmark Zip 2200 Sector Wind energy Product Copenhagen-based, partnership founded in May 1997 by the Working Group for Wind Turbines on Middelgrunden, with the aim to produce electricity through the establishment and management of wind turbines on the Middelgrunden shoal. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996  

SciTech Connect (OSTI)

This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

NONE

1997-06-01T23:59:59.000Z

302

Chapter 4 - Natural Gas–fired Gas Turbines and Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Gas turbines can burn a range of liquid and gaseous fuels but most burn natural gas. Power plants based on gas turbines are one of the cheapest types of plant to build, but the cost of their electricity depends heavily on the cost of their fuel. Two types of gas turbine are used for power generation: aero-derivative gas turbines and heavy-duty gas turbines. The former are used to provide power to the grid at times of peak demand. The latter are most often found in combined cycle power stations. These are capable of more than 60% efficiency. There are a number of ways of modifying the gas turbine cycle to improve efficiency, including reheating and intercooling. Micro-turbines have been developed for very small-scale generation of both electricity and heat. The main atmospheric emissions from gas turbines are carbon dioxide and nitrogen oxide.

Paul Breeze

2014-01-01T23:59:59.000Z

303

Modelling and control of wind turbines A. Pintea 1,2  

E-Print Network [OSTI]

Modelling and control of wind turbines A. Pintea 1,2 , D. Popescu 1 , P. Borne 2 1 University an important challenge. From all types of renewable energy sources, wind turbines proved to be one starts with a state of the art of wind turbines and their problematic and continues with the presentation

Boyer, Edmond

304

Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion  

E-Print Network [OSTI]

of spar-type floating offshore wind turbines is investigated in detail. Three conceptual designs based for siting offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating importance. The first full-scale offshore floating wind turbine in the world, Hywind, has been installed

Sweetman, Bert

305

Turbines and turbulence  

Science Journals Connector (OSTI)

... Will wind turbines wreck the environment? Last month, the South China Morning Post published a news story ... dismissive official quoted probably has a point. There is no solid scientific evidence that wind turbines can trigger major changes in rainfall. And given Nature's conversations with atmospheric modellers ...

2010-12-22T23:59:59.000Z

306

Modern Gas Turbines  

Science Journals Connector (OSTI)

... THE published information on gas turbines is both voluminous and widely dispersed, a considerable part of the technical literature of ... hands of students whose imagination has been fired by the rapid development of the gas turbine, and whose knowledge of thermodynamics may not be sufficient to detect such errors. There ...

E. G. STERLAND

1948-06-12T23:59:59.000Z

307

Shipbuilding: Cunard Turbines Examined  

Science Journals Connector (OSTI)

... judge. It will be a great achievement if he can devise an assessment of the turbine troubles to satisfy all three parties. The Minister of Technology, Mr Anthony Wedgwood Benn ... Arnold to examine reports from all three companies on the faults which arose in the turbines during the recent trials of the QE2, and to assess the remedial measures that ...

1969-02-15T23:59:59.000Z

308

Single rotor turbine engine  

DOE Patents [OSTI]

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

309

Ceramic Cerami Turbine Nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

310

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

311

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

312

Evaluation of manure as a feedstock for gas turbines  

SciTech Connect (OSTI)

A preliminary program on evaluation of feedlot manure as a feed stock for gas turbines has been completed. It was determined that manure can be pulverized and fed into a gas turbine combustion system with the manure burning in much the same manner as a liquid or gaseous fuel. Ash and dirt in the manure did not appear to have a significant effect on combustion and were effectively removed by the cyclone filters. The exhaust gases varied from clear to a blue haze. Severe problems were encountered with slagging of the hot refractory walls of the combustor. Development of a suitable combustor will be required before a commercial size system can be designed. 10 refs., 10 figs., 3 tabs.

Hamrick, J.T.

1988-05-01T23:59:59.000Z

313

Gas turbine topping combustor  

DOE Patents [OSTI]

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

314

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina

2008-01-31T23:59:59.000Z

315

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect (OSTI)

Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

Laster, W. R.; Anoshkina, E.

2008-01-31T23:59:59.000Z

316

Steam turbines of the T-50/60-8.8, K-63-8.8, and Tp-100/110-8.8 types destined for modernization of thermal power plants with K-50-90 and K-100-90 turbines  

Science Journals Connector (OSTI)

This paper describes the design, schemes of regulation, and control and protection of steam turbines of the T-50/60-8.8, ... of K-50-90 and K-100-90 turbines that have very low efficiency and exhausted...

A. Ye. Valamin; A. Yu. Kultyshev; Yu. A. Sakhnin; M. V. Shekhter…

2012-12-01T23:59:59.000Z

317

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

318

Task II: evaluation of heat-exchanger and turbine materials for use in a coal-fired fluidized-bed-combustion environment. Final report, July 1, 1976-July 31, 1980  

SciTech Connect (OSTI)

Specific alloys were tested as in-bed and above-bed heat exchanger materials in the fireside environment of a pressurized fluidized bed coal combustor (PFBCC). Corrosion conditions on the alloys exposed to normal and very low oxygen pressures in the presence of calcium sulfate deposits were simulated. Bayonet-type specimen probes of selected alloys were exposed in the Exxon Miniplant at probe control temperatures representative of conventional steam, advanced steam, helium and liquid metal energy conversion cycles. Corrosion/erosion testing of the air cooled, welded samples consisted of a 117-hour shakedown run followed by an incremental 1000-hour exposure. Metallurgical analyses were run on removed specimens. The test matrix for in-bed and above-bed exposure was: 1050/sup 0/F (566/sup 0/C): 2.25 Cr-1Mo and 9Cr-1Mo steels (in-bed only); 1200/sup 0/F (649/sup 0/C): 304 SS and Incoloy-800; 1400/sup 0/F (760/sup 0/C): Incoloy-800 and Hastelloy-X; and 1600/sup 0/F (871/sup 0/C); Hastelloy-X and Haynes-188. Subscale sulfides formed in most of the alloys. The most severe corrosion was noted in the ferritic 2.25Cr-1Mo and 9Cr-1Mo steels at a nominal control temperature of 1050/sup 0/F (566/sup 0/C) and in Hastelloy-X at 1400/sup 0/F (760/sup 0/C) exposed in-bed. The best overall behavior of in-bed alloys was observed for Incoloy-800, which had a maximum metal loss of about .007 in (.18 mm) in 1117 hours of exposure at both 1200/sup 0/F (649/sup 0/C) and 1400/sup 0/F (760/sup 0/C) but averaged more nearly .001 in (.025 mm) to .002 in (.051 mm) and in Haynes-188 which showed maximum wall thinning of less than .003 in (.076 mm) at 1600/sup 0/F (871/sup 0/C) in the longest time exposure.

Not Available

1981-09-30T23:59:59.000Z

319

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

320

Cooled snubber structure for turbine blades  

DOE Patents [OSTI]

A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents [OSTI]

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

322

Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications  

SciTech Connect (OSTI)

This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

Gregory Corman; Krishan Luthra

2005-09-30T23:59:59.000Z

323

Suppression of harmonic perturbations and bifurcation control in tracking objectives of a boiler–turbine unit in power grid  

Science Journals Connector (OSTI)

In the presence of harmonic disturbances, boiler–turbine units may demonstrate quasi-periodic behaviour due to the occurrence of various types of bifurcation. In this article, a nonlinear model of boiler–turbine ...

Hamed Moradi; Gholamreza Vossoughi; Aria Alasty

2014-05-01T23:59:59.000Z

324

Hot corrosion tests on corrosion resistant coatings developed for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Abstract This paper reports on results of hot corrosion tests carried out on silicon–aluminide coatings developed for hot components of gas turbines burning biomass and waste derived fuel gases. The corrosion tests of the silicon–aluminide coatings, applied to superalloys IN738LC and CMSX-4, each consisted of five 100 h periods; at 700 °C for the type II tests and at 900 °C for the type I tests. Deposits of Cd + alkali and Pb + alkali were applied before each exposure. These deposits had been previously identified as being trace species produced from gasification of biomass containing fuels which after combustion had the potential to initiate hot corrosion in a gas turbine. Additionally, gases were supplied to the furnace to simulate the atmosphere anticipated post-combustion of these biomass derived fuel gases. Results of the type I hot corrosion tests showed that these novel coatings remained in the incubation stage for at least 300 h, after which some of the coating entered propagation. Mass change results for the first 100 h confirmed this early incubation stage. For the type II hot corrosion tests, differences occurred in oxidation and sulphidation rates between the two substrates; the incubation stages for CMSX-4 samples continued for all but the Cd + alkali high salt flux samples, whereas, for IN738LC, all samples exhibited consistent incubation rates. Following both the type I and type II corrosion tests, assessments using BSE/EDX results and XRD analysis confirmed that there has to be remnant coating, sufficient to grow a protective scale. In this study, the novel silicon–aluminide coating development was based on coating technology originally evolved for gas turbines burning natural gas and fossil fuel oils. So in this paper comparisons of performance have been made with three commercially available coatings; a CoCrAlY overlay, a platinum-aluminide diffusion, and triple layer nickel–aluminide/silicon–aluminide-diffusion coatings. These comparisons showed that the novel single-step silicon–aluminide coatings provide equal or superior type II hot corrosion resistance to the best of the commercial coatings.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

325

Composite turbine bucket assembly  

DOE Patents [OSTI]

A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

Liotta, Gary Charles; Garcia-Crespo, Andres

2014-05-20T23:59:59.000Z

326

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

327

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network [OSTI]

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

328

NETL: News Release - Innovations in Gas Turbines to be Pursued in Two New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2000 4, 2000 Innovations in Gas Turbines to be Pursued In Two New Energy Department Projects GE to Develop Cleaner Combustors, "Smart" Sensors NISKAYUNA, NY - With the natural gas turbine fast becoming the workhorse for new power generating plants in the United States, the U.S. Department of Energy is preparing to award two new research contracts that could help improve the environmental performance and efficiencies of tomorrow's high-efficiency turbines. As part of a wide-ranging competition, the Department's National Energy Technology Laboratory has selected General Electric Co., Niskayuna, NY, for projects to develop a new gas turbine combustion system and a "Smart Power Turbine" sensor-and control system. A Cleaner Burning Combustor

329

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

330

Category:Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine Jump to: navigation, search Pages in category "Wind turbine" This category contains only the following page. W Wind turbine Retrieved from "http:en.openei.orgw...

331

Wittgenstein's combustion chamber  

Science Journals Connector (OSTI)

...further: the exhaust gases from the turbine may be used to drive an additional turbine mounted on the main...small residual thrust remaining). The shaft is...the momentum of a gas. One article17...WittgensteinWittgenstein-a life 1988 1DuckworthLondonxi...

2009-01-01T23:59:59.000Z

332

City of Medford Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Medford Wind Turbine Medford Wind Turbine Jump to: navigation, search Name City of Medford Wind Turbine Facility City of Medford Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner City of Medford Developer Sustainable Energy Developments Energy Purchaser City of Medford Location Medford MA Coordinates 42.415768°, -71.107337° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.415768,"lon":-71.107337,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Liberty Turbine Test Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turbine Test Wind Farm Turbine Test Wind Farm Jump to: navigation, search Name Liberty Turbine Test Wind Farm Facility Liberty Turbine Test Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Clipper Windpower Energy Purchaser Platte River Power Authority Location Near Medicine Bow WY Coordinates 41.96251°, -106.415918° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.96251,"lon":-106.415918,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Big Windy (Great Escape Restaurant Turbine) | Open Energy Information  

Open Energy Info (EERE)

Big Windy (Great Escape Restaurant Turbine) Big Windy (Great Escape Restaurant Turbine) Jump to: navigation, search Name Big Windy (Great Escape Restaurant Turbine) Facility Big Windy (Great Escape Restaurant Turbine) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Escape Restaurant Location Schiller Park IL Coordinates 41.95547°, -87.865193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.95547,"lon":-87.865193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Three D Metals Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Three D Metals Wind Turbine Three D Metals Wind Turbine Jump to: navigation, search Name Three D Metals Wind Turbine Facility Three D Metals Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Three D Metals Energy Purchaser Three D Metals Location Valley City OH Coordinates 41.248155°, -81.883079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.248155,"lon":-81.883079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

337

ERCOT's Dynamic Model of Wind Turbine Generators: Preprint  

SciTech Connect (OSTI)

By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

2005-08-01T23:59:59.000Z

338

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

339

NETL: Turbines Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

340

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas Turbine Emissions  

E-Print Network [OSTI]

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

Frederick, J. D.

342

Scale Models & Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

343

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

344

Module 3: Hydrogen Use in Internal Combustion Engines  

Broader source: Energy.gov [DOE]

This course covers combustive properties, air/fuel ratio, types of pre-ignition problems, type of ignition systems, crankcase ventilation issues, thermal efficiency, emissions, power output, effect of mixing hydrogen

345

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

346

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network [OSTI]

A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

Xue, Xingyu 1985-

2012-11-15T23:59:59.000Z

347

Gas Turbine Reheat Using In-Situ Combustion  

SciTech Connect (OSTI)

Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. This report discusses engineering cycle evaluations on various reheat approaches, using GateCycle and ChemCad software simulations of typical F-class and G-class engines, modified for alternative reheat cycles. The conclusion that vane 1 reheat offers the most advantageous design agrees with the conclusions of the detailed chemical kinetics (Task 2) as verified by high temperature testing (Task 3) and Blade path CFD (Task 1) tasks. The second choice design option (vane 2 reheat after vane 1 reheat) is also validated in all tasks. A conceptual design and next recommended development tasks are presented.

R.A. Newby; D.M. Bachovchin; T.E. Lippert

2004-04-29T23:59:59.000Z

348

ITP Industrial Distributed Energy: Combustion Turbine CHP System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Congestion Based at a large Frito-Lay food processing facility, this com- bined heat and power (CHP) demonstration project reduces the energy costs and environmental...

349

Coatings for hot section gas turbine components  

Science Journals Connector (OSTI)

Components in the hot section of gas turbines are protected from the environment by oxidation-resistant coatings while thermal barrier coatings are applied to reduce the metal operating temperature of blades and vanes. The integrity of these protective coatings is an issue of major concern in current gas turbine designs. Premature cracking of the protective layer in oxidation-resistant coatings and of the interface in thermal barrier coating systems has become one of the life limiting factors of coated components in gas turbines. Following a brief overview of the state-of-the-art of coated material systems with respect to coating types and their status of application, the fracture mechanisms and mechanics of coated systems are presented and discussed.

J. Bressers; S. Peteves; M. Steen

2000-01-01T23:59:59.000Z

350

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

351

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

352

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

353

Applied modelling for bio and lean gas fired micro gas turbines  

Science Journals Connector (OSTI)

This contribution presents the outcome of applied Computational Fluid Dynamics for analysis of combustion technologies to find an efficient firing mode for use of bio and low calorific gaseous fuels in micro gas turbine combustors. The combustion technologies considered are based on the new concepts of Flameless Oxidation and Continued Staged Air. To optimise these concepts to burn low calorific gaseous fuels manifold numerical simulations were carried out using the CFD code FLUENT. The results achieved showed the influence of the fuel compositions on the flow behaviour inside the combustion chamber, reaction zone, flame structure and pollutant emissions.

A. Al-Halbouni; A. Giese; M. Flamme; K. Goerner

2006-01-01T23:59:59.000Z

354

Topping of a combined gas- and steam-turbine powerplant using a TAM combustor  

SciTech Connect (OSTI)

The objective of this program is to evaluate the engineering and economic feasibility of a thermionic array module (TAM) topped combustor for a gas turbine. A combined gas- and steam-turbine system was chosen for this study. The nominal output of the gas and steam turbines were 70 MW and 30 MW, respectively. The gas-turbine fuel was a coal-derived medium-Btu gas assumed to be from an oxygen blown Texaco coal-gasification process which produces pressurized gas with an approximate composition of 52% CO and 36% H/sub 2/. Thermionic converters are assumed to line the walls of the gas-turbine combustor, so that the high-temperature gases heat the thermionic converter emitter. The thermionic converters produce electricity while the rejected heat is used to preheat the combustion air. To maximize the production of power from the thermionic converter, the highest practical flame temperature is obtained by preheating the combustor air with the thermionic collectors and rich combustion. A portion of the air, which bypassed the combustor, is reintroduced to complete the combustion at a lower temperature and the mixed gases flow to the turbine. The exhaust gases from the turbine flow to the heat recovery boilers to the bottoming steam cycle. The gas and steam turbine system performance calculation was based on data from Brown Boveri Turbomachinery, Inc. The performance of the thermionic converters (TAM) for the reference case was based on actual measurements of converters fired with a natural gas flame. These converters have been operated in a test furnace for approximately 15,000 device hours.

Miskolczy, G.; Wang, C.C.; Lovell, B.T.; McCrank, J.

1981-03-01T23:59:59.000Z

355

An analytically tractable model for combustion instability F. Bouziani, I.D. Landau, R.R. Bitmead, A. Voda-Besancon  

E-Print Network [OSTI]

Combustion instabilities in gas turbine engines and power plants are the focus of a significant number with combustion chamber acoustics, and the appearance of this instability reverses any gain from lower still is not fully resolved and certainly has not been resolved well enough to permit the design

Bitmead, Bob

356

MHK Technologies/Wells Turbine for OWC | Open Energy Information  

Open Energy Info (EERE)

Turbine for OWC Turbine for OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wells Turbine for OWC.png Technology Profile Primary Organization Voith Hydro Wavegen Limited Project(s) where this technology is utilized *MHK Projects/Siadar Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description From Brochure Wells turbine is a fixed pitch machine with only one direction of rotation Therefore the rotor is symeteric with respect to the rotation plane Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

357

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

358

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

359

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

360

MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine | Open Energy  

Open Energy Info (EERE)

Horizontal Axis Logarithmic Spiral Turbine Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden Turbines LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description A Horizontal axis Water turbine following the logarithmic spiral to generate clean electric energy from slow moving currents like rivers or ocean currents and with least impact on marine life and the environment because it doesn t require a damn or building huge structures Technology Dimensions Device Testing Date Submitted 36:09.5 << Return to the MHK database homepage

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fish injury and mortality in spillage and turbine passage  

SciTech Connect (OSTI)

Spillage rather than turbine passage has generally been considered the more benign route for fish passing hydroelectric stations. However, recent studies utilizing the HI-Z Turb`N Tag recapture technique indicate that fish survival may be similar for these passage routes. Short-term ({<=}1 h) survival rates determined during 25 passage tests at propeller turbines on a variety of fish species were compared with those from six sluice/spill tests. Turbine passage survival data were partitioned by fish size, individual turbine unit size, and efficient or inefficient mode of turbine operation. The survival rate in all the turbine passage tests ranged from 81 to 100% (median 96%). Survival estimates were generally similar over the entire range of turbine discharges tested and regardless of operational mode for fish {<=}200 mm (93 to 100%; median 96%). However, studies on fish >200 mm where smaller turbines operated inefficiently were more variable. Estimated survival rates of 81 to 86% were obtained for these larger fish. These latter studies occurred at horizontal propeller type turbines where an inefficient wicket gate or turbine blade setting was tested. Survival rates obtained during the sluice/spill tests ranged from 93 to 100%, with a median of 98%. Although fish species or size did not appear an important factor, the physical characteristics of the sluice/spill area apparently did affect survival. Unobstructed spills yielded higher survival rates. Since similar passage survival rates were obtained for turbine passage (96%) compared to spill passage (98%), the strategy of diverting fishes over spillways or through bypasses should be reexamined. This is especially true when bypasses or spills are suggested as mitigation to protect emigrating juvenile anadromous fishes. Whichever strategy is chosen a quantitative evaluation of each route should be undertaken.

Heisey, P.G.; Mathur, D.; Euston, E.T. [RMC Environmental Services, Drumore, PA (United States)

1995-12-31T23:59:59.000Z

362

Distributed Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distributed Wind Turbines Distributed Wind Turbines Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to...

363

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

364

Advanced gas turbine systems research. Technical quarterly progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

NONE

1997-12-31T23:59:59.000Z

365

Advanced gas turbine systems research. Quarterly technical progress report, April 1, 1994--June 30, 1994  

SciTech Connect (OSTI)

A cooperative development of gas turbines for electric power generation in USA is underway. Since the first AGTSR program manager has retired, a search for a new manager has begun. Reports during this period include membership, combustion instability white paper, and a summary paper for the ASME IGTI conference.

Not Available

1994-07-01T23:59:59.000Z

366

Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy  

Open Energy Info (EERE)

Goldwind Kechuang Wind Turbine Manufacturer Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name Beijing Goldwind Kechuang Wind Turbine Manufacturer Place Beijing, Beijing Municipality, China Zip 100000 Sector Wind energy Product A manufacturer set up by Goldwind in Beijing for producing wind turbines. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Efficient steam turbines produced by the “Ural Turbine Plant” company  

Science Journals Connector (OSTI)

Design features and efficiency of some steam turbines produced at present by a plant formed as a result of division of the “Turbine Motor Plant” Company into several enterprises are...

G. D. Barinberg; A. E. Valamin

368

Bottom steam turbines of the Ural Turbine Works  

Science Journals Connector (OSTI)

Basic design features, thermal schemes, and economic indicators of some bottom turbines that have been developed, as well as ... that have partially been manufactured at the Ural Turbine Works, are presented.

G. D. Barinberg; A. E. Valamin; Yu. A. Sakhnin

2008-08-01T23:59:59.000Z

369

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect (OSTI)

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

370

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect (OSTI)

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

371

MHK Technologies/Savanious Turbine | Open Energy Information  

Open Energy Info (EERE)

Savanious Turbine Savanious Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Savanious Turbine.jpg Technology Profile Primary Organization Rugged Renewables EMAT Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The large blade area of the Savonious Turbine allows for low blade loading which eases the mechanical design The low speed in relation to flow speed ensures minimal environmental disturbance The output characteristic is peaked with a maximum free running speed at a tip speed ratio of about 1 5 Hence a runaway Savonius freewheeling in a fast flow current is quite tame and over speed protection is not required Since the turbine is unidirectional it does not require an alignment system The turbine is capable of extracting energy from flow which is fluctuating rapidly in speed and direction The swept area is rectangular in shape fitting it for applications unsuitable for propeller turbines

372

High-Bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix - Parker Hannifin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bandwidth Modulation of H Bandwidth Modulation of H 2 /Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix-Parker Hannifin Background In this congressionally directed project, Parker Hannifin Corporation (Parker), in cooperation with Georgia Institute of Technology (Georgia Tech), will enhance its micro-mixing injector platform to improve combustion operability in lean premix turbine systems by attenuating the combustion dynamics. This will be accomplished

373

Fifteenth combustion research conference  

SciTech Connect (OSTI)

The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

NONE

1993-06-01T23:59:59.000Z

374

Coupled dynamic analysis of multiple wind turbines on a large single floater  

Science Journals Connector (OSTI)

Abstract The present study has developed a numerical simulation tool for the coupled dynamic analysis of multiple turbines on a single floater (or Multiple Unit Floating Offshore Wind Turbine (MUFOWT)) in the time domain including multiple-turbine aero-blade-tower dynamics and control, mooring dynamics, and platform motions. The numerical tool developed in this study was designed based on and extended from the single-turbine analysis tool FAST to be suitable for multiple turbines. For hydrodynamic loadings of floating platform and mooring-line dynamics, the CHARM3D program developed by the authors was incorporated. Thus, the coupled dynamic behavior of a floating base with multiple turbines and mooring lines can be simulated in the time domain. The developed MUFOWT analysis tool can compute any type of floating platform with multiple horizontal-axis wind turbines (HAWT). To investigate the dynamic coupling effect between platform and each turbine, one turbine failure case with a fully broken blade was simulated and checked. The aerodynamic interference between adjacent turbines, including wake effect, was not considered in this study to more clearly demonstrate only the dynamic coupling. The analysis shows that some damage-induced excitations from one turbine in MUFOWT may induce appreciable changes in the performance of other turbines or the floating platform.

Y.H. Bae; M.H. Kim

2014-01-01T23:59:59.000Z

375

1 - Combustion processes of textile fibres  

Science Journals Connector (OSTI)

Abstract: This chapter reviews the current knowledge of the processes involved in the combustion behaviour of textiles and approaches to their flame retardant protection. Synthetic fibre-forming polymers, both thermoplastic and high temperature resistant, as well as naturally occurring fibre types are discussed. The combustion process is described with reference to the thermal stability, degradation and oxidative degradation of various individual polymer types. The significance of textile structure is considered with respect to the textile flammability. The mechanisms of the different flame retardant systems applied to various textiles are discussed as well as the more recent application of nano-composites. Finally, a prediction of potential future developments is presented.

D. Price; A.R. Horrocks

2013-01-01T23:59:59.000Z

376

Combined gas turbine-Rankine turbine power plant  

SciTech Connect (OSTI)

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

377

Development of gas turbine combustor fed with bio-fuel oil  

SciTech Connect (OSTI)

Considering the increasing interest in the utilization of biofuels derived from biomass pyrolysis, ENEL/CRT carried out some experimental investigations on feasibility of biofuels utilization in the electricity production systems. The paper considers the experimental activity for the development and the design optimization of a gas turbine combustor suitable to be fed with biofuel oil, on the basis of the pressurized combustion performance obtained in a small gas turbine combustor fed with bio-fuel oil and ethanol/bio-fuel oil mixtures. Combustion tests were performed using the combustion chamber of a 40 kWe gas turbine. A small pressurized rig has been constructed including a nozzle for pressurization and a heat recovering combustion air preheating system, together with a proper injection system consisting of two dual fuel atomizers. Compressed air allowed a good spray quality and a satisfactory flame instability, without the need of a pilot frame, also when firing crude bio-fuel only. A parametric investigation on the combustion performance has been performed in order to evaluate the effect of fuel properties, operating conditions and injection system geometry, especially as regards CO and NO{sub x} emissions and smoke index.

Ardy, P.L.; Barbucci, P.; Benelli, G. [ENEL SpA R& D Dept., Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

378

Turbine tip clearance loss mechanisms  

E-Print Network [OSTI]

Three-dimensional numerical simulations (RANS and URANS) were used to assess the impact of two specific design features, and of aspects of the actual turbine environment, on turbine blade tip loss. The calculations were ...

Mazur, Steven (Steven Andrew)

2013-01-01T23:59:59.000Z

379

Gas turbine topping combustor  

DOE Patents [OSTI]

A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

1997-06-10T23:59:59.000Z

380

Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite  

SciTech Connect (OSTI)

The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

Hong, Yang-Ki [University of Alabama] [University of Alabama; Haskew, Timothy [University of Alabama] [University of Alabama; Myryasov, Oleg [University of Alabama] [University of Alabama; Jin, Sungho [University of California San Diego] [University of California San Diego; Berkowitz, Ami [University of California San Diego] [University of California San Diego

2014-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Laboratory investigations of low frequency sound attenuation over combustion flat perforated wall sheet  

E-Print Network [OSTI]

sheet Q. Qina , P. Rubinia , C. Jayatungab and V. Sandersonb a The University of Hull, The Acoustics Turbomachinery Ltd, PO Box 1, Waterside South, LN5 7FD Lincoln, UK q.qin@hull.ac.uk Proceedings of the Acoustics in turbine combustors for many years. The main purpose of the holes on the combustion chambers is to cool

Boyer, Edmond

382

FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan  

E-Print Network [OSTI]

FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan-dependent aerodynamics and fluid-structure interaction (FSI) simula- tions of a Darrieus-type vertical-axis wind turbine compared to the vertical-axis wind turbine (VAWT) designs. However, smaller-size VAWTs are more suitable

Dabiri, John O.

383

Advanced turbine systems sensors and controls needs assessment study. Final report  

SciTech Connect (OSTI)

The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

Anderson, R.L.; Fry, D.N.; McEvers, J.A.

1997-02-01T23:59:59.000Z

384

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion  

E-Print Network [OSTI]

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion A. J. Aspden1,2 , M. S. Day2 between fuel consumption and heat release. Keywords: turbulent premixed combustion, low Mach number flow or hydrogen-rich mixtures obtained from gasi- fication of coal or biomass. These types of fuels provide clean

Bell, John B.

385

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

386

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

387

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

388

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

389

Turbine-generator replacement study  

SciTech Connect (OSTI)

This paper describes an engineering study for the replacement of a nominal 70 Mw turbine-generator in a multi-unit utility cogeneration station. The existing plant is briefly described, alternatives considered are discussed, and the conclusions reached are presented. Key topics are the turbine steam cycle evaluation and the turbine pedestal analysis.

Miller, E.F.; Stuhrke, S.P., Shah, A.A. (Burns and Roe Enterprises, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

390

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

391

Chemical Kinetic Models for HCCI and Diesel Combustion  

SciTech Connect (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

392

Detection and control of combustion instability based on the concept of dynamical system theory  

Science Journals Connector (OSTI)

We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

Hiroshi Gotoda; Yuta Shinoda; Masaki Kobayashi; Yuta Okuno; Shigeru Tachibana

2014-02-11T23:59:59.000Z

393

Ceramic gas turbine shroud  

DOE Patents [OSTI]

An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

Shi, Jun; Green, Kevin E.

2014-07-22T23:59:59.000Z

394

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

395

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

396

Multiple piece turbine airfoil  

DOE Patents [OSTI]

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

397

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

398

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

399

Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update  

Broader source: Energy.gov (indexed) [DOE]

Technical Update Meeting April 2013 Technical Update Meeting April 2013 www.buildingamerica.gov Buildings Technologies Program Code Gaps and Future Research Needs for Combustion Safety 2012 Expert Meeting Larry Brand Gas Technology Institute April 29-30, 2013 Building America Technical Update Meeting Denver, Colorado installation, inspection and testing 2. Appliance Installation: clearances to combustible materials, combustion air, and testing 3. Appliance venting: allowed materials, vent type selection, sizing, installation, and testing Fundamental Combustion Safety Related Coverage: 2 | Building America Technical Update Meeting April 2013 www.buildingamerica.gov 1. Gas piping: allowed materials, sizing, Code Coverage Three Key Provisions For Combustion Safety in the Codes 1. Combustion air

400

Wind Turbines for Marine Propulsion  

Science Journals Connector (OSTI)

ABSTRACT The design and construction of an horizontal axis wind turbine drive for a small yacht is described. This system has been designed to test the performance of this novel type of propulsion for use in commercial shipping, the fisheries industry and for the recreational market. The use of wind turbines to harness the power available from the wind for propulsion purposes offers a number of distinct advantages over other wind propulsion systems. Propulsion is achieved in all directions of travel relative to the wind. Complete control of the system can be arranged from a remote control position such as the ships bridge. This control can be achieved with a small crew because of the opportunities for applying powered and automated control systems. The way in which each of these features is achieved, together with details of the rotor, shafting and gear-train arrangements are described here. An indication is given of the theoretical performance of the yacht under this form of propulsion.

N. Bose; R.C. McGregor

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Understanding Trends in Wind Turbine Prices Over the Past Decade  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Trends in Wind Turbine Prices Over the Past Decade Understanding Trends in Wind Turbine Prices Over the Past Decade Title Understanding Trends in Wind Turbine Prices Over the Past Decade Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Bolinger, Mark, and Ryan H. Wiser Pagination 46 Date Published 10/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Berkeley Lab has gathered price data on 81 U.S. wind turbine transactions totaling 23,850 MW announced from 1997 through early 2011. Figure ES-1 depicts these reported wind turbine transaction prices (along with the associated trend line), broken out by the size of the transaction (in MW). Figure ES-1 also presents average (global) turbine prices reported by Vestas for the years 2005 through 2010, as well as a range of reported pricing (among various turbine manufacturers) for transactions signed in 2010 and so far in 2011 (with 2011 prices generally lower than 2010 prices). After hitting a low of roughly $750/kW from 2000 to 2002, average wind turbine prices doubled through 2008, rising to an average of roughly $1,500/kW. Wind turbine prices have since declined substantially, with price quotes for transactions executed in 2010 and to date in 2011 ranging from $900-$1,400/kW depending on the manufacturer and turbine model. For example, turbines designed for lower wind speed sites - deploying higher hub heights and larger rotor diameters for a given nameplate capacity - are priced at the higher end of this range. These quotes suggest price declines of as much as 33% or more since late 2008, with an average decline closer to perhaps 20% for orders announced in 2010 (as opposed to in 2011, which has seen further price declines). These two substantial and opposing wind turbine price trends over the past decade - and particularly the doubling in prices in the 2002-2008 period - run counter to the smooth, gradually declining technology cost trajectories that are often assumed by energy analysts modeling the diffusion of new technologies, including wind power. Understanding and explaining this notable discrepancy between theory and historical reality is the primary motivation for this work. Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues).

402

Coal combustion science. Quarterly progress report, April 1993--June 1993  

SciTech Connect (OSTI)

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

403

Chemical-looping combustion -- Efficient conversion of chemical energy in fuels into work  

SciTech Connect (OSTI)

In thermal power plants, a large amount of the useful energy in the fuel is destroyed during the combustion process. This paper presents theoretical thermodynamic studies of a new system to increase the energy conversion efficiency of chemical energy in fuels into work. The system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of the fuel is carried out in a two-step reaction. The first reaction step is an exothermic oxidation of a metal with air and the second reaction step an endothermic oxidation of the fuel with the metal oxide from the first step. The low grade heat in the exhaust gas is used to drive the endothermic reaction. This two-step reaction has proven to be one way to increase the energy utilization compared to conventional combustion. Results for a gas turbine reheat cycle with methane as a fuel and NiO as an oxygen carrier show that the gain in net power efficiency for the chemical-looping combustion system is as high as 5 percentage points compared to a similar conventional gas turbine system. An exergy analysis of the reactions shows that less irreversibilities are generated with chemical looping combustion than with conventional combustion. Another advantage with chemical-looping combustion is that the greenhouse gas CO{sub 2} is separated from the other exhaust gases without decreasing the overall-system thermal efficiency. This is an important feature since future regulations of CO{sub 2} emission are likely to be strict. Today, most of the suggested CO{sub 2} separation methods are considered to reduce the thermal efficiency at least 5--10 percentage points and to require expensive equipment.

Anheden, M.; Naesholm, A.S.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden)

1995-12-31T23:59:59.000Z

404

Diagnostics based on thermodynamic analysis of performance of steam turbines: case histories  

SciTech Connect (OSTI)

The purpose of this paper is to describe some types of failures which have occurred with the ENEL stock of fossil-fuel steam turbines over the last 5--7 years. This paper also presents the corresponding thermodynamic analysis of turbine parameters which permitted failure diagnosis and pre-scheduled opening of the turbine. The examined failures concern: in-service rupture of the bell seal retainer nut between the SH steam inlet sleeves and the inner HP/IP cylinder, on turbines with a main steam inlet system with bell seals; incorrect assembly of pressure seal rings between steam inlet sleeves and the inner cylinder on turbines with a main steam inlet system with pressure seal rings during a scheduled outage; and steam flow path restriction in IP turbine inlet. Thermodynamic failure analysis and the subsequent analysis of turbine damage (mechanical and financial) enabled condition-based maintenance operations to be carried out.

Tirone, G.; Arrighi, L.; Bonifacino, L.

1996-12-31T23:59:59.000Z

405

Coal combustion products (CCPs  

Broader source: Energy.gov (indexed) [DOE]

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

406

Thermal ignition combustion system  

SciTech Connect (OSTI)

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

407

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1994--February 28, 1995  

SciTech Connect (OSTI)

Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved costing and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. Both of these activities require the identification and resolution of technical issues critical to achieving Advanced Turbine System (ATS) goals. The emphasis for the industrial ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed on developing a technology base for advanced turbine cooling while utilizing demonstrated and planned improvements in low emissions combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE`s Industrial and Power Systems is solely responsible for offering Ge products for the industrial and utility markets. The GE ATS program will be managed fully by this organization with core engine technology being supplied by GE Aircraft Engines (GEAE) and fundamental studies supporting both product developments being conducted by GE Corporate Research and Development (CRD).

NONE

1995-12-31T23:59:59.000Z

408

Sandia Combustion Research: Technical review  

SciTech Connect (OSTI)

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

409

Packed Bed Combustion: An Overview  

E-Print Network [OSTI]

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

410

Wind Turbine Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

411

Wind Turbine Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

412

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

Technology Type Technology Type Property Type Text Pages using the property "Technology Type" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + OTEC - Closed Cycle MHK Technologies/Aegir Dynamo + Point Absorber - Floating MHK Technologies/Anaconda bulge tube drives turbine + Oscillating Wave Surge Converter MHK Technologies/AquaBuoy + Point Absorber MHK Technologies/Aquanator + Cross Flow Turbine MHK Technologies/Aquantis + Axial Flow Turbine MHK Technologies/Archimedes Wave Swing + Point Absorber MHK Technologies/Atlantis AN 150 + Axial Flow Turbine MHK Technologies/Atlantis AR 1000 + Axial Flow Turbine MHK Technologies/Atlantis AS 400 + Axial Flow Turbine MHK Technologies/Atlantisstrom + Cross Flow Turbine MHK Technologies/BOLT Lifesaver + Oscillating Wave Surge Converter

413

Engine Combustion & Efficiency - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

414

Definition: Combustion | Open Energy Information  

Open Energy Info (EERE)

Combustion Combustion Jump to: navigation, search Dictionary.png Combustion The process of burning; chemical oxidation accompanied by the generation of light and heat.[1][2] View on Wikipedia Wikipedia Definition "Burning" redirects here. For combustion without external ignition, see spontaneous combustion. For the vehicle engine, see internal combustion engine. For other uses, see Burning (disambiguation) and Combustion (disambiguation). Error creating thumbnail: Unable to create destination directory This article's introduction section may not adequately summarize its contents. To comply with Wikipedia's lead section guidelines, please consider modifying the lead to provide an accessible overview of the article's key points in such a way that it can stand on its own as a

415

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina; P. Szedlacsek

2006-03-31T23:59:59.000Z

416

Advanced Turbine Systems Program. Topical report  

SciTech Connect (OSTI)

The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

NONE

1993-03-01T23:59:59.000Z

417

Temporary CO2 Capture Shut Down: Implications on Low Pressure Steam Turbine Design and Efficiency  

Science Journals Connector (OSTI)

Abstract The Natural gas Combined Cycle (NGCC) with post combustion capture using liquid solvents may in some cases be of interest to design with a flexible steam bottoming cycle, so that it can operate both with and without CO2 capture. It is then important that the choice of the low pressure (LP) steam turbine exhaust size is made accordingly. The paper describes why a flexible NGCC requires a LP steam turbine with smaller exhaust than the corresponding NGCC without CO2 capture, and how this will affect the LP turbine exhaust loss and NGCC process efficiency. Handling large variations in LP steam flow is in fact well- known technology in combined heat and power (CHP) plants, and the use of 3D simulation tools can further help making the best LP steam turbine design choice.

Marcus Thern; Kristin Jordal; Magnus Genrup

2014-01-01T23:59:59.000Z

418

Advanced diesel combustion  

Science Journals Connector (OSTI)

Future emission norms will further reduce the vehicle emissions of diesel engines. To meet the goal of achieving these stringent limits while maintaining attractive attributes of marketability, the combustion ...

Dirk Adolph; Hartwig Busch; Stefan Pischinger; Andreas Kolbeck…

2008-01-01T23:59:59.000Z

419

Advanced Combustion Technologies  

Broader source: Energy.gov [DOE]

The workhorse of America's electric power sector is the coal-fired power plant. Today, coal combustion plants account for more than half of the Nation's electric power generation. Largely because...

420

Catalytic Combustion Processes  

Science Journals Connector (OSTI)

This work presents experimental data on the effect of catalytic additives on the combustion characteristics of ammonium nitrate and perchlorate and the explosives of different classes. Burning rates are determ...

A. P. Glaskova

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Theory and tests of two-phase turbines  

SciTech Connect (OSTI)

Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.

Elliot, D.G.

1982-03-15T23:59:59.000Z

422

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

423

Sandia Combustion Research Program  

SciTech Connect (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

1988-01-01T23:59:59.000Z

424

Pulse combusted acoustic agglomeration apparatus and process  

DOE Patents [OSTI]

An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

1994-01-01T23:59:59.000Z

425

Pulse combusted acoustic agglomeration apparatus and process  

DOE Patents [OSTI]

An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

Mansour, Momtaz N. (Columbia, MD)

1993-01-01T23:59:59.000Z

426

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect (OSTI)

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07T23:59:59.000Z

427

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

428

Heats of Combustion of Fatty Acids and Fatty Acid Esters  

Science Journals Connector (OSTI)

...The military uses JP-8, a kerosene type hydrocarbon, to fuel most of its vehicles and ... , no traditional biodiesel meets the requirements for heat of combustion, freezing point, viscosity and oxidative stabi...

Felicia Levine; Ronald V. Kayea III…

2014-02-01T23:59:59.000Z

429

New England Tech Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

New England Tech Wind Turbine New England Tech Wind Turbine Facility New England Tech Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner New England Institute of Technology Energy Purchaser New England Institute of Technology Location Warwick RI Coordinates 41.732743°, -71.451466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.732743,"lon":-71.451466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Turbine blade tip gap reduction system  

SciTech Connect (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

431

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion  

Science Journals Connector (OSTI)

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion ... In this investigation, electrostatic precipitator fractional collection efficiency and trace metal emissions were determined experimentally at a 66 MW biomass-fueled bubbling fluidized-bed combustion plant. ... The solid fuel combustion-generated particle emissions typically consist of two types of particles:? fine particles approximately 0.1?1 ?m in diameter that are formed from the ash-forming species that are volatilized during combustion and residual ash particles larger than 1 ?m in diameter that are formed from mineral impurities in the fuels (4). ...

Terttaliisa Lind; Jouni Hokkinen; Jorma K. Jokiniemi; Sanna Saarikoski; Risto Hillamo

2003-05-08T23:59:59.000Z

432

Combustion Model for Engine Concept Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an advanced combustion model are used...

433

Gas turbine power plant with supersonic shock compression ramps  

DOE Patents [OSTI]

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

434

LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS  

SciTech Connect (OSTI)

In this project, an advanced computational software tool will be developed for the design of low emission combustion systems required for Vision 21 clean energy plants. This computational tool will utilize Large Eddy Simulation (LES) methods to predict the highly transient nature of turbulent combustion. The time-accurate software will capture large scale transient motion, while the small scale motion will be modeled using advanced subgrid turbulence and chemistry closures. This three-year project is composed of: Year 1--model development/implementation, Year 2--software alpha validation, and Year 3--technology transfer of software to industry including beta testing. In this first year of the project, subgrid models for turbulence and combustion are being developed through university research (Suresh Menon-Georgia Tech and J.-Y. Chen- UC Berkeley) and implemented into a leading combustion CFD code, CFD-ACE+. The commercially available CFDACE+ software utilizes unstructured , parallel architecture and 2nd-order spatial and temporal numerics. To date, the localized dynamic turbulence model and reduced chemistry models (up to 19 species) for natural gas, propane, hydrogen, syngas, and methanol have been incorporated. The Linear Eddy Model (LEM) for subgrid combustion-turbulence interaction has been developed and implementation into CFD-ACE+ has started. Ways of reducing run-time for complex stiff reactions is being studied, including the use of in situ tabulation and neural nets. Initial validation cases have been performed. CFDRC has also completed the integration of a 64 PC cluster to get highly scalable computing power needed to perform the LES calculations ({approx} 2 million cells) in several days. During the second year, further testing and validation of the LES software will be performed. Researchers at DOE-NETL are working with CFDRC to provide well-characterized high-pressure test data for model validation purposes. To insure practical, usable software is developed, a consortium of gas turbine and industrial burner manufacturers has been established to guide and direct the software development/validation effort. The consortium members include Siemens- Westinghouse, GE Power Systems, Pratt & Whitney, Rolls-Royce, Honeywell, Solar, Coen, McDermott, Vapor Power, Woodward FST, Parker Hannifin, John Zink, RamGen Power, Virginia Tech, DOE-NETL, Air Force Research Laboratory, DOE-ANL, and NASA GRC. Annual consortium meetings are being held in Huntsville, with the 2nd meeting scheduled for January 31-February 1, 2002. 2 Benefits of the program will include the ability to assess complex combustion challenges such as combustion instability, lean blowout, flashback, emissions and the effect of fuel type on performance. The software will greatly reduce development costs and the time cycle of combustor development. And perhaps the greatest benefit will be that the software will stimulate new, creative ideas to solve the combustion challenges of the Vision 21 plant.

Cannon, Steven M.; Adumitroaie, Virgil; McDaniel, Keith S.; Smith, Clifford E.

2001-11-06T23:59:59.000Z

435

MHK Technologies/Ocean Current Linear Turbine | Open Energy Information  

Open Energy Info (EERE)

Linear Turbine Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary Organization Ocean Energy Company LLC Technology Type Click here Seabed mooring system Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Endless cable loop with parachutes spliced to cable which moored in an ocean current pulls the cable through rotors which in turn power conventional electricity generators See US Patent 3 887 817 Additional patent pending Technology Dimensions Device Testing Date Submitted 30:08.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Ocean_Current_Linear_Turbine&oldid=681618"

436

MHK Technologies/Anaconda bulge tube drives turbine | Open Energy  

Open Energy Info (EERE)

Anaconda bulge tube drives turbine Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile Primary Organization Checkmate SeaEnergy Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anaconda uses a large water filled distensible rubber tube floating just beneath the ocean surface and oriented parallel to wave direction As a wave passes the bulge tube is lifted with the surrounding water and this causes a bulge wave to be excited which then passes down the tubes walls gathering energy from the ocean wave as it passes By matching the speed of the bulge wave to that of the sea wave resonance is achieved and high power capture becomes possible The bulge waves are then used to drive a turbine generator located at the stern of the device

437

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

438

Property:WindTurbineManufacturer | Open Energy Information  

Open Energy Info (EERE)

WindTurbineManufacturer WindTurbineManufacturer Jump to: navigation, search This is a property of type Page. Pages using the property "WindTurbineManufacturer" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Northern Power Systems + A AB Tehachapi Wind Farm + Vestas + AFCEE MMR Turbines + GE Energy + AG Land 1 + GE Energy + AG Land 2 + GE Energy + AG Land 3 + GE Energy + AG Land 4 + GE Energy + AG Land 5 + GE Energy + AG Land 6 + GE Energy + AVTEC + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm + Suzlon Energy Company + Agassiz Beach Wind Farm + Vestas + Agriwind Wind Farm + Suzlon Energy Company + Ainsworth Wind Energy Facility + Vestas +

439

Modelling and analysis of a novel wind turbine structure  

Science Journals Connector (OSTI)

This study introduces a novel wind turbine structure for an urban environment. A computational modelling has been conducted to investigate the effect of the new structure on the flow behaviour of entrance wind through the structure and the feasibility of the new wind turbine working at different wind speeds in an urban area. The wind flow behaviour through a chamber of the wind turbine structure has resulted in an increase of 1.3 times of the wind velocity at the outlet of the wind turbine. This is equivalent to 2.5 times increase of wind energy. The wind tunnel tests were carried out to validate the simulation results. There is a good correlation between the experimental and computational results. It is evident that the presented computational method can predict and evaluate the performance of this new type of shroud structure in an urban environment.

Xu Zhang; Yong K. Chen; Rajnish K. Calay

2013-01-01T23:59:59.000Z

440

MHK Technologies/EnCurrent Turbine | Open Energy Information  

Open Energy Info (EERE)

EnCurrent Turbine EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy Corporation Project(s) where this technology is utilized *MHK Projects/Bonnybrook Wastewater Facility Project 1 *MHK Projects/Bonnybrook Wastewater Facility Project 2 *MHK Projects/Canoe Pass *MHK Projects/Great River Journey *MHK Projects/Miette River *MHK Projects/Pointe du Bois *MHK Projects/Ruby ABS Alaskan *MHK Projects/Western Irrigation District Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: turbine-to-turbine interaction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

442

Turbine seal assembly  

DOE Patents [OSTI]

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

443

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

444

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

445

Multiple piece turbine airfoil  

SciTech Connect (OSTI)

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

446

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

447

Turbine cooling waxy oil  

SciTech Connect (OSTI)

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

448

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents [OSTI]

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

2013-04-02T23:59:59.000Z

449

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents [OSTI]

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

2011-08-30T23:59:59.000Z

450

Anticipatory control of turbine generators  

E-Print Network [OSTI]

of Turbine Generators. (Nay 1971) Freddie Laurel Nessec, B. S. E. E, , Texas Tech University; Directed by: Professor J. S . Denison An investigation is made of the use of predicted loads in controlling turbine generators. A perturbation model of a turbine... generator is presented along with typical parameter values. A study is made of the effects of applying control action before a load change occurs. Two predictive control schemes are investi- gated using a load cycle which incorporates both ramp and step...

Messec, Freddie Laurel

1971-01-01T23:59:59.000Z

451

Co-combustion feasibility study. Final report  

SciTech Connect (OSTI)

This report investigates the technical and economic feasibility of co-combusting municipal sewage sludge produced by the Saratoga County Sewer District No. 1 with paper mill sludge produced by the Cottrell Paper Company, Encore Paper Company, International Paper Company, Mohawk Paper Mills, and TAGSONS Papers at the Saratoga County Sewer District No. 1`s secondary wastewater treatment plant and recovering any available energy products. The co-combustion facility would consist of sludge and wood chip storage and conveying systems, belt filter presses, screw presses, fluidized-bed incinerators, venturi scrubbers and tray cooling systems, ash dewatering facilities, heat recovery steam generators, gas-fired steam superheaters, and a back-pressure steam turbine system. Clean waste wood chips would be used as an auxiliary fuel in the fluidized-bed incinerators. It is recommended that the ash produced by the proposed facility be beneficially used, potentially as a raw material in the manufacture of cement and/or as an interim barrier layer in landfills.

Handcock, D.J. [Clough, Harbour and Associates, Albany, NY (United States)

1995-01-01T23:59:59.000Z

452

NREL: Wind Research - Advanced Research Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control schemes...

453

Computational Aerodynamics and Aeroacoustics for Wind Turbines  

E-Print Network [OSTI]

Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

454

Large eddy simulation applications in gas turbines  

Science Journals Connector (OSTI)

...exhaust plume development. The application...modelling in the gas turbine combustor...modelling strategies for the complex...flows in the gas turbine, as surveyed...of typical gas turbine parts necessitates...made in the development and application...

2009-01-01T23:59:59.000Z

455

Motion of floating wind turbines.  

E-Print Network [OSTI]

?? Motion of floating wind turbines has been studied. A literature study on different concepts and what tools are available for simulating them is presented.… (more)

Linde, Børge

2010-01-01T23:59:59.000Z

456

The military aircraft gas turbine  

Science Journals Connector (OSTI)

The development of the gas turbine for use in military aircraft is discussed. The advancing fields of component technology and engine testing are also outlined

R.M. Denning; R.J. Lane

1983-01-01T23:59:59.000Z

457

Aerodynamic Analysis of wind turbine.  

E-Print Network [OSTI]

??The thesis investigates the application of vortex theory for analyzing the aerodynamic loads on wind turbine blades. Based on this method, a graphical user friendly… (more)

Zarmehri, Ayyoob

2012-01-01T23:59:59.000Z

458

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

459

Combustion Safety Overview  

Broader source: Energy.gov (indexed) [DOE]

March 1-2, 2012 March 1-2, 2012 Building America Stakeholders Meeting Austin, Texas Combustion Safety in the Codes Larry Brand Gas Technology Institute Acknowledgement to Paul Cabot - American Gas Association 2 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Widely adopted fuel gas codes: * National Fuel Gas Code - ANSI Z223.1/NFPA 54, published by AGA and NFPA (NFGC) * International Fuel Gas Code - published by the International Code Council (IFGC) * Uniform Plumbing Code published by IAPMO (UPC) Safety codes become requirements when adopted by the Authority Having Jurisdiction (governments or fire safety authorities) 3 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Formal Relationships Between these codes: - The IFGC extracts many safety

460

A MODEL FOR POROUS-MEDIUM COMBUSTION  

Science Journals Connector (OSTI)

......these applied in coal combustion appears in...understanding of the chemistry of combustion...GLASSMAN, Combustion (Academic Press...ESSENHIGH, In Chemistry of Coal Utilization...POROUS-MEDIUM COMBUSTION 177 8. D. A......

J. NORBURY; A. M. STUART

1989-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "types combustion turbine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.