Powered by Deep Web Technologies
Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

2

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

3

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

4

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

5

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

6

Studying effects of storage types on performance of CNG filling stations  

Science Journals Connector (OSTI)

At CNG filling station, compressed natural gas must be stored in storage system in order to make the utilization of the station more efficient. There are two systems for storing natural gas namely buffer and cascade storage systems. In buffer storage, CNG is stored at single high-pressure reservoirs. The cascade storage system is usually divided into three reservoirs, generally termed low, medium and high-pressure reservoirs. In current study, based on first and second laws of thermodynamics, conversation of mass and real gas assumptions, a theoretical analysis has been developed to study effects of reservation type on performance of CNG filling stations and filling process. Considering the same final natural gas vehicle cylinder (NGV) on-board in-cylinder pressure for both storage systems, the results show that each storage type has advantages over the other. The best configuration should be selected by balancing these advantages.

Mahmood Farzaneh-Gord; Mahdi Deymi-Dashtebayaz; Hamid Reza Rahbari

2011-01-01T23:59:59.000Z

7

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

8

CNG | OpenEI  

Open Energy Info (EERE)

CNG CNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

9

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

10

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

11

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

12

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

13

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax CNG is taxed at a rate of $0.10 per gallon when used as a motor fuel. CNG

14

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Permit Anyone dispensing CNG for use in vehicles must obtain a permit from the

15

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Dealer Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Dealer Permit

16

Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Compressed Natural Gas (CNG) Study to someone by E-mail Share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Facebook Tweet about Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Twitter Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Google Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Delicious Rank Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Digg Find More places to share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Compressed Natural Gas (CNG) Study At the direction of the Alaska Legislature, the Department of

17

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

18

Thermophysical property predictions of propane, propylene and their mixtures by Benedict-Webb-Rubin type equations of state  

E-Print Network (OSTI)

THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis by PRAMOD KUMAR BENGANI Submitted to the Office of Graduate Studies of Texas A & M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1990 Major Subject: Chemical Engineering THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis...

Bengani, Pramod Kumar

2012-06-07T23:59:59.000Z

19

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax and Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax and Permit

20

Alternative Fuels Data Center: Propane Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemption Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Exemption Liquefied petroleum gas (propane) is exempt from the state fuel excise tax when sold from a licensed propane vendor to a licensed propane user or a propane vehicle owner if it is delivered into a bulk storage tank that can

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax For taxation purposes, liquefied petroleum gas (propane) used as a motor vehicle fuel must be converted to gasoline gallon equivalents (GGE) using the conversion factor of 4.24 pounds per gallon of liquid at 60 degrees Fahrenheit per GGE. Propane is taxed at a rate of $0.20 per GGE. (Reference

22

Alternative Fuels Data Center: Propane Vehicle Training  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Training to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Training on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Training on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Training on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Training on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Vehicle Training The Railroad Commission of Texas Alternative Energy Division offers free safety and maintenance training on propane vehicles, buses, and forklifts.

23

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Motor fuel taxes for propane used in vehicles are collected through an annual sticker permit fee based on the vehicles' registered gross vehicle weight rating and the number of miles driven the previous year. (Reference Texas Statutes, Tax Code 162.305

24

Alternative Fuels Data Center: Propane Supplier Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Supplier Propane Supplier Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Supplier Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Supplier Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Google Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Delicious Rank Alternative Fuels Data Center: Propane Supplier Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Supplier Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Supplier Requirements A retail supplier may only distribute liquefied petroleum gas (LPG or propane) if the supplier holds a license from the Wisconsin Department of

25

Alternative fuel information: Facts about CNG and LPG conversion  

SciTech Connect

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

26

Propane Outlook  

Gasoline and Diesel Fuel Update (EIA)

4 of 24 4 of 24 Notes: EIA expects lower residential propane prices this winter compared to the high prices seen last winter. As of now, it appears that propane inventories will be more than adequate going into this winter. Although inventories in the Midwest remain low, there is still time for the ample inventories in the Gulf Coast to make their way up into the Midwest before heating season begins in earnest. As always, the major uncertainties affecting demand this winter are the weather and the economy. Other uncertainties affecting the propane market this winter are crude oil and natural gas prices. If natural gas prices this winter are around what EIA expects them to be, we will likely see very little, if any, propane production shut-in at gas plants. However, as the current situation with the TET shows, there could be short

27

LNG to CNG refueling stations  

SciTech Connect

While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

Branson, J.D. [ECOGAS Corp., Austin, TX (United States)

1995-12-31T23:59:59.000Z

28

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) License to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Petroleum Gas (Propane) License

29

Light Duty Vehicle CNG Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

30

Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Rebate Propane Vehicle Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on AddThis.com...

31

Residential propane prices surges  

U.S. Energy Information Administration (EIA) Indexed Site

Midwest and Northeast propane prices much higher this winter than last year Households that heat with propane will pay for that propane at prices averaging 39 percent higher in the...

32

Alternative Fuels Data Center: Propane Excise Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Excise Tax Propane Excise Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Excise Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Excise Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Excise Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Excise Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Excise Tax Exemption Propane is exempt from the state excise tax when it is used to operate motor vehicles on public highways provided that vehicles are equipped with

33

Alternative Fuels Data Center: Propane Safety and Liability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Safety and Propane Safety and Liability to someone by E-mail Share Alternative Fuels Data Center: Propane Safety and Liability on Facebook Tweet about Alternative Fuels Data Center: Propane Safety and Liability on Twitter Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Google Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Delicious Rank Alternative Fuels Data Center: Propane Safety and Liability on Digg Find More places to share Alternative Fuels Data Center: Propane Safety and Liability on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Safety and Liability An individual involved in installing liquefied petroleum gas (propane) systems or manufacturing, distributing, selling, storing, or transporting

34

Alternative Fuels Data Center: Reduced Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Propane Fuel Reduced Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Reduced Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline,

35

Alternative Fuels Data Center: Propane and Natural Gas Safety  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Natural Propane and Natural Gas Safety to someone by E-mail Share Alternative Fuels Data Center: Propane and Natural Gas Safety on Facebook Tweet about Alternative Fuels Data Center: Propane and Natural Gas Safety on Twitter Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Google Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Delicious Rank Alternative Fuels Data Center: Propane and Natural Gas Safety on Digg Find More places to share Alternative Fuels Data Center: Propane and Natural Gas Safety on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane and Natural Gas Safety The Railroad Commission of Texas regulates the safety of the natural gas and propane industries. (Reference Texas Statutes, Natural Resources Code

36

U.S. Total Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Central Atlantic (PADD 1B) Lower Atlantic (PADD 1C) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Monthly Annual Area: U.S. East Coast (PADD 1) New England (PADD 1A) Central Atlantic (PADD 1B) Lower Atlantic (PADD 1C) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Average - - - - - - 1993-2013 Residential - - - - - - 1993-2013 Commercial/Institutional - - - - - - 1993-2013 Industrial - - - - - - 1993-2013 Through Retail Outlets - - - - - - 1993-2013 Petro-Chemical - - - - - - 1994-2013 Other End Users - - - - - - 1993-2013 Sales for Resale

37

Alternative Fuels Data Center: Missouri Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Propane (LPG)

38

Alternative Fuels Data Center: Colorado Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Propane (LPG)

39

Alternative Fuels Data Center: Arizona Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Propane (LPG)

40

Alternative Fuels Data Center: Alabama Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Georgia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Propane (LPG)

42

Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Propane (LPG)

43

Alternative Fuels Data Center: Washington Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Propane (LPG)

44

Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Propane (LPG)

45

Alternative Fuels Data Center: Propane Education and Research Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Education and Propane Education and Research Program to someone by E-mail Share Alternative Fuels Data Center: Propane Education and Research Program on Facebook Tweet about Alternative Fuels Data Center: Propane Education and Research Program on Twitter Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Google Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Delicious Rank Alternative Fuels Data Center: Propane Education and Research Program on Digg Find More places to share Alternative Fuels Data Center: Propane Education and Research Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Education and Research Program The State Liquefied Compressed Gas Board (Board), operated through the

46

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Propane (LPG)

47

Alternative Fuels Data Center: California Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Propane (LPG)

48

Alternative Fuels Data Center: Michigan Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Propane (LPG)

49

Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Propane (LPG)

50

Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Propane (LPG)

51

Alternative Fuels Data Center: Illinois Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Propane (LPG)

52

Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Propane (LPG)

53

Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Propane (LPG)

54

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Propane (LPG)

55

Alternative Fuels Data Center: Montana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Propane (LPG)

56

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Propane (LPG)

57

Alternative Fuels Data Center: Indiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Propane (LPG)

58

Alternative Fuels Data Center: Florida Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Propane (LPG)

59

Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Propane (LPG)

60

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Propane (LPG)

62

Alternative Fuels Data Center: Vermont Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Propane (LPG)

63

Alternative Fuels Data Center: Maryland Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Propane (LPG)

64

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Propane (LPG)

65

Alternative Fuels Data Center: Virginia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Propane (LPG)

66

Alternative Fuels Data Center: Propane Board and Dealer Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Board and Propane Board and Dealer Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Board and Dealer Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Board and Dealer Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Google Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Delicious Rank Alternative Fuels Data Center: Propane Board and Dealer Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Board and Dealer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Board and Dealer Requirements The Idaho Liquefied Petroleum Gas (LPG) Public Safety Act established the

67

Barwood CNG Cab Fleet Study: Final Results  

SciTech Connect

This report describes a fleet study conducted over a 12-month period to evaluate the operation of dedicated compress natural gas (CNG) Ford Crown Victoria sedans in a taxicab fleet. In the study, we assess the performance and reliability of the vehicles and the cost of operating the CNG vehicles compared to gasoline vehicles. The study results reveal that the CNG vehicles operated by this fleet offer both economic and environmental advantages. The total operating costs of the CNG vehicles were about 25% lower than those of the gasoline vehicles. The CNG vehicles performed as well as the gasoline vehicles, and were just as reliable. Barwood representatives and drivers have come to consider the CNG vehicles an asset to their business and to the air quality of the local community.

Whalen, P.; Kelly, K.; John, M.

1999-05-03T23:59:59.000Z

68

Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

69

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...  

Energy Savers (EERE)

1976: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential...

70

Alternative Fuels Data Center: CNG Vehicle Fueling Animation...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives CNG Vehicle Fueling Animation Text Version This is a text version of...

71

Alternative Fuels Data Center: CNG Vehicle Fueling Animation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives CNG Vehicle Fueling Animation Use this interactive animation to...

72

Louisiana Company Makes Switch to CNG, Helps Transform Local...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station...

73

SEP Success Story: Louisiana Company Makes Switch to CNG, Helps...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station...

74

Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Rebates - Western Propane Gas Association (WPGA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on AddThis.com...

75

Residential propane price  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decrease The average retail price for propane is 2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

76

Residential propane price  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decreases The average retail price for propane is 2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

77

Residential propane price  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decreases The average retail price for propane is 2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy...

78

Propane situation update  

Annual Energy Outlook 2012 (EIA)

Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating propane 4.5% 7% Of all homes heated by...

79

Residential propane prices increase  

Annual Energy Outlook 2012 (EIA)

propane prices increase The average retail price for propane rose 3.2 cents from a week ago to 2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential...

80

Residential propane prices decreases  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating...

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 10.3 cents from a week ago to 2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential...

82

Residential propane prices increase  

NLE Websites -- All DOE Office Websites (Extended Search)

propane prices increase The average retail price for propane rose 3.9 cents from a week ago to 2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential...

83

Residential propane prices increase  

Annual Energy Outlook 2012 (EIA)

propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential...

84

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

propane prices surges The average retail price for propane rose to an all-time high of 4.01 a gallon, that's up 1.05 from a week ago, based on the residential heating fuel survey...

85

Residential propane price increases  

U.S. Energy Information Administration (EIA) Indexed Site

propane price increases The average retail price for propane is 2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

86

Residential propane prices stable  

Gasoline and Diesel Fuel Update (EIA)

propane price decreases The average retail price for propane is 2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

87

Residential propane price decreases  

Gasoline and Diesel Fuel Update (EIA)

6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel...

88

Residential propane prices surges  

U.S. Energy Information Administration (EIA) Indexed Site

9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel...

89

Residential propane prices increase  

NLE Websites -- All DOE Office Websites (Extended Search)

propane prices increase The average retail price for propane rose 4.8 cents from a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential...

90

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 2.5 cents from a week ago to 2.83 per gallon. That's up 56 cents from a year ago, based on the residential...

91

Residential propane price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel...

92

Residential propane prices increase  

NLE Websites -- All DOE Office Websites (Extended Search)

propane prices increase The average retail price for propane rose to 2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy...

93

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel...

94

Residential propane prices increase  

Annual Energy Outlook 2012 (EIA)

propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential...

95

Residential propane prices available  

Annual Energy Outlook 2012 (EIA)

propane prices available The average retail price for propane is 2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey....

96

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 9.1 cents from a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential...

97

Residential propane prices stable  

U.S. Energy Information Administration (EIA) Indexed Site

propane prices stable The average retail price for propane is 2.37 per gallon. That's down 4-tenths of a penny from a week ago, based on the U.S. Energy Information...

98

Residential propane prices surges  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel...

99

Propane on Titan  

E-Print Network (OSTI)

We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-09-23T23:59:59.000Z

100

Alternative Fuels Data Center: Propane Self-Service Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Self-Service Propane Self-Service Fueling Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Google Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Delicious Rank Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Natural Gas and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Tax Effective January 1, 2019, liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas will be subject to an excise tax at

102

This Week In Petroleum Propane Section  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential propane prices (dollars per gallon) Average Regional Residential propane prices graph Regional residential propane prices 2013-14 graph Residential propane prices...

103

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on AddThis.com...

104

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Inspection to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on AddThis.com...

105

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

106

Alternative Fuels Data Center: Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Prices Find propane fuel prices and trends. Propane, also known as liquefied petroleum gas (LPG) or autogas, has been used worldwide as a vehicle fuel for decades. It is stored as a liquid, and

107

2013 Propane Market Outlook  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P R E S E N T E D B Y : Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Authors: Mr. Michael Sloan msloan@icfi.com Mr. Warren Wilczewski wwilczewski@icfi.com Propane Market Outlook at a Glance ¡ Total consumer propane sales declined by more than 17 percent between 2009 and 2012, including 3.3 percent in 2011 and 10 to 12 percent in 2012. The declines in 2011 and 2012 were due primarily to much warmer than normal weather, as well as the impact of higher propane prices and continuing efficiency trends. Sales are expected to rebound in 2013 with a return to more

108

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

109

Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Ambrish Mishra of India's Ministry of Petroleum and Natural Gas at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

110

CNG, Hydrogen, CNG-Hydrogen Blends- Critical Fuel Properties and Behavior  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Jay Keller of Sandia National Laboratories at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

111

CNG und LNG chancenreicher Diesel-Ersatz  

Science Journals Connector (OSTI)

Einen weiteren Vorteil sieht die Branche im Betrieb mit LNG (Liquefied Natural Gas). Dieses verflüssigte Gas ... , der sowohl mit CNG als auch mit LNG betrieben werden kann. Seine Charakteristik entspricht der...

Detlef Krehl

2014-07-01T23:59:59.000Z

112

Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Smithtown Selects CNG Smithtown Selects CNG to Cut Refuse Collection Costs to someone by E-mail Share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Facebook Tweet about Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Twitter Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Google Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Delicious Rank Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Digg Find More places to share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on AddThis.com... April 7, 2011 Smithtown Selects CNG to Cut Refuse Collection Costs

113

Alternative Fuels Data Center: Natural Gas and Propane Retailer License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retailer License to someone by E-mail Retailer License to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Retailer License Compressed natural gas, liquefied natural gas, or liquefied petroleum gas

114

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) and Propane Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

115

Alternative Fuels Data Center: Natural Gas and Propane Reports  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reports to someone by E-mail Reports to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Reports on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Reports on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Reports on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Reports on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Reports The Florida Office of Program Policy Analysis and Government Accountability (Office) must complete a report that analyzes the taxation and use of

116

Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL to someone by E-mail Share Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Facebook Tweet about Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Twitter Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Google Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Delicious Rank Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Digg Find More places to share Alternative Fuels Data Center: Reduced

117

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Digg Find More places to share Alternative Fuels Data Center: Compressed

118

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Digg Find More places to share Alternative Fuels Data Center: Compressed

119

2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

120

Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Atlanta Airport Atlanta Airport Converts Shuttles to CNG to someone by E-mail Share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Facebook Tweet about Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Twitter Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Google Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Delicious Rank Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Digg Find More places to share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on AddThis.com... Sept. 9, 2012 Atlanta Airport Converts Shuttles to CNG L earn how an Atlanta company saves money and conserves fuel with compressed natural gas airport shuttles.

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Fuel System and CNG Fuel System and Cylinder Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Digg Find More places to share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety

122

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

123

Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Propane (LPG) The list below contains summaries of all Texas laws and incentives related

124

Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Propane (LPG)

125

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

126

Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Propane (LPG)

127

Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Propane (LPG) The list below contains summaries of all Iowa laws and incentives related

128

Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Propane (LPG) The list below contains summaries of all Utah laws and incentives related

129

Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Propane (LPG)

130

Alternative Fuels Data Center: New York Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Propane (LPG)

131

Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Propane (LPG)

132

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

133

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

134

Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Propane (LPG)

135

Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Propane (LPG)

136

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

137

Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Propane (LPG) The list below contains summaries of all Idaho laws and incentives related

138

Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Propane (LPG)

139

Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Propane (LPG) The list below contains summaries of all Ohio laws and incentives related

140

Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG,CNG-H2 Vehicles and Fuels CNG,CNG-H2 Vehicles and Fuels in India December 10-11, 2009 Ambrish Mishra Director (Marketing Operations) Oil Industry safety Directorate Ministry of Petroleum and Natural Gas Government Of India email : ambrish.mishra@gov.in OISD 2 1. Refineries: 17 PSU + 3 Private 2. POL Storage (PSU): More than 400 3. LPG storage and Bottling Plant (PSU): 179 4. Others Gas processing Plants of GAIL and ONGC OISD 3 Major Statutory Authorities and Norms 1. Petroleum and Safety Organization (PESO) A) Petroleum rules under Petroleum Act (1934) by MOPN&G B) Various Rules (Gas Cylinder Rules and SMPV etc) under the Explosives Act under Ministry of Commerce and Industry C)To exercise some provision of Environment Act 2. Chief Inspector of Factories of Respective State A) Factories Rules under Factories Act of Ministry of Labour

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Successful Adoption of CNG and Energing CNG-Hydrogen Program in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Narendra Kumar Pal Narendra Kumar Pal Research Scholar, University of Nevada, Reno Successful Adoption of CNG and Emerging CNG-H 2 Program in India US DOT and DOE Workshop Compressed Natural Gas and Hydrogen Fuels: Lesson Learned for the Safe Development of Vehicles Washington DC, December, 10-11, 2009 Content * Background - CNG Implementation - IPHE - The Planning Commission of India - MP&NG - Hydrogen Corpus Fund - MNRE - National Hydrogen Energy Roadmap * Major Initiatives - Initiatives by MoP&NG - Indian Oil's Initiatives * International Workshop * Infrastructure Setup - IOC R&D Centre, Faridabad - IOC Retail Outlet, Dwarka, New Delhi * Developmental / Demonstration Projects - MNRE's Initiatives - Initiatives by Automobile Sector * Other programs 1. CNG Program Implementation

142

Propane Vehicle Demonstration Grant Program  

SciTech Connect

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

143

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

144

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

145

Propane Fuel Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Propane Fuel Basics Propane Fuel Basics July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as...

146

Alternative Fuels Data Center: Propane Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicles on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicles Related Information Availability Conversions Emissions Incentives & Laws

147

propane | OpenEI  

Open Energy Info (EERE)

propane propane Dataset Summary Description The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) maintains data on the energy use and efficiency of water heaters for its members. The FTC does not necessarily endorse the views expressed on that site or guarantee the accuracy or completeness of the information on it. Please note that the site you link to may track visitor viewing habits. This spreadsheet contains data on Bosch, Noritz, Paloma and Takagi manufacturing companies. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords energy use Natural Gas propane Water heater Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Combined.xlsx (xlsx, 12.7 KiB)

148

Residential propane price decreases slightly  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by...

149

Residential propane price is unchanged  

NLE Websites -- All DOE Office Websites (Extended Search)

13, 2014 Residential propane price is unchanged The average retail price for propane is 2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating...

150

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

151

Alternative Fuels Data Center: Propane Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Availability on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives

152

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Digg Find More places to share Alternative Fuels Data Center: Compressed

153

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

154

CNG and Diesel Transite Bus Emissions in Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Funding by CARB and SCAQMD * BP donated ECD-1 fuel * LACMTA facilitated this research * So.Cal. Gas Co. for CNG fuel analyses * Technical Collaborators: CARB: Leo...

155

CNG and Hydrogen Tank Safety, R&D, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Joe Wong of Powertech Labs Inc. at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

156

Comparison of Clean Diesel Buses to CNG Buses | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buses Comparison of Clean Diesel Buses to CNG Buses 2003 DEER Conference Presentation: New York City Transit Department of Buses deer2003lowell.pdf More Documents &...

157

Fuel Displacement & Cost Potential of CNG, LNG, and LPG Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LPG Vehicles Fuel Displacement & Cost Potential of CNG, LNG, and LPG Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

158

Overview of DOE ? DOT December 2009 CNG and Hydrogen Fuels Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Regulatory Structure for CNG, CNG-H 2 Vehicles and Fuels India (Ambrish Mishra, Oil Industry Safety Directorate, Ministry of Petroleum and Natural Gas) China (Jinyang...

159

High pressure fluid phase equilibrium data of poly(2-ethylhexyl acrylate) in propane  

Science Journals Connector (OSTI)

Substance Name(s): propane; Dimethylmethane; n-Propane; Propyl hydride; R 290; propane liquefied; propane in gaseous state; Propan; Propangas; Propan

Ch. Wohlfarth

2009-01-01T23:59:59.000Z

160

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emera’s CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emera’s CNG facility for export, during periods of maintenance at Emera’s facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The catalytic oxidation of propane  

E-Print Network (OSTI)

THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

Sanderson, Charles Frederick

2013-10-04T23:59:59.000Z

162

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Infrastructure Propane Infrastructure and Fuel Incentives - Boulden Propane to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on AddThis.com...

163

Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng  

Open Energy Info (EERE)

Carriers For Remote Renewable Energy Sources Using Existing Cng Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Details Activities (0) Areas (0) Regions (0) Abstract: Optimal locations of renewable energy sources are often remote relative to consumers and electricity grids. In contrast, some existing CNG pipelines pass through optimal renewable energy harvesting regions. The growing interest in the possibility of using geothermal energy in central Australia has created a need to assess the economic, technical, and environmental viability of converting remote renewable energy to fuel for transport using existing CNG pipelines, and to compare this alternative

164

Alternative Fuels Data Center: Propane Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find More places to share Alternative Fuels Data Center: Propane Related Links on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Related Links This list includes links related to propane. The Alternative Fuels Data

165

Case Study ? Propane School Bus Fleets  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

technicians about the safety of propane vehicles, particularly with regards to propane tanks. Data Analysis Results The five fleets operating the 110 school buses described in...

166

Biofuels: Bacteria generate propane gas  

Science Journals Connector (OSTI)

... Genetically engineered bacteria could one day be harnessed to make renewable propane fuel. Patrik Jones at Imperial College London, Kalim Akhtar at University College London and ... different species of bacteria into Escherichia coli, so that the microbe could convert glucose into propane gas. With genetic tinkering and by increasing the levels of oxygen to which the ...

2014-09-10T23:59:59.000Z

167

Alternative Fuels Data Center: Propane Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles » Propane Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Emissions

168

Summary of Swedish Experiences on CNG and "Clean" Diesel Buses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diesel (i.e. Euro II) with ox cat CNG buses in 1992 (Gothenburg); later also biogas Retrofit particulate filters (i.e. CRT TM ) in mid 1990's Environmental zones in...

169

California Policy Stimulates Carbon Negative CNG for Heavy Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Negative CNG for Heavy Duty Trucks Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects p-10edgar.pdf More...

170

EECBG Success Story: CNG in OKC: Improving Efficiency at the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of...

171

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

172

Alternative Fuels Data Center: Propane Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Benefits and Considerations Also known as liquefied petroleum gas (LPG), propane is a domestically produced, well-established, clean-burning fuel. Using propane as a vehicle fuel increases energy security, provides convenience and performance

173

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

174

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

175

Viscosity Measurements on Gaseous Propane  

Science Journals Connector (OSTI)

Viscosity Measurements on Gaseous Propane ... However, in that case, the viscosities will have to be re-evaluated too, which also requires the parameters of the wire oscillation, the logarithmic decrement and the frequency. ...

Jörg Wilhelm; Eckhard Vogel

2001-09-25T23:59:59.000Z

176

Propane Update - November 26, 2014  

Gasoline and Diesel Fuel Update (EIA)

Sep-14 Nov-14 5-year range inventory level rolling 5-year average PADD 2 (Midwest) propane inventories are currently above the five-year average U.S. Energy Information...

177

On the Derivatives of Propane  

Science Journals Connector (OSTI)

1 January 1869 research-article On the Derivatives of Propane C. Schorlemmer The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1869-01-01T23:59:59.000Z

178

Heating Oil and Propane Update  

NLE Websites -- All DOE Office Websites (Extended Search)

data not collected over the summer? The residential pricing data collected on heating oil and propane prices are for the Winter Heating Fuels Survey. The purpose of this survey...

179

Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Refuse Haulers Do CNG Refuse Haulers Do Heavy Lifting in New York to someone by E-mail Share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Facebook Tweet about Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Twitter Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Google Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Delicious Rank Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Digg Find More places to share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on AddThis.com... Nov. 13, 2010 CNG Refuse Haulers Do Heavy Lifting in New York W atch how Smithtown uses compressed natural gas trash haulers to combat the

180

Assimilation of Propane and Characterization of Propane Monooxygenase from Rhodococcus erythropolis3/89  

Science Journals Connector (OSTI)

The ability of propane-assimilating microorganisms of the genus Rhodococcus...to utilize metabolites of the terminal and subterminal pathways of propane oxidation was studied. Propane monooxygenase of Rhodococcus...

A. K. Kulikova; A. M. Bezborodov

2001-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Antiproton Annihilations in Propane  

Science Journals Connector (OSTI)

An experiment to study the p¯ annihilation process at 1.05 Bev/c was performed with the Lawrence Radiation Laboratory 30-in. propane bubble chamber. It was observed that the K-meson production in annihilation events rises sharply with the increase in energy, namely from 4±1% for annihilations at or near "rest" to 8±1%. On the other hand, the pion multiplicity was not observed to increase appreciably with the increase of available energy. We have found a pion multiplicity of 5.0±0.2. These numbers are discussed in this paper and compared with existing models for the p¯ annihilation process. It is pointed out that with further increase in bombarding energy different models may differ appreciably in the above quantities.We have observed a p¯-H annihilation cross section of 51±10 mb and a p¯-C annihilation cross section of 368±60 mb at a p¯ momentum of 1.05 Bev/c. Crude determinations of the p¯ charge-exchange process—which turns out to be forward peaked— and of p¯ inelastic-scattering events leading to pion production are also discussed.

Sulamith Goldhaber; Gerson Goldhaber; Wilson M. Powell; Rein Silberberg

1961-03-01T23:59:59.000Z

182

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

183

Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Happy Cab Fuels Taxi Happy Cab Fuels Taxi Fleet With CNG to someone by E-mail Share Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Facebook Tweet about Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Twitter Bookmark Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Google Bookmark Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Delicious Rank Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on Digg Find More places to share Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG on AddThis.com... June 15, 2013 Happy Cab Fuels Taxi Fleet With CNG F ind out how a cab company in Omaha, Nebraska, saves money fueling its taxi fleet with compressed natural gas. For information about this project, contact Kansas City Regional Clean

184

Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Shuttles Save Fuel CNG Shuttles Save Fuel Costs for R&R Limousine and Bus to someone by E-mail Share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Facebook Tweet about Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Twitter Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Google Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Delicious Rank Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Digg Find More places to share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on AddThis.com... June 1, 2013

185

ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses 2002 DEER Conference Presentation:...

186

VICE 2.0 Helps Fleets Evaluate CNG Investments (Fact Sheet),...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

VICE 2.0 Helps Fleets Evaluate CNG Investments CNG Find VICE 2.0 on the AFDC: afdc.energy.gov VICE 2.0 allows you to chart key investment indicators, such as payback period,...

187

Liquid Propane Injection Technology Conductive to Today's North...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

188

Safety and Regulatory Structure for CNG/Hydrogen Vehicles and Fuels in the United States  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Barbara Hennessey and Nha Nguyen at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009

189

Residential propane price decreases slightly decreases slightly  

Gasoline and Diesel Fuel Update (EIA)

7, 2014 Residential propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential...

190

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

191

Residential propane price continues to decrease  

Gasoline and Diesel Fuel Update (EIA)

12, 2014 Residential propane price continues to decrease The average retail price for propane fell to 3.76 per gallon, down 13.4 cents from a week ago, based on the residential...

192

Residential propane price continues to decrease  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2014 Residential propane price decreases The average retail price for propane fell to 3.64 per gallon, down 12.7 cents from a week ago, based on the residential heating fuel...

193

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

194

Liquid Propane Injection Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid propane injection technology meets manufacturingassembly guidelines, maintenancerepair strategy, and regulations, with same functionality, horsepower, and torque as...

195

High-performance Propane Fuel Cells  

Science Journals Connector (OSTI)

... The performance of propane-oxygen cells operating between 150 and 200 C was recently described in detail4.

W. T. GRUBB

1964-02-15T23:59:59.000Z

196

The High-Temperature Oxidation of Propane  

Science Journals Connector (OSTI)

...research-article The High-Temperature Oxidation of Propane J. W. Falconer J. H. Knox Above 400 degrees C propane is oxidized by a two-stage degenerately...of propylene becomes important. While propane still in the main reacts to form propylene...

1959-01-01T23:59:59.000Z

197

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

198

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

199

Scattering of Slow Neutrons from Propane Gas  

Science Journals Connector (OSTI)

Measurements of the partial differential neutron scattering cross sections for room-temperature propane gas are reported. These measurements were made at incident energies of 0.0101, 0.0254, 0.0736, and 0.102 ev at seven scattering angles between 16.3° and 84.7° using the Materials Testing Reactor phased chopper velocity selector. The data are converted to the scattering-law presentation and compared with three theoretical calculations: (a) The ideal gas, using an effective mass obtained from an average of the mass tensors for the three types of H atoms in propane, gives poor agreement. (b) The Krieger-Nelkin approximation, which includes the effect of zero-point vibrations, gives limited agreement for energy transfer less than 0.5kBT at intermediate momentum transfers. At large momentum transfers where vibrational effects become important it underestimates the cross section. (c) A modification of the Krieger-Nelkin theory that includes the effects of single-quantum transitions from the three lowest vibrational states gives better agreement. The discrepancies still present at large momentum and energy transfers are attributed to an uncertainty in the methyl-group barrier height for the three lowest energy modes, to the harmonic oscillator approximation for these modes, and to the approximate molecular orientation averaging used in the calculation.

K. A. Strong; G. D. Marshall; R. M. Brugger; P. D. Randolph

1962-02-01T23:59:59.000Z

200

Silane-propane ignitor/burner  

DOE Patents (OSTI)

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Silane-propane ignitor/burner  

DOE Patents (OSTI)

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

202

Nationwide: Southeast Propane Autogas Development Program Brings...  

Energy Savers (EERE)

future expansion of propane vehicles. Project participants will reduce 3.9 million gasoline gallon equivalents and 7.8 million pounds of greenhouse gas emissions annually....

203

Oxidation of Propane by Doped Nickel Oxides  

Science Journals Connector (OSTI)

... present study, however, indicate that in the absence of excess oxygen, direct oxidation of propane by the oxide lattice can occur.

D. W. McKEE

1964-04-11T23:59:59.000Z

204

Propane earth materials drying techniques and technologies.  

E-Print Network (OSTI)

??A feasibility study for the use of propane as a subbase drying technique. Michael Blahut (1) Dr. Vernon Schaefer (2) Dr. Chris Williams (3) The… (more)

Blahut, Michael Edward

2010-01-01T23:59:59.000Z

205

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

206

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

207

STATEMENT OF CONSIDERATIONS REQUEST BY CONSOLIDATED NATURAL GAS (CNG) (THE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSOLIDATED NATURAL GAS (CNG) (THE CONSOLIDATED NATURAL GAS (CNG) (THE PARTICIPANT) FOR ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS IN INVENTIONS OF THE PARTICIPANT UNDER DOE-PETC CRADA NO.PC-93-009, W(A)-93-034, CH-0819 - MASTER CRADA FOR PROJECTS DIRECTED TO FUELS COMBUSTION, EVALUATION AND FLOW ANALYSES - PROJECT #1 REDUCING EDDY AFTER BURN (REAB) FOR NITRIC OXIDE REDUCTION AND RELATED TECHNOLOGIES The Department of Energy has delegated authority to the PETC Laboratory Director to enter into CRADAs and, with the concurrence of cognizant Intellectual Property Counsel, to deal with intellectual property matters arising under the CRADA, including waiving of the Government's patent rights thereunder. Participant desires to obtain an advance waiver of the Government's rights in any inventions that may be conceived or

208

Optimization of a CNG series hybrid concept vehicle  

SciTech Connect

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

209

CNG in OKC: Improving Efficiency at the Pump and on the Road | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road CNG in OKC: Improving Efficiency at the Pump and on the Road March 8, 2012 - 4:02pm Addthis Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Andy Mitchell, Public Works Project Manager for the City of Oklahoma City, refills a vehicle at the new fast-fill CNG fueling station located at the city's main maintenance facility. | Courtesy of the City of Oklahoma City. Jennifer Holman Project Officer, Golden Field Office What does this mean for me? Switching from gasoline and diesel fuels to compressed natural gas (CNG) can mean significantly lower amounts of carbon dioxide and air

210

Safety Analysis of Type 4 Tanks in CNG Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

211

VICE 2.0 Helps Fleets Evaluate CNG Investments (Fact Sheet)  

SciTech Connect

Vehicle and Infrastructure Cash-Flow Evaluation (VICE) 2.0 online tool estimates financial and emissions benefits of compressed natural gas (CNG) in vehicles.

Not Available

2014-03-01T23:59:59.000Z

212

Louisiana Company Makes Switch to CNG, Helps Transform Local Fuel Supplies  

Office of Energy Efficiency and Renewable Energy (EERE)

With support from the State of Louisiana and the Energy Department, Shreveport's first public heavy duty CNG fueling station officially opened on Earth Day.

213

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

214

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt065christopher2010p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program Technology...

215

Texas Propane Vehicle Pilot Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Propane Vehicle Pilot Project Texas Propane Vehicle Pilot Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

216

Southeast Propane AutoGas Development Program | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation arravt065tijenkins2011p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program State of...

217

Alternative Fuels Data Center: Propane Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production and Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Propane Production and Distribution on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Production and Distribution

218

The Properties of Liquid Ethane and Propane  

Science Journals Connector (OSTI)

... of Liebig's Annalen. Owing to the greater ease with which it undergoes liquefaction, propane was first investigated. The hydrocarbon was obtained in a state of purity by means ... transferred to a gas-holder over water In order to determine the boiling-point of propane, the purified gas was first condensed to the liquid state in a U-tube ...

A. E. TUTTON

1894-11-15T23:59:59.000Z

219

Alternative Fuels Data Center: Propane Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane » Laws & Incentives Propane » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Propane Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Propane Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Propane Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Propane Laws and Incentives on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Laws and Incentives

220

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CrosswindEaglePelican Applications: Street sweeper, Vocational truck Fuel Types: CNG, LNG, Propane Power Source(s): Cummins Westport - ISL G 8.9L Ford Motor Co. - 2.5L Propane...

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

SHOPP Financial Forms - for State Energy Officials SHOPP Financial Forms - for State Energy Officials The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the U. S. Energy Information Administration. The Application for Federal Assistance, Form SF-424, is required to be submitted annually no later than May 15th in order for the applicant to receive funds for the upcoming season. This form consists of three parts: SF-424 - general funding information SF-424A - annual budget SF-424B - assurance pages The Federal Financial Report, Form SF-425, collects basic data on federal and recipient expenditures related to the SHOPP grant. This form should be submitted by August 1st of each year after the end of the season.

222

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Release Schedule Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 14, 2013 October 17, 2013 Thursday Cancelled Columbus/EIA Closed November 11, 2013 November 14, 2013 Thursday 1:00 p.m. Veterans December 23, 2013 December 27, 2013 Friday 1:00 p.m. Christmas December 30, 2013 January 3, 2014 Friday 1:00 p.m. New Year's January 20, 2014 January 23, 2014 Thursday 1:00 p.m. Martin Luther King Jr. February 17, 2014 February 20, 2014 Thursday 1:00 p.m. President's

223

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

224

Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Converts Michigan Converts Vehicles to Propane, Reducing Emissions to someone by E-mail Share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Facebook Tweet about Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Twitter Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Google Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Delicious Rank Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Digg Find More places to share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on AddThis.com... April 27, 2013

225

Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Mower Commercial Mower Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on AddThis.com...

226

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

227

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

228

Alternative Fuels Data Center: Propane Buses Save Money for Virginia  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Save Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on AddThis.com... Feb. 25, 2010 Propane Buses Save Money for Virginia Schools F ind out how Gloucester County Schools' propane buses are quieter and cost

229

Esters of propane-1,3-diboric and propane-1,3-dithioboric acids  

Science Journals Connector (OSTI)

The polymer formed by hydroborating boron-trialkyl reacts with methyl borate, giving the tetramethyl ester of propane-1,3-diboric acid.

B. M. Mikhailov; V. F. Pozdnev

1962-10-01T23:59:59.000Z

230

Propane: A Mid-heating Season Assessment  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration In early October 2000, the Energy Information Administration (EIA) forecast that heating fuel markets would be expected to start the season with much higher prices and lower inventories than in recent years. While this assessment was true for both the heating oil and natural gas markets, propane markets actually began the season with adequate supplies but with high prices. Since EIA's forecast, propane inventories have plunged nearly 20 million barrels from their peak during the first half of the 2000-01 heating season while propane prices have continued to soar even higher than expected during this same period. This report will analyze some

231

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak pre-heating season level since 1986. Although propane inventories were expected to remain within the normal range for the duration of the 2000-01 heating season, cold weather in November and December, along with recently high natural gas prices that discouraged propane production from gas processing, resulted in stocks falling below the normal range by the end of December. However, if the weather remains seasonally normal, and the recent decline in natural gas prices holds, EIA expects the propane inventory drawdown to slow. This is reflected in the data for January 19, which showed a draw of only 2.1 million barrels, compared to more than twice that

232

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

233

Propane Vehicles: Status, Challenges, and Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane Vehicles: Propane Vehicles: Status, Challenges, and Opportunities ANL/ESD/10-2 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62

234

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network (OSTI)

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

235

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Powers Airport Propane Powers Airport Shuttles in New Orleans to someone by E-mail Share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Facebook Tweet about Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Twitter Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Google Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Delicious Rank Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Digg Find More places to share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on AddThis.com... Feb. 19, 2011 Propane Powers Airport Shuttles in New Orleans D iscover how the New Orleans airport displaced over 139,000 gallons of

236

Alternative Fuels Data Center: Propane Mowers Help National Park Cut  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Mowers Help Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on AddThis.com... Aug. 8, 2013 Propane Mowers Help National Park Cut Emissions " We're very proud to be an example of what the National Park Service can

237

Optimization of the distribution of compressed natural gas (CNG) refueling stations: Swiss case studies  

Science Journals Connector (OSTI)

To become a mass-market product, compressed natural gas (CNG) cars will need a dense network of filling stations. The Swiss natural gas industry plans to invest in 350 additional CNG stations to supplement the existing 50 sites. Cost–benefit analysis is used to define the optimal locations for these among the existing 3470 petrol filling stations. It is found using two simulations looking at equitable location of sites and socially optimal ones, that the investment in additional CNG infrastructure is unlikely to be socially advantageous.

Martin Frick; K.W. Axhausen; Gian Carle; Alexander Wokaun

2007-01-01T23:59:59.000Z

238

Urban air quality improvement by using a CNG lean burn engine for city buses  

Science Journals Connector (OSTI)

The use of compressed natural gas (CNG)-fuelled lean-burn city bus engines has a significant potential for air quality improvement in urban areas. Particularly important is the reduction of NOx, as well as particulate and non-regulated HC-emissions. For this reason, a CNG-fuelled, lean-bum, turbocharged, intercooled engine equipped with catalytic converter was developed. The basic engine is a 6-cylinder, heavy duty, serial production Hungarian diesel engine which complies with Euro-2 emissions limits. The objective of this development was to meet European emission limits forecast for the year 2005 (NOx fuel consumption capability of the engine are reported. Based on the evaluation of economical feasibility, the costs of CNG bus operation is additionally discussed. It can be concluded that CNG city bus operation is - compared to diesel operation - a promising way to improve economically the local air quality.

Tamas Meretei; Joep A.N. van Ling; Cornelis Havenith

1998-01-01T23:59:59.000Z

239

New York City Transit (NYCT) Hybrid (125 Order) and CNG Transit...  

NLE Websites -- All DOE Office Websites (Extended Search)

oil consumption. This extra cost was not captured here. The CNG engines are also in the process of being rebuilt as part of a campaign with new cylinder kits along with new spark...

240

Propane Prices Influenced by Crude Oil and Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Propane prices have been high this year for several reasons. Propane usually follows crude oil prices more closely than natural gas prices. As crude oil prices rose beginning in 1999, propane has followed. In addition, some early cold weather this year put extra pressure on prices. However, more recently, the highly unusual surge in natural gas prices affected propane supply and drove propane prices up. Propane comes from two sources of supply: refineries and natural gas processing plants. The very high natural gas prices made it more economic for refineries to use the propane they normally produce and sell than to buy natural gas. The gas processing plants found it more economic to leave propane in the natural gas streams than to extract it for sale separately.

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

242

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Infrastructure Propane Infrastructure and Fuel Incentives - SchagrinGAS to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on AddThis.com... More in this section...

243

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

244

Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Reduces Tennessee Reduces Pollution With Propane Hybrid Trolleys to someone by E-mail Share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Facebook Tweet about Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Twitter Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Google Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Delicious Rank Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Digg Find More places to share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on AddThis.com... Dec. 11, 2010 Tennessee Reduces Pollution With Propane Hybrid Trolleys

245

Microsoft PowerPoint - Propane_Briefing_140312.pptx  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating propane 4.5% 7% Of all homes heated by...

246

Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Help Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Delicious Rank Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on AddThis.com...

247

Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renzenberger Inc Saves Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Google Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Delicious Rank Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Digg Find More places to share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on AddThis.com... June 22, 2012 Renzenberger Inc Saves Money With Propane Vans L earn how Renzenberger Incorporated fuels its road service vans with

248

Liquid Propane Injection Technology Conductive to Today's North American Specification  

Energy.gov (U.S. Department of Energy (DOE))

Liquid propane injection technology can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil

249

Alternative Fuel Tool Kit How to Implement: Propane  

E-Print Network (OSTI)

, colorless gas that is a byproduct of natural gas production and crude oil refining. Propane autogas What is Liquefied Petroleum Gas? Liquefied petroleum gas (LPG) is commonly referred to as propane energy storage, propane is stored as a liquid in a pressurized tank onboard the vehicle, typically at 100

250

This Week In Petroleum Propane Section  

Gasoline and Diesel Fuel Update (EIA)

and Wholesale Propane Prices (Dollars per Gallon) and Wholesale Propane Prices (Dollars per Gallon) Residential Propane Prices Petroleum Data Tables more data Note: Due to updated weighting methodology, national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published. We have created an excel file that shows the differences between the original and revised published data for your convenience. Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 Average 2.450 2.482 2.506 2.542 2.566 2.621 2.712 2.243 East Coast (PADD 1) 3.044 3.073 3.090 3.141 3.165 3.246 3.315 2.930 New England (PADD 1A) 3.033 3.047 3.064 3.121 3.172 3.257 3.314 3.063 Central Atlantic (PADD 1B) 3.095 3.122 3.145 3.204 3.213 3.307

251

Portland Public School Children Move with Propane  

SciTech Connect

This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

Not Available

2004-04-01T23:59:59.000Z

252

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

SciTech Connect

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

253

Fuel cells—I. Propane on palladium catalyst  

Science Journals Connector (OSTI)

For the reaction at low temperatures of a gaseous hydrocarbon as a fuel gas at a negative electrode in a fuel cell, the choice of a suitable catalyst is of the first importance. In the present study, catalysts consisting of palladium reduced by hydrogen and palladium reduced by formate, supported on four types of porous skeleton disks (thin nickel, thick nickel and two types of carbon), were examined. In many cases, the electrodes were given a water-proofing treatment. The specific fuel cell used involved the prepared fuel electrode using gaseous propane, 30% KOH solution, a carbon-black air electrode and a temperature of 5O°C We attempt to distinguish the behaviour of propane from that due to hydrogen contained in the electrode, mainly on the basis of the relationship between (a) electrode preparation and treatment and (b) the open-circuit potential behaviour of the fuel electrode. The repetition of small current discharges resulted in open-circuit potentials reaching steady high potentials and in electrodes exhibiting comparatively good dischargeabilities.

M. Fukuda; C.L. Rulfs; P.J. Elving

1964-01-01T23:59:59.000Z

254

Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Converts Virginia Converts Vehicles to Propane in Spotsylvania County to someone by E-mail Share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Facebook Tweet about Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Twitter Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Google Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Delicious Rank Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Digg Find More places to share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on AddThis.com...

255

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on

256

Different behaviors of PdAu/C catalysts in electrooxidation of propane-1,3-diol and propane-1,2-diol  

Science Journals Connector (OSTI)

The different behaviors of PdAu/C catalysts in the electrocatalytic oxidation of propane-1,3-diol and propane-1,2-diol in alkaline solution are ... by instrumental analysis and electrochemical analysis. In propane

Changchun Jin; Zhongyu Wang; Qisheng Huo; Rulin Dong

2014-09-01T23:59:59.000Z

257

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas (CNG) and Propane Dealer License A person may not act as a CNG or liquefied petroleum gas (propane) dealer unless the person holds a valid CNG or propane...

258

Adsorptive separation of propylene-propane mixtures  

SciTech Connect

The separation of propylene-propane mixtures is of great commercial importance and is carried out by fractional distillation. It is claimed to be the most energy-intensive distillation practiced in the United States. The purpose of this paper is to describe experimental work that suggests a practical alternative to distillation for separating the C[sub 3] hydrocarbons: adsorption. As studied, the process involves three adsorptive steps: initial separation with molecular sieves with heavy dilution with an inert gas; separation of propylene and propane separately from the inert gas, using activated carbon; and drying of the product streams with any of several available desiccants. The research information presented here deals with the initial step and includes both equilibrium and kinetic data. Isotherms are provided for propylene and propane adsorbed on three zeolites, activated alumina, silica gel, and coconut-based activated carbon. Breakthrough data are provided for both adsorption and regeneration steps for the zeolites, which were found to be superior to the other adsorbents for breakthrough separations. A flow diagram for the complete proposed process is included.

Jaervelin, H.; Fair, J.R. (Univ. of Texas, Austin, TX (United States))

1993-10-01T23:59:59.000Z

259

Titan's Prolific Propane: The Cassini CIRS Perspective  

E-Print Network (OSTI)

In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

2009-01-01T23:59:59.000Z

260

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.  

E-Print Network (OSTI)

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits III locomotive to serve power generating station. Catawba $200,000 $203,000 $403,000 Dylex Partners

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

262

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

263

Alternative carriers for remote renewable energy sources using existing CNG infrastructure  

Science Journals Connector (OSTI)

Optimal locations of renewable energy sources are often remote relative to consumers and electricity grids. In contrast, some existing CNG pipelines pass through optimal renewable energy harvesting regions. The growing interest in the possibility of using geothermal energy in central Australia has created a need to assess the economic, technical, and environmental viability of converting remote renewable energy to fuel for transport using existing CNG pipelines, and to compare this alternative with that required to construct new high-capacity electricity transmission lines. This assessment is reported, using first the conversion of electricity to hydrogen, and then conversion of the hydrogen to methane. The paper also compares the alternative of direct injection of hydrogen into existing CNG pipelines to create “hythane” (HCNG). An economic assessment showed that the relative capital and operating costs are sufficient make the alternative carrier prospect worthy of further consideration.

Robert R. Dickinson; David L. Battye; Valerie M. Linton; Peter J. Ashman; Graham (Gus) J. Nathan

2010-01-01T23:59:59.000Z

264

Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010  

SciTech Connect

This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

Adams, R.; Horne, D. B.

2010-09-01T23:59:59.000Z

265

Biomethane CNG hybrid: A reduction by more than 80% of the greenhouse gases emissions compared to gasoline  

Science Journals Connector (OSTI)

Recent results of GDF SUEZ Research and Innovation Division (RID) activities on Compressed Natural Gas (CNG) vehicles are depicted in this paper:• The prototype “Toyota Prius II Hybrid CNG Vehicle”, developed with IFP Energies Nouvelles, combines a natural gas thermal engine with a hybrid electric motorization. After optimization, CO2 emissions, measured on chassis dynamometer, were 76 g/km on NEDC cycle. • The use of raw biogas in CNG Vehicle has been explored. These tests have shown that raw biogas (not upgraded) can be used as a fuel, if blended with natural gas. In fact, the use of raw biogas can be envisaged in dedicated CNG engines, if new engine technologies (lean CNG combustion) are developed. In such a case natural gas can be blended with up to 70% volume of not upgraded biogas. • The potential reduction of greenhouse gases (GHG) emissions related both to the optimization of the CNG vehicle and to the use of biomethane as a vehicle fuel has been evaluated. GHG emissions from CNG vehicles (mono-fuel and hybrid) may be significantly lower than emissions of gasoline vehicles: around 17% lower in the case of dedicated CNG Vehicle and up to 51% lower in the case of hybrid CNG vehicles. In addition, biomethane (from the anaerobic digestion of waste) brings the GHG emission levels, over the course of the life cycle, down to more than 80% compared to a gasoline vehicle. Emission levels are lowered by 87% in the case of the Toyota Prius CNG Hybrid prototype fuelled by biomethane produced from waste (in comparison to a gasoline vehicle). Thus, biomethane allows a reduction of GHG emissions far below the minimum required by the European Directive on the Promotion of Renewable Energy Sources (2009/28/EC). These results have shown that the combination of optimized and innovative engines with the use of biomethane as a fuel permits to significantly reduce the GHG emissions.

Olivier Bordelanne; Micheline Montero; Frédérique Bravin; Anne Prieur-Vernat; Olga Oliveti-Selmi; Hélène Pierre; Marion Papadopoulo; Thomas Muller

2011-01-01T23:59:59.000Z

266

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas (CNG) and Propane Deregulation The transmission, sale, or distribution of CNG and distribution or sale of propane is deregulated when used as a motor vehicle...

267

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Natural Gas (CNG) Device Fee The Arizona Department of Weights and Measures collects license fees for certain propane and CNG fueling devices used for...

268

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

throughout the United States. There has been some concern over reported cases of fuel tanks on propane vehicles being overfilled, potentially resulting in emissions from pressure...

269

Texas Propane Vehicle Pilot Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt058tikelly2011p.pdf More Documents & Publications Texas Propane Vehicle Pilot Project Texas...

270

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

271

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

272

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

273

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

274

Propane demand modeling for residential sectors- A regression analysis.  

E-Print Network (OSTI)

??This thesis presents a forecasting model for the propane consumption within the residential sector. In this research we explore the dynamic behavior of different variables… (more)

Shenoy, Nitin K.

2011-01-01T23:59:59.000Z

275

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia  

E-Print Network (OSTI)

catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

2001-01-01T23:59:59.000Z

276

Two-Phase Equilibrium in Binary and Ternary Systems. IV. The Thermodynamic Properties of Propane  

Science Journals Connector (OSTI)

...IV. The Thermodynamic Properties of Propane J. H. Burgoyne Existing physical and thermal data relative to propane have been summarized and correlated...obtained the entropy and enthalpy of propane have been calculated for conditions of...

1940-01-01T23:59:59.000Z

277

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube  

E-Print Network (OSTI)

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

278

Optimal Location of Compressed Natural Gas (CNG) Refueling Station Using the Arc Demand Coverage Model  

Science Journals Connector (OSTI)

In this paper a model that locates Compressed Natural Gas (CNG) refueling stations to cover the full volume of vehicle flows is developed and applied. The model inputs consist of a road network include nodes and arcs, the volume of vehicle flows between ... Keywords: Compressed Natural Gas, Arc Demand Coverage Model, Optimal Location, Network

Abtin Boostani; Reza Ghodsi; Ali Kamali Miab

2010-05-01T23:59:59.000Z

279

Determining the Volatility of Ultrafine (UF) PM Emissions from CNG Vehicles  

E-Print Network (OSTI)

that reduce air pollution and greenhouse gas emissions beyond applicable standards, and that benefit natural health and environmental impacts from air pollution, and greenhouse gas emissions related to natural gas. Limited research has been done to characterize compressed natural gas (CNG) mass emissions and practically

280

New ?-Complexation Adsorbents for Propane?Propylene Separation  

Science Journals Connector (OSTI)

1-4 Some new materials were also reported to adsorb propylene, excluding partially or totally propane. ... Table 2.? Experimental Conditions (Masses of Adsorbent and Flow Rates) for Breakthrough Curves, Stoichiometric Times, and Adsorbed Phase Concentration ... Figure 8 Propylene?propane ratio of the amount adsorbed at 343 K in the different adsorbents. ...

Carlos A. Grande; José D. P. Araujo; Simone Cavenati; Norberto Firpo; Elena Basaldella; Alírio E. Rodrigues

2004-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low-Temperature Oxidation and Cool Flames of Propane  

Science Journals Connector (OSTI)

...1954 research-article Low-Temperature Oxidation and Cool Flames of Propane J. H. Knox R. G. W. Norrish A detailed analytical study of the cool-flame oxidation of propane has been carried out using a continuous-flow technique with a view...

1954-01-01T23:59:59.000Z

282

Carcinogenicity of Industrial Chemicals Propylene Imine and Propane Sultone  

Science Journals Connector (OSTI)

... Range-finding experiments have shown that the maximal tolerated doses of propylene imine and propane sultone, in distilled water, administered by gavage twice a week to 6 week old ... levels, that is, 10 mg/kg for propylene imine, and 28 mg/kg for propane sultone, with groups of twenty-six male and twenty-six female rats at each ...

B. ULLAND; M. FINKELSTEIN; E. K. EISBURGER; J. M. RICE; J. H. WEISBURGER

1971-04-16T23:59:59.000Z

283

Research on Temperature Field Measuring of Oxygen Propane  

Science Journals Connector (OSTI)

By substituting alumina particles for soot created in burning flame and using the three-color method, the temperature field of the oxygen propane is calculated based on the image taken by CCD and digital image processing technology. The results show ... Keywords: CCD, oxygen propane flame, temperature field, image processing

Zhang Rui-ping

2010-09-01T23:59:59.000Z

284

High propane recovery process, Delpro{trademark} saves energy  

SciTech Connect

There are several technologies for recovering propane from natural gas. These include simple refrigeration which typically operate at {minus}10 F for dewpoint control operations or {minus}40 F for propane recovery. Turbo-expander systems are well established for levels of propane recovery. Other processes include lean oil systems (or hydrocarbon liquid as in the Mehra process) for recovering propane up to about the 95% recovery level. Delta Hudson has developed a new process which recovers propane from natural gas using a turbo-expander. This new process has the trade name DELPRO{trademark} and has been patented in the United States, Canada and several other countries. The advantages of the DELPRO{trademark} high recovery process are as follows: Propane recovery up to 99% is economically achievable; Simple flow scheme; Power consumption is reduced by up to 15% compared to competing processes for the same propane recovery level; For the same power consumption as used by competing processes, significantly higher propane recovery levels are achieved; and DELPRO{trademark} can be adapted to ethane recovery. In this mode, the process has the advantage that it rejects carbon dioxide to a greater extent than other processes. This reduces, or in some cases, eliminates subsequent treating requirements.

Sorensen, J. [Delta Hudson Engineering Ltd., Calgary, Alberta (Canada)

1998-12-31T23:59:59.000Z

285

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

286

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

287

Safety and Regulatory Structure for CNG/Hydrogen Vehicles and Fuels in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

CNG/H2 Vehicles and Fuels in the CNG/H2 Vehicles and Fuels in the United States Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for Safe Deployment of Vehicles Workshop December 2009 2 Overview DOT/NHTSA Mission Federal Motor Vehicle Safety Standards (FMVSS) FMVSS covering alternative fuel vehicles Research supporting new/improved FMVSS for alternative fuel vehicles International Harmonization - Global Technical Regulations 3 Mission Statements DOT Mission Statement Serve the United States by ensuring a safe transportation system that furthers our vital national interests and enhances the quality of life of the American people * Safety - Promote the public health and safety by working toward the elimination of transportation-related deaths and injuries NHTSA Mission Statement To reduce deaths, injuries and economic losses resulting from

288

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New York City Transit Hybrid New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Technical Report NREL/TP-540-38843 January 2006 New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38843 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

289

Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes  

Science Journals Connector (OSTI)

Abstract Two types of CHA zeolite membranes (SAPO-34, SSZ-13) were used for CO2/CH4, N2/CH4, and CO2/i-butane separations at both low (270 and 350 kPa) and high (1.73 MPa) pressures. The SSZ-13 membranes were more selective, with CO2/CH4 separation selectivities as high as 280 and N2/CH4 separation selectivities of 12 at 270 kPa feed pressure. For both types of membranes, selectivities and permeances decreased as the feed pressure increased. The CO2/i-butane separation selectivities were greater than 500,000 for SAPO-34 membranes, indicating extremely low densities of defects because i-butane is too large to enter the CHA pores. The CO2/i-butane selectivities were smaller for SSZ-13 membranes (2,800–20,000), in part because the SSZ-13 layer was on the outside of the porous mullite tubes and sealing the membrane on the zeolite surface was more difficult than for the SAPO-34 membranes that were grown on the inside of glazed alumina tubes. Propane, in feed concentrations from 1 to 9%, significantly influenced separations by decreasing permeances in most cases. The effect was larger for N2/CH4 than for CO2/CH4 mixtures, apparently because the more strongly-adsorbing CO2 competes better than N2 with propane for adsorption sites. Although propane caused permeances to decrease significantly over time, selectivities decreased much less. Propane decreased permeances more for SAPO-34 membranes than for SSZ-13 membranes at 350 kPa, and at high pressure propane even increased CO2 permeances and decreased CH4 permeances in SSZ-13 membranes, thus significantly increasing CO2/CH4 selectivities. Propane permeances reached steady state relatively quickly because its permeation was mostly through defects, but CO2, N2, and CH4 permeances did not stabilize in the presence of propane, even after seven days. The effects of propane were reversible when it was removed from the feed and the membranes were heated.

Ting Wu; Merritt C. Diaz; Yihong Zheng; Rongfei Zhou; Hans H. Funke; John L. Falconer; Richard D. Noble

2015-01-01T23:59:59.000Z

290

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

291

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

Science Journals Connector (OSTI)

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was...2 con...

F. Ouni; A. Khacef; J. M. Cormier

2009-04-01T23:59:59.000Z

292

Auswirkung der Verwendung von Methan an Stelle von Propan  

Science Journals Connector (OSTI)

Um zu prüfen, welche Verhältnisse sich ergeben, wenn man an Stelle von Propan, wie es in den international vorgeschlagenen Dreistoff-Gemischen vorgesehen ist, Methan heranzöge, wurden für das Normprüfgas folgende...

Prof. Dr. Ing. Fritz Schuster…

1961-01-01T23:59:59.000Z

293

Texas Propane Fleet Pilot Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt058kelly2010p.pdf More Documents & Publications Texas Propane Vehicle Pilot Project Texas...

294

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...  

Energy Savers (EERE)

source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit, but supplemental heat is provided by a combined DHW and...

295

Lower oil prices also cutting winter heating oil and propane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in...

296

VEE-0040- In the Matter of Western Star Propane, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

297

Revised Propane Stock Levels for 6/7/13  

Gasoline and Diesel Fuel Update (EIA)

Revised Propane Stock Levels for 6713 Release Date: June 19, 2013 Following the release of the Weekly Petroleum Status Report (WPSR) for the week ended June 7, 2013, EIA...

298

RECS Propane Usage Form_v1 (Draft).xps  

Gasoline and Diesel Fuel Update (EIA)

propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar...

299

Can propane school buses save money and provide other benefits...  

NLE Websites -- All DOE Office Websites (Extended Search)

Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

300

Advisory on the reporting error in the combined propane stocks...  

Gasoline and Diesel Fuel Update (EIA)

Advisory on the reporting error in the combined propane stocks for PADDs 4 and 5 Release Date: June 12, 2013 The U.S. Energy Information Administration issued the following...

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2009 2010 2011 2012 2013 View History Sales to End Users, Average 2.245 1.777 1.976 - - - 1994-2013 Residential 2.389 2.025 2.224 - - - 1994-2013 CommercialInstitutional...

302

Hybrid adsorption-distillation process for separating propane and propylene  

SciTech Connect

The separation of propylene from a propane-propylene mixture by distillation is a energy-intensive process. A hybrid adsorption-distillation system has a great potential in reducing the energy consumption. A significant amount of energy can be saved relative to a process using only distillation, if a typical separation is carried out by distillation up to a propylene concentration of approximately 80% and then continuing the separation of propane from propylene by adsorption. A volumetric adsorption apparatus was designed to obtain the data at high pressures. The pure component data of propane and propylene were obtained on silica gel, molecular sieve 13X, and activated carbon. Although activated carbon has a greater capacity for both propane and propylene than either of the two adsorbents, it was only slightly selective for propylene. Silica gel has the greatest selectivity for propylene, which ranged from 2 to 4. None of the adsorbents was found to be selective for propane. The propane-propylene mixture behaved nonideally on the solid surface as indicated by the negative deviations of activity coefficients. The nonideality of the mixture can be attributed primarily to surface effects rather than to interactions between adsorbate molecules. A binary model has been proposed to predict mole fractions in the adsorbed phase and the total amount adsorbed from the pure component data. The pure component isotherm model of Hines et al. was extended to binary mixtures when the binary model was developed. Excellent agreement was obtained between experimental data and predicted values for mole fractions in the adsorbed phased, the total amount adsorbed, and adsorbed-phase activity coefficients.

Ghosh, T.K.; Lin, Hon-Da; Hines, A.L. (Univ. of Missouri, Columbia, MO (United States))

1993-10-01T23:59:59.000Z

303

Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellow Cab Converts Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Delicious Rank Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Digg Find More places to share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on AddThis.com... July 9, 2011 Yellow Cab Converts Taxis to Propane in Columbus, Ohio

304

Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Propane Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Delicious Rank Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on AddThis.com... Oct. 2, 2009

305

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

306

Microsoft PowerPoint - Propane_Briefing_140205_nn.pptx  

Annual Energy Outlook 2012 (EIA)

add to 100%) Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating propane 4.5% 7% 81% 5% 10% 4%...

307

The effects of refueling system operating pressure on LNG and CNG economics  

SciTech Connect

Natural gas (NG) liquefaction and compression are energy intensive processes which make up a significant portion of the overall delivered price of liquefied NG (LNG) and compressed NG (CNG). Increases in system efficiency and/or process changes which reduce the required amount of work will improve the overall economics of NG as a vehicle fuel. This paper describes a method of reducing the delivered cost of LNG by liquefying the gas above ambient pressures. Higher pressure LNG is desirable because OEM NG engine manufacturers would like NG delivered to the engine intake manifold at elevated pressures to avoid compromising engine performance. Producing LNG at higher pressures reduces the amount of work required for liquefaction but it is only practical when the LNG is liquefied on-site. Using a thermo-economic approach, it is shown that NG fuel costs can be reduced by as much as 10% when producing LNG at higher pressures. A reduction in the delivered cost is also demonstrated for CNG produced on-site from high pressure LNG.

Corless, A.J.; Barclay, J.A. [Univ. of Victoria (Canada)

1996-12-31T23:59:59.000Z

308

Induction of Anchorage-independent Growth in Human Fibroblasts by Propane Sultone  

Science Journals Connector (OSTI)

...Anchorage-independent Growth in Human Fibroblasts by Propane Sultone 1 1 Supported in part by Department...growth after treatment with the carcinogen propane sultone, followed by exponential growth...Exposure to these same concentrations of propane sultone also resulted in a dose-dependent...

K. Charles Silinskas; Suzanne A. Kateley; John E. Tower; Veronica M. Maher; J. Justin McCormick

1981-05-01T23:59:59.000Z

309

The Intramolecular Isotope Effect in the Pyrolysis of 1-$^{14}$C Propane  

Science Journals Connector (OSTI)

...Intramolecular Isotope Effect in the Pyrolysis of 1- C Propane H. M. Frey C. J. Danby Cyril Hinshelwood 1- C propane has been synthesized from active barium carbonate in 50% yield. This propane has been pyrolyzed at temperatures from 550 to 603...

1956-01-01T23:59:59.000Z

310

High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points  

SciTech Connect

Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Tan, Sugata [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

311

Clean Fuel Advanced Technology Public Education Campaign: Billboards According to the U.S. Department of Energy's July 2013 alternative fuel price report, the price of propane  

E-Print Network (OSTI)

.S. Department of Energy's July 2013 alternative fuel price report, the price of propane (LPG) in North Carolina.S. Department of Energy and U.S. Environmental Protection Agency, gas mileage decreases rapidly above 50 MPH fuel, regardless of vehicle type. · According to the U.S. Department of Energy (and based on North

312

Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas (LNG) and Propane Tax and User Permit to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on AddThis.com...

313

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas (CNG) and Propane Regulatory Authority The Louisiana Department of Natural Resources' Office of Conservation has regulatory authority over CNG safety,...

314

Advancing New Mexico's Alternative Fuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas (CNG) and propane (LPG) station infrastructure * Lack of funding for incremental cost of CNG and LPG vehicles * Reluctance to purchase new technologies * Shortage of...

315

Combustion behaviour of a heavy duty common rail marine Diesel engine fumigated with propane  

Science Journals Connector (OSTI)

This paper presents results from the testing of a heavy duty common rail marine Diesel engine with electronically controlled two stage liquid fuel injection, operating under load on a test bench with propane mixed into the inlet air at various rates. Results are presented for a range of engine loads, with brake mean effective pressure up to 22 bar at 1800 rpm. The electronic engine control unit is not modified and allowed to respond to the addition of propane according to its inbuilt map. This results in retarded injection timing with increased propane addition at some test points. At each test point, constant engine speed and brake torque are maintained for various rates of propane addition. Cylinder pressure and the injector activation voltage are recorded with a high speed data acquisition system. Apparent heat release rate is calculated from the measured cylinder pressure. At high rates of propane addition very high pressure rise rates and severe knock are measured. At the high brake mean effective pressure conditions tested, knock limits propane supply rates to less than 20% by energy. Small increases in thermal efficiency are indicated with moderate rates of propane addition. Exhaust emissions of NOx, CO, HC and smoke are measured. CO, HC and smoke emissions increase significantly with increasing propane addition. For high propane supply rates, two distinct peaks in heat release rate are measured. Analysis is made of the flammability of the propane–air mixtures at the elevated temperatures at the end of the compression stroke, using the modified Burgess–Wheeler Law. At propane supply rates greater than 25%, the propane–air mixture is flammable in its own right at compression temperature. The apparent heat release rate, fuel injection timing and flammability data allow analysis of the mechanism of the combustion process with propane fumigation.

L. Goldsworthy

2012-01-01T23:59:59.000Z

316

Strange Particle Production by Bevatron Neutrons in Propane  

Science Journals Connector (OSTI)

A liquid propane bubble chamber was exposed to a beam of neutrons with energies up to 6 Bev from the Bevatron. 10 000 pictures of interactions in the hydrocarbon were scanned to detect neutral heavy unstable particles. 349 neutral V-events were found, most of which came from the stainless steel walls of the chamber. 86% of these events could be identified as one or the other or either of the neutral strange particles: ?0 or ?10. The ?0?10 ratio is about 0.6.8200 stars of 2 or more prongs formed by neutrons interacting in the liquid propane were observed in the chamber and 17 of these produced V0's. An additional 5 V0's were formed in single-prong events produced by neutrons, and 8 others were produced in events in the propane caused by charged particles.The energy spectrum of the incident neutrons was estimated from study of ?-meson production interactions in the hydrogen. The distribution shows that the neutrons had energies up to 6 Bev with a mean value of about 4 Bev. For the energy range 1 to 6 Bev, the production of strange particles occurs in about 1% of all inelastic interactions of neutrons with hydrogen and carbon.

Charles O. Dechand

1959-09-15T23:59:59.000Z

317

The 14C(n,g) cross section between 10 keV and 1 MeV  

E-Print Network (OSTI)

The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,g) reaction is also important for the validation of the Coulomb dissociation method, where the (n,g) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to 800 keV.

R. Reifarth; M. Heil; C. Forssen; U. Besserer; A. Couture; S. Dababneh; L. Doerr; J. Goerres; R. C. Haight; F. Kaeppeler; A. Mengoni; S. O'Brien; N. Patronis; R. Plag; R. S. Rundberg; M. Wiescher; J. B. Wilhelmy

2009-10-01T23:59:59.000Z

318

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

SciTech Connect

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

319

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

320

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helps Nonprofit Cut Fuel Costs with Propane Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P r e s e n T e d B y : Declining Sales in the Recent Past and Near-Term Future After peaking in 2003, nationwide propane consumption fell by more than 10 percent through 2006. Although propane demand rebounded somewhat in 2007 and 2008 due to colder weather, propane demand appears to have declined again in 2009. The collapse of the new housing market, combined with decreases in fuel use per customer resulting from efficiency upgrades in homes and equipment, resulted in a decline in residential propane sales. The recession also reduced demand in the industrial and commercial sectors. Colder weather in the last half of 2009 and in January

322

Performance Analysis of Exhaust Waste Heat Recovery System for Stationary CNG Engine Based on Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with IHE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%.

Songsong Song; Hongguang Zhang; Zongyong. Lou; Fubin Yang; Kai Yang; Hongjin Wang; Chen Bei; Ying Chang; Baofeng Yao

2014-01-01T23:59:59.000Z

323

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-12-31T23:59:59.000Z

324

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

325

Chemisorption of Propane on Platinum Surfaces in the Presence of Pre-adsorbed Water  

Science Journals Connector (OSTI)

... adsorbed water. In order to study this question, we have investigated the chemisorption of propane on platinum in the presence of pre-adsorbed water.

G. SANDSTEDE; G. WALTER; G. WURZBACHER

1967-11-04T23:59:59.000Z

326

Oxygen-Free Propane Oxidative Dehydrogenation Over Vanadium Oxide Catalysts: Reactivity and Kinetic Modelling.  

E-Print Network (OSTI)

??Propane conversion to propylene has been the subject of intensive researches. This is due to the increasing demand for propylene. Current propylene production processes suffer… (more)

Al-Ghamdi, Sameer Ali

2013-01-01T23:59:59.000Z

327

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

328

STUDY OF PROPANE ADSORPTION ISOTHERM ON PURIFIED HIPCO SINGLE-WALLED CARBON NANOTUBES.  

E-Print Network (OSTI)

??Isotherms of one atom thick film of adsorption for propane on purified Hipco single-walled carbon nanotube were experimentally studied at 6 different temperatures ranging from… (more)

Furuhashi, Toyohisa

2009-01-01T23:59:59.000Z

329

Process Simulation, Modeling & Design for Soybean Oil Extraction Using Liquid Propane.  

E-Print Network (OSTI)

??This study investigates the use of liquid propane for soybean oil extraction and the use of commercial software for process modeling and simulation. Soybean oil… (more)

Patrachari, Anirudh Ramanujan

2008-01-01T23:59:59.000Z

330

Microsoft PowerPoint - Propane_Briefing_140131_summary_v2_nn...  

Annual Energy Outlook 2012 (EIA)

add to 100%) Northeast South Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating 81% 5% 10% 4% Northeast...

331

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil.  

E-Print Network (OSTI)

??Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production… (more)

Yudishtira, Wan Dedi

2012-01-01T23:59:59.000Z

332

Experimental studies of steam-propane injection for the Duri intermediate crude oil.  

E-Print Network (OSTI)

??Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature… (more)

Hendroyono, Arief

2012-01-01T23:59:59.000Z

333

Process Design and Simulation for Extraction of Milk Fat Using Liquid Propane.  

E-Print Network (OSTI)

??Numerous studies have been conducted to increase the utilization of milk by fractionating the fat. This work examines the use of liquid propane for extraction… (more)

Byluppala, Harita

2010-01-01T23:59:59.000Z

334

Impact of N2 dilution on combustion and emissions in a spark ignition CNG engine  

Science Journals Connector (OSTI)

Abstract In order to reduce \\{NOx\\} (nitrogen oxides) emissions, N2 (nitrogen) was introduced as dilution gas to dilute mixture with a specially-designed injection device. The impacts of varying N2 DR (dilution ratio) on the combustion and the exhaust emissions were investigated, including engine heat release rate, indicator diagram, NOx, CO (carbon monoxide), THC (total hydrocarbon) emissions and so on. For this study, a modified 6.6 L CNG (compressed natural gas) engine was tested and N2 was injected into the end of intake manifold by a specially-designed device. The results showed that N2 dilution has a significant influence on the combustion and the exhaust emissions. With the rise of N2 DR, the maximum of pressure in cylinder and the maximum of heat release rate exhibited decrease trends, the centre of heat release curve showed a moving backward tendency. Higher N2 DR exhibited lower \\{NOx\\} (17–81%) emissions, but higher emissions of THC (3–78%) and CO (1–28%). The change of BSFC (brake specific fuel consumption) can be ignored with N2 DR no more than 167%. Satisfactory results can be obtained, with lower \\{NOx\\} (31%) emissions, lower BSFC (0.5%), and relatively higher THC (6%) and CO (1%) emissions, when N2 DR is 67%.

Zhongshu Wang; Hongbin Zuo; Zhongchang Liu; Weifeng Li; Huili Dou

2014-01-01T23:59:59.000Z

335

Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy  

E-Print Network (OSTI)

state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 ± 0.4slices showing the gas phase propane component at 216, 648,

Waslylenko, Walter; Frei, Heinz

2008-01-01T23:59:59.000Z

336

Novel adsorption distillation hybrid scheme for propane/propylene separation  

SciTech Connect

A novel adsorption-distillation hybrid scheme is proposed for propane/propylene separation. The suggested scheme has potential for saving up to [approximately]50% energy and [approximately]15-30% in capital costs as compared with current technology. The key concept of the proposed scheme is to separate olefins from alkanes by adsorption and then separate individual olefins and alkanes by simple distillation, thereby eliminating energy intensive and expensive olefin-alkane distillation. A conceptual flow schematic for the proposed hybrid scheme and potential savings are outlined.s

Kumar, R.; Golden, T.C.; White, T.R.; Rokicki, A. (Air Products an Chemicals, Inc., Allentown, PA (United States))

1992-12-01T23:59:59.000Z

337

Ethynyl terminated ethers. Synthesis and thermal characterization of 2,2 bis (ethynyl-4-phenylcarbonyl-4-phenoxy-4-phenyl) propane and 2,2 bis (ethynyl-4-phenylsulfonyl-4-phenoxy-4-phenyl) propane  

Science Journals Connector (OSTI)

Two ethynyl end-capped ethers 2,2 Bis [ethynyl-4-phenylsulfonyl-4-phenoxy-4-phenyl] propane and 2,2 Bis [ethynyl-4-phenylcarbonyl-4-phenoxy-4-phenyl] propane have been prepared by a three steps...

Georges Lucotte; Laurent Cormier; Bruno Delfort

1990-12-01T23:59:59.000Z

338

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

339

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing  

E-Print Network (OSTI)

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section hydrocarbons in surface sediment from the Coal Oil Point seep field, offshore Santa4 Barbara, California. After

Sessions, Alex L.

340

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network (OSTI)

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil  

E-Print Network (OSTI)

In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, which contains 13.5 ?API gravity oil. Experimental results show that a 5:100 propane...

Tinss, Judicael Christopher

2001-01-01T23:59:59.000Z

342

Activation of VOHPO4 · 0.5H2O in Propane/Air Mixture: Effect on Structural, Morphological, Oxidant’s Behaviour and Catalytic Property of (VO)2P2O7 Catalysts for Propane Oxidation  

Science Journals Connector (OSTI)

VOHPO4 · 0.5H2O synthesized by VOPO4 · 2H2O and isobutanol was activated in a flow of propane/air mixture (1% propane in air) at 673 K for 36 ... VPD75P and VPD132P. The crystallinity of all propane/air pretreate...

Y. H. Taufiq-Yap; C. S. Saw; R. Irmawati

2005-11-01T23:59:59.000Z

343

Propane ammoxidation over Mo–V–Te–Nb–O M1 phase: Density functional theory study of propane oxidative dehydrogenation steps  

Science Journals Connector (OSTI)

Abstract Propane ammoxidation to acrylonitrile catalyzed by the bulk Mo–V–Te–Nb oxides has received considerable attention because it is more environmentally benign than the current process of propylene ammoxidation and relies on a more abundant feedstock. This process is proposed to consist of a series of elementary steps including propane oxidative dehydrogenation (ODH), ammonia and O2 activation, \\{NHx\\} insertion into C3 surface intermediates, etc. Density functional theory calculations were performed here to investigate the three sequential H abstraction steps that successively convert propane into isopropyl, propene, and ?-allyl on cation sites in the proposed selective and active center present in the ab plane of the Mo–V–Te–Nb–O M1 phase. The initial H abstraction from propane was found to be the rate-limiting step of this process, consistent with both the proposed reaction mechanism for propane ammoxidation on the Mo–V–Te–Nb oxides and current understanding of V5+ as the active site for alkane activation on V-based oxides. Te=O was found to be significantly more active than V5+=O for the H abstraction from propane, which suggests that the surface and bulk Te species may be different. The role of Mo=O is most likely limited to being an H acceptor from isopropyl to form propene under ammoxidation conditions.

Junjun Yu; Ye Xu; Vadim V. Guliants

2014-01-01T23:59:59.000Z

344

Histological Analysis of the Antimetastatic Effect of (±)-1,2-Bis(3,5-dioxopiperazin-1-yl)propane  

Science Journals Connector (OSTI)

...2-Bis(3,5-dioxopiperazin-1-yl)propane A. J. Salsbury Karen Burrage K. Hellmann...2-bis(3,5-dioxopiperazine-1-yl)propane (ICRF 159) on the Lewis lung carcinoma...2-bis(3,5-dioxopiperazin-1-yl)propane. | Comparative Study Journal Article...

A. J. Salsbury; Karen Burrage; K. Hellmann

1974-04-01T23:59:59.000Z

345

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel...

346

Polarization effects on low-energy electron collisions with propane  

Science Journals Connector (OSTI)

We employed the Schwinger multichannel method to compute elastic cross sections for low-energy electron collisions with propane (C3H8). The calculations are carried out within the static-exchange and static-exchange plus polarization approximations and covered the energy range from 0 to 15 eV. The computed differential cross sections show good agreement with the experiment, and the computed integral cross sections present the same shape as the measured total cross sections. We found a broad structure in the integral cross section around 8.5 eV and also a Ramsauer-Townsend minimum around 0.1 eV. These results are in agreement with the experimental observations.

Márcio H. F. Bettega; Romarly F. da Costa; Marco A. P. Lima

2008-05-08T23:59:59.000Z

347

An analysis of US propane markets, winter 1996-1997  

SciTech Connect

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

NONE

1997-06-01T23:59:59.000Z

348

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

SciTech Connect

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

349

Effect of temperature and pressure on the dynamics of nanoconfined propane  

SciTech Connect

We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

Gautam, Siddharth, E-mail: gautam.25@osu.edu; Liu, Tingting, E-mail: gautam.25@osu.edu; Welch, Susan; Cole, David [School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S Oval Mall, Columbus, OH 43210 (United States); Rother, Gernot [Geochemistry and Interfacial Science Group, Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jalarvo, Niina [Jülich Center for Neutron Sciences (JCNS-1), Forschungszentrum Jülich Outstation at Spallation Neutron Source(SNS), Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mamontov, Eugene [Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-24T23:59:59.000Z

350

VEE-0060 - In the Matter of Blakeman Propane, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 - In the Matter of Blakeman Propane, Inc. 60 - In the Matter of Blakeman Propane, Inc. VEE-0060 - In the Matter of Blakeman Propane, Inc. On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Blakeman requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0060.pdf More Documents & Publications TEE-0060 - In the Matter of 7 Oil Co., Inc. TEE-0068 - In the Matter of Bowlin Travel Centers, Inc. VEE-0080 - In the Matter of Potter Oil Co.

351

Detonation of propane-air mixtures under injection of hot detonation products  

Science Journals Connector (OSTI)

The tube for spontaneous detonation (Institute of Technical Physics, Russian Federal ... used to study the initiation and development of detonation in propane-air mixtures under injection of hot detonation produc...

V. I. Tarzhanov; I. V. Telichko; V. G. Vil’danov…

2006-05-01T23:59:59.000Z

352

Simulation studies of steam-propane injection for the Hamaca heavy oil field.  

E-Print Network (OSTI)

??Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and… (more)

Venturini, Gilberto Jose

2012-01-01T23:59:59.000Z

353

Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

354

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil.  

E-Print Network (OSTI)

??In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's… (more)

Ferguson,Mark Anthony

2012-01-01T23:59:59.000Z

355

Detection of Propane by IR-ATR in a Teflon®-Clad Fluoride Glass Optical Fiber  

Science Journals Connector (OSTI)

The detection of propane with the use of ATR spectroscopy at 3.3 ?m, as the gas diffuses through the Teflon® cladding of a fluoride optical fiber, is reported. A...

Ruddy, V; McCabe, S

1990-01-01T23:59:59.000Z

356

Metal oxide catalysts for the low temperature selective oxidation of propane to iso-propanol.  

E-Print Network (OSTI)

??A range of Ga203/Mo03 and C03O4 catalysts have been prepared and tested for the oxidative dehydrogenation of propane to propene. The Ga2(VMo03 physical mixture demonstrated… (more)

Davies, Thomas Edward.

2006-01-01T23:59:59.000Z

357

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

358

The Effect of Propane on Atomic Spectrometric Signals in the Direct-Current Plasma  

Science Journals Connector (OSTI)

The addition of small amounts of propane to the direct-current plasma (DCP) affects the emission signal of analyte species in the plasma. In the normal analytical region of the...

McCreary, Terry W; Long, Gary L

1988-01-01T23:59:59.000Z

359

ROLE OF CONSTITUENT ELEMENTS IN PROPANE OXIDATION OVER MIXED METAL OXIDES.  

E-Print Network (OSTI)

??Recently discovered multi-component Mo-V-Te-Nb-O catalysts contain so-called “M1” and “M2” phases with orthorhombic and hexagonal structures, respectively, proposed to be active and selective in propane… (more)

BHANDARI, RISHABH

2005-01-01T23:59:59.000Z

360

Treatment of Nuclear Waste Solutions Using a New Class of Extractants: Pentaalkyl Propane Diamides  

Science Journals Connector (OSTI)

A new class of bifunctional extractants pentaalkyl propane diamides is studied in order to extract trivalent cations (Am3+, Cm3+…) and other actinides contained in waste solutions of nuclear industry. These solve...

C. Cuillerdier; C. Musikas; P. Hoel

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Crossover SAFT Equation of State and Thermodynamic Properties of Propan-1-ol  

Science Journals Connector (OSTI)

In this work we have developed a new equation of state (EOS) for propan-1-ol on the basis of the crossover modification (CR) of the statistical-associating-fluid-theory (SAFT) EOS recently developed and applied t...

S. B. Kiselev; J. F. Ely; I. M. Abdulagatov…

2000-11-01T23:59:59.000Z

362

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network (OSTI)

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela,… (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

363

Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane  

E-Print Network (OSTI)

High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

2009-01-01T23:59:59.000Z

364

Nitrous Oxide as a Scavenger for Electrons in the Radiolysis of Propane  

Science Journals Connector (OSTI)

... (~400 ml.) using a cobalt-60 ¡-ray source. The dose-rate in propane was 5 ´ 1014 eV ml,?1 min?1 (nitrous oxide dosimeter: assuming ... eV2 and using an experimentally determined value of 1.42 for the stopping power of propane relative to N2O). Total doses were 1016?1017 eV ml.?1. The results ...

G. R. A. JOHNSON; J. M. WARMAN

1964-07-04T23:59:59.000Z

365

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

366

No. 2 heating oil/propane program 1994--1995. Final report  

SciTech Connect

During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1995-05-01T23:59:59.000Z

367

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Development and Demonstration Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005 Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado

368

Development of an ANN based system identification tool to estimate the performance-emission characteristics of a CRDI assisted CNG dual fuel diesel engine  

Science Journals Connector (OSTI)

Abstract In the present study the performance and emission parameters of a single cylinder four-stroke CRDI engine under CNG-diesel dual-fuel mode have been modeled by Artificial Neural Network. An ANN model was developed to predict BSFC, BTE, NOx, PM and HC based on the experimental data, with load, fuel injection pressure and CNG energy share as input parameters for the network. The developed ANN model was capable of predicting the performance and emission parameters with commendable accuracy as observed from correlation coefficients within the range of 0.99833–0.99999, mean absolute percentage error in the range of 0.045–1.66% along with noticeably low root mean square errors provided an acceptable index of the robustness of the predicted accuracy.

Sumit Roy; Rahul Banerjee; Ajoy Kumar Das; Probir Kumar Bose

2014-01-01T23:59:59.000Z

369

An Analysis of U.S. Propane Markets Winter 1996-97  

Gasoline and Diesel Fuel Update (EIA)

OOG/97-01 OOG/97-01 Distribution Category UC-950 An Analysis of U.S. Propane Markets Winter 1996-97 June 1997 Energy Information Administration Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Energy Information Administration (EIA) under the direction of Dr. John Cook, Director, Petroleum Marketing Division, Office of Oil and Gas, (202) 586-5214, jcook@eia.doe.gov. Questions for this report can be directed to: Propane Supply and Demand David Hinton (202) 586-2990, dhinton@eia.doe.gov Propane Markets

370

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find propane vehicle and infrastructure codes and standards in these categories:

371

Syngas (H2/CO) in a spark-ignition direct-injection engine. Part 1: Combustion, performance and emissions comparison with CNG  

Science Journals Connector (OSTI)

Abstract The combustion, performance, and emissions of syngas (H2/CO) in a four-stroke, direct-injection, spark-ignition engine were experimentally investigated. The engine was operated at various speeds, ranging from 1500 to 2400 rev/min, with the throttle being held in the wide-open position. The start of fuel injection was fixed at 180° before the top dead center, and the ignition advance was set at the maximal brake torque. The air/fuel ratio was varied from the technically possible lowest excess air ratio (?) to lean operation limits. The results indicated that a wider air/fuel operating ratio is possible with syngas with a very low coefficient of variation. The syngas produced a higher in-cylinder peak pressure and heat-release rate peak and faster combustion than for CNG. However, CNG produced a higher brake thermal efficiency (BTE) and lower brake specific fuel consumption (BSFC). The BTE and BSFC of the syngas were on par to those of CNG at higher speeds. For the syngas, the total hydrocarbon emission was negligible at all load conditions, and the carbon monoxide emission was negligible at higher loads and increased under lower load conditions. However, the emission of nitrogen oxides was higher at higher loads with syngas.

Ftwi Yohaness Hagos; A. Rashid A. Aziz; Shaharin A. Sulaiman

2014-01-01T23:59:59.000Z

372

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT â—† PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

373

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network (OSTI)

LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

Dickson, Cecil Herman

2012-06-07T23:59:59.000Z

374

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network (OSTI)

of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

Hodges, Don

2012-06-07T23:59:59.000Z

375

Inhibition of the R3327MAT-Lu Prostatic Tumor by Diethylstilbestrol and 1,2-Bis(3,5-dioxopiperazin-1-yl)propane  

Science Journals Connector (OSTI)

...2-Bis(3,5-dioxopiperazin-1-yl)propane 1 1 This investigation was supported by...2-bis(3,5-dioxopiperazin-1-yl)propane. Inhibition of the R3327MAT-Lu prostatic...2-bis(3,5-dioxopiperazin-1-yl)propane. | We have previously described the inhibitory...

David W. Lazan; Warren D. W. Heston; Dov Kadmon; William R. Fair

1982-04-01T23:59:59.000Z

376

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

377

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network (OSTI)

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma

Paris-Sud XI, Université de

378

Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,  

E-Print Network (OSTI)

1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers detonations into aero-propulsive devices is the transition of deflagration and weak deto- nation into CJ detonation. The longer this transition, the longer the physical length of the engine must be to facilitate

Texas at Arlington, University of

379

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

Not Available

1992-01-01T23:59:59.000Z

380

Partial oxidation of propane on ceria-and alumina-supported platinum catalysts.  

E-Print Network (OSTI)

??Three Pt/CeO2 catalysts and Pt/Al2O3 catalyst were studied for partial oxidation of propane. The 1 % Pt/CeO2 (C) catalyst which was prepared using CeO2 prepared… (more)

Bansode, Vijaya Anil.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Aromatization of propane: Techno-economic analysis by multiscale “kinetics-to-process” simulation  

Science Journals Connector (OSTI)

Abstract This paper addresses the techno-economic analysis of the propane aromatization process, by adopting a novel kinetics-to-process approach. The recent interest in this technological route derives from the development of new third generation biorefinery concepts, in which, algal oil is subjected to catalytic hydrodeoxygenation processes for the production of (Hydrotreated Renewable Jet) HRJ fuels. Beside biofuels, co-production of large amounts of propane is observed, which can be upgraded by a catalytic conversion to aromatics on zeolites. Kinetic studies of propane aromatization over H-ZSM-5 zeolite in a wide range of conversions are reported in the literature. Based on these results, a general kinetic model of propane aromatization has been developed. The revised kinetic scheme is then embedded in a process simulation, performed with the commercial code SimSci PRO/II by Schneider Electric. Basing on the process simulation and on available price assessments, a techno-economic analysis has been performed to show limits as well as potentialities of the proposed layout.

Michele Corbetta; Flavio Manenti; Carlo Pirola; Mark V. Tsodikov; Andrey V. Chistyakov

2014-01-01T23:59:59.000Z

382

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

383

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation  

SciTech Connect

Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T. (UCB); (ORNL)

2011-10-28T23:59:59.000Z

384

CNG buses fire safety: learnings from recent accidents in France and Germany  

E-Print Network (OSTI)

the tremendous amount of energy released when a compressed tank bursts. Investigation of German and French recent (Compressed Natural Gas) in vehicles has been increasing all over Europe as a "green" alternative fleet is estimated to about 550 000 vehicles of all types (city buses, private cars...) with a prominent

Paris-Sud XI, Université de

385

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - February ..................... - - - - - - - - March .......................... - - - - - - - - April ............................ - - - - - - - - May ............................. - - - - - - - - June ............................ - - - - - - - - July ............................. - - - - - - - - August ........................ - - - - - - - - September .................. - - - - - - - - October ....................... 83.5 69.0 64.0 73.3 31.2 58.3 71.2 35.4 November ................... 84.3 53.1 45.4 W 27.9 57.8 62.3 33.8 December ................... 86.7 52.9 39.7 W 25.9 61.1 63.8 30.9 1993 ................................ - - - - - - - - 1994 January ....................... 88.4 75.9 64.4 71.4

386

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 99.1 88.4 73.3 75.7 41.3 76.4 88.6 47.1 1997 January ....................... 117.8 105.9 91.0 88.6 54.0 93.7 110.0 61.2 February ..................... 107.3 97.1 79.6 77.8 42.1 82.6 97.9 46.0 March .......................... 102.2 92.4 80.0 74.7 41.2 79.2 90.8 42.8 April ............................ 98.6 90.2 76.9 71.4 36.2 78.2 84.9 39.1 May ............................. 97.2 88.3 74.6 70.1 35.9 79.4 81.3 38.1 June ............................ 95.6 87.6 73.4 69.7 35.3 80.6 80.8 37.5 July ............................. 90.3 86.3 73.2 68.6 35.3 74.0 78.3 37.0 August ........................ 86.1 84.3 72.1 66.8 36.9 71.0 77.0 38.4 September .................. 87.7 84.7 73.3 68.4 37.6 70.0 77.6 40.3 October ....................... 89.9 84.9 73.2 69.9 39.5 65.6 78.2 41.9 November

387

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 86.8 78.4 67.5 74.5 34.5 66.4 79.6 36.5 February ..................... 88.2 78.3 66.1 73.6 32.2 66.8 80.5 35.3 March .......................... 87.9 78.3 66.0 73.8 32.6 68.4 79.5 35.2 April ............................ 88.3 78.4 63.4 74.1 32.4 70.4 75.9 34.2 May ............................. 89.9 78.0 65.2 76.4 32.8 74.5 73.9 34.5 June ............................ 89.5 77.9 66.1 76.5 32.5 72.5 73.1 33.6 July ............................. 84.9 77.6 63.7 75.8 31.9 67.5 70.0 33.1 August ........................ 81.0 76.1 62.3 75.4 31.5 65.7 70.5 34.1 September .................. 81.0 76.0 61.1 74.4 31.8 62.3 71.1 34.8 October ....................... 83.2 75.5 63.1 74.8 31.7 60.2 72.0 35.1 November ................... 84.8 77.1 64.7 73.6 31.4 65.4 76.8 35.5 December ...................

388

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... 88.4 75.9 64.4 71.4 27.3 65.1 80.9 33.2 February ..................... 89.8 77.0 67.5 72.7 29.4 68.1 82.1 35.3 March .......................... 92.0 77.4 67.2 72.6 29.1 67.2 82.1 33.2 April ............................ 92.3 76.8 69.0 73.8 29.6 69.2 80.9 31.9 May ............................. 94.1 76.3 69.0 74.8 30.1 72.1 77.6 32.0 June ............................ 93.2 77.6 68.8 75.2 29.5 70.0 76.9 31.4 July ............................. 87.6 76.3 67.9 75.0 29.6 67.5 73.9 31.0 August ........................ NA 75.2 63.6 74.6 31.4 63.8 71.0 32.0 September .................. 82.5 75.2 63.0 73.6 31.4 62.1 73.0 32.8 October ....................... 83.9 76.4 62.6 74.4 33.3 55.9 71.1 34.2 November ................... 85.1 77.2 65.0 74.5 34.7 60.1 75.7 36.0 December ...................

389

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 92.8 82.5 68.1 NA 34.5 71.8 86.3 42.3 February ..................... 96.1 84.9 70.3 81.9 38.3 75.2 88.5 45.1 March .......................... 96.3 86.1 70.1 68.7 36.5 75.5 87.7 42.3 April ............................ 96.0 84.3 68.3 67.1 36.2 75.5 84.8 38.9 May ............................. 95.0 83.3 66.8 65.5 35.7 76.8 79.9 37.5 June ............................ 94.5 82.8 67.9 65.7 35.3 76.3 78.6 37.3 July ............................. 89.3 82.9 66.2 65.5 35.4 71.1 76.6 38.0 August ........................ 86.5 80.6 66.1 66.0 36.9 67.5 75.6 39.6 September .................. 90.7 85.0 71.4 69.7 43.8 69.5 78.4 45.8 October ....................... 97.4 91.0 75.6 78.3 46.1 70.0 84.0 51.5 November ................... 105.7 96.6 81.8 83.7 54.2 82.5 95.9 58.3 December ...................

390

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

1996 ... 99.1 88.4 73.3 75.7 41.3 76.4 88.6 47.1 1997 January ... 117.8 105.9 91.0 88.6 54.0 93.7 110.0 61.2 February...

391

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

1996 January ... 92.8 82.5 68.1 NA 34.5 71.8 86.3 42.3 February ... 96.1 84.9 70.3 81.9 38.3 75.2 88.5 45.1 March ......

392

Propane (Consumer Grade) Prices - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Type: Sales to End Users, Average Residential Commercial/Institutional Industrial Through Retail Outlets Petro-Chemical Other End Users Sales for Resale Period: Monthly Annual Sales Type: Sales to End Users, Average Residential Commercial/Institutional Industrial Through Retail Outlets Petro-Chemical Other End Users Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1993-2013 East Coast (PADD 1) - - - - - - 1993-2013 New England (PADD 1A) - - - - - - 1993-2013 Central Atlantic (PADD 1B) - - - - - - 1993-2013 Lower Atlantic (PADD 1C) - - - - - - 1993-2013 Midwest (PADD 2) - - - - - - 1993-2013 Gulf Coast (PADD 3) - - - - - - 1993-2013 Rocky Mountain (PADD 4)

393

Experimentelle Untersuchung über die Koeffizienten der inneren Reibung von Stickoxyd und Propan und deren Mischungen mit Wasserstoff  

Science Journals Connector (OSTI)

Es wird also die innere Reibung von Stickoxyd nachgeprüft, die Messung von Propan neu ausgeführt. Ferner wird die innere Reibung von Mischungen NO-H2 und C3H8-H2 gemessen und gezeigt, inwieweit Übereinstimmung mi...

Alfons Klemenc; Walter Remi

1923-01-01T23:59:59.000Z

394

Influence of Ceria and Nickel Addition to Alumina-Supported Rhodium Catalyst for Propane Steam Reforming at Low Temperatures.  

E-Print Network (OSTI)

??This work aims to develop a fundamental understanding of the catalyst composition-structure-activity relationships for propane steam reforming over supported Rh catalysts. The work investigates the… (more)

Li, Yan

2009-01-01T23:59:59.000Z

395

Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy  

SciTech Connect

Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

Waslylenko, Walter; Frei, Heinz

2007-01-31T23:59:59.000Z

396

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage Containers and Piping: Storage Container Pressure Relief Devices and Venting: Production Storage Systems: Production Process Safety: Pipelines: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards

397

Towards a kinetic understanding of the ignition of air-propane mixture by a non-equilibrium discharge: the decomposition mechanisms of propane  

Science Journals Connector (OSTI)

The decomposition of propane in non-thermal plasmas of N2/C3H8 and N2/O2/C3H8 mixtures (oxygen percentage up to 20%) at low temperature is studied in a photo-triggered discharge. Quenching of nitrogen metastable states dissociate C3H8 to produce propene and hydrogen. Oxidation reactions are growing in importance when the O2 concentration increases, but the dissociation quenching reactions still occurs for the air-based mixture. Even for a low concentration of oxygen, OH is an important specie involved in the conversion of the hydrocarbon. A kinetic analysis emphasises that OH comes in great part from the production of H, in which the methyl radical plays a role, strengthening the role of the dissociation processes of propane and propene in the medium reactivity. Results of PLIF measurements performed on OH during the diffuse afterglow of a nanosecond corona discharge correlate with results obtained on the photo-triggered discharge.

Stéphane Pasquiers; Sabrina Bentaleb; Pascal Jeanney; Nicole Blin-Simiand; Pierre Tardiveau; Lionel Magne; Katell Gadonna; Nicolas Moreau; François Jorand

2013-01-01T23:59:59.000Z

398

Fraction of stopped K- mesons which interact with free hydrogen in propane  

Science Journals Connector (OSTI)

In a sample of film containing 13 400 stopped K- mesons in a liquid-propane bubble chamber, 98 examples of the reaction K-p??- ?+ were found. Using the known branching ratio for this channel, we find the fraction of K- which interact at rest with free protons to be (3.2 ± 0.4)%. The result is compared with measurements of the same fraction for ?- mesons and anti-protons.

C. T. Murphy; G. Keyes; M. Saha; M. Tanaka

1974-03-01T23:59:59.000Z

399

Propane dehydrogenation over Al2O3 supported Pt nanoparticles: Effect of cerium addition  

Science Journals Connector (OSTI)

Abstract The catalyst of Pt nanoparticles loaded on Al2O3 support has been prepared by a facile liquid phase synthesis–ultrasonic vibration method. With propane dehydrogenation as a probe reaction, the influence of promoter cerium (Ce) on the catalyst was investigated by means of transmission electron microscope (TEM), X-ray diffraction (XRD), N2 adsorption–desorption, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy of CO adsorption, H2-temperature programmed reduction (H2-TPR), and catalytic properties for propane dehydrogenation. The results revealed that the Pt nanograins with diameter of 1.6–4.8 nm were evenly dispersed on the Ce-containing Al2O3 support. The introduction of a small amount Ce into Pt/Al2O3 results in a bimetallic surface interaction, enhancing the surface reducibility and dispersity of Pt nanoparticles. The study of propane dehydrogenation performance shows that Ce-containing Pt catalyst is more active and less coke deposition than Ce-free Pt/Al2O3 counterpart. This study can provide an insight into the design and development of new Pt-based catalyst, especially for the improvement of catalytic activity and stability towards alkane dehydrogenation.

Zhanhua Ma; Jun Wang; Jun Li; Ningning Wang; Changhua An; Lanyi Sun

2014-01-01T23:59:59.000Z

400

An investigation of diesel–ignited propane dual fuel combustion in a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Abstract This paper presents a detailed experimental analysis of diesel–ignited propane dual fuel combustion on a 12.9-l, six-cylinder, production heavy-duty diesel engine. Gaseous propane was fumigated upstream of the turbocharger air inlet and ignited using direct injection of diesel sprays. Results are presented for brake mean effective pressures (BMEP) from 5 to 20 bar and different percent energy substituted (PES) by propane at a constant engine speed of 1500 rpm. The effect of propane PES on apparent heat release rates, combustion phasing and duration, fuel conversion and combustion efficiencies, and engine-out emissions of oxides of nitrogen (NOx), smoke, carbon monoxide (CO), and total unburned hydrocarbons (HC) were investigated. Exhaust particle number concentrations and size distributions were also quantified for diesel–ignited propane combustion. With stock engine parameters, the maximum propane PES was limited to 86%, 60%, 33%, and 25% at 5, 10, 15, and 20 bar BMEPs, respectively, either by high maximum pressure rise rates (MPRR) or by excessive HC and CO emissions. With increasing PES, while fuel conversion efficiencies increased slightly at high \\{BMEPs\\} or decreased at low BMEPs, combustion efficiencies uniformly decreased. Also, with increasing PES, \\{NOx\\} and smoke emissions were generally decreased but these reductions were accompanied by higher HC and CO emissions. Exhaust particle number concentrations decreased with increasing PES at low loads but showed the opposite trends at higher loads. At 10 bar BMEP, by adopting a different fueling strategy, the maximum possible propane PES was extended to 80%. Finally, a limited diesel injection timing study was performed to identify the optimal operating conditions for the best efficiency-emissions-MPRR tradeoffs.

Andrew C. Polk; Chad D. Carpenter; Kalyan Kumar Srinivasan; Sundar Rajan Krishnan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field.  

E-Print Network (OSTI)

??Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca… (more)

Rivero Diaz, Jose Antonio

2012-01-01T23:59:59.000Z

402

CNG Goes Mainstream  

NLE Websites -- All DOE Office Websites (Extended Search)

Goes Mainstream Goes Mainstream JOHN DAVIS: Time now for Motor News. So, let's head inside to Yolanda Vazquez for what's new this week. VOLANDA VAZQUEZ: Big news on the EV front with a new all-electric SUV from Toyota. The Japanese automaker unveiled the production version of the 2012 Rav 4 EV at the EVS26 symposium in Los Angeles. It was jointly developed with electric car pioneer Tesla Motors who supplied the battery pack and drive system. Like other current EV's, this Rav 4 has a range of about 100 miles, but with more versatility. Toyota expects a price of nearly $50,000 will likely limit sales to about 2,600 Rav4 EV's over the next 3 years. Rising gasoline prices are also renewing interest in another alt-fuel, compressed natural gas. From taxis to refuse and delivery trucks, more and more fleets are

403

Fraction of Stopped Antiprotons which Annihilate on Free Hydrogen in Propane  

Science Journals Connector (OSTI)

Antiprotons were stopped in a liquid-propane bubble chamber. In a sample of film containing 75 000 annihilations at rest, 21 examples of the reactions p¯p??+?- or p¯p?K+K- were identified. This number, together with the previously measured branching ratios of these channels in liquid hydrogen, leads to a determination that (11±3)% of the antiprotons annihilate on free protons. The remaining 89% annihilate on bound nucleons in carbon. This fraction is markedly higher than the fraction of ?- at rest which charge exchange on free protons in similar hydrocarbons. An explanation of the large difference is suggested.

W. T. Pawlewicz; C. T. Murphy; J. G. Fetkovich; T. Dombeck; M. Derrick; T. Wangler

1970-12-01T23:59:59.000Z

404

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG)....

405

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Alternative fuels subject to the New Mexico excise tax include liquefied petroleum gas (propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The...

406

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

on all compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (propane) sold for use in registered motor vehicles. Additionally, each retailer...

407

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Vehicle Labeling Requirement Vehicles powered by liquefied petroleum gas (propane) or compressed natural gas (CNG) must visibly display identifying decals, as...

408

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Annual Fee Owners of compressed natural gas (CNG), liquefied natural gas (LNG), and propane powered vehicles are required to pay an annual license fee, based on gross vehicle...

409

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installation of Alternative Fuel Components in Vehicles A propane or compressed natural gas (CNG) carburetion system installer who collects an installation service fee must hold an...

410

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

812010 - 12312013 Jefferson, WI Jefferson County Sherrif's Department Propane Infrastructure Project Installation of fast fill CNG vehicle fueling infrastructure for city of...

411

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

gas (CNG), liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and electricity. The infrastructure must be new and must not have been previously installed or used...

412

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

413

Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects.  

E-Print Network (OSTI)

cluster B: 2-pentyl nitrate, propane, methanol, and acetone)which 2-pentyl nitrate, propane, methanol, and acetone (cluster B (2-pentyl nitrate, propane, methanol, and acetone)

2011-01-01T23:59:59.000Z

414

The catalytic oxidation of propane and propylene with air: total aldehyde production and selectivity at low conversions.  

E-Print Network (OSTI)

~ Ths writer is izntebteg to pr, P G~ ~och Tor his assistance azsi guidance in this work aC to Br~ J+ 9 Kinds Tor his aery. suggestions eel Succor~ a The oxidation cf propane~ propylene and prcya~cregyimm mbetccres ctver a ~ aiucdna ~st in a flew... formation of aldehyde fran pure grade propane The ~ce of Within the range of variables of this investigation and with propylene ~& aldehyde pr~cn was f'ennd to bs independent of" residence Qorrcgations relating aldehyde pressure to ~ and cncygsn pressure...

Looney, Franklin Sittig

2012-06-07T23:59:59.000Z

415

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

416

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

417

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

418

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network (OSTI)

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

419

Using Membrane Reactive Absorption Modeling to Predict Optimum Process Conditions in the Separation of Propane–Propylene Mixtures  

Science Journals Connector (OSTI)

Chilukuri, P.; Rademakers, K.; Nymeijer, K.; Van der Ham, L.; Van Berg, H. D.Propylene/propane separation with a gas/liquid membrane contactor using a silver salt solution Ind. Eng. ... Chilukuri, Pavan; Rademakers, Karlijn; Nymeijer, Kitty; van der Ham, Louis; van den Berg, Henk ...

Marcos Fallanza; Alfredo Ortiz; Daniel Gorri; Inmaculada Ortiz

2013-01-11T23:59:59.000Z

420

A comparison of advanced distillation control techniques for a propylene/propane splitter  

SciTech Connect

A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and artificial neural networks. Each controller was tuned based upon setpoint changes in the overhead production composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

Gokhale, V.; Hurowitz, S.; Riggs, J.B. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cross sections for electron scattering by propane in the low- and intermediate-energy ranges  

SciTech Connect

We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Instituto de Fisica 'Gleb Wataghin', UNICAMP, 13083-970 Campinas, SP (Brazil); Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil); Department of Chemistry, Texas A and M University, College Station, Texas 7784-3255 (United States)

2010-07-15T23:59:59.000Z

422

Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane  

SciTech Connect

In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

2013-09-01T23:59:59.000Z

423

Application of fluid opacity for determining the phase behavior of binary mixtures near their critical loci – CO2 plus ethane and CO2 plus propane  

Science Journals Connector (OSTI)

The rapid determination of critical data of binary mixtures of carbon dioxide plus propane and carbon dioxide plus ethane has been carried out using the opalescence effect of pure substances or mixtures near ...

A. Martin; Sigmar Mothes; Gerhard Mannsfeld

1999-08-01T23:59:59.000Z

424

Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine  

E-Print Network (OSTI)

the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects...

Pathak, Dushyant

2006-04-12T23:59:59.000Z

425

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

Fuel Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station Round 2 Proposed Awards-602 Alternative Fuels Infrastructure: Electric, Natural Gas, Propane, E85, and Diesel Substitutes Terminals March Solicitation and Application Package entitled "Alternative Fuels Infrastructure: Electric, Natural Gas, Propane

426

Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst  

SciTech Connect

The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

Govindasamy, Agalya [University of Cincinnati; Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2010-01-01T23:59:59.000Z

427

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

428

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

429

Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine  

SciTech Connect

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-15T23:59:59.000Z

430

Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion  

SciTech Connect

Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Kim, K.N.; Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

2009-02-15T23:59:59.000Z

431

Modeling of the formation of short-chain acids in propane flames  

E-Print Network (OSTI)

In order to better understand their potential formation in combustion systems, a detailed kinetic mechanism for the formation of short-chain monocarboxylic acids, formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH) and propenic (C2H3COOH)) acids, has been developed. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized at atmospheric pressure with nitrogen as diluent have been performed. It was found that amounts up to 25 ppm of acetic acid, 15 ppm of formic acid and 1 ppm of C3 acid can be formed for some positions in the flames. Simulations showed that the more abundant C3 acid formed is propenic acid. A quite acceptable agreement has been obtained with the scarce results from the literature concerning oxygenated compounds, including aldehydes (CH2O, CH3CHO) and acids. A reaction pathways analysis demonstrated that each acid is mainly derived from the aldehyde of similar structure.

Battin-Leclerc, Frédérique; Jaffrezo, J L; Legrand, M

2009-01-01T23:59:59.000Z

432

A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime  

SciTech Connect

The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland); Bourque, G. [Rolls-Royce Canada, Montreal (Canada)

2008-04-15T23:59:59.000Z

433

Subnanometer platinum clusters highly active and selective catalysts for the oxidative dehydrogenation of propane.  

SciTech Connect

Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt{sub 8-10} clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes.

Vajda, S; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P.; Yale Univ.

2009-03-01T23:59:59.000Z

434

ED-XAS Data Reveal In-situ Time-Resolved Adsorbate Coverage on Supported Molybdenum Oxide Catalysts during Propane Dehydrogenation  

SciTech Connect

Energy-Dispersive X-ray Absorption Spectroscopy (ED-XAS) data combined with UV/Vis, Raman, and mass spectrometry data on alumina- and silica-supported molybdenum oxide catalysts under propane dehydrogenation conditions have been previously reported. A novel {delta}{mu} adsorbate isolation technique was applied here to the time-resolved (0.1 min) Mo K-edge ED-XAS data by taking the difference of absorption, {mu}, at t>1 against the initial time, t=0. Further, full multiple scattering calculations using the FEFF 8.0 code are performed to interpret the {delta}{mu} signatures. The resulting difference spectra and interpretation provide real time propane coverage and O depletion at the MoOn surface. The propane coverage is seen to correlate with the propene and/or coke production, with the maximum coke formation occurring when the propane coverage is the largest. Combined, these data give unprecedented insight into the complicated dynamics for propane dehydrogenation.

Ramaker, David; Gatewood, Daniel [Department of Chemistry, George Washington University, Washington D.C. 20052 (United States); Beale, Andrew M.; Weckhuysen, Bert M. [Inorganic Chemistry and Catalysis, Dept. of Chem., Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)

2007-02-02T23:59:59.000Z

435

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

436

,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vtr_mgalpd_m.htm"

437

,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vwr_mgalpd_m.htm"

438

Successful Adoption of CNG and Energing CNG-Hydrogen Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corpus Fund of 20 million USD IOC R&D to act as nodal agency for H 2 research in Oil & Gas sector 5. National Hydrogen Energy Board Roadmap for country Funding of the projects...

439

Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PSU under MOP&NG (i.e. IOCL, BPCL, HPCL, BRPL, CPCL, EIL, ONGC, OIL, GAIL, NRL), Two from private sector on rotation basis from 2008 Statutory Bodies *Chief Controller of...

440

Reaction with Propane of I(52P1/2), produced by Photolysis of Iodine in the Continuum of the B3?ou+–X1?g+ System, and by Collisional Release inside the Banded Region  

Science Journals Connector (OSTI)

... and the ^-propyl iodide was determined by gas chromatography, after separation of the unreacted propane on a low-temperature still. The quantum yield is independent of the area of ... 60 C in a mixture of 0-20 mm of iodine with 100 mm of propane, the quantum yield for the formation of ^-propyl iodide is 1-5 x ...

A. B. CALLEAR; J. F. WILSON

1966-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation  

SciTech Connect

Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

Yoon, S.S. [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 445-706 (Korea); Anh, D.H. [Korea Electric Power Research Institute, Daejeon 305-380 (Korea); Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

2008-08-15T23:59:59.000Z

442

Gas Natural - CNG y GNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Natural Dispensador de Gas Natural Gas Natural Dispensador de Gas Natural El gas natural, un combustible fósil compuesto básicamente de metano, es uno de los combustibles alternativos menos contaminantes. Puede ser usado como gas natural comprimido (GNC) o como gas natural licuado (GNL) para autos y camiones. Existen vehículos diseñados para funcionar exclusivamente con gas natural. Por otra parte hay vehículos de doble combustible o bi-combustibles que también puede funcionar con gasolina o diesel. Los vehículos de doble combustible permiten que el usuario aproveche la gran disponibilidad de gasolina o diesel, pero use la alternativa menos contaminante y más económica cuando el gas natural esté disponible. Ya que el gas natural es almacenado en depósitos de combustible de alta

443

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation  

E-Print Network (OSTI)

Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

Plazas Garcia, Joyce Vivia

2002-01-01T23:59:59.000Z

444

Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions  

SciTech Connect

The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

Huang, J.; Bushe, W.K. [Department of Mechanical Engineering, University of British Columbia, 6950 Applied Science Lane, Vancouver, British Columbia (Canada V6T 1Z4)

2006-01-01T23:59:59.000Z

445

An In-Situ XAS Study of the Structural Changes in a CuO-CeO2/Al2O3 Catalyst during Total Oxidation of Propane  

SciTech Connect

A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure during propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.

Silversmith, Geert; Poelman, Hilde; Poelman, Dirk; Gryse, Roger de [Ghent University, Department of Solid State Sciences, Krijgslaan 281 S1, B-9000 Gent (Belgium); Olea, Maria; Balcaen, Veerle; Heynderickx, Philippe; Marin, Guy B. [Ghent University, Laboratorium voor Petrochemische Techniek, Krijgslaan 281 S5, B-9000 Gent (Belgium)

2007-02-02T23:59:59.000Z

446

The preliminary result from spectra of $K^0_s ?^-$ in reaction p+propane at 10 GeV/c  

E-Print Network (OSTI)

The experimental data from 2m propane bubble chamber have been analyzed to search for scalar meson $\\kappa(800)$ in a $K^0_s\\pi$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The $K^0_s\\pi^-$ invariant mass spectrum has shown resonant structures with $M_{K^0_s\\pi^-}$=730, 900 and $\\Gamma$=143, 48 MeV/$c^2$, respectively. The statistical significance are estimated to be of 14.2$\\sigma$ and 4.2$\\sigma$, respectively. The peak in M(900) is identified as reflection from the well known resonance with mass of 892 MeV/c$^2$.

P. Zh. Aslanyan

2006-04-29T23:59:59.000Z

447

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

448

Compressible Solution Properties of Amorphous Polystyrene-block-Polybutadiene, Crystalline Polystyrene-block-Poly(Hydrogenated Polybutadiene) and Their Corresponding Homopolymers: Fluid-Fluid, Fluid-Solid and Fluid-Micelle Phase Transitions in Propane and Propylene  

SciTech Connect

Abstract Polystyrene, polybutadiene, hydrogenated polybutadiene, and styrene diblock copolymers of these homopolymers can form homogenous solutions in compressible solvents, such as propane and propylene, which separate into two bulk phases upon reducing pressure. The cloud and micellization pressures for homopolymer and diblock copolymers are generally found to be higher in propane than in propylene, except for hydrogenated polybutadiene and polystyrene-block-(hydrogenated polybutadiene). Hydrogenated polybutadiene homopolymers and copolymers exhibit relatively pressure-independent crystallization and melting observed in both propane and propylene solutions.

Hong, Kunlun [ORNL; Mays, Jimmy [ORNL; Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie

2009-01-01T23:59:59.000Z

450

PROPANE: an environment for examining the propagation of errors in software  

Science Journals Connector (OSTI)

In order to produce reliable software, it is important to have knowledge on how faults and errors may affect the software. In particular, designing efficient error detection mechanisms requires not only knowledge on which types of errors to detect but ... Keywords: error propagation analysis, fault injection, software development tools, software reliability

Martin Hiller; Arshad Jhumka; Neeraj Suri

2002-07-01T23:59:59.000Z

451

Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition  

SciTech Connect

We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

Michon, A.; Vezian, S.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Ouerghi, A. [CNRS-LPN, Route de Nozay, 91460 Marcoussis (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2010-10-25T23:59:59.000Z

452

Deuteration Can Impact Micellization Pressure and Cloud Pressure of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Compressible Propane  

SciTech Connect

The deuterated homopolymers and their corresponding polystyrene-block-polybutadiene and polystyrene-block-polyisoprene copolymers require lower cloud pressures than their hydrogenous analogues to dissolve in a compressible alkane solvent, such as propane. For symmetric diblocks, deuteration reduces the micellization pressure. By contrast, for asymmetric diblocks with a long diene block relative to the styrene block, deuteration can increase the micellization pressure. All in all, however, the deuteration effects, while measurable, do not qualitatively change the principal diblock properties in compressible propane solutions, such as pressure-induced micelle decomposition, micelle formation and micelle size, and their temperature dependence. Therefore, isotope labeling should be a useful approach to neutron-scattering characterization for styrene-diene block copolymers in compressible alkane systems.

Winoto, Winoto [University of Wyoming, Laramie; Shen, Youqin [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

453

Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects  

SciTech Connect

In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

Green, Jade [University of Wyoming, Laramie; Tyrrell, Zachary [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2011-01-01T23:59:59.000Z

454

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

SciTech Connect

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

455

Crystal structure of [propane-1,3-diylbis(piperidine-4,1-di­yl)]bis­[(pyridin-4-yl)methanone]-isophthalic acid (1/1)  

Science Journals Connector (OSTI)

In the co-crystal of isophthalic acid and [propane-1,3-diylbis(piperidine-4,1-di­yl)]bis­[(pyridin-4-yl)methanone], mol­ecules are connected into supra­molecular chains aligned along the c axis by O-HN hydrogen bonding. These aggregate into supra­molecular layers oriented parallel to the ac plane by C-HO inter­actions.

Murray, N.H.

2014-10-04T23:59:59.000Z

456

Electrochemical properties of a cobalt(II) complex with sulfadiazine and 1,3-bis­(pyridin-4-yl)propane  

Science Journals Connector (OSTI)

A one-dimensional polymeric structure of CoII with sulfadiazine and 1,3-bis­(pyridin-4-yl)propane is further stabilized by inter­molecular hydrogen bonding. The structure is of inter­est with respect to its electrochemical properties in the reduction reaction of H2O2 to H2O. Investigation of the thermal stability shows that the complex is stable up to 543 K.

Zhao, Y.-Y.

2013-09-06T23:59:59.000Z

457

Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine  

SciTech Connect

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

2011-10-05T23:59:59.000Z

458

Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition  

SciTech Connect

Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France)] [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)] [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2013-05-28T23:59:59.000Z

459

Unusual behavior of propane as a co-guest during hydrate formation in silica sand: Potential application to seawater desalination and carbon dioxide capture  

Science Journals Connector (OSTI)

Abstract We report an unusual behavior of hydrate formation in silica sand with gas mixtures containing propane as a co-guest. Based on morphology study we observed that propane as a co-guest has the ability to draw water dispersed in silica sand to the hydrate formation region and showed a tendency to result in drastic hydrate growth due to the migration of water molecules to the gas phase region. Hydrate nucleation occurred in the interstitial pore space between the silica sand particles and hydrate growth occurred in the gas phase above the silica sand bed and to sustain the hydrate growth, dispersed water was drawn towards the hydrate growth front. In addition, we elucidated the effect of sand bed height to maximize the growth rates utilizing this behavior that results in enhanced kinetics. We propose conceptual designs for utilizing this behavior of propane as a co-guest in sand for seawater desalination and an innovative approach to simultaneously capture carbon dioxide and desalinate seawater.

Ponnivalavan Babu; Rajnish Kumar; Praveen Linga

2014-01-01T23:59:59.000Z

460

Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene  

SciTech Connect

Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

2012-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A novel integrated thermally double coupled configuration for methane steam reforming, methane oxidation and dehydrogenation of propane  

Science Journals Connector (OSTI)

Abstract The goal of this study is the simultaneous production of synthesis gas, hydrogen and propylene in a thermally double coupled steam reformer reactor. This reactor has three concentric tubes where the exothermic reaction of methane oxidation is supposed to occur in the middle tube and the inner and outer tubes are considered to be endothermic sides of steam reforming and propane dehydrogenation, respectively. The motivation is to combine the energy efficient concept of coupling one exothermic reaction with two endothermic reactions, enhancement of synthesis gas production, propylene and hydrogen production and also producing two different H2/CO ratio streams of syngas. A steady state homogeneous model of fixed bed for three sides predicts the performance of this new configuration. The simulation results are compared with corresponding predictions of the conventional steam reformer. The results prove that synthesis gas production is increased in a thermally double coupled reactor in comparison with conventional steam reforming. In addition, the thermally double coupled reactor reduces the capital and operating costs by reducing the reactor size and consumption of energy.

D. Karimipourfard; S. Kabiri; M.R. Rahimpour

2014-01-01T23:59:59.000Z

462

Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor  

SciTech Connect

The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

Scarpa, A. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States); Pirone, R. [Istituto di Ricerche sulla Combustione-CNR, P.le V. Tecchio 80, 80125 Naples (Italy); Russo, G. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Vlachos, D.G. [Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States)

2009-05-15T23:59:59.000Z

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and liquefied natural gas, have a reduced tax rate of 0.27 per gallon. Liquefied petroleum gas (LPG or propane) and compressed natural gas (CNG) used to operate a motor...

464

Petroleum Displacement Program Annual Report FY 2010-2011  

E-Print Network (OSTI)

efficiency 0.2% of displacement was lost through decreased use of CNG (natural gas) and LPG (propane..................................................................... 12 General Trends in FY10-11 PDP .............................................. 15 Fuel Pricing, Trends, and Cost Savings

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can...

466

Alternative Fuels Data Center: AT&T Fleet Reaches Milestone of...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

22, 2011 Austin Lays Plans for Carbon-Neutral City Fleet Jan. 15, 2011 Tennessee Reduces Pollution With Propane Hybrid Trolleys Dec. 11, 2010 CNG Refuse Haulers Do Heavy Lifting...

467

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

sales for CNG and liquefied petroleum gas (propane) used to operate vehicles are subject to a modified tax based on energy content. (Reference Montana Code Annotated 15-70-71...

468

Propane ammoxidation over the Mo-V-Te-Nb-O M1 phase: Reactivity of surface cations in hydrogen abstraction steps  

SciTech Connect

Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, {Delta}E, being {le} -1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites ({Delta}E > -1 eV). Atomic H binds more strongly to Te = O ({Delta}E {le} -3 eV) than to all the other sites, including V = O ({Delta}E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E{sub a} {le} 1.01 eV) than V = O (E{sub a} = 1.70 eV on V{sup 5+} = O and 2.13 eV on V{sup 4+} = O). The higher-than-observed activity and the loose binding of Te = O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te = O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2011-01-01T23:59:59.000Z

469

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

470

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

471

Shock tube and theoretical studies on the thermal decomposition of propane : evidence for a roaming radical channel.  

SciTech Connect

The thermal decomposition of propane has been studied using both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for propane have been measured at high temperatures behind reflected shock waves using high-sensitivity H-ARAS detection and CH{sub 3} optical absorption. The two major dissociation channels at high temperature are C{sub 3}H{sub 8} {yields} CH{sub 3} + C{sub 2}H{sub 5} (eq 1a) and C{sub 3}H{sub 8} {yields} CH{sub 4} + C{sub 2}H{sub 4} (eq 1b). Ultra high-sensitivity ARAS detection of H-atoms produced from the decomposition of the product, C{sub 2}H{sub 5}, in (1a), allowed measurements of both the total decomposition rate constants, k{sub total}, and the branching to radical products, k{sub 1a}/k{sub total}. Theoretical analyses indicate that the molecular products are formed exclusively through the roaming radical mechanism and that radical products are formed exclusively through channel 1a. The experiments were performed over the temperature range 1417-1819 K and gave a minor contribution of (10 {+-} 8%) due to roaming. A multipass CH{sub 3} absorption diagnostic using a Zn resonance lamp was also developed and characterized in this work using the thermal decomposition of CH{sub 3}I as a reference reaction. The measured rate constants for CH{sub 3}I decomposition agreed with earlier determinations from this laboratory that were based on I-atom ARAS measurements. This CH{sub 3} diagnostic was then used to detect radicals from channel 1a allowing lower temperature (1202-1543 K) measurements of k1a to be determined. Variable reaction coordinate-transition state theory was used to predict the high pressure limits for channel (1a) and other bond fission reactions in C{sub 3}H{sub 8}. Conventional transition state theory calculations were also used to estimate rate constants for other tight transition state processes. These calculations predict a negligible contribution (<1%) from all other bond fission and tight transition state processes, indicating that the bond fission channel (1a) and the roaming channel (1b) are indeed the only active channels at the temperature and pressure ranges of the present experiments. The predicted reaction exo- and endothermicities are in excellent agreement with the current version of the Active Thermochemical Tables. Master equation calculations incorporating these transition state theory results yield predictions for the temperature and pressure dependence of the dissociation rate constants for channel 1a. The final theoretical results reliably reproduce the measured dissociation rate constants that are reported here and in the literature. The experimental data are well reproduced over the 500-2500 K and 1 x 10{sup -4} to 100 bar range (errors of {approx}15% or less) by the following Troe parameters for Ar as the bath gas: k{sub {infinity}} = 1.55 x 10{sup 24}T{sup -2.034} exp(-45490/T) s{sup -1}, k{sub 0} = 7.92 x 10{sup 53}T{sup -16.67} exp(-50380/T) cm{sup 3} s{sup -1}, and F{sub c} = 0.190 exp(-T/3091) + 0.810 exp(-T/128) + exp(-8829/T).

Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B. (Chemical Sciences and Engineering Division)

2011-04-21T23:59:59.000Z

472

A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane  

SciTech Connect

A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

Chen Miao, E-mail: chenmiao@sinochem.com [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); Wu Jialing; Liu Yongmei [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Cao Yong, E-mail: yongcao@fudan.edu.cn [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Guo Li [Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); He Heyong; Fan Kangnian [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China)

2011-12-15T23:59:59.000Z

473

A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study  

Science Journals Connector (OSTI)

Growing environmental concerns and oil price volatility have led to increasing interest in the potential demand for alternative fuel vehicles. Dedicated fuel vehicles such as EV and CNG vehicles use only the alte...

Stephane Hess; Mark Fowler; Thomas Adler; Aniss Bahreinian

2012-05-01T23:59:59.000Z

474

Liquid Propane Injection Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

475

Propane/Propylene Exports  

Gasoline and Diesel Fuel Update (EIA)

414 446 389 431 404 457 1973-2014 East Coast (PADD 1) 20 6 15 6 14 24 1981-2014 Midwest (PADD 2) 8 10 9 10 11 9 1981-2014 Gulf Coast (PADD 3) 372 417 352 403 366 411 1981-2014...

476

Blood Types  

E-Print Network (OSTI)

Broadcast Transcript: According to the Japanese, you can tell a lot about a person by their blood type: Type A is the farmer, calm and responsible; Type B is the hunter, independent and creative; Type AB is humanistic, ...

Hacker, Randi; Tsutsui, William

2007-03-14T23:59:59.000Z

477

Xanes Study of Hydrothermal Mo-V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)oxidation of propane  

SciTech Connect

The hydrothermal Mo-V-based mixed oxide catalysts possessing the M1-phase structure were investigated by XANES and in situ X-ray diffraction under ambient and dynamic redox conditions in the presence of O{sub 2} and H{sub 2} at 693 K. Under ambient conditions, XANES, with the use of model compounds, suggested oxidation states of Nb, Te, Mo, and V close to 5+, 4+, 6+, and 4+, respectively, in the bulk M1 phase. The oxidation state changes of Nb, Te, and Mo were not detected under the dynamic redox conditions employed, while the pre-edge peak of vanadium in the M1 phase exhibited small, reproducible shifts, suggesting that VO{sub x} is the active catalytic species in the bulk M1-phase catalysts for selective (amm)oxidation of propane.

Shiju, N.R. [University of Cincinnati; Rondinone, Adam Justin [ORNL; Overbury, Steven {Steve} H [ORNL; Mullins, David R [ORNL; Schwartz, Viviane [ORNL; Guliants, Vadim V. [University of Cincinnati

2008-01-01T23:59:59.000Z

478

XANES Study of Hydrothermal Mo-V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)oxidation of Propane  

SciTech Connect

The hydrothermal Mo-V-based mixed oxide catalysts possessing the M1-phase structure were investigated by XANES and in situ X-ray diffraction under ambient and dynamic redox conditions in the presence of O{sub 2} and H{sub 2} at 693 K. Under ambient conditions, XANES, with the use of model compounds, suggested oxidation states of Nb, Te, Mo, and V close to 5+, 4+, 6+, and 4+, respectively, in the bulk M1 phase. The oxidation state changes of Nb, Te, and Mo were not detected under the dynamic redox conditions employed, while the pre-edge peak of vanadium in the M1 phase exhibited small, reproducible shifts, suggesting that VO{sub x} is the active catalytic species in the bulk M1-phase catalysts for selective (amm)oxidation of propane.

Shuju, N.; Rondinone, A; Mullins, D; Schwartz, V; Overbury, S; Gulaints, V

2008-01-01T23:59:59.000Z

479

Exotic narrow resonance searches in the system Lambda K0s in p+propane collisions at 10 GeV/c  

E-Print Network (OSTI)

Experimental data from the 2m propane bubble chamber have been analyzed to search for an exotic baryon states, in the $\\Lambda K^0_s$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The invariant mass spectrum $\\Lambda K^0_s$ observe a narrow peaks at 1750$\\pm$18, 1795$\\pm$18,1850$\\pm19$ MeV/$c^2$ and full widths of $\\Gamma_{exp.}$= 32$\\pm$6, 44$\\pm$15, 29.0$\\pm$8 MeV/$c^2$. The statistical significance of these peaks has been estimated as 5.6, 3.3 and 3.0 S.D., respectively. There are the small enhancements in mass regions of (1650-1675) and (1925-1950) ???/?$^2$. These would be candidates for the $N^0$ or the $\\Xi^0$ pentaquark states. The investigation has been performed at the Veksler and Baldin Laboratory of High Energies, JINR.

P. Zh. Aslanyan; V. N. Emelyanenko; G. G. Rikhkvitzkaya

2005-04-15T23:59:59.000Z

480

Xanes Study of Hydrothermal Mo-V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)oxidation of Propane  

SciTech Connect

The hydrothermal Mo-V-based mixed oxide catalysts possessing the M1-phase structure were investigated by XANES and in situ X-ray diffraction under ambient and dynamic redox conditions in the presence of O{sub 2} and H{sub 2} at 693 K. Under ambient conditions, XANES, with the use of model compounds, suggested oxidation states of Nb, Te, Mo, and V close to 5+, 4+, 6+, and 4+, respectively, in the bulk M1 phase. The oxidation state changes of Nb, Te, and Mo were not detected under the dynamic redox conditions employed, while the pre-edge peak of vanadium in the M1 phase exhibited small, reproducible shifts, suggesting that VO{sub x} is the active catalytic species in the bulk M1-phase catalysts for selective (amm)oxidation of propane.

Mullins, David R [ORNL; Overbury, Steven {Steve} H [ORNL; Rondinone, Adam Justin [ORNL; Schwartz, Viviane [ORNL; Guliants, Vadim [ORNL; Shiju, N.R. [University of Cincinnati

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "types cng propane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

STEM HAADF Image Simulation of the Orthorhombic M1 Phase in the Mo-V-Nb-Te-O Propane Oxidation Catalyst  

SciTech Connect

A full frozen phonon multislice simulation of high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images from the M1 phase of the Mo-V-Nb-Te-O propane oxidation catalyst has been performed by using the latest structural model obtained using the Rietveld method. Simulated contrast results are compared with experimental HAADF images. Good agreement is observed at ring sites, however significant thickness dependence is noticed at the linking sites. The remaining discrepancies between the model based on Rietveld refinement and image simulations indicate that the sampling of a small volume element in HAADF STEM and averaging elemental contributions of a disordered site in a crystal slab by using the virtual crystal approximation might be problematic, especially if there is preferential Mo/V ordering near the (001) surface.

D Blom; X Li; S Mitra; T Vogt; D Buttrey

2011-12-31T23:59:59.000Z

482

The preliminary result from spectra of $K^0_s \\pi^-$ in reaction p+propane at 10 GeV/c  

E-Print Network (OSTI)

The experimental data from 2m propane bubble chamber have been analyzed to search for scalar meson $\\kappa(800)$ in a $K^0_s\\pi$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The $K^0_s\\pi^-$ invariant mass spectrum has shown resonant structures with $M_{K^0_s\\pi^-}$=730, 900 and $\\Gamma$=143, 48 MeV/$c^2$, respectively. The statistical significance are estimated to be of 14.2$\\sigma$ and 4.2$\\sigma$, respectively. The peak in M(900) is identified as reflection from the well known resonance with mass of 892 MeV/c$^2$.

Aslanyan, P Z

2006-01-01T23:59:59.000Z

483

Exotic narrow resonance searches in the system Lambda K0s in p+propane collisions at 10 GeV/c  

E-Print Network (OSTI)

Experimental data from the 2m propane bubble chamber have been analyzed to search for an exotic baryon states, in the $\\Lambda K^0_s$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The invariant mass spectrum $\\Lambda K^0_s$ observe a narrow peaks at 1750$\\pm$18, 1795$\\pm$18,1850$\\pm19$ MeV/$c^2$ and full widths of $\\Gamma_{exp.}$= 32$\\pm$6, 44$\\pm$15, 29.0$\\pm$8 MeV/$c^2$. The statistical significance of these peaks has been estimated as 5.6, 3.3 and 3.0 S.D., respectively. There are the small enhancements in mass regions of (1650-1675) and (1925-1950) ???/?$^2$. These would be candidates for the $N^0$ or the $\\Xi^0$ pentaquark states. The investigation has been performed at the Veksler and Baldin Laboratory of High Energies, JINR.

Aslanyan, P Z; Rikhkvitzkaya, G G

2005-01-01T23:59:59.000Z

484

Partial miscibility behavior of the ternary systems methane-propane-n-octane, methane-n-butane-n-octane, and methane-carbon dioxide-n-octane  

SciTech Connect

The phase behavior of three ternary systems (methane-propane-n-octane, methane-n-butane-n-octane, methane-carbon dioxide-n-octane) was studied in their regions of L/sub 1/-L/sub 2/-V immiscibility. Liquid-phase composition and molar volume data for both liquid phases are presented as a function of temperature and pressure in the three-phase region. The boundaries of the three-phase regions, locl of K points (L/sub 1/-L/sub 2/ = V), LCST points (L/sub 1/ = L/sub 2/-V), and Q points (S-L/sub 1/-L/sub 2/-V) are detailed. A detailed study of the immiscibility behavior of the binary system carbon dioxide-n-octane is also presented.

Hottovy, J.D.; Kohn, J.P.; Luks, K.D.

1982-07-01T23:59:59.000Z

485

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - W900S Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G...

486

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Freightliner - Cascadia 113 NG Application: Tractor Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G...

487

Impact of solvent type and injection sequence on Enhanced Cyclic Solvent Process (ECSP) for thin heavy oil reservoirs  

Science Journals Connector (OSTI)

Abstract A considerable portion of the western Canada's heavy oil resides in thin formations. In this situation, thermal methods cannot be used due to heat loss to overburden and underburden. Vapor extraction (VAPEX) fails because of inefficient gravity drainage and low initial production rate. Studies have been done on the cyclic solvent process (CSP) in an attempt to speed up the oil production rate in the solvent injection process. CSP performs poorly because the presence of continuous free methane saturation at the start of production cycles results in high gas mobility, and, consequently, quick methane production, quick pressure depletion, and a significant loss of oil viscosity reduction. As a result, the drive energy becomes depleted by methane production. Also, if low or intermediate initial production pressures are used, the methane solubility in the oil is not high, and the viscosity reduction is not significant. To resolve the above problems of CSP, Yadali Jamaloei et al. (2012) introduced a new process for thin reservoirs – Enhanced Cyclic Solvent Process (ECSP). In ECSP, two types of hydrocarbon solvents are injected separately, in a cyclic manner; one slug is more volatile (methane) and the other is more soluble (propane or ethane) in heavy oil and bitumen. The focus of this study is finding the optimum solvent injection sequence; this will be accomplished through examining the impact of the solvent injection sequence on the performance of ECSP, using different solvent pairs. The experimental results obtained from four series of ECSP tests, each consisting of six cycles, show higher oil recovery and production rate, and lower gas requirement and drawdown when methane is injected before ethane or propane. Wabiskaw formation in the Pelican oilfield in northern Alberta with 17 wells was chosen for performing simulation of ECSP. History matching was conducted for field-scale cumulative oil, gas and water production, and average reservoir pressure. Injection rate and injection time of methane and propane, soaking time and minimum well bottom-hole pressure in the methane–propane ECSP scheme were optimized to predict the field production performance of ECSP. Field-scale simulation revealed that the proposed methane–propane ECSP scheme is a highly effective method for improving heavy oil recovery in thin reservoirs.

Benyamin Yadali Jamaloei; Mingzhe Dong; Ping Yang; Daoyong Yang; Nader Mahinpey

2013-01-01T23:59:59.000Z

488

Type Fusion  

Science Journals Connector (OSTI)

Fusion is an indispensable tool in the arsenal ... Less well-known, but equally valuable is type fusion, which states conditions for fusing an application ... algebra. We provide a novel proof of type fusion base...

Ralf Hinze

2011-01-01T23:59:59.000Z

489

Effects of fuel type and equivalence ratios on the flickering of triple flames  

SciTech Connect

An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A. [Department of Power Engineering, Jadavpur University, Salt Lake Campus, Kolkata 700098 (India)

2009-02-15T23:59:59.000Z

490

SEMI-ANNUAL REPORTS FOR EMERA CNG LLC, DK. NO. 13-157-CNG - ORDER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications SEMI-ANNUAL REPORTS FOR VENTURE GLOBAL, LLC - FE DKT. NO. 13-69-LNG (ORDER 3345) AND 14-88-LNG SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO....

491

Melanin Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Melanin Types Melanin Types Name: Irfan Location: N/A Country: N/A Date: N/A Question: What are different types of melanins? And what are the functions of these types? Replies: Hi Irfan! Melanin is a dark compound or better a photoprotective pigment. Its major role in the skin is to absorb the ultraviolet (UV) light that comes from the sun so the skin is not damaged. Sun exposure usually produces a tan at the skin that represents an increase of melanin pigment in the skin. Melanin is important also in other areas of the body, as the eye and the brain., but it is not completely understood what the melanin pigment does in these areas. Melanin forms a special cell called melanocyte. This cell is found in the skin, in the hair follicle, and in the iris and retina of the eye.

492

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

493

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network (OSTI)

used either natural gas or propane for cooktop fuel. Of the1302 Cooktop Fuel Type Gas Propane Electric - ResistanceFuel Type Gas Electric Propane Cooktop and Oven Together

Less, Brennan

2012-01-01T23:59:59.000Z

494

Wholesale Propane Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA) Indexed Site

1.381 1.412 1.427 1.406 1.524 1.637 2013-2013 1.381 1.412 1.427 1.406 1.524 1.637 2013-2013 East Coast (PADD 1) 1.442 1.509 1.551 1.548 1.660 1.712 2013-2013 Central Atlantic (PADD 1B) 1.493 1.530 1.584 1.587 1.702 1.751 2013-2013 New Jersey 1.575 1.583 1.596 1.624 1.672 1.672 2013-2013 New York 1.516 1.562 1.637 1.642 1.792 1.864 2013-2013 Pennsylvania 1.432 1.478 1.541 1.529 1.659 1.720 2013-2013 Lower Atlantic (PADD 1C) 1.366 1.479 1.503 1.489 1.596 1.653 2013-2013 North Carolina 1.327 1.440 1.468 1.428 1.540 1.596 2013-2013 Virginia 1.468 1.578 1.592 1.645 1.740 1.800 2013-2013 Midwest (PADD 2) 1.356 1.373 1.379 1.351 1.471 1.607 2013-2013 Illinois 1.358 1.388 1.375 1.332 1.473 1.644 2013-2013 Indiana 1.436 1.484 1.509 1.484 1.636 1.772 2013-2013

495

State Heating Oil and Propane Program Expansion of Propane Data...  

Gasoline and Diesel Fuel Update (EIA)

- end of season July 1- funding applications due July 15 - applications submitted to contracting office for review August 1 - applications submitted into STRIPES Late August -...

496

Residential Propane Weekly Heating Oil and Propane Prices (October...  

Gasoline and Diesel Fuel Update (EIA)

413 2.401 2.411 2.404 2.401 2.407 1990-2014 East Coast (PADD 1) 3.079 3.029 3.055 3.040 3.023 3.040 1990-2014 New England (PADD 1A) 3.109 3.098 3.106 3.093 3.089 3.098 1990-2014...

497

Diffusion of propane (1); 2-methyl-propane (2)  

Science Journals Connector (OSTI)

This document is part of Subvolume A ‘Gases in Gases, Liquids and their Mixtures’ of Volume 15 ‘Diffusion in Gases, Liquids and Electrolytes’ of Landolt-Börnstein Group IV ‘Physical Chemistry’. It is part of the ...

J. Winkelmann

2007-01-01T23:59:59.000Z

498

Inclusive production of $\\Lambda$, $K^0_s$ and exotic narrow resonances for systems $K_s^0 p$, $K_s^0 \\Lambda$, $\\Lambda p$ from p+propane interactions at 10 GeV/c  

E-Print Network (OSTI)

Experimental data from the 2m propane bubble chamber for production of $\\Lambda$, $K^0_s$ have been used to search of exotic baryon states, in the $K_s^0 p$, $K_s^0 \\Lambda$ and $\\Lambda p$ decay mode for the reaction p+propane at 10 GeV/c. The estimation of experimental inclusive cross sections for $\\Lambda$ and $K^0_s$ production in the p$^{12}C$ collision is equal to $\\sigma_{\\Lambda}$= 13.3$\\pm$1.7 mb and $\\sigma_{K^0_s}$= 3.8$\\pm$0.6 mb, respectively. The measured $\\Lambda /\\pi^+$ ratio from pC reaction is equal to (5.3$\\pm0.8)*10^{-2}$. The experimental $\\Lambda /\\pi^+$ ratio from the pC reaction is approximately two times larger than the $\\Lambda /\\pi^+$ ratio simulated by FRITIOF model from the pC reaction. The invariant mass spectrum $\\Lambda K^0_s$ registered narrow peaks in regions of 1750 and 1795 MeV/$c^2$. The statistical significance of these peaks has been estimated as 5.6 and 3.3 S.D., respectively. These would be candidates for the $N^0$ or the $\\Xi^0$ pentaquark states. The $pK^0_s$ invaria...

Aslanyan, P Z

2005-01-01T23:59:59.000Z

499

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

500

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

State Energy Offices State Energy Offices Q1: What price should be reported to EIA when submitting weekly data? EIA requests that you collect / report the residential credit price (keep-full prices being preferred) and that all prices exclude taxes for the Monday of each survey week, even if that Monday falls on a holiday. Prices should not include discounts for payment of cash or for payment made within a short period of time. However, if a company deals exclusively in cash, then this price should be reported and noted in the file sent to EIA. Q2: When is this data due to EIA each week? The EIA-877 "Winter Heating Fuels Telephone Survey" will begin the first Monday in October. Data should be submitted to EIA as soon as they are available but no later than noon on Tuesday of each week. Data collection