Sample records for type photovoltaic developer

  1. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    SciTech Connect (OSTI)

    Olson, D.

    2014-08-01T23:59:59.000Z

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  2. Solar photovoltaics for development applications

    SciTech Connect (OSTI)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)] [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01T23:59:59.000Z

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  3. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01T23:59:59.000Z

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  4. Solar Photovoltaics development -Status and perspectives

    E-Print Network [OSTI]

    Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

  5. Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation, USA ABSTRACT In order to optimize and extend the life of photovoltaics (PV) modules, scientific photovoltaics. The statisti- cally significant relationships were investigated using lifetime and degradation

  6. Photovoltaic olar nergy Development on Landfills

    E-Print Network [OSTI]

    .pvnavigator.com environmentally sensitive desert lands, as is the case for some largescale solar developments impacts of natural lands developed for solar energy at high environmental costs. InnovativePhotovoltaic olar nergy Development on Landfills ENVIRONMENTAL AREA RESEARCH PIER Environmental

  7. Workshop: Photovoltaics Research and Development Beyond SunShot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Research and Development Beyond SunShot Workshop: Photovoltaics Research and Development Beyond SunShot May 22, 2014 2:30PM to 8:00PM PDT Pacific B This participatory...

  8. NREL: Photovoltaics Research - Standards Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6 July 16,Standards Development NREL's

  9. Developing and marketing a photovoltaics product

    SciTech Connect (OSTI)

    Freeman, L.M.

    1995-12-31T23:59:59.000Z

    This paper presents findings from a market assessment performed by Applied Energy Group, Inc. concerning a Photovoltaic (PV) product developed by Delmarva Power in conjunction with AC Battery and Ascension Technology and the University of Delaware, with sponsorship from the U.S. Department of Energy, This research was performed as part of Phase I of Delmarva`s PV:BONUS research project which has as its aim the development and eventual commercialization of a solar peak shaving device for commercial buildings. A second stage of market research will be pursued under Phase II of the PV:BONUS project to further target appropriate markets, identify and secure several demonstration installations, and develop a marketing campaign. This project provides an example of how a utility can leverage outside funding sources, such as the Department of Energy, to help further the dual goals of identifying new market areas as well as meeting a national policy objective -- the development and commercialization of renewable resource technologies. Technology development is, in fact, a major area of focus for the current administration and is seen as an imperative for the U.S.`s ability to compete in the global marketplace. U.S. electric utilities are in an excellent position to pursue this important niche of energy services as they begin to position themselves for an increasingly competitive environment both here and abroad.

  10. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    of Organic Photovoltaic Device Efficiency……………………………..4of Organic Photovoltaic Device Efficiency The efficiency atpower conversion efficiency of organic photovoltaic devices.

  11. Development of the SEA Corporation Powergrid{trademark} photovoltaic concentrator

    SciTech Connect (OSTI)

    Kaminar, N.; Curchod, D.; Daroczi, S.; Walpert, M.; Sahagian, J.; Pepper, J. [Photovoltaics International, LLC, Sunnyvale, CA (United States)

    1998-03-01T23:59:59.000Z

    This report covers the three phase effort to bring the SEA Corporation`s Powergrid{trademark} from the concept stage to pilot production. The three phases of this contract covered component development, prototype module development, and pilot line production. The Powergrid is a photovoltaic concentrator that generates direct current electricity directly from sunlight using a linear Fresnel lens. Analysis has shown that the Powergrid has the potential to be very low cost in volume production. Before the start of the project, only proof of concept demonstrations of the components had been completed. During the project, SEA Corporation developed a low cost extruded Fresnel lens, a low cost receiver assembly using one sun type cells, a low cost plastic module housing, a single axis tracking system and frame structure, and pilot production equipment and techniques. In addition, an 800 kW/yr pilot production rate was demonstrated and two 40 kW systems were manufactured and installed.

  12. Request for Information: Photovoltaic Reliability and Durability Research and Development

    Broader source: Energy.gov [DOE]

    The United States Department of Energy (DOE) – Office of Energy Efficiency and Renewable Energy (EERE) seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to solar photovoltaic (PV) reliability and durability research and development.

  13. Development and application of a photovoltaic financial model

    E-Print Network [OSTI]

    Dietz, Brad

    2010-01-01T23:59:59.000Z

    Due to the relative immaturity of the solar farm industry, there are very few comprehensive financial models in use. I address this by developing a photovoltaic NPV financial model and apply the model to various base cases ...

  14. Development of a small selenium barrier layer photovoltaic cell 

    E-Print Network [OSTI]

    Pruett, George Richard

    1954-01-01T23:59:59.000Z

    +lkt Rfl&t4 ~ + ~ ~ ~ s ~ s ~ o ~ ~ ~ I ~ ~ I PO4NNQ QLffOWOO 1ORWQO j1388$44@4El ~ ~ ~ o ~ o ~ RI04INRRRli 7OSIIS QXQ4%~ ~ 8 0 I ~ ~ ~ ~ 4 0 The ~oct af this Qaeestiguticu uus te develop a uotbcd by shish a osaXX selsakuu barbar Xsyer photovoltaic... cell night be undo sith a high degree uf reprccbccibility, This prost uus chosen because u ssoXX ooll could nct bo obtained frsn o~tuX firnoo snd these fiona guard the secrete of tho prcchetkoa of the photovoltaic ceXX very null Photovoltaic oa...

  15. Development of a small selenium barrier layer photovoltaic cell

    E-Print Network [OSTI]

    Pruett, George Richard

    1954-01-01T23:59:59.000Z

    +lkt Rfl&t4 ~ + ~ ~ ~ s ~ s ~ o ~ ~ ~ I ~ ~ I PO4NNQ QLffOWOO 1ORWQO j1388$44@4El ~ ~ ~ o ~ o ~ RI04INRRRli 7OSIIS QXQ4%~ ~ 8 0 I ~ ~ ~ ~ 4 0 The ~oct af this Qaeestiguticu uus te develop a uotbcd by shish a osaXX selsakuu barbar Xsyer photovoltaic... cell night be undo sith a high degree uf reprccbccibility, This prost uus chosen because u ssoXX ooll could nct bo obtained frsn o~tuX firnoo snd these fiona guard the secrete of tho prcchetkoa of the photovoltaic ceXX very null Photovoltaic oa...

  16. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes R. (El Paso, TX)

    1996-03-26T23:59:59.000Z

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  17. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    F. C. ; Norrman, K. Prog. Photovoltaics 2007, 15, 697–712.Processed Organic Photovoltaics that Generate Chargepolymer-based organic photovoltaics (OPVs) have attracted

  18. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    properties of P1-P3, and photovoltaic performance of P1-P3Polymer Optoelectronic Photovoltaic Performance Propertiespolymer and the photovoltaic performance of the OPV devices,

  19. The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    and Utility-Scale Photovoltaic System Prices in the UnitedResidential Photovoltaic Installation Prices and DevelopmentResidential Photovoltaic Installation Prices and Development

  20. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    photovoltaics (OPVs) has led to a significant increase in their power conversion efficiencies (Photovoltaics…………………………..………1 Motivation and Current Technology………………………………………………………1 Organic Photovoltaic Device Operation and Structure……………………………………2 Characterization of Organic Photovoltaic Device Efficiency……………………………..

  1. Photovoltaic-system costing-methodology development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-07-01T23:59:59.000Z

    Presented are the results of a study to expand the use of standardized costing methodologies in the National Photovoltaics Program. The costing standards, which include SAMIS for manufacturing costs and M and D for marketing and distribution costs, have been applied to concentrator collectors and power-conditioning units. The M and D model was also computerized. Finally, a uniform construction cost-accounting structure was developed for use in photovoltaic test and application projects. The appendices contain example cases which demonstrate the use of the models.

  2. The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting

    E-Print Network [OSTI]

    Travis, Adrian

    The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solventsm00343c The power conversion efficiency in a conjugated polymer-functionalized fullerene bulk heterojunction organic photovoltaic (OPV) device is dependent both on the electronic properties

  3. Effective lifetimes exceeding 300 ?s in gettered p-type epitaxial kerfless silicon for photovoltaics

    E-Print Network [OSTI]

    Powell, D. M.

    We evaluate defect concentrations and investigate the lifetime potential of p-type single-crystal kerfless silicon produced via epitaxy for photovoltaics. In gettered material, low interstitial iron concentrations (as low ...

  4. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOE Patents [OSTI]

    Yang, Liyou (Lawrenceville, NJ)

    1993-10-26T23:59:59.000Z

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  5. Development of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    photovoltaic system 1. INTRODUCTION Solid state inverters allow to put photovoltaic (PV) systems into the powerDevelopment of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System-phase three-level current source inverter (CSI) driven by a single gate-drive power supply in both chopper

  6. Alpha Solarco`s Photovoltaic Concentrator Development program

    SciTech Connect (OSTI)

    Anderson, A.; Bailor, B.; Carroll, D. [Alpha Solarco, Inc., Phoenix, AZ (United States)] [and others

    1995-10-01T23:59:59.000Z

    This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.

  7. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01T23:59:59.000Z

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  8. Photovoltaic concentrator initiative: Concentrator cell development

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Narayanan, S. [Solarex Corp., Frederick, MD (US)

    1993-05-01T23:59:59.000Z

    This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

  9. Photovoltaic concentrator technology development project. Sixth project integration meeting

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  10. Photovoltaic power conditioners: Development, evolution, and the next generation

    SciTech Connect (OSTI)

    Bulawka, A. [USDOE, Washington, DC (United States); Krauthamer, S.; Das, R. [Jet Propulsion Lab., Pasadena, CA (United States); Bower, W. [Sandia National Labs., Albuquerque, NM (United States)

    1994-07-01T23:59:59.000Z

    Market-place acceptance of utility-connected photovoltaic (PV) power generation systems and their accelerated installation into residential and commercial applications are heavily dependent upon the ability of their power conditioning subsystems (PCS) to meet high reliability, low cost, and high performance goals. Many PCS development efforts have taken place over the last 15 years, and those efforts have resulted in substantial PCS hardware improvements. These improvements, however, have generally fallen short of meeting many reliability, cost and performance goals. Continuously evolving semiconductor technology developments, coupled with expanded market opportunities for power processing, offer a significant promise of improving PCS reliability, cost and performance, as they are integrated into future PCS designs. This paper revisits past and present development efforts in PCS design, identifies the evolutionary improvements and describes the new opportunities for PCS designs. The new opportunities are arising from the increased availability and capability of semiconductor switching components, smart power devices, and power integrated circuits (PICS).

  11. Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers

    E-Print Network [OSTI]

    Wang, Zhong L.

    -frequency mechanical energies such as a light- wind and body movements, making it possible to produce a promising powerControl of naturally coupled piezoelectric and photovoltaic properties for multi-type energy*d Received 5th July 2011, Accepted 12th August 2011 DOI: 10.1039/c1ee02080c In this paper, we present

  12. Lab Breakthrough: Microelectronic Photovoltaics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Breakthrough: Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV)...

  13. Merging photovoltaic hardware development with hybrid applications in the USA

    SciTech Connect (OSTI)

    Bower, W.

    1993-11-01T23:59:59.000Z

    The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

  14. Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics

    SciTech Connect (OSTI)

    ERTEN ESER

    2012-01-22T23:59:59.000Z

    The project validated the use of stainless steel flexible substrate coated with silicone-based resin dielectric, developed by Dow Corning Corporation, for Cu(InGa)Se2 based photovoltaics. The projects driving force was the high performance of Cu(InGa)Se2 based photovoltaics coupled with potential cost reduction that could be achieved with dielectric coated SS web substrate.

  15. The photovoltaic market analysis program : background, model development, applications and extensions

    E-Print Network [OSTI]

    Lilien, Gary L.

    1981-01-01T23:59:59.000Z

    The purpose of this report is to describe and motivate the market analysis program for photovoltaics that has developed over the last several years. The main objective of the program is to develop tools and procedures to ...

  16. Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR SOLAR THERMAL AND SOLAR PHOTOVOLTAIC INSTALLATIONS Juan-Carlos Baltazar Research Associate Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director Don R. Gilman, P.E. Senior... the potential emission reductions due to the electricity savings from the application of some of the most common solar thermal and solar photovoltaic systems. The methodology to estimate the potential NOx emission reduction integrates legacy analysis tools...

  17. Band offsets of n-type electron-selective contacts on cuprous oxide (Cu[subscript 2]O) for photovoltaics

    E-Print Network [OSTI]

    Brandt, Riley E.

    The development of cuprous oxide (Cu [subscript 2]O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu ...

  18. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Susan Babinec

    2012-02-08T23:59:59.000Z

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  19. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    SciTech Connect (OSTI)

    Zhuang, Taojun; Wang, Xiao-Feng, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp; Sano, Takeshi; Kido, Junji, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp [Department of Organic Device Engineering, Graduate School of Science and Engineering, and Research Center for Organic Electronics (ROEL), Yamagata University, Yonezawa 992-8510 (Japan); Hong, Ziruo, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp [Department of Organic Device Engineering, Graduate School of Science and Engineering, and Research Center for Organic Electronics (ROEL), Yamagata University, Yonezawa 992-8510 (Japan); Department of Materials Science and Engineering, University of California-Los Angeles, California 90095 (United States); Li, Gang; Yang, Yang [Department of Materials Science and Engineering, University of California-Los Angeles, California 90095 (United States)

    2014-09-01T23:59:59.000Z

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100?nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33?mA/cm{sup 2}, an open circuit voltage of 0.72?V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  20. Development and operation of a photovoltaic power system for use at remote Antarctic sites

    SciTech Connect (OSTI)

    Piszczor, M.F.; Kohout, L.L.; Manzo, M. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Colozza, A.J. [NYMA, Brook Park, OH (United States)

    1994-12-31T23:59:59.000Z

    A photovoltaic power system, designed and built at the NASA Lewis Research Center, has successfully operated over the past two summer seasons at a remote site in Antarctica, providing utility-type power for a six-person field team. The system was installed at the Lake Hoare site for approximately five weeks during late 1992, put into storage for the Antarctic winter, and then used again during the 1993 season. The photovoltaic power system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system worked extremely well in providing quiet, reliable power. The experience gained from early system demonstrations such as this should be beneficial in accelerating the transition toward future PV systems in Antarctica and other similar areas.

  1. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01T23:59:59.000Z

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  2. Market definition study of photovoltaic power for remote villages in developing countries

    SciTech Connect (OSTI)

    Ragsdale, C.; Quashie, P.

    1980-10-01T23:59:59.000Z

    The objective of this market definition study is to assess the market potential for the use of photovoltaic power systems for remote villages in developing countries. The approach used was to conduct an in-depth literature search followed by in-country surveys of selected developing countries in Africa, the Middle East, Southeast Asia, and Latin America. The purpose of these surveys was to determine the current energy situation in these countries, the level of rural electrification activity, their knowledge and interest in solar and specifically photovoltaics, their financial resource capability, and the probability of development of a market for photovoltaics based on these and other factors. Findings are presented. The conclusion reached by the survey is that there is a significant market potential for photovoltaics in village power applications in developing countries. Extrapolation of the number of unelectrified villages results in an estimated potential of as much as 20,000 MWp, a potential similar in magnitude to previous UN and World Bank estimates. Recommendations for market stimulation are presented. (WHK)

  3. Development of Inorganic Precursors for Manufacturing of Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-308

    SciTech Connect (OSTI)

    van Hest, M.; Ginley, D.

    2013-06-01T23:59:59.000Z

    Both NREL and Rohm and Haas Electronic Materials are interested in the development of solution phase metal and semiconductive precursors for the manufacturing of photovoltaic devices. In particular, we intend to develop material sets for atmospheric deposition processes. The cooperation between these two parties will enable high value materials and processing solutions for the manufacturing of low cost, roll-to-roll photovoltaics.

  4. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Photovoltaic Technology For

    E-Print Network [OSTI]

    Into Photovoltaic Technology For The New Student Union Building Peter Choi, Tamer Kalla, Tony Lin University; AN INVESTIGATION INTO PHOTOVOLTAIC TECHNOLOGY FOR THE NEW STUDENT UNIONION BUILDING Peter Choi Tamer Kalla Tony ................................................................................. 3 2.1 CHALLENGES OF PHOTOVOLTAIC CELLS

  5. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  6. Comment on "coherence and uncertainty in nanostructured organic photovoltaics"

    E-Print Network [OSTI]

    Mukamel, S

    2013-01-01T23:59:59.000Z

    provide new probes for photovoltaics. The develop- ment ofin Nanostructured Organic Photovoltaics. J. Phys. Chem. Lettin Nanostructured Organic Photovoltaics” Shaul Mukamel

  7. Solar Junction Develops World Record Setting Concentrated Photovoltaic

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagement |Solar Energy Development inSolar FlareSolar

  8. Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers

    SciTech Connect (OSTI)

    Schmid, F. (Crystal Systems, Inc., Salem, MA (United States))

    1991-12-01T23:59:59.000Z

    This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

  9. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01T23:59:59.000Z

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  10. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  11. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    installed power from photovoltaic systems worldwide fromBest research photovoltaic efficiencies (Kazmerski,as a function of time for numerous types of photovoltaic

  12. NREL PV AR&D 11th review meeting, May 13--15, 1992, Denver Marriott City Center, Denver, Colorado. Photovoltaic Advanced Research and Development Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This is a collection of abstracts from papers presented at the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) research and development review meeting held May 1992. Subject areas covered include solar cell and solar module manufacturing and development, materials, polycrystalline thin films, applications, amorphous silicon, solar cell performance and testing, crystalline silicon and other photovoltaic and safety perspectives. (GHH)

  13. Process Development for CIGS Based Thin Film Photovoltaics Modules, Phase II Technical Report

    SciTech Connect (OSTI)

    Britt, J.; Wiedeman, S.; Albright, S.

    2000-11-09T23:59:59.000Z

    As a technology partner with NREL, Global Solar Energy (GSE) has initiated an extensive and systematic plan to accelerate the commercialization of thin-film photovoltaics (PV) based on copper indium gallium diselenide (CIGS). The distinguishing feature of the GSE manufacturing process is the exclusive use of lightweight, flexible substrates. GSE has developed the technology to fabricate CIGS photovoltaics on both stainless-steel and polymer substrates. CIGS deposited on flexible substrates can be fabricated into either flexible or rigid modules. Low-cost, rigid PV panels for remote power, bulk/utility, telecommunication, and rooftop applications have been produced by affixing the flexible substrate to an inexpensive rigid panel by lamination or adhesive. Stainless-steel-based PV modules are fabricated by a novel interconnect method that avoids the use of wires or foils and soldered connections. In the case of polymer-based PV modules, the continuous roll is not sectioned into individual panels until the module buss and power leads are attached. Roll-to-roll vacuum deposition has several advantages that translate directly to reduced capital costs, greater productivity, improved yield, greater reliability, lower maintenance, and a larger volume of PV material. In combination with roll-to-roll processing, GSE has developed evaporation deposition operations that enable low-cost and high-efficiency CIGS modules. The CIGS deposition process relies heavily on effusion source technology developed at GSE, and solving numerous problems was an integral part of the source development effort. Cell interconnection for thin-film CIGS modules on a polyimide substrate presents a considerable challenge.

  14. Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure

    SciTech Connect (OSTI)

    Xing, Juanjuan, E-mail: xingjuanjuan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Takeguchi, Masaki [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Hashimoto, Ayako [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Global Research Center for Environment and Energy Based on Nanomaterials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cao, Junyu; Ye, Jinhua [International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-04-21T23:59:59.000Z

    Photovoltaic behavior of a CaFe{sub 2}O{sub 4}/ZnFe{sub 2}O{sub 4} p-n multi-junction was investigated with electron holography combined with an in situ light irradiation system. Potential profiles of the samples with and without light irradiation were extracted to measure the open circuit photovoltage generated either by the whole heterojunction superstructure or from each p-n junction. Investigation on the variation in the energy band configuration under light irradiation revealed the mechanism involved in the photoelectric effect, with respect to the properties of the heterojunction and its periodic quantum structure.

  15. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  16. Photovoltaic cell efficiency at elevated temperatures

    E-Print Network [OSTI]

    Ray, Katherine Leung

    2010-01-01T23:59:59.000Z

    In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

  17. U.S. Department of Energy directions in photovoltaic power conditioner development using Smart Power/Power Integrated Circuit technologies

    SciTech Connect (OSTI)

    Bulawka, A. [Dept. of Energy, Washington, DC (United States); Krauthamer, S. [Jet Propulsion Lab., Pasadena, CA (United States); Das, R. [Jet Propulsion Lab., Pasadena, CA (United States); [California State Univ., Long Beach, CA (United States)

    1994-12-31T23:59:59.000Z

    Photovoltaic (PV) power applications are currently concentrated in intermediate or residential size for utility-interactive, or small stand-alone modes of operation. Consequently, the development of low cost, highly efficient and reliable power conditioning subsystems (PCS) in the small to medium power range is critical for the viability of PV systems as an alternative energy source. The paper summarizes US Department of Energy programmatic directions and development efforts in photovoltaic PCS designs. It describes new opportunities arising from increased availability and capabilities of semiconductor switching components such as smart power devices and power integrated circuits (PICs). The paper describes development efforts of manufacturers of these components and evaluates the synergistic impacts that will assist in new PCS development, and will accelerate PV power applications. It is found that the use of these technologies in future PCS designs offers significant promise of improved PCS reliability, cost and performance, thereby making PV ac power more competitive with utility power.

  18. Project Profile: Development of a Low-Cost Residential Plug-and-Play Photovoltaic System

    Broader source: Energy.gov [DOE]

    North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage...

  19. Photovoltaic decision analysis

    E-Print Network [OSTI]

    Goldman, Neil L.

    1977-01-01T23:59:59.000Z

    This paper is concerned with the development and implementation of a methodology that analyzes information relating to the choice between flat plate and concentrator technologies for photovoltaic development. A

  20. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26T23:59:59.000Z

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  1. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20T23:59:59.000Z

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  2. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  3. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On October 10, 2011, in This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  4. Module Handbook Specialisation Photovoltaics

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Photovoltaics 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Northumbria Specialisation Provider: Photovoltaics #12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL

  5. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  6. Photovoltaic product directory and buyers guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01T23:59:59.000Z

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  7. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  8. Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    by the University of Wisconsin, which is used to select and analyze solar thermal systems. The program provides monthly- average performance for selected system, including: domestic water heating systems, space heating systems, pool heating systems and others... savings from photovoltaic systems using the PV F-CHART program, and a second procedure that uses the F-CHART program to calculate the thermal savings. The solar systems are simulated as specified for the user, no optimization or modification...

  9. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect (OSTI)

    Olson, D.

    2014-08-01T23:59:59.000Z

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  10. Plug-and-Play Photovoltaics Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  11. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G. (Cambridge, MA); Kurtz, Sarah (Somerville, MA)

    1984-11-27T23:59:59.000Z

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  12. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  13. Decentalized solar photovoltaic energy systems

    SciTech Connect (OSTI)

    Krupka, M. C.

    1980-09-01T23:59:59.000Z

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  14. EELE408 Photovoltaics Lecture 20: Photovoltaic Systems

    E-Print Network [OSTI]

    Kaiser, Todd J.

    · 6. Determine battery size for recommended reserve time Photovoltaic System Design Block Diagram Ph1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array

  15. Safety-related requirements for photovoltaic modules and arrays. Final report

    SciTech Connect (OSTI)

    Levins, A.

    1984-03-01T23:59:59.000Z

    Underwriters Laboratories has conducted a study to identify and develop safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. This discussion of safety systems recognizes that there is little history on which to base the expected safety related performance of a photovoltaic system. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the UL investigation of the photovoltaic module evaluated to the provisions of the Proposed UL Standard for Flat-Plate Photovoltaic Modules and Panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit grounding, and the type of circuit ground are covered. The development of the Standard for Flat-Plate Photovoltaic Modules and Panels has continued, and with both industry comment and a product submittal and listing, the Standard has been refined to a viable document allowing an objective safety review of photovoltaic modules and panels. How this document, and other UL documents would cover investigations of certain other photovoltaic system components is described.

  16. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02T23:59:59.000Z

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  17. Photovoltaics Green is a Prerequisite for Sustainable Growth

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Photovoltaics Green is a Prerequisite for Sustainable Growth Vasilis Fthenakis1 and Brent Nelson2 impact on the environment, are the key drivers of photovoltaic energy development Photovoltaic life Criteria Photovoltaics are required to meet the need for abundant electricity generation at competitive

  18. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  19. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  20. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  1. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  2. PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS, VOL 2, 235-248 (1994) ~pplications Photovoltaics as a

    E-Print Network [OSTI]

    Delaware, University of

    1994-01-01T23:59:59.000Z

    PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS, VOL 2, 235-248 (1994) ~pplications Photovoltaics as a Demand-side Management Technology: an Analysis of Peak-shaving and Direct Load Control Dept. of Energy University Center of Excellence for Photovoltaic Research and Development, Newark, DE

  3. Energizing the Next Generation with Photovoltaics Following the lead of Russian colleagues, photovoltaic (PV)

    E-Print Network [OSTI]

    Oregon, University of

    Energizing the Next Generation with Photovoltaics ABSTRACT Following the lead of Russian colleagues, photovoltaic (PV) lab kits are being built and experiments and curricula are being developed for use of these kits. This Photovoltaic Sci- ence Experiments and Curriculum (PSEC) is being tested in local high

  4. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  5. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  6. THE IMPACT OF CITY-LEVEL PERMITTING PROCESSES ON RESIDENTIAL PV INSTALLATION PRICES AND DEVELOPMENT TIMES

    E-Print Network [OSTI]

    Dong, Changgui

    2014-01-01T23:59:59.000Z

    The installed price of photovoltaic (PV) systems hasprice and development time of residential photovoltaic (PV)

  7. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  8. 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS

    E-Print Network [OSTI]

    -generation industrial solar cells as stated in the International Technology Roadmap [3]. An industrial PERC process flow27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS C.Kranz1 , S. Wyczanowski1 , S

  9. EELE408 Photovoltaics Lecture 15 Photovoltaic Devices

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 15 Photovoltaic Devices Dr. Todd J. Kaiser tjkaiser) · Demonstrated the photovoltaic effect · Best results with UV or blue light 2 g · Electrodes covered with light of photovoltaic effect in an all solid state device · Several decades before the effect could be explained Fritts

  10. Sandia National Laboratories: predicts photovoltaic array ocular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard...

  11. Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems materials for enhanced photovoltaic (PV) performance, it is critical to have quantitative knowledge developed for solar radiation durability studies of solar and environmentally exposed photovoltaic materials

  12. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

  13. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01T23:59:59.000Z

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  14. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  15. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

  16. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  17. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Tool Determines Value of Solar Photovoltaic Power Systems On February 6, 2012, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar Consistent...

  18. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security National Solar Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State...

  19. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, Photovoltaic, Renewable Energy, Solar Sandia's microsystems enabled photovoltaics, also known as "solar glitter," captured a prestigious R&D 100 Award in this...

  20. Photovoltaic Technology Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

  1. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  2. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  3. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Tool Determines Value of Solar Photovoltaic Power Systems On February 6, 2012, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar Consistent...

  4. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  5. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Tool Determines Value of Solar Photovoltaic Power Systems On February 6, 2012, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar Consistent...

  6. Development of large-area monolithically integrated silicon-film photovoltaic modules

    SciTech Connect (OSTI)

    Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

    1992-07-01T23:59:59.000Z

    This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

  7. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lany, Stephan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kykyneshi, Robert [Oregon State Univ., Corvallis, OR (United States); Jieratum, Vorranutch [Oregon State Univ., Corvallis, OR (United States); Ravichandran, Ram [Oregon State Univ., Corvallis, OR (United States); Pelatt, Brian [Oregon State Univ., Corvallis, OR (United States); Altschul, Emmeline [Oregon State Univ., Corvallis, OR (United States); Platt, Heather A. S. [Oregon State Univ., Corvallis, OR (United States); Wager, John F. [Oregon State Univ., Corvallis, OR (United States); Keszler, Douglas A. [Oregon State Univ., Corvallis, OR (United States); Zunger, Alex [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-10-01T23:59:59.000Z

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  8. SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302

    SciTech Connect (OSTI)

    Kroposki, B.

    2012-09-01T23:59:59.000Z

    Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

  9. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying...

  10. Development of Substrate Structure CdTe Photovoltaic Devices with Performance Exceeding 10%: Preprint

    SciTech Connect (OSTI)

    Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Gessert, T. A.

    2012-08-01T23:59:59.000Z

    Most work on CdTe-based solar cells has focused on devices with a superstrate structure. This focus is due to the early success of the superstrate structure in producing high-efficiency cells, problems of suitable ohmic contacts for lightly doped CdTe, and the simplicity of the structure for manufacturing. The development of the CdCl2 heat treatment boosted CdTe technology and perpetuated the use of the superstrate structure. However, despite the beneficial attributes of the superstrate structure, devices with a substrate structure are attractive both commercially and scientifically. The substrate structure eliminates the need for transparent superstrates and thus allows the use of flexible metal and possibly plastic substrates. From a scientific perspective, it allows better control in forming the junction and direct access to the junction for detailed analysis. Research on such devices has been limited. The efficiency of these devices has been limited to around 8% due to low open-circuit voltage (Voc) and fill factor. In this paper, we present our recent device development efforts at NREL on substrate-structure CdTe devices. We have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. We have worked on a variety of contact materials including Cu-doped ZnTe and CuxTe. We will present a comparative analysis of the performance of these contacts. In addition, we have studied the influence of fabrication parameters on junction properties. We will present an overview of our development work, which has led to CdTe devices with Voc values of more than 860 mV and NREL-confirmed efficiencies approaching 11%.

  11. The Solar Energy Consortium of New York Photovoltaic Research and Development Center

    SciTech Connect (OSTI)

    Klein, Petra M.

    2012-10-15T23:59:59.000Z

    Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

  12. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  13. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01T23:59:59.000Z

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  14. Geothermal Development Job Types and Impacts

    Broader source: Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  15. GAP analysis towards a design qualification standard development for grid-connected photovoltaic inverters.

    SciTech Connect (OSTI)

    Tamizhmani, Govindasamy (Arizona State University, Tempe, AZ); Granata, Jennifer E.; Maracas, George (Arizona State University, Tempe, AZ); Ayyanar, Raja (Arizona State University, Tempe, AZ); Marinella, Matthew; Venkataramanan, Sai Balasubramanian Alampoondi (Arizona State University, Tempe, AZ)

    2011-06-01T23:59:59.000Z

    A dedicated design qualification standard for PV inverters does not exist. Development of a well-accepted design qualification standard, specifically for PV inverters will significantly improve the reliability and performance of inverters. The existing standards for PV inverters such as ANSI/UL 1741 and IEC 62109-1 primarily focus on safety of PV inverters. The IEC 62093 discusses inverter qualification but it includes all the BOS components. There are other general standards for distributed generators including the IEEE 1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this paper some of the potential requirements for a design qualification standard for PV inverters are addressed. The missing links in existing PV inverter related standards are identified and with the IEC 62093 as a guideline, the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. Some of the key missing links are related to electric stress tests. Hence, a method to adapt the existing surge withstand test standards for use in design qualification standard of PV inverter is presented.

  16. National Center for Photovoltaics at NREL

    ScienceCinema (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2014-06-10T23:59:59.000Z

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  17. National Center for Photovoltaics at NREL

    SciTech Connect (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2013-11-07T23:59:59.000Z

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  18. Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers. Final subcontract report, 9 January 1991--14 April 1991

    SciTech Connect (OSTI)

    Schmid, F. [Crystal Systems, Inc., Salem, MA (United States)

    1991-12-01T23:59:59.000Z

    This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

  19. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect (OSTI)

    Mattos, L.

    2012-03-01T23:59:59.000Z

    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  20. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  1. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. (ed.)

    1990-01-01T23:59:59.000Z

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  2. Cyclobutadiene–C[subscript 60] Adducts: N-Type Materials for Organic Photovoltaic Cells with High V[subscript OC

    E-Print Network [OSTI]

    Han, Ggoch Ddeul

    New tetraalkylcyclobutadiene–C[subscript 60] adducts are developed via Diels–Alder cycloaddition of C[subscript 60] with in situ generated cyclobutadienes. The cofacial ?-orbital interactions between the fullerene orbitals ...

  3. Solar photovoltaic residence in Carlisle, Massachusetts

    SciTech Connect (OSTI)

    Strong, S. J.; Nichols, B. E.

    1981-01-01T23:59:59.000Z

    The first solar photovoltaic house designed and constructed under the US Department of Energy's Solar Photovoltaic Residential Project has been completed. The house, which is powered by a 7-kWp PV system, will be used to assess the occupants' acceptance of and reactions to residential photovoltaic systems and to familiarize utilities, builders, developers, town building officials and others with issues concerning photovoltaic installations. The house is located on a two-acre lot in Carlisle, approximately twenty miles northwest of Boston. Built by a local architect/developer team, the house includes energy conservation and passive solar features. It utilizes a roof-mounted, flat-plate PV array which operates in a two-way energy exchange mode with the electric utility. The energy conservation and passive solar features of this house are described and a detailed description of the utility-interactive photovoltaic system is presented, along with initial performance data.

  4. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes. A workshop report

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Zweibel, K. [eds.

    1992-10-01T23:59:59.000Z

    Since the development of the first silicon based photovoltaic cell in the 1950`s, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  5. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Zweibel, K. (eds.)

    1992-01-01T23:59:59.000Z

    Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  6. Sandia National Laboratories: photovoltaic analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  7. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29T23:59:59.000Z

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  8. Scale-Up of CdTe Photovoltaic Device Processes for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-06-196

    SciTech Connect (OSTI)

    Albin, D.

    2013-02-01T23:59:59.000Z

    Through this Cooperative Research and Development Agreement, NREL and PrimeStar Solar will work together to scale up the NREL CdTe photovoltaic process from the laboratory to produce photovoltaic devices in a size that is commercially viable. The work in this phase will focus on the transference of NREL CdTe device fabrication techniques to PrimeStar Solar. NREL and PrimeStar Solar will engage in a series of technical exchange meetings and laboratory training sessions to transfer the knowledge of CdTe PV film growth from NREL to PrimeStar Solar. PrimeStar Solar will grow thin films on PrimeStar Solar equipment and interleave them with NREL-grown films in an effort to develop a commercial scale process on PrimeStar Solar equipment. Select NREL film growth equipment will be upgraded either by PrimeStar Solar or at PrimeStar Solar's expense to increase equipment reliability and throughput.

  9. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    and Photovoltaic Performance . . . . . . . . . . . . . . .conduction and photovoltaic performance. Experimental dataElectronic and Photovoltaic Performance We also probed oxide

  10. Sandia National Laboratories: Photovoltaic Regional Testing Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration, Modeling, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Photovoltaic Systems Evaluation...

  11. Battery testing for photovoltaic applications

    SciTech Connect (OSTI)

    Hund, T.

    1996-11-01T23:59:59.000Z

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  12. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  13. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  14. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  15. Electroluminescence in photovoltaic cell

    E-Print Network [OSTI]

    Petraglia, Antonio; 10.1088/0031-9120/46/5/F01

    2011-01-01T23:59:59.000Z

    Here we propose two methods to get electroluminescence images from photovoltaic cells in a school or home lab.

  16. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Photovoltaic, Renewable Energy, SMART Grid, Solar Newsletter, Systems Analysis, Systems...

  17. Photovoltaic Technology Incubator Awards

    SciTech Connect (OSTI)

    Not Available

    2007-06-01T23:59:59.000Z

    This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

  18. Superior Valley photovoltaic power processing and system controller evaluation

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

    1995-11-01T23:59:59.000Z

    Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

  19. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31T23:59:59.000Z

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  20. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23T23:59:59.000Z

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  1. Data base on batteries, power-conditioning equipment, and photovoltaic arrays. Final report

    SciTech Connect (OSTI)

    Podder, A; Kapner, M; Morse, T

    1981-02-01T23:59:59.000Z

    The objective of this study was to compile an up-to-date comprehensive data base for research, design, and development of photovoltaic systems, primarily in the areas of applications and battery technology, and secondarily in the area of power conditioning and photovoltaic array technology. This volume contains the data base used to develop the end-use scenarios and identify the R and D needed for batteries to be used in photovoltaic power systems. In addition to its specific application to the present study, this data base is intended to provide state-of-the-art information to manufacturers of the various components of photovoltaic power systems, system designers, and researchers in this field. An extensive literature search was conducted to obtain technical data on batteries, power conditioners, and photovoltaic arrays. The data obtained from published technical literature and direct communication with manufacturers and developers are compiled. Principles of operation, types of systems, performance characteristics, test data, and cost data are included for each of the components. (WHK)

  2. EELE408 Photovoltaics Lecture 17 Photovoltaic Modules

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 17 Photovoltaic Modules Dr. Todd J. Kaiser tjkaiser to temperature effects and other non ideal conditions · Allows for voltage drops across other PV system components · Requires 15 V to charge a 12 V battery 10 Module Current · Depends primarily on size of solar

  3. Photovoltaics information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  4. Evaluation of Lifetime of High Efficiency Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-379

    SciTech Connect (OSTI)

    Olson, D.

    2013-04-01T23:59:59.000Z

    As a part of this joint work, Solarmer and NREL will investigate the lifetime and stability of Organic Photovoltaic Devices based on Solarmer high efficiency active layer materials.

  5. Solar Photovoltaic Financing: Deployment on Public Property by...

    Broader source: Energy.gov (indexed) [DOE]

    of Development) PBI Performance-based incentive PG&E Pacific Gas & Electric PPA Power purchase agreement PTC Production tax credit PV Photovoltaics R&D Research and...

  6. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Environmental Management (EM)

    ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010 EA-1827: Final Environmental Assessment Suniva Solar Project Site Community Development Block Grant in...

  7. Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    alone cost about 0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking system that reduces mechanical and electrical labor,...

  8. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect (OSTI)

    Summers, K.A. (ed.)

    1991-03-01T23:59:59.000Z

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  9. Request for Information on Photovoltaic Module Recycling

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  10. NREL Photovoltaic Program FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  11. NREL Photovoltaic Program FY 1996 Annual Report

    SciTech Connect (OSTI)

    Not Available

    1997-08-01T23:59:59.000Z

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  12. Structured SWNTs and Graphene for Photovoltaic devices , Takaaki Chiba

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Structured SWNTs and Graphene for Photovoltaic devices Kehang Cui 1 , Takaaki Chiba 1 , Theerapol or ethanol vapor treatment of as-synthesized VA-SWNTs for such devices with higher performance. VA-SWNTs were bare n-type silicon contact window in the center. Our preliminary test showed that the photovoltaic

  13. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics PV Plant Performance Technical Briefing Published in PV Power Tech On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  14. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops and ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar...

  15. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot The Center for Integrated Nanotechnologies at Sandia recently received a...

  16. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20T23:59:59.000Z

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  17. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instruments: Solar Glitter On March 21, 2013, in Capabilities, Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have...

  18. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Program addresses technical barriers to large-scale deployment of solar photovoltaic (PV) generation in grid-tied power systems. Sandia's grid integration research...

  19. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resolving a Key to How Stars Transmit Energy Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan EC Top Publications Literature Survey of Crude Oil Properties...

  20. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Solar Technology in the Home On June 12, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis To better...

  1. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Past Market Transformation Activities On April 4, 2012, in Current activates have built upon past efforts, most notably the Solar American Cities (now Communities)...

  2. Lab Breakthrough: Microelectronic Photovoltaics

    Broader source: Energy.gov [DOE]

    Sandia's glitter-sized photovoltaic cells are highly efficient and cost effective – the perfect combination for a game-changing technology.

  3. Photovoltaic Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector.

  4. Sandia National Laboratories: concentrating photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrating photovoltaic Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership,...

  5. Next-Generation Photovoltaic Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

  6. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    SciTech Connect (OSTI)

    Ruby, D.S. (ed.)

    1990-07-01T23:59:59.000Z

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  7. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

    1993-09-21T23:59:59.000Z

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  8. Wide bandgap n-type and p-type semiconductor porous junction devices as photovoltaic cells This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    solar cells because of their low production cost. Significant breakthroughs in solar cell performances. Introduction Solar cells incorporating organic materials are interesting alternatives to conventional silicon artificial photovoltaic device. In a dye-sensitized solar cell the absorbing dye molecules lie at the large

  9. Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics

    E-Print Network [OSTI]

    Risø Energy Report 5 Photovoltaics 6.3.1 Photovoltaics TOM MARkVART, UNIVERsITy OF s kREbs, RIsø NATIONAL LAbORATORy, DENMARk The market for photovoltaics (PV, or solar cells) has grown. The European Photovoltaic Industry Association esti- mates that the share of thin-film technologies

  10. Development of crawler type device using new measuring system

    SciTech Connect (OSTI)

    Maruyama, T.; Sasaki, T.; Yagi, T. [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama (Japan)

    1995-08-01T23:59:59.000Z

    This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-ups and applied examination of RPVs to verify field applicability.

  11. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23T23:59:59.000Z

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  12. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center Brookhaven National Laboratory www.clca.columbia.edu www.pv.bnl.gov #12;2 The Life Cycle of PVThe Life Cycle

  13. Photovoltaics for residential applications

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  14. Microsystems Enabled Photovoltaics

    SciTech Connect (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02T23:59:59.000Z

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  15. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect (OSTI)

    Myers, D.

    1997-04-01T23:59:59.000Z

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  16. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  17. Development of an Air Transport Type A Fissile Package

    SciTech Connect (OSTI)

    Blanton, P.; Ebert, K.

    2011-07-13T23:59:59.000Z

    This paper presents the summary of testing by the Savannah River National Laboratory (SRNL) to support development of a light weight (<140 lbs) air transport qualified Type A Fissile Packaging. The package design incorporates features and materials specifically designed to minimize packaging weight. The light weight package is being designed to provide confinement to the contents when subjected to the normal and hypothetical conditions required of an air transportable Type A Fissile radioactive material shipping package. The objective of these tests was to provide design input to the final design for the LORX Type A Fissile Air Transport Packaging when subjected to the performance requirements of the drop, crush and puncture probe test of 10CFR71. The post test evaluation of the prototype packages indicates that all of the tested designs would satisfactorily confine the content within the packaging. The differences in the performance of the prototypes varied significantly depending on the core materials and their relative densities. Information gathered from these tests is being used to develop the final design for the Department of Homeland Security.

  18. Photovoltaic Subcontract Program. Annual report, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  19. DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

  20. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    of Photovoltaics . . . . . . . . . . . . . . . . 4.3.1Graphene 4 Photovoltaics 4.1 Motivation and Materialby the European Photovoltaics Industry Association for

  1. Metallic nanostructures for optoelectronic and photovoltaic applications

    E-Print Network [OSTI]

    Lim, Swee Hoe

    2009-01-01T23:59:59.000Z

    enhanced performance of photovoltaic and photodetector Proc.and H. Wagner, in Photovoltaic Specialists Conference. ,for Optoelectronic and Photovoltaic Applications by Swee Hoe

  2. Further developments in generating type-safe messaging

    SciTech Connect (OSTI)

    Neswold, R.; King, C.; /Fermilab

    2011-11-01T23:59:59.000Z

    At ICALEPCS 09, we introduced a source code generator that allows processes to communicate safely using data types native to each host language. In this paper, we discuss further development that has occurred since the conference in Kobe, Japan, including the addition of three more client languages, an optimization in network packet size and the addition of a new protocol data type. The protocol compiler is continuing to prove itself as an easy and robust way to get applications written in different languages hosted on different computer architectures to communicate. We have two active Erlang projects that are using the protocol compiler to access ACNET data at high data rates. We also used the protocol compiler output to deliver ACNET data to an iPhone/iPad application. Since it takes an average of two weeks to support a new language, we're willing to expand the protocol compiler to support new languages that our community uses.

  3. Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic applications

    E-Print Network [OSTI]

    Nabben, Reinhard

    Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic and a fullerene (C60) derivative with long alkyl chains was constructed as a donor­acceptor pair for photovoltaics as attractive candidates for the development of light- energy harvesting and photovoltaic materials because

  4. Annual Report: Photovoltaic Subcontract Program FY 1991

    SciTech Connect (OSTI)

    Summers, K. A.

    1992-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  5. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24T23:59:59.000Z

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  6. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2014-09-02T23:59:59.000Z

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  7. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESTAP Webinar: Briefing on Sandia's Maui Energy Storage Study On March 6, 2013, in EC, Energy, News, Photovoltaic, Renewable Energy, Solar March 6, 2013 14:00 - 15:00 Eastern The...

  8. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    845-9015 rdrobin@sandia.gov Publications available at: pvsac@sandia.gov Websites Photovoltaics energy.sandia.gov www.eere.energy.gov SunShot Meetings & Workshops On November 9,...

  9. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics PV Publications On April 22, 2011, in Recent Publications, Listed by Date. Click on publication title to view, right click to download. All files are in PDF format...

  10. Nanocarbon-Based Photovoltaics

    E-Print Network [OSTI]

    Bernardi, Marco

    Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active ...

  11. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC Delmarva Power Delaware Energy Office University of Delaware Center for Energy and Environmental Policy..................................................................................................... 5 3.3.1 Delaware's Solar Resource

  12. Three-dimensional photovoltaics

    E-Print Network [OSTI]

    Myers, Bryan

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

  13. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  14. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01T23:59:59.000Z

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  15. Photovoltaic systems for export application. Informal report

    SciTech Connect (OSTI)

    Duffy, J.; Campbell, H.; Sajo, A.; Sanz, E. [Univ. of Lowell, MA (United States)

    1988-01-31T23:59:59.000Z

    One approach to improving the competitiveness of photovoltaic systems is the development of designs specifically for export applications. In other words, where is it appropriate in a system design to incorporate components manufactured and/or assembled in the receiving country in order to improve the photovoltaic exports from the US? What appears to be needed is a systematic method of evaluating the potential for export from the US of PV systems for various application in different countries. Development of such a method was the goal of this project.

  16. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspenNOTRECSIVEP ev TinLoginNew

  17. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  18. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation, Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  19. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    SciTech Connect (OSTI)

    Branz, Howard M. (Boulder, CO); Crandall, Richard S. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1994-01-01T23:59:59.000Z

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

  20. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, H.M.; Crandall, R.S.; Tracy, C.E.

    1994-12-27T23:59:59.000Z

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

  1. The 22nd International Photovoltaic Science and Engineering Conference, November 05-09, 2012, Hangzhou, China Gettering of n-type multicrystalline silicon solar cells by

    E-Print Network [OSTI]

    , Hangzhou, China Gettering of n-type multicrystalline silicon solar cells by phosphorus diffusion, boron in heavily dislocated regions. 1. INTRODUCTION N-type multicrystalline silicon has great potential as solar+ diffused region in n- type silicon solar cells with either aluminum annealing or boron diffusion are good

  2. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    Polymer Photovoltaic Cells - Enhanced Efficiencies Via afor high-efficiency polymer photovoltaic cells usingfactors. The photovoltaic power conversion efficiency (?) [

  3. IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic

    E-Print Network [OSTI]

    Giannakis, Georgios

    IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused on the possibility of inverters providing ancillary services such as active power curtailment and reactive power

  4. Photovoltaic procurement strategies: an assessment of supply issues

    SciTech Connect (OSTI)

    Posner, D.; Costello, D.

    1980-02-01T23:59:59.000Z

    This review report presents the results of an analysis of alternative approaches to the design of a federal photovoltaics procurement program. Advantages and disadvantages of large purchases at fixed prices and smaller purchases for testing and demonstrating the technology are presented. The objectives and possible impacts of these purchase programs on the photovoltaic industry are described. The reactions of the industry to alternative purchase programs were assessed using personal interviews with selected companies currently active in photovoltaics. The report begins with a review of the impacts of federal procurements on other innovations, including the electronics industry, and suggests the relation of these procurements to photovoltaics. The methodology for conducting the interviews is presented next. The results of the interviews are summarized into possible scenarios of future developments in the industry and into discussions of key issues in the design of a procurement program. An appendix on the current structure of the photovoltaic industry is provided.

  5. Photovoltaic energy: Contract list, fiscal year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The federal government has conducted the National Photovoltaics Program since 1975. Its purpose is to provide focus, direction, and funding for the development of terrestrial photovoltaic technology as an energy option for the United States. In the past, a summary was prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. Tasks conducted in-house by participating national laboratories or under contract by industrial, academic, and other research institutes were highlighted. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed by Sandia National Laboratory or the Solar Energy Research Institute during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory, projects are listed alphabetically by project area and then by subcontractor name.

  6. Thermionic-photovoltaic energy converter

    SciTech Connect (OSTI)

    Chubb, D. L.

    1985-07-09T23:59:59.000Z

    A thermionic-photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or galium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  7. Cogenerating Photovoltaic and Thermal Solar Collector

    E-Print Network [OSTI]

    Su, Xiao

    · Solar Energy and Alternative Energy can contribute to the energy supply ­ Renewable, doesn't emitCogenerating Photovoltaic and Thermal Solar Collector Jinny Rhee and Jim Mokri COE Faculty Development Grant 9/26, 2008 #12;Motivation · Many Contemporary Applications use power and heat ­ Power

  8. Photovoltaic energy program overview: Fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  9. Photovoltaic system controller

    SciTech Connect (OSTI)

    Gerken, K.F.; Sullivan, R.A.

    1989-12-19T23:59:59.000Z

    This patent describes a photovoltaic system controller for utilization with a photovoltaic power system including at least a photovoltaic array, a system battery adapted to be charged by the array and a load adapted to be powered by the battery. The controller comprising a microprocessor having an erasable programmable memory. The microprocessor having means to receive input data from the array, the battery and the load. The microprocessor having means to evaluate the input data in relation to at least one predetermined setpoint, the microprocessor in response to the evaluation being adapted to disconnect the battery from the array or to disconnect the load from the battery. The setpoint being adapted to be adjusted to a second setpoint by adjustment means, and the erasable programmable memory being adapted to be changed whereby the evaluation performed by the microprocessor is also changed.

  10. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A., E-mail: alois.lugstein@tuwien.ac.at [Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Birner, S. [nextnano GmbH, Südmährenstr. 21, 85586 Poing (Germany)

    2014-04-21T23:59:59.000Z

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  11. LET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    /kWh, depending on its location as well as on the size and type of PV system used (EPIA Report, 2011). InvestmentLET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY Anna CRETI Jérôme JOAUG Cahier n:chantal.poujouly@polytechnique.edu hal-00751743,version1-14Nov2012 #12;Let the sun shine: optimal deployment of photovoltaics in Germany

  12. Flywheel storage for photovoltaics: an economic evaluation of two applications

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1980-01-01T23:59:59.000Z

    A worth analysis is made for an advanced flywheel storage concept for tandem operation with photovoltaics currently being developed at MIT/Lincoln Laboratories. The applications examined here are a single family residence ...

  13. Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System

    Broader source: Energy.gov [DOE]

    A 2010 Rocky Mountain Institute report estimated that structural systems alone cost about $0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking...

  14. A stacked full-bridge microinverter topology for photovoltaic applications

    E-Print Network [OSTI]

    Yogeswaran, Kesavan

    2012-01-01T23:59:59.000Z

    Previous work has been done to develop a microinverter for solar photovoltaic applications consisting of a high-frequency series resonant inverter and transformer section connected to a a cycloconverter that modulates the ...

  15. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15T23:59:59.000Z

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  16. Sandia Energy - Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLive PhotovoltaicPhotovoltaics

  17. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenix BioPhotovoltaicsPhotovoltaics

  18. Editorial: Photovoltaic Materials and Devices

    SciTech Connect (OSTI)

    Sopori, B.; Tan, T.; Rupnowski, P.

    2012-01-01T23:59:59.000Z

    As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

  19. Ohio State's researchers to collaborate on three new Ohio Third Frontier photovoltaics grants Ohio State's Institute for Materials Research (IMR) is the central collaborator on three Ohio Third Frontier Photovoltaics

    E-Print Network [OSTI]

    Ohio State's researchers to collaborate on three new Ohio Third Frontier photovoltaics grants Ohio Photovoltaics Program (PVP) projects recommended for funding by the Ohio Third Frontier Commission. The goal of the PVP is to accelerate the development and growth of the photovoltaics industry in Ohio by supporting

  20. Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.

    2014-03-01T23:59:59.000Z

    This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

  1. Project Profile: Plug-and-Play Solar Photovoltaics for American Homes

    Broader source: Energy.gov [DOE]

    Fraunhofer USA, Inc., Center for Sustainable Energy Systems and its partners, under the Plug-and-Play Photovoltaics FOA, are developing technologies, components, systems, and standards that enable...

  2. Material Needs for Thin-Film and Concentrator Photovoltaic Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-12-04T23:59:59.000Z

    This presentation describes the ongoing needs (manufacturability, availability, low cost, performance, and reliability) that drive the development of new photovoltaic materials.

  3. Process Development for Nanostructured Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by 2030,PNNL-23227

  4. Multijunction photovoltaic device and method of manufacture

    DOE Patents [OSTI]

    Arya, Rejeewa R. (Jamison, PA); Catalano, Anthony W. (Boulder, CO); Bennett, Murray (Longhorne, PA)

    1995-04-04T23:59:59.000Z

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  5. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    than electricity from coal if cost of carbon capture is factored in Great promise for solving globalPhotovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful

  6. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01T23:59:59.000Z

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  7. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17T23:59:59.000Z

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  8. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  9. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  10. Research & Development Needs for Building-Integrated Solar Technologie...

    Energy Savers [EERE]

    photovoltaic-thermal systems (PVT), active solar lighting, and building-integrated photovoltaics (BIPV). View the full report Report: Research & Development Needs for...

  11. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    to standardize the performance of photovoltaic devices,Performance of organic luminescent solar concentrator photovoltaic

  12. Department of Energy: Photovoltaics program - FY 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  13. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8846343 2012 MRS Fall Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small

    E-Print Network [OSTI]

    Dietz, Nikolaus

    a superior potential for the development of high performance photovoltaic (PV) devices with reduced cost Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small investigated for use in photovoltaic solar cells for the past years. At present, almost all photovoltaic device

  14. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2012-09-04T23:59:59.000Z

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  15. Photon management in thermal and solar photovoltaics

    E-Print Network [OSTI]

    Hu, Lu

    2008-01-01T23:59:59.000Z

    Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

  16. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01T23:59:59.000Z

    Arya, D. Carlson, Prog. Photovoltaics 10, p. 69 (2002). K.and J. Bailat, Prog. in Photovoltaics 12 , 113 (2004). M.and A. Mart?´, Progress in Photovoltaics 9, p. 73 (2001). S.

  17. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  18. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  19. Development of large flow-type proportional counters

    E-Print Network [OSTI]

    Torline, Norbert Kevin

    1967-01-01T23:59:59.000Z

    . . )2 13 ~ The minimum efficiency observed in the region of overlap of the proportional counters as a function of the amount of 1'k. Details of the installation of Kovar seal and tungsten wire. . . . . . . . . . . . . . . )8 vii LXST OF TABLES... proportional counters: (i) All counters are of the continuous gas flow-type a- described in the thesis by K. ~&!. Bull. 2 (2) All counters were constructed with brass cathodes and tungsten wire anodes, with bras" end plates and Kovar seal anode leads...

  20. Photovoltaics for Residential Buildings Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

  1. Monitoring SERC Technologies — Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

  2. Sandia National Laboratories: sustainable photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaics Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal Test...

  3. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    decline in photovoltaic efficiency is less dramatic, butefficiency ? = V OC I ?j SC Amorphous Silicon-Carbon Nanostructure So- lar Cells For this thesis, I made photovoltaic

  4. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01T23:59:59.000Z

    Manufacturing high-efficiency low- cost photovoltaic devicesManufacturing high-efficiency low-cost photovoltaic devicesphotovoltaic devices capable of operation at power conversion efficiencies

  5. Organic Photovoltaics Experiments Showcase 'Superfacility' Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Collaboration Key to Enabling On-The-Fly HPC...

  6. Sandia National Laboratories: microsystems enabled photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microsystems enabled photovoltaics Sandian Selected for Outstanding Young Engineer Award On June 4, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar The...

  7. Sandia National Laboratories: photovoltaic plant reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic plant reliability Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid...

  8. Sandia National Laboratories: increased photovoltaic efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increased photovoltaic efficiency Combining 'Tinkertoy' Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News,...

  9. Sandia National Laboratories: Photovoltaic System Model Calibration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Model Calibration Using Monitored System Data Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling &...

  10. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy On May 1, 2013, in DETL, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  11. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24T23:59:59.000Z

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  12. Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New Residential Financing Model and Low-Income Resident Job Training Program, September 2011 (Brochure)

    SciTech Connect (OSTI)

    Dean, J.; Smith-Dreier, C.; Mekonnen, G.; Hawthorne, W.

    2011-09-01T23:59:59.000Z

    This case study covers the process of successfully integrating photovoltaic (PV) systems into a low-income housing development in northeast Denver, Colorado, focusing specifically on a new financing model and job training. The Northeast Denver Housing Center (NDHC), working in cooperation with Del Norte Neighborhood Development Corporation, Groundwork Denver, and the National Renewable Energy Laboratory (NREL), was able to finance the PV system installations by blending private equity funding with utility rebates, federal tax credits, and public sector funding. A grant provided by the Governor's Energy Office allowed for the creation of the new financing model. In addition, the program incorporated an innovative low-income job training program and an energy conservation incentive program.

  13. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

    2010-12-28T23:59:59.000Z

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  14. European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2AO.2.3 EFFECT OF SiN DEPOSITION TEMPERATURE ON SURFACE PASSIVATION OF N-TYPE CZ SILICON

    E-Print Network [OSTI]

    25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2AO.2N deposition leads to increasing the hydrogen content of the SiN layers. This improves the supply of hydrogen silicon using thermally grown oxide or amorphous films based on hydrogenated silicon compounds has been

  15. Photovoltaic and thermophotovoltaic devices with quantum barriers

    DOE Patents [OSTI]

    Wernsman, Bernard R. (Jefferson Hills, PA)

    2007-04-10T23:59:59.000Z

    A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.

  16. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08T23:59:59.000Z

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  17. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect (OSTI)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01T23:59:59.000Z

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  18. Metallic nanostructures for optoelectronic and photovoltaic applications

    E-Print Network [OSTI]

    Lim, Swee Hoe

    2009-01-01T23:59:59.000Z

    photovoltaics deployment, such technologies will reach their fundamental limitation in terms of efficiency,

  19. Photovoltaic system reliability

    SciTech Connect (OSTI)

    Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

    1997-10-01T23:59:59.000Z

    This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

  20. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24T23:59:59.000Z

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  1. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01T23:59:59.000Z

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  2. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

    2012-06-05T23:59:59.000Z

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  3. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19T23:59:59.000Z

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  4. NREL photovoltaic program FY 1997 annual report

    SciTech Connect (OSTI)

    McConnell, R.D.; Hansen, A.; Smoller, S.

    1998-06-01T23:59:59.000Z

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

  5. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01T23:59:59.000Z

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  6. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01T23:59:59.000Z

    current organic photovoltaic efficiencies are not highof the high photovoltaic efficiencies, 20-22 high chargeof a photovoltaic device by affecting the efficiency of

  7. Learning by doing: The evolution of state support for photovoltaics

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2003-01-01T23:59:59.000Z

    of State Support for Photovoltaics Mark Bolinger and Ryantarget the installation of photovoltaics (PV) in one way orwidespread popularity of photovoltaics (PV), along with its

  8. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01T23:59:59.000Z

    and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon Nanotube – Polymer Photovoltaics 6.1 Polymer-Nanotube

  9. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    4.4 Photovoltaics in Practice . . . . . . . . . . . . . .milestones. Quantum dot photovoltaics is in the bottom-rightIN QUANTUM DOT PHOTOVOLTAICS A dissertation submitted in

  10. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01T23:59:59.000Z

    properties for organic photovoltaics (OPVs). Space-chargePolymers for Organic Photovoltaics By David Fredric JoelPolymers for Organic Photovoltaics by David Fredric Joel

  11. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    Defect States, and Photovoltaic Performance, Advanced EnergyV curve and Photovoltaic Device Performance Parameters: Thetransport. The BHJ photovoltaic device performance improving

  12. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

  13. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

  14. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01T23:59:59.000Z

    Photovoltaic Cell .the materials, all photovoltaic cells operate on the basicEquation 1.2) For photovoltaic cells of all kinds and from

  15. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    processable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar EnergyPhotodiodes, and Photovoltaic Cells, Applied Physics Letters

  16. Charge transport in hybrid nanorod-polymer composite photovoltaic cells

    E-Print Network [OSTI]

    Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

    2002-01-01T23:59:59.000Z

    circuit diagram for a photovoltaic cell under illumination.Polymer Composite Photovoltaic Cells Wendy U. Huynh ‡ ,devices such as photovoltaic cells and light-emitting-

  17. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    Colloidal-quantum-dot photovoltaics using atomic-ligandGreen, Third generation photovoltaics: solar cells for 202027), Progress in Photovoltaics 14 (1), 45-51 (2006). [44] I.

  18. Tariffs Can Be Structured to Encourage Photovoltaic Energy

    E-Print Network [OSTI]

    Wiser, Ryan

    2009-01-01T23:59:59.000Z

    Be Structured to Encourage Photovoltaic Energy Ryan Wiser,of customer-sited photovoltaic (PV) systems. Though theseEconomics of Commercial Photovoltaic Systems in California,

  19. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    J. W. Yu, Organic photovoltaic devices with a crosslinkablein Nanostructured Photovoltaic Devices, Recent Patents oninterfaces in organic photovoltaic devices, Solar Energy

  20. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  1. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    Coggeshall. 2008. Solar Photovoltaic Financing: DeploymentEconomics of Commercial Photovoltaic Systems in California.Financing Non-Residential Photovoltaic Projects: Options and

  2. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    on Large Grid-Connected Photovoltaic Systems in Californiaof Dust on Solar Photovoltaic (PV) Performance: Researchclimatology in design of photovoltaic systems. In: Markvart

  3. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978—

  4. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    and Simulation of Photovoltaic Arrays. ” IEEE Trans. PowerSolar Cell Variability Photovoltaic (PV) cells manufacturedmodeling method for photovoltaic cells. ” in Proc. IEEE 35th

  5. Impact of Different Economic Performance Metrics on the Perceived Value of Solar Photovoltaics

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2011-10-01T23:59:59.000Z

    Photovoltaic (PV) systems are installed by several types of market participants, ranging from residential customers to large-scale project developers and utilities. Each type of market participant frequently uses a different economic performance metric to characterize PV value because they are looking for different types of returns from a PV investment. This report finds that different economic performance metrics frequently show different price thresholds for when a PV investment becomes profitable or attractive. Several project parameters, such as financing terms, can have a significant impact on some metrics [e.g., internal rate of return (IRR), net present value (NPV), and benefit-to-cost (B/C) ratio] while having a minimal impact on other metrics (e.g., simple payback time). As such, the choice of economic performance metric by different customer types can significantly shape each customer's perception of PV investment value and ultimately their adoption decision.

  6. NREL Center for Photovoltaics

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%—about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  7. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  8. Photovoltaic retinal prosthesis: implant fabrication and performance This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Palanker, Daniel

    Photovoltaic retinal prosthesis: implant fabrication and performance This article has been (11pp) doi:10.1088/1741-2560/9/4/046014 Photovoltaic retinal prosthesis: implant fabrication/046014 Abstract The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring

  9. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    SciTech Connect (OSTI)

    Lamm, D.

    1980-06-01T23:59:59.000Z

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  10. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  11. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01T23:59:59.000Z

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  12. AEC PHOTOVOLTAIC TEST FACILITY FIRST YEAR TEST DATA James Krumsick

    E-Print Network [OSTI]

    Oregon, University of

    a method for comparing performance of different PV arrays and inverters. In addition to power production@uoregon.edu ABSTRACT Alternative Energy Consortium's Photovoltaic test facility (AEC PV) came on line in August, 2004 system uses a different combination of collector panels and inverters, with five different types

  13. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2008-10-14T23:59:59.000Z

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  14. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    to enhanced photovoltaic device efficiency. ACS nano, 2(11):Photovoltaic Devices Introduction Thin-film quantum dot (QD) photovoltaics provide the potential to create high-efficiencyefficiency under such illumina- tion. A non-ideal model of a photovoltaic

  15. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity

    E-Print Network [OSTI]

    1 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Methodology

  16. OTEC- Residential Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

  17. Reducing recombination in organic photovoltaics

    E-Print Network [OSTI]

    Sussman, Jason M. (Jason Michael)

    2011-01-01T23:59:59.000Z

    In this thesis, I consider two methods to improve organic photovoltaic efficiency: energy level cascades and promotion of triplet state excitons. The former relies on a thin layer of material placed between the active ...

  18. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

  19. Mandatory Photovoltaic System Cost Estimate

    Broader source: Energy.gov [DOE]

    At the request of a customer or a potential customer, Colorado electric utilities are required to conduct a cost comparison of a photovoltaic (PV) system to any proposed distribution line extension...

  20. Ameren Missouri- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

  1. Mandatory Photovoltaic System Cost Analysis

    Broader source: Energy.gov [DOE]

    The Arizona Corporation Commission requires electric utilities to conduct a cost/benefit analysis to compare the cost of line extension with the cost of installing a stand-alone photovoltaic (PV)...

  2. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01T23:59:59.000Z

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  3. Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)

    SciTech Connect (OSTI)

    Speer, B.; Mendelsohn, M.; Cory, K.

    2010-02-01T23:59:59.000Z

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

  4. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  5. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

    2012-04-17T23:59:59.000Z

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  6. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11T23:59:59.000Z

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18T23:59:59.000Z

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  8. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    Bowden. (1999). Photovoltaics CDROM: Devices, Systems, andNREL). [1.3] IEA Photovoltaics Power Systems Programme (IEA

  9. Wavelength-extended photovoltaic infrared photodetectors Yan-Feng Lao, P. K. D. D. P. Pitigala, A. G. Unil Perera, L. H. Li, S. P. Khanna, and E. H. Linfield

    E-Print Network [OSTI]

    Perera, A. G. Unil

    Wavelength-extended photovoltaic infrared photodetectors Yan-Feng Lao, P. K. D. D. P. Pitigala, A Publishing Articles you may be interested in Photovoltaic infrared detection with p-type graded barrier://scitation.aip.org/termsconditions. Downloaded to IP: 131.96.4.179 On: Mon, 31 Mar 2014 16:28:42 #12;Wavelength-extended photovoltaic infrared

  10. Photovoltaic industry progress through 1984

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.

    1985-04-01T23:59:59.000Z

    The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

  11. Biomonitoring for the photovoltaics industry

    SciTech Connect (OSTI)

    Bernholc, N.M.; Moskowitz, P.D.

    1995-07-01T23:59:59.000Z

    Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

  12. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    expectancy of a thermal solar energy development? A commontowards solar energy: Photovoltaic vs Solar Thermal. In:

  13. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    Powered Hydrogen Generation using Photovoltaic-ElectrolysisPowered Hydrogen Generation Using Photovoltaic?ElectrolysisPowered Hydrogen Production Using Photovoltaic Electrolysis

  14. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    E-Print Network [OSTI]

    Dillon, Robert

    2013-01-01T23:59:59.000Z

    Clean Electricity From Photovoltaics ; Archer, M. D. , Hill,1 1.1 Introduction to Photovoltaics andPhotovoltaics.

  15. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect (OSTI)

    DeScioli, Derek

    2013-06-01T23:59:59.000Z

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  16. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

  17. Mounting support for a photovoltaic module

    DOE Patents [OSTI]

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26T23:59:59.000Z

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  18. Photovoltaic Reliability and Engineering (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet for the National Center for Photovoltaics: Photovoltaic Reliability and Engineering. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

  19. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11T23:59:59.000Z

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  20. Photovoltaics: From the laboratory to the marketplace

    SciTech Connect (OSTI)

    Basso, T.S.; Surek, T.; Thornton, J.

    1991-03-01T23:59:59.000Z

    Photovoltaics (PV), the direct conversion of sunlight to electricity, is experiencing significant improvements in technology performance and lowered costs. Fostering these improvements, the SERI Photovoltaic Advanced Research and Development (PV AR D) Project supports research and provides services to the US PV industry. This paper presents the recent advances and future direction of the PV project. Research areas are Fundamental and Supporting Research, Advanced Thin-Film Materials, High-Efficiency Materials, Module Development, and Systems Development. Materials of interest include amorphous silicon, copper indium diselenide, cadmium telluride, crystalline silicon, gallium arsenide and related alloys, transparent conductors, antireflection coatings, substrates, and encapsulants. The PV project inherently provides technology transfer that helps industry shorten the time to bring R D advances to the marketplace. SERI annually performs over 10,000 measurements for the entire PV community, participates in collaborative research, and welcomes visiting scientists. Two specific areas of recently increased national focus are: (1) manufacturing processes for cost-effective PV modules, and (2) systems development for high-value utility applications. The SERI research approach is based on facilitating direct contact between industry, electric utilities, and others interested in PV technology. This approach heavily relies on SERI/industry partnerships. The arrangements vary to address generic and company-specific problems to improve the US industry's competitive position and accelerate greater electric utility deployment of PV systems. 5 refs., 5 figs., 6 tabs.

  1. Design of a photovoltaic central power station

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Photovoltaic central power station designs have been developed for both high-efficiency flat-panel arrays and two-axis tracking concentrator arrays. Both designs are based on a site adjacent to the Saguaro Power Station of Arizona Public Service. The plants are 100 MW each, made of 5 MW subfields. The site specific designs allow detailed cost estimate for site preparation, installation, and engineering. These designs are summarized and cost estimates analyzed. Provided also are recommendations for future work to reduce system cost for each plant design.

  2. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01T23:59:59.000Z

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  3. Simulation and simplified design studies of photovoltaic systems

    SciTech Connect (OSTI)

    Evans, D.L.; Facinelli, W.A.; Koehler, L.P.

    1980-09-01T23:59:59.000Z

    Results of TRNSYS simulations of photovoltaic systems with electrical storage are described. Studies of the sensitivity of system performance, in terms of the fraction of the electrical load supplied by the solar energy system, to variables such as array size, battery size, location, time of year, and load shape are reported. An accurate simplified method for predicting array output of max-power photovoltaic systems is presented. A second simplified method, which estimates the overall performance of max-power systems, is developed. Finally, a preliminary technique for predicting clamped-voltage system performance is discussed.

  4. Design of photovoltaic central power station concentrator array

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  5. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    of interfaces in high-efficiency photovoltaic devices. , MRS24,25 Nonetheless, a high-efficiency photovoltaic device ishigh-efficiency photovoltaics”, 39th IEEE Photovoltaic

  6. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    M. A. Third generation photovoltaics: Ultra-high conversionmodern photovoltaic age. … in photovoltaics: research andnanopillar-array photovoltaics on low-cost and flexible

  7. Photovoltaic retinal prosthesis with high pixel density

    E-Print Network [OSTI]

    Palanker, Daniel

    Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high

  8. Photovoltaics for the Terawatt Christiana Honsberg

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Photovoltaics for the Terawatt Challenge Christiana Honsberg Department of Electrical Computer;Photovoltaic Milestones · Germany, Spain, Italy have yearly installed PV capacity > yearly increase Workshop 02/28/14 C. Honsberg 5 5 #12;Learning Curves for Photovoltaics UD Energy Institute Solar Workshop

  9. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John domestically, and selling interna- tionally solar photovoltaic (PV) electricity- generating technology. Over

  10. EELE408 Photovoltaics Lecture 01: Intro & Safety

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 01: Intro & Safety Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman EELE408 Photovoltaics & Ventre: Photovoltaic Systems Engineering , 3E · Resources: ­ Green: Solar Cells: Operating Principles

  11. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    E-Print Network [OSTI]

    Winfree, Erik

    Rational Design of Zinc Phosphide Heterojunction Photovoltaics Thesis by Jeffrey Paul Bosco would meet me with the same energy and enthusiasm regarding the topic of zinc phosphide photovoltaics to the field of earth-abundant photovoltaics has been indispensable to my work. Greg also made a great mentor

  12. Discovery Park Impact Network for Photovoltaic Technology

    E-Print Network [OSTI]

    Holland, Jeffrey

    Discovery Park Impact Network for Photovoltaic Technology NEED Discovery Park provides for Photovoltaic Technology (NPT). The NPT is designed to be a unique venue for industry-directed, university aims to become an international center of gravity for photovoltaic research that connects islands

  13. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01T23:59:59.000Z

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  14. EELE408 Photovoltaics Lecture 23: Summary

    E-Print Network [OSTI]

    Kaiser, Todd J.

    Photovoltaic Myth #1 · Solar modules consume more energy for their production than they ever generate. ­ Most industry ­ Future recycling of modules will further reduce environmental impact 15 Photovoltaic Myth #81 EELE408 Photovoltaics Lecture 23: Summary Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department

  15. A Program Plan for Photovoltaic Buildings in Florida

    Broader source: Energy.gov [DOE]

    This document outlines plans developed by the Florida Solar Energy Center (FSEC) to support photovoltaic buildings application in the state through the first decade of the 21st century. The emphasis of this program is on identifying and increasing the value of rooftop systems to targeted end users through the use of application experiments.

  16. Photovoltaic translation equations: A new approach. Final subcontract report

    SciTech Connect (OSTI)

    Anderson, A.J. [Sunset Technology, Highlands Ranch, CO (United States)] [Sunset Technology, Highlands Ranch, CO (United States)

    1996-01-01T23:59:59.000Z

    New equations were developed for the purpose of evaluating the performance of photovoltaic cells, modules, panels, and arrays. These equations enable the performance values determined at one condition of temperature and irradiance to be translated to any other condition of temperature and irradiance.

  17. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet), U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    This document introduces the Energy Department’s new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects—from community organizers and advocates to utility managers and government officials—navigate the process of developing shared systems, from early planning to implementation.

  18. The diffusion of photovoltaics : background, modeling and initial reaction of the agricultural - irrigation sector

    E-Print Network [OSTI]

    Lilien, Gary Louis

    1978-01-01T23:59:59.000Z

    This paper deals with the background, development and calibration of a model of innovation-diffusion, designed to help allocate government field test and demonstration resources in support of a photovoltaic technology ...

  19. Control of Stand-Alone Photovoltaic System Using Fuzzy-Logic Controller 

    E-Print Network [OSTI]

    Mellit, A.; Benghanme, M.; Arab, A. H.; Guessoum, A.

    2004-01-01T23:59:59.000Z

    With industrial development the problem of energy shortage is more and more aggravating. The photovoltaic (PV) systems are rapidly expanding and have increasing in electric power technology and regarded as the green energy of the new century control...

  20. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect (OSTI)

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01T23:59:59.000Z

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  1. Control of Stand-Alone Photovoltaic System Using Fuzzy-Logic Controller

    E-Print Network [OSTI]

    Mellit, A.; Benghanme, M.; Arab, A. H.; Guessoum, A.

    2004-01-01T23:59:59.000Z

    With industrial development the problem of energy shortage is more and more aggravating. The photovoltaic (PV) systems are rapidly expanding and have increasing in electric power technology and regarded as the green energy of the new century control...

  2. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-Print Network [OSTI]

    Bierman, David M. (David Matthew)

    2014-01-01T23:59:59.000Z

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  3. A single-phase photovoltaic inverter topology with a series-connected power buffer

    E-Print Network [OSTI]

    Pierquet, Brandon J.

    Module integrated converters (MICs) have been under rapid development for single-phase grid-tied photovoltaic applications. The capacitive energy storage implementation for the double-line-frequency power variation represents ...

  4. A Single-Phase Photovoltaic Inverter Topology With a Series-Connected Energy Buffer

    E-Print Network [OSTI]

    Pierquet, Brandon J.

    Module integrated converters (MICs) have been under rapid development for single-phase grid-tied photovoltaic applications. The capacitive energy storage implementation for the double-line-frequency power variation represents ...

  5. Aternating current photovoltaic building block

    DOE Patents [OSTI]

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15T23:59:59.000Z

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  6. Photovoltaic cell and production thereof

    DOE Patents [OSTI]

    Narayanan, Srinivasamohan (Gaithersburg, MD); Kumar, Bikash (Bangalore, IN)

    2008-07-22T23:59:59.000Z

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  7. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

    1998-07-14T23:59:59.000Z

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  8. Rapid screening buffer layers in photovoltaics

    DOE Patents [OSTI]

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09T23:59:59.000Z

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  9. NREL photovoltaic subcontract reports: Abstracts and document control information, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    This report contains document control information and abstracts for the National Renewable Energy Laboratory (NREL) subcontracted photovoltaic program publications. It also lists source information on additional publications that describe US Department of Energy (DOE) PV research activities. It is not totally exhaustive, so it lists NREL contacts for requesting further information on the DOE and NREL PV programs. This report covers the period from August 1, 1991, through July 31, 1992. The purpose of continuing this type of publication is to help people keep abreast of specific PV interests, while maintaining a balance on the costs to the PV program. The information in this report is organized under PV technology areas: Amorphous silicon research; polycrystalline thin films (including copper indium diselenide, cadmium telluride, and thin-film silicon); crystalline materials and advanced concepts (including silicon, gallium arsenide, and other group III-V materials); and PV manufacturing technology development (which may include manufacturing information for various types of PV materials).

  10. Economic Feasibility of Recycling Photovoltaic Modules

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-12-01T23:59:59.000Z

    The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

  11. Electrical axes of TESLA-type cavities (Theoretical background, development of measurement equipment, measurement results)

    E-Print Network [OSTI]

    - 1 - Electrical axes of TESLA-type cavities (Theoretical background, development of measurement equipment, measurement results) Anton Labanc, MHF-SL, DESY, January 2008 Abstract Cells in TESLA cavities. A short overview was already published at the TESLA Report 2007-01. This paper brings more details about

  12. With a new type of lithium battery that has been developed at TU

    E-Print Network [OSTI]

    Langendoen, Koen

    With a new type of lithium battery that has been developed at TU Delft electric cars can drive thick without reducing the performance of the battery: recharging the battery, where lithium needs: with the invention at TU Delft of a new way to realize a lithium battery it is possible to enlarge the electrode

  13. Development of a new type shock tube without a diaphragm for gas-dynamic laser research

    E-Print Network [OSTI]

    Boyer, Edmond

    tube are shown in Fig.2. The cylinder sections C and D are filled with a higher pressure gas than A to the left side, and this makes the high pressure gas in the driver section flowing into the driven sectionDevelopment of a new type shock tube without a diaphragm for gas-dynamic laser research S.Kugimiya1

  14. Glass for low-cost photovoltaic solar arrays

    SciTech Connect (OSTI)

    Bouquet, F.L.

    1980-02-01T23:59:59.000Z

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

  15. Overview of NREL's Photovoltaic Advanced R D Project

    SciTech Connect (OSTI)

    Surek, T.

    1992-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory's (NREL's) Photovoltaic Advanced Research and Development (PV AR D) Project supports the US Department of Energy's National Photovoltaics Program in assisting the development and commercialization of photovoltaics (PV) energy technology. The NREL program is implemented through in-house research and subcontracts, with over 50% of the annual budget awarded through competitive solicitations to universities, large and small businesses, and other research centers. These activities include cost-shared, multiyear, government/industry partnerships and technology initiatives. The research has resulted in a better fundamental understanding of materials, devices, and processes, the achievement of record efficiencies in nearly all PV technology areas, the identification of promising new approaches to low-cost photovoltaics, and the introduction of new PV technology products into system experiments and PV markets. This paper presents an overview of NREL's PV AR D Project in terms of project organization and budgets, near- and long-term project objectives, research participants, and current and future research directions. Recent progress in the in-house and subcontracted research activities is described. 4 refs.

  16. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29T23:59:59.000Z

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  17. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

    1984-01-01T23:59:59.000Z

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  18. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01T23:59:59.000Z

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  19. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 29, NO. 4, DECEMBER 2014 957 Decentralized Optimal Dispatch of Photovoltaic

    E-Print Network [OSTI]

    Giannakis, Georgios

    photovoltaic (PV) in- verters are developed in this paper. It is known that conventional PV inverter-voltage distribution networks. Secondary-level control of PV inverters can alleviate extenuating circumstances Dispatch of Photovoltaic Inverters in Residential Distribution Systems Emiliano Dall'Anese, Member, IEEE

  20. Received 20 Oct 2012 | Accepted 29 Apr 2013 | Published 18 Jun 2013 Cortical responses elicited by photovoltaic

    E-Print Network [OSTI]

    Palanker, Daniel

    elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials Yossi developed a wireless photovoltaic retinal prosthesis, in which camera- captured images are projected onto, yet the inner retinal neurons (inner nuclear and ganglion cell layers) that process the visual signals

  1. Design of a photovoltaic central power station: flat-plate array

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  2. Development of large-area monolithically integrated silicon-film photovoltaic modules. Annual subcontract report, 1 May 1991--15 November 1991

    SciTech Connect (OSTI)

    Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

    1992-07-01T23:59:59.000Z

    This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

  3. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  4. Photovoltaic Power Generation in the Stellar Environments

    E-Print Network [OSTI]

    T. E. Girish; S. Aranya

    2010-12-03T23:59:59.000Z

    In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

  5. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    Best research photovoltaic efficiencies (Kazmerski,Best research photovoltaic efficiencies (Kazmerski, 2011).

  6. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

  7. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    emissions of pv systems. Progress in Photovoltaics: Researchpv system flatcon. Progress in Photovoltaics: Research and

  8. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    systems, sensors, light-emitting diodes, photovoltaics andsystem. ) Research on Cu 2 S nanocrystal photovoltaics may

  9. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  10. Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same

    DOE Patents [OSTI]

    Williams, George M. (Portland, OR); Schut, David M. (Philomath, OR); Stonas, Andreas (Albany, OR)

    2011-08-09T23:59:59.000Z

    A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.

  11. Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979

    SciTech Connect (OSTI)

    Goodman, Jr, F R

    1980-03-01T23:59:59.000Z

    An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

  12. A review of current anti-islanding methods for photovoltaic power system

    SciTech Connect (OSTI)

    Yu, Byunggyu; Yu, Gwonjong [Photovoltaic Research Group, Korea Institute of Energy Research, 71-2 Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea); Matsui, Mikihiko [Department of System Electronics and Information Technology, Tokyo Polytechnic University, 1583 Iiyama Atsugi-shi, Kanagawa 243-0297 (Japan)

    2010-05-15T23:59:59.000Z

    Islanding phenomenon is undesirable because it leads to a safety hazard to utility service personnel and may cause damage to power generation and power supply facilities as a result of unsynchronized re-closure. Until now, various anti-islanding methods (AIMs) for detecting and preventing islanding of photovoltaic and other distributed generations (DGs) have been proposed. This paper presents an overview of recent anti-islanding method developments for grid-connected photovoltaic (PV) power generation, focusing on the concept and operating principle, mainly based on single phase system. For the performance comparison, the experimental results of the various AIMs with 3 kW PV inverter are provided based on the islanding detection capability and power quality. As a result, the active AIMs have better islanding detection capability rather than the passive one. However, the active AIMs have power quality degradation on harmonic distortion or displacement power factor based on the injected active signal type. In addition to the evaluation and comparison of the main anti-islanding methods, this paper also summarizes the related anti-islanding standards to evaluate anti-islanding capability for PV system. This paper can be used as a useful anti-islanding reference for future work in DG like PV, and wind turbine. (author)

  13. Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research www Photovoltaics Environmental Research Center Brookhaven National Laboratory #12;2 Source: PV Market Outlook

  14. Solution-processed photovoltaics with advanced characterization and analysis

    E-Print Network [OSTI]

    Duan, Hsin-Sheng

    2014-01-01T23:59:59.000Z

    at the 37th IEEE Photovoltaics Specialists Conference (D. B. Mitzi, Prog. Photovoltaics 2011, 20, 6. [23] S. Bag,R. Noufi, IEEE J. Photovoltaics 2012, T. Todorov, J. Tang,

  15. Photovoltaic nanocrystal scintillators hybridized on Si solar cells

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit

  16. Degradation Pathway Models for Photovoltaics Module Lifetime Performance

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

  17. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.stacked LSC plates for photovoltaics with the green LSC onsolar concentra- tors for photovoltaics. Science, 321(5886):

  18. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    Paul Alivisatos. Photovoltaic performance of ultrasmall pbsenot including photovoltaic performance. To understand theperformance through overall structure and QD properties, relatively few studies probe the effects of temperature or capping ligands on the photovoltaic (

  19. Femtosecond laser processing of photovoltaic and transparent materials

    E-Print Network [OSTI]

    Ahn, Sanghoon

    2013-01-01T23:59:59.000Z

    20%  efficiency.  Progress  in  Photovoltaics.  2004;12:efficiency   tables  (version  39).  Progress  in  Photovoltaics.  efficiency   for   Cu(In,Ga)Se-­?2   thin-­?film   solar   cells   beyond   20%.   Progress   in   Photovoltaics.  

  20. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01T23:59:59.000Z

    polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

  1. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01T23:59:59.000Z

    CdSe quantum dots for photovoltaic devices. Nano Lett. 7,nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys.Gill, W. D. , Bube, R. H. Photovoltaic Properties of Cu 2 S-

  2. EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students

    E-Print Network [OSTI]

    Oregon, University of

    EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ­ Pleasant Activity ­ Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

  3. Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode

    E-Print Network [OSTI]

    Cui, Yi

    Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode Jung-Yong Lee, Steve T demonstrate semitransparent small molecular weight organic photovoltaic cells using a laminated silver metal cathode due to differences in optical absorption. KEYWORDS Organic photovoltaics, transparent

  4. Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings 

    E-Print Network [OSTI]

    Radhi, H.

    2010-01-01T23:59:59.000Z

    Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings Hassan Radhi Assistant Professor College of Engineering UAE University Al-Ain, United Arab Emirates ABSTRACT In the market... due to the PV panels represents an important factor when the EPBT is estimated Keywords: BiPV, embodied energy, UAE commercial buildings. INTRODUCTION Developments in the design and manufacture of photovoltaic cells have recently been a...

  5. Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings

    E-Print Network [OSTI]

    Radhi, H.

    2010-01-01T23:59:59.000Z

    Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings Hassan Radhi Assistant Professor College of Engineering UAE University Al-Ain, United Arab Emirates ABSTRACT In the market... due to the PV panels represents an important factor when the EPBT is estimated Keywords: BiPV, embodied energy, UAE commercial buildings. INTRODUCTION Developments in the design and manufacture of photovoltaic cells have recently been a...

  6. US photovoltaic patents: 1991--1993

    SciTech Connect (OSTI)

    Pohle, L

    1995-03-01T23:59:59.000Z

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  7. PhotovoltaicsPhotovoltaics: the equations for solar: the equations for solar--cell designcell design

    E-Print Network [OSTI]

    Pulfrey, David L.

    design LECTURE 5 · photovoltaic effect · the equation set · simplifying the equation set · absorption, Germany 90 MW Sarnia, Ontario 5kW Boston Massachusetts http://256.com/solar/ #12;3 The Photovoltaic EffectThe Photovoltaic EffectSec. 7.0 Is the full Device Equation Set needed to design and analyze a cell like this one

  8. Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum

    E-Print Network [OSTI]

    Wang, Jianfang

    Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy Solar Energy? · Clean · Nearly unlimited PHYS5320 Chapter Nine 3 #12;S l ll l t PHYS5320 Chapter Nine 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS5320 Chapter Nine 5 #12;Solar Energy

  9. Photovoltaic performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. [ed.

    1993-12-01T23:59:59.000Z

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  10. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  11. NREL Photovoltaic Program FY 1994 bibliography

    SciTech Connect (OSTI)

    none,

    1994-12-01T23:59:59.000Z

    This report lists all published documents of the Photovoltaic Program for FY 1994. Documents include conference papers, journal articles, book chapters, patents, etc.

  12. Sandia National Laboratories: microsystems-enabled photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microsystems-enabled photovoltaics Sandia, Endicott Interconnect Technologies, EMCORE, International Micro Industries, NREL, Universal Instruments: Solar Glitter On March 21, 2013,...

  13. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency. rerhsolarelectricguide.pdf More Documents & Publications Solar Water...

  14. Sandia National Laboratories: Vermont Photovoltaic Regional Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  15. Sandia National Laboratories: photovoltaic systems integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  16. Sandia National Laboratories: photovoltaic systems validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  17. Mesa Top Photovoltaic Array (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

  18. Recording of SERC Monitoring Technologies- Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

  19. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01T23:59:59.000Z

    hydrogen during deposition, dangling bonds are compensated and hydrogenated amorphous silicon (a-Si:H) can be made into a promising photovoltaic

  20. Sandia National Laboratories: predicts photovoltaic array energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production Solar Glare Hazard Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter...

  1. Hudson Light & Power- Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    Hudson Light & Power Department, the municipal utility for the Town of Hudson, offers a limited number of solar photovoltaic (PV) rebates for residential, commercial, industrial, and municipal...

  2. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Evaluation Laboratory (PSEL) Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy,...

  3. Sandia National Laboratories: Photovoltaic Power Systems Programme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Power Systems Programme Task 13 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

  4. Nellis AFB 'Sun Park' Photovoltaic Power Project

    Broader source: Energy.gov (indexed) [DOE]

    Briefing is: UNCLASSIFIED Headquarters Air Combat Command Nellis AFB 'Sun Park' Photovoltaic Power Project *Capt Frank Hollifield *AFLOAJACLULT Overview *Objective * Provide...

  5. Photovoltaic cell with thin CS layer

    DOE Patents [OSTI]

    Jordan, John F. (El Paso, TX); Albright, Scot P. (El Paso, TX)

    1994-01-18T23:59:59.000Z

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  6. NREL Photovoltaic Program FY 1993 bibliography

    SciTech Connect (OSTI)

    Pohle, L. [ed.

    1994-01-01T23:59:59.000Z

    This report lists all published documents of the Photovoltaic Program for FY 1993. Documents include conference papers, journal articles, book chapters, etc.

  7. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  8. Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor...

    Open Energy Info (EERE)

    Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor Energy Jump to: navigation, search Name: Kyungdong Photovoltaic Energy Corp (KPE) (formerly Photon...

  9. Project Profile: Evaluating the Causes of Photovoltaics Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    progress observed for photovoltaics (PV) over the past half century. Motivation Photovoltaic technologies, including silicon and thin film solar cells, have experienced...

  10. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    on Solar Photovoltaic (PV) Performance: Research Status,Photovoltaic Systems in California Felipe A Mejia, Jan Kleissl Keywords: Soiling, PV Performance

  11. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    cell efficiency milestones. Quantum dot photovoltaics is inphotovoltaics provide the potential to create high-efficiencycell efficiency milestones. Quantum dot photovoltaics is in

  12. Solar Photovoltaic Installation Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Solar Photovoltaic Installation Market Trends Home John55364's picture Submitted by John55364(95) Contributor 14 May, 2015 - 02:24 Global Solar Photovoltaic (PV) Installation...

  13. Sandia National Laboratories: Sandia Expertise Guides New Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise Guides New Photovoltaic Requirements Sandia Expertise Guides New Photovoltaic Requirements Solar Test Facility Upgrades Complete, Leading to Better Sandia Capabilities to...

  14. Sandia National Laboratories: 6th World Conference on Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th World Conference on Photovoltaic Energy Conversion Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation,...

  15. Solar Photovoltaic Financing: Deployment on Public Property by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local...

  16. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...

    Energy Savers [EERE]

    Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's...

  17. Photovoltaics performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. (ed.) [ed.

    1992-01-01T23:59:59.000Z

    This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

  18. Photovoltaics performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. [ed.] [ed.

    1992-11-01T23:59:59.000Z

    This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

  19. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolar Photovoltaic Solar

  20. Nanostructured Photovoltaics: - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-CeramicInnovationSolar Photovoltaic

  1. Photovoltaic application for disaster relief

    SciTech Connect (OSTI)

    Young, W.R. Jr.

    1995-11-01T23:59:59.000Z

    Hurricanes, floods, tornados, and earthquakes are natural disasters that can happen at any time destroying homes, businesses, and natural surroundings. One such disaster, Hurricane Andrew, devastated South Florida leaving several hundred-thousand people homeless. Many people were without electrical service, functioning water and sewage systems, communications, and medical services for days, even weeks in the aftermath of the storm. Emergency management teams, the military, and countless public and private organizations staged a massive relief effort. Dependency on electrical utility power became a pronounced problem as emergency services were rendered to survivors and the rebuilding process started. Many of the energy needs of emergency management organizations, relief workers, and the general public can be satisfied with solar electric energy systems. Photovoltaic (PV) power generated from solar energy is quiet, safe, inexhaustible and pollution-free. Previously, photovoltaics have supplied emergency power for Hurricanes Hugo and Andrew, and the earthquake at Northridge in Southern California. This document focuses on photovoltaic technology and its application to disaster relief efforts.

  2. Photovoltaic modules integrated with a metal curtain wall

    SciTech Connect (OSTI)

    Yoshino, M.; Nakada, N.; Mori, T.; Yamagishi, K.; Yoshida, S. [YKK Corp., Kurobe, Toyama (Japan); Higashi, Y.; Shirasawa, K. [KYOCERA Corp., Yohkaichi, Shiga (Japan)

    1994-12-31T23:59:59.000Z

    An integrated photovoltaic system for buildings has many advantages. To realize building integration of photovoltaics, the authors have initially designed a PV module integrated with a metal curtain wall. PV modules are installed as spandrel panels and consist of long and slender PV sub-modules. These sub-modules have an encapsulated structure consisting of: glass, EVA, solar cells, EVA, aluminum base plate. The authors also present initial PV performance data from the experimental wall. In this wall, almost the same maximum P{sub max} of 64 W/m{sup 2} was obtained and the module temperature was approximately 10 C lower compared with conventional superstrate-type PV modules which have 1.3 times the solar cells of this module. Moreover, aesthetic requirements for this module are discussed in this paper.

  3. Federal policies to promote the widespread utilization of photovoltaic systems. Supplement: review and critique

    SciTech Connect (OSTI)

    Smith, J.L.

    1980-04-15T23:59:59.000Z

    This document is intended as a supplement to the two-volume report entitled Federal Policies to Promote the Widespread Utilization of Photovoltaic Systems that was submitted to Congress by the Department of Energy in February and April of 1980. This supplement contains review comments prepared by knowledgeable experts who reviewed early drafts of the Congressional report. Responses to the review comments by the Jet Propulsion Laboratory, preparer of the Congressional report, are also included in this supplement. The Congressional report, mandated in the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (P.L. 95-590), discusses various issues related to promoting the deployment of photovoltaic systems through the Federal Photovoltaic Program. Various program strategies and funding levels are examined.

  4. Metals Production Requirements for Rapid Photovoltaics Deployment

    E-Print Network [OSTI]

    Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

  5. Annual Report: Photovoltaic Subcontract Program FY 1990

    SciTech Connect (OSTI)

    Summers, K. A.

    1991-03-01T23:59:59.000Z

    This report summarizes the progress of the Photovoltaic (PV) Subcontract Program of the Solar Energy Research Institute (SERI) from October 1, 1989 through September 30, 1990. The PV Subcontract Program is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year 1990, this included more than 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of the subcontracts were with universities at a total funding of nearly $3.3 million. The six technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports on its progress.

  6. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  7. Thin Film Photovoltaics Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

  8. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    SciTech Connect (OSTI)

    Takeda, T.; Shimazu, Y.; Hibi, K.; Fujimura, K. [Research Inst. of Nuclear Engineering, Univ. of Fukui, 1cho-me 2gaiku 4, Kanawa-cho, Tsuruga-shi, Fukui 914-0055 (Japan)

    2012-07-01T23:59:59.000Z

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of this project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)

  9. DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2012-07-10T23:59:59.000Z

    An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

  10. Defect localization, characterization and reliability assessment in emerging photovoltaic devices.

    SciTech Connect (OSTI)

    Yang, Benjamin Bing-Yeh; Cruz-Campa, Jose Luis; Haase, Gad S.; Tangyunyong, Paiboon; Cole, Edward Isaac,; Okandan, Murat; Nielson, Gregory N.

    2014-04-01T23:59:59.000Z

    Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

  11. DOE project review Massachusetts Photovoltaic Program. Annual report, June 1989--July 1990

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This is the third year of operations for work under the Cooperative Agreement between the Commonwealth of Massachusetts Photovoltaic Center and the U.S. Department of Energy. As a collaborative effort with shared resources, the activity at the Photovoltaic Center and the University of Lowell Photovoltaic Program has continued to advance the utilization and implementation of photovoltaic-powered systems into society. The programs and activities developed over the past three years have supported strategies that cover both international utilization as well as domestic application. Three major areas of activities have centered around the following themes: (1) The identification of market opportunities to enlarge sales potential for the photovoltaic industry. (2) The development of a knowledgeable infrastructure to support PV diffusion in Massachusetts, in the United States, and around the world. (3) The analysis of the physical, economic, and regulatory environment in which PV must compete with mature energy technologies. This past year has been an experience of contrasts for the Photovoltaic Center. Projects and activities have resulted in the successful completion of programs goals.

  12. Sandia photovoltaic systems definition and application experiment projects

    SciTech Connect (OSTI)

    Jones, G.

    1983-04-01T23:59:59.000Z

    A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

  13. Development of 275kV gas cooled type gas-insulated power transformer

    SciTech Connect (OSTI)

    Kudo, A.; Nishitani, T.; Yoshikawa, T. (Mitsubishi Electric Corp., Ako (Japan)); Wan, C.T. (Hongkong Electric Co., Ltd. (Hong Kong))

    1993-01-01T23:59:59.000Z

    A world's first 275kV gas cooled type gas insulated power transformer with a low sound level ideal for urban area, which depends on SF6 gas alone for both insulation and cooling, was developed and has been put into commercial service since 1990 in Hong Kong. This paper presents the design philosophy, the principal technical items, the rating and the feature of 275kV 30MVA transformer, the performance test results, and the long term energization test result of the transformer.

  14. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect (OSTI)

    Maziasz, P.J.

    1985-11-01T23:59:59.000Z

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  15. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure JohnEnergyThin Film Photovoltaic

  16. Low-Cost Installation of Concentrating Photovoltaic

    E-Print Network [OSTI]

    .5 megawatt power plant for the Pacific Gas and Electric Company near Tracy, CA ­ the first solar related with system components, and traditional solar designs that limit installation locations. Many offerings. Currently, no solar company provides a complete photovoltaic or concentrating photovoltaic

  17. Photovoltaic Installations at Williams College Ruth Aronoff

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

  18. NREL: Photovoltaics Research - Process Development and Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure John

  19. Photovoltaics Research and Development | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolarrd IEEE PVSC,Research

  20. Simulation and optimization of ultra thin photovoltaics.

    SciTech Connect (OSTI)

    Cruz-Campa, Jose Luis

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories (SNL) conducts pioneering research and development in Micro-Electro-Mechanical Systems (MEMS) and solar cell research. This dissertation project combines these two areas to create ultra-thin small-form-factor crystalline silicon (c-Si) solar cells. These miniature solar cells create a new class of photovoltaics with potentially novel applications and benefits such as dramatic reductions in cost, weight and material usage. At the beginning of the project, unusually low efficiencies were obtained in the research group. The intention of this research was thus to investigate the main causes of the low efficiencies through simulation, design, fabrication, and characterization. Commercial simulation tools were used to find the main causes of low efficiency. Once the causes were identified, the results were used to create improved designs and build new devices. In the simulations, parameters were varied to see the effect on the performance. The researched parameters were: resistance, wafer lifetime, contact separation, implant characteristics (size, dosage, energy, ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. Out of these parameters, it was revealed that a high quality surface passivation was the most important for obtaining higher performing cells. Therefore, several approaches for enhancing the passivation were tried, characterized, and tested on cells. In addition, a methodology to contact and test the performance of all the cells presented in the dissertation under calibrated light was created. Also, next generation cells that could incorporate all the optimized layers including the passivation was designed, built, and tested. In conclusion, through this investigation, solar cells that incorporate optimized designs and passivation schemes for ultrathin solar cells were created for the first time. Through the application of the methods discussed in this document, the efficiency of the solar cells increased from below 1% to 15% in Microsystems Enabled Photovoltaic (MEPV) devices.

  1. Development of Regulatory Technical Requirements for the Advanced Integral Type Research Reactor

    SciTech Connect (OSTI)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik; Kim, Hho Jung [Korea Institute of Nuclear Safety, 19 Kusung-dong, Yusung-ku, Taejon, 305-338 (Korea, Republic of)

    2004-07-01T23:59:59.000Z

    This paper presents the current status of the study on the development of regulatory technical requirements for the licensing review of an advanced integral type research reactor of which the license application is expected in a few years. According to the Atomic Energy Act of Korea, both research and education reactors are subject to the technical requirements for power reactors in the licensing review. But, some of the requirements may not be applicable or insufficient for the licensing reviews of reactors with unique design features. Thus it is necessary to identify which review topics or areas can not be addressed by the existing requirements and to develop the required ones newly or supplement appropriately. Through the study performed so far, it has been identified that the following requirements need to be developed newly for the licensing review of SMART-P: the use of proven technology, the interfacial facility, the non-safety systems, and the metallic fuels. The approach and basis for the development of each of the requirements are discussed. (authors)

  2. A two dimensional thermal network model for a photovoltaic solar wall

    SciTech Connect (OSTI)

    Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

    2009-11-15T23:59:59.000Z

    A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

  3. EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2011-01-01T23:59:59.000Z

    EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

  4. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01T23:59:59.000Z

    materials for organic photovoltaics. We have successfully investigated polymer functionalization to produce supramolecular

  5. Photovoltaics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenix BioPhotovoltaics Design

  6. A novel hybrid (wind-photovoltaic) system sizing procedure

    SciTech Connect (OSTI)

    Hocaoglu, Fatih O. [Afyon Kocatepe University, Dept. of Electronics and Communication Eng., 03200 Afyonkarahisar (Turkey); Gerek, Oemer N.; Kurban, Mehmet [Anadolu University, Dept. of Electrical and Electronics Eng., 26555 Eskisehir (Turkey)

    2009-11-15T23:59:59.000Z

    Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

  7. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    harvesting. With solar photovoltaic efficiencies approachingthat the photovoltaic solar cell efficiency plays a dominantEfficiency of Solar Powered Hydrogen Generation using Photovoltaic-

  8. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01T23:59:59.000Z

    for building integrated photovoltaics,” 2013, vol. 8821, pp.of building integrated photovoltaics,” Sol. Energy, vol. 85,of building-integrated photovoltaics,” Energy, vol. 26, no.

  9. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01T23:59:59.000Z

    Third   Generation  Photovoltaics:  Advanced  Solar  R.   Noufi,  Prog.  Photovoltaics  16,  235-­?239  (2008).  M.  Green,  Prog.  Photovoltaics  17,  183-­?189  (2009).  

  10. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

  11. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01T23:59:59.000Z

    Photovoltaic performance of ultra-small PbSe quantum dotssize on the photovoltaic performance of simple Schottky-typeconfinement on the photovoltaic performance, we adopted

  12. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    high conversion efficiency photovoltaics, utilizing self-low-cost and low-efficiency photovoltaics. Third generationgeneration photovoltaics: Ultra-high conversion efficiency

  13. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    for ultrahigh-efficiency photovoltaics, Nat. Mater. 11, 174-devices towards high-efficiency photovoltaics”, 39th IEEEto ensure high-efficiency nanostructured photovoltaics: each

  14. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01T23:59:59.000Z

    using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells,” Thin Solid Films, vol. 516,

  15. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

  16. Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells

    E-Print Network [OSTI]

    Borenstein, Severin

    2005-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

  17. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  18. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

  19. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01T23:59:59.000Z

    in thin film organic photovoltaic cells (OPVs) is presented.efficient organic photovoltaic cells with power conversionEffect Transistors and Photovoltaic Cells By Clayton Edward

  20. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01T23:59:59.000Z

    Colloidal Quantum Dots for Photovoltaics: Fundamentals andSchottky-Quantum Dot Photovoltaics for Efficient InfraredDJ; Klimov, VI, Hybrid Photovoltaics Based on Semiconductor

  1. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    Benefits of Distributed Photovoltaics to the Nevada PowerCarrying Capability of Photovoltaics in the United States. ”A Case Study of Photovoltaics Serving Kerman Substation. ”

  2. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    of pv systems. Progress in Photovoltaics: Research andand Alsema, E. (2006). Photovoltaics energy payback times,emissions from photovoltaics. Environmental Science and

  3. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01T23:59:59.000Z

    Benefits of Distributed Photovoltaics to the Nevada PowerCarrying Capability of Photovoltaics in the United States. ”A Case Study of Photovoltaics Serving Kerman Substation. ”

  4. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    for ultrahigh-efficiency photovoltaics, Nat. Mater. 11, 174-devices towards high-efficiency photovoltaics”, 39th IEEEfor high efficiency hybrid photovoltaics”, 37th IEEE

  5. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01T23:59:59.000Z

    in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

  6. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    Hydrogen Generation using Photovoltaic-Electrolysis Devices.6128-6141. Gratzel, M. Photovoltaic and PhotoelectrochemicalHydrogen Generation Using Photovoltaic?Electrolysis Devices.

  7. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

    E-Print Network [OSTI]

    Alivisatos, A. Paul

    2009-01-01T23:59:59.000Z

    Photovoltaic Devices Employing Ternary PbS x Se 1-xalloy nanoparticles. Photovoltaic devices made using ternaryInformation for Efficient Photovoltaic Devices Employing

  8. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    E-Print Network [OSTI]

    Dillon, Robert

    2013-01-01T23:59:59.000Z

    RIVERSIDE Spectroscopy of Photovoltaic Materials: Charge-DISSERTATION Spectroscopy of Photovoltaic Materials: Charge-function of photovoltaic (PV) and photocatalytic (PC)

  9. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Callaway, Duncan S; Tabone, Michaelangelo D

    2015-01-01T23:59:59.000Z

    AND UNCERTAINTY OF PHOTOVOLTAIC GENERATION [9] M. Milligan,for grid-connected photovoltaic system based on advancedand uncertainty in solar photovoltaic generation at multiple

  10. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

  11. A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2010-01-01T23:59:59.000Z

    impacts and costs of photovoltaic systems: Current state ofEnergy Payback Time for Photovoltaic Modules,” ProceedingsLife-cycle assessment of photovoltaic modules: Comparison of

  12. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01T23:59:59.000Z

    California’s Solar Photovoltaic Subsidies? Center for thefrom Residential Photovoltaic Systems Naïm R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Naïm R. Darghouth

  13. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

  14. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells. ” Center for theR. Margolis. 2004. “Are Photovoltaic Systems Worth More toLepley. 1993. “Distributed photovoltaic system evaluation by

  15. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

  16. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01T23:59:59.000Z

    Y; Alivisatos, AP, Photovoltaic Devices Employing TernaryPhotovoltaic performance of ultra-small PbSe quantum dotsquantum dot, solar cell, photovoltaic, quantum size effect

  17. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells. ” Center for theR. Margolis. 2004. “Are Photovoltaic Systems Worth More toLepley. 1993. “Distributed photovoltaic system evaluation by

  18. PbS and Ge Nanocrystals: A Pathway Towards Third Generation Photovoltaics

    E-Print Network [OSTI]

    Church, Carena

    2014-01-01T23:59:59.000Z

    Towards Third Generation Photovoltaics by Carena PuameliChurch Third-generation photovoltaics offer a way around theJ. Nozik. Third generation photovoltaics based on multiple

  19. Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic Deployment email: vmf5@columbia.edu

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic for Life Cycle Analysis Columbia University and National Photovoltaics Environmental Research Center, 2006 - Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006 #12;9 0 200 400 600 800 1000 1200

  20. Development of flow network analysis code for block type VHTR core by linear theory method

    SciTech Connect (OSTI)

    Lee, J. H.; Yoon, S. J. [Dept. of Nuclear Engr., Seoul National Univ., Daehak-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of); Park, J. W. [Dept. of Nuclear and Energy Engr, Dongguk Univ., Seokjang-Dong, Gyeongju, Gyeongsangbuk-Do, 780-714 (Korea, Republic of); Park, G. C. [Dept. of Nuclear Engr., Seoul National Univ., Daehak-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)

  1. Building-integrated photovoltaics

    SciTech Connect (OSTI)

    NONE

    1993-01-01T23:59:59.000Z

    This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

  2. Applying photovoltaics to disaster relief

    SciTech Connect (OSTI)

    Young, W. Jr. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-11-01T23:59:59.000Z

    Hurricanes, floods, tornados, earthquakes and other disasters can happen at any time, often with little or no advance warning. They can be as destructive as Hurricane Andrew leaving several hundred-thousand people homeless or as minor as an afternoon thunderstorm knocking down local power lines to your home. Major disasters leave many people without adequate medical services, potable water, electrical service and communications. In response to a natural disaster, photovoltaic (solar electric) modules offer a source of quiet, safe, pollution-free electrical power. Photovoltaic (PV) power systems are capable of providing the electrical needs for vaccine refrigerators, microscopes, medical equipment, lighting, radios, fans, communications, traffic devices and other general electrical needs. Stand alone PV systems do not require refueling and operate for long period of time from the endless energy supplied by the sun, making them beneficial during recovery efforts. This report discusses the need for electrical power during a disaster, and the capability of PV to fill that need. Applications of PV power used during previous disaster relief efforts are also presented.

  3. Gluconeogenesis as a system : development of in vivo flux analysis of hepatic glucose production in Type 2 Diabetes

    E-Print Network [OSTI]

    Alemán, José O. (José Orlando)

    2008-01-01T23:59:59.000Z

    Metabolic diseases are an increasing health concern in the developed world. Type 2 Diabetes, (T2D) affects over 100 million people worldwide and significantly contributes to chronic diseases such as atherosclerosis and ...

  4. Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics

    E-Print Network [OSTI]

    Pennycook, Steve

    -assembly approach: Potential for photovoltaics O¨ zgu¨ r Polat a,b,1 , Tolga Aytug a, *, Andrew R. Lupini a , Parans vertical oxide heterostructures for photovoltaic applica- tions. Rather, in recent years the development silicon technologies. Presently, CIGS has demonstrated the highest lab-scale cell efficiency at 19.9% [3

  5. Making the most of residential photovoltaic systems

    SciTech Connect (OSTI)

    Moon, S.; Parker, D.; Hayter, S.

    1999-10-18T23:59:59.000Z

    Making the Most of Residential Photovoltaic Systems, was recently produced by NREL Communications and Public Affairs. It showcases a demonstration project in Florida that produced some remarkable results by incorporating both energy efficiency and photovoltaic systems into newly built housing. The brochure points up the benefits of making wise personal choices about energy use, and how large-scale use of advanced energy technologies can benefit the nation. This is one of a series of brochures that presents stimulating information about photovoltaics, with a goal of helping to push this technology into the power-generation mix in different utilities, communities, and states.

  6. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  7. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    SciTech Connect (OSTI)

    Palo, Daniel R.

    2011-04-26T23:59:59.000Z

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The high level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.

  8. Challenges to Overcurrent Protection Devices under Line-line Faults in Solar Photovoltaic Arrays

    E-Print Network [OSTI]

    Lehman, Brad

    tracker (MPPT) of PV inverters, or uses of blocking diodes. This paper examines two types of unique faults-MA, LLC Newburyport, MA, US Abstract--Solar photovoltaic (PV) arrays behave distinctively from inside PV arrays usually cause overcurrent that may damage PV components. This paper focuses

  9. Effect of component failures on economics of distributed photovoltaic systems

    SciTech Connect (OSTI)

    Lubin, B

    2012-02-02T23:59:59.000Z

    This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focused on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.

  10. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    SciTech Connect (OSTI)

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-02-01T23:59:59.000Z

    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  11. SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS

    E-Print Network [OSTI]

    Chin, B.L.

    2011-01-01T23:59:59.000Z

    for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

  12. Broad Band Photon Harvesting Biomolecules for Photovoltaics

    E-Print Network [OSTI]

    P. Meredith; B. J. Powell; J. Riesz; R. Vogel; D. Blake; I. Kartini; G. Will; S. Subianto

    2004-06-04T23:59:59.000Z

    We discuss the key principles of artificial photosynthesis for photovoltaic energy conversion. We demonstrate these principles by examining the operation of the so-called "dye sensitized solar cell" (DSSC) - a photoelectrochemical device which simulates the charge separation process across a nano-structured membrane that is characteristic of natural systems. These type of devices have great potential to challenge silicon semiconductor technology in the low cost, medium efficiency segment of the PV market. Ruthenium charge transfer complexes are currently used as the photon harvesting components in DSSCs. They produce a relatively broad band UV and visible response, but have long term stability problems and are expensive to manufacture. We suggest that a class of biological macromolecules called the melanins may be suitable replacements for the ruthenium complexes. They have strong, broad band absorption, are chemically and photochemically very stable, can be cheaply and easily synthesized, and are also bio-available and bio-compatible. We demonstrate a melanin-based regenerative solar cell, and discuss the key properties that are necessary for an effective broad band photon harvesting system.

  13. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect (OSTI)

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01T23:59:59.000Z

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  14. Sawnee EMC- Solar Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

  15. GreyStone Power- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  16. Central Georgia EMC- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  17. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

  18. Practical Roadmap and Limits to Nanostructured Photovoltaics

    E-Print Network [OSTI]

    Lunt, Richard R.

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power ...

  19. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    hydrogen dilution in silane on light induced degradation of hydrogenated amor- phous silicon films for solar photovoltaichydrogen content from 14-22%[76]. Hydrogenated amorphous silicon has promise as a photovoltaic

  20. Modesto Irrigation District- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Modesto Irrigation District offers a photovoltaic rebate program for all of their electric customers. The peak output capacity of a system must be 1 kW or greater to participate. Systems up to 30...