Powered by Deep Web Technologies
Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177  

SciTech Connect (OSTI)

This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

Olson, D.

2014-08-01T23:59:59.000Z

2

Solar photovoltaics for development applications  

SciTech Connect (OSTI)

This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)] [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

3

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect (OSTI)

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

NONE

1981-12-31T23:59:59.000Z

4

Process Development for Nanostructured Photovoltaics  

SciTech Connect (OSTI)

Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

Elam, Jeffrey W.

2015-01-01T23:59:59.000Z

5

Photovoltaic olar nergy Development on Landfills  

E-Print Network [OSTI]

Photovoltaic olar nergy Development on Landfills ENVIRONMENTAL AREA RESEARCH PIER Environmental of a selfballasting photovoltaic solar racking system will affect a closed landfills dirt cap. The effects experiment wherein single racks with photovoltaic modules will be placed on a landfill cap

6

Advanced photovoltaic-trough development  

SciTech Connect (OSTI)

The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

Spencer, R.; Yasuda, K.; Merson, B.

1982-04-01T23:59:59.000Z

7

Solar Photovoltaics development -Status and perspectives  

E-Print Network [OSTI]

Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

8

Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation  

E-Print Network [OSTI]

Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation, USA ABSTRACT In order to optimize and extend the life of photovoltaics (PV) modules, scientific photovoltaics. The statisti- cally significant relationships were investigated using lifetime and degradation

Rollins, Andrew M.

9

Photovoltaics  

Broader source: Energy.gov [DOE]

The SunShot Initiative aggressively supports development of low-cost, high-efficiency photovoltaic (PV) technologies in order to to make solar electricity cost-competitive with other sources of energy by 2020.

10

Workshop: Photovoltaics Research and Development Beyond SunShot...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photovoltaics Research and Development Beyond SunShot Workshop: Photovoltaics Research and Development Beyond SunShot May 22, 2014 2:30PM to 8:00PM PDT Pacific B This participatory...

11

Integrating Photovoltaic Systems into Low-Income Housing Developments  

E-Print Network [OSTI]

Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New with integrating photovoltaic (PV) systems into existing financing models and the added cost to the new

12

Photovoltaic Process Development and innovative Techniques.  

E-Print Network [OSTI]

?? Photovoltaic processing is one of the processes that have significance in semiconductor process line. It is complicated due to the no. of elements involved (more)

Ismail, Furrukh

2011-01-01T23:59:59.000Z

13

Development of a commercial photovoltaic concentrator module  

SciTech Connect (OSTI)

The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

Saifee, S.T.; Hutchison, G. [Solar Kinetics, Inc., Dallas, TX (United States)

1992-09-01T23:59:59.000Z

14

Developing and marketing a photovoltaics product  

SciTech Connect (OSTI)

This paper presents findings from a market assessment performed by Applied Energy Group, Inc. concerning a Photovoltaic (PV) product developed by Delmarva Power in conjunction with AC Battery and Ascension Technology and the University of Delaware, with sponsorship from the U.S. Department of Energy, This research was performed as part of Phase I of Delmarva`s PV:BONUS research project which has as its aim the development and eventual commercialization of a solar peak shaving device for commercial buildings. A second stage of market research will be pursued under Phase II of the PV:BONUS project to further target appropriate markets, identify and secure several demonstration installations, and develop a marketing campaign. This project provides an example of how a utility can leverage outside funding sources, such as the Department of Energy, to help further the dual goals of identifying new market areas as well as meeting a national policy objective -- the development and commercialization of renewable resource technologies. Technology development is, in fact, a major area of focus for the current administration and is seen as an imperative for the U.S.`s ability to compete in the global marketplace. U.S. electric utilities are in an excellent position to pursue this important niche of energy services as they begin to position themselves for an increasingly competitive environment both here and abroad.

Freeman, L.M.

1995-12-31T23:59:59.000Z

15

Development and application of a photovoltaic financial model  

E-Print Network [OSTI]

Due to the relative immaturity of the solar farm industry, there are very few comprehensive financial models in use. I address this by developing a photovoltaic NPV financial model and apply the model to various base cases ...

Dietz, Brad

2010-01-01T23:59:59.000Z

16

Request for Information: Photovoltaic Reliability and Durability Research and Development  

Broader source: Energy.gov [DOE]

The United States Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to solar photovoltaic (PV) reliability and durability research and development.

17

Development of the SEA Corporation Powergrid{trademark} photovoltaic concentrator  

SciTech Connect (OSTI)

This report covers the three phase effort to bring the SEA Corporation`s Powergrid{trademark} from the concept stage to pilot production. The three phases of this contract covered component development, prototype module development, and pilot line production. The Powergrid is a photovoltaic concentrator that generates direct current electricity directly from sunlight using a linear Fresnel lens. Analysis has shown that the Powergrid has the potential to be very low cost in volume production. Before the start of the project, only proof of concept demonstrations of the components had been completed. During the project, SEA Corporation developed a low cost extruded Fresnel lens, a low cost receiver assembly using one sun type cells, a low cost plastic module housing, a single axis tracking system and frame structure, and pilot production equipment and techniques. In addition, an 800 kW/yr pilot production rate was demonstrated and two 40 kW systems were manufactured and installed.

Kaminar, N.; Curchod, D.; Daroczi, S.; Walpert, M.; Sahagian, J.; Pepper, J. [Photovoltaics International, LLC, Sunnyvale, CA (United States)

1998-03-01T23:59:59.000Z

18

The Development of Semiconducting Materials for Organic Photovoltaics  

E-Print Network [OSTI]

F. C. ; Norrman, K. Prog. Photovoltaics 2007, 15, 697712.Processed Organic Photovoltaics that Generate Chargepolymer-based organic photovoltaics (OPVs) have attracted

Douglas, Jessica D.

2013-01-01T23:59:59.000Z

19

Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals  

DOE Patents [OSTI]

A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes R. (El Paso, TX)

1996-03-26T23:59:59.000Z

20

The Development of Semiconducting Materials for Organic Photovoltaics  

E-Print Network [OSTI]

photovoltaics (OPVs) has led to a significant increase in their power conversion efficiencies (Photovoltaics..1 Motivation and Current Technology1 Organic Photovoltaic Device Operation and Structure2 Characterization of Organic Photovoltaic Device Efficiency..

Douglas, Jessica D.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL: Photovoltaics Research - Process Development and Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D. PrincipalPhotovoltaicLaboratory

22

Photovoltaic-system costing-methodology development. Final report  

SciTech Connect (OSTI)

Presented are the results of a study to expand the use of standardized costing methodologies in the National Photovoltaics Program. The costing standards, which include SAMIS for manufacturing costs and M and D for marketing and distribution costs, have been applied to concentrator collectors and power-conditioning units. The M and D model was also computerized. Finally, a uniform construction cost-accounting structure was developed for use in photovoltaic test and application projects. The appendices contain example cases which demonstrate the use of the models.

Not Available

1982-07-01T23:59:59.000Z

23

Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer  

DOE Patents [OSTI]

A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

Yang, Liyou (Lawrenceville, NJ)

1993-10-26T23:59:59.000Z

24

Alpha Solarco`s Photovoltaic Concentrator Development program  

SciTech Connect (OSTI)

This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.

Anderson, A.; Bailor, B.; Carroll, D. [Alpha Solarco, Inc., Phoenix, AZ (United States)] [and others

1995-10-01T23:59:59.000Z

25

Photovoltaic concentrator initiative: Concentrator cell development  

SciTech Connect (OSTI)

This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

Wohlgemuth, J.H.; Narayanan, S. [Solarex Corp., Frederick, MD (US)

1993-05-01T23:59:59.000Z

26

Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems  

SciTech Connect (OSTI)

To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

Ong, S.; Campbell, C.; Clark, N.

2012-12-01T23:59:59.000Z

27

Photovoltaic concentrator technology development project. Sixth project integration meeting  

SciTech Connect (OSTI)

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

28

Photovoltaic module certification/laboratory accreditation criteria development  

SciTech Connect (OSTI)

This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

Osterwald, C.R. [National Renewable Energy Lab., Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International Inc., Phoenix, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

1995-04-01T23:59:59.000Z

29

Merging photovoltaic hardware development with hybrid applications in the USA  

SciTech Connect (OSTI)

The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

Bower, W.

1993-11-01T23:59:59.000Z

30

Development of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System  

E-Print Network [OSTI]

Development of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System-phase three-level current source inverter (CSI) driven by a single gate-drive power supply in both chopper and inverter, and its feasibility on grid connected photovoltaic system application. Using this new topology

Fujimoto, Hiroshi

31

Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics  

SciTech Connect (OSTI)

The project validated the use of stainless steel flexible substrate coated with silicone-based resin dielectric, developed by Dow Corning Corporation, for Cu(InGa)Se2 based photovoltaics. The projects driving force was the high performance of Cu(InGa)Se2 based photovoltaics coupled with potential cost reduction that could be achieved with dielectric coated SS web substrate.

ERTEN ESER

2012-01-22T23:59:59.000Z

32

The photovoltaic market analysis program : background, model development, applications and extensions  

E-Print Network [OSTI]

The purpose of this report is to describe and motivate the market analysis program for photovoltaics that has developed over the last several years. The main objective of the program is to develop tools and procedures to ...

Lilien, Gary L.

1981-01-01T23:59:59.000Z

33

Impacts of Market and Technical Characteristics for Developments of Photovoltaic Industry- A Study of Japanese Photovoltaic Industry.  

E-Print Network [OSTI]

??The thesis discusses the restrictions of photovoltaic industrial market and technical characteristics, and the reactions of Japanese government and photovoltaic industry. Furthermore, this thesis studies (more)

Hu, Jung-Yu

2012-01-01T23:59:59.000Z

34

Solar kinetics` photovoltaic concentrator module and tracker development  

SciTech Connect (OSTI)

Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

1995-11-01T23:59:59.000Z

35

Lithium Ion Cell Development for Photovoltaic Energy Storage Applications  

SciTech Connect (OSTI)

The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component ?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program ?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials ?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

Susan Babinec

2012-02-08T23:59:59.000Z

36

Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells  

SciTech Connect (OSTI)

Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100?nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33?mA/cm{sup 2}, an open circuit voltage of 0.72?V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

Zhuang, Taojun; Wang, Xiao-Feng, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp; Sano, Takeshi; Kido, Junji, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp [Department of Organic Device Engineering, Graduate School of Science and Engineering, and Research Center for Organic Electronics (ROEL), Yamagata University, Yonezawa 992-8510 (Japan); Hong, Ziruo, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp [Department of Organic Device Engineering, Graduate School of Science and Engineering, and Research Center for Organic Electronics (ROEL), Yamagata University, Yonezawa 992-8510 (Japan); Department of Materials Science and Engineering, University of California-Los Angeles, California 90095 (United States); Li, Gang; Yang, Yang [Department of Materials Science and Engineering, University of California-Los Angeles, California 90095 (United States)

2014-09-01T23:59:59.000Z

37

Development and operation of a photovoltaic power system for use at remote Antarctic sites  

SciTech Connect (OSTI)

A photovoltaic power system, designed and built at the NASA Lewis Research Center, has successfully operated over the past two summer seasons at a remote site in Antarctica, providing utility-type power for a six-person field team. The system was installed at the Lake Hoare site for approximately five weeks during late 1992, put into storage for the Antarctic winter, and then used again during the 1993 season. The photovoltaic power system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system worked extremely well in providing quiet, reliable power. The experience gained from early system demonstrations such as this should be beneficial in accelerating the transition toward future PV systems in Antarctica and other similar areas.

Piszczor, M.F.; Kohout, L.L.; Manzo, M. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Colozza, A.J. [NYMA, Brook Park, OH (United States)

1994-12-31T23:59:59.000Z

38

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

SciTech Connect (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

39

Development of Inorganic Precursors for Manufacturing of Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-308  

SciTech Connect (OSTI)

Both NREL and Rohm and Haas Electronic Materials are interested in the development of solution phase metal and semiconductive precursors for the manufacturing of photovoltaic devices. In particular, we intend to develop material sets for atmospheric deposition processes. The cooperation between these two parties will enable high value materials and processing solutions for the manufacturing of low cost, roll-to-roll photovoltaics.

van Hest, M.; Ginley, D.

2013-06-01T23:59:59.000Z

40

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

SciTech Connect (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Comment on "coherence and uncertainty in nanostructured organic photovoltaics"  

E-Print Network [OSTI]

provide new probes for photovoltaics. The develop- ment ofin Nanostructured Organic Photovoltaics. J. Phys. Chem. Lettin Nanostructured Organic Photovoltaics Shaul Mukamel

Mukamel, S

2013-01-01T23:59:59.000Z

42

Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers  

SciTech Connect (OSTI)

This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

Schmid, F. (Crystal Systems, Inc., Salem, MA (United States))

1991-12-01T23:59:59.000Z

43

Photovoltaics Business Models  

SciTech Connect (OSTI)

This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

2008-02-01T23:59:59.000Z

44

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

45

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

installed power from photovoltaic systems worldwide fromBest research photovoltaic efficiencies (Kazmerski,as a function of time for numerous types of photovoltaic

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

46

NREL PV AR&D 11th review meeting, May 13--15, 1992, Denver Marriott City Center, Denver, Colorado. Photovoltaic Advanced Research and Development Project  

SciTech Connect (OSTI)

This is a collection of abstracts from papers presented at the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) research and development review meeting held May 1992. Subject areas covered include solar cell and solar module manufacturing and development, materials, polycrystalline thin films, applications, amorphous silicon, solar cell performance and testing, crystalline silicon and other photovoltaic and safety perspectives. (GHH)

Not Available

1992-06-01T23:59:59.000Z

47

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Photovoltaic Technology For  

E-Print Network [OSTI]

Into Photovoltaic Technology For The New Student Union Building Peter Choi, Tamer Kalla, Tony Lin University; AN INVESTIGATION INTO PHOTOVOLTAIC TECHNOLOGY FOR THE NEW STUDENT UNIONION BUILDING Peter Choi Tamer Kalla Tony ....................................................................................................................... 1 2.0 COST ANALYSIS OF ENERGY SOURCES

48

NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect (OSTI)

NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

Not Available

2011-11-01T23:59:59.000Z

49

Photovoltaic cell efficiency at elevated temperatures  

E-Print Network [OSTI]

In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

Ray, Katherine Leung

2010-01-01T23:59:59.000Z

50

Project Profile: Development of a Low-Cost Residential Plug-and-Play Photovoltaic System  

Broader source: Energy.gov [DOE]

North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage...

51

Photovoltaic solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

52

Photovoltaic solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

2014-05-20T23:59:59.000Z

53

Photovoltaic Research Facilities  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

54

Organic Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE funds research and development projects related to organic photovoltaics (OPV) due to the unique benefits it offers. Below are a list of the projects, summary of the benefits, and discussion on...

55

Crystalline Silicon Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion...

56

Module Handbook Specialisation Photovoltaics  

E-Print Network [OSTI]

Module Handbook Specialisation Photovoltaics 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Northumbria Specialisation Provider: Photovoltaics #12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL

Habel, Annegret

57

Photovoltaic product directory and buyers guide  

SciTech Connect (OSTI)

Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

1981-06-01T23:59:59.000Z

58

Low band gap polymers Organic Photovoltaics  

E-Print Network [OSTI]

Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Ris National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

59

Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations  

E-Print Network [OSTI]

by the University of Wisconsin, which is used to select and analyze solar thermal systems. The program provides monthly- average performance for selected system, including: domestic water heating systems, space heating systems, pool heating systems and others... savings from photovoltaic systems using the PV F-CHART program, and a second procedure that uses the F-CHART program to calculate the thermal savings. The solar systems are simulated as specified for the user, no optimization or modification...

Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

60

Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498  

SciTech Connect (OSTI)

Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

Olson, D.

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Photovoltaic cell  

DOE Patents [OSTI]

In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

Gordon, Roy G. (Cambridge, MA); Kurtz, Sarah (Somerville, MA)

1984-11-27T23:59:59.000Z

62

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 1, NO. 1, JULY 2011 49 High Efficiency n-Type Emitter-Wrap-Through  

E-Print Network [OSTI]

, Verena Mertens, Stefan Bordihn, Christina Peters, and J¨org W. M¨uller Abstract--In the ALBA-II project, Emmerthal, Germany, are developing high-efficiency emitter-wrap-through (EWT) solar cells on n-type silicon cell development as it offers high bulk carrier lifetimes. The EWT device structure allows us to em

63

Photovoltaic Subcontract Program  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

Not Available

1993-03-01T23:59:59.000Z

64

EELE408 Photovoltaics Lecture 20: Photovoltaic Systems  

E-Print Network [OSTI]

· 6. Determine battery size for recommended reserve time Photovoltaic System Design Block Diagram Ph1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array

Kaiser, Todd J.

65

An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use  

E-Print Network [OSTI]

An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material: Life cycle assessment Quantum dots Nanophotovoltaics Quantum dot photovoltaic modules Solar energy Assessment (LCA) of a proposed type of nanophotovoltaic, quantum dot photovoltaic (QDPV) module. The LCA

Illinois at Chicago, University of

66

Photovoltaics Green is a Prerequisite for Sustainable Growth  

E-Print Network [OSTI]

1 Photovoltaics Green is a Prerequisite for Sustainable Growth Vasilis Fthenakis1 and Brent Nelson2 impact on the environment, are the key drivers of photovoltaic energy development Photovoltaic life Criteria Photovoltaics are required to meet the need for abundant electricity generation at competitive

Ohta, Shigemi

67

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

68

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

Catalano, A.W.; Bhushan, M.

1982-08-03T23:59:59.000Z

69

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

1982-01-01T23:59:59.000Z

70

PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS, VOL 2, 235-248 (1994) ~pplications Photovoltaics as a  

E-Print Network [OSTI]

PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS, VOL 2, 235-248 (1994) ~pplications Photovoltaics as a Demand-side Management Technology: an Analysis of Peak-shaving and Direct Load Control Dept. of Energy University Center of Excellence for Photovoltaic Research and Development, Newark, DE

Delaware, University of

1994-01-01T23:59:59.000Z

71

Energizing the Next Generation with Photovoltaics Following the lead of Russian colleagues, photovoltaic (PV)  

E-Print Network [OSTI]

Energizing the Next Generation with Photovoltaics ABSTRACT Following the lead of Russian colleagues, photovoltaic (PV) lab kits are being built and experiments and curricula are being developed for use of these kits. This Photovoltaic Sci- ence Experiments and Curriculum (PSEC) is being tested in local high

Oregon, University of

72

Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

Not Available

2012-11-01T23:59:59.000Z

73

Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

Not Available

2011-10-01T23:59:59.000Z

74

EELE408 Photovoltaics Lecture 15 Photovoltaic Devices  

E-Print Network [OSTI]

1 EELE408 Photovoltaics Lecture 15 Photovoltaic Devices Dr. Todd J. Kaiser tjkaiser) Demonstrated the photovoltaic effect Best results with UV or blue light 2 g Electrodes covered with light of photovoltaic effect in an all solid state device Several decades before the effect could be explained Fritts

Kaiser, Todd J.

75

Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems  

E-Print Network [OSTI]

Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems materials for enhanced photovoltaic (PV) performance, it is critical to have quantitative knowledge developed for solar radiation durability studies of solar and environmentally exposed photovoltaic materials

Rollins, Andrew M.

76

Analysis of batteries for use in photovoltaic systems. Final report  

SciTech Connect (OSTI)

An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

Podder, A; Kapner, M

1981-02-01T23:59:59.000Z

77

27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS  

E-Print Network [OSTI]

-generation industrial solar cells as stated in the International Technology Roadmap [3]. An industrial PERC process flow27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS C.Kranz1 , S. Wyczanowski1 , S

78

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

79

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

80

INTEGRATING PHOTOVOLTAIC SYSTEMS  

E-Print Network [OSTI]

INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

Delaware, University of

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Photovoltaics Life Cycle Analysis  

E-Print Network [OSTI]

1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

82

Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322  

SciTech Connect (OSTI)

The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

Geisz, J. F.

2012-11-01T23:59:59.000Z

83

Photovoltaic Energy Program overview, fiscal year 1997  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

NONE

1998-02-01T23:59:59.000Z

84

Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)  

SciTech Connect (OSTI)

This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

Not Available

2012-06-01T23:59:59.000Z

85

Photovoltaics: New opportunities for utilities  

SciTech Connect (OSTI)

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

86

SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

Kroposki, B.

2012-09-01T23:59:59.000Z

87

Development of Substrate Structure CdTe Photovoltaic Devices with Performance Exceeding 10%: Preprint  

SciTech Connect (OSTI)

Most work on CdTe-based solar cells has focused on devices with a superstrate structure. This focus is due to the early success of the superstrate structure in producing high-efficiency cells, problems of suitable ohmic contacts for lightly doped CdTe, and the simplicity of the structure for manufacturing. The development of the CdCl2 heat treatment boosted CdTe technology and perpetuated the use of the superstrate structure. However, despite the beneficial attributes of the superstrate structure, devices with a substrate structure are attractive both commercially and scientifically. The substrate structure eliminates the need for transparent superstrates and thus allows the use of flexible metal and possibly plastic substrates. From a scientific perspective, it allows better control in forming the junction and direct access to the junction for detailed analysis. Research on such devices has been limited. The efficiency of these devices has been limited to around 8% due to low open-circuit voltage (Voc) and fill factor. In this paper, we present our recent device development efforts at NREL on substrate-structure CdTe devices. We have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. We have worked on a variety of contact materials including Cu-doped ZnTe and CuxTe. We will present a comparative analysis of the performance of these contacts. In addition, we have studied the influence of fabrication parameters on junction properties. We will present an overview of our development work, which has led to CdTe devices with Voc values of more than 860 mV and NREL-confirmed efficiencies approaching 11%.

Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Gessert, T. A.

2012-08-01T23:59:59.000Z

88

The Solar Energy Consortium of New York Photovoltaic Research and Development Center  

SciTech Connect (OSTI)

Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

Klein, Petra M.

2012-10-15T23:59:59.000Z

89

GAP analysis towards a design qualification standard development for grid-connected photovoltaic inverters.  

SciTech Connect (OSTI)

A dedicated design qualification standard for PV inverters does not exist. Development of a well-accepted design qualification standard, specifically for PV inverters will significantly improve the reliability and performance of inverters. The existing standards for PV inverters such as ANSI/UL 1741 and IEC 62109-1 primarily focus on safety of PV inverters. The IEC 62093 discusses inverter qualification but it includes all the BOS components. There are other general standards for distributed generators including the IEEE 1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this paper some of the potential requirements for a design qualification standard for PV inverters are addressed. The missing links in existing PV inverter related standards are identified and with the IEC 62093 as a guideline, the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. Some of the key missing links are related to electric stress tests. Hence, a method to adapt the existing surge withstand test standards for use in design qualification standard of PV inverter is presented.

Tamizhmani, Govindasamy (Arizona State University, Tempe, AZ); Granata, Jennifer E.; Maracas, George (Arizona State University, Tempe, AZ); Ayyanar, Raja (Arizona State University, Tempe, AZ); Marinella, Matthew; Venkataramanan, Sai Balasubramanian Alampoondi (Arizona State University, Tempe, AZ)

2011-06-01T23:59:59.000Z

90

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic  

E-Print Network [OSTI]

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused relaxation techniques. Index Terms--Distribution networks, microgrids, photovoltaic systems, inverter control

Giannakis, Georgios

91

National Center for Photovoltaics at NREL  

SciTech Connect (OSTI)

The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

2013-11-07T23:59:59.000Z

92

National Center for Photovoltaics at NREL  

ScienceCinema (OSTI)

The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

2014-06-10T23:59:59.000Z

93

Photovoltaic Subcontract Program, FY 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Not Available

1992-03-01T23:59:59.000Z

94

Photovoltaic module reliability workshop  

SciTech Connect (OSTI)

The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

Mrig, L. (ed.)

1990-01-01T23:59:59.000Z

95

Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers. Final subcontract report, 9 January 1991--14 April 1991  

SciTech Connect (OSTI)

This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

Schmid, F. [Crystal Systems, Inc., Salem, MA (United States)

1991-12-01T23:59:59.000Z

96

Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012  

SciTech Connect (OSTI)

This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

Mattos, L.

2012-03-01T23:59:59.000Z

97

Solar photovoltaic residence in Carlisle, Massachusetts  

SciTech Connect (OSTI)

The first solar photovoltaic house designed and constructed under the US Department of Energy's Solar Photovoltaic Residential Project has been completed. The house, which is powered by a 7-kWp PV system, will be used to assess the occupants' acceptance of and reactions to residential photovoltaic systems and to familiarize utilities, builders, developers, town building officials and others with issues concerning photovoltaic installations. The house is located on a two-acre lot in Carlisle, approximately twenty miles northwest of Boston. Built by a local architect/developer team, the house includes energy conservation and passive solar features. It utilizes a roof-mounted, flat-plate PV array which operates in a two-way energy exchange mode with the electric utility. The energy conservation and passive solar features of this house are described and a detailed description of the utility-interactive photovoltaic system is presented, along with initial performance data.

Strong, S. J.; Nichols, B. E.

1981-01-01T23:59:59.000Z

98

Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes  

SciTech Connect (OSTI)

Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

Moskowitz, P.D.; Zweibel, K. (eds.)

1992-01-01T23:59:59.000Z

99

CyclobutadieneC[subscript 60] Adducts: N-Type Materials for Organic Photovoltaic Cells with High V[subscript OC  

E-Print Network [OSTI]

New tetraalkylcyclobutadieneC[subscript 60] adducts are developed via DielsAlder cycloaddition of C[subscript 60] with in situ generated cyclobutadienes. The cofacial ?-orbital interactions between the fullerene orbitals ...

Han, Ggoch Ddeul

100

Geothermal Development Job Types and Impacts  

Broader source: Energy.gov [DOE]

Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Scale-Up of CdTe Photovoltaic Device Processes for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-06-196  

SciTech Connect (OSTI)

Through this Cooperative Research and Development Agreement, NREL and PrimeStar Solar will work together to scale up the NREL CdTe photovoltaic process from the laboratory to produce photovoltaic devices in a size that is commercially viable. The work in this phase will focus on the transference of NREL CdTe device fabrication techniques to PrimeStar Solar. NREL and PrimeStar Solar will engage in a series of technical exchange meetings and laboratory training sessions to transfer the knowledge of CdTe PV film growth from NREL to PrimeStar Solar. PrimeStar Solar will grow thin films on PrimeStar Solar equipment and interleave them with NREL-grown films in an effort to develop a commercial scale process on PrimeStar Solar equipment. Select NREL film growth equipment will be upgraded either by PrimeStar Solar or at PrimeStar Solar's expense to increase equipment reliability and throughput.

Albin, D.

2013-02-01T23:59:59.000Z

102

Renewable Energy Ready Home Solar Photovoltaic Specifications...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide,...

103

Sandia National Laboratories: Photovoltaic Regional Testing Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Modeling, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Photovoltaic Systems Evaluation...

104

Photovoltaic Energy Conversion  

E-Print Network [OSTI]

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction warming and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth Sustained growth of 30

Glashausser, Charles

105

Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels  

DOE Patents [OSTI]

The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

Subramanian, Vaidyanathan; Murugesan, Sankaran

2014-04-29T23:59:59.000Z

106

Electroluminescence in photovoltaic cell  

E-Print Network [OSTI]

Here we propose two methods to get electroluminescence images from photovoltaic cells in a school or home lab.

Petraglia, Antonio; 10.1088/0031-9120/46/5/F01

2011-01-01T23:59:59.000Z

107

Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2010-09-01T23:59:59.000Z

108

Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2011-06-01T23:59:59.000Z

109

Amorphous silicon photovoltaic devices  

DOE Patents [OSTI]

This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

2004-08-31T23:59:59.000Z

110

Superior Valley photovoltaic power processing and system controller evaluation  

SciTech Connect (OSTI)

Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

1995-11-01T23:59:59.000Z

111

EELE408 Photovoltaics Lecture 17 Photovoltaic Modules  

E-Print Network [OSTI]

1 EELE408 Photovoltaics Lecture 17 Photovoltaic Modules Dr. Todd J. Kaiser tjkaiser to temperature effects and other non ideal conditions · Allows for voltage drops across other PV system components · Requires 15 V to charge a 12 V battery 10 Module Current · Depends primarily on size of solar

Kaiser, Todd J.

112

Breakthrough: micro-electronic photovoltaics  

SciTech Connect (OSTI)

Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

Okandan, Murat; Gupta, Vipin

2012-04-23T23:59:59.000Z

113

Breakthrough: micro-electronic photovoltaics  

ScienceCinema (OSTI)

Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

Okandan, Murat; Gupta, Vipin

2014-06-23T23:59:59.000Z

114

Data base on batteries, power-conditioning equipment, and photovoltaic arrays. Final report  

SciTech Connect (OSTI)

The objective of this study was to compile an up-to-date comprehensive data base for research, design, and development of photovoltaic systems, primarily in the areas of applications and battery technology, and secondarily in the area of power conditioning and photovoltaic array technology. This volume contains the data base used to develop the end-use scenarios and identify the R and D needed for batteries to be used in photovoltaic power systems. In addition to its specific application to the present study, this data base is intended to provide state-of-the-art information to manufacturers of the various components of photovoltaic power systems, system designers, and researchers in this field. An extensive literature search was conducted to obtain technical data on batteries, power conditioners, and photovoltaic arrays. The data obtained from published technical literature and direct communication with manufacturers and developers are compiled. Principles of operation, types of systems, performance characteristics, test data, and cost data are included for each of the components. (WHK)

Podder, A; Kapner, M; Morse, T

1981-02-01T23:59:59.000Z

115

Photovoltaics information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

1980-10-01T23:59:59.000Z

116

Evaluation of Lifetime of High Efficiency Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-379  

SciTech Connect (OSTI)

As a part of this joint work, Solarmer and NREL will investigate the lifetime and stability of Organic Photovoltaic Devices based on Solarmer high efficiency active layer materials.

Olson, D.

2013-04-01T23:59:59.000Z

117

Singlet Exciton Fission in Polyacenes: Photophysics and Photovoltaic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Photovoltaic Applications December 13, 2011 at 3pm34-401A Mark Wilson Optoelectronics Group, University of Cambridge markwbwilson-headshot Abstract: The development of...

118

Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

alone cost about 0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking system that reduces mechanical and electrical labor,...

119

Photovoltaic Subcontract Program, FY 1990  

SciTech Connect (OSTI)

This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

Summers, K.A. (ed.)

1991-03-01T23:59:59.000Z

120

Request for Information on Photovoltaic Module Recycling  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Battery compatibility with photovoltaic charge controllers  

SciTech Connect (OSTI)

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

122

NREL Photovoltaic Program FY 1993  

SciTech Connect (OSTI)

This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

Not Available

1994-08-01T23:59:59.000Z

123

Concentrating Photovoltaics (Presentation)  

SciTech Connect (OSTI)

Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

Kurtz, S.

2009-01-20T23:59:59.000Z

124

Photovoltaic Cell Structure Basics  

Broader source: Energy.gov [DOE]

The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell.

125

Lab Breakthrough: Microelectronic Photovoltaics  

Broader source: Energy.gov [DOE]

Sandia's glitter-sized photovoltaic cells are highly efficient and cost effective the perfect combination for a game-changing technology.

126

Photovoltaic Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector.

127

Next-Generation Photovoltaic Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

128

NREL Photovoltaic Program FY 1996 Annual Report  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

Not Available

1997-08-01T23:59:59.000Z

129

1990 DOE/SANDIA crystalline photovoltaic technology project review meeting  

SciTech Connect (OSTI)

This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

Ruby, D.S. (ed.)

1990-07-01T23:59:59.000Z

130

Multijunction photovoltaic device and fabrication method  

DOE Patents [OSTI]

A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

1993-09-21T23:59:59.000Z

131

Photovoltaics industry profile  

SciTech Connect (OSTI)

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

132

Microsystems Enabled Photovoltaics  

ScienceCinema (OSTI)

Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

2014-06-23T23:59:59.000Z

133

Microsystems Enabled Photovoltaics  

SciTech Connect (OSTI)

Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

2012-07-02T23:59:59.000Z

134

Characterization of 3D Photovoltaics  

E-Print Network [OSTI]

Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers The U.S. Photovoltaic Industry Roadmap

135

Metallic nanostructures for optoelectronic and photovoltaic applications  

E-Print Network [OSTI]

enhanced performance of photovoltaic and photodetector Proc.and H. Wagner, in Photovoltaic Specialists Conference. ,for Optoelectronic and Photovoltaic Applications by Swee Hoe

Lim, Swee Hoe

2009-01-01T23:59:59.000Z

136

DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS  

E-Print Network [OSTI]

DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

Sites, James R.

137

Scattering Properties of nanostructures : applications to photovoltaics  

E-Print Network [OSTI]

high-efficiency low- cost photovoltaic devices has been thehigh-efficiency low-cost photovoltaic devices has been theoverall per unit cost of photovoltaic modules. Module costs

Derkacs, Daniel

2009-01-01T23:59:59.000Z

138

Photovoltaic Subcontract Program. Annual report, FY 1992  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

Not Available

1993-03-01T23:59:59.000Z

139

Accelerators of ELV-type Status, development, applications  

E-Print Network [OSTI]

Accelerators of ELV-type Status, development, applications In the work presented here the parameters of powerful electron accelerators of con- tinuous action are given and the main systems of the accelerator and a wide set of sup- plementary devices extending the application range of the accelerator

140

Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic applications  

E-Print Network [OSTI]

Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic and a fullerene (C60) derivative with long alkyl chains was constructed as a donor­acceptor pair for photovoltaics as attractive candidates for the development of light- energy harvesting and photovoltaic materials because

Nabben, Reinhard

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications  

E-Print Network [OSTI]

-processable low-cost materials for high efficient hybrid photovoltaic cells [3-6, 9-14]. Tremendous progress hasTheoretical insights into multibandgap hybrid perovskites for photovoltaic applications J. Even to open "a new era and a new avenue of research and development for low-cost solar cells ... likely

142

Annual Report: Photovoltaic Subcontract Program FY 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Summers, K. A.

1992-03-01T23:59:59.000Z

143

Photovoltaic module mounting clip with integral grounding  

DOE Patents [OSTI]

An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

Lenox, Carl J.

2010-08-24T23:59:59.000Z

144

Photovoltaic module and interlocked stack of photovoltaic modules  

SciTech Connect (OSTI)

One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

Wares, Brian S.

2014-09-02T23:59:59.000Z

145

Organic photovoltaics and concentrators  

E-Print Network [OSTI]

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

Mapel, Jonathan King

2008-01-01T23:59:59.000Z

146

Photovoltaic Cell Performance Basics  

Broader source: Energy.gov [DOE]

Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of the PV cell.

147

Three-dimensional photovoltaics  

E-Print Network [OSTI]

The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

Myers, Bryan

148

Nanocarbon-Based Photovoltaics  

E-Print Network [OSTI]

Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active ...

Bernardi, Marco

149

Sandia National Laboratories: Photovoltaic Systems Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling & Simulation, Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

150

General Services Administration Photovoltaics Project in Sacramento...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

151

Development of crawler type device using new measuring system  

SciTech Connect (OSTI)

This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-ups and applied examination of RPVs to verify field applicability.

Maruyama, T.; Sasaki, T.; Yagi, T. [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama (Japan)

1995-08-01T23:59:59.000Z

152

Electrochromic-photovoltaic film for light-sensitive control of optical transmittance  

DOE Patents [OSTI]

A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

Branz, Howard M. (Boulder, CO); Crandall, Richard S. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1994-01-01T23:59:59.000Z

153

Electrochromic-photovoltaic film for light-sensitive control of optical transmittance  

DOE Patents [OSTI]

A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

Branz, H.M.; Crandall, R.S.; Tracy, C.E.

1994-12-27T23:59:59.000Z

154

New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149 Revision: - Date: 06/15/10 ABENGOANRELu547 NewNevadaNew

155

Further developments in generating type-safe messaging  

SciTech Connect (OSTI)

At ICALEPCS 09, we introduced a source code generator that allows processes to communicate safely using data types native to each host language. In this paper, we discuss further development that has occurred since the conference in Kobe, Japan, including the addition of three more client languages, an optimization in network packet size and the addition of a new protocol data type. The protocol compiler is continuing to prove itself as an easy and robust way to get applications written in different languages hosted on different computer architectures to communicate. We have two active Erlang projects that are using the protocol compiler to access ACNET data at high data rates. We also used the protocol compiler output to deliver ACNET data to an iPhone/iPad application. Since it takes an average of two weeks to support a new language, we're willing to expand the protocol compiler to support new languages that our community uses.

Neswold, R.; King, C.; /Fermilab

2011-11-01T23:59:59.000Z

156

A Multivariate Moving Average Control Chart for Photovoltaic Processes  

E-Print Network [OSTI]

AbstractFor the electrical metrics that describe photovoltaic cell performance are inherently multivariate in nature, use of a univariate, or one variable, statistical process control chart can have important limitations. Development of a comprehensive process control strategy is known to be significantly beneficial to reducing process variability that ultimately drives up the manufacturing cost photovoltaic cells. The multivariate moving average or MMA chart, is applied to the electrical metrics of photovoltaic cells to illustrate the improved sensitivity on process variability this method of control charting offers. The result show the ability of the MMA chart to expand to as any variables as needed, suggests an application with multiple photovoltaic electrical metrics being used in concert to determine the processes state of control. KeywordsThe multivariate moving average control chart, Photovoltaic processes control, Multivariate system. I.

Chunchom Pongchavalit

157

Photovoltaic procurement strategies: an assessment of supply issues  

SciTech Connect (OSTI)

This review report presents the results of an analysis of alternative approaches to the design of a federal photovoltaics procurement program. Advantages and disadvantages of large purchases at fixed prices and smaller purchases for testing and demonstrating the technology are presented. The objectives and possible impacts of these purchase programs on the photovoltaic industry are described. The reactions of the industry to alternative purchase programs were assessed using personal interviews with selected companies currently active in photovoltaics. The report begins with a review of the impacts of federal procurements on other innovations, including the electronics industry, and suggests the relation of these procurements to photovoltaics. The methodology for conducting the interviews is presented next. The results of the interviews are summarized into possible scenarios of future developments in the industry and into discussions of key issues in the design of a procurement program. An appendix on the current structure of the photovoltaic industry is provided.

Posner, D.; Costello, D.

1980-02-01T23:59:59.000Z

158

Thermionic-photovoltaic energy converter  

SciTech Connect (OSTI)

A thermionic-photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or galium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

Chubb, D. L.

1985-07-09T23:59:59.000Z

159

Photovoltaic energy: Contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the National Photovoltaics Program since 1975. Its purpose is to provide focus, direction, and funding for the development of terrestrial photovoltaic technology as an energy option for the United States. In the past, a summary was prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. Tasks conducted in-house by participating national laboratories or under contract by industrial, academic, and other research institutes were highlighted. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed by Sandia National Laboratory or the Solar Energy Research Institute during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory, projects are listed alphabetically by project area and then by subcontractor name.

Not Available

1991-07-01T23:59:59.000Z

160

The 22nd International Photovoltaic Science and Engineering Conference, November 05-09, 2012, Hangzhou, China Gettering of n-type multicrystalline silicon solar cells by  

E-Print Network [OSTI]

, Hangzhou, China Gettering of n-type multicrystalline silicon solar cells by phosphorus diffusion, boron in heavily dislocated regions. 1. INTRODUCTION N-type multicrystalline silicon has great potential as solar+ diffused region in n- type silicon solar cells with either aluminum annealing or boron diffusion are good

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Photovoltaic energy program overview: Fiscal year 1994  

SciTech Connect (OSTI)

This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

NONE

1995-03-01T23:59:59.000Z

162

Nanowires enabling strained photovoltaics  

SciTech Connect (OSTI)

Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

Greil, J.; Bertagnolli, E.; Lugstein, A., E-mail: alois.lugstein@tuwien.ac.at [Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Birner, S. [nextnano GmbH, Sdmhrenstr. 21, 85586 Poing (Germany)

2014-04-21T23:59:59.000Z

163

Concentrating photovoltaic solar panel  

DOE Patents [OSTI]

The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

2014-04-15T23:59:59.000Z

164

LET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY  

E-Print Network [OSTI]

/kWh, depending on its location as well as on the size and type of PV system used (EPIA Report, 2011). InvestmentLET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY Anna CRETI Jérôme JOAUG Cahier n:chantal.poujouly@polytechnique.edu hal-00751743,version1-14Nov2012 #12;Let the sun shine: optimal deployment of photovoltaics in Germany

Paris-Sud XI, Université de

165

Flywheel storage for photovoltaics: an economic evaluation of two applications  

E-Print Network [OSTI]

A worth analysis is made for an advanced flywheel storage concept for tandem operation with photovoltaics currently being developed at MIT/Lincoln Laboratories. The applications examined here are a single family residence ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

166

Ohio State's researchers to collaborate on three new Ohio Third Frontier photovoltaics grants Ohio State's Institute for Materials Research (IMR) is the central collaborator on three Ohio Third Frontier Photovoltaics  

E-Print Network [OSTI]

Ohio State's researchers to collaborate on three new Ohio Third Frontier photovoltaics grants Ohio Photovoltaics Program (PVP) projects recommended for funding by the Ohio Third Frontier Commission. The goal of the PVP is to accelerate the development and growth of the photovoltaics industry in Ohio by supporting

167

Project Profile: Plug-and-Play Solar Photovoltaics for American Homes  

Broader source: Energy.gov [DOE]

Fraunhofer USA, Inc., Center for Sustainable Energy Systems and its partners, under the Plug-and-Play Photovoltaics FOA, are developing technologies, components, systems, and standards that enable...

168

Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

James, T.

2014-03-01T23:59:59.000Z

169

Material Needs for Thin-Film and Concentrator Photovoltaic Modules (Presentation)  

SciTech Connect (OSTI)

This presentation describes the ongoing needs (manufacturability, availability, low cost, performance, and reliability) that drive the development of new photovoltaic materials.

Kurtz, S.

2009-12-04T23:59:59.000Z

170

Photovoltaic radiation detector element  

DOE Patents [OSTI]

A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

Agouridis, D.C.

1980-12-17T23:59:59.000Z

171

Multiple gap photovoltaic device  

DOE Patents [OSTI]

A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

Dalal, Vikram L. (Newark, DE)

1981-01-01T23:59:59.000Z

172

Thin film photovoltaic cell  

DOE Patents [OSTI]

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

173

PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--  

E-Print Network [OSTI]

management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

Perez, Richard R.

174

Process Development for Nanostructured Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department of EnergyProcess Design andof Energy

175

NREL: Photovoltaics Research - Standards Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7 November 29,Science

176

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 29, NO. 4, DECEMBER 2014 957 Decentralized Optimal Dispatch of Photovoltaic  

E-Print Network [OSTI]

Dispatch of Photovoltaic Inverters in Residential Distribution Systems Emiliano Dall'Anese, Member, IEEE photovoltaic (PV) in- verters are developed in this paper. It is known that conventional PV inverter), photovoltaic systems, sparsity, voltage regulation. I. INTRODUCTION THE PROLIFERATION of residential

Giannakis, Georgios

177

Nuclear Instruments and Methods in Physics Research A 554 (2005) 340346 A compensated fission detector based on photovoltaic cells  

E-Print Network [OSTI]

detector based on photovoltaic cells M. Petita , T. Ethvignota , T. Graniera,?, R.C. Haightb , J.M. O fission fragment detector based on compensated photovoltaic cells has been developed. The compensated. Keywords: Fission; Fission detection; Compensated detector; Lead slowing-down spectrometer; Photovoltaic

Danon, Yaron

178

Multijunction photovoltaic device and method of manufacture  

DOE Patents [OSTI]

A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

Arya, Rejeewa R. (Jamison, PA); Catalano, Anthony W. (Boulder, CO); Bennett, Murray (Longhorne, PA)

1995-04-04T23:59:59.000Z

179

Operational results from the Saudi Solar Village Photovoltaic power system  

SciTech Connect (OSTI)

The world's largest photovoltaic power system was carried into the operation phase a few months ago. This system was developed and fabricated in the United States and it is providing electrical energy to three remote villages in Saudi Arabia. The facility includes a 350 kW photovoltaic array, 1-MW diesel powered generator, 1100 kWH lead acid batteries, a 300 KVA inverter and a solar weather data monitoring station. The photovoltaic power system is capable of completely automatic operation. It is designed to operate in stand-alone and cogeneration modes of operation.

Huraib, F.; Al-Sani, A.; Khoshami, B.H.

1982-08-01T23:59:59.000Z

180

ADAPTIVE HYSTERESIS CURRENT CONTROL OF INVERTER FOR SOLAR PHOTOVOLTAIC APPLICATIONS  

E-Print Network [OSTI]

Abstract Power inverters are used to convert the D.C power produced by the solar photovoltaic cell into AC. This paper presents a novel Adaptive Hysteresis Current Controller to control the inverter, used in the solar photovoltaic cell. The proposed controller is capable of reducing the total harmonic distortion and to provide constant switching frequency. The mathematical model of Photovoltaic array is developed using the Newtons method using the parameter obtained from a commercial photovoltaic data sheet under variable weather conditions, in which the effect of irradiance and temperature are considered. The modeled Photovoltaic array is interfaced with DC-DC boost converter, AC-DC inverter and load. A DC-DC boost converter is used to step up the input DC voltage of the Photovoltaic array while the DC-AC single-phase inverter converts the input DC comes from boost converter into AC. The performance of the proposed controller of inverter is evaluated through MATLAB-Simulation. The results obtained with the proposed algorithm are compared with those obtained when using conventional fixed hysteresis current controller for single-phase photovoltaic inverter in terms of THD and switching frequency.

unknown authors

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Department of Energy: Photovoltaics program - FY 1996  

SciTech Connect (OSTI)

The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

NONE

1996-12-31T23:59:59.000Z

182

Photovoltaic module and interlocked stack of photovoltaic modules  

SciTech Connect (OSTI)

One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

Wares, Brian S.

2012-09-04T23:59:59.000Z

183

Low-Cost Installation of Concentrating Photovoltaic  

E-Print Network [OSTI]

Low-Cost Installation of Concentrating Photovoltaic Renewable Energy Research Renewable Energy inhibit the potential growth of the California photovoltaic market: high installation costs, expenses improvements have been made in recent years on the assembly and deployment of flatplate photovoltaic

184

Photon management in thermal and solar photovoltaics  

E-Print Network [OSTI]

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

185

Scattering Properties of nanostructures : applications to photovoltaics  

E-Print Network [OSTI]

Arya, D. Carlson, Prog. Photovoltaics 10, p. 69 (2002). K.and J. Bailat, Prog. in Photovoltaics 12 , 113 (2004). M.and A. Mart?, Progress in Photovoltaics 9, p. 73 (2001). S.

Derkacs, Daniel

2009-01-01T23:59:59.000Z

186

Development of scaling rules for Rutherford type superconducting cables  

SciTech Connect (OSTI)

During the R D phase of the Superconducting Supercollider (SSC) program, LBL was responsible for establishing the parameters for cables used in SSC dipole and quadrupole magnets. In addition, the design and fabrication of a new cable for use in the Low Beta Quadrupoles. As a result of the development work on these and other cables, we have arrived a set of scaling rules which provide guidelines for choosing the parameters for a wide range of superconducting cables. These parameters include strand size, strand number, keystone angle, percent compaction, cable pitch and compacted cable dimensions. In addition, we have defined the tolerance ranges for the key cable manufacturing parameters such as mandrel size and shape, stand tension, and Turkshead temperature control. In this paper, we present the results on cables ranging from 8 strands to 36 strands of 0.65mm wire and from 8 strands to 30 strands of 0.8mm wire. We use these results to demonstrate the application of the scaling rules for Rutherford-type cable.

Royet, J.M.; Scanlan, R.M.

1990-09-01T23:59:59.000Z

187

http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8846343 2012 MRS Fall Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small  

E-Print Network [OSTI]

a superior potential for the development of high performance photovoltaic (PV) devices with reduced cost Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small investigated for use in photovoltaic solar cells for the past years. At present, almost all photovoltaic device

Dietz, Nikolaus

188

Research & Development Needs for Building-Integrated Solar Technologie...  

Energy Savers [EERE]

photovoltaic-thermal systems (PVT), active solar lighting, and building-integrated photovoltaics (BIPV). View the full report Report: Research & Development Needs for...

189

Initial Evaluation of CDM-type Projects in Developing Countries  

E-Print Network [OSTI]

International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of the DFID.

Dr K. G; Begg Centre; Environmental Strategy

2000-01-01T23:59:59.000Z

190

Temperature compensated photovoltaic array  

DOE Patents [OSTI]

A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

Mosher, D.M.

1997-11-18T23:59:59.000Z

191

Temperature compensated photovoltaic array  

DOE Patents [OSTI]

A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

Mosher, Dan Michael (Plano, TX)

1997-11-18T23:59:59.000Z

192

Monitoring SERC Technologies Solar Photovoltaics  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

193

Photovoltaics for Residential Buildings Webinar  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

194

EROI of crystalline silicon photovoltaics.  

E-Print Network [OSTI]

?? Installed photovoltaic nameplate power have been growing rapidly around the worldin the last few years. But how much energy is returned to society (i.e. (more)

Lundin, Johan

2013-01-01T23:59:59.000Z

195

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

196

Frequencies Studies Applied to Photovoltaic Modules.  

E-Print Network [OSTI]

?? This master thesis proposes to study applications of frequencies studies to the case of photovoltaic modules and photovoltaic plants. Such studies are little used (more)

Miquel, Clment

2011-01-01T23:59:59.000Z

197

Sandia National Laboratories: Photovoltaic Systems Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy On May 1, 2013, in DETL, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

198

Organic Photovoltaics Experiments Showcase 'Superfacility' Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Collaboration Key to Enabling On-The-Fly HPC...

199

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

reductions in costs for installed photovoltaic systems. Thisreductions in costs for installed photovoltaic systems. Thisphotovoltaic technologies that improve upon current solutions by being lower cost,

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

200

Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New Residential Financing Model and Low-Income Resident Job Training Program, September 2011 (Brochure)  

SciTech Connect (OSTI)

This case study covers the process of successfully integrating photovoltaic (PV) systems into a low-income housing development in northeast Denver, Colorado, focusing specifically on a new financing model and job training. The Northeast Denver Housing Center (NDHC), working in cooperation with Del Norte Neighborhood Development Corporation, Groundwork Denver, and the National Renewable Energy Laboratory (NREL), was able to finance the PV system installations by blending private equity funding with utility rebates, federal tax credits, and public sector funding. A grant provided by the Governor's Energy Office allowed for the creation of the new financing model. In addition, the program incorporated an innovative low-income job training program and an energy conservation incentive program.

Dean, J.; Smith-Dreier, C.; Mekonnen, G.; Hawthorne, W.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Graphite-based photovoltaic cells  

DOE Patents [OSTI]

The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

2010-12-28T23:59:59.000Z

202

Metallic nanostructures for optoelectronic and photovoltaic applications  

E-Print Network [OSTI]

photovoltaics deployment, such technologies will reach their fundamental limitation in terms of efficiency,

Lim, Swee Hoe

2009-01-01T23:59:59.000Z

203

Bracket for photovoltaic modules  

DOE Patents [OSTI]

Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

Ciasulli, John; Jones, Jason

2014-06-24T23:59:59.000Z

204

Photovoltaic panel clamp  

DOE Patents [OSTI]

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

2012-06-05T23:59:59.000Z

205

Photovoltaic panel clamp  

DOE Patents [OSTI]

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

2013-03-19T23:59:59.000Z

206

Photovoltaic system reliability  

SciTech Connect (OSTI)

This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

1997-10-01T23:59:59.000Z

207

Photovoltaic Degradation Risk: Preprint  

SciTech Connect (OSTI)

The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

208

Photovoltaics in the Classroom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and Modeling Los Alamos National Laboratory

209

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in VermontContactPhotovoltaics PV

210

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in VermontContactPhotovoltaics PVTutorial

211

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in VermontContactPhotovoltaics

212

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in VermontContactPhotovoltaicsUtility

213

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystems Enabled Photovoltaics (MEPV)

214

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystems Enabled Photovoltaics

215

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystems Enabled Photovoltaics2013 PV

216

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystems Enabled Photovoltaics2013

217

Quantum well multijunction photovoltaic cell  

DOE Patents [OSTI]

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, R.J.; Osbourn, G.C.

1983-07-08T23:59:59.000Z

218

Photovoltaic Product Directory and Buyers Guide  

SciTech Connect (OSTI)

The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

1984-04-01T23:59:59.000Z

219

Identify types of development and climate impacts that are country...  

Open Energy Info (EERE)

qualitatively development and climate impacts of LEDS technologies and measures Key Products Qualitative impact assessment of priority improved practices or technologies List...

220

NREL photovoltaic program FY 1997 annual report  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

McConnell, R.D.; Hansen, A.; Smoller, S.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network [OSTI]

Coggeshall. 2008. Solar Photovoltaic Financing: DeploymentEconomics of Commercial Photovoltaic Systems in California.Financing Non-Residential Photovoltaic Projects: Options and

Bolinger, Mark

2009-01-01T23:59:59.000Z

222

Soiling losses for solar photovoltaic systems in California  

E-Print Network [OSTI]

on Large Grid-Connected Photovoltaic Systems in Californiaof Dust on Solar Photovoltaic (PV) Performance: Researchclimatology in design of photovoltaic systems. In: Markvart

Mejia, Felipe A; Kleissl, Jan

2013-01-01T23:59:59.000Z

223

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978

Wang, Chunhua

2011-01-01T23:59:59.000Z

224

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network [OSTI]

and Simulation of Photovoltaic Arrays. IEEE Trans. PowerSolar Cell Variability Photovoltaic (PV) cells manufacturedmodeling method for photovoltaic cells. in Proc. IEEE 35th

Zeng, Dekong

2012-01-01T23:59:59.000Z

225

Charge transport in hybrid nanorod-polymer composite photovoltaic cells  

E-Print Network [OSTI]

circuit diagram for a photovoltaic cell under illumination.Polymer Composite Photovoltaic Cells Wendy U. Huynh ,devices such as photovoltaic cells and light-emitting-

Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

2002-01-01T23:59:59.000Z

226

Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics  

E-Print Network [OSTI]

Photovoltaic Cell .the materials, all photovoltaic cells operate on the basicEquation 1.2) For photovoltaic cells of all kinds and from

Kavulak, David Fredric Joel

2010-01-01T23:59:59.000Z

227

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network [OSTI]

modeling method for photovoltaic cells. in Proc. IEEE 35thlosses in solar photovoltaic cell networks. Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

Zeng, Dekong

2012-01-01T23:59:59.000Z

228

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network [OSTI]

and their influence on photovoltaic cells, Solar EnergyPhotodiodes, and Photovoltaic Cells, Applied Physics LettersHeeger, Polymer Photovoltaic Cells - Enhanced Efficiencies

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

229

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

230

Tariffs Can Be Structured to Encourage Photovoltaic Energy  

E-Print Network [OSTI]

Be Structured to Encourage Photovoltaic Energy Ryan Wiser,of customer-sited photovoltaic (PV) systems. Though theseEconomics of Commercial Photovoltaic Systems in California,

Wiser, Ryan

2009-01-01T23:59:59.000Z

231

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network [OSTI]

J. W. Yu, Organic photovoltaic devices with a crosslinkablein Nanostructured Photovoltaic Devices, Recent Patents oninterfaces in organic photovoltaic devices, Solar Energy

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

232

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network [OSTI]

theenergyperformanceof photovoltaicroofs,ASHRAETransAthermalmodelforphotovoltaicsystems,SolarEnergy,EffectsofSolarPhotovoltaicPanelsonRoofHeatTransfer

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

233

Learning by doing: The evolution of state support for photovoltaics  

E-Print Network [OSTI]

of State Support for Photovoltaics Mark Bolinger and Ryantarget the installation of photovoltaics (PV) in one way orwidespread popularity of photovoltaics (PV), along with its

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

234

Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics  

E-Print Network [OSTI]

and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon Nanotube Polymer Photovoltaics 6.1 Polymer-Nanotube

Okawa, David

2010-01-01T23:59:59.000Z

235

Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics  

E-Print Network [OSTI]

4.4 Photovoltaics in Practice . . . . . . . . . . . . . .milestones. Quantum dot photovoltaics is in the bottom-rightIN QUANTUM DOT PHOTOVOLTAICS A dissertation submitted in

Padilla, Derek

2013-01-01T23:59:59.000Z

236

Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics  

E-Print Network [OSTI]

properties for organic photovoltaics (OPVs). Space-chargePolymers for Organic Photovoltaics By David Fredric JoelPolymers for Organic Photovoltaics by David Fredric Joel

Kavulak, David Fredric Joel

2010-01-01T23:59:59.000Z

237

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California,The Market Value and Cost of Solar Photovoltaic ElectricityThe Market Value and Cost of Solar Photovoltaic Electricity

Borenstein, Severin

2008-01-01T23:59:59.000Z

238

European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2AO.2.3 EFFECT OF SiN DEPOSITION TEMPERATURE ON SURFACE PASSIVATION OF N-TYPE CZ SILICON  

E-Print Network [OSTI]

25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2AO.2N deposition leads to increasing the hydrogen content of the SiN layers. This improves the supply of hydrogen silicon using thermally grown oxide or amorphous films based on hydrogenated silicon compounds has been

239

NREL Center for Photovoltaics  

ScienceCinema (OSTI)

Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

None

2013-05-29T23:59:59.000Z

240

Modeling and Simulation of Photovoltaic Cell Using Matlab/Simulink  

E-Print Network [OSTI]

Abstract- This paper presents modeling of Photovoltaic (PV) module using MATLAB/Simulink. The model is developed on the basis of mathematical model of the PV module. The PV module of VIKRAM SOLAR PANEL PV- ELDORA 230 is selected for the experimental and technical data to analyze the developed model. The objective of this paper is to develop a model to simulate the behavior of a photovoltaic cell. Both models are implemented in MATLAB/Simulink. To demonstrate the validity of the model the IV and PV curves results were compared with those provided by the manufacturer.

Nisha Sharma; Dr. Fahim Ansari; Pawan Kr. P

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Photovoltaic retinal prosthesis: implant fabrication and performance This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Photovoltaic retinal prosthesis: implant fabrication and performance This article has been (11pp) doi:10.1088/1741-2560/9/4/046014 Photovoltaic retinal prosthesis: implant fabrication/046014 Abstract The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring

Palanker, Daniel

242

Photovoltaic module with adhesion promoter  

DOE Patents [OSTI]

Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

2013-10-08T23:59:59.000Z

243

Impact of Different Economic Performance Metrics on the Perceived Value of Solar Photovoltaics  

SciTech Connect (OSTI)

Photovoltaic (PV) systems are installed by several types of market participants, ranging from residential customers to large-scale project developers and utilities. Each type of market participant frequently uses a different economic performance metric to characterize PV value because they are looking for different types of returns from a PV investment. This report finds that different economic performance metrics frequently show different price thresholds for when a PV investment becomes profitable or attractive. Several project parameters, such as financing terms, can have a significant impact on some metrics [e.g., internal rate of return (IRR), net present value (NPV), and benefit-to-cost (B/C) ratio] while having a minimal impact on other metrics (e.g., simple payback time). As such, the choice of economic performance metric by different customer types can significantly shape each customer's perception of PV investment value and ultimately their adoption decision.

Drury, E.; Denholm, P.; Margolis, R.

2011-10-01T23:59:59.000Z

244

Electrical faults modeling of the photovoltaic generator Wail Rezgui1  

E-Print Network [OSTI]

Electrical faults modeling of the photovoltaic generator Wail Rezgui1 , Leïla-Hayet Mouss1 , Kinza is captured by the generator and direct electrical energy resulting from the conversion of the solar radiation of a problem at the generator. Practically, the existence of electrical defects on this type of systems can

Boyer, Edmond

245

Operational experiences in lead-acid batteries for photovoltaic systems  

SciTech Connect (OSTI)

MIT Lincoln Laboratory has designed photovoltaic systems which use different kinds of lead-acid batteries, including units normally used for starting, lighting, and ignition (SLI) and for motive power. The experiences gained from four of these battery subsystems during field operation, particularly battery type versus system load, versus performance characteristics, and versus expected lifetime, are compared and analyzed.

Brench, B. L.

1981-01-01T23:59:59.000Z

246

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network [OSTI]

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

247

Photovoltaic module mounting clip with integral grounding  

DOE Patents [OSTI]

An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

Lenox, Carl J.

2008-10-14T23:59:59.000Z

248

Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity  

E-Print Network [OSTI]

1 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Methodology

249

Rooftop Photovoltaics Market Penetration Scenarios  

SciTech Connect (OSTI)

The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

2008-02-01T23:59:59.000Z

250

OTEC- Residential Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

251

Reducing recombination in organic photovoltaics  

E-Print Network [OSTI]

In this thesis, I consider two methods to improve organic photovoltaic efficiency: energy level cascades and promotion of triplet state excitons. The former relies on a thin layer of material placed between the active ...

Sussman, Jason M. (Jason Michael)

2011-01-01T23:59:59.000Z

252

Salem Electric- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

253

Plug-and-Play Photovoltaics  

Broader source: Energy.gov [DOE]

On December 7, 2012,DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

254

Mandatory Photovoltaic System Cost Estimate  

Broader source: Energy.gov [DOE]

At the request of a customer or a potential customer, Colorado electric utilities are required to conduct a cost comparison of a photovoltaic (PV) system to any proposed distribution line extension...

255

Ameren Missouri- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

256

Mandatory Photovoltaic System Cost Analysis  

Broader source: Energy.gov [DOE]

The Arizona Corporation Commission requires electric utilities to conduct a cost/benefit analysis to compare the cost of line extension with the cost of installing a stand-alone photovoltaic (PV)...

257

Photovoltaic module mounting system  

DOE Patents [OSTI]

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

2012-09-18T23:59:59.000Z

258

Photovoltaic module mounting system  

DOE Patents [OSTI]

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

2012-04-17T23:59:59.000Z

259

Photovoltaic solar concentrator  

DOE Patents [OSTI]

A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

2012-12-11T23:59:59.000Z

260

Photovoltaic cell assembly  

DOE Patents [OSTI]

A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)  

SciTech Connect (OSTI)

Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

Speer, B.; Mendelsohn, M.; Cory, K.

2010-02-01T23:59:59.000Z

262

Wavelength-extended photovoltaic infrared photodetectors Yan-Feng Lao, P. K. D. D. P. Pitigala, A. G. Unil Perera, L. H. Li, S. P. Khanna, and E. H. Linfield  

E-Print Network [OSTI]

Wavelength-extended photovoltaic infrared photodetectors Yan-Feng Lao, P. K. D. D. P. Pitigala, A Publishing Articles you may be interested in Photovoltaic infrared detection with p-type graded barrier://scitation.aip.org/termsconditions. Downloaded to IP: 131.96.4.179 On: Mon, 31 Mar 2014 16:28:42 #12;Wavelength-extended photovoltaic infrared

Perera, A. G. Unil

263

Photovoltaic industry progress through 1984  

SciTech Connect (OSTI)

The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

Watts, R.L.; Smith, S.A.; Dirks, J.A.

1985-04-01T23:59:59.000Z

264

Biomonitoring for the photovoltaics industry  

SciTech Connect (OSTI)

Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

Bernholc, N.M.; Moskowitz, P.D.

1995-07-01T23:59:59.000Z

265

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network [OSTI]

Powered Hydrogen Generation using Photovoltaic-ElectrolysisPowered Hydrogen Generation Using Photovoltaic?ElectrolysisPowered Hydrogen Production Using Photovoltaic Electrolysis

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

266

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

267

ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS  

SciTech Connect (OSTI)

This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

DeScioli, Derek

2013-06-01T23:59:59.000Z

268

Photovoltaic Reliability and Engineering (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Photovoltaic Reliability and Engineering. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

Not Available

2011-06-01T23:59:59.000Z

269

Mounting support for a photovoltaic module  

DOE Patents [OSTI]

A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

2013-03-26T23:59:59.000Z

270

Thin film photovoltaic panel and method  

DOE Patents [OSTI]

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

271

Sandia National Laboratories: Photovoltaic Systems Research ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

845-9015 rdrobin@sandia.gov Publications available at: pvsac@sandia.gov Websites Photovoltaics energy.sandia.gov www.eere.energy.gov Tagged with: Energy * Photovoltaics * PV *...

272

Nanocrystal Photovoltaics: The Case of Cu2S-CdS  

E-Print Network [OSTI]

M. A. Third generation photovoltaics: Ultra-high conversionmodern photovoltaic age. in photovoltaics: research andnanopillar-array photovoltaics on low-cost and flexible

Rivest, Jessica Louis Baker

2011-01-01T23:59:59.000Z

273

Photovoltaics for municipal planners  

SciTech Connect (OSTI)

This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

Not Available

1993-04-01T23:59:59.000Z

274

Photovoltaic Incentive Design Handbook  

SciTech Connect (OSTI)

Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

Hoff, T. E.

2006-12-01T23:59:59.000Z

275

Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint  

SciTech Connect (OSTI)

Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

McConnell, R.; Symko-Davies, M.

2006-05-01T23:59:59.000Z

276

Photovoltaics: From the laboratory to the marketplace  

SciTech Connect (OSTI)

Photovoltaics (PV), the direct conversion of sunlight to electricity, is experiencing significant improvements in technology performance and lowered costs. Fostering these improvements, the SERI Photovoltaic Advanced Research and Development (PV AR D) Project supports research and provides services to the US PV industry. This paper presents the recent advances and future direction of the PV project. Research areas are Fundamental and Supporting Research, Advanced Thin-Film Materials, High-Efficiency Materials, Module Development, and Systems Development. Materials of interest include amorphous silicon, copper indium diselenide, cadmium telluride, crystalline silicon, gallium arsenide and related alloys, transparent conductors, antireflection coatings, substrates, and encapsulants. The PV project inherently provides technology transfer that helps industry shorten the time to bring R D advances to the marketplace. SERI annually performs over 10,000 measurements for the entire PV community, participates in collaborative research, and welcomes visiting scientists. Two specific areas of recently increased national focus are: (1) manufacturing processes for cost-effective PV modules, and (2) systems development for high-value utility applications. The SERI research approach is based on facilitating direct contact between industry, electric utilities, and others interested in PV technology. This approach heavily relies on SERI/industry partnerships. The arrangements vary to address generic and company-specific problems to improve the US industry's competitive position and accelerate greater electric utility deployment of PV systems. 5 refs., 5 figs., 6 tabs.

Basso, T.S.; Surek, T.; Thornton, J.

1991-03-01T23:59:59.000Z

277

Solar photovoltaic power system for a radio station  

SciTech Connect (OSTI)

Under sponsorship of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has developed a concept for a small photovoltaic power system. Of simple construction, the system uses low-cost, prefabricated, transportable units for easy, fast installation and requires minimal site preparation. The first application of this experimental system began operation in August 1979 at daytime AM radio station WNBO in Bryan, Ohio. The project was jointly undertaken by the Laboratory and the radio station. The photovoltaic system described holds promise for a wide range of applications and economic feasibility by the mid- to late-1980s.

Nichols, B. E.

1980-12-01T23:59:59.000Z

278

Design of photovoltaic central power station concentrator array  

SciTech Connect (OSTI)

A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

279

International photovoltaic products and manufacturers directory, 1995  

SciTech Connect (OSTI)

This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

1995-11-01T23:59:59.000Z

280

Discovery Park Impact Network for Photovoltaic Technology  

E-Print Network [OSTI]

Discovery Park Impact Network for Photovoltaic Technology NEED Discovery Park provides for Photovoltaic Technology (NPT). The NPT is designed to be a unique venue for industry-directed, university aims to become an international center of gravity for photovoltaic research that connects islands

Holland, Jeffrey

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Photovoltaic retinal prosthesis with high pixel density  

E-Print Network [OSTI]

Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high

Palanker, Daniel

282

Photovoltaics for the Terawatt Christiana Honsberg  

E-Print Network [OSTI]

1 Photovoltaics for the Terawatt Challenge Christiana Honsberg Department of Electrical Computer;Photovoltaic Milestones Germany, Spain, Italy have yearly installed PV capacity > yearly increase Workshop 02/28/14 C. Honsberg 5 5 #12;Learning Curves for Photovoltaics UD Energy Institute Solar Workshop

Firestone, Jeremy

283

The Solar Photovoltaics Technology Conflict between  

E-Print Network [OSTI]

A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John domestically, and selling interna- tionally solar photovoltaic (PV) electricity- generating technology. Over

Deutch, John

284

EELE408 Photovoltaics Lecture 01: Intro & Safety  

E-Print Network [OSTI]

1 EELE408 Photovoltaics Lecture 01: Intro & Safety Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman EELE408 Photovoltaics & Ventre: Photovoltaic Systems Engineering , 3E Resources: Green: Solar Cells: Operating Principles

Kaiser, Todd J.

285

Rational Design of Zinc Phosphide Heterojunction Photovoltaics  

E-Print Network [OSTI]

Rational Design of Zinc Phosphide Heterojunction Photovoltaics Thesis by Jeffrey Paul Bosco would meet me with the same energy and enthusiasm regarding the topic of zinc phosphide photovoltaics to the field of earth-abundant photovoltaics has been indispensable to my work. Greg also made a great mentor

Winfree, Erik

286

INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME  

E-Print Network [OSTI]

is to improve the operation and sizing, the electrical and economic output of photovoltaic power systems#12;INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME TASK 2 ­ Performance, Reliability and Analysis of Photovoltaic Systems THE AVAILABILITY OF IRRADIATION DATA Report IEA-PVPS T2

287

EELE408 Photovoltaics Lecture 23: Summary  

E-Print Network [OSTI]

Photovoltaic Myth #1 · Solar modules consume more energy for their production than they ever generate. ­ Most industry ­ Future recycling of modules will further reduce environmental impact 15 Photovoltaic Myth #81 EELE408 Photovoltaics Lecture 23: Summary Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department

Kaiser, Todd J.

288

A Program Plan for Photovoltaic Buildings in Florida  

Broader source: Energy.gov [DOE]

This document outlines plans developed by the Florida Solar Energy Center (FSEC) to support photovoltaic buildings application in the state through the first decade of the 21st century. The emphasis of this program is on identifying and increasing the value of rooftop systems to targeted end users through the use of application experiments.

289

2011 The NEED Project P.O. Box 10101, Manassas, VA 20108 1.800.875.5029 www.NEED.org 43 How a Photovoltaic CellWorks  

E-Print Network [OSTI]

a Photovoltaic CellWorks Step 1 A slab (or wafer) of pure silicon is used to make a PV cell. The top of the slab electricfield PHOTONS n-type p-type p-n junction POSITIVE CHARGE NEGATIVE CHARGE SUNSTEP 3 PHOTOVOLTAIC CELLS that motivates the energetic electrons out of the cell created when light strikes the PV cell. The phosphorous

Oregon, University of

290

Recycling Of Cis Photovoltaic Waste  

DOE Patents [OSTI]

A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

1998-07-14T23:59:59.000Z

291

Aternating current photovoltaic building block  

DOE Patents [OSTI]

A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

2004-06-15T23:59:59.000Z

292

Rapid screening buffer layers in photovoltaics  

DOE Patents [OSTI]

An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

List, III, Frederick Alyious; Tuncer, Enis

2014-09-09T23:59:59.000Z

293

Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet), U.S. Department of Energy (DOE)  

Broader source: Energy.gov [DOE]

This document introduces the Energy Departments new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projectsfrom community organizers and advocates to utility managers and government officialsnavigate the process of developing shared systems, from early planning to implementation.

294

A Single-Phase Photovoltaic Inverter Topology With a Series-Connected Energy Buffer  

E-Print Network [OSTI]

Module integrated converters (MICs) have been under rapid development for single-phase grid-tied photovoltaic applications. The capacitive energy storage implementation for the double-line-frequency power variation represents ...

Pierquet, Brandon J.

295

Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)  

SciTech Connect (OSTI)

Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

Lee, J.; Elmore, R.; Suh, C.; Jones, W.

2010-10-01T23:59:59.000Z

296

Control of Stand-Alone Photovoltaic System Using Fuzzy-Logic Controller  

E-Print Network [OSTI]

With industrial development the problem of energy shortage is more and more aggravating. The photovoltaic (PV) systems are rapidly expanding and have increasing in electric power technology and regarded as the green energy of the new century control...

Mellit, A.; Benghanme, M.; Arab, A. H.; Guessoum, A.

2004-01-01T23:59:59.000Z

297

Where solar thermal meets photovoltaic for high-efficiency power conversion  

E-Print Network [OSTI]

To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

Bierman, David M. (David Matthew)

2014-01-01T23:59:59.000Z

298

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect (OSTI)

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

299

Electrochemical photovoltaic cells and electrodes  

DOE Patents [OSTI]

Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, Terje A. (East Patchogue, NY)

1984-01-01T23:59:59.000Z

300

Photovoltaic cells employing zinc phosphide  

DOE Patents [OSTI]

A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improved photovoltaic cells and electrodes  

DOE Patents [OSTI]

Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, T.A.

1983-06-29T23:59:59.000Z

302

Development of flexible, intuitive methods for aerodynamic design Type of award PhD Research Studentship  

E-Print Network [OSTI]

Development of flexible, intuitive methods for aerodynamic design Type of award PhD Research is beginning a project to develop new techniques for aerodynamic design. The interest is based around free, they are offering a fully funded 3- year PhD position within the University of Bristol Aerodynamics research group

Bristol, University of

303

Interconnection of on-site photovoltaic generation to the electric utility. [Conference paper  

SciTech Connect (OSTI)

Electrical interconnection with the local electric utility of small, privately owned, on-site photovoltaic generating systems will be necessary. Legal guidelines exist through PURPA, administered by FERC, to establish interconnection, but economic viability will be the deciding factor in constructing photovoltaic generating systems. Although nationally recognized technical standards do not yet exist for interconnecting photovoltaic generation with an electric utility, most utilities have considered the need for developing cogeneration standards, and a few have developed such standards independently. Additional costs incurred by utilities in providing service interconnections to customers with cogeneration will be passed along to those customers, either as a direct assessment or as part of the applicable rate schedule. An economic-analysis methodology has been developed to allow comparing various possible photovoltaic-generating-system configurations under different utility rate structures and varying economic climates on a consistent basis.

Eichler, C.H.; Kilar, L.A.; Stiller, P.H.

1980-01-01T23:59:59.000Z

304

Overview of NREL's Photovoltaic Advanced R D Project  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory's (NREL's) Photovoltaic Advanced Research and Development (PV AR D) Project supports the US Department of Energy's National Photovoltaics Program in assisting the development and commercialization of photovoltaics (PV) energy technology. The NREL program is implemented through in-house research and subcontracts, with over 50% of the annual budget awarded through competitive solicitations to universities, large and small businesses, and other research centers. These activities include cost-shared, multiyear, government/industry partnerships and technology initiatives. The research has resulted in a better fundamental understanding of materials, devices, and processes, the achievement of record efficiencies in nearly all PV technology areas, the identification of promising new approaches to low-cost photovoltaics, and the introduction of new PV technology products into system experiments and PV markets. This paper presents an overview of NREL's PV AR D Project in terms of project organization and budgets, near- and long-term project objectives, research participants, and current and future research directions. Recent progress in the in-house and subcontracted research activities is described. 4 refs.

Surek, T.

1992-01-01T23:59:59.000Z

305

Received 20 Oct 2012 | Accepted 29 Apr 2013 | Published 18 Jun 2013 Cortical responses elicited by photovoltaic  

E-Print Network [OSTI]

elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials Yossi developed a wireless photovoltaic retinal prosthesis, in which camera- captured images are projected onto, yet the inner retinal neurons (inner nuclear and ganglion cell layers) that process the visual signals

Palanker, Daniel

306

Design of a photovoltaic central power station: flat-plate array  

SciTech Connect (OSTI)

A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

307

Progress in photovoltaic system and component improvements  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

308

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network [OSTI]

and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

Mills, Andrew

2010-01-01T23:59:59.000Z

309

Photovoltaic Power Generation in the Stellar Environments  

E-Print Network [OSTI]

In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

T. E. Girish; S. Aranya

2010-12-03T23:59:59.000Z

310

Development of large-area monolithically integrated silicon-film photovoltaic modules. Annual subcontract report, 1 May 1991--15 November 1991  

SciTech Connect (OSTI)

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1992-07-01T23:59:59.000Z

311

Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979  

SciTech Connect (OSTI)

An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

Goodman, Jr, F R

1980-03-01T23:59:59.000Z

312

Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same  

DOE Patents [OSTI]

A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.

Williams, George M. (Portland, OR); Schut, David M. (Philomath, OR); Stonas, Andreas (Albany, OR)

2011-08-09T23:59:59.000Z

313

Synthesis and photovoltaic application of coper (I) sulfide nanocrystals  

E-Print Network [OSTI]

polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

Wu, Yue

2008-01-01T23:59:59.000Z

314

Synthesis and photovoltaic application of coper (I) sulfide nanocrystals  

E-Print Network [OSTI]

CdSe quantum dots for photovoltaic devices. Nano Lett. 7,nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys.Gill, W. D. , Bube, R. H. Photovoltaic Properties of Cu 2 S-

Wu, Yue

2008-01-01T23:59:59.000Z

315

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students  

E-Print Network [OSTI]

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ­ Pleasant Activity ­ Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

Oregon, University of

316

Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode  

E-Print Network [OSTI]

Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode Jung-Yong Lee, Steve T demonstrate semitransparent small molecular weight organic photovoltaic cells using a laminated silver metal cathode due to differences in optical absorption. KEYWORDS Organic photovoltaics, transparent

Cui, Yi

317

Femtosecond laser processing of photovoltaic and transparent materials  

E-Print Network [OSTI]

20% efficiency. Progress in Photovoltaics. 2004;12:efficiency tables (version 39). Progress in Photovoltaics. efficiency for Cu(In,Ga)Se-?2 thin-?film solar cells beyond 20%. Progress in Photovoltaics.

Ahn, Sanghoon

2013-01-01T23:59:59.000Z

318

Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research  

E-Print Network [OSTI]

1 Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research www Photovoltaics Environmental Research Center Brookhaven National Laboratory #12;2 Source: PV Market Outlook

Ohta, Shigemi

319

Solution-processed photovoltaics with advanced characterization and analysis  

E-Print Network [OSTI]

at the 37th IEEE Photovoltaics Specialists Conference (D. B. Mitzi, Prog. Photovoltaics 2011, 20, 6. [23] S. Bag,R. Noufi, IEEE J. Photovoltaics 2012, T. Todorov, J. Tang,

Duan, Hsin-Sheng

2014-01-01T23:59:59.000Z

320

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-Print Network [OSTI]

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit

Demir, Hilmi Volkan

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Degradation Pathway Models for Photovoltaics Module Lifetime Performance  

E-Print Network [OSTI]

Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

Rollins, Andrew M.

322

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.stacked LSC plates for photovoltaics with the green LSC onsolar concentra- tors for photovoltaics. Science, 321(5886):

Wang, Chunhua

2011-01-01T23:59:59.000Z

323

US photovoltaic patents: 1991--1993  

SciTech Connect (OSTI)

This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

Pohle, L

1995-03-01T23:59:59.000Z

324

Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings  

E-Print Network [OSTI]

Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings Hassan Radhi Assistant Professor College of Engineering UAE University Al-Ain, United Arab Emirates ABSTRACT In the market... due to the PV panels represents an important factor when the EPBT is estimated Keywords: BiPV, embodied energy, UAE commercial buildings. INTRODUCTION Developments in the design and manufacture of photovoltaic cells have recently been a...

Radhi, H.

2010-01-01T23:59:59.000Z

325

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum  

E-Print Network [OSTI]

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy Solar Energy? · Clean · Nearly unlimited PHYS5320 Chapter Nine 3 #12;S l ll l t PHYS5320 Chapter Nine 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS5320 Chapter Nine 5 #12;Solar Energy

Wang, Jianfang

326

Photovoltaic performance and reliability workshop  

SciTech Connect (OSTI)

This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

Mrig, L. [ed.

1993-12-01T23:59:59.000Z

327

High voltage photovoltaic power converter  

DOE Patents [OSTI]

An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

2001-01-01T23:59:59.000Z

328

Scattering Properties of nanostructures : applications to photovoltaics  

E-Print Network [OSTI]

hydrogen during deposition, dangling bonds are compensated and hydrogenated amorphous silicon (a-Si:H) can be made into a promising photovoltaic

Derkacs, Daniel

2009-01-01T23:59:59.000Z

329

Photovoltaic cell with thin CS layer  

DOE Patents [OSTI]

An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

Jordan, John F. (El Paso, TX); Albright, Scot P. (El Paso, TX)

1994-01-18T23:59:59.000Z

330

Photovoltaic converter having apertured reflective enclosure  

SciTech Connect (OSTI)

This patent describes a photovoltaic converter. It comprises: a photovoltaic cell having an incident face upon which light is directed to cause photogeneration; an enclosure over the incident face, the wall of the enclosure having a reflective inner surface spaced apart from the incident face to permit light reflected from the incident face to be re-reflected by the inner surface and back to the photovoltaic cell; and an aperture through the wall of the enclosure to permit light to fall directly upon the voltaic cell. The ratio of the area of the aperture to the are of the incident face of the photovoltaic cell is less than about 0.2.

Sinton, R.A.; Swanson, R.M.

1990-10-02T23:59:59.000Z

331

NREL Photovoltaic Program FY 1994 bibliography  

SciTech Connect (OSTI)

This report lists all published documents of the Photovoltaic Program for FY 1994. Documents include conference papers, journal articles, book chapters, patents, etc.

none,

1994-12-01T23:59:59.000Z

332

Nellis AFB 'Sun Park' Photovoltaic Power Project  

Broader source: Energy.gov (indexed) [DOE]

Briefing is: UNCLASSIFIED Headquarters Air Combat Command Nellis AFB 'Sun Park' Photovoltaic Power Project *Capt Frank Hollifield *AFLOAJACLULT Overview *Objective * Provide...

333

Photovoltaic Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in...

334

NREL Photovoltaic Program FY 1993 bibliography  

SciTech Connect (OSTI)

This report lists all published documents of the Photovoltaic Program for FY 1993. Documents include conference papers, journal articles, book chapters, etc.

Pohle, L. [ed.

1994-01-01T23:59:59.000Z

335

Flat-Plate Photovoltaic Module Basics  

Broader source: Energy.gov [DOE]

Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame.

336

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network [OSTI]

Mar 22, 2012 ... Economic and Environmental Analysis of Photovoltaic Energy Systems via Robust Optimization. Shimpei Okido(oks1024 ***at*** hotmail.com)

Shimpei Okido

2012-03-22T23:59:59.000Z

337

Sandia National Laboratories: Photovoltaic Systems Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can consistently perform over time, the DOE -in ... Second Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in...

338

Recording of SERC Monitoring Technologies- Solar Photovoltaics  

Broader source: Energy.gov [DOE]

This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

339

Molecular Designs Toward Improving Organic Photovoltaics.  

E-Print Network [OSTI]

??Organic photovoltaics (OPVs) that have been studied to date have poor power conversion efficiencies. This dissertation focuses on various molecular designs that could lead to (more)

Nantalaksakul, Arpornrat

2009-01-01T23:59:59.000Z

340

Photovoltaics performance and reliability workshop  

SciTech Connect (OSTI)

This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

Mrig, L. [ed.] [ed.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photovoltaics performance and reliability workshop  

SciTech Connect (OSTI)

This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

Mrig, L. (ed.) [ed.

1992-01-01T23:59:59.000Z

342

The interaction between photovoltaic materials and building forms.  

E-Print Network [OSTI]

??There is an intrinsic relationship between photovoltaic materials and building forms; although there are numerous imaginations and concepts about buildings integrated photovoltaic materials. The relationship (more)

Qiu, Liming

2009-01-01T23:59:59.000Z

343

A Photovoltaic Test Platform Realized with Multiple Independent Outputs.  

E-Print Network [OSTI]

??In this thesis, a project to design and build a photovoltaic test platform is discussed. Essentially, it is a photovoltaic simulator designed to have multiple (more)

Crawford, Kevin P.

2011-01-01T23:59:59.000Z

344

Solar Photovoltaic Financing: Deployment on Public Property by...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local...

345

Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...  

Office of Environmental Management (EM)

Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's...

346

Effect of Solar Panel Cooling on Photovoltaic Performance.  

E-Print Network [OSTI]

?? One of the main problems in using the photovoltaic system is the low energy conversion efficiency of photovoltaic cells and, furthermore, during the long (more)

Ali, Rehan

2014-01-01T23:59:59.000Z

347

Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics  

E-Print Network [OSTI]

cell efficiency milestones. Quantum dot photovoltaics is inphotovoltaics provide the potential to create high-efficiencycell efficiency milestones. Quantum dot photovoltaics is in

Padilla, Derek

2013-01-01T23:59:59.000Z

348

Electrical axes of TESLA-type cavities (Theoretical background, development of measurement equipment, measurement results)  

E-Print Network [OSTI]

- 1 - Electrical axes of TESLA-type cavities (Theoretical background, development of measurement equipment, measurement results) Anton Labanc, MHF-SL, DESY, January 2008 Abstract Cells in TESLA cavities. A short overview was already published at the TESLA Report 2007-01. This paper brings more details about

349

Metals Production Requirements for Rapid Photovoltaics Deployment  

E-Print Network [OSTI]

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

2015-01-01T23:59:59.000Z

350

Photovoltaic Program Branch annual report, FY 1989  

SciTech Connect (OSTI)

This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

Summers, K A [ed.

1990-03-01T23:59:59.000Z

351

Thin Film Photovoltaics Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

352

25 Year Lifetime for Flexible Buildings Integrated Photovoltaics  

SciTech Connect (OSTI)

Although preliminary proof-of-principle of the efficacy of barrier materials and processes, first developed by Battelle at PNNL and commercialized by Vitex, has been demonstrated at the laboratory scale, there are several challenges to the practical commercial implementation of these developments in the Buildings Integrated Photovoltaics (BIPV) market. Two important issues that are addressed in this project are identifying a low cost substrate material that can survive in the outside environment (rain, heat, dust, hail, etc.) for 25 years and developing an encapsulation method for the photovoltaic (PV) cells that can meet the required barrier performance without driving the cost of the total barrier package out of range (remaining below $3.00/Wp). Without these solutions, current encapsulation technologies will limit the use of PV for BIPV applications. Flexible, light-weight packaging that can withstand 25 years in the field is required for a totally flexible integrated PV package. The benefit of this research is to make substantial progress in the development of a cost-effective, viable thin film barrier package which will be a critical enabling technology to meet the Solar America Initiative cost and device reliability goals, and to make photovoltaics (PV) more cost-competitive with electricity generated using fossil fuels. Increased PV installations will enable increased US electrical capacity and reduce dependence on imported oil through increased utilization of a widely abundant source of renewable energy (sunlight).

Gross, Mark E.

2010-07-10T23:59:59.000Z

353

Defect localization, characterization and reliability assessment in emerging photovoltaic devices.  

SciTech Connect (OSTI)

Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

Yang, Benjamin Bing-Yeh; Cruz-Campa, Jose Luis; Haase, Gad S.; Tangyunyong, Paiboon; Cole, Edward Isaac,; Okandan, Murat; Nielson, Gregory N.

2014-04-01T23:59:59.000Z

354

DOE project review Massachusetts Photovoltaic Program. Annual report, June 1989--July 1990  

SciTech Connect (OSTI)

This is the third year of operations for work under the Cooperative Agreement between the Commonwealth of Massachusetts Photovoltaic Center and the U.S. Department of Energy. As a collaborative effort with shared resources, the activity at the Photovoltaic Center and the University of Lowell Photovoltaic Program has continued to advance the utilization and implementation of photovoltaic-powered systems into society. The programs and activities developed over the past three years have supported strategies that cover both international utilization as well as domestic application. Three major areas of activities have centered around the following themes: (1) The identification of market opportunities to enlarge sales potential for the photovoltaic industry. (2) The development of a knowledgeable infrastructure to support PV diffusion in Massachusetts, in the United States, and around the world. (3) The analysis of the physical, economic, and regulatory environment in which PV must compete with mature energy technologies. This past year has been an experience of contrasts for the Photovoltaic Center. Projects and activities have resulted in the successful completion of programs goals.

NONE

1996-06-01T23:59:59.000Z

355

NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D. PrincipalPhotovoltaic Manufacturing

356

Sandia photovoltaic systems definition and application experiment projects  

SciTech Connect (OSTI)

A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

Jones, G.

1983-04-01T23:59:59.000Z

357

Sustainability of Large Photovoltaic Deployment: Environmental Research  

E-Print Network [OSTI]

Sustainability of Large Photovoltaic Deployment: Environmental Research Sustainability of Large Photovoltaic Deployment: Environmental ResearchEnvironmental ResearchEnvironmental Research Vasilis Fthenakis, Cu, Fe) CdSO4 Cd Metal Tellurium Clean Glass Cd Electrowinning Cell Cu Recovery Te Separation from Cd

Homes, Christopher C.

358

Photovoltaic Installations at Williams College Ruth Aronoff  

E-Print Network [OSTI]

generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

Aalberts, Daniel P.

359

Photovoltaics Research and Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe MirrorSystem BasicsResearch and

360

The interactive effects of individual learning style, computer software, and teacher involvement on developing typing skill  

E-Print Network [OSTI]

THE INTERACTIVE EFFECTS OF INDIVIDUAL LEARNING STYLE, COMPUTER SOFTWARE, AND TEACHER INVOLVEMENT ON DEVELOPING TYPING SKILL A Thesis by SARINA RENAE GOODMAN Submitted to the Office of Graduate Studies of Texas Ag:M University in partial... by SARINA RENAE GOODMAN Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Newton Ellis (Chair of Committee) Rodger...

Goodman, Sarina Renae

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

Blanton, P.; Eberl, K.

2008-09-14T23:59:59.000Z

362

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org  

E-Print Network [OSTI]

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

Paris-Sud XI, Universit de

2011-01-01T23:59:59.000Z

363

Photovoltaic Films - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministrationPhotometric(dmpePhotovoltaic

364

A novel hybrid (wind-photovoltaic) system sizing procedure  

SciTech Connect (OSTI)

Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

Hocaoglu, Fatih O. [Afyon Kocatepe University, Dept. of Electronics and Communication Eng., 03200 Afyonkarahisar (Turkey); Gerek, Oemer N.; Kurban, Mehmet [Anadolu University, Dept. of Electrical and Electronics Eng., 26555 Eskisehir (Turkey)

2009-11-15T23:59:59.000Z

365

The impact of retail rate structures on the economics of commercial photovoltaic systems in California  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells. Center for theR. Margolis. 2004. Are Photovoltaic Systems Worth More toLepley. 1993. Distributed photovoltaic system evaluation by

Mills, Andrew D.

2009-01-01T23:59:59.000Z

366

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network [OSTI]

Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

367

Photovoltaic performance of ultra-small PbSe quantum dots  

E-Print Network [OSTI]

Y; Alivisatos, AP, Photovoltaic Devices Employing TernaryPhotovoltaic performance of ultra-small PbSe quantum dotsquantum dot, solar cell, photovoltaic, quantum size effect

Ma, Wanli

2014-01-01T23:59:59.000Z

368

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells. Center for theR. Margolis. 2004. Are Photovoltaic Systems Worth More toLepley. 1993. Distributed photovoltaic system evaluation by

Mills, Andrew

2009-01-01T23:59:59.000Z

369

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network [OSTI]

electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

370

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network [OSTI]

for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

Mariani, Giacomo

2013-01-01T23:59:59.000Z

371

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

372

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

Borenstein, Severin

2005-01-01T23:59:59.000Z

373

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells, Thin Solid Films, vol. 516,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

374

Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells  

E-Print Network [OSTI]

in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

Mauldin, Clayton Edward

2010-01-01T23:59:59.000Z

375

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network [OSTI]

Hydrogen Generation using Photovoltaic-Electrolysis Devices.6128-6141. Gratzel, M. Photovoltaic and PhotoelectrochemicalHydrogen Generation Using Photovoltaic?Electrolysis Devices.

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

376

Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals  

E-Print Network [OSTI]

Photovoltaic Devices Employing Ternary PbS x Se 1-xalloy nanoparticles. Photovoltaic devices made using ternaryInformation for Efficient Photovoltaic Devices Employing

Alivisatos, A. Paul

2009-01-01T23:59:59.000Z

377

Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide  

E-Print Network [OSTI]

RIVERSIDE Spectroscopy of Photovoltaic Materials: Charge-DISSERTATION Spectroscopy of Photovoltaic Materials: Charge-function of photovoltaic (PV) and photocatalytic (PC)

Dillon, Robert

2013-01-01T23:59:59.000Z

378

Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach  

E-Print Network [OSTI]

AND UNCERTAINTY OF PHOTOVOLTAIC GENERATION [9] M. Milligan,for grid-connected photovoltaic system based on advancedand uncertainty in solar photovoltaic generation at multiple

Callaway, Duncan S; Tabone, Michaelangelo D

2015-01-01T23:59:59.000Z

379

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

Hoen, Ben

2013-01-01T23:59:59.000Z

380

A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems  

E-Print Network [OSTI]

impacts and costs of photovoltaic systems: Current state ofEnergy Payback Time for Photovoltaic Modules, ProceedingsLife-cycle assessment of photovoltaic modules: Comparison of

Zhang, Teresa; Dornfeld, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network [OSTI]

Californias Solar Photovoltaic Subsidies? Center for thefrom Residential Photovoltaic Systems Nam R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Nam R. Darghouth

Barbose, Galen

2013-01-01T23:59:59.000Z

382

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

E-Print Network [OSTI]

DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

Hoen, Ben

2012-01-01T23:59:59.000Z

383

Nanocrystal Photovoltaics: The Case of Cu2S-CdS  

E-Print Network [OSTI]

high conversion efficiency photovoltaics, utilizing self-low-cost and low-efficiency photovoltaics. Third generationgeneration photovoltaics: Ultra-high conversion efficiency

Rivest, Jessica Louis Baker

2011-01-01T23:59:59.000Z

384

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network [OSTI]

for ultrahigh-efficiency photovoltaics, Nat. Mater. 11, 174-devices towards high-efficiency photovoltaics, 39th IEEEto ensure high-efficiency nanostructured photovoltaics: each

Mariani, Giacomo

2013-01-01T23:59:59.000Z

385

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

for building integrated photovoltaics, 2013, vol. 8821, pp.of building integrated photovoltaics, Sol. Energy, vol. 85,of building-integrated photovoltaics, Energy, vol. 26, no.

Leow, Shin Woei

2014-01-01T23:59:59.000Z

386

The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics  

E-Print Network [OSTI]

Third Generation Photovoltaics: Advanced Solar R. Noufi, Prog. Photovoltaics 16, 235-?239 (2008). M. Green, Prog. Photovoltaics 17, 183-?189 (2009).

Brown, Gregory Ferguson

2011-01-01T23:59:59.000Z

387

Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics  

E-Print Network [OSTI]

Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

Pan, Heng

2009-01-01T23:59:59.000Z

388

Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California  

E-Print Network [OSTI]

INVESTIGATION OF PHOTOVOLTAIC COST TRENDS IN CALIFORNIA RyanInvestigation of Photovoltaic Cost Trends in California,cost of customer-sited, grid-connected solar photovoltaic (

Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

2006-01-01T23:59:59.000Z

389

Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic Deployment email: vmf5@columbia.edu  

E-Print Network [OSTI]

1 Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic for Life Cycle Analysis Columbia University and National Photovoltaics Environmental Research Center, 2006 - Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006 #12;9 0 200 400 600 800 1000 1200

Ohta, Shigemi

390

Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor  

SciTech Connect (OSTI)

Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of this project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)

Takeda, T.; Shimazu, Y.; Hibi, K.; Fujimura, K. [Research Inst. of Nuclear Engineering, Univ. of Fukui, 1cho-me 2gaiku 4, Kanawa-cho, Tsuruga-shi, Fukui 914-0055 (Japan)

2012-07-01T23:59:59.000Z

391

DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE  

SciTech Connect (OSTI)

An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

Blanton, P.; Eberl, K.

2012-07-10T23:59:59.000Z

392

Future contingencies and photovoltaic system worth  

SciTech Connect (OSTI)

The value of dispersed photovoltaic systems connected to the utility grid has been calculated using the General Electric Optimized Generation Planning program. The 1986 to 2001 time period was used for this study. Photovoltaic systems were dynamically integrated, up to 5% total capacity, into 9 NERC based regions under a range of future fuel and economic contingencies. Value was determined by the change in revenue requirements due to the photovoltaic additions. Displacement of high cost fuel was paramount to value, while capacity displacement was highly variable and dependent upon regional fuel mix.

Jones, G. J.; Thomas, M. G.; Bonk, G. J.

1982-01-01T23:59:59.000Z

393

Making the most of residential photovoltaic systems  

SciTech Connect (OSTI)

Making the Most of Residential Photovoltaic Systems, was recently produced by NREL Communications and Public Affairs. It showcases a demonstration project in Florida that produced some remarkable results by incorporating both energy efficiency and photovoltaic systems into newly built housing. The brochure points up the benefits of making wise personal choices about energy use, and how large-scale use of advanced energy technologies can benefit the nation. This is one of a series of brochures that presents stimulating information about photovoltaics, with a goal of helping to push this technology into the power-generation mix in different utilities, communities, and states.

Moon, S.; Parker, D.; Hayter, S.

1999-10-18T23:59:59.000Z

394

Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Not Available

1992-03-01T23:59:59.000Z

395

Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation  

SciTech Connect (OSTI)

This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

Maziasz, P.J.

1985-11-01T23:59:59.000Z

396

SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS  

E-Print Network [OSTI]

for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

Chin, B.L.

2011-01-01T23:59:59.000Z

397

Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)  

SciTech Connect (OSTI)

Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

398

Broad Band Photon Harvesting Biomolecules for Photovoltaics  

E-Print Network [OSTI]

We discuss the key principles of artificial photosynthesis for photovoltaic energy conversion. We demonstrate these principles by examining the operation of the so-called "dye sensitized solar cell" (DSSC) - a photoelectrochemical device which simulates the charge separation process across a nano-structured membrane that is characteristic of natural systems. These type of devices have great potential to challenge silicon semiconductor technology in the low cost, medium efficiency segment of the PV market. Ruthenium charge transfer complexes are currently used as the photon harvesting components in DSSCs. They produce a relatively broad band UV and visible response, but have long term stability problems and are expensive to manufacture. We suggest that a class of biological macromolecules called the melanins may be suitable replacements for the ruthenium complexes. They have strong, broad band absorption, are chemically and photochemically very stable, can be cheaply and easily synthesized, and are also bio-available and bio-compatible. We demonstrate a melanin-based regenerative solar cell, and discuss the key properties that are necessary for an effective broad band photon harvesting system.

P. Meredith; B. J. Powell; J. Riesz; R. Vogel; D. Blake; I. Kartini; G. Will; S. Subianto

2004-06-04T23:59:59.000Z

399

Toward the Sustainable Development of Marine Minerals: Geological, Technological, and Economic Aspects  

E-Print Network [OSTI]

prohibited the development of a Cd-Te photovoltaic solar-cell industry (Hein et al. 2010). Inadequate

400

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

hydrogen dilution in silane on light induced degradation of hydrogenated amor- phous silicon films for solar photovoltaichydrogen content from 14-22%[76]. Hydrogenated amorphous silicon has promise as a photovoltaic

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modesto Irrigation District- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Modesto Irrigation District offers a photovoltaic rebate program for all of their electric customers. The peak output capacity of a system must be 1 kW or greater to participate. Systems up to 30...

402

Practical Roadmap and Limits to Nanostructured Photovoltaics  

E-Print Network [OSTI]

The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power ...

Lunt, Richard R.

403

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network [OSTI]

has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

404

Time-Resolved Photoluminescence and Photovoltaics  

SciTech Connect (OSTI)

The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

2005-01-01T23:59:59.000Z

405

Sawnee EMC- Solar Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

406

Ashland Electric Utility- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either $0.75 per watt (residential) or $1.00 per watt (commercial), up to a maximum...

407

GreyStone Power- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

408

Central Georgia EMC- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

409

Poudre Valley REA- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

410

Residential photovoltaic worth : a summary assessment  

E-Print Network [OSTI]

Two critical perspectives have been addressed by the analyses of residential photovoltaic worth. For the researcher and designer have been established allowable costs. For the homeowner and institutional decision-makers ...

Dinwoodie, Thomas L.

1982-01-01T23:59:59.000Z

411

Silicon cast wafer recrystallization for photovoltaic applications  

E-Print Network [OSTI]

Current industry-standard methods of manufacturing silicon wafers for photovoltaic (PV) cells define the electrical properties of the wafer in a first step, and then the geometry of the wafer in a subsequent step. The ...

Hantsoo, Eerik T. (Eerik Torm)

2008-01-01T23:59:59.000Z

412

Photovoltaic module and module arrays  

DOE Patents [OSTI]

A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

2012-07-17T23:59:59.000Z

413

Photovoltaic module and module arrays  

DOE Patents [OSTI]

A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

2013-08-27T23:59:59.000Z

414

Effects of Metastabilities on CIGS Photovoltaic Modules  

Broader source: Energy.gov [DOE]

This poster describes a SunShot Initiative solar project led by a team from Nexcis Photovoltaic Technology entitled "Effects of Metastabilities on CIGS Photovoltaic Modules." The team studied the driving force of the mechanisms which governs the different observed phases during storage, light exposition and annealing. The aim of this study is to obtain a better understanding of this phenomenon and hence a better evaluation of its impact on solar panel reliability.

415

Photovoltaic concentrator assembly with optically active cover  

DOE Patents [OSTI]

A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

Plesniak, Adam P

2014-01-21T23:59:59.000Z

416

Development of Regulatory Technical Requirements for the Advanced Integral Type Research Reactor  

SciTech Connect (OSTI)

This paper presents the current status of the study on the development of regulatory technical requirements for the licensing review of an advanced integral type research reactor of which the license application is expected in a few years. According to the Atomic Energy Act of Korea, both research and education reactors are subject to the technical requirements for power reactors in the licensing review. But, some of the requirements may not be applicable or insufficient for the licensing reviews of reactors with unique design features. Thus it is necessary to identify which review topics or areas can not be addressed by the existing requirements and to develop the required ones newly or supplement appropriately. Through the study performed so far, it has been identified that the following requirements need to be developed newly for the licensing review of SMART-P: the use of proven technology, the interfacial facility, the non-safety systems, and the metallic fuels. The approach and basis for the development of each of the requirements are discussed. (authors)

Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik; Kim, Hho Jung [Korea Institute of Nuclear Safety, 19 Kusung-dong, Yusung-ku, Taejon, 305-338 (Korea, Republic of)

2004-07-01T23:59:59.000Z

417

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain,Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

418

E-Print Network 3.0 - aquatic center photovoltaic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to synthesize conjugated polymer composites for use in photovoltaic and optoelectronic devices Greenscale Center... , optoelectronics, polymer photovoltaics, and control...

419

US Photovoltaic Patents, 1988--1990  

SciTech Connect (OSTI)

This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

Not Available

1991-12-01T23:59:59.000Z

420

US Photovoltaic Patents, 1988--1990  

SciTech Connect (OSTI)

This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

Not Available

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reliability-economics analysis models for photovoltaic power systems. Volume 1  

SciTech Connect (OSTI)

This report describes the development of modeling techniques to characterize the reliability, availability, and maintenance costs of photovoltaic power systems. The developed models can be used by designers of PV systems in making design decisions and trade-offs to minimize life-cycle energy costs.

Stember, L.H.; Huss, W.R.; Bridgman, M.S.

1982-11-01T23:59:59.000Z

422

JMP Applications in Photovoltaic Reliability (Presentation)  

SciTech Connect (OSTI)

The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Two key cost drivers are the efficiency with which sunlight is converted into power and secondly how this relationship develops over time. The accurate knowledge of power decline over time, also known as degradation rates, is essential and important to all stakeholders?utility companies, integrators, investors, and scientist alike. Outdoor testing plays a vital part in quantifying degradation rates of different technologies in various climates. Due to seasonal changes, however, several complete cycles (typically 3-5 years) need to be completed traditionally to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates more accurately in a shorter period of time. Advanced time series modeling such as ARIMA (Autoregressive Integrated Moving Average) modeling can be utilized to decrease the required time span and is compared with some non-linear modeling. In addition, it will be demonstrated how the JMP 9 map feature was used to reveal important technological trends by climate.

Jordan, D.; Gotwalt, C.

2011-09-01T23:59:59.000Z

423

Thin film heterojunction photovoltaic cells and methods of making the same  

DOE Patents [OSTI]

A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.

Basol, Bulent M. (Los Angeles, CA); Tseng, Eric S. (Los Angeles, CA); Rod, Robert L. (Los Angeles, CA)

1983-06-14T23:59:59.000Z

424

Gluconeogenesis as a system : development of in vivo flux analysis of hepatic glucose production in Type 2 Diabetes  

E-Print Network [OSTI]

Metabolic diseases are an increasing health concern in the developed world. Type 2 Diabetes, (T2D) affects over 100 million people worldwide and significantly contributes to chronic diseases such as atherosclerosis and ...

Alemn, Jos O. (Jos Orlando)

2008-01-01T23:59:59.000Z

425

Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive  

SciTech Connect (OSTI)

Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

2014-02-20T23:59:59.000Z

426

Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics  

E-Print Network [OSTI]

Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics Yiying Wu, these nanowire arrays could find unique applications in photocatalysis and photovoltaics. KEY WORDS luminescence efficiency [5,6], enhancement of thermoelectric figure of merit [7] and lowered lasing threshold

Yang, Peidong

427

Nellis AFB 'Sun Park' Photovoltaic Power Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Nellis AFB 'Sun Park' Photovoltaic Power Project Nellis AFB 'Sun Park' Photovoltaic Power Project Presentation covers the FUPWG Meeting, held on May 1-2, 2007 in Cape Canaveral,...

428

III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

429

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Solar Photovoltaic Cells, Center for the Study of Energy Markets Working Paper WP-142, UniversitySolar Photovoltaic Subsidies? Center for the Study of Energy Markets Working Paper #172, Universitysolar PV today positive. Director, University of California Energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

430

Proceedings of the 29 IEEE Photovoltaics Specialists Conference (IEEE, 2002)  

E-Print Network [OSTI]

Proceedings of the 29 th IEEE Photovoltaics Specialists Conference (IEEE, 2002) THERMIONIC EMISSION-[2], APL93-[5]. #12;Proceedings of the 29 th IEEE Photovoltaics Specialists Conference (IEEE, 2002

Schiff, Eric A.

431

Theoretical investigations of the electronic processes in organic photovoltaics  

E-Print Network [OSTI]

The design of more efficient organic photovoltaics starts with an increase in understanding of the fundamental processes related to organic photovoltaics, such as the charge separation processes at the organic/organic ...

Yost, Shane Robert

2013-01-01T23:59:59.000Z

432

Evaluation of the commercial potential of novel organic photovoltaic technologies  

E-Print Network [OSTI]

Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

Barr, Jonathan (Jonathan Allan)

2005-01-01T23:59:59.000Z

434

Wind Turbine R&D and Certification Services: Cooperative Research and Development Final Report, CRADA Number CRD-04-00147  

SciTech Connect (OSTI)

NREL and Underwriters Laboratories Inc. are developing a domestic certification program for the US wind and photovoltaic (PV) industry.

Link, H.

2011-02-01T23:59:59.000Z

435

Photovoltaic Probe of Cavity Polaritons in a Quantum Cascade Structure  

E-Print Network [OSTI]

The strong coupling between an intersubband excitation in a quantum cascade structure and a photonic mode of a planar microcavity has been detected by angle-resolved photovoltaic measurements. A typical anticrossing behavior, with a vacuum-field Rabi splitting of 16 meV at 78K, has been measured, for an intersubband transition at 163 meV. These results show that the strong coupling regime between photons and intersubband excitations can be engineered in a quantum cascade opto-electronic device. They also demonstrate the possibility to perform angle-resolved mid-infrared photodetection and to develop active devices based on intersubband cavity polaritons.

Luca Sapienza; Raffaele Colombelli; Angela Vasanelli; Cristiano Ciuti; Christophe Manquest; Ulf Gennser; Carlo Sirtori

2007-03-07T23:59:59.000Z

436

Photovoltaic concentrator module improvements study  

SciTech Connect (OSTI)

This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

Levy, S.L.; Kerschen, K.A. (Black and Veatch, Kansas City, MO (United States)); Hutchison, G. (Solar Kinetics, Inc., Dallas, TX (United States)); Nowlan, M.J. (Spire Corp., Bedford, MA (United States))

1991-08-01T23:59:59.000Z

437

Interdigitated photovoltaic power conversion device  

DOE Patents [OSTI]

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

1999-01-01T23:59:59.000Z

438

Interdigitated photovoltaic power conversion device  

DOE Patents [OSTI]

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

1999-04-27T23:59:59.000Z

439

Apparatus for making photovoltaic devices  

DOE Patents [OSTI]

A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

Foote, James B. (Toledo, OH); Kaake, Steven A. F. (Perrysburg, OH); Meyers, Peter V. (Bowling Green, OH); Nolan, James F. (Sylvania, OH)

1994-12-13T23:59:59.000Z

440

Planar photovoltaic solar concentrator module  

DOE Patents [OSTI]

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Planar photovoltaic solar concentrator module  

DOE Patents [OSTI]

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, Clement J. (New Brunswick, NJ)

1992-01-01T23:59:59.000Z

442

Summary results of an assessment of research projects in the National Photovoltaics Program  

SciTech Connect (OSTI)

The Office of Energy Research (OER) undertook an assessment of 115 research projects (listed in Appendix A) sponsored by the National Photovoltaics Program. The Program is located within the Office of Energy Efficiency and Renewable Energy (EE). This report summarizes the results of that review. The Office of Solar Energy Conversion is responsible for the management of the National Photovoltaics Program. This program focuses on assisting US industry in development of fundamental technology to bring advanced photovoltaic energy systems to commercial use. The purpose of the assessment was to determine the following: (1) the quality of research of individual projects; (2) the impact of these individual projects on the mission of the program; and (3) the priority of future research opportunities.

NONE

1995-07-01T23:59:59.000Z

443

University Center of Excellence for Photovoltaics Research and Education: Annual report  

SciTech Connect (OSTI)

This is a second annual report since the University Center of Excellence for Photovoltaics Research and Education was established at Georgia Tech. The major focus of the center is crystalline silicon, and the mission of the Center is to improve the fundamental understanding of the science and technology of advanced photovoltaic devices and materials, to fabricate high-efficiency cells, and develop low-cost processes, to provide training and enrich the equational experience of students in this field, and to increase US competitiveness by providing guidelines to industry and DOE to achieve cost-effective and high-efficiency photovoltaic devices. This report outlines the work of the Center from July 1993--June 1994.

Rohatgi, A.; Crotty, G.; Cai, L.; Sana, P.; Doolittle, A.; Ropp, M.; Krygowski, T.; Narasimha, S. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical and Computer Engineering

1995-09-01T23:59:59.000Z

444

Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System  

SciTech Connect (OSTI)

We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

Barney, P.; Ingersoll, D.; Jungst, R.; O'Gorman, C.; Paez, T.L.; Urbina, A.

1998-11-24T23:59:59.000Z

445

Energy Policy 30 (2002) 477499 Photovoltaic module quality in  

E-Print Network [OSTI]

Energy Policy 30 (2002) 477­499 Photovoltaic module quality in the Kenyan solar home systems market purchases of clean decentralized photovoltaic technologies. Small amorphous-silicon modules dominate. This article analyzes market failure associated with photovoltaic module quality in the Kenyan SHS market

Kammen, Daniel M.

446

Interdisciplinary Institute for Innovation What cost for photovoltaic  

E-Print Network [OSTI]

Interdisciplinary Institute for Innovation What cost for photovoltaic modules in 2020? Lessons from@mines-paristech.fr hal-00805668,version2-27May2013 #12;1 What cost for photovoltaic modules in 2020? Lessons from Abstract Except in few locations, photovoltaic generated electricity remains considerably more expensive

Boyer, Edmond

447

Network for Photovoltaic TechnologyNEED IMPACT STATEMENT  

E-Print Network [OSTI]

Network for Photovoltaic TechnologyNEED IMPACT STATEMENT INITIATIVE In early 2009, the Discovery graduate students have received several best poster and paper awards; A hub for photovoltaic research://nanohub.org/groups/PVWorkshop The NPT is becoming an international center for photovoltaic research to connect islands of excellence

Ginzel, Matthew

448

A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION JUNE 2001 TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION Prepared for: California Energy Commission Energy Technology installing photovoltaic (PV) systems under the Emerging Renewables Buydown Program. This is the first

449

Exploiting weather forecasts for sizing photovoltaic energy bids  

E-Print Network [OSTI]

1 Exploiting weather forecasts for sizing photovoltaic energy bids Antonio Giannitrapani, Simone for a photovoltaic (PV) power producer taking part into a competitive electricity market characterized by financial set from an Italian PV plant. Index Terms--Energy market, bidding strategy, photovoltaic power

Giannitrapani, Antonello

450

ORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based  

E-Print Network [OSTI]

ORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells Ji serves as a basis for solid-state memory. This phenomenon can also yield an interesting photovoltaic imposed by the ferroelectric polarization vectors. Here, we demonstrate a single-domain photovoltaic

Jo, Moon-Ho

451

Direct mounted photovoltaic device with improved front clip  

SciTech Connect (OSTI)

The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent (overlapping) photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

Keenihan, James R; Boven, Michelle; Brown, Jr., Claude; Gaston, Ryan S; Hus, Michael; Langmaid, Joe A; Lesniak, Mike

2013-11-05T23:59:59.000Z

452

Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules  

E-Print Network [OSTI]

Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We.M., Feasibility of Recycling of Cadmium-Telluride Photovoltaics, Presented at 134th TMS Annual Meeting &Exhibition

453

Design and Control of an Inverter for Photovoltaic Applications  

E-Print Network [OSTI]

Design and Control of an Inverter for Photovoltaic Applications by Søren Bækhøj Kjær Dissertation Assistant. He also taught photovoltaic systems for terrestrial- and space-applications (Power system quality, control and optimized design, for fuel cell and photovoltaic applications. He is currently

Hansen, René Rydhof

454

Direct mounted photovoltaic device with improved side clip  

DOE Patents [OSTI]

The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

Keenihan, James R; Boven, Michelle L; Brown, Jr., Claude; Eurich, Gerald K; Gaston, Ryan S; Hus, Michael

2013-11-19T23:59:59.000Z

455

Multi-level converters for three-phase photovoltaic applications  

E-Print Network [OSTI]

Multi-level converters for three-phase photovoltaic applications Renato M. Nakagomi, Ye Zhao, Brad a switching matrix device and photovoltaic (PV) panels. The approach is based on the dynamic reconfiguration photovoltaic PV panels. The number of PV panels that are connected to the load can be altered using dynamic

Lehman, Brad

456

Peer Effects in the Diffusion of Solar Photovoltaic Panels  

E-Print Network [OSTI]

Peer Effects in the Diffusion of Solar Photovoltaic Panels Bryan Bollinger NYU Stern School base of consumers in the reference group. We study the diffusion of solar photovoltaic panels of an environmentally beneficial technology, solar photovoltaic (PV) panels. Policymakers are particularly interested

Lee, Daeyeol

457

EXCURSION: enterprises in our region "Centrotherm photovoltaics AG"  

E-Print Network [OSTI]

EXCURSION: enterprises in our region "Centrotherm photovoltaics AG" 4th of November 2009 Invitation of a German enterprise called centrotherm photovoltaics AG in Blaubeuren. They are providers of technology and services for the photovoltaics industry. For organizational reasons we ask you to register for this visit

Pfeifer, Holger

458

MTL ANNUAL RESEARCH REPORT 2014 Energy 75 Energy: Photovoltaics, Energy  

E-Print Network [OSTI]

MTL ANNUAL RESEARCH REPORT 2014 Energy 75 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel.....................................79 Energy Level Modification in Lead Sulfide Quantum Dot Photovoltaics Through Ligand Exchange Crystalline silicon (c-Si) is the dominant material in the photovoltaic industry, yet silicon is expensive

Reif, Rafael

459

AEC PHOTOVOLTAIC TEST FACILITY FIRST YEAR TEST DATA James Krumsick  

E-Print Network [OSTI]

AEC PHOTOVOLTAIC TEST FACILITY FIRST YEAR TEST DATA James Krumsick Alternative Energy Consortium@uoregon.edu ABSTRACT Alternative Energy Consortium's Photovoltaic test facility (AEC PV) came on line in August, 2004 is to evaluate different photovoltaic products and to monitor the performance of these products under different

Oregon, University of

460

UncorrectedProof PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS  

E-Print Network [OSTI]

IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2005; 13:111 Published online in Wiley the roof, photovoltaic arrays mounted on the roof will be exposed to the flames. The amount of cadmium which are the only ones in the market. Pieces of commercial CdTe photovoltaic (PV) modules, sizes 25 3

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Glass Needs for a Growing Photovoltaics Industry Keith Burrows1  

E-Print Network [OSTI]

1 Glass Needs for a Growing Photovoltaics Industry Keith Burrows1 and Vasilis Fthenakis1,2* 1 Center for Life Cycle Analysis, Columbia University, New York, NY 2 Photovoltaics Environmental Research Center, Brookhaven National Lab, Upton, NY Abstract With the projected growth in photovoltaics

462

Nanoscience and Nanostructures for Photovoltaics and Solar Fuels  

E-Print Network [OSTI]

Nanoscience and Nanostructures for Photovoltaics and Solar Fuels Arthur J. Nozik National Renewable to enhance the power conversion efficiency of solar cells for photovoltaic and solar fuels production of the technological status of nanocrystals and nanostructures for third generation photovoltaic cells and solar fuels

Wu, Zhigang

463

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells  

E-Print Network [OSTI]

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response work by our group has shown that macroscopic Si wire arrays (>1 cm2 in area) suitable for photovoltaic

Atwater, Harry

464

Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania  

E-Print Network [OSTI]

Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania Kevin M photovoltaic cells by infiltrating the conjugated polymer regioregular poly 3-hexylthiophene into films for electrons to travel to an electrode after electron transfer has occurred. The photovoltaic cells have

McGehee, Michael

465

Femtosecond Laser Ablation of Silicon: Nanoparticles, Doping and Photovoltaics  

E-Print Network [OSTI]

Femtosecond Laser Ablation of Silicon: Nanoparticles, Doping and Photovoltaics A thesis presented Laser Ablation of Silicon: Nanoparticles, Doping and Photovoltaics Eric Mazur Brian R. Tull Abstract irradiated surface layer to the grain boundaries. #12;iv Lastly, we measure the photovoltaic properties

Mazur, Eric

466

SOLAR RADIATION DURABILITY OF MATERIALS, COMPONENTS AND SYSTEMS FOR PHOTOVOLTAICS  

E-Print Network [OSTI]

SOLAR RADIATION DURABILITY OF MATERIALS, COMPONENTS AND SYSTEMS FOR PHOTOVOLTAICS Myles P. Murray 1 exposed photovoltaic materials, is defined as the rate of photodarkening or photobleaching of a material testing. The potential to predict power losses in a photovoltaic system over time caused

Rollins, Andrew M.

467

Photovoltaic Pumping Systems A Comparison of Two Concepts  

E-Print Network [OSTI]

Photovoltaic Pumping Systems A Comparison of Two Concepts Hans Bloos, Markus Genthner, Detlev of Oldenburg two different concepts of photovoltaic pumping subsystems available on the market were Photovoltaic pumping (PVP) has established itself as a water lifting technique for remote areas in sun

Heinemann, Detlev

468

Organic Electronics and Photovoltaics CopyrightDaveWhite2008  

E-Print Network [OSTI]

ENERGY Organic Electronics and Photovoltaics Objective CopyrightDaveWhite2008 Organic electronics and photovoltaic technology are reaching critical mass with the establishment of a U.S. consortium and the recent an inte- grated suite of measurement methods to tie the electrical and photovoltaic performance of organic

469

CMOS Photovoltaic-cell Layout Configurations for Harvesting Microsystems  

E-Print Network [OSTI]

, and radiation, photovoltaic (PV) systems are appealing options. Still, chip-sized CMOS PV cells produce only exhaustible reservoirs of energy [2]. And of these, photovoltaic (PV) systems that draw energy from solar and the converter, which is why raising system efficiency SYS is so important. Fig. 1. Photovoltaic energy

Rincon-Mora, Gabriel A.

470

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network [OSTI]

reducing the cost for photovoltaic devices by introducing aPhotovoltaic Cell Materials Different materials display different efficiencies and have different costs.photovoltaic devices have recently drawn tremendous attention because of their technological advantages for actualization of large-area and cost

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

471

Photovoltaics effective capacity: Interim final report 2  

SciTech Connect (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

472

Models used to assess the performance of photovoltaic systems.  

SciTech Connect (OSTI)

This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

Stein, Joshua S.; Klise, Geoffrey T.

2009-12-01T23:59:59.000Z

473

The photovoltaic manufacturing technology project: A government/industry partnership  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

474

NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

NONE

1995-06-01T23:59:59.000Z

475

Review of Consensus Standard Spectra for Flat Plate and Concentrating Photovoltaic Performance  

SciTech Connect (OSTI)

Consensus standard reference terrestrial solar spectra are used to establish nameplate ratings for photovoltaic device performance at standard reporting conditions. This report describes reference solar spectra developed in the United States and international consensus standards community which are widely accepted as of this writing (June 2011).

Myers, D.

2011-09-01T23:59:59.000Z

476

Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices  

SciTech Connect (OSTI)

For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

2011-11-01T23:59:59.000Z

477

Post-Doctoral Research Associate Position in Photovoltaic Lifetime and Degradation Science  

E-Print Network [OSTI]

Post-Doctoral Research Associate Position in Photovoltaic Lifetime and Degradation Science A Post establish a facility for PV lifetime and degradation studies, including solar and environmental exposures and optical characterization techniques including UV/vis, FTIR and light scattering, and will develop

Rollins, Andrew M.

478

Photovoltaics (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)  

Broader source: Energy.gov [DOE]

DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

479

Apparatus for encapsulating a photovoltaic module  

DOE Patents [OSTI]

The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

Albright, Scot P. (El Paso, TX); Dugan, Larry M. (Boulder, CO)

1995-10-24T23:59:59.000Z

480

Photovoltaics: Contract lists, fiscal year 1992  

SciTech Connect (OSTI)

US DOE`s Photovoltaics Program has helped photovoltaic technologies evolve from materials and concepts in laboratories to competitive products rolling off automated assembly lines. The program is working to expand industrial capacity while continuing basic and applied technology R and D. This document is a tabulation of photovoltaics R and D that were begun, continued, or completed during this period. National laboratories or industrial, academic, and nonprofit research institutions perform the RR and D activities. The document is organized first by directing organization, then by project title and individual task. Each listing provides the name of contractor, period of performance, funding, objectives, accoplishments, and FY 1993 milestones. An index of contractors is included. (DLC)

Not Available

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "type photovoltaic developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Photovoltaic module with light reflecting backskin  

DOE Patents [OSTI]

A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

Gonsiorawski, Ronald C. (Danvers, MA)

2007-07-03T23:59:59.000Z

482

Optical Refrigeration for Ultra-Efficient Photovoltaics  

E-Print Network [OSTI]

Improving the conversion efficiency of solar energy to electricity is most important to mankind. For single-junction photovoltaic solar-cells, the Shockley-Queisser thermodynamic efficiency limit is extensively due to the heat dissipation, inherently accompanying the quantum process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics and thermo-photonics, have been suggested to harness this wasted heat, yet efficiencies exceeding the Shockley-Queisser limit have not been demonstrated due to the challenge of operating at high temperatures. Here, we present a highly efficient converter based on endothermic photoluminescence, which operates at relative low temperatures. The thermally induced blue-shifted photoluminescence of a low-bandgap absorber is coupled to a high-bandgap photovoltaic cell. The high absorber's photo-current and the high cell's voltage results in 69% maximal theoretical conversion efficiencies. We experimentally demonstrate tenfold thermal-enhancement of usef...

Manor, Assaf; Rotschild, Carmel

2014-01-01T23:59:59.000Z

483

Use of photovoltaics for waste heat recovery  

DOE Patents [OSTI]

A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

Polcyn, Adam D

2013-04-16T23:59:59.000Z

484

World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS  

E-Print Network [OSTI]

IEEE 4 th World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V and Australian studies portrayed photovoltaic systems as causing significant life-cycle environmental and health

485

Photovoltaic applications for remote-island needs  

SciTech Connect (OSTI)

Electric power supply options available to many of the central and south Pacific island governments are severely constrained by remoteness, limited infrastructures, a corrosive natural environment, and the high delivered costs of many conventional energy sources. Photovoltaic energy systems offer a currently available, practical, and cost-effective source of electricity for many stand-alone applications in remote areas of the Pacific. Photovoltaic system definitions and cost analyses are provided for selected applications in the Republic of Palau, the Federated States of Micronesia, the Republic of the Marshall Islands, and the Territory of American Samoa.

Schaller, D.A.

1983-01-01T23:59:59.000Z

486

NREL photovoltaic subcontract reports: Abstracts and document control information, 1 August 1992--31 July 1993  

SciTech Connect (OSTI)

This report contains document control information and abstracts for the National Renewable Energy Laboratory (NREL) subcontracted photovoltaic (PV) program publications. It also lists source information on additional publications that describe US Department of Energy (DOE) PV research activities. It is not totally exhaustive, so it lists NREL contacts for requesting further information on the DOE and NREL PV programs. This report covers the period from August 1, 1992, through July 31, 1993. This report is published periodically, with the previous one covering the period from August 1, 1991, through July 31, 1992. The purpose of continuing this type of publication is to help keep people abreast of specific PV interests, while maintaining a balance on the costs to the PV program. The information in this report is organized under PV technology areas: Amorphous Silicon Research; Polycrystalline Thin Films (including copper indium diselenide, cadmium telluride, and thin-film silicon); Crystalline Materials and Advanced Concepts (including silicon, gallium arsenide, and other group III-V materials); PV Manufacturing Technology Development (which may include manufacturing information for various types of PV materials).

Not Available

1993-09-01T23:59:59.000Z

487

Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others] [and others

1996-12-01T23:59:59.000Z

488

Synthesis and Characterization of Earth Abundant and Nontoxic Metal Chalcogenides Produced via Aerosol Spray Pyrolysis for Photovoltaic Applications  

E-Print Network [OSTI]

9] Introduction to Photovoltaic Devices. PVeducation.com.A. Goetzberger and C. Hebling. Photovoltaic materials, past,3 4. Photovoltaic Material Prices vs

Davis, Patrick John

2013-01-01T23:59:59.000Z

489

PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. I. DARK ELECTRICAL PROPERTIES AND TRANSIENT EFFECT  

E-Print Network [OSTI]

used in making the photovoltaic cells. Figure 2. Diagram oforganic compounds in photovoltaic cells. It lies more in thecalled a dye-sensitized photovoltaic cell. Dye sensitization

Skotheim, T.

2010-01-01T23:59:59.000Z

490

Screening-engineered Field-effect Photovoltaics and Synthesis, Characterization, and Applications of Carbon-based and Related Nanomaterials  

E-Print Network [OSTI]

efficiencies of doped Si photovoltaic cells, SFPV structuresfield-effect photovoltaic (SFPV) cell. Much of the remainingfield-effect photovoltaic (SFPV) cell using a graphene top

Regan, William Raymond

2012-01-01T23:59:59.000Z

491

Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications  

E-Print Network [OSTI]

ZnTe heterostructures for photovoltaic applications Joshuatoo large for optimal photovoltaic e?ciency. By using band-nanowires can be used as photovoltaic devices with organic

Schrier, Joshua; Demchenko, Denis O.; Wang, Lin-Wang; Alivisatos, A. Paul

2008-01-01T23:59:59.000Z

492

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

photovoltaic systems with battery storages control based onconnected, photovoltaic-battery storage systems A. Nottrott,combined photovoltaic-battery storage system (PV+ system).

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

493

Screening-engineered Field-effect Photovoltaics and Synthesis, Characterization, and Applications of Carbon-based and Related Nanomaterials  

E-Print Network [OSTI]

cathodes for organic photovoltaics. Applied Physics Letters,for large-scale photovoltaics deployment. Environmentalcells. Progress in Photovoltaics, 10(4):271278, 2002. [27

Regan, William Raymond

2012-01-01T23:59:59.000Z

494

Supporting Photovoltaics in Market-Rate Residential New Construction: A Summary of Programmatic Experience to Date and Lessons Learned  

E-Print Network [OSTI]

of California. Supporting Photovoltaics in Market-Rateof State Support for Photovoltaics. LBNL-52398. Berkeley,June 16. Supporting Photovoltaics in Market-Rate Residential

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

495

Three approaches to economical photovoltaics: conformal Cu2S, organic luminescent films, and PbSe nanocrystal superlattices  

E-Print Network [OSTI]

approaches to economical photovoltaics: conformal Cu 2 S,routes to more efficient photovoltaics using conformal Cu 2on grid-parity. Progress in Photovoltaics: Research and

Carbone, Ian Anthony

2013-01-01T23:59:59.000Z

496

Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California.Investigation of Photovoltaic Cost Trends in California,Investigation of Photovoltaic Cost Trends in California.

Wiser, Ryan

2009-01-01T23:59:59.000Z

497

PHOTOVOLTAICS AND THE ENVIRONMENT 1998. REPORT ON THE WORKSHOP PHOTOVOLTAICS AND THE ENVIRONMENT 1999  

SciTech Connect (OSTI)

The objective of the workshop ``Photovoltaics and the Environment'' was to bring together PV manufacturers and industry analysts to define EH and S issues related to the large-scale commercialization of PV technologies.

FTHENAKIS,V.; ZWEIBEL,K.; MOSKOWITZ,P.

1999-02-01T23:59:59.000Z

498

Cooperative Research Between NREL and Ampulse on III-V PV: Cooperative Research and Development Final Report, CRADA Number CRD-12-464  

SciTech Connect (OSTI)

NREL and Ampulse will engage in cooperative research to develop III-V photovoltaics on alternative substrates.

Ptak, A.

2013-04-01T23:59:59.000Z

499

Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report  

SciTech Connect (OSTI)

Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

Not Available

1981-08-01T23:59:59.000Z

500

ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS  

E-Print Network [OSTI]

-Corresponding Author, ymarkopoulos@greenproject.gr, +30-210-60.90.880 With growing costs of electricity and concern. The main method for harnessing solar power is with arrays made up of photovoltaic (PV) panels. Accumulation, and it is vital to maximize the power generating potential during daily service. The accumulation of dust

Mavroidis, Constantinos