Powered by Deep Web Technologies
Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Existing Coal-fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vulnerabilities for Existing Coal-fired Power Plants August 2010 DOENETL-20101429 Disclaimer This report was prepared as an account of work sponsored by an agency of the...

2

Water vulnerabilities for existing coal-fired power plants.  

SciTech Connect

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

Elcock, D.; Kuiper, J.; Environmental Science Division

2010-08-19T23:59:59.000Z

3

Existing and proposed surface and undergoing coal mines region VIII summary. [In CO, MT, ND, UT, WY, SD  

SciTech Connect

Coal mining is expected to increase three-fold between 1978 and about 1985 in the EPA Region VIII States (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming). This report provides detailed information on existing, proposed, and speculative mines. The information includes location, mine operator, quantity of coal mined, and type of mine.

Kimball, D.B.

1979-02-01T23:59:59.000Z

4

Capturing Carbon from Existing Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

CEP April 2009 www.aiche.org/cep 33 CEP April 2009 www.aiche.org/cep 33 DOE's National Energy Technology Laboratory is spearheading R&D on a variety of post-combustion and oxy-combustion technologies to cost-effectively achieve 90% CO 2 capture. Jared P. Ciferno Timothy E. Fout U.S. Dept. of Energy, National Energy Technology Laboratory Andrew P. Jones James T. Murphy Science Applications International Corp. C oal-fi red power plants generate about half of the electricity in the United States today, and will con- tinue to be a major source of energy for the fore- seeable future. The U.S. Dept. of Energy's (DOE) Energy Information Administration (EIA) projects that the nation's 300+ gigawatts (GW) of coal-fi red electricity-generating capacity currently in operation will increase to more than

5

Jupiter Oxy-combustion and Integrated Pollutant Removal for the Existing Coal Fired Power Generation Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

Jupiter Oxy-combustion and Integrated Jupiter Oxy-combustion and Integrated Pollutant Removal for the Existing Coal Fired Power Generation Fleet Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of

6

Slipstream Testing of a Membrane CO2 Capture Process for Existing Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of a Membrane CO Testing of a Membrane CO 2 Capture Process for Existing Coal-Fired Power Plants Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of

7

Options for Removing Multiple Pollutants Including CO2 at Existing Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report is a technical review of the fuel changes and technology options for existing coal-fired power plants in response to potential new requirements for increasingly stringent multi-pollutant air emissions reductions, possibly including carbon dioxide (CO2). Preliminary costing of the major options is included. A database of the U.S. coal-fired power plants has been developed for further, more specific analyses.

2002-10-08T23:59:59.000Z

8

CO2 Mitigation Economics for Existing Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering & Economic Consultants Engineering & Economic Consultants Website: www.sfapacific.com 444 Castro Street, Suite 720 Mountain View, California 94041 Telephone: (650) 969-8876 Fax: (650) 969-1317 Email: Simbeck@sfapacific.com CO 2 MITIGATION ECONOMICS FOR EXISTING COAL-FIRED POWER PLANTS Presented at the U.S. Dept. of Energy National Energy Technology Laboratory (NETL) First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC by Dale R. Simbeck Vice President Technology SFA Pacific, Inc. Mountain View, CA ABSTRACT Electric power generation represents one of the largest sources of CO 2 emissions in North America. A major issue in the analysis of CO 2 mitigation options is the fact that over 45% of total electric power generation in North America is from coal. These existing coal-based power

9

Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Oxy-combustion Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers Background Technology and policy options are being investigated for mitigating CO 2 emissions. Electric power generation represents one of the largest CO 2 contributors in the United States and is expected to grow with fossil fuels continuing to be the dominant fuel source. Oxy-combustion is a developing technology that could become part of a national carbon capture effort to mitigate climate change. At a pulverized coal

10

Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers  

Science Conference Proceedings (OSTI)

Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO2 flue gas recycle and burner feed design on flame characteristics (burnout, NOx, SOx, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO2 flue gas recycle and burner design on flame characteristics (burnout, NOx, SOx, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO2 capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

2013-09-30T23:59:59.000Z

12

Performance Analysis of Existing 600MW Coal-Fired Power Plant with Ammonia-Based CO2 Capture  

Science Conference Proceedings (OSTI)

This paper analyzes the techno-economic performance of 600 MW coal-fired power plant with and without ammonia-based CO2 capture process, based on the operating data of an existing power plant. The simulation and analysis, with fully consideration of ... Keywords: CO2 capture, aqueous ammonia, existing power plant, techno-economic performance

Gang Xu; Liqiang Duan; Mingde Zhao; Yongping Yang; Ji Li; Le Li; Haizhan Chen

2010-06-01T23:59:59.000Z

13

Air blast type coal slurry fuel injector  

SciTech Connect

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

14

Air blast type coal slurry fuel injector  

DOE Patents (OSTI)

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, R.G.

1984-08-31T23:59:59.000Z

15

Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers  

SciTech Connect

This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and fouling mechanisms in coal-fired power plants to understand key issues influencing these deposition regimes and infer their behavior under oxy-fired conditions. Based on the results of this survey, an algorithm for integrating slagging predictions into CFD models was outlined. This method accounts for ash formation, particle impaction and sticking, deposit growth and physical properties and impact of the deposit on system flow and heat transfer. A model for fouling in the back pass has also been identified which includes vaporization of sodium, deposition of sodium sulfate on fly ash particles and tube surfaces, and deposit growth rate on tubes. In Year 1, REI has also performed a review of the literature describing corrosion in order to understand the behavior of oxidation, sulfidation, chloridation, and carburization mechanisms in air-fired and oxy-combustion systems. REI and Vattenfall have met and exchanged information concerning oxy-coal combustion mechanisms for CFD simulations currently used by Vattenfall. In preparation for Year 2 of this program, two coals (North Antelope PRB, Western bituminous) have been ordered, pulverized and delivered to the University of Utah and Sandia National Labs. Materials for the corrosion experiments have been identified, suppliers located, and a schedule for equipment fabrication and shakedown has been established. Finally, a flue gas recycle system has been designed and is being constructed for the OFC.

Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

2009-06-30T23:59:59.000Z

16

CO2 Capture Options for an Existing Coal Fired Power Plant: O2/CO2 Recycle Combustion vs. Amine Scrubbing  

NLE Websites -- All DOE Office Websites (Extended Search)

OPTIONS FOR AN EXISTING COAL FIRED POWER PLANT: OPTIONS FOR AN EXISTING COAL FIRED POWER PLANT: O 2 /CO 2 RECYCLE COMBUSTION vs. AMINE SCRUBBING D. J. Singh (djsingh@uwaterloo.ca; +001-519-496-2064) E. Croiset 1 (ecroiset@uwaterloo.ca;+001-519-888-4567x6472) P.L. Douglas (pdouglas@uwaterloo.ca; +001-519-888-4567x2913) Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 M.A. Douglas (madougla@nrcan.gc.ca; +001-613 996-2761) CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Nepean, Ontario, Canada, K1A 1M1 Abstract The existing fleet of modern pulverized coal fired power plants represents an opportunity to achieve significant greenhouse gas (GHG) emissions in the coming years providing efficient and economical CO 2 capture technologies are available for retrofit.

17

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

18

Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.  

SciTech Connect

Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

2006-11-27T23:59:59.000Z

19

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

20

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

22

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlook’s Weekly Price Survey (August 11), the ...

23

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

24

Engineering Feasibility of CO2 Capture on an Existing U.S. Coal-Fired Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

FEASIBILITY OF CO FEASIBILITY OF CO 2 CAPTURE ON AN EXISTING US COAL-FIRED POWER PLANT Nsakala ya Nsakala (nsakala.y.nsakala@power.alstom.com; 860-285-2018) John Marion (john.l.marion@power.alstom.com; 860-285-4539) Carl Bozzuto (carl.bozzuto@power.alstom.com; 860-285-5007) Gregory Liljedahl (greg.n.liljedahl@power.alstom.com; 860-285-4833) Mark Palkes (mark.palkes@power.alstom.com; 860-285-2676) ALSTOM Power Inc. US Power Plant Laboratories 2000 Day Hill Rd. Windsor, CT 06095 David Vogel (david.c.vogel@us.abb.com; 713-821-4312) J.C. Gupta (jcgupta@us.abb.com; 713-821-5093) ABB Lummus Global Inc. 3010 Briarpark Houston, TX 77042 Manoj Guha (mkguha@aep.com; 614-223-1285) American Electric Power 1 Riverside Plaza Columbus, OH 43215 Howard Johnson (hjohnson@odod.state.oh.us; 614-644-8368)

25

Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants  

SciTech Connect

Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

2012-09-30T23:59:59.000Z

26

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

27

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

28

ENGINEERING FEASIBILITY AND ECONOMICS OF CO2 SEQUESTRATION/USE ON AN EXISTING COAL-FIRED POWER PLANT: A LITERATURE REVIEW  

SciTech Connect

The overall objective of this study is to evaluate the technical feasibility and the economics of alternate CO{sub 2} capture and sequestration/use technologies for retrofitting an existing pulverized coal-fired power plant. To accomplish this objective three alternative CO{sub 2} capture and sequestration systems will be evaluated to identify their impact on an existing boiler, associated boiler auxiliary components, overall plant operation and performance and power plant cost, including the cost of electricity. The three retrofit technologies that will be evaluated are as follows: (1) Coal combustion in air, followed by CO{sub 2} separation from flue gas with Kerr-McGee/ABB Lummus Global's commercial MEA-based absorption/stripping process. (2) Coal combustion in an O{sub 2}/CO{sub 2} environment with CO{sub 2} recycle. (3) Coal combustion in air with oxygen removal and CO{sub 2} captured by tertiary amines In support of this objective and execution of the evaluation of the three retrofit technologies a literature survey was conducted. It is presented in an ''annotated'' form, consistent with the following five sections: (1) Coal Combustion in O{sub 2}/CO{sub 2} Media; (2) Oxygen Separation Technologies; (3) Post Combustion CO{sub 2} Separation Technologies; (4) Potential Utilization of CO{sub 2}; and (5) CO{sub 2} Sequestration. The objective of the literature search was to determine if the three retrofit technologies proposed for this project continue to be sound choices. Additionally, a review of the literature would afford the opportunity to determine if other researchers have made significant progress in developing similar process technologies and, in that context, to revisit the current state-of-the-art. Results from this literature survey are summarized in the report.

Carl R. Bozzuto; Nsakala ya Nsakala

2000-01-31T23:59:59.000Z

29

Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Mining Productivity by State, Mine Type, and Mine Production Range, 2012 Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000 Above 200 to 500 Above 100 to 200 Above 50 to 100 Above 10 to 50 10 or Under Total 2 Alabama 1.69 2.50 1.95 1.72 1.83 0.69 0.55 1.68 Underground 1.73 - - - 1.08 0.31 - 1.64 Surface 1.36 2.50 1.95 1.72 2.11 1.19 0.55 1.75 Alaska 5.98 - - - - - - 5.98 Surface 5.98 - - - - - - 5.98 Arizona 7.38 - - - - - - 7.38 Surface

30

Geothermal well completions: an overview of existing methods in four types of developments  

DOE Green Energy (OSTI)

Existing practices and capabilities for completing producing and injection wells for geothermal application in each of four categories of geothermal environments are discussed. Included are steam wells in hard, fractured rocks (The Geysers, California), hot water wells in sedimentary formations (Imperial Valley, California), hot, dry impermeable rocks with circulating water systems (Valles Caldera, New Mexico), and geopressured, geothermal water wells with associated hydrocarbon production on the U.S. Gulf Coast.

Snyder, R.E.

1978-01-01T23:59:59.000Z

31

AEO2011: Coal Minemouth Prices by Region and Type | OpenEI  

Open Energy Info (EERE)

Minemouth Prices by Region and Type Minemouth Prices by Region and Type Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 141, and contains only the reference case. The dataset uses million short tons and the US Dollar. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, Gulf, Dakota medium, western Montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal Minemouth Prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Minemouth Prices by Region and Type- Reference Case (xls, 121.6 KiB)

32

AEO2011: Coal Production by Region and Type | OpenEI  

Open Energy Info (EERE)

by Region and Type by Region and Type Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 140, and contains only the reference case. The unit of measurement in this dataset is million short tons. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, gulf, Dakota medium, western montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal Production EIA Data application/vnd.ms-excel icon AE2011: Coal Production by Region and Type- Reference Case (xls, 122.3 KiB)

33

The National Energy Modeling System: An Overview 1998 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

COAL MARKET MODULE COAL MARKET MODULE blueball.gif (205 bytes) Coal Production Submodule blueball.gif (205 bytes) Coal Distribution Submodule blueball.gif (205 bytes) Coal Export Component The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. The CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply

34

The National Energy Modeling System: An Overview 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). Figure 19. Coal Market Module Demand Regions Figure 20. Coal Market Module Supply Regions

35

Lighting practices in coal mines of the United States  

SciTech Connect

Existing conditions of underground lighting in coal mines and attitude of coal-mining States toward mine lighting are discussed as expressed in coal-mine regulations. Types of lamps available are listed. Ways of obtaining better illumination with present lighting equipment are suggested.

Hooker, A.B.; Owings, C.W.

1938-01-01T23:59:59.000Z

36

Watershed Transformation Based Identification of the Combustion Region in an Oxy-coal Flame Image  

Science Conference Proceedings (OSTI)

To meet the increasingly stringent standards on pollutant emissions, oxy-coal combustion technologies are being proposed for both existing and new coal-fired power plants. However, there is lack of research to characterize this new type of combustion ... Keywords: edge detection, image enhancement, wavelet transformation, oxy-coal flame, watershed transformation, image segmentation

Tian Qiu; Yong Yan; Gang Lu

2011-08-01T23:59:59.000Z

37

Coal-type gas provinces in China and their geochemical characteristics  

SciTech Connect

The distribution of coal - type gases in China can be divided into the east gas province, the central gas province and the west gas province the east gas province lies in the East China Meso - Cenozoic Rift Belt, including Donghai Basin and Bohaiwan Basin. The ages of gas source rocks are Carbo - Permian and Tertiary. The types of gas reservoirs are a anticline or a hidden mountain - fault block combination reservoir. The CH[sub 4] content ofthe gases there is 83 -90%, with [delta][sup 13]C[sub 1] -35.5 [approximately] -39.9[per thousand], and [delta][sup 13]C[sub 2] -24.0 [approximately] -26.8[per thousand]. The [delta][sup 13]C of condensate oils associated with the gases ranges from -25.4[per thousand] to -26.8[per thousand]. The central gas province is inside the Central China Paleozoic Plates, including Orclos Basin and Sichuan Basin. The gas source rocks are Carbo - Permian and Triassic. The types of gas reservoirs are an anticline-fault combination or a lithological-tectonic combination reservoir. The [delta][sup 13]C[sub 1] of the gases there is -37.9 [approximately] -37. l[per thousand], with the [delta][sup 13]C of condensate oil accompanying them - 25.1 [approximately] -26.6[per thousand]. The west gas province is within the West China Late Paleozoic Intracontinental Compressive Belt, including Tarim Basin, Jungar Basin and Tuna Basin. The age of gas source rocks is Jurassic. The types of gas reservoirs are an anticline or an anticline-fault reservoir. The CH[sub 4] content of the gases there varies from 60 to 90%, with [delta][sup 13]C[sub 1] from - 38.7 to -43.7[per thousand] and [delta] [sup 13]C[sub 2] from -25.9[per thousand] to -29.9[per thousand]. The [delta] [sup 13]C of light oils and condensate oils accompanying the gases changes from 24.3[per thousand] to 27.8[per thousand].

Zhang Xiaobao; Xu Yonghang; Shen Ping (Lanzhou Institute of Geology, Ianzhou (China))

1996-01-01T23:59:59.000Z

38

Coal - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on coal production, consumption, exports, imports, stocks, Find statistics on coal production, consumption, exports, imports, stocks, mining, and prices. + EXPAND ALL Summary Additional formats Coal overview: PDF CSV XLS Monthly PDF XLS Annual Coke overview PDF XLS Coal-fired power plants Existing generating units in the U.S. by state, company and plant 2011 2010 2009 2008 2007 2006 2005 2004 2003 Go Prices Additional formats Weekly spot prices (Coal News and Markets) Coal futures near-month contract final settlement price (weekly NYMEX) Average sales price: PDF XLSBy state and mine type PDF XLSBy state and disposition PDF XLSBy state and underground mining method PDF XLSBy state, county, and number of mines PDF XLSBy state and coal rank PDF XLSBy mine production range and mine type Average consumer prices by end use sector, Census division, and state,

39

Fuel blending with PRB coal  

Science Conference Proceedings (OSTI)

Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

2009-03-15T23:59:59.000Z

40

Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants  

SciTech Connect

IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

None

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

42

Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Award Number: DE-FE0007395 DOE Project Manager: José D. Figueroa  

NLE Websites -- All DOE Office Websites (Extended Search)

a Heat Integrated Post- a Heat Integrated Post- combustion CO 2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant University of Kentucky Research Foundation Partnered with U.S. Department of Energy NETL Louisville Gas & Electric and Kentucky Utilities Electric Power Research Institute (with WorleyParsons) Hitachi Power Systems America Smith Management Group July 9, 2013 Goals and Objectives * Objectives 1) To demonstrate a heat-integrated post-combustion CO 2 capture system with an advanced solvent; 2) To collect information/data on material corrosion and identify appropriate materials of construction for a 550 MWe commercial-scale carbon capture plant.  To gather data on solvent degradation kinetics, water management, system dynamic control as well as other information during the long-term

43

Designing and upgrading plants to blend coal  

SciTech Connect

Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

McCartney, R.H. [Roberts and Schaefer Co. (United States)

2006-10-15T23:59:59.000Z

44

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

45

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

46

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

47

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

48

NETL: Innovations for Existing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for Existing Plants Innovations for Existing Plants Coal and Power Systems Innovations for Existing Plants (IEP) Previous Next Chemical Looping Summary Chemical Looping Summary (July 2013) This summary provides a technical description of this advanced technology, describes its advantages, examines the R&D areas of need, and summarizes DOE's R&D efforts. DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (June 2013) This comprehensive handbook provides an update on DOE/NETL R&D efforts on advanced CO2 capture technologies for coal-based power systems. CO2 Capture Technology Meeting Presentations NETL CO2 Capture Technology Meeting Presentations (July 2013) This meeting highlighted DOE/NETL RD&D efforts to develop advanced pre-, post-, and oxy-combustion CO2 capture technologies.

49

AEO2011: Coal Production by Region and Type This dataset comes...  

Open Energy Info (EERE)

by Region and Type This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 140,...

50

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network (OSTI)

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

51

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report LBNL Report Number LBNL-1248E Year of Publication 2008 Authors...

52

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report Year of Publication 2008 Authors Phadke, Amol, Charles A....

53

Oxy-coal Combustion Studies  

SciTech Connect

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

54

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

55

Survey of government assistance for the world's hard-coal industries  

Science Conference Proceedings (OSTI)

This report investigates the existence and use of subsidies and incentives that foreign nations give their coal industries. Of particular interest are those aids that promote and facilitate the export of coal. A survey of hard coal producing countries was conducted to compile, and quantify if possible, direct and indirect financial aids given by governments for the purposes of maintaining, expanding or creating an indigenous coal industry and facilitating exports. The survey found that government measures commonly used to maintain, expand or create coal production include deficit operating grants, capital grants, preferential loan credits, labor and tax benefits, and export marketing assistance. Typical measures used to guarantee and protect domestic coal markets are long-term supply agreements, price supports, government purchases, tariffs, import licenses, and quotas. Common types of financial assistance provided by governments that do not benefit current coal production or use are research and development funds, environmental grants for restoring past mined lands, and payments to unemployed miners.

Neme, L.A.; Yancik, J.J.

1989-05-01T23:59:59.000Z

56

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

57

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

58

Investigations into coal coprocessing and coal liquefaction  

DOE Green Energy (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

59

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

60

NETL: Coal & Coal Biomass to Liquids - Hydrogen and Clean Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Coal & Coal Biomass to Liquids - Systems Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

62

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

63

NETL: Clean Coal Power Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

64

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

Science Conference Proceedings (OSTI)

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01T23:59:59.000Z

65

Clean Coal Technology (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

66

NETL: Innovations for Existing Plants - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf Innovations for Existing Plants Reference Shelf Program Overview Overview Publications: IEP, Recent Accomplishments Report - [PDF-1.3MB] (Oct 2007) IEP Roadmap & Program Plan [PDF-1.2MB] (May 2006) DOE/NETL'S Innovations for Existing Plants R&D Program [PDF-42KB] (Feb 2005) Improving the Environmental Performance of Today's Coal-Fired Power Plants This paper provides an overview of the Innovations for Existing Plants (IEP) Program, managed by the DOE National Energy Technology Laboratory. IEP develops advanced low-cost environmental control technologies for the existing fleet of coal-fired power plants, specifically focusing on the development of advanced mercury, NOx, PM, and acid gas emission control technology. Research is also directed at the characterization and beneficial use of coal utilization byproducts as well as at emerging electric-utility and water issues.

67

Sustainable development with clean coal  

SciTech Connect

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

68

Integrated Coal Gasification Power Plant Credit (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

69

Assumptions to the Annual Energy Outlook 1999 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal.gif (4423 bytes) coal.gif (4423 bytes) The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Model Documentation: Coal Market Module of the National Energy Modeling System, DOE/EIA-MO60. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

70

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

and number of mines by State, County, and mine type, 2011 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2011 Table 2. Coal production...

71

Dry cleaning of Turkish coal  

Science Conference Proceedings (OSTI)

This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

72

Existing and proposed fuel conversion facilities. Summary. [Colorado, Montana, S. Dakota, N. Dakota, Utah, Wyoming  

SciTech Connect

This report provides a summary of existing and proposed coal conversion facilities in addition to hydroelectric plants on a state-by-state basis for the six states (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) of EPA Region VIII. It identifies the location, facility name, number of units, operating company and other participants, plant capacity, and the fuel type for the various conversion facilities. (GRA)

1976-07-01T23:59:59.000Z

73

NETL: Coal and Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Technologies Coal and Power Systems Advancing our Nation's Portfolio of Coal RD&D Technologies - Rotating Images Advancing our Nation's Portfolio of Coal RD&D Technologies - Read More! Focus of NETL RD&D RD&D efforts in coal and power systems fall into three categories: Technologies that enable existing coal power plants to cost-effectively meet environmental requirements. NETL and its research partners are developing environmental control technologies for retrofitting existing power plants, with application to new plants as well. Key areas of research include cost-effective control of mercury, nitrogen oxides, sulfur dioxide, and fine particulate emissions; beneficial uses for coal utilization byproducts; and innovations to minimize the impact of

74

Coal competition: prospects for the 1980s  

SciTech Connect

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

1981-03-01T23:59:59.000Z

75

Coal plasticity at high heating rates and temperatures  

SciTech Connect

Effects of coal type on coal plasticity are investigated. Seven coals, from the Argonne premium sample bank ranging from lignite to low volatile bituminous, are studied. Different indices and structural data of a coal are shown to affect its plastic behavior. A coal-specific parameter incorporating the effects of labile bridges, oxygen, and hydrogen on plasticity has been used to successfully correlate measured values of maximum plasticity (i.e. minimum apparent viscosity) at elevated temperature with coal type.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1992-01-01T23:59:59.000Z

76

Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors  

SciTech Connect

This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

Belles, Randy [ORNL; Copinger, Donald A [ORNL; Mays, Gary T [ORNL; Omitaomu, Olufemi A [ORNL; Poore III, Willis P [ORNL

2013-03-01T23:59:59.000Z

77

Carbon Management Technologies for Sustainable Coal Utilization  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois power station with coal-fueled oxy- combustion * Utilize existing 200 MWe steam turbine & Meredosia plant infrastructure * Pipeline CO 2 30 miles to sequestration...

78

Clean Coal Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Read more DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing...

79

NETL: Clean Coal Demonstrations - Project Performance Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

80

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

Gill, Ross (retired rail research engineer), 2006, privateGill, Ross (retired rail research engineer), 2007, privateResearch Institute (EPRI), 1976, “Coal Transportation Capability of the Existing Rail and

McCollum, David L

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THE EFFECT OF COAL CHAR ON THE CORROSION OF 304 SS  

E-Print Network (OSTI)

of Materials for Coal Gasification Applications". of Highcommercially proven coal gasification processes exist. Theseprocesses. more efficient gasification Much of this work is

Foerster, Thomas Friedrich Wilhelm

2011-01-01T23:59:59.000Z

82

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

83

American coal imports 2015  

SciTech Connect

As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

Frank Kolojeski [TransGlobal Ventures Corp. (United States)

2007-09-15T23:59:59.000Z

84

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

85

EIA - Annual Energy Outlook 2009 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2009 with Projections to 2030 Coal Production Figure 78. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 79. U.S. coal production in four cases, 2007, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 80. Average minemouth coal prices by regionCoal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Total Coal Production Increases at a Slower Rate Than in the Past In the AEO2009 reference case, increasing coal use for electricity generation at both new and existing plants and the startup of several CTL

86

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

87

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

88

Assumptions to the Annual Energy Outlook 2001 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2001, DOE/EIA-M060(2001) January 2001. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

89

Assumptions to the Annual Energy Outlook 2002 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2002, DOE/EIA-M060(2002) (Washington, DC, January 2002). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

90

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network (OSTI)

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12.ofPlants Source: CEA,2006, Thermal performance report 377 plants Sub-critical Pulverised coal (535-575 oC, 175/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types

Banerjee, Rangan

91

Organic geochemical evaluations of bituminous rock and coals in Miocene Himmetoglu basin (Bolu, Turkey)  

Science Conference Proceedings (OSTI)

The studied area is a lake basin located in Bolu basin in Turkey. In the basin, from Upper Cretaceous to Upper Miocene 3,000-m thickness sediments were deposited. Upper Miocene Himmetoglu formation consisted of sandstone, claystone, and marl. To the middle level of the formation are located coal, bituminous limestone, and bituminous shales. In the basin, there are two coal beds whose thicknesses range from 1 to 13 m. The coals are easily breakable and black in color. In the coal beds exists some bituminous limestone and bituminous shales, and their thicknesses are between 5 and 45 cm. The amount of organic matter of the bituminous rocks from the Upper Miocene Himmetoglu formation are between 6.83 and 56.34 wt%, and the amount of organic matter of the bituminous limestone from the formation are between 13.58 and 57.16 wt%. These values indicate that these rocks have very good source potential. According to hydrogen index (HI), S2/S3, HI-T{sub max}, and HI-OI (oxygen index) parameters, kerogen types of the bituminous rocks and coals belonging to Upper Miocene Himmetoglu formation are Type I, Type II, and Type III. In accordance with HI, S2/S3, HI-T{sub max}, and HI-OI parameters, the bituminous rocks and coals from the Upper Miocene Himmetoglu formation are mostly immature.

Sari, A.; Geze, Y. [Ankara University, Ankara (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

92

Existing and Proposed Underground Storage Facilities  

U.S. Energy Information Administration (EIA)

Energy Information Administration 158 Natural Gas 1996: Issues and Trends Table F1. Summary of Existing Underground Natural Gas Storage, by Region and Type of ...

93

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

94

Emissions of air toxics from coal-fired boilers: Arsenic  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

1994-08-01T23:59:59.000Z

95

Evaluation of Concentrated Piperazine for CO2 Capture from Coal...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations....

96

Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide: WHAT IS COAL? Coal looks like a shiny black rock. Coal has lots of energy in it. When it is burned, coal makes heat and light energy. Th e cave men used coal for...

97

Assumptions to the Annual Energy Outlook 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

98

Hot Coal for Christmas: Dust Formation in the Swept-Up Shell Around The Peculiar Type Ib Supernova 2006jc  

E-Print Network (OSTI)

We present evidence for the formation of dust grains in an unusual Type Ib SN based on late-time spectra of SN 2006jc. The progenitor suffered a giant outburst qualitatively similar to those seen in LBVs just 2 years prior to the SN, and we speculate that the dust formation we observe is an indirect consequence of that event. The key evidence for dust formation seen in our optical spectra is (1) the appearance of a strong continuum emission source at red wavelengths, and (2) fading of the redshifted sides of narrow HeI emission lines. These two observed characteristics provide the strongest case yet for dust formation in any Type Ib/c SN. Both developments occurred simultaneously between 51 and 75 days after peak brightness, which is quick compared to other dusty SNe. The high temperature of the dust implies carbon and not silicates, and we describe how infrared photometry may test this conjecture. Geometric considerations indicate dust formation occurring in the dense gas swept-up by the forward shock, and n...

Smith, Nathan; Filippenko, Alexei V

2007-01-01T23:59:59.000Z

99

coal | OpenEI  

Open Energy Info (EERE)

coal coal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

100

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

102

Capturing Carbon from Existing Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

scrubbing technology (7, 8). The modifi cations are focused primarily on extensive thermal integration of the CO 2 -capture system with the power plant and develop- ment of...

103

Capturing carbon from existing coal-fired power plants  

SciTech Connect

DOE's National Energy Technology Laboratory is spearheading R & D on a variety of post-combustion and oxy-combustion technologies to cost-effectively achieve 90% CO{sub 2} capture.

Ciferno, J.P.; Fout, T.E.; Jones, A.P.; Murphy, J.T. [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2009-04-15T23:59:59.000Z

104

Tracking New Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

105

Coal Gasification for Power Generation, 3. edition  

SciTech Connect

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

2007-11-15T23:59:59.000Z

106

Outlook and Challenges for Chinese Coal  

Science Conference Proceedings (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

2008-06-20T23:59:59.000Z

107

EIA Energy Kids - Coal  

U.S. Energy Information Administration (EIA)

Sometimes, coal-fired electric power plants are built near coal mines to lower ... industries and businesses with their own power plants use coal to generate ...

108

Coal industry annual 1994  

SciTech Connect

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

109

Mulled coal---A beneficiated coal form for use as a fuel or fuel intermediate  

SciTech Connect

The storage, transport and handling of beneficiated coals in the form of a modified wet cake ( mulled coal'') to yield a coal water fuel having acceptable properties for atomization and combustion on industrial, commercial and/or residential scales, have been investigated. The Mulled Coal project is divided into a series of tasks designed to produce formulations and system designs suitable to convert fine coal wet cakes'' into a material that can be stored, handled, and transported to a site where it can be utilized as a fuel in existing and developing combustion devices. (VC)

Not Available

1991-05-01T23:59:59.000Z

110

Emissions of airborne toxics from coal-fired boilers: Mercury  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

Huang, H.S.; Livengood, C.D.; Zaromb, S.

1991-09-01T23:59:59.000Z

111

Weak economy and politics worry US coal operators  

SciTech Connect

A potential decrease in demand, a new administration, and production constraints have coal operators worried about prospects for 2009. This and other interesting facts are revealed in this 2009 forecast by the journal Coal Age. Results are presented of the survey answered by 69 of the 646 executives contacted, on such questions about expected coal production, coal use, attitude in the coal industry, capital expenditure on types of equipment and productive capacity. Coal Age forecasts a 2.3% decline in coal production in 2009, down to 1.145 billion tons from 1.172 billion tons. 8 figs.

Fiscor, S.

2009-01-15T23:59:59.000Z

112

Chemicals from coal. Utilization of coal-derived phenolic compounds  

Science Conference Proceedings (OSTI)

This article provides an overview for possible utilization of coal-derived phenolic compounds. Phenolic compounds are abundant in coal-derived liquids. Coal-derived phenolic compounds include phenol, cresol, catechol, methylcatechol, naphthol, and their derivatives. Liquids from coal liquefaction, pyrolysis, gasification, and carbonization are potential sources of phenolic chemicals, although certain processing and separation are needed. There are opportunities for coal-based phenolic chemicals, because there are existing industrial applications and potential new applications. Currently the petrochemical industry produces phenol in multi-step processes, and new research and development has resulted in a one-step process. Selective methylation of phenol can produce a precursor for aromatic engineering plastics. Catalytic oxidation of phenol has been commercialized recently for catechol production. There are potential new uses of phenol that could replace large-volume multi-step chemical processes that are based on benzene as the starting material. New chemical research on coal and coal-derived liquids can pave the way for their non-fuel uses for making chemicals and materials.

Song, C.; Schobert, H.H.

1999-07-01T23:59:59.000Z

113

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

114

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

115

Detecting moving fires on coal conveyors  

SciTech Connect

To comply with certain elements of the Clean Air Act Amendments of 1990, a number of utilities operating coal fired power plants have switched to low-rank bituminous and semi-bituminous coals as an alternative to other fuels like natural gas. Power plants firing and handling this variety of coal may be extremely prone to fires nd explosions as the coal is conveyed from storage on to the boilers due to a phenomenon known as spontaneous combustion. The American Society of Testing for Materials ranks coals by their tendency to oxidize. The lower the coal`s rank, the greater its tendency to absorb oxygen and, consequently, the greater its tendency to spontaneously combust. This unique property creates a new type of fire and explosion hazard not previously experienced by many coal-fired plants. Fires involving coal crushers, storage silos, conveyors, bunkers and pulverizer mills generally occur as a result of two ignition sources: spontaneous combustion (self-heating) of coal and frictional heating of the coal`s conveyance system.

NONE

1995-09-01T23:59:59.000Z

116

Effect of Coal Blending By  

E-Print Network (OSTI)

Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. One control option is to utilize existing pollution control equipment such as wet flue gas desulfurization (FGD) scrubbers. The split (speciation) between chemical forms of mercury (Hg) species has a strong influence on the control and environmental fate of Hg emissions from coal combustion. The high-temperature coal combustion process releases Hg in elemental form (Hg 0). A significant fraction of the Hg 0 can be subsequently oxidized in the low-temperature, post-combustion environment of a coal-fired boiler. Relative to Hg 0, oxidized Hg (Hg 2+) is more effectively removed by air pollution control systems (APCS). For example, the water-soluble Hg 2+ is much more easily captured than insoluble Hg 0 in FGD units. Selective catalytic reduction (SCR) technology widely applied for reducing NOX emissions from power plants also affects the speciation of Hg in the coal combustion flue gases. Recent full-scale field tests conducted in the U.S. showed increases in Hg oxidation across the SCR catalysts for plants firing bituminous coals with sulfur (S) content ranging from 1.0 to 3.9%. However, plants firing subbituminous Powder River Basin (PRB) coals which contains significantly lower chlorine (Cl) and sulfur (S)

Pilot-scale Coal Combustor The; Shannon D. Serre; Chun Wai Lee

2009-01-01T23:59:59.000Z

117

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Knocking the NOx Out of Coal Clean Coal 101 Lesson 3: Knocking the NOx Out of Coal How NOx Forms NOx Formation Air is mostly nitrogen molecules (green in the above diagram) and...

118

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

119

Environmental data energy technology characterizations: coal  

SciTech Connect

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

120

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Annual Energy Outlook 2006 with Projections to 2030 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Annual Energy Outlook 2006 with Projections to 2030 Market Share of Western Coal Continues To Increase U.S. coal production has remained near 1,100 million tons annually since 1996. In the AEO2006 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 1.1 percent per year from 2004 to 2015, when total production is 1,272 million tons. The growth in coal production is even stronger thereafter, averaging 2.0 percent per year from 2015 to 2030, as substantial amounts of new coal-fired generating capacity are added, and several CTL plants are brought on line. Figure 97. Coal production by region, 1970-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800 for help.

122

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

123

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

E-Print Network (OSTI)

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

Patzek, Tadeusz W.

124

EVALUATION OF DENSIFIED REFUSE DERIVED FUELS FOR USE IN PULVERIZED COAL-FIRED  

E-Print Network (OSTI)

EVALUATION OF DENSIFIED REFUSE DERIVED FUELS FOR USE IN PULVERIZED COAL-FIRED STEAM GENERATORS with coal. This paper discusses these successful tests and the feasibility of preparing a d-RDF which can be processed with coal using existing, unmodified coal handling equipment and fired in conventional pulverized

Columbia University

125

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

126

O A L Section 2. Coal  

U.S. Energy Information Administration (EIA)

Section 2. Coal Coal prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports.

127

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Research Clean Coal Projects This interactive map shows the extent of FE's clean coal projects across the United States and Canada. Read more AVESTAR Training FE and local colleges signed an agreement recently to train power plant field operators. Read more FutureGen 2.0 DOE recently announced the beginning of Phase II development for this innovative carbon capture and storage project in Illinois. Read more DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled power plants by increasing overall system efficiencies and reducing capital costs. In the near-term, advanced technologies that increase the power generation

128

Low temperature steam-coal gasification catalysts  

SciTech Connect

Shrinking domestic supplies and larger dependence on foreign sources have made an assortment of fossil fuels attractive as possible energy sources. The high sulfur and mineral coals of Illinois would be an ideal candidate as possible gasification feedstock. Large reserves of coal as fossil fuel source and a projected shortage of natural gas (methane) in the US, have made development of technology for commercial production of high Btu pipeline gases from coal of interest. Several coal gasification processes exist, but incentives remain for the development of processes that would significantly increase efficiency and lower cost. A major problem in coal/char gasification is the heat required which make the process energy intensive. Hence, there is a need for an efficient and thermally neutral gasification process. Results are described for the gasification of an Illinois No. 6 coal with transition metal catalysts and added potassium hydroxide.

Hippo, E.J.; Tandon, D. [Southern Illinois Univ., Carbondale, IL (United States)

1996-12-31T23:59:59.000Z

129

Kinetics of coal pyrolysis  

Science Conference Proceedings (OSTI)

This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

1989-07-01T23:59:59.000Z

130

Mechanism of instantaneous coal outbursts  

Science Conference Proceedings (OSTI)

Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

Guan, P.; Wang, H.Y.; Zhang, Y.X. [Peking University, Beijing (China). School of Earth & Space Science

2009-10-15T23:59:59.000Z

131

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

132

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

133

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

134

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

135

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

136

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

137

Coal Mining Regulations (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Retail Supplier Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Energy Development and Independence Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state. The Department of Natural Resources under the authority of the Energy and Environment Cabinet is responsible for enforcing these laws and assuring compliance with the 1977 Federal Surface Mining Control Act (SMCRA). The Division of Mine Reclamation and Enforcement is responsible for inspecting

138

Program on Technology Innovation: Nanoparticles at Coal and Gas Fired Power Plants  

Science Conference Proceedings (OSTI)

Nanoparticles—particles with diameters less than 100 nanometers—can occur from the combustion of fossil fuel, such as coal and natural gas. Recently, nanoparticles have gained the industry’s attention because they may be associated with adverse health effects. Despite potential health hazards, little published data exist concerning the types and concentrations of nanoparticles in work environments. This report is the first published study on concentration and composition of nanoparticles in power plant w...

2008-11-26T23:59:59.000Z

139

Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report  

DOE Green Energy (OSTI)

The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

1982-02-01T23:59:59.000Z

140

Zero emission coal  

DOE Green Energy (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FE Clean Coal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

clean-coal-news Office of Fossil Energy Forrestal clean-coal-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en NETL Innovations Recognized with R&D 100 Awards http://energy.gov/fe/articles/netl-innovations-recognized-rd-100-awards NETL Innovations Recognized with R&D 100 Awards

142

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

143

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

144

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

145

EPRI Coal Flow Loop: Evaluation of Extractive Methods  

Science Conference Proceedings (OSTI)

Extractive coal sampling methodologies are currently the principal method to estimate the flow of pulverized coal on the individual conveying lines of power boilers. The measurement uncertainty associated with the common methodologies is not well known. Parameters suspected to influence these types of measurement — such as distance from flow disturbances, flow regime, and air-to-coal ratio, among others — are difficult to control at a power plant. The Coal Flow Control and Measurement Laborat...

2005-03-24T23:59:59.000Z

146

Existing Commercial Reference Buildings Constructed Before 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 The files on this page contain commercial reference building models for existing buildings constructed before 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

147

FACT SHEET: Clean Coal University Research Awards and Project Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SHEET: Clean Coal University Research Awards and SHEET: Clean Coal University Research Awards and Project Descriptions IMPROVED ALLOYS By substantially increasing the pressure and temperature of the steam used to produce power, advanced ultrasupercritical (AUSC) coal-fired power plants improve generation efficiency, use less coal and release less carbon pollution. The implementation of AUSC boilers requires materials with high-temperature oxidation, corrosion and deformation resistance. These selected projects will develop new surface modification techniques or optimize existing techniques for the protection of high-temperature alloys used in AUSC coal-fired boilers and in advanced gas turbines. Southern Illinois University (Carbondale, Ill.) - Southern Illinois University Carbondale

148

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

149

2014 Coal Form Proposals  

U.S. Energy Information Administration (EIA)

Coal Survey Form Changes Proposed for 2014. The U.S. Energy Information Administration (EIA) has begun the process of re-clearing the coal survey ...

150

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

151

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Coal Prices (updated December 27, 2006) This report summarizes spot coal prices for the business weeks ended December 1, 8, and 15.

152

Annual Coal Report 2001  

U.S. Energy Information Administration (EIA)

DOE/EIA-0584 (2001) Annual Coal Report 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy

153

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Metallurgical coal markets became volatile when the thriving Chinese steel industry in late 2003 and 2004 made outsized demands for coking coal and met coke, ...

154

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution...

155

NETL: CCPI/Clean Coal Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

Topical Reports Topical Reports CCPI/Clean Coal Demonstrations Topical Reports General Topical Report #18: Environmental Benefits of Clean Coal Technologies[PDF-2MB] (Apr 2001) This report describes a variety of processes that are capable of meeting existing and emerging environmental regulations and competing economically in a deregulated electric power marketplace. Topical Report #17: Software Systems in Clean Coal Demonstration Projects [PDF-650KB] (Dec 2001) This report describes computer software systems used to optimize coal utilization technologies. Environmental Control Technologies Sulfur Dioxide Control Technologies Topical Report #12: Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers [PDF-1.6MB] (June 1999) A discussion of three CCT projects that demonstrate innovative wet flue gas desulfurization technologies to remove greater than 90% SO2.

156

Development of a coal quality expert  

SciTech Connect

This project will enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance, as well as develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests. The project consists of the following seven tasks: Project management; coal cleanability characterization; pilot-scale combustion testing; utility boiler field testing; CQIM completion and development of CQE specification; develop CQE; and, CQE workstation testing and validation. Progress is discussed. 1 fig., 3 tabs.

1991-08-30T23:59:59.000Z

157

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

158

NETL: Coal & Coal Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Biomass to Liquids Hydrogen-from-Coal RD&D ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES QUALITY GUIDELINES NETL-RUA About NETL-RUA...

159

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

160

Clean Coal Program Research Activities  

Science Conference Proceedings (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wabash River coal gasification repowering project: Public design report  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

1995-07-01T23:59:59.000Z

162

Tracking Progress Last updated 5/24/2013 Current and Expected Energy from Coal for California 1  

E-Print Network (OSTI)

Tracking Progress Last updated 5/24/2013 Current and Expected Energy from Coal for California 1 Current and Expected Energy from Coal for California Electricity supplies from existing coal and petroleum capacity to California utilities in 2011 from out-of-state coal plants. Table 1: Dependable Capacity

163

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

164

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and...

165

Comparison of biomass and coal char reactivities  

SciTech Connect

Char combustion is typically the rate limiting step during the combustion of solid fuels. The magnitude and variation of char reactivity during combustion are, therefore, of primary concern when comparing solid fuels such as coal and biomass. In an effort to evaluate biomass` potential as a sustainable and renewable energy source, the reactivities of both biomass and coal chars were compared using Sandia`s Captive Particle Imaging (CPI) apparatus. This paper summarizes the experimental approach used to determine biomass and coal reactivities and presents results from CPT experiments. The reactivity of six types of char particles, two high-rank coal chars, two low-rank coal chars, and two biomass chars, were investigated using the CPT apparatus. Results indicate that both of the high-rank coal chars have relatively low reactivities when compared with the higher reactivities measured for the low-rank coal and the biomass chars. In addition, extinction behavior of the chars support related investigations that suggest carbonaceous structural ordering is an important consideration in understanding particle reactivity as a function of extent of burnout. High-rank coal chars were found to have highly ordered carbon structures, where as, both low-rank coal and biomass chars were found to have highly disordered carbon structures.

Huey, S.P. [Sandia National Labs., Livermore, CA (United States); Davis, K.A. [Reaction Engineering International, Salt Lake City, UT (United States); Hurt, R.H. [Brown Univ., Providence, RI (United States). Div. of Engineering

1995-08-01T23:59:59.000Z

166

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

167

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

1997-05-01T23:59:59.000Z

168

Coal Tar and Bedrock  

Science Conference Proceedings (OSTI)

The characterization of bedrock groundwater and coal tar impacts is one of the most complicated tasks associated with managing manufactured gas plant (MGP) sites. This report provides an overview of the fate and transport of coal tar in bedrock and the methods available to investigate coal tar at particular sites and discusses how to develop a decision-making framework for coal tar investigations.

2007-02-22T23:59:59.000Z

169

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

170

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal and CoalBiomass to Liquids Alternate Hydrogen Production In the Alternate Production technology pathway, clean syngas from coal is converted to high-hydrogen-content liquid...

171

The Effect of Circulating Coal Slurry Water Hardness on Coal ...  

Science Conference Proceedings (OSTI)

In order to investigate the effect of gypsum on flotation and coal slurry settling during coal slurry recirculation, the water hardness and proton conductivity of coal ...

172

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

173

Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report  

Science Conference Proceedings (OSTI)

The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

Kabadi, V.N.

1995-06-30T23:59:59.000Z

174

Combustion rates and mechanisms of pulverized coals and coal-derived fuels  

SciTech Connect

Increased use of coal, our most abundant fossil fuel resource, will be required to meet both immediate and long-term energy demands. Improvement in existing technologies of steam raising and industrial process heating through the clean, direct firing of pulverized coal will have major and immediate impact. Improvements are required because of the unacceptably high emissions from present coal combustion systems and because of the need to couple considerations of pollutant emissions and carbon conversion efficiencies. The rates and mechanisms of coal devolatilization and combustion are extremely sensitive to local details of the combustion process. Similarly, pollutants formed during the process are sensitive to the initial coal composition and local time and temperature histories of individual particles. Very little useful information is available by which the influence of combustion modifications on both the efficiency and pollutant emission characteristics can be predicted. The present understanding of the rates of coal and char combustion is summarized with the conclusion that heterogeneous chemical kinetic rates strongly influence the rates and mechanisms of coal and char combustion. If understood, adjustment and control of the rates and mechanisms by judicious adjustment of the combustion process and the initial fuel character should be possible. A proposal for a detailed theoretical and experimental study of the combustion rates of pulverized coal and coal-derived fuels is discussed.

Hardesty, D.R.

1976-06-01T23:59:59.000Z

175

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

176

FMI NewCoal | Open Energy Information  

Open Energy Info (EERE)

NewCoal NewCoal Jump to: navigation, search Name FMI NewCoal Place Denver, Colorado Sector Efficiency Product FMI NewCoal is a coal technology developer focused on upgrading low rank coals to improve combustion efficiency and reduce production of greenhouse emissions for coal fired utility and industrial power generation worldwide. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Prebaked Anode from Coal Extract  

Science Conference Proceedings (OSTI)

We previously reported that the coal extract prepared from non-hydrogenative extraction of thermal coals using two-ring-aromatic solvent (Hyper-coal) is suitable ...

178

Coal desulfurization with sodium hypochlorite.  

E-Print Network (OSTI)

??Wet desulfurization of Pittsburgh No. 8 coal and Illinois No. 6 coal were conducted with sodium hypochlorite in the laboratory. Pittsburgh No. 8 coal was… (more)

Li, Wei, M.S.

2004-01-01T23:59:59.000Z

179

Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis  

SciTech Connect

This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

Rutledge, G.; Lane, D.; Edblom, G.

1980-01-01T23:59:59.000Z

180

Coal data: A reference  

SciTech Connect

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Research guidance studies to assess gasoline from coal by methanol-to-gasoline and Sasol-type Fischer--Tropsch technologies  

DOE Green Energy (OSTI)

The primary purpose of this study is to provide a technical and economic comparison between the commercial Fischer-Tropsch technology and the new Mobil methanol-to-gasoline technology for the production of motor gasoline. Several technical sensitivity cases are also part of the study and will be included in the final report. Two conceptual plant complexes - Base Case I: Mobil Technology and Base Case II: Fischer-Tropsch Technology--have been developed. They are self-supporting, grass roots facilities assumed to be located in a Wyoming coal field. Plant size is equivalent to the proposed large commercial SNG plants. Except for the Mobil methanol conversion technology, all processes used are commercial. Co-production of all products has been assumed. Products have been upgraded to meet U.S. market specifications. A summary comparison of the two base cases shows that the Mobil technology is somewhat more efficient and more effective in producing gasoline. Moreover, the number of processing steps required is considerably fewer. All products meet the target specifications.

Schreiner, M.

1977-09-01T23:59:59.000Z

182

Research guidance studies to assess gasoline from coal by methanol-to-gasoline and sasol-type Fischer--Tropsch technologies. Final report  

DOE Green Energy (OSTI)

This study provides a technical and economic comparison between the new Mobil methanol-to-gasoline technology under development and the commercially available Fischer--Tropsch technology for the production of motor gasoline meeting U.S. quality standards. Conceptual plant complexes, sited in Wyoming, are complete grass-roots facilities. The Lurgi dry-ash, pressure technology is used to gasify sub-bituminous strip coal. Except for the Mobil process, processes used are commercially available. Coproduction of products, namely SNG, LPG and gasoline, is practiced. Four sensitivity cases have also been developed in less detail from the two base cases. In all areas, the Mobil technology is superior to Fischer--Tropsch: process complexity, energy usage, thermal efficiency, gasoline selectivity, gasoline quality, investment and gasoline selectivity, gasoline quality, investment and gasoline cost. Principal advantages of the Mobil process are its selective yield of excellent quality gasoline with minimum ancillary processing. Fischer--Tropsch not only yields a spectrum of products, but the production of a gasoline meeting U.S. specifications is difficult and complex. This superiority results in about a 25% reduction in the gasoline cost. Sensitivity study conclusions include: (1) the conversion of methanol into gasoline over the Mobil catalyst is highly efficient, (2) if SNG is a valuable product, increased gasoline yield via the reforming of SNG is uneconomical, and (3) fluid-bed operation is somewhat superior to fixed-bed operation for the Mobil methanol conversion technology.

Schreiner, M.

1978-08-01T23:59:59.000Z

183

3.0 EXISTING ENVIRONMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 EXISTING ENVIRONMENT 0 EXISTING ENVIRONMENT This chapter describes various components of the existing environment that may be affected by the operation of the Mound glass melter. The proposed action pctentially impacts air quality. surface water quality. biological resources. and human health and safety. In order to evaluate impacts to these resources. information on existing conditions is required. Section 3.1 presents information on atmospheric resources (e.g., meteorology and existing air quality) . Section 3.2 presents data on water resources, and Section 3.3 provides a broad characterization of biological resources. 3.1 ATMOSPHERIC RESOURCES Emissions from the glass melter potentially affect local and regional air quality. To evaluate impacts to these receptors, data on meteorologic conditions (particularly wind

184

Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

Not Available

1994-06-14T23:59:59.000Z

185

NETL: Coal & Power Systems - Brief History of Coal Use  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Coal Coal & Power Systems Brief History of Coal Use Steam Locomotive In the 1800s, one of the primary uses of coal was to fuel steam engines used to power locomotives....

186

NETL: Coal & Coal Biomass to Liquids - Closely Aligned Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > C&CBTL > Closely Aligned Programs Coal and CoalBiomass to Liquids Closely Aligned Programs The Department of Energy's (DOE) Coal & CoalBiomass to Liquids...

187

Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal  

DOE Patents (OSTI)

The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

Sheldon, Ray W. (Huntley, MT)

2001-01-01T23:59:59.000Z

188

A study of ignition and combustion characteristics of isolated coal water slurry droplet using digital image processing technique  

E-Print Network (OSTI)

A digital image processing technique is used to investigate the ignition and combustion characteristics of an isolated coal water slurry droplet in low Re flow. Coal water slurry droplet study is useful for dilute coal suspensions based on the premise that ignitability of a spray of coal water slurry must depend on the ignition characteristic of an isolated coal water slurry droplet. A flat flame burner is used for optical accessibility and also for simulating vitiated gases as existing in boiler burners. A quartz wire of 0.175 mm diameter is chosen for low thermal conductivity and to hold the droplet above theflat flame burner. The following sequence of events is observed: (i) Water first evaporates leaving agglomerated coal particle, (ii) glowing first occurs at the leading edge of the droplet, (iii) for a droplet with diameter of the order less than I mm it was observed that the volatile combustion usually occurs away from the droplet in the wake of the combustible gases made upstream, while for droplet more than I mm, the flame is attached to the particle, (iv) combustion of coal water slurry droplet is intermittent. The ignition time and volatile combustion times are obtained. Parametric studies include the effect of drop diameter and ambient oxygen concentrations. Simplified phenomen ological type models are presented in order to determine the number of particles. interparticle spacing and density of coal water slurry droplet. Finally qualitative relations between ignition and combustion times and particle diameter are obtained and the results are then compared with experimental data.

Bhadra, Tanmoy

1998-01-01T23:59:59.000Z

189

Foundation Insulation for Existing Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes Building America Technical Update April 29 & 30, 2013 Patrick H. Huelman Cold Climate Housing Coordinator University of Minnesota Extension Foundation Insulation for Existing Homes * Context - Focused on basements and crawlspaces. - Aimed at cold climates (Climate Zones 6 & 7). - Generally aimed at liquid active walls. * Approach - Managing risks - Current solutions & best practices - Evaluating new approaches * Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes. * Promote building science solutions using a systems engineering and integrated design approach. * "Do no harm" => must ensure that safety, health, and durability are maintained or improved.

190

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

191

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

192

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

193

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

194

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

195

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

commercial (point sources) Coal Oil Other Area sourcesSource Stationary fuel combugtion Electric utilities Coal Oil

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

196

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

197

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

198

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

199

Commercializing the H-Coal Process  

E-Print Network (OSTI)

The H-Coal Process is being demonstrated in commercial equipment at the Catlettsburg, Kentucky plant. A program is being developed for further operations including several tests for specific commercial projects and a long-term test. Over the last year, technical feasibility has been clearly demonstrated, but the economic matrix has been greatly altered. However, because of this alteration and because many countries outside the United States are more concerned about security of supply, Hydrocarbon Research, Inc. (HRI) has observed a decided swing in interest in commercial coal liquefaction. Project owners can select one of two paths for commercial coal liquefaction using H-Coal technology. The quantum strategy involves the construction of a large, independent facility and requires a very high initial capital investment. The incremental approach deals with stepwise additions of coal to a hydrogenation unit, may involve association with an existing facility, and will result in a substantially smaller initial investment. HRI's unique and commercially proven Liquid Phase Hydrogenation systems permit the owner to select the strategy most suited to his needs. The ultimate goals of commercial coal liquefaction can be reached by either route. The H-Coal program supports this goal.

DeVaux, G. R.; Dutkiewicz, B.

1982-01-01T23:59:59.000Z

200

Coal feed lock  

DOE Patents (OSTI)

A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

Pinkel, I. Irving (Fairview Park, OH)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Innovations for Existing Plants Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

to develop a new dynamic simulator for supercritical pulverized coal and natural gas combined cycle power plants. 05.31.2013 News Finding Alternative Water Sources for...

202

Pelletization of fine coals  

SciTech Connect

The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

Sastry, K.V.S.

1991-09-01T23:59:59.000Z

203

International perspectives on coal preparation  

SciTech Connect

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

1997-12-31T23:59:59.000Z

204

Surface Coal Mining Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) < Back Eligibility Commercial Construction Developer Industrial Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Department of Environmental Quality The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under special regulation due to their nature, and applies only to state lands. When applied to Coal with Carbon Capture and Storage projects the rules that would apply to a normal coal-mining project still apply. In addition to these measures, a CCS plant would need to adhere to all waste disposal requirements, water usage

205

Clean Coal Incentive Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) < Back Eligibility Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Property Tax Incentive Provider Kentucky Cabinet for Economic Development Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity. Before the credit is given, the Environmental and Public Protection Cabinet must certify that a facility is reducing emissions of pollutants released during electric generation through the use of clean coal equipment and technologies. The amount of the allowable credit is $2 per ton of eligible coal purchased that is used to

206

Coal Bed Methane Protection Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Natural Resources and Conservation The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and water right holders for damage to land and to water quality and availability that is attributable to the development of coal bed methane wells. The Act aims to provide for

207

Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric...  

NLE Websites -- All DOE Office Websites (Extended Search)

a range of coal types (bituminous, sub-bituminous, and lignite) and biomass types (wood, corn stover, and switchgrass) at biomass loadings from 30 to 50 percent by weight....

208

Figure 7.9 Coal Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Figure 7.9 Coal Prices Total, 1949-2011 By Type, 1949-2011 By Type, 2011 214 U.S. Energy Information Administration / Annual Energy Review 2011

209

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network (OSTI)

6 Coal price (2005$) $1.29/MMBTU 93.8 kg CO 2 /MMBTU coal COsales $0.05/kWh price (2005$) Coal type Illinois no.coal-to- electricity ef?ciency is 37%, carbon capture is 91%, and the electricity price

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

210

Refining and End Use Study of Coal Liquids.  

DOE Green Energy (OSTI)

Progress in a study to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids is reported.

NONE

1997-12-31T23:59:59.000Z

211

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

212

Indonesian coal mining  

Science Conference Proceedings (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

213

Stacker speeds coal recovery  

SciTech Connect

The Spring Creek Coal Co., near Decker, Montana, features the only stacker/reclaimer in the U.S. to stockpile and reclaim coal produced by a dragline/truck-shovel operation.

Jackson, D.

1981-08-01T23:59:59.000Z

214

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

March 2011 DOEEIA-0121 (201004Q) Revised: July 2012 Quarterly Coal Report October - December 2010 March 2011 U.S. Energy Information Administration Office of Oil, Gas, and Coal...

215

Coal Market Module  

Annual Energy Outlook 2012 (EIA)

6, DOEEIA-M060(2006) (Washington, DC, 2006). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for...

216

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

217

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

218

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

219

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

220

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Over the past month and a half, NAP spot coal prices have been flat or declining (graph above). ... (the walls of coal left in place to support the roof), ...

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Sources Coal-Fired Power Plants (CFPPs) Where is the coal in the United States? Coal Across the U.S. The U.S. contains coal resources in various places. The coal occurs...

222

Health status of anthracite surface coal miners  

Science Conference Proceedings (OSTI)

In 1984-1985, medical examinations consisting of a chest radiograph, spirometry test, and questionnaire on work history, respiratory symptoms, and smoking history were administered to 1,061 white males who were employed at 31 coal cleaning plants and strip coal mines in the anthracite coal region of northeastern Pennsylvania. The prevalence of radiographic evidence of International Labour Office (ILO) category 1 or higher small opacities was 4.5% in 516 men who had never been employed in a dusty job other than in surface coal mining. Among these 516 workers, all 4 cases of ILO radiographic category 2 or 3 rounded opacities and 1 case of large opacities had been employed as a highwall drill operator or helper. The prevalence of category 1 or higher opacities increased with tenure as a highwall drill operator or helper (2.7% for 0 y, 6.5% for 1-9 yr, 25.0% for 10-19 y, and 55.6% for greater than or equal to 20 y drilling). Radiographic evidence of small rounded opacities, dyspnea, and decreases in FEV1.0, FVC, and peak flow were significantly related to tenure at drilling operations after adjusting for age, height, cigarette smoking status, and exposures in dusty jobs other than in surface coal mining. However, tenure in coal cleansing plants and other surface coal mine jobs were not related to significant health effects. The apparent excess prevalence of radiographic small rounded opacities in anthracite surface coal mine drillers suggests that quartz exposures have been increased. Average respirable quartz concentrations at surface coal mine drilling operations should be evaluated to determine whether exposures are within existing standards, and dust exposures should be controlled.

Amandus, H.E.; Petersen, M.R.; Richards, T.B.

1989-03-01T23:59:59.000Z

223

EIA - Assumptions to the Annual Energy Outlook 2008 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2008 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2008, DOE/EIA-M060(2008) (Washington, DC, 2008). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

224

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

225

EIA - Assumptions to the Annual Energy Outlook 2010 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2010 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2010, DOE/EIA-M060(2010) (Washington, DC, 2010). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, the cost of factor inputs (labor and fuel), and other mine supply costs.

226

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

227

Method for fluorinating coal  

DOE Patents (OSTI)

Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

1978-01-01T23:59:59.000Z

228

Ore components in coal  

Science Conference Proceedings (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

229

Coal Industry Annual, 1996  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-04-01T23:59:59.000Z

230

Coal Industry Annual, 1997  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-11-23T23:59:59.000Z

231

Coal Industry Annual, 1995  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-11-17T23:59:59.000Z

232

Coal Industry Annual, 1998  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

2000-07-07T23:59:59.000Z

233

Coal Industry Annual, 1994  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-04-18T23:59:59.000Z

234

Coal Industry Annual, 1999  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

235

Coal Industry Annual, 2000  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

236

Coal News and Markets  

U.S. Energy Information Administration (EIA)

... (Energy Publishing, Coal & Energy Price Report, Bulletin, ... Although, the soaring demands of the Chinese steel industry are still with us, ...

237

ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY  

DOE Green Energy (OSTI)

This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

NONE

1997-03-01T23:59:59.000Z

238

Heat Recovery from Coal Gasifiers  

E-Print Network (OSTI)

This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant and convection waste heat boilers. Medium level waste heat leaving fixed bed type gasifiers can be recovered more economically by convection type boilers or shell and tube heat exchangers. An economic analysis for the steam generation and process heat exchanger is presented. Steam generated from the waste heat boiler is used to drive steam turbines for power generation or air compressors for the oxygen plant. Low level heat recovered by process heat exchangers is used to heat product gas or support the energy requirement of the gasification plant. The mechanical design for pressure vessel shell and boiler tubes is discussed. The design considers metallurgical requirements associated with hydrogen rich, high temperature, and high pressure atmosphere.

Wen, H.; Lou, S. C.

1981-01-01T23:59:59.000Z

239

Flash hydrogenation of coal  

DOE Patents (OSTI)

A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

Manowitz, Bernard (Brightwaters, NY); Steinberg, Meyer (Huntington Station, NY); Sheehan, Thomas V. (Hampton Bays, NY); Winsche, Warren E. (Bellport, NY); Raseman, Chad J. (Setauket, NY)

1976-01-01T23:59:59.000Z

240

Proceedings: Coal Combustion Workshop  

Science Conference Proceedings (OSTI)

The primary objective of the 2007 Coal Combustion workshop was to present a holistic view of the various combustion processes required for minimal emissions, peak performance, and maximum reliability in a coal-fired power plant. The workshop also defined needs for future RD in coal combustion technology.

2008-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coal production 1989  

SciTech Connect

Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

1990-11-29T23:59:59.000Z

242

Coal Market Module  

Reports and Publications (EIA)

Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2013 (AEO2013). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

Michael Mellish

2013-07-17T23:59:59.000Z

243

Market integration in the international coal industry: A cointegration approach  

SciTech Connect

The purpose of this paper is to test the hypothesis of the existence of a single economic market for the international coal industry, separated for coking and steam coal, and to investigate market integration over time. This has been conducted by applying cointegration and error-correction models on quarterly price series data in Europe and Japan over the time period 1980-2000. Both the coking and the steam coal markets show evidence of global market integration, as demonstrated by the stable long-run cointegrating relationship between the respective price series in different world regions. This supports the hypothesis of a globally integrated market. However, when analyzing market integration over time it is not possible to confirm cointegration in the 1990s for steam coal. Thus, compared to the coking coal market, the steam coal market looks somewhat less global in scope.

Warell, L. [University of Lulea, Lulea (Sweden). Dept. of Business Administration & Social Science

2006-07-01T23:59:59.000Z

244

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

245

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

246

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Prices in 2007 real $ Coal Prices Coal prices have been farprices. Factors like coal prices and EOR revenues affect theCoal Prices..

Phadke, Amol

2008-01-01T23:59:59.000Z

247

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

248

Coal combined cycle system study. Volume I. Summary  

Science Conference Proceedings (OSTI)

The potential advantages for proceeding with demonstration of coal-fueled combined cycle power plants through retrofit of a few existing utility steam plants have been evaluated. Two combined cycle concepts were considered: Pressurized Fluidized Bed (PFB) combined cycle and gasification combined cycle. These concepts were compared with AFB steam plants, conventional steam plants with Flue Gas Desulfurization (FGD), and refueling such as with coal-oil mixtures. The ultimate targets are both new plants and conversion of existing plants. Combined cycle plants were found to be most competitive with conventional coal plants and offered lower air emissions and less adverse environmental impact. A demonstration is a necessary step toward commercialization.

Not Available

1980-04-01T23:59:59.000Z

249

HVAC Improvements for Existing Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Improvements for Existing Houses HVAC Improvements for Existing Houses Speaker(s): Chryséis Bovagnet Date: September 5, 2002 - 12:00pm Location: Bldg. 90 Many older houses in the US are either not well designed from a thermal point of view or have HVAC (Heating Ventilation and Air Conditioning) systems in need of repairs or improvements. The building envelopes tend to have poor insulation and lots of leakage, and the HVAC systems are inefficient. The cooling/heating equipment is often located outside of the conditioned space (e.g. in attics or crawlspaces) with ducts that leak and have poor insulation, which cause energy loss and bad occupant comfort on peak days or in extreme climates. We developed a series of retrofits that will allow us to reduce the energy consumption of residential HVAC

250

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

251

Alternative process schemes for coal conversion. Progress report No. 4, September 1, 1979-March 30, 1980  

DOE Green Energy (OSTI)

This progress report is divided into two parts. In Part A, the results of the first three progress reports which dealt with the separation of H/sub 2//CH/sub 4/ and H/sub 2//CH/sub 4//CO mixtures resulting from coal gasification processes are briefly summarized. The separation calculations were performed for ideal, cryogenic, clathrate (gas-hydrate), and absorption/stripping separation processes. The cryogenic separation indicates the least energy requirement. Work on this phase of the program has been concluded. An experimental coal gasification program is being undertaken. In Part B, a review smmary of existing and developing coal gasificaton processes is presented. The relative merits of gasifier type, heating method, operating mode, process conditions, and gasifying medium are considered. This is followed by a qualitative appraisal of several selected coal gasification processes based upon the above considerations. It is intended that this report will help focus attention on those areas in which significant process improvements can be realized. The report concludes with a series of recommendations for future work.

Sansone, M.J.

1980-04-01T23:59:59.000Z

252

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

253

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

254

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

255

Mulled coal---A beneficiated coal form for use as a fuel or fuel intermediate. Final technical progress report No. 3, October 1, 1990--December 31, 1990  

SciTech Connect

The storage, transport and handling of beneficiated coals in the form of a modified wet cake (``mulled coal``) to yield a coal water fuel having acceptable properties for atomization and combustion on industrial, commercial and/or residential scales, have been investigated. The Mulled Coal project is divided into a series of tasks designed to produce formulations and system designs suitable to convert fine coal ``wet cakes`` into a material that can be stored, handled, and transported to a site where it can be utilized as a fuel in existing and developing combustion devices. (VC)

Not Available

1991-05-01T23:59:59.000Z

256

Wabash River Coal Gasification Repowering Project  

SciTech Connect

The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec's coal gasification facility. Destec's plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

1992-01-01T23:59:59.000Z

257

Wabash River Coal Gasification Repowering Project  

SciTech Connect

The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec`s coal gasification facility. Destec`s plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

1992-11-01T23:59:59.000Z

258

Corn/coal fuel characterization study  

DOE Green Energy (OSTI)

Laboratory analyses and tests were conducted to determine the suitability of shelled corn as a potential supplemental fuel for pulverized coal fired utility boilers. The analyses and tests used were those routinely used for the characterization of coal. The data indicated very high volatility and very low ash. Corn by itself would not be a suitable fuel for conventional boilers, primarily because of the severe fouling and slagging potential of corn ash. Blends of corn and coal minimized the fouling and slagging problems. The blend samples contained 10% corn by BTU or 14% by weight. Approximately 1.05 pounds of this blend would provide the heat equivalent of one pound of coal. The additional fuel input would place an additional load on fuel handling and preparation equipment, but the decrease in ash quantity would reduce the load on ash handling and particulate-type flue gas clean-up equipment. (JSR)

Cioffi, P. L.

1978-08-01T23:59:59.000Z

259

Does Zeeman's Fine Topology Exist?  

E-Print Network (OSTI)

We work on the family of topologies for the Minkowski manifold M. We partially order this family by inclusion to form the lattice \\Sigma(M), and focus on the sublattice Z of topologies that induce the Euclidean metric space on every time axis and every space axis. We analyze the bounds of Z in the lattice \\Sigma(M), in search for its supremum. Our conclusion --that such a supremum does not belong in Z-- is compared with constructive proofs of existence of the fine topology, defined as the maximum of Z and conceived to play an essential role in contemporary physical theories. Essential mathematical and physical questions arise.

Norberto Sainz

2010-03-19T23:59:59.000Z

260

Process for hydrogenating coal and coal solvents  

SciTech Connect

A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

Tarrer, Arthur R. (Auburn, AL); Shridharani, Ketan G. (Auburn, AL)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

Science Conference Proceedings (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

262

Energy Savings Measure Packages: Existing Homes  

SciTech Connect

This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

Casey, S.; Booten, C.

2011-11-01T23:59:59.000Z

263

Lessons Learned from Existing Biomass Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

mills) 220,000 Railroad ties (shredded) 30,000 Scrap tires (shredded) 2,000 History and Outlook Units 1 and 2 at Bay Front were originally designed to fire 100% coal. These B&W...

264

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

265

Surface Coal Mining and Reclamation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining and Reclamation (Indiana) Surface Coal Mining and Reclamation (Indiana) Surface Coal Mining and Reclamation (Indiana) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Indiana Program Type Environmental Regulations Provider Department of Natural Resources The Indiana Department of Natural Resources implements and enforces the federal Surface Mining Control and Reclamation Act of 1977, as well as a statewide program to protect society and the environment from the adverse effects of mining operations, and regulates coal mining operations to

266

Ignition Rate Measurement of Laser-Ignited Coals  

SciTech Connect

We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

John C. Chen; Vinayak Kabadi

1997-10-31T23:59:59.000Z

267

Prediction of spontaneous heating susceptibility of Indian coals using fuzzy logic and artificial neural network models  

Science Conference Proceedings (OSTI)

Coal mine fires due to spontaneous heating are a major concern worldwide. Most of these fires could be averted if suitable preventive measures are taken. Since the spontaneous heating potential of all types of coals are not the same, its accurate prediction ... Keywords: Artificial neural network, Coal, Crossing point temperature, Fuzzy expert system, Spontaneous heating, Sugeno model

H. B. Sahu; S. Padhee; S. S. Mahapatra

2011-03-01T23:59:59.000Z

268

Coal plasticity at high heating rates and temperatures  

SciTech Connect

The broad objective of this project is to obtain improved, quantitative understanding of the transient plasticity of bituminous coals under high heating rates and other reaction and pretreatment conditions of scientific and practical interest. To these ends the research plan is to measure the softening and resolidification behavior of two US bituminous coals with a rapid-heating, fast response, high-temperature coal plastometer, previously developed in this laboratory. Specific measurements planned for the project include determinations of apparent viscosity, softening temperature, plastic period, and resolidificationtime for molten coal: (1) as a function of independent variations in coal type, heating rate, final temperature, gaseous atmosphere (inert, 0{sub 2} or H{sub 2}), and shear rate; and (2) in exploratory runs where coal is pretreated (preoxidation, pyridine extraction, metaplast cracking agents), before heating. The intra-coal inventory and molecular weight distribution of pyridine extractables will also be measured using a rapid quenching, electrical screen heater coal pyrolysis reactor. The yield of extractables is representative of the intra-coal inventory of plasticing agent (metaplast) remaining after quenching. Coal plasticity kinetics will then be mathematically modeled from metaplast generation and depletion rates, via a correlation between the viscosity of a suspension and the concentration of deformable medium (here metaplast) in that suspension. Work during this reporting period has been concerned with re-commissioning the rapid heating rate plastometer apparatus.

Darivakis, G.S.; Peters, W.A.; Howard, J.B.

1990-01-01T23:59:59.000Z

269

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO 2 Capture Background Pulverized coal (PC)-fired power plants provide nearly 50% of...

270

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

the costs have on the price of coal delivered by railroadsindicate that the price of coal delivered by railroads ismake up the delivered price of coal that electric plants are

McCollum, David L

2007-01-01T23:59:59.000Z

271

Surface Coal Mining Law (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining Law (Missouri) Surface Coal Mining Law (Missouri) Surface Coal Mining Law (Missouri) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Missouri Program Type Environmental Regulations Provider Missouri Department of Natural Resources This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and prohibit coal mining in locations where reclamation is not feasible. The law aims to strike a balance between protection of the environment and agricultural productivity and the need for coal as an energy source. This law addresses the powers of

272

Coal liquefaction. Quarterly report, October-December 1978  

SciTech Connect

DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and ERDA. The Bureau of Mines, US Department of the Interior, had started work in the 1930's. Current work is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes are described briefly.

1979-09-01T23:59:59.000Z

273

Texas Surface Coal Mining and Reclamation Act (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Surface Coal Mining and Reclamation Act (Texas) Texas Surface Coal Mining and Reclamation Act (Texas) Texas Surface Coal Mining and Reclamation Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Environmental Regulations Siting and Permitting Provider Railroad Commission of Texas The Railroad Commission of Texas regulates all surface mining activities for the extraction of coal. The Commission acts with the authority of the Texas Surface Coal Mining and Reclamation Act, which establishes that the state of Texas has exclusive jurisdiction over the regulation of surface coal mining and reclamation operations in the state, in accordance with the

274

Synthetic liquid fuels development: assessment of critical factors. Volume III. Coal resource depletion  

DOE Green Energy (OSTI)

While US coal resources are known to be vast, their rate of depletion in a future based predominantly on coal has not been examined analytically heretofore. The Coal Depletion Model inventories the coal resource on a regional basis and calculates the cost of coal extraction by three technologies - strip and underground mining and in-situ combustion. A plausible coal demand scenario extending from 1975 to the year 2050 is used as a basis in applying the model. In the year 2050, plants in operation include 285 syncrude plants, each producing 100,000 B/D; 312 SNG plants, each producing 250 million SCF/D and 722 coal-fired electric power plants, each of 1000 MW capacity. In addition, there is 890 million tons per year of industrial coal consumption. Such a high level of coal use would deplete US coal resources much more rapidly than most people appreciate. Of course, the actual amount of US coal is unknown, and if the coal in the hypothetical reliability category is included, depletion is delayed. Coal in this category, however, has not been mapped; it is only presumed to exist on the basis of geological theory. The coal resource depletion model shows that unilateral imposition of a severance tax by a state tends to shift production to other coal producing regions. Boom and bust cycles are both delayed and reduced in their magnitude. When several states simultaneously impose severance taxes, the effect of each is weakened.Key policy issues that emerge from this analysis concern the need to reduce the uncertainty of the magnitude and geographic distribution of the US coal resource and the need to stimulate interaction among the parties at interest to work out equitable and acceptable coal conversion plant location strategies capable of coping with the challenges of a high-coal future.

Dickson, E.M.; Yabroff, I.W.; Kroll, C.A.; White, R.K.; Walton, B.L.; Ivory, M.E.; Fullen, R.E.; Weisbecker, L.W.; Hays, R.L.

1977-01-01T23:59:59.000Z

275

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

276

Contaminants in coals and coal residues. [10 refs  

SciTech Connect

Most of the major enviromental pollutants from coals originate as impurities in the coal structure. These include various organic compounds, minerals, and trace elements that are released into the air and water when coal is mined, processed and utilized. The use of coal preparation to produce cleaner burning fuels involves an environmental compromise, wherein reduced emissions and solid wastes from coal burning sources are achieved at the expense of greater environmental degradation from coal cleaning wastes.

Wewerka, E.M.; Williams, J.M.; Vanderborgh, N.E.

1976-01-01T23:59:59.000Z

277

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

278

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

279

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

280

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Coal and CoalBiomass to Liquids Reference Shelf Documents Papers Presentations DOCUMENTS 2012 Technology Readiness Assessment-Analysis of Active Research Portfolio...

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

282

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

283

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

284

NETL: Coal & Coal Biomass to Liquids - Project Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information CoalBiomass Feed and Gasification Development of Biomass-Infused Coal Briquettes for Co-Gasification FE0005293 Development of Kinetics and Mathematical...

285

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

286

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

287

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

288

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

289

Integrated coal liquefaction process  

DOE Patents (OSTI)

In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

Effron, Edward (Springfield, NJ)

1978-01-01T23:59:59.000Z

290

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

291

Coal combustion science. Quarterly progress report, April 1993--June 1993  

Science Conference Proceedings (OSTI)

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

292

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

Science Conference Proceedings (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

293

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

294

Quarterly Coal Report  

Annual Energy Outlook 2012 (EIA)

December 2010 DOEEIA-0121 (201003Q) Revised: July 2012 Quarterly Coal Report July - September 2010 December 2010 U.S. Energy Information Administration Office of Oil, Gas, and...

295

Coal Combustion Products: Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Products: Challenges and Opportunities American Coal Ash Association Conference St. Petersburg, FL January 27-30, 2003 Carl O. Bauer National Energy Technology Laboratory...

296

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The results are given of an investigation of the influence of additions of certain organosilicon compounds of cyclic and linear nature on the coal hydrogenation process.

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

297

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

298

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

299

Direct Coal Liquefaction  

NLE Websites -- All DOE Office Websites (Extended Search)

solvent. * The coal fragments are further hydrocracked to produce a synthetic crude oil. * This synthetic crude must then undergo refinery upgrading and hydrotreating to...

300

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

302

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Speaking about Consol Energy’s 1Q05 earnings, J. Brett Harvey, president and CEO, noted that the “pricing environment for our coal is excellent, ...

303

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

304

Back Issues of the Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

coal > Quarterly Coal Report > Quarterly Coal Report Back Issues Quarterly Coal Report Back Issues of the Quarterly Coal Report Year 4thquarter 3rdquarter 2ndquarter 1stquarter QCR...

305

Development of a coal quality expert. Technical progress report No. 6, [July 1--September 30, 1991  

SciTech Connect

The project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

1991-11-20T23:59:59.000Z

306

Existing reactor expansion study basis  

SciTech Connect

The latest HAPO Five Year Program review, HW-59633, forecasts substantial increases in Pu production from the eight existing Hanford reactors over the next several years. These production increases would be attained by a combination of several methods which include increased reactor power levels resulting from higher process water flow rates and coolant bulk outlet temperatures, improved time operated efficiency, higher conversion ratios, and reduced transient reactivity losses. In order to provide a realistic basis for budgeting to meet these or other increased production goals, it is necessary that a study program be undertaken to determine in general terms the plant changes required to support these forecasted levels, to evaluate the economic and technical feasibility of achieving the process conditions, and to present an integrated program for achieving these objectives. This study program will necessarily consider the interrelated effects of a number of various facets of reactor and water plant process conditions, operational requirements, and proposed development programs. The purpose of this document is to present a plan for the execution of the proposed study. Included in this outline are a review of the basic study considerations, problem assignments and schedules, and manpower and cost estimates for the performance of the study.

Heacock, H.W.

1959-06-24T23:59:59.000Z

307

Hydrogen from Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquids » Hydrogen Liquids » Hydrogen from Coal Hydrogen from Coal Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL researchers in the Office of Research and Development are testing different types of materials that might be used to separate hydrogen from other gases. Photo courtesy of NETL. Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL researchers in the Office of Research and Development are testing different types of materials that might be used to separate hydrogen from other gases. Photo courtesy of NETL. Hydrogen from coal research supports goals of increasing energy security, reducing environmental impact of energy use, promoting economic

308

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

309

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

310

Assessment of Existing Carbon Dioxide Equation of State Models and Experimental Databases  

Science Conference Proceedings (OSTI)

This report provides information that increases the knowledge base and strengthens the understanding of existing equation of state EOS models, as well as how closely the results of these models compare to available experimental databases for CO2 mixtures. The primary interest is in CO2 mixtures that result from coal combustion processes and carbon capture and storage CCS applications for electric power generation.

2010-12-23T23:59:59.000Z

311

Westinghouse to launch coal gasifier with combined cycle unit  

Science Conference Proceedings (OSTI)

Westinghouse has designed a prototype coal gasifier which can be intergrated with a combined cycle unit and enable power plants to use coal in an efficient and environmentally acceptable way. Coal Gasification Combined Cycle (CGCC) technology burns gas made from coal in a gas turbine to generate power and then collects the hot exhaust gases to produce steam for further power generation. The commercialization of this process would meet the public's need for an economical and clean way to use coal, the utitities' need to meet electric power demands, and the nation's need to reduce dependence on imported oil. The Westinghouse process is described along with the company's plans for a demonstration plant and the option of a phased introduction to allow utilities to continue the use of existing equipment and generate revenue while adding to capacity. (DCK)

Stavsky, R.M.; Margaritis, P.J.

1980-03-01T23:59:59.000Z

312

Improved coal mining economics using near-face deshaling  

SciTech Connect

Coal extraction typically results in the recovery of pure rock that ranges from small to very large quantities, depending on seam thickness, existence of above-seam draw rock or in-seam partings and other characteristics. The removal of pure rock may allow for the recovery of three times the amount in middling coal particles, which has significant economic benefits. In an industrial example, a 150% increase in revenue was realized from deshaling a low-ash, run-of-mine coal and then blending it with a processed clean coal product. Deshaling is the process of removing relatively pure rock from coal, which normally involves a high-density separation in a gravity-based process. The removal of the relatively pure rock near the point of extraction has the potential to further enhance the economics of an operation due to reduced-materials handling and refuse storage costs.

Honaker, R.Q.; Luttrell, G.H.; Lineberry, G.T. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

2006-05-15T23:59:59.000Z

313

AVESTAR® - Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator FutureGen 2.0 is a first-of-its-kind, near-zero emissions coal-fueled power plant using oxy-combustion technology to capture the plant's carbon emissions. To help meet the Nation's ever growing demand for clean energy, the FutureGen Industrial Alliance (Alliance) was formed to test and commercialize advanced coal-based systems fully integrated with carbon capture and geologic storage technologies. In cooperation with the U.S. Department of Energy (DOE), the Alliance and its project partners AirLiquide and Babcock & Wilcox, will upgrade an existing power plant in Meredosia, Illinois with oxy-coal carbon capture (OCCC) technology to capture and permanantly store approximately 1.0 million tonnes of CO2 each year.

314

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

315

Byproducts can make coal plants green  

Science Conference Proceedings (OSTI)

Co-locating ethanol plants at coal-burning sites, along with the use of biomass gasification to boost coal-fired plant output, can have positive economic and environmental benefits. Adding a biomass gasifier to an older coal-fired plant would inject gas with up to 10% of the fuel value in the coal and increase steam generation by the same amount. Sawdust can be injected as a reburn fuel without the need for gasification. A pre-scrubber would be added before the existing SO{sub 2} scrubber and waste heat from the boiler in the form of low-pressure steam would be sent to a co-located ethanol plant. This would lead to a decrease in emissions of NOx, mercury and SO{sub 2}, less mercury in the gypsum, a large greenhouse gas reduction, reduced net fuel cost, and revenue from hydrochloric acid by- product and from selling low-pressure steam to the ethanol plant. The Blue Flint Ethanol facility uses waste heat from Grand River Energy's 1,100 MW Coal Creek Station in South Jordan, Utah. The new generation of US ethanol plants is likely to use switchgrass and other cellulosic materials as feedstock. Straw and other forms of biomass have high chlorine content. PVC waste can be added to optimise the chlorine content of the scrubber. A chlorine pre-scrubber before the SO{sub 2} scrubber would capture HCl. 1 fig., 1 photo.

McIlvaine, B. [McIlvaine Co. (United States)

2007-07-15T23:59:59.000Z

316

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

317

U.S. Energy Information Administration | Annual Coal Report 2011  

U.S. Energy Information Administration (EIA) Indexed Site

at producing U.S. mines by mine production range and mine type, 2011 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2011 Table 17. Recoverable...

318

Coal liquefaction process  

DOE Patents (OSTI)

A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

1983-01-01T23:59:59.000Z

319

Dry piston coal feeder  

SciTech Connect

This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

Hathaway, Thomas J. (Belle Meade, NJ); Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

320

Method for coal liquefaction  

SciTech Connect

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mechanochemical hydrogenation of coal  

DOE Patents (OSTI)

Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

1981-01-01T23:59:59.000Z

322

State coal profiles, January 1994  

SciTech Connect

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

1994-02-02T23:59:59.000Z

323

Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

Not Available

1993-05-01T23:59:59.000Z

324

Lummus clean fuels from coal  

DOE Green Energy (OSTI)

This report compares two direct, catalytic, hydroliquefaction processes - H-Coal and Lummus Clean Fuels From Coal (LCFFC). These processes are compared for two sets of operating conditions. In the first, the reactors are operated to produce a product suitable for use as fuel oil (fuel oil mode). In the second, the operating conditions are more severe, so the resulting product slates more closely resemble crude oil (syncrude mode). The comparisons are performed using conceptual designs based on single point run data, with a design basis of 25,000 tpd (moisture-free basis) of Illinois No. 6 coal. Although all cost comparisons are well within the estimated 25% accuracy of the estimates, LCFFC shows generally lower costs. Three types of economic evaluation are performed: computation of internal rate of return (IRR) with product values set to estimated market value, computation of overall average product cost ($/MM Btu) with the discount rate set at 20%, and calculation of average product cost with naphtha credited at estimated market value and the discount rate set at 20%. H-Coal has a lower cost only in the fuel oil mode analysis with naphtha valued at market price. The processes are also compared with respect to the potential for commercialization and anticipated operability differences. It is concluded that the lower hydrogen content of LCFFC product may offset its advantage of lower cost if it is used as refinery feed, and that the design of the LCFFC reactor may make it harder to control. Suggestions for future research are presented.

Gantt, J.E.; Hefferan, J.K.; Chorba, W.F.; Schachtschneider, A.B.; Schulze, J.R.

1980-12-01T23:59:59.000Z

325

Apparatus and method for feeding coal into a coal gasifier  

DOE Patents (OSTI)

This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

Bissett, Larry A. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV); McGee, James P. (Morgantown, WV)

1979-01-01T23:59:59.000Z

326

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

327

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

328

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

329

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

330

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

331

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

332

New York City - Energy Conservation Requirements for Existing Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New York City - Energy Conservation Requirements for Existing New York City - Energy Conservation Requirements for Existing Buildings New York City - Energy Conservation Requirements for Existing Buildings < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Building Energy Code Provider New York City Mayor's Office of Operations In December 2009 the New York City Council enacted a series of bills intended to improve the energy efficiency of existing buildings in the city. Each of the four bills addresses a different aspect of improving energy efficiency in the city's buildings as follows: energy conservation

333

\\Chemical Constituents in Coal Combustion Product Leachate: Selenium  

Science Conference Proceedings (OSTI)

Selenium is a common constituent in coal and coal combustion products (CCPs) and can be found in CCP leachate. The chemical profile provided here assembles and summarizes existing information on selenium’s environmental characteristics, which are focused on conditions associated with CCP management. Extensive references provide a means for obtaining more detailed information on specific subject areas. The following topics are covered: 1) occurrence and sources of selenium; 2) environmental ...

2013-12-26T23:59:59.000Z

334

Design Considerations for Coal Plant CO2 Capture Flexibility  

Science Conference Proceedings (OSTI)

Based on the input from various Electric Power Research Institute- (EPRI-) sponsored research and other respected industry sources, this report aims to initially present the implications for the case when existing pulverized coal (PC) plants are required to operate under frequently changing load conditions. Design improvements to enable more flexible operation of the current and next generation coal fleet are also presented. Finally, the report discusses the implications for operation flexibility of ...

2013-01-11T23:59:59.000Z

335

Existing Commercial Reference Buildings Constructed In or After 1980 -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB)

336

Existing Commercial Reference Buildings Constructed Before 1980 - Archive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 - Existing Commercial Reference Buildings Constructed Before 1980 - Archive Existing Commercial Reference Buildings Constructed Before 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB) Full service restaurant

337

Uncovering Coal's Secrets Through the University Coal Research Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

338

Coal gasification for power generation. 2nd ed.  

SciTech Connect

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

2006-10-15T23:59:59.000Z

339

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

DOE Green Energy (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

340

Comprehensive report to Congress: Clean Coal Technology Program: Arvah B. Hopkins circulating fluidized-bed repowering project: A project proposed by: The City of Tallahassee  

Science Conference Proceedings (OSTI)

The project involves the repowering of a 250-megawatt electrical (MWe) natural gas- or oil-fired boiler with a coal-fired atmospheric circulating fluidized-bed (CFB) boiler to provide steam to an existing turbine generator. The boiler will be the largest of its type. After construction and shakedown, the City of Tallahassee (CoT) plant will be operated for 24 months with at least three different eastern coals. Final coal selection will be based on the Fuels Selection Study, which is part of Phase I-A of the project. Cost, financial, and technical data from the CoT CFB will be provided the utility industry for evaluation of a 250-MWe CFB as a commercially viable clean coal alternative. The objective of the Arvah B. Hopkins CFB Repowering Project is to demonstrate an efficient, economical, and environmentally superior method of generating electric power from coal. The work to be performed under the Cooperative Agreement includes the design, construction, and operation of the demonstration plant. 4 figs.

Not Available

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

P.J. and Wells, J.H. , Coal, Coke and Coal Chemicals, 108, (of coal, carbon, char. coke, and other coal derived orpulverized coal, char, coke, solvent refined coal, and coal

Chin, W.K.

2010-01-01T23:59:59.000Z

342

Anaerobic biprocessing of low rank coals. Final technical report, September 12, 1990--August 10, 1993  

SciTech Connect

Coal solubilization under aerobic conditions results in oxygenated coal product which, in turn, makes the coal poorer fuel than the starting material. A novel approach has been made in this project is to remove oxygen from coal by reductive decarboxylation. In Wyodak subbituminous coal the major oxygen functionality is carboxylic groups which exist predominantly as carboxylate anions strongly chelating metal cations like Ca{sup 2+} and forming strong macromolecular crosslinks which contribute in large measure to network polymer structure. Removal of the carboxylic groups at ambient temperature by anaerobic organisms would unravel the macromoleculer network, resulting in smaller coal macromolecules with increased H/C ratio which has better fuel value and better processing prospects. These studies described here sought to find biological methods to remove carboxylic functionalities from low rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. Efforts were made to establish anaerobic microbial consortia having decarboxylating ability, decarboxylate coal with the adapted microbial consortia, isolate the organisms, and characterize the biotreated coal products. Production of CO{sup 2} was used as the primary indicator for possible coal decarboxylation.

Jain, M.K.; Narayan, R.

1993-08-05T23:59:59.000Z

343

Consensus Coal Production Forecast for  

E-Print Network (OSTI)

Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

Mohaghegh, Shahab

344

Focus on Alaska's coal '80  

Science Conference Proceedings (OSTI)

Papers are presented under the broad headings of: Northern Alaskan coals; Beluga-Yentna coal field; resource development and utilization; transportation and economics; coal mining methods and regulations; and, federal and state policies concerning coal development. There is also a panel discussion, and luncheon and banquet speeches. 36 papers have been abstracted separately.

Rao, P.D.; Wolff, E.N. (eds.)

1981-01-01T23:59:59.000Z

345

Coal market momentum converts skeptics  

SciTech Connect

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

346

Enzymantic Conversion of Coal to Liquid Fuels  

DOE Green Energy (OSTI)

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

347

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

348

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of Coal by Mine Production Range and Mine Type, 2012 Average Sales Price of Coal by Mine Production Range and Mine Type, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 32. Average Sales Price of Coal by Mine Production Range and Mine Type, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Underground Surface Total Over 1,000 58.86 19.50 31.70 Over 500 to 1,000 84.65 66.80 74.74 Over 200 to 500 95.31 73.29 84.14 Over 100 to 200 98.00 68.97 82.69 Over 50 to 100 81.53 75.99 78.61 50 or Under 92.87 63.12 73.78 U.S. Total 66.56 26.43 39.95 Note: An average sales price is calculated by dividing the total free on board (f.o.b) rail/barge value of the coal sold by the total coal sold. Excludes mines producing less than 25,000 short tons, which are not

349

Coal gasification construction materials: an overview  

SciTech Connect

Materials performance test results are presented for two coal gasification processes, HYGAS SNG process, which converts any type of coal to substitute natural gas (SNG), and U-GAS fuel gas process, which converts coal to a low- or medium-heat value gas. A description of the pilot plant for each process and discussion of some experiences with materials and components used in plant construction is presented. Metals performance inside the gasifier reactors and in off-gas locations depended upon the character of the process. At moderate operating temperatures (427/sup 0/C), low-carbon steels are advisable. Very high-temperature environments may not only require use of exotic alloys, clads, and/or coatings but may also preclude extensive use of internal piping/valving in scale-up designs. Inconel 182, 600, and Monel 400 have all performed erratically in the plants; but in quench and purification sections, austenitic stainless steels performed well. 9 references. (BLM)

Arnold, J.M. (Inst. of Gas Tech., Chicago, IL); Laurens, R.M.; Danyluk, S.

1981-12-01T23:59:59.000Z

350

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

351

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

352

Coal News and Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

"Coal News and Markets Report" summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB ...

353

EIA Energy Kids - Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Coal Basics Coal takes millions of years to create. Coal is a combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons.

354

DOE Hydrogen Analysis Repository: Coal Distribution Constraints  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Distribution Constraints Project Summary Full Title: Future Impacts of Coal Distribution Constraints on Coal Cost Project ID: 199 Principal Investigator: David McCollum...

355

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

356

Quarterly Coal Report April - June 2011  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Report (QCR) presents U.S. coal production, exports, imports, receipts, prices, consumption, coal quality, and stocks data.

357

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

12 2.6. International coal prices and18 International coal prices and trade In parallel with thesocial stability. High coal prices and domestic shortages

Aden, Nathaniel

2010-01-01T23:59:59.000Z

358

Coal properties and system operating parameters for underground coal gasification  

Science Conference Proceedings (OSTI)

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

359

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

360

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

362

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

363

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

364

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

365

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

366

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

367

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

368

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

369

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

370

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

371

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

372

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

373

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

374

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

375

A commitment to coal  

SciTech Connect

Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

Shea, Q. [Edison Electric Institute, Washington, DC (United States)

2006-07-15T23:59:59.000Z

376

Underground gasification of coal  

DOE Patents (OSTI)

There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV); Komar, Charles A. (Uniontown, PA)

1976-01-20T23:59:59.000Z

377

Coal liquefaction process  

DOE Patents (OSTI)

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

378

Aqueous coal slurry  

DOE Patents (OSTI)

A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

Berggren, M.H.; Smit, F.J.; Swanson, W.W.

1989-10-30T23:59:59.000Z

379

Coal liquefaction process  

DOE Green Energy (OSTI)

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

380

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

382

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

383

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

384

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

385

Utility Generation and Clean Coal Technology (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Industry Recruitment/Support Performance-Based Incentive Rebate Program Grant Program Provider Indiana Utility Regulatory Commission This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal gasification. The statute also supports the development of projects using renewable energy sources as well

386

Arkansas Surface Coal Mining Reclamation Act (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Surface Coal Mining Reclamation Act (Arkansas) Arkansas Surface Coal Mining Reclamation Act (Arkansas) Arkansas Surface Coal Mining Reclamation Act (Arkansas) < Back Eligibility Commercial Construction Industrial Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These regulations are consistent with, but no more restrictive that the federal regulations set forth in the Surface Mining and Control and Reclamation Act of 1977. The Arkansas Department of Environmental Quality (ADEQ) Surface Mining and Reclamation Division (SMRD) is the authority under this act. Regulation No. 20 from the

387

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

388

Ohio Coal Research and Development Program (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Coal Research and Development Program (Ohio) Ohio Coal Research and Development Program (Ohio) Ohio Coal Research and Development Program (Ohio) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Program Info Funding Source Ohio Development Services Agency State Ohio Program Type Grant Program Provider Ohio Development Services Agency The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are identified through public solicitations and may include technologies that improve combustion efficiencies, remove various pollutants from emissions, develop productive uses for the by-products of combustion, and investigate new uses

389

Groundwater Protection Rules Coal Mining Operations (West Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection Rules Coal Mining Operations (West Virginia) Protection Rules Coal Mining Operations (West Virginia) Groundwater Protection Rules Coal Mining Operations (West Virginia) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection These rules establish a series of practices for the protection of groundwater which are to be followed by any person who conducts coal mining operations subject to the provisions of West Virginia Groundwater Protection Act and subject to regulation under the West Virginia Coal Mining and Reclamation Act and/or under West Virginia Water Pollution

390

Demonstrated reserve base of coal in the United States on January 1, 1980  

Science Conference Proceedings (OSTI)

This is the second in a series of annual summaries on minable coal in the United States, pursuant to the power plant and industrial fuel use act. The demonstrated reserve base of coal in the United States on January 1, 1980 by area, rank, and potential method of mining is given. Reserve data are given by state and by type of coal (anthracite, bithiminous, subbituminous, and lignite). An introduction, summary, and a glossary of selected coal classification terms is also included. The appendix provides the demonstrated reserve base adjustments and related notions by state. References are also included. Coal reserves for 1979 are given for comparison. 7 figures, 6 tables.

Not Available

1982-05-01T23:59:59.000Z

391

Nitrogen oxides emission control through reburning with biomass in coal-fired power plants  

E-Print Network (OSTI)

Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning is an in-furnace, combustion control technology for NOx reduction. Another environmental issue that needs to be addressed is the rapidly growing feedlot industry in the United States. The production of biomass from one or more animal species is in excess of what can safely be applied to farmland in accordance with nutrient management plans and stockpiled waste poses economic and environmental liabilities. In the present study, the feasibility of using biomass as a reburn fuel in existing coal-fired power plants is considered. It is expected to utilize biomass as a low-cost, substitute fuel and an agent to control emission. The successful development of this technology will create environment-friendly, low cost fuel source for the power industry, provide means for an alternate method of disposal of biomass, and generate a possible revenue source for feedlot operators. In the present study, the effect of coal, cattle manure or feedlot biomass, and blends of biomass with coal on the ability to reduce NOx were investigated in the Texas A&M University 29.31 kW (100,000 Btu/h) reburning facility. The facility used a mixture of propane and ammonia to generate the 600 ppm NOx in the primary zone. The reburn fuel was injected using air. The stoichiometry tested were 1.00 to 1.20 in the reburn zone. Two types of injectors, circular jet and fan spray injectors, which produce different types of mixing within the reburn zone, were studied to find their effect on NOx emissions reduction. The flat spray injector performed better in all cases. With the injection of biomass as reburn fuel with circular jet injector the maximum NOx reduction was 29.9 % and with flat spray injector was 62.2 %. The mixing time was estimated in model set up as 936 and 407 ms. The maximum NOx reduction observed with coal was 14.4 % and with biomass it was 62.2 % and the reduction with blends lay between that of coal and biomass.

Arumugam, Senthilvasan

2004-12-01T23:59:59.000Z

392

Development of a Coal Quality Expert  

SciTech Connect

ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also, some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

None

1998-06-20T23:59:59.000Z

393

Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash  

Science Conference Proceedings (OSTI)

The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel, zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.

Adnadjevic, B.; Popovic, A.; Mikasinovic, B. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

2009-07-01T23:59:59.000Z

394

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

395

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

396

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill data are a sample of all rail shipments. EIA's 2011 report describes the sampling procedure. EIA aggregates the confidential STB data to three different levels: national, coal-producing basin to state, and state to state. EIA applies STB withholding rules to the aggregated data to identify records that must be suppressed to protect business-sensitive data. Also, EIA adds additional location fields to the STB data, identifying the mine from which the coal originates, the power plant that receives the coal, and, in some cases, an intermediate delivery location where coal is terminated by the initial carrier but then

397

Aqueous coal slurry  

DOE Patents (OSTI)

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

398

Coal markets squeeze producers  

SciTech Connect

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

399

Proximate analysis of coal  

Science Conference Proceedings (OSTI)

This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

2009-02-15T23:59:59.000Z

400

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Applied to Great River Energy's Coal-Fired Coal Creek Station  

Science Conference Proceedings (OSTI)

EPRI is currently examining the feasibility of retrofitting post-combustion CO2 capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed power plants for five "host" participants. Knowledge gained from previous CoalFleet ultra-supercritical (USC) PCC design studies is being applied to specific site conditions, plant design, and operating data provided by each host utility participant. This project highlights the technical and economic issues associated with retrofitting existing PC...

2012-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Existing Commercial Reference Buildings Constructed In or After 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 Existing Commercial Reference Buildings Constructed In or After 1980 The files on this page contain commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

402

Coal liquefaction process  

DOE Patents (OSTI)

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

403

Coal Liquefaction desulfurization process  

DOE Patents (OSTI)

In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

404

International Coal Market Analysis  

Science Conference Proceedings (OSTI)

As this report is being finalized in November 2007, international steam coal freight-on-board (FOB) prices are at levels not seen since 1980-1982, shipping rates are at unprecedented high levels, and currency fluctuations are altering the degree to which major individual countries are impacted. This report systematically examines the history of the international coal trade, the major exporting and importing countries, and the drivers behind how trade functions. In addition, the report examines in depth t...

2007-12-14T23:59:59.000Z

405

Coal liquefaction process  

DOE Patents (OSTI)

An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

Karr, Jr., Clarence (Morgantown, WV)

1977-04-19T23:59:59.000Z

406

Method for coal liquefaction  

DOE Patents (OSTI)

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

1994-05-03T23:59:59.000Z

407

Ultrafine coal single stage dewatering and briquetting process  

SciTech Connect

It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles are difficult to dewater and create problems in coal transportation, as well as in storage and handling at utility plants. The objective of this research project is to combine the ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, several types of coal samples with various particle size distributions have been tested for use in the dewatering and briquetting processes. Furthermore, various bitumen emulsions have been tested to determine the optimum dewatering reagent. These dewatering and pelletizing tests were carried out using a lab-scale ram extruder. Discharge from the dewatering and briquetting processes was tested to determine compliance with current federal and state requirements. The influence of bitumen emulsion on the sulfur content of coal pellets made were also examined. In addition, a ram extruder which can be operated continuously to simulate a rotary press operation, has been built and is currently being tested for use in the fine coal dewatering and pelletizing process.

Wilson, J.W. [Missouri Univ., Rolla, MO (United States). Dept. of Mining Engineering; Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

1995-12-31T23:59:59.000Z

408

Powdered coal air dispersion nozzle  

SciTech Connect

An improved coal/air dispersion nozzle introduces fuel into the combustion chamber of a gas turbine engine as a finely atomized, dispersed spray for a uniform combustion. The nozzle has an inlet that receives finely powdered coal from a coal transport or coal/air fluidizer system and a scroll swirl generator is included within the nozzle to swirl a fluidized coal/air mixture supplied to the inlet of the nozzle. The scroll is in the form of a thin, flat metal sheet insert, twisted along its length, and configured to prevent build-up of coal particles within the nozzle prior to ejection from its outlet. Airblast air jets are included along the length of the nozzle body to assist in the discharge of the fluidized coal from the nozzle outlet and an angular pintle tip overlies the outlet to redirect coal/air mixture through a desired fluidized coal spray angle.

Kosek, T.P.; Steinhilper, E.A.

1981-10-27T23:59:59.000Z

409

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

410

Coaling, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coaling, Alabama: Energy Resources Coaling, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.1590078°, -87.340834° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1590078,"lon":-87.340834,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Model Integrating Fleet Design and Ship Routing Problems for Coal Shipping  

Science Conference Proceedings (OSTI)

In this paper, an integrated optimization model is developed to improve the efficiency of coal shipping. The objective is (1) to determine the types of ships and the number of each type, (2) to optimize the ship routing, therefore, to minimize the total ... Keywords: coal shipping, fleet design, ship routing, tabu search

Qingcheng Zeng; Zhongzhen Yang

2007-05-01T23:59:59.000Z

412

MINIMIZATION OF CARBON LOSS IN COAL REBURNING  

SciTech Connect

This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that composition of coal gasification products depends on gasification temperature. At lower temperature yield of hydrocarbons is high which results in higher efficiency of NO{sub x} control. As temperature decreases, yield of hydrocarbons increases and CO and H{sub 2} yields decrease.

Vladimir M. Zamansky; Vitali V. Lissianski

2001-09-07T23:59:59.000Z

413

HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT  

SciTech Connect

As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

Stefano Orsino

2005-03-30T23:59:59.000Z

414

The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Rhodococcuc rhodochrous  

SciTech Connect

The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. An effective pre- combustion coal desulfurization process should ideally be capable of removing both organic and inorganic sulfur. A variety of techniques exist for the removal of inorganic sulfur from coal, but there is currently no cost-effective method for the pre-combustion removal of organic sulfur. Recent developments have demonstrated that microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal. However, lengthy treatment times are required. Moreover, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal sample for subsequent biodesulfurization. Physical/chemical processes primarily designed for the removal of pyritic sulfur may also cause substantial increases in the porosity and surface area of the coal which may facilitate the subsequent removal of organic sulfur by microoganisms. During the current quarter, coal samples that have been chemically pretreated with methanol, ammonia, and isopropanol were examined for the removal of organic sulfur by the microbial culture IGTS8, an assay for the presence of protein in coal samples was developed, and a laboratory-scale device for the explosive comminution of coal was designed and constructed.

Srivastava, V.J.

1991-01-01T23:59:59.000Z

415

A Study on Analyzing the Channel Characteristics of Low-Voltage Powerline under Coal Mine  

Science Conference Proceedings (OSTI)

This paper analyzes the special environment of underground coal mine, and points out that the existing underground communication is poor. It is very necessary to use suitable means to communicate under coal mine. Because of the special environment, there ... Keywords: PLC, channel, model, simulation

Deming Nie; Weiguo Liu; Shaoliang Wei

2008-12-01T23:59:59.000Z

416

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

Science Conference Proceedings (OSTI)

By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration.

Croft, Gregory D. [University of California, Department of Civil and Environmental Engineering (United States); Patzek, Tad W. [University of Texas, Department of Petroleum and Geosystems Engineering (United States)], E-mail: patzek@mail.utexas.edu

2009-09-15T23:59:59.000Z

417

The effect of moderate coal cleaning on microbial removal of organic sulfur. [Rhodococcus rhodochrous  

SciTech Connect

The objective of this research is to provide data relevant to the development of an integrated physical, chemical, and microbiological process for the desulfurization of coal, utilizing existing technologies insofar as is possible. Specifically, the effect of increased surface area and porosity achieved by physical, chemical, and microbial treatments of coal on the subsequent microbiological removal of organic sulfur will be evaluated.

Srivastava, V.J.

1991-01-01T23:59:59.000Z

418

Advances in pulverized coal combustion  

Science Conference Proceedings (OSTI)

A combustion system has been developed to operate cost effectively in the difficult regulatory and economic climate of the 1980's. The system is designed to reduce auxiliary fuel oil comsumption by at least 30% while meeting all relevant emissions limits. This is achieved with the fewest components consistent with practical reliable design criteria. The Controlled Flow Split/Flame low NO/sub x/ burner, MBF pulverizer and Two-Stage ignition system are integrated into a mutually supporting system which is applicable to both new steam generators and, on a retrofit basis, to existing units. In the future, a pulverized coal ignition system will be available to eliminate fuel oil use within the boiler.

Vatsky, J.

1981-01-01T23:59:59.000Z

419

An Overview of Existing Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Existing Wind Energy Ordinances Existing Wind Energy Ordinances Jump to: navigation, search Name An Overview of Existing Wind Energy Ordinances Agency/Company /Organization National Renewable Energy Laboratory Focus Area People and Policy, Economic Development Phase Create a Vision, Develop Finance and Implement Projects Resource Type Templates Availability Publicly available--Free Publication Date 2008/12/01 Website http://www.nrel.gov/docs/fy09o Locality Communities in Illinois, Kansas, Michigan, Minnesota, New York, Pennsylvania, South Dakota, Wisconsin, Utah References An Overview of Existing Wind Energy Ordinances[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References Overview This document provides a summary of existing wind energy ordinances that provides a foundation for state and local governments and policymakers when

420

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

422

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

world’s largest CBM (coal-bed methane) power plant. In orderunder the China United Coal-bed Methane Corporation (CUCBM)quandary. 3.3.4. Coal-bed and coal-mine methane Effective

Aden, Nathaniel

2010-01-01T23:59:59.000Z

423

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

424

Coal Severance Tax (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coal taxes to: (a) allow the severance taxes on coal production to remain a constant percentage of the price of coal; (b) stabilize the flow of tax revenue from coal mines to local...

425

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Productivity by State and Mine Type, 2012 and 2011 Coal Productivity by State and Mine Type, 2012 and 2011 U.S. Energy Information Administration | Annual Coal Report 2012 Table 21. Coal Productivity by State and Mine Type, 2012 and 2011 U.S. Energy Information Administration | Annual Coal Report 2012 Number of Mining Operations 2 Number of Employees 3 Average Production per Employee Hour (short tons) 4 Coal-Producing State, Region 1 and Mine Type 2012 2011 Percent Change 2012 2011 Percent Change 2012 2011 Percent Change Alabama 54 62 -12.9 5,041 4,756 6.0 1.68 1.66 0.7 Underground 11 12 -8.3 3,190 3,138 1.7 1.64 1.45 13.2 Surface 43 50 -14.0 1,851 1,618 14.4 1.75 2.08 -15.8 Alaska 1 1 - 143 136 5.1 5.98 6.48 -7.7 Surface 1 1 - 143 136 5.1 5.98 6.48 -7.7 Arizona 1 1 - 432 419 3.1 7.38 8.44 -12.6 Surface 1 1 - 432 419 3.1 7.38 8.44 -12.6 Arkansas 2 2 - 73 70 4.3 0.58 0.70

426

NIPSCO - Existing Facility Retrofit Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact NIPSCO $500,000 per project per year $1,000,000 per applicant per year Program Info Expiration Date 12/31/2013 State Indiana Program Type Utility Rebate Program Rebate Amount Other Projects: $0.09/kWh in electricity reductions Energize Indiana Rebates: Varies widely Provider

427

EWEB - Existing Facilities Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Existing Facilities Energy Efficiency Rebate Program EWEB - Existing Facilities Energy Efficiency Rebate Program EWEB - Existing Facilities Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Heat Pumps Heating Commercial Lighting Lighting Manufacturing Home Weatherization Windows, Doors, & Skylights Maximum Rebate See Program Catalog Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Lighting: Varies Widely Office Equipment: Varies Widely Air Conditioner (Non-Electric): $60 - $115/ton Air-Source Heat Pump: $60 - $220/ton Ductless Heat Pump: $100 - $220/ton Small Business Ductless Heat Pump: $750 - $1,000 Western Premium Economizer: $125/ton Programmable Thermostat: $25 - $100

428

Diverse Power - Energy Efficient Existing Homes Rebate Program (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes Rebate Program Existing Homes Rebate Program (Georgia) Diverse Power - Energy Efficient Existing Homes Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Heating Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Electric Heat Pump: $100/system Gas to Electric Heat Pump Switch: $300 Dual Fuel Heat Pump: $250/system Geothermal Heat Pump: $250/ton Electric Water Heaters: $75 - $150/unit Gas to Electric Water Heater Switch: $300 - $500 Waste Heat Recovery Unit: $250/house Provider Diverse Power Diverse Power is a member-owned electric cooperative that provides electric

429

Isotope dilution study of exchangeable oxygen in premium coal samples  

Science Conference Proceedings (OSTI)

A difficulty with improving the ability to quantitate water in coal is that truly independent methods do not always exist. The true value of any analytical parameter is always easier to determine if totally independent methods exist to determine that parameter. This paper describes the possibility of using a simple isotope dilution technique to determine the water content of coal and presents a comparison of these isotope dilution measurements with classical results for the set of Argonne coals from the premium coal sample program. Isotope dilution is a widely used analytical method and has been applied to the analysis of water in matrices as diverse as chicken fat, living humans, and coal. Virtually all of these applications involved the use of deuterium as the diluted isotope. This poses some problems if the sample contains a significant amount of exchangeable organic hydrogen and one is interested in discriminating exchangeable organic hydrogen from water. This is a potential problem in the coal system. To avoid this potential problem /sup 18/O was used as the diluted isotope in this work.

Finseth, D.

1987-01-01T23:59:59.000Z

430

Rate of coal devolatilization in iron and steelmaking processes  

Science Conference Proceedings (OSTI)

The devolatilization of coal particles under ironmaking and steelmaking conditions was studied. A new experimental technique was developed to measure the rates of devolatilization. A unique method was used to prepare coal particles based on thick coal bands rich in a given maceral group. Experiments with these single particles gave good reproducibility. The rates of devolatilization for all coal types from low to high rank coals were measured in the gaseous atmosphere and within the slag phase. Real time x-ray images were taken for high volatile, low volatile and anthracite coals devolatilizing in a molten smelting slag. The rate in terms of percentage devolatilization were relatively independent of coal type and a small function of furnace temperature at high heating rates and temperatures studied. The rates depended on particle size and heating rates. The results were consistent with internal transport controlled processes primarily heat transfer. Furthermore the rates were the same in the gas and slag phase which is consistent with heat transfer control.

Sampaio, R.S.; Rio Doce, C.V. do; Fruehan, R.J.; Ozturk, B. (Carnegie Mellon Univ., Pittsburgh, PA (United States). Center for Iron and Steel Making Research)

1991-01-01T23:59:59.000Z

431

Illinois Coal Development Program (Illinois) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Coal Development Program (Illinois) Illinois Coal Development Program (Illinois) < Back Eligibility Commercial Construction Developer Industrial Program Info State...

432

Coal News and Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated October 7, 2005) (Today's updates are limited to spot coal prices in the graph below)

433

NPDES Rule for Coal Mining Facilities (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NPDES Rule for Coal Mining Facilities (West Virginia) NPDES Rule for Coal Mining Facilities (West Virginia) NPDES Rule for Coal Mining Facilities (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule establishes requirements implementing the powers, duties, and responsibilities of State's Water Pollution Control Act with respect to all

434

Method of extracting coal from a coal refuse pile  

DOE Patents (OSTI)

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

435

NETL: Coal & Coal Biomass to Liquids - Hydrogen and Clean Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies Central Hydrogen Production Coal Supply Regions CLICK ON IMAGE TO SEE LARGER VIEW Coal is a plentiful domestic resource, and is available in several major regions of the...

436

NETL: Coal & Coal Biomass to Liquids - Hydrogen and Clean Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrogen and nitrogen. CLICK ON IMAGE TO SEE LARGER VIEW Hydrogen is produced from coal in a process that is similar to SMR but more complex because coal is not a single...

437

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

438

NETL: Coal and Coal/Biomass to Liquids - Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

by Gasification. Small-Scale Coal-biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis; FE0010231 Small-Scale Pilot Plant for the Gasification of Coal...

439

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

Science Conference Proceedings (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

440

Case Studies in Sustainable Development in the Coal Industry | Open Energy  

Open Energy Info (EERE)

Studies in Sustainable Development in the Coal Industry Studies in Sustainable Development in the Coal Industry Jump to: navigation, search Name Case Studies in Sustainable Development in the Coal Industry Agency/Company /Organization International Energy Agency Sector Energy Focus Area Conventional Energy Topics Implementation Resource Type Guide/manual, Lessons learned/best practices Website http://www.iea.org/papers/2006 Program Start 2006 References Case Studies in Sustainable Development in the Coal Industry[1] Summary "Widely held attitudes to coal's use have evolved greatly in the past five years - from those that largely dismissed a role for coal in sustainable development to a wider appreciation of coal's continuing role in providing a foundation for energy security and in meeting growing world energy

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners, designers, and owners to focus on energy-use goals from the first planning

442

Economics of producing substitute natural gas from coal. Occasional pub  

Science Conference Proceedings (OSTI)

Using the cost levelization approach, the economics of producing substitute natural gas (SNG) are examined under different assumptions regarding conversion technologies, coal types and plant financing. A comparison of levelized constant dollar cost-of-service price estimated for Westinghouse and dry bottom Lurgi processes for 1990-2019 shows that SNG from coal produced at western sites is competitive with natural gas and fuel oils.

Rosenberg, J.I.; Ashby, A.B.

1983-07-01T23:59:59.000Z

443

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

444

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

J.A. Withum

2006-03-07T23:59:59.000Z

445

Figure 77. Electricity generation capacity additions by fuel type ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 77. Electricity generation capacity additions by fuel type, including combined heat and power, 2012-2040 (gigawatts) Coal

446

Option valuation of flexible investments : the case of a coal gasifier  

E-Print Network (OSTI)

This paper examines the use of contingent claim analysis to evaluate the option of retrofitting a coal gasifier on an existing gas-fired power plant in order to take advantage of changes in the relative prices of natural ...

Herbelot, Olivier

1994-01-01T23:59:59.000Z

447

Efficiency of a hybrid-type plasma-assisted fuel reformation system  

Science Conference Proceedings (OSTI)

The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existing and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.

Matveev, I.B.; Serbin, S.I.; Lux, S.M. [Applied Plasma Technologies, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

448

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

449

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

450

2009 Coal Age Buyers Guide  

SciTech Connect

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

451

Montana Coal Mining Code (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

452

U.S. Coal Reserves  

Reports and Publications (EIA)

U.S. Coal Reserves presents detailed estimates of U.S. coal reserves by State, as well as descriptions of the data, methods, and assumptions used to develop such estimates.

Information Center

2012-11-20T23:59:59.000Z

453

2008 Coal Age buyers guide  

Science Conference Proceedings (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2008-07-15T23:59:59.000Z

454

A study of coal formation  

SciTech Connect

Coal is a solid, brittle, more or less distinctly stratified, combustible, carbonaceous rock. It is being rediscovered as a reliable energy source, which, historically provided the resource base for the industrialization of the United States economy. A firm understanding of growth in coal development is important to the national energy scene so that the implications of factors influencing coal growth upon the industry`s ability to realize national energy objectives may be determined. As a result, the future of coal development will be facilitated by compiling basic facts on coal reserves, production, and utilization. In view of this, a review and assessment of facts pertaining to the nature and origin of coal is presented. The various properties and uses of coal are then described, followed by a discussion of the process of coal formation.

Jubert, K.; Stevens, G.; Masudi, H.

1995-03-01T23:59:59.000Z

455

Low-rank coal research  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

456

Plants of the Coal Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Age Nature Bulletin No. 330-A February 1, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE COAL...

457

The world price of coal  

E-Print Network (OSTI)

A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

Ellerman, A. Denny

1994-01-01T23:59:59.000Z

458

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination, 2001 Coal-Exporting State and Destination Metallurgical Steam Total Alaska - 761 761 South Korea - 761 761 Alabama 4,667 167 4,834 Argentina 155 - 155 Belgium 989 - 989 Brazil 1,104 - 1,104 Bulgaria 82 - 82 Egypt 518 - 518 Italy 115 - 115 Netherlands 56 83 139 Spain 412 84 496 Turkey 581 - 581 United Kingdom 654 - 654 Kentucky 2,130 - 2,130 Canada 920 - 920 France 22 - 22 Iceland 9 - 9 Italy 430 - 430 Netherlands 417 - 417 Spain 9 - 9 United Kingdom 323 - 323 Pennsylvania 1,086 14,326 15,722 Belgium - 203 203 Brazil 372 - 373 Canada - 12,141 12,418 France - 84 84 Germany 495 165 661 Ireland - 136 136 Netherlands 219 879 1,097 Norway - - 7 Peru - - 21 Portugal - 634 634 United Kingdom - 85 85 Venezuela - - 3 Utah - 1,420 1,420 Japan - 1,334 1,334 Taiwan - 86 86 Virginia 4,531

459

Coal combustion system  

SciTech Connect

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

460

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994  

Science Conference Proceedings (OSTI)

Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "type existing coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production by Coalbed Thickness and Mine Type, 2012 Coal Production by Coalbed Thickness and Mine Type, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 4. Coal Production by Coalbed Thickness and Mine Type, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Coal Thickness (inches) Underground Surface Total Under 7 - 17 17 7 - Under 13 - 2,108 2,108 13 - Under 19 429 6,688 7,117 19 - Under 25 111 14,107 14,217 25 - Under 31 4,147 12,913 17,060 31 - Under 37 15,128 19,022 34,150 37 - Under 43 23,868 17,285 41,153 43 - Under 49 26,035 15,597 41,632 49 - Under 55 18,909 22,544 41,453 55 - Under 61 36,946 11,285 48,231 61 - Under 67 43,146 15,074 58,220 67 - Under 73 40,983 8,783 49,766 73 - Under 79 32,914 10,193 43,107 79 - Under 85 27,011 3,554 30,565 85 - Under 91 11,997

462

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production and Number of Mines by State and Mine Type, 2012 and 2011 Coal Production and Number of Mines by State and Mine Type, 2012 and 2011 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 1. Coal Production and Number of Mines by State and Mine Type, 2012 and 2011 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 2012 2011 Percent Change Coal-Producing State and Region 1 Number of Mines Production Number of Mines Production Number of Mines Production Alabama 46 19,321 52 19,071 -11.5 1.3 Underground 8 12,570 9 10,879 -11.1 15.5 Surface 38 6,752 43 8,192 -11.6 -17.6 Alaska 1 2,052 1 2,149 - -4.5 Surface 1 2,052 1 2,149 - -4.5 Arizona 1 7,493 1 8,111 - -7.6 Surface 1 7,493 1 8,111 - -7.6 Arkansas 2 98 2 133 - -26.4 Underground 1 96 1 127 - -24.0 Surface 1 2 1 7 - -71.4 Colorado

463

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production by State, Mine Type, and Union Status, 2012 Coal Production by State, Mine Type, and Union Status, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 7. Coal Production by State, Mine Type, and Union Status, 2012 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Union Nonunion Total Coal-Producing State and Region 1 Underground Surface Underground Surface Underground Surface Alabama 12,410 - 139 6,669 12,549 6,669 Alaska - 2,052 - - - 2,052 Arizona - 7,493 - - - 7,493 Arkansas - - 96 - 96 - Colorado 1,673 2,655 21,955 2,265 23,628 4,920 Illinois 2,897 - 39,939 5,649 42,837 5,649 Indiana - - 15,558 21,156 15,558 21,156 Kentucky Total 3,951 552 53,891 31,507 57,842 32,059 Kentucky (East) - 552 23,753 23,572 23,753 24,124 Kentucky (West) 3,951 - 30,138 7,935 34,089 7,935 Louisiana

464

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of Coal by State and Mine Type, 2012 and 2011 Average Sales Price of Coal by State and Mine Type, 2012 and 2011 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 28. Average Sales Price of Coal by State and Mine Type, 2012 and 2011 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 2012 2011 Percent Change Coal-Producing State Underground Surface Total Underground Surface Total Underground Surface Total Alabama 107.73 104.51 106.57 100.17 108.71 102.69 7.6 -3.9 3.8 Alaska - w w - w w - w w Arizona - w w - w w - w w Arkansas w - w w - w w - w Colorado w w 37.54 w w 39.88 w w -5.9 Illinois 54.18 45.12 53.08 51.43 46.60 50.80 5.4 -3.2 4.5 Indiana 52.94 51.33 52.01 51.77 44.91 47.96 2.3 14.3 8.4 Kansas - - - - w w - w w Kentucky Total 62.24 64.70 63.12 63.38 64.01 63.63 -1.8 1.1 -0.8 Kentucky (East) 79.23 72.04 75.62

465

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Mining Productivity by State, Mine Type, and Union Status, 2012 Coal Mining Productivity by State, Mine Type, and Union Status, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 24. Coal Mining Productivity by State, Mine Type, and Union Status, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Union Nonunion Coal-Producing State and Region 1 Underground Surface Underground Surface Alabama 1.69 - 0.66 1.80 Alaska - 5.98 - - Arizona - 7.38 - - Arkansas - - 0.59 - Colorado 4.90 6.09 6.02 4.45 Illinois 2.09 - 5.34 4.70 Indiana - - 3.23 5.41 Kentucky Total 3.02 2.45 2.36 3.06 Kentucky (East) - 2.45 1.64 2.65 Kentucky (West) 3.27 - 3.60 5.58 Louisiana - - - 6.86 Maryland - - 1.80 2.80 Mississippi - - - 6.73 Missouri - - - 6.73 Montana - 11.20 7.47 31.69 New Mexico

466

Coal gasification apparatus. [Patent application  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, C.K.

1981-04-24T23:59:59.000Z

467

Effect of fuel type and deposition surface temperature on the growth and structure of an ash deposit collected during co-firing of coal with sewage sludge and sawdust  

SciTech Connect

Blends of a South African bituminous 'Middleburg' coal, a municipal sewage sludge, and a sawdust have been fired in the slagging reactor to examine the effect of the added fuel on the slagging propensity of the mixtures. Uncooled ceramic probes and air-cooled metal probes were used to examine the influence of the deposition surface temperature on the growth and structureof the deposits. The initial stages of slagging were in a high-temperature range of 1100-1300{sup o}C and a low-temperature range of 550-700{sup o}C. Laboratory ash, ash sampled on the deposition probes, and ash collected in the cyclone have been analyzed using the X-ray fluorescence technique. The electron probe microanalysis (EPMA) of the embedded resin deposit probes have been performed to determine the thickness, structure, porosity, and chemical composition in different layers of the deposit. Distinct differences in structures of the deposits collected using the uncooled ceramic probes and air-cooled steal probes were observed. Glassy, easily molten deposits collected on uncooled ceramic deposition probes are characteristic for co-firing of municipal sewage sludge with coal. Porous, sintered, but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. The addition of sawdust does not negatively influence the deposition behavior. Loose, easy removable deposits have been sampled on air-cooled metal deposition probes during co-firing of coal-sawdust blends. The mass of the deposit sampled at lower deposition surface temperatures (550-700{sup o}C) was always larger than the mass sampled at higher surface temperatures (1100-1300{sup o}C). 12 refs., 6 figs., 3 tabs.

Tomasz Kupka; Krzysztof Zajac; Roman Weber [Clausthal University of Technology, Clausthal-Zellerfeld (Germany). Institute of Energy Process Engineering and Fuel Technology

2009-07-15T23:59:59.000Z

468

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed