Powered by Deep Web Technologies
Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Simple cost model for EV traction motors  

DOE Green Energy (OSTI)

A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

Cuenca, R.M.

1995-02-01T23:59:59.000Z

2

Li ion Motors Corp formerly EV Innovations Inc | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Li ion Motors Corp formerly EV Innovations Inc Jump to: navigation, search Name Li-ion Motors Corp (formerly EV...

3

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

4

EVS24  

NLE Websites -- All DOE Office Websites (Extended Search)

6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS26 Los Angeles, California, May 6-9, 2012 A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in The EV Project Stephen Schey 1 , Don Scoffield 2 , John Smart 2 1 ECOtality North America, 430 S. 2nd Ave., Phoenix, AZ 85003, sschey@ecotality.com 2 Idaho National Laboratory, 2351 .N Boulevard, Idaho Falls, ID 83415, don.scoffield@inl.gov, john.smart@inl.gov Abstract ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over

5

Engineering the EV future  

Science Conference Proceedings (OSTI)

Continuing environmental concerns are moving electric vehicles (EV) into high gear at development facilities everywhere. The General Motors EV1 and the Ford Ranger EV are old news, the 106 Electric from PSA Peugeot-Citroen is established in France, where ...

M. J. Riezenman

1998-11-01T23:59:59.000Z

6

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

7

Table 28. Motor Gasoline Prices by Grade, Sales Type, PAD ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly January 2012 56 Table 28. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

8

Table 31. Refiner Motor Gasoline Prices by Grade, Sales Type ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 76 Table 31. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

9

EV I  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'VIRONMENTAL R EV I EW for CATEGORI CAL EXCLUSION I>ETE RM I NATION Rocky Mo unt a in Region, Wesle rn Area Power Adm inist ra tio n C heye nne Substa tion West Co nt rol Building...

10

EV-13  

Office of Legacy Management (LM)

?a71 2.z' 1. lg EV-13 Notification of Xced for So?e Form of Reoedial Action, in Ikyo Ca;op., Los Alanos, New Mexico s. lkycrs, HEI-90 4 EVIXT has dctcrnincd that portions of...

11

EV Fleet Success: EV Rental Cars at LAX  

Science Conference Proceedings (OSTI)

EV Fleet Success Case Studies is a series documenting successful fleet uses of electric vehicles in a variety of applications throughout the United States. Each case study describes the applications and provides a contact person for additional information, outlines the benefits of EVs and discusses the challenges encountered with the new technology. This study highlights use of electric vehicles made by Ford, General Motors, Honda and Toyota, available through Budget Rent a Car in Los Angeles.

1999-09-10T23:59:59.000Z

12

North American EV show  

Science Conference Proceedings (OSTI)

The hit of the North American EV and Infrastructure Conference held in Phoenix, AZ in December, was without a doubt, the new hybrid vehicle from Toyota known as the Prius. The Prius has both an internal combustion engine and an electric motor. As ordinary as it may appear, there`s a critical difference between the Prius and the other electric vehicles that were being demonstrated in Phoenix. Prius is an electric vehicle that never needs to be recharged. Range is not an issue, nor is battery replacement. This is the first mass-produced car with hybrid power providing the benefits of low emissions and high gasoline mileage in a real-world vehicle that can be driven anywhere. Many other alternative fueled vehicles were on display from other manufacturers as well. GM`s EV1, Nissan`s Altra station wagon, Ford`s electric Ranger pickup, DaimlerChrysler`s EPIC van as well as small, short-range ``neighborhood vehicles`` from Bombardier and Global Electric Motor-Cars were available for inspection and test drives.

Pfleeger, D.

1999-01-01T23:59:59.000Z

13

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

Science Conference Proceedings (OSTI)

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todays large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldors motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

14

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2012 Note: EV Project charging units may be used by vehicles that are not part of the EV Project. Likewise, EV Project vehicles may connect to non-EV Project charging units....

15

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project Overview Report Project to Date through March 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region...

16

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

17

EV China | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV China EV China EV China EV China More Documents & Publications Microsoft PowerPoint - Final translated version of Tsinghua Speech Industrial Energy Efficiency:Policy,...

18

Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Insurance Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Insurance Regulation

19

Study on Control of Bearingless Permanent Magnet-Type Motor Synchronous Based on Fuzzy Adaptive Sliding Mode  

Science Conference Proceedings (OSTI)

The bearingless permanent magnet-types synchronous motor is nonlinear and coupling complex system. On the basis of the full formula which express the coupling between suspension and rotor torque, parameters of the motor are discussed to the operation ... Keywords: bearingless permanent magnet-type synchronous motor, fuzzy adaptivity, sliding mode, chattering

Pengfei Li; Xinping Yan; Bo Yang; Huabin Wang

2010-05-01T23:59:59.000Z

20

Abstract--There are two types of drivers in production machine systems: constant velocity (CV) motor and servo-motor.  

E-Print Network (OSTI)

) motor and servo-motor. If a system contains two drivers or more, among which some are of the CV motor while the other are the servo-motor, the system has the so-called hybrid driver architecture is stable. A simulation is performed to show verify the proposed controller. The CV motor has the velocity

Zhang, WJ "Chris"

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

22

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

23

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle (EV) Vehicle (EV) Infrastructure Definitions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

24

EV Everywhere - Charge to Breakout Sessions  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24, 2012 2 | Program Name or Ancillary Text eere.energy.gov BREAKOUT GROUPS Traction Drive System Power Electronics and Thermal Management Electric Motors and Critical Materials Work Group Focus Questions 3 | Program Name or Ancillary Text eere.energy.gov BREAKOUT SESSION #1 EV EVERYWHERE SCOPE & TECHNICAL TARGETS * Discussion of current state-of-art of the breakout group's focus area. * Are the initially posed EV-Everywhere electric drive system performance and cost targets achievable? * What role can the breakout group's focus area play on achieving these targets? * What are the major barriers?

25

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales to End Users Sales for Resale Sales to End Users Sales...

26

ev1.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

GM EV1 LEAD ACID BATTERIES SEPTEMBER 1997 Urban Range (On Urban Pomona Loop - see other side for map) Range (mi.) Without Aux. Loads With Aux. Loads 60.1 74.8 80.1 Payload (lb.)...

27

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

28

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

62.0 70.7 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

29

Alternative Fuels Data Center: Federal Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for EVs The list below contains summaries of all Federal laws and incentives related to EVs.

30

Alternative Fuels Data Center: Texas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for EVs The list below contains summaries of all Texas laws and incentives related to EVs. State Incentives

31

Alternative Fuels Data Center: Florida Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for EVs The list below contains summaries of all Florida laws and incentives related to EVs.

32

Alternative Fuels Data Center: Nevada Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for EVs The list below contains summaries of all Nevada laws and incentives related to EVs.

33

Alternative Fuels Data Center: Ohio Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for EVs The list below contains summaries of all Ohio laws and incentives related to EVs. State Incentives

34

Alternative Fuels Data Center: Oregon Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for EVs The list below contains summaries of all Oregon laws and incentives related to EVs.

35

Alternative Fuels Data Center: Iowa Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for EVs The list below contains summaries of all Iowa laws and incentives related to EVs. State Incentives

36

Alternative Fuels Data Center: Idaho Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for EVs The list below contains summaries of all Idaho laws and incentives related to EVs. State Incentives

37

Alternative Fuels Data Center: Arizona Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for EVs The list below contains summaries of all Arizona laws and incentives related to EVs.

38

Alternative Fuels Data Center: Utah Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for EVs The list below contains summaries of all Utah laws and incentives related to EVs. State Incentives

39

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Registration Fee The annual registration fee for an EV is $25.00 unless the vehicle is more

40

Alternative Fuels Data Center: Kansas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for EVs The list below contains summaries of all Kansas laws and incentives related to EVs.

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Georgia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for EVs The list below contains summaries of all Georgia laws and incentives related to EVs.

42

Alternative Fuels Data Center: Alabama Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for EVs The list below contains summaries of all Alabama laws and incentives related to EVs.

43

Alternative Fuels Data Center: Maine Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for EVs The list below contains summaries of all Maine laws and incentives related to EVs. State Incentives

44

Alternative Fuels Data Center: Indiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for EVs The list below contains summaries of all Indiana laws and incentives related to EVs.

45

Alternative Fuels Data Center: Vermont Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for EVs The list below contains summaries of all Vermont laws and incentives related to EVs.

46

GM EV1 Performance Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

system impacts. The following facts support this purpose: * As a fleet operator and an electric utility, SCE uses EVs to conduct its business. * SCE must evaluate EVs,...

47

About the EV Project Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

About the EV Project Reports The EV Project fact sheets and reports are based on data from several different sources (vehicle and electric vehicle supply equipment EVSE...

48

Synergy EV | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Synergy EV Jump to: navigation, search Name Synergy EV Sector Vehicles Product California-based...

49

Economics of EV Market/Future of EV Industry | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economics of EV MarketFuture of EV Industry Economics of EV MarketFuture of EV Industry Economics of EV MarketFuture of EV Industry Economics of EV MarketFuture of EV Industry...

50

Discrimination among mechanical fault types in induction motors using electrical measurements  

E-Print Network (OSTI)

Rotating machine failures are a major cause of downtime in a wide variety of industrial processes and are a burden on maintenance personnel and facilities. Some of these failures occur suddenly and are seemingly unpredictable. However, the overwhelming majority develop slowly over time and produce characteristic warning signs. A system capable of detecting and diagnosing these incipient faults before they become critical would significantly reduce downtime and serve to facilitate maintenance and repair of these machines. The ability to accurately distinguish between different types of incipient faults would be a critical aspect of such a system. In this research, a model-based method for diagnosing motor faults is examined and tested using two squirrel-cage AC induction motors with staged fault conditions. The proposed method involves the multi-resolution signal analysis of the current residuals. These residuals are generated by comparing the measured motor current with the current predicted by a recurrent neural network. The frequency content of the distortion of the residuals is used to identify the type of fault present. Although "steady-state" conditions are examined exclusively in this research, the nonstationarities of the current signals are sufficient to warrant the use of multi-resolution analysis. The fault diagnosis system is tested using data taken from an 800 hp motor and a 3 hp motor. The method is successful in identifying residual distortion in the frequency range expected for broken-bar faults. Because the magnitude of the distortion grows with increasing fault severity, the method is also useful for evaluating fault severity for broken-bar faults. However, the current distortions caused by rotor eccentricities and damaged bearings are too small to be identified in a statistically significant manner using this approach. Nevertheless, this research demonstrates the feasibility of a general method by which the characteristic frequencies produced by a particular type of fault can be identified in the output of a system.

McFatter, Justin Robert

2002-01-01T23:59:59.000Z

51

EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Infrastructure Charging Infrastructure Enabling Flexible EV Design July 30, 2012 Lee Slezak Technology Manager, Vehicle Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov Outline * Purpose - Establish Vision for Achieving EV Everywhere * Enable Strong Demand for EVs * Supply of Vehicles and Infrastructure * Current Status of Infrastructure and Vehicles * Desired Workshop Outputs * Approach - Design Candidate Infrastructure Strategies for 2022 10/12/2012 2 eere.energy.gov Achieving EV Everywhere - Enable Strong Demand for EVs 10/12/2012 3 EV Everywhere Consumer Acceptance EV Everywhere Consumer Acceptance Electric Vehicles * Safe * Cost Competitive * Utility meets consumer needs * Range

52

Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for EVs The list below contains summaries of all Arkansas laws and incentives

53

Alternative Fuels Data Center: Missouri Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for EVs The list below contains summaries of all Missouri laws and incentives

54

Alternative Fuels Data Center: California Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for EVs The list below contains summaries of all California laws and incentives

55

Alternative Fuels Data Center: Maryland Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for EVs The list below contains summaries of all Maryland laws and incentives

56

Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for EVs The list below contains summaries of all Louisiana laws and incentives

57

Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for EVs The list below contains summaries of all Minnesota laws and incentives

58

Alternative Fuels Data Center: Michigan Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for EVs The list below contains summaries of all Michigan laws and incentives

59

Alternative Fuels Data Center: Illinois Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for EVs The list below contains summaries of all Illinois laws and incentives

60

Alternative Fuels Data Center: Washington Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for EVs The list below contains summaries of all Washington laws and incentives

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Colorado Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for EVs The list below contains summaries of all Colorado laws and incentives

62

Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for EVs The list below contains summaries of all Mississippi laws and incentives

63

Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for EVs The list below contains summaries of all Connecticut laws and incentives

64

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for EVs The list below contains summaries of all Pennsylvania laws and incentives

65

Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for EVs The list below contains summaries of all Nebraska laws and incentives

66

Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for EVs The list below contains summaries of all Kentucky laws and incentives

67

Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for EVs The list below contains summaries of all Oklahoma laws and incentives

68

Alternative Fuels Data Center: Delaware Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for EVs The list below contains summaries of all Delaware laws and incentives

69

Alternative Fuels Data Center: Virginia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for EVs The list below contains summaries of all Virginia laws and incentives

70

Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for EVs The list below contains summaries of all Wisconsin laws and incentives

71

EV Everywhere Framing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Framing Workshop EV Everywhere Framing Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S. Department of Energy Dearborn, Michigan June 21, 2012 2 | U.S. Department of Energy energy.gov Transportation sector depends on oil Transportation sector depends on oil Petroleum 94% Natural Gas < 1% Biofuels 5% U.S. Transportation Fuel Share Gasoline prices are high Current Avg. $3.53 (as of June 18)* High gasoline prices are a burden on American families. *Source: EIA 3 | U.S. Department of Energy energy.gov U.S. oil import bill is almost $1 billion per day U.S. oil import bill is almost $1 billion per day http://www.eia.gov/petroleum/data.cfm#imports 4 | U.S. Department of Energy energy.gov

72

EV Guideline Assessment Templates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Guideline Assessment Templates EV Guideline Assessment Templates |1. Process: Organization |2. Guideline No: 1|3. Contractor: |4.Contract/project(s): | ||||| ||||| |5. Guideline Statement: Define the authorized work elements for the program. A work breakdown structure (WBS), tailored for effective internal management control, is commonly used in this process. | || |6. Documentation Required: 1) CLINs 2) WBS 3) WBS Dictionary | || || || |7. Instructions: Why this is important: The WBS represents the entire scope of work in the project, a "picture" of the work. The first level is the total system, and it continues down in successively smaller elements until it reaches the level of detail necessary for management action and control. This picture of the work is needed to facilitate traceability, ensure the

73

Development of a Thermal Model for an Inner Stator Type Reluctance Motor.  

E-Print Network (OSTI)

??Thermal modeling is an important aspect of electric motor design. Numerous techniques exist to predict the temperatures in a motor, and they can be incorporated (more)

Pieterse, Michael

2009-01-01T23:59:59.000Z

74

Alternative Fuels Data Center: Electric Vehicle (EV) Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fee to someone by E-mail Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or

75

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee Reduction to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

76

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

77

ChoosEV | Open Energy Information  

Open Energy Info (EERE)

ChoosEV ChoosEV Jump to: navigation, search Name ChoosEV Place Copenhagen, Denmark Zip 1606 Product Denmark based company formed by Sydenergi, Seus-Nve and Sixt. The company will focus on developing simple charging stands linked to the electric grid in Denmark. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

EV Guideline Assessment Templates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Guideline Assessment Templates EV Guideline Assessment Templates DOEEVGuidelineAssessmentTemplates32.doc More Documents & Publications EV Guideline Assessment Templates...

79

EV Guideline Assessment Templates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Guideline Assessment Templates EV Guideline Assessment Templates DOEEVGuidelineAssessmentTemplates320.doc More Documents & Publications EV Guideline Assessment Templates...

80

Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retail Electric Retail Electric Vehicle (EV) Charging Regulations to someone by E-mail Share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Facebook Tweet about Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Twitter Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Google Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Delicious Rank Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Digg Find More places to share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New Life for EV Batteries  

Science Conference Proceedings (OSTI)

Apr 15, 2013 ... Once they've finished powering electric vehicles (EV) for hundreds of ... from various automakers for the secondary market, beginning in 2020.

82

Fluctuation analysis of mechanochemical coupling depending on the type of bio-molecular motor  

E-Print Network (OSTI)

Mechanochemical coupling was studied for two different types of myosin motors in cells: myosin V, which carries cargo over long distances by as a single molecule; and myosin II, which generates a contracting force in cooperation with other myosin II molecules. Both mean and variance of myosin V velocity at various [ATP] obeyed Michaelis-Menten mechanics, consistent with tight mechanochemical coupling. Myosin II, working in an ensemble, however, was explained by a loose coupling mechanism, generating variable step sizes depending on the ATP concentration and realizing a much larger step (200 nm) per ATP hydrolysis than myosin V through its cooperative nature at zero load. These different mechanics are ideal for the respective myosin's physiological functions.

Masatoshi Nishikawa; Hiroaki Takagi; Atsuko H. Iwane; Toshio Yanagida

2008-01-09T23:59:59.000Z

83

EV Solar Products | Open Energy Information  

Open Energy Info (EERE)

Solar Products Solar Products Jump to: navigation, search Logo: EV Solar Products Name EV Solar Products Address 2655 N. Highway 89 Place Chino Valley, Arizona Zip 86323 Sector Solar Product renewable energy products and services Year founded 1991 Phone number (928) 636-2201 Website http://www.evsolar.com/ Coordinates 34.8387989°, -112.4600036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8387989,"lon":-112.4600036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

1999 EV America Technical Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

braking and anti-lock brake systems. 4.3 OVERHEATING The vehicle motor and controllerinverter should be capable of continuous operation at maximum vehicle speed andor sustained...

85

EV AMERICA TRENDS 2000.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Web page: http:ev.inel.govsop National Alternative Fuels Hotline http:www.afdcdoegov A c c e l e r a t i o n @ 5 0 % S O C ( 0 t o 5 0 m p h ) - S e c o n d s 0.0...

86

Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for EVs The list below contains summaries of all Rhode Island laws and incentives

87

Alternative Fuels Data Center: New York Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for EVs The list below contains summaries of all New York laws and incentives

88

Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Carolina Laws and Incentives for EVs The list below contains summaries of all North Carolina laws and incentives

89

Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for EVs The list below contains summaries of all North Dakota laws and incentives

90

Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for EVs The list below contains summaries of all New Mexico laws and incentives

91

Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives for EVs The list below contains summaries of all West Virginia laws and incentives

92

Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Carolina Laws and Incentives for EVs The list below contains summaries of all South Carolina laws and incentives

93

Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for EVs The list below contains summaries of all New Jersey laws and incentives

94

EV Everywhere Grand Challenge Blueprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

95

ams2000.com Stepper Motor System Basics  

E-Print Network (OSTI)

. STEPPING MOTORS TYPES OF STEPPING MOTORS VARIABLE RELUCTANCE PERMANENT MAGNET HYBRID MOTOR WINDINGS motor with the magnetic field electronically switched to rotate the armature magnet around. A Stepping MOTORS There are basically three types of stepping motors; variable reluctance, permanent magnet

Bechtold, Jill

96

EV Fleet Success: Southern California Municipal Fleets  

Science Conference Proceedings (OSTI)

This case study profiles several cities' use of electric vehicle (EV) fleets. It is part of a series documenting successful fleet uses of EVs in a variety of applications throughout the United States. Each case study describes the application and provides a contact person for additional information, outlines the benefits of EVS and discusses the challenges encountered with the new technology.

2000-01-26T23:59:59.000Z

97

ENVIRONME NTA L R EV  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONME ENVIRONME NTA L R EV IEW for CATEGO RI CAL EXCLUS ION DETE RM INATION Rocky Mountain Region, Western Area Power Ad ministration Alco\'3-Caspc r North I IS-kV Transm ission Line Pole Replace ments Na t ro na Co un ty, Wyo mi ng A. Brief Desc ription of Proposal: Western Area Po\.\cr Administration's (Western) Casper Field Office proposes to replace deteriorating poles on 18 wood II-frame structures along its Alcova-Casper North 115-kV transmission line. The project structures are located on the transmission line bct\.ycen Township 33 North. Range 80 West. Section 12 and Township 30 North, Range 82 West. Section 18, 6 th Principle Meridian ncar Casper. Wyoming. in Natrona County. The land ownership is primarily private with two structures located on Bureau of Land Management administered lands. Western will accomplish

98

Vehicles - ORNL inverter a boost for EVs . . . | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles - ORNL inverter a boost for EVs . . . Vehicles - ORNL inverter a boost for EVs . . . Less expensive, lighter and more efficient inverters could put hybrid electric vehicles on the highway to improved viability. While batteries receive a lot of attention, Oak Ridge National Laboratory inventor Gui-Jia Su noted that inverters, which convert direct current into alternating current, play an equally important role in powering hybrid electric vehicles. The patent-pending ORNL inverter is more compact, reduces battery losses, improves operating conditions and reliability, and can be operated in high-temperature conditions. The inverter also significantly reduces undesirable motor torque ripples, which increase or decrease output torque as the output shaft rotates. In addition to uses in hybrid electric

99

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Evgeny G. Fateev

2013-01-20T23:59:59.000Z

100

Quantum motor and future  

E-Print Network (OSTI)

In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

Fateev, Evgeny G

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All Grades Sales to End Users Sales for Resale Sales to End Users Sales...

102

Earned Value (EV) Analysis and Project Assessment & Reporting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II) Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II) Earned Value (EV)...

103

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

104

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

105

Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

All-Electric Vehicle All-Electric Vehicle (EV) Manufacturing Tax Credit to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

106

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

107

Land and Renewable Resources [EVS Program Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Land and Renewable Resources EVS's environmental scientists conduct environmental impact statements to help the nation create a framework for developing renewable energy...

108

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics EV Everywhere Grand Challenge With their immense potential for increasing the...

109

EV Micro-Climate TM Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

of Transportation EV Electric Vehicle EVSE Electric Vehicle Supply Equipment HEV Hybrid Electric Vehicle INL Idaho National Laboratory MAG Maricopa Association of Governments MSA...

110

CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION...  

Open Energy Info (EERE)

| Sign Up Search Facebook icon Twitter icon CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION & SOLUTIONS | GREENER VEHICLES Home There are currently no...

111

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

Science Conference Proceedings (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

112

1999 EV1 Data Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Off-board Type: Lockheed-Martin Conductive Input Voltages: See Test Note 2 TIRES Tire Mfg: Goodyear Tire Model: Momentum Tire Size: P20575R15 XL Tire Pressure FR: 5050...

113

Glossary Item - Electron Volt (eV)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Volt (eV) An electron volt is the amount of work done on an electron when it moves through a potential difference of one volt. 1 eV 1.602*10-19 J 1.602*10-12 erg ...

114

Hawaii Gets 'EV Ready' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program

115

Hawaii Gets 'EV Ready' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gets 'EV Ready' Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program By 2030, the Hawaii Clean Energy Initiative will:

116

EV Network integration (Smart Grid Project) (Ireland) | Open Energy  

Open Energy Info (EERE)

EV Network integration EV Network integration Country Ireland Coordinates 53.41291°, -8.24389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.41291,"lon":-8.24389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

EV Everywhere Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Challenge Kick-Off Patrick Davis, Vehicle Technologies Program Manager Jacob Ward, Vehicle Technologies Senior Analyst June 21, 2012 Hyatt Regency, Dearborn, Michigan EV Everywhere Workshops * Recruit the best and brightest American scientists, engineers, and businesses to tackle this electric vehicle challenge * Re-evaluate and refine the existing technical goals for increasing performance and cutting costs Topic Date Location Electric Drive Components July 24-25 Chicago, IL Advanced Batteries July 26 Chicago, IL Consumer Behavior and Charging Infrastructure July 31 - Aug 1 Los Angeles, CA Lightweight Vehicles and Structures TBD TBD The EV Everywhere Challenge Involves All of DOE The EV Everywhere Challenge Key Parameters * 5-passenger vehicle suitable for an average American family

118

EV Everywhere Grand Challenge - Battery Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandalow, Under Secretary of Energy (acting) and Assistant Secretary for Policy and International Affairs 8:45-8:55 AM SETTING THE STAGE FOR THE EV EVERYWHERE GRAND CHALLENGE Dr....

119

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 72% 10% 18% 2011 ECOtality 2132012 2:44:55 PM INLMIS-11-24041 Page 1 of 3 EV Project Chevrolet Volt Vehicle Summary Report Region: Houston, TX Metropolitan Area...

120

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 9:52:44 AM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:30:52 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

122

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 21% 1% 2011 ECOtality 8102011 1:34:23 PM INLMIS-11-21904 Page 1 of 10 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

123

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 212013 8:31:28 AM INLMIS-11-21904 Page 1 of 15 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

124

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

124,954 21,973 7,718 Percent of all charging events 81% 14% 5% Electric Vehicle Mode (EV) Operation Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC...

125

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2013 ECOtality 4232013 11:20:12 AM INLMIS-11-21904 Page 1 of 17 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

126

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project Nissan Leaf Vehicle Summary Report Region: All Number of vehicles: 35 Reporting period: January 2011 through March 2011 Vehicle Usage Number of trips 3,364 Total...

127

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events (mi) 25.8 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

128

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 17% 5% 2011 ECOtality 1262012 2:19:55 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

129

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 2:02:15 PM INLMIS-11-24041 Page 1 of 12 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

130

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 7312012 6:48:45 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

131

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:28:32 PM INLMIS-11-24041 Page 1 of 8 EV Project Chevrolet Volt Vehicle Summary Report Region: Oregon Number of vehicles: 23...

132

1999 Toyota RAV 4 EV NiMH Charging Systems Study  

Science Conference Proceedings (OSTI)

The testing discussed in this report seeks to provide information needed for evaluating energy consumption and charging impacts of various types of Original Equipment Manufacturer (OEM) EV charging systems. The report addresses these questions by studying the AC power quality and demand impact of three charging systems. All there were used with the Toyota RAV4 EV inductive and conductive versions.

1999-12-15T23:59:59.000Z

133

EVS-23 Papers, Posters, and Brochure  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-23 Papers, Posters, and Brochure EVS-23 Papers, Posters, and Brochure Papers The papers that will be presented at EVS-23 and their Argonne authors are: "Advanced lithium-ion batteries for plug-in hybrid-electric vehicles," by Paul Nelson, Khalil Amine, Aymeric Rousseau and EnerDel Corp.'s Hiroyuki Yomoto. (222kb pdf) "In-situ torque measurements in hybrid electric vehicles powertrains," by Theodore Bohn, Michael Duoba and Richard Carlson. (723kb pdf) "Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids," by Linda Gaines, Andrew Burnham, Aymeric Rousseau and Danilo Santini. (471kb pdf) "Plug-in hybrid electric vehicle control strategy parameter optimization," by Aymeric Rousseau, Sylvain Pagerit and Tennessee Tech University's David Gao. (311kb pdf)

134

Environmental Security and Restoration [EVS Program Area]  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Security and Restoration Environmental Security and Restoration EVS focuses on environmental and human health aspects of homeland and national security, as well as restoration of sites contaminated with hazardous materials. Contamination in our environment - in air, water, and soil - contributes to health problems and affects the quality of our lives. The EVS Division confronts this challenge by addressing environmental and human health aspects of homeland and national security and by characterizing and restoring sites contaminated with hazardous materials. We integrate extensive expertise in engineering, health physics, hydrogeology, environmental science, chemistry, spatial analysis, database management, and computer programming to contribute to environmental security and restoration.

135

Alternative Fuels Data Center: Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Charging Infrastructure Availability to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on AddThis.com... More in this section...

136

Cobasys and Panasonic EV Energy cooperation agreement | Open...  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Cobasys and Panasonic EV Energy cooperation agreement Jump to: navigation, search Name Cobasys and Panasonic EV...

137

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30,...

138

How much are Chevrolet Volts in The EV Project driven in EV Mode?  

Science Conference Proceedings (OSTI)

This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

John Smart

2013-08-01T23:59:59.000Z

139

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-Å-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

140

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-Å-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-Å-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

142

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but until recently there was little molecular structural information for dyneins, another type of motor protein. A group from the University of California, San Francisco, working at ALS Beamline 8.3.1 has reported the 6-Å-resolution structure of the motor domain of dynein in yeast. It reveals details of the ring-shaped motor as well as a new, unanticipated feature called the buttress that may play an important role in dynein's mechanical cycle.

143

Long-Range EV Charging Infrastructure Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Escape 40 10 2012 General Motors Chevrolet Volt 40 16 2010 Hyundai Blue-Will 38 2012 Toyota Prius Plug-in 12.4-18.6 2012 Volvo V70 31 2012 Battery Electric Vehicles BMW ActiveE...

144

Long-Range EV Charging Infrastructure Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

40 10 2012 General Motors Chevrolet Volt 40 16 2010 Hyundai Blue-Will 38 2012 Toyota Prius Plug-in 12.4-18.6 2012 Volvo V70 31 2012 Battery Electric Vehicles BMW ActiveE 100...

145

Long-Range EV Charging Infrastructure Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

40 10 2012 General Motors Chevrolet Volt 40 16 2010 Hyundai Blue-Will 38 2012 Toyota Prius Plug-in 12.4-18.6 2012 Volvo V70 31 2012 BATTERY ELECTRIC VEHICLES BMW ActiveE 100...

146

UHM/HNEI EV test and evaluation program  

SciTech Connect

The electric vehicle (EV) program of the Hawaii Natural Energy Institute (HNEI) focuses primarily on the field testing of promising EV/traction batteries. The intent is to utilize typical driving cycles to develop information that verifies or refutes what is obtained in the laboratory. Three different types of battery were assigned by the US DOE for testing in this program: Sonnenschein Dryfit 6V-160, Exide GC-5, Trojan T-145. We added the following battery to the test program: ALCO2200. HNEI's existing EVs were utilized as test beds. The following EVs were chosen in our program: Converted Ford Escort station wagon, Converted Ford Escort two-door sedan, Converted Ford Escort two-door sedan, Converted Dodge van (typically daily driving distances, 10--30 miles). Capacity testing is a very effective way of monitoring the status of battery modules. Based on capacity tests, corrective action such as battery replacement, additional charging, adjusting terminal connections, etc., may be taken to maintain good performance. About 15,500 miles and 600 cycles have been accumulated on the Sonnenschein Dryfit 6V-160 battery pack. Five of its 18 modules have been changed. Based on DOE's standard, the battery has reached the end of its useful life. Nevertheless, the battery pack is still operational and its operating range is still greater than 40 miles per charge. It is too early to evaluate the life expectancy of the other three batteries, the Trojan T-145, Exide GC-5, and Alco 2200. No module has been replaced in these three packs. The Trojan T-145 battery is a very promising EV traction battery in terms of quality and reliability versus price. HNEI will keep the Trojan and Exide battery packs in operation. The Alco 2200 batteries will be transferred to another vehicle. The Additional Charging Method seems to be an effective way of restoring weak modules. The Smart Voltmeter'' developed by HNEI is a promising way of monitoring the remaining range for an EV.

1992-03-01T23:59:59.000Z

147

UHM/HNEI EV test and evaluation program. Final report  

SciTech Connect

The electric vehicle (EV) program of the Hawaii Natural Energy Institute (HNEI) focuses primarily on the field testing of promising EV/traction batteries. The intent is to utilize typical driving cycles to develop information that verifies or refutes what is obtained in the laboratory. Three different types of battery were assigned by the US DOE for testing in this program: Sonnenschein Dryfit 6V-160, Exide GC-5, Trojan T-145. We added the following battery to the test program: ALCO2200. HNEI`s existing EVs were utilized as test beds. The following EVs were chosen in our program: Converted Ford Escort station wagon, Converted Ford Escort two-door sedan, Converted Ford Escort two-door sedan, Converted Dodge van (typically daily driving distances, 10--30 miles). Capacity testing is a very effective way of monitoring the status of battery modules. Based on capacity tests, corrective action such as battery replacement, additional charging, adjusting terminal connections, etc., may be taken to maintain good performance. About 15,500 miles and 600 cycles have been accumulated on the Sonnenschein Dryfit 6V-160 battery pack. Five of its 18 modules have been changed. Based on DOE`s standard, the battery has reached the end of its useful life. Nevertheless, the battery pack is still operational and its operating range is still greater than 40 miles per charge. It is too early to evaluate the life expectancy of the other three batteries, the Trojan T-145, Exide GC-5, and Alco 2200. No module has been replaced in these three packs. The Trojan T-145 battery is a very promising EV traction battery in terms of quality and reliability versus price. HNEI will keep the Trojan and Exide battery packs in operation. The Alco 2200 batteries will be transferred to another vehicle. The Additional Charging Method seems to be an effective way of restoring weak modules. The ``Smart Voltmeter`` developed by HNEI is a promising way of monitoring the remaining range for an EV.

1992-03-01T23:59:59.000Z

148

Comparison and Analysis of Classical Motor with Amorphous Iron Motor Based on Ansoft  

Science Conference Proceedings (OSTI)

At present, various types of motors of total power is up to 420 million kilowatts and the consumption accounts for 60% of country's total electricity. The motor is high cost, energy consumption and so on while it is produced using traditional materials ... Keywords: Ansoft, amorphous iron motor, motor modeling, motor simulation

Jianwei Leng; Ting Liu

2010-08-01T23:59:59.000Z

149

Smart Grid EV Communication Model (SpEC)  

implementation. For EVs and EVSEs , interoperability means meeting standards for connectivity and communication to ensure that

150

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

151

EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors  

NLE Websites -- All DOE Office Websites (Extended Search)

0-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE 0-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. This memorandum memorializes a communication between DOE staff and members of the NEMA Motor and Generator Section in connection with this proceeding. NEMA thanks the DOE for the opportunity to conduct training for DOE staff and its consultants on July 15th, 2013 which illustrated the different types of motors, motor construction theory and motor applications by type. It is our hope that better understanding of motor types and construction will assist the Department and its consultants with the discharge of their duties. EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors

152

Parametric electric motor study  

DOE Green Energy (OSTI)

Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

1995-04-30T23:59:59.000Z

153

EV Everywhere Grand Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

154

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

155

Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities  

DOE Green Energy (OSTI)

The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

Mindy Kirkpatrick

2012-05-01T23:59:59.000Z

156

Alternative Fuels Data Center: EV Charging Stations Spread Through Philly  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EV Charging Stations EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Digg Find More places to share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on AddThis.com... March 3, 2012 EV Charging Stations Spread Through Philly W atch how Philadelphia fuels electric vehicles with a growing network of

157

Doubly Salient Permanent Magnet Motor Development Review  

Science Conference Proceedings (OSTI)

The research of doubly salient permanent magnet motor (DSPM), arises as the emergence of a novel type mechatronic control of AC drive system. Currently, on the international realm, the studies regarding on this kind of motor mainly focus on calculation ... Keywords: Doubly Salient, Permanent Magnet Motor, AC Variable Speed, Magnetic Materials, Switched Reluctance Motor

Lina Yi, Meng Zhao

2013-09-01T23:59:59.000Z

158

Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promotion and Infrastructure Development to someone by E-mail Promotion and Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on AddThis.com...

159

Deployment of EVs in the Federal Fleet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles 101 Electric Vehicles 101 eere.energy.gov The Parker Ranch installation in Hawaii Deployment of EVs in the Federal Fleet FUPWG Rapid City, South Dakota October 20 th , 2010 Amanda Sahl Federal Energy Management Program 2 | Electric Vehicles 101 eere.energy.gov FEMP facilitates the Federal Government"s implementation of sound, cost-effective energy management and investment practices to enhance the nation"s energy security and environmental stewardship. 3 | Electric Vehicles 101 eere.energy.gov Agenda * Overview of the Federal Fleet * Infrastructure Requirements * Current implementation and activity * Ongoing barriers and questions 4 | Electric Vehicles 101 eere.energy.gov Federal Fleet Inventory

160

Alternative Fuels Data Center: San Diego Leads in Promoting EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

San Diego Leads in San Diego Leads in Promoting EVs to someone by E-mail Share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Facebook Tweet about Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Twitter Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Google Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Delicious Rank Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Digg Find More places to share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on AddThis.com... Sept. 3, 2011 San Diego Leads in Promoting EVs W atch how San Diego is leading the way in promoting electric vehicles. For information about this project, contact San Diego Regional Clean Cities

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Hunan Copower EV Battery Co Ltd Jump to: navigation, search Name Hunan Copower EV Battery Co Ltd Place...

162

Fuel Economy of the 2013 Scion iQ EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Scion iQ EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon...

163

EV Charging Equipment Operational Recommendations for Power Quality  

Science Conference Proceedings (OSTI)

The success of widespread electric vehicle (EV) charging depends, in part, on the maintenance of power quality throughout the charging system. This report details recommendations to minimize negative impacts between EV chargers and the power grid.

1997-10-24T23:59:59.000Z

164

Fuel Economy of the 2013 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize...

165

Panasonic EV Energy Co Ltd PEVE | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Panasonic EV Energy Co Ltd PEVE Jump to: navigation, search Name Panasonic EV Energy Co., Ltd (PEVE)...

166

A Performance Evaluation of an Alpha EV7 Processing Node  

Science Conference Proceedings (OSTI)

In this paper we detail the performance of a new Alpha-Server node containing 16 Alpha EV7 CPUs. The EV7 processor is based on the EV68 processor core that is used in terascale systems at Los Alamos National Laboratory and the Pittsburgh Supercomputing ... Keywords: Performance, analysis, application performance, communication performance, high performance computing, memory performance

Darren J. Kerbyson; Adolfy Hoisie; Scott Pakin; Fabrizio Petrini; Harvey J. Wasserman

2004-05-01T23:59:59.000Z

167

Conducting a Motor Survey: Key Step for Establishing a Motor Management Policy  

E-Print Network (OSTI)

Roughly 70% of the energy consumed by manufacturing processes is used by electric motors. According to the U.S. Department of Energy, greater attention to motor systems management can reduce motor-related energy costs by 18%. Establishing a motor management policy is therefore an essential task for any plant manager or engineer concerned with minimizing motor (and process) downtime and reducing energy costs. In order to develop an effective motor policy, a manager needs information on the number and condition of motors in use. A targeted motor survey will collect data on a representative sample of a plant's motor population. This survey information will then provide a basis for further development of the motor policy. This paper discusses the process of conducting a motor survey. It identifies the type of information to be collected, along with a methodology for selecting appropriate sample motors for more detailed investigations.

Miller, R. B.

2002-04-01T23:59:59.000Z

168

Assessment of Efficiency and Application of Advanced Motor Technologies  

Science Conference Proceedings (OSTI)

This technical update explores four major emerging motor technologies. The four advanced motor types are Permanent magnet Brushless DC Motors (BLDC), Permanent Magnet Synchronous Motors (PMSM), Switched Reluctance Motors and Field Oriented Vector Control Motors. These motor technologies are not necessarily new, but are becoming popular and attractive solutions because of material cost reductions, controller innovations or the promise of higher efficiency and improved component reliability. Overall, the a...

2009-12-23T23:59:59.000Z

169

DOE/EV-0005/8  

Office of Legacy Management (LM)

8 8 Au* k.3 dJ o b /< (/),s:x ,' , -1 3 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the E.I. DuPont DeNemours and Co., Deepwater, New Jersey December 1978 . - FINAL REPORT Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, DC 20545 -.- _"_" .---_" DOE/EV-0005/8 UC-70 I Formerly Utilized MED/AEC Sites . Remedial Action Program Radiilogical Survey of the E.I. DuPont DeNemours and Co., Deepwater, New Jersey December 1878 FINAL REPORT Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, DC 20543 J UNDER CONTRACT NO. W-7405ENG-26 __-- __.-.

170

DOE/EV-0005/18  

Office of Legacy Management (LM)

8 8 w9-2/ Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Plant, Nichols, Florida January 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview Division of Environmental Control Technology .-_.--l.."-.-.- .- ..I ._--, * "--. . . .__ DOE/EV-0005/18 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological. Survey of the Former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Want, Nichols, Florida January 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview

171

Enhanced Video Surveillance (EVS) with speckle imaging  

SciTech Connect

Enhanced Video Surveillance (EVS) with Speckle Imaging is a high-resolution imaging system that substantially improves resolution and contrast in images acquired over long distances. This technology will increase image resolution up to an order of magnitude or greater for video surveillance systems. The system's hardware components are all commercially available and consist of a telescope or large-aperture lens assembly, a high-performance digital camera, and a personal computer. The system's software, developed at LLNL, extends standard speckle-image-processing methods (used in the astronomical community) to solve the atmospheric blurring problem associated with imaging over medium to long distances (hundreds of meters to tens of kilometers) through horizontal or slant-path turbulence. This novel imaging technology will not only enhance national security but also will benefit law enforcement, security contractors, and any private or public entity that uses video surveillance to protect their assets.

Carrano, C J

2004-01-13T23:59:59.000Z

172

EV Everywhere Charges Up the Workplace | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Everywhere Charges Up the Workplace EV Everywhere Charges Up the Workplace EV Everywhere Charges Up the Workplace January 31, 2013 - 1:45pm Addthis As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S.| Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging

173

Detection of Rotor and Load Faults in BLDC Motors Operating Under Stationary and Non-Stationary Conditions .  

E-Print Network (OSTI)

??Brushless Direct Current (BLDC) motors are one of the motor types rapidly gaining popularity. BLDC motors are being increasingly used in critical high performance industries (more)

Rajagopalan, Satish

2006-01-01T23:59:59.000Z

174

EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

- 7/20/2012 - 7/20/2012 EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next- generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

175

file:///E|/ev/test/evasc.shtml  

NLE Websites -- All DOE Office Websites (Extended Search)

Auxiliary Systems Impacts Auxiliary Systems Impacts As with gasoline-powered vehicles, electric vehicles have a number of auxiliary systems. Some systems, such as the radio/tape player, lights, and horn, operate the same way as they do on a gasoline- powered vehicle. Other systems, such as the power steering and power brakes, require an additional small electric motor and have minor impact on the vehicle range. However, the air conditioning and heating systems on electric vehicles are different and can have a dramatic impact on the range. Federal safety standards require all vehicles to have adequate heating and defrosting systems. The heater/defroster system is easily operated in a conventional gasoline-powered vehicle because a supply of heated water from the engine cooling system is readily available. Electric vehicles do not have this

176

Monthly EV Sales Shatter Records | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records September 25, 2013 - 3:51pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist Learn More About Electric Vehicles To find out how much you can save at the pump by switching to an EV, visit our eGallon tool. On September 5, media outlets reported that US monthly electric vehicle (EV) sales shattered the 10,000 unit barrier. Cumulative EV sales for August are estimated at 11,363 -- a 30 percent increase over the previous monthly record and a 75 percent increase since the same time last year.

177

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure and Battery Tax Exemptions to someone by E-mail Infrastructure and Battery Tax Exemptions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on AddThis.com...

178

Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Road User Assessment System Pilot to someone by E-mail Road User Assessment System Pilot to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on AddThis.com... More in this section... Federal State Advanced Search

179

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

180

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

182

EV Everywhere Battery Workshop: Preliminary Target-Setting Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Workshop: Preliminary Target-Setting Framework Jacob Ward, Vehicle Technologies Senior Analyst July 26, 2012 Doubletree-Rosemont, Chicago, IL For this Analysis, Three "EV "...

183

ANSI Summary of US-China Exchange on EV Standardization  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilitation American National Standards Institute US.-China Electric Vehicles and Battery Technology Workshop August 23, 2012 ANSI EVSP Roadmap | US-China EV and Battery...

184

Smart Grid EV Communication Module | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Grid EV Communication Module Argonne's technology integrates the communication controller into existing DC chargers or electric vehicles in order to accomplish SAE DC...

185

Smart Grid EV Communication (SpEC) Module | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

for licensing: Argonne's direct current charging digital communication controller, the Smart Grid EV Communication (SpEC) module, enables rapid recharging of electric vehicles...

186

EV Project Overview Report - Project to Date through March 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

to date through March 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh)...

187

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Blink Charging Units Reporting Data in The EV Project Project to Date through December 2012 Chicago 88 Atlanta 118 Philadelphia 37 Washington State 934 Oregon 632 San Francisco...

188

Virginia EV Road Show - PHEV Operations and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

- Virginia EV Road Show - PHEV Operations and Performance Jim Francfort Virginia Clean Cities and Hampton Roads Clean Cities Coalition - Virginia Electric Drive Road Show Poquoson,...

189

EV Project Overview Report - Project to Date through December...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

190

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Miles Idaho National Laboratory 662012 INLMIS-12-26073 Legend Project Regions Public Blink Charging Units Reporting Data in The EV Project Project to Date through March 2012...

191

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory 10162012 INLMIS-12-26073 Legend Project Regions Public Blink Charging Units Reporting Data in The EV Project Project to Date through September 2012...

192

EV Project Overview Report - Project to Date through September...  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

193

EV Project Overview Report - Project to Date through June 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

194

Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications  

SciTech Connect

REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

None

2012-01-01T23:59:59.000Z

195

Electric Motor Predictive and Preventive Maintenance Guide  

Science Conference Proceedings (OSTI)

Electric motor failure could result in lost capacity as well as excessive repair and maintenance costs. This guide provides information on establishing an effective maintenance program to help prevent unexpected motor failures, costly downtime, and unnecessary maintenance costs. Specifically, the guide summarizes technical data relative to four basic power plant motor types and associated components.

1992-05-02T23:59:59.000Z

196

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energys (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

197

Charging EVs Efficiently NOW While Waiting for the Smart Grid  

Science Conference Proceedings (OSTI)

Due to a century of gas-tank / gas-station legacy, most of the current focus on Electrical Vehicle (EV) charging has been with respect to public charging, range anxiety, charging speed, and grid impact. Unfortunately, this focus overlooks the existing ... Keywords: Electric Vehicles, EV, charging, Plug-in Hybrids, Level-1, Level-2, EVSE, payin-to-plugin, charging at work, BEVI

Robert (Bob) Bruninga, Jill A. T. Sorensen

2013-04-01T23:59:59.000Z

198

Intelligent power management in micro grids with EV penetration  

Science Conference Proceedings (OSTI)

Large deployment of Electric Vehicles (EVs) adds new challenges in the operation of a microgrid. Assuming that a number of EV owners allow their batteries to charge when their cars are parked, this paper proposes an approach that aims to find suitable ... Keywords: Artificial immune system, Decentralized control, Electric vehicles, Microgrid, Multi agent system, Power management

Bhuvaneswari Ramachandran, Sanjeev K. Srivastava, David A. Cartes

2013-11-01T23:59:59.000Z

199

Arizona EV Infrastructure Plans Revealed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Infrastructure Plans Revealed EV Infrastructure Plans Revealed Arizona EV Infrastructure Plans Revealed November 5, 2010 - 3:21pm Addthis An electric vehicle uses a charging station. | Media photo from ECOtality An electric vehicle uses a charging station. | Media photo from ECOtality Joshua DeLung What are the key facts? 180 residential and 230 public charging stations to be installed Blueprints signify clearing of last major hurdle before implementation begins The EV Project has been recognized as one of the top Recovery Act projects Out in the desert, a revolution in automotive technology is happening. Some Arizona drivers are taking part in an innovative new project that will help develop electric vehicle infrastructure and gather crucial research data toward ensuring the vitality of EVs for years to come.

200

Myers Motors | Open Energy Information  

Open Energy Info (EERE)

Myers Motors Myers Motors Jump to: navigation, search Name Myers Motors Place Tallmadge, Ohio Zip 44278 Sector Vehicles Product Myers Motors produces three wheeled electric vehicles. Coordinates 41.10294°, -81.440864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.10294,"lon":-81.440864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Tesla Motors | Open Energy Information  

Open Energy Info (EERE)

Tesla Motors Tesla Motors Jump to: navigation, search Logo: Tesla Motors Name Tesla Motors Address 1050 Bing Street Place San Carlos, California Zip 94070 Sector Vehicles Product Produces electric vehicles Website http://www.teslamotors.com/ Coordinates 37.496737°, -122.245323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.496737,"lon":-122.245323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

AQWON Motors | Open Energy Information  

Open Energy Info (EERE)

AQWON Motors AQWON Motors Jump to: navigation, search Name AQWON-Motors Place Speinshart, Germany Zip 92676 Sector Hydro, Hydrogen Product AQWON-Motors has developed the first hydrogen powered 2 stroke-engine scooter. It has been approved by the German TÃœVÂ (the official technical inspection agency). Coordinates 49.78699°, 11.820385° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.78699,"lon":11.820385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Advanced Motors  

SciTech Connect

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ???????????????¢????????????????????????????????Motors and Generators for the 21st Century???????????????¢???????????????????????????????. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

204

Impacts of EV battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

1996-06-01T23:59:59.000Z

205

Fuel Economy of the 2013 Mitsubishi i-MiEV  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 112 Combined 126 City 99 Highway...

206

ANSI Summary of US-China Exchange on EV Standardization  

NLE Websites -- All DOE Office Websites (Extended Search)

ANSI Summary of US-China Exchange on EV ANSI Summary of US-China Exchange on EV Standardization Presented by: Jim McCabe Senior Director, Standards Facilitation American National Standards Institute US.-China Electric Vehicles and Battery Technology Workshop August 23, 2012 ANSI EVSP Roadmap | US-China EV and Battery Technology Workshop Background - Why the Need for a U.S. Standardization Roadmap for EVs?  Many U.S. based standards developing organizations (SDOs) produce globally relevant standards following an open, consensus-based process (SAE, UL, NFPA, IEEE, and others)  A standardization roadmap would . . . Maximize coordination among SDOs and provide guidance on standards participation and progress  Enable the U.S. to speak more coherently with international partners

207

Electric Vehicle (EV) Carsharing in A Senior Adult Community  

E-Print Network (OSTI)

Electric Vehicle (EV) Carsharing in A Senior Adult Community Susan;86% 0 0 65% 35% 0% 72% 25% 3% Single-car households Two-car households No-car households % of Respondents Cars per Household Interview (n=7) Focus

Kammen, Daniel M.

208

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

209

Microsoft Word - EVS25_Paper_v7.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Electricity Demand of PHEVs Operated by Private...

210

Fuel Economy of the 2014 Toyota RAV4 EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota RAV4 EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel...

211

A Comparison of US and Chinese EV Battery Testing Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 USChina Electric Vehicle Initiative Meeting August 23-24, 2012...

212

Fuel Economy of the 2014 Chevrolet Spark EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

213

Fuel Economy of the 2014 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

214

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Blink Charging Units Reporting Data in The EV Project Project to Date through June 2012 Washington D.C. 3 AC Level 2 Washington State 201 AC Level 2 Oregon 283 AC Level 2 2...

215

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

49 Knoxville 95 Washington D.C. 102 0 125 62.5 250 375 500 Miles Legend Project Regions All EV Project residential charging units are AC Level 2. Idaho National Laboratory 815...

216

Public Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Blink Charging Units Reporting Data in The EV Project Project to Date through December 2012 Chicago 9 AC Level 2 Philadelphia Atlanta 10 AC Level 2 Washington D.C. 31 AC Level 2...

217

EV Project NIssan Leaf Vehicle Summary Report-Reporting period...  

NLE Websites -- All DOE Office Websites (Extended Search)

events 80% 16% 4% 2011 ECOtality 1182011 11:44:44 AM INLMIS-11-21904 Page 1 of 11 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

218

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

125 250 375 500 62.5 Miles Idaho National Laboratory 10162012 INLMIS-12-26074 All EV Project residential charging units are AC Level 2. Residential Blink Charging Units...

219

Residential Blink Charging Units Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

40 Knoxville 87 Washington D.C. 83 0 125 62.5 250 375 500 Miles Legend Project Regions All EV Project residential charging units are AC Level 2. Idaho National Laboratory 66...

220

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

267 V Rated Capacity (C3): 80 Ah Cooling Method: Glycol Water mix heat exchanger Powertrain Motor Type: 3 Phase Permanent Magnet Number of Motors: One Motor Cooling Type: Oil to...

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project  

DOE Green Energy (OSTI)

ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

Stephen L. Schey; John G. Smart; Don R. Scoffield

2012-05-01T23:59:59.000Z

222

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

223

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

224

EV Technology Accelerates in Colorado | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado January 13, 2012 - 5:09pm Addthis Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? One of 48 advanced battery and electric drive projects across the country funded by Recovery Act. U.S. will have increased capacity to produce electric-drive vehicles batteries from virtually zero in 2008 up to 500,000 per year in 2015. While the North American International Auto Show began this week in

225

Mission Motors | Open Energy Information  

Open Energy Info (EERE)

Motors Motors Jump to: navigation, search Name Mission Motors Place San Francisco, California Sector Vehicles Product Electric Motorcycles Year founded 2007 Number of employees 11-50 Website http://www.ridemission.com/ Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Aptera Motors | Open Energy Information  

Open Energy Info (EERE)

Aptera Motors Aptera Motors Jump to: navigation, search Name Aptera Motors Address 2778 Loker Avenue West Place Carlsbad, California Zip 92008 Sector Vehicles Product Aims to to make an aerodynamic two-seater hybrid electric vehicle Website http://www.aptera.com/ Coordinates 33.1412124°, -117.3205123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1412124,"lon":-117.3205123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Microsoft PowerPoint - Smart INL - EV Project Nissan Leaf Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America 1...

228

MotorMaster+ International  

NLE Websites -- All DOE Office Websites (Extended Search)

Motors with MotorMaster+ International * Are your plant motor systems running at optimal energy efficiency? * Do you know how to cost-effectively determine whether to repair or...

229

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

230

Secure wireless communication platform for EV-to-Grid research  

Science Conference Proceedings (OSTI)

"Vehicle to Grid" power or V2G will be a new green energy scheme that allows electricity to flow from Electric Vehicles (EVs) to power lines. The objective of this paper is to design and develop a secure wireless communication platform for V2G research, ... Keywords: authentication protocol, electric vehicle, power grid, secure wireless communication

Huaqun Guo; Fan Yu; W. C. Wong; Vivy Suhendra; Y. D. Wu

2010-06-01T23:59:59.000Z

231

A Comparison of US and Chinese EV Battery Testing Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

US and Chinese EV US and Chinese EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 US/China Electric Vehicle Initiative Meeting August 23-24, 2012 Boston, MA 1 Argonne National Laboratory 2 Idaho National Laboratory 3 CATARC A Comparison of US and Chinese Battery Testing Protocols  Battery testing is a time-consuming and costly process  There are parallel testing efforts, such as those in the US and China  These efforts may be better leveraged through international collaboration  The collaboration may establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data  In turn, the collaboration may accelerate electric vehicle development and

232

EXHIBIT IV DOE/EV-0003/29 ORNL-5734  

Office of Legacy Management (LM)

v EXHIBIT IV - DOE/EV-0003/29 ORNL-5734 Radiological Survey of the Former Kellex Research Facility, Jersey City, New Jersey 6. A. Berven H. W. Dickson W. A. Goldsmith W. M. Johnson W. D. Cottrell R. W. Doane F. F. Haywood M. T. Ryan W. H. Shinpaugh DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W. A. Goldsmith F. F. Haywood W. M. Johnson M. T. Ryan W. H. Shinpaugh Worked performed as part of the Remedial Action Survey and Certification Activities Date Published: February 1982 , OAK RIDGE NATIONAL LABORATORY operated by UNION'CARBIDE CORPORATION for the

233

Radiation and Chemical Risk Management [EVS Program Area]  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation and Chemical Risk Management Radiation and Chemical Risk Management EVS helps meet the challenge of protecting human health and the environment through the management of risk associated with radiation and chemicals in the environment. Protecting human health, welfare, and the environment in a world affected by energy production and technology is a global challenge. EVS helps to meet this challenge through research and analysis on the management of risk associated with radiation and chemicals in the environment. To improve the management of risk associated with nuclear and chemical materials and wastes at contaminated sites, we develop information and tools that support decision making related to health, safety, environmental, economic, and social-cultural concerns. Nuclear Materials and Waste Disposition

234

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

235

Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Motor Natural Gas Motor Vehicle Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Motor Vehicle Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Motor Vehicle Fuel Promotion An eight member Natural Gas Fuel Board (Board) was created to advise the

236

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

237

Vehicle Specifications Battery Type: Ni-NaCl  

NLE Websites -- All DOE Office Websites (Extended Search)

Nominal System Voltage: 371 V Rated Capacity (C3): 150 Ah Cooling Method: Electric fan Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Oil to...

238

Summary of electric vehicle dc motor-controller tests  

DOE Green Energy (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

239

Motor torque compensation of an induction electric motor by ...  

Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature United States Patent

240

Extended cage adjustable speed electric motors and drive packages  

DOE Patents (OSTI)

The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

Hsu, John S. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Extended cage adjustable speed electric motors and drive packages  

DOE Patents (OSTI)

The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

Hsu, J.S.

1999-03-23T23:59:59.000Z

242

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

243

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

244

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

245

Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Neubauer, J.; Pesaran, A.; Howell, D.

2010-05-01T23:59:59.000Z

246

Stepping Motor Control System  

E-Print Network (OSTI)

This paper describes a hardware system designed to facilitate position and velocity control of a group of eight stepping motors using a PDP-11. The system includes motor driver cards and other interface cards in addition ...

Larson, Noble G.

247

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing Activities and Results Jim Francfort E.V. Road Map - Preparing Oregon for the Introduction of Electric Vehicles...

248

Smartgrid EV Communication module (SpEC) SAE DC Charging Digital Communication Controller  

One of the major drawbacks of electric vehicles (EVs) is the long period of time required to recharge EV batteries. While regular Alternating Current (AC) charging systems are sufficient for overnight charging of these vehicles at home or at the ...

249

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory 10162012 INLMIS-12-26075 Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project...

250

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory 662012 INLMIS-12-26075 Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project...

251

Motor/generator  

DOE Patents (OSTI)

A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

Hickam, Christopher Dale (Glasford, IL)

2008-05-13T23:59:59.000Z

252

List of Motor VFDs Incentives | Open Energy Information  

Open Energy Info (EERE)

Motor VFDs Incentives Motor VFDs Incentives Jump to: navigation, search The following contains the list of 352 Motor VFDs Incentives. CSV (rows 1 - 352) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools State Government

253

List of Motors Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 371 Motors Incentives. CSV (rows 1 - 371) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers

254

EV Everywhere Grand Challenge - Charge to the Breakout Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge to the Charge to the Breakout Groups July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov BREAKOUT GROUPS Breakout Group Room Facilitator Color Code Next-Generation Li-Ion Batteries Othello Room mezzanine Jeff Chamberlain (ANL) green Beyond Li-Ion Batteries Winchester Room mezzanine Frank McClarnon (LBNL) blue Manufacturing and Processing Medallion Room Main floor Claus Daniel (ORNL) yellow Pack Design and Optimization Signature III room main floor Ahmad Pesaran (NREL) red eere.energy.gov SESSION #1 EV EVERYWHERE SCOPE & TECHNICAL TARGETS * Discussion of current state-of-art of the breakout group's focus area.

255

Atmospheric Science and Climate Research [EVS Program Area]  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Science and Climate Research Atmospheric Science and Climate Research EVS research, combined with portable, high-performance climate and weather applications, offers a unique look at the complexities of a dynamic planet. In an ever-changing, dynamic climate, we measure, model, and analyze atmospheric processes that are vital to understanding our planet. Our measurement capabilities range from remote sensing and surface meteorology instruments to instrumentation designed to quantify the land-atmosphere exchange of energy, water, and greenhouse gases. Modeling capabilities begin with regional-scale climate, air quality, and aerosol modeling and extend to global chemical transport models, general circulation models of the atmosphere, models of the biosphere, and coupled Earth system models.

256

Renewable energy visual impact best management practices [EVS News]  

NLE Websites -- All DOE Office Websites (Extended Search)

Best practices guide for mitigating visual impacts of utility-scale wind, Best practices guide for mitigating visual impacts of utility-scale wind, solar, and geothermal energy facilities November 1, 2013 Working with the U.S. Department of the Interior’s Bureau of Land Management (BLM), EVS has developed a comprehensive guide to best management practices (BMPs) for mitigating the visual impacts associated with utility-scale wind, solar, and geothermal energy facilities. The guide, titled Best Management Practices for Reducing Visual Impacts of Renewable Energy Facilities on BLM-Administered Lands (PDF, 14 MB), presents 120 BMPs for avoiding or reducing potential visual impacts associated with the siting, design, construction, operation, and decommissioning of utility-scale renewable energy generation facilities - wind, solar, and geothermal.

257

Microsoft PowerPoint - EVS24 INL - AVTA.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

STAVANGER STAVANGER NORWAY MAY 13-16 2009 www.evs24.org John Smart Idaho National Laboratory U.S. Department of Energy - Advanced Vehicle Testing Activity: p gy g y Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities AVTA Background and Goals *The Advanced Vehicle Testing Activity (AVTA) is part of DOE's Vehicle Technologies Program *The Idaho National Laboratory (INL) and Electric Transportation y ( ) p Engineering Corporation (ETEC) conduct AVTA. Argonne National Laboratory performs dynamometer testing *AVTA goals: *AVTA goals: *Document potential of new vehicle technology to reduce petroleum consumption * *Provide benchmark data to technology modelers and target setters, research and development programs, and vehicle manufacturers * *Assist fleet managers in making informed vehicle purchase,

258

Development of Ulta-Efficient Electric Motors  

SciTech Connect

Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performa

Shoykhet, B. (Baldor Comp.); Schiferl, R. (Baldor Comp.); Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

2008-05-01T23:59:59.000Z

259

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

260

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Automatic HVAC Air Recirculation Made Easy with Stepper Motors  

E-Print Network (OSTI)

TND416/D Abstract: This paper highlights the system requirements and operating conditions of automatic air recirculation valves and reviews compatibility of existing actuator types with these requirements. When comparing the available technologies, it becomes clear that air recirculation flap actuators containing a bipolar stepper motor offer key advantages over actuators with other motor types. It is shown how specific bipolar stepper motor drive techniques can contribute to the overall system performance while the total system cost is minimized. The paper elaborates on availability and key features of motor driver integrated circuits that allow advanced control of these novel actuators. 1.

unknown authors

2010-01-01T23:59:59.000Z

262

A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications  

SciTech Connect

This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

263

Renewal processes and fluctuation analysis of molecular motor stepping  

E-Print Network (OSTI)

Abstract. We present a systematic method of analysis of experiments performed with single motors proteins. The use of such a method should allow a more detailed description of the motors chemical cycle through the precise fitting of the experimental data. We model the dynamics of a processive or rotary molecular motor using a renewal processes, in line with the work initiated by Svoboda, Mitra and Block. We apply a functional technique to compute different types of multiple-time correlation functions of the renewal process, which have applications to bead-assay experiments performed both with processive molecular motors, such as myosin V and kinesin, and rotary motors, such as F1-ATPase. PACS numbers: 02.50.Ey,05.60.-k,05.40.-a To whom correspondence should be addressed (frey@lmu.de) Renewal processes and fluctuation analysis of molecular motor stepping 2 1.

Jaime E. Santos; Thomas Franosch; Andrea Parmeggiani

2005-01-01T23:59:59.000Z

264

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

265

Hybrid vehicle motor alignment  

DOE Patents (OSTI)

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

266

MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

industrial facilities, MotorMaster+ 4.0 contains expanded capabilities for inventory management, maintenance logging, lifecycle costing, savings tracking and trending,...

267

Electric Motor Tiered Maintenance Program  

Science Conference Proceedings (OSTI)

Electric motor predictive and preventive maintenance guidance has been developed to provide information to help maximize motor reliability and to minimize the need for major motor repairs. However, if all recommendations presented in most guides are followed and applied to all motors, the cost of motor maintenance would be unwieldy and consume more than its share of maintenance budgets.

2002-08-27T23:59:59.000Z

268

ARM facility captures rare tornado data [EVS News]  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM facility captures rare tornado data ARM facility captures rare tornado data June 13, 2013 Every spring, tornadoes thunder across five states, from Kansas to Texas, and alerts are common. However, by Monday, May 20, it was clear that this time the alert had a different urgency to it. The turn of events leading up to the EF-5 tornado that wreaked havoc in Moore, Oklahoma, provided a unique opportunity for scientists to sample the environment preceding a severe weather event. Read more about how EVS scientist, Donna Holdridge, supported the ARM program in the full article. Raw data from the additional radiosonde launches preceding the severe weather events of May 20 in Oklahoma. The blue line identifies the temperature, which decreases with increasing altitude. The red line is the dew point, the temperature at which the air is 100% saturated with its water vapor content. Where the dew point approaches the actual temperature, the air is nearing 100% relative humidity near the ground-ideal conditions for tornado events.

269

Neural correlates underlying motor map plasticity and skilled motor behavior  

E-Print Network (OSTI)

of neurons within the motor cortex. Physiol Rev, 1975. 55(and S.P. Wise, The motor cortex of the rat: cytoarchitecturedelayed changes of rat motor cortical output representation

Ramanathan, Dhakshin

2007-01-01T23:59:59.000Z

270

file:///E|/ev/test/evh1.shtml  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Electric Cars History of Electric Cars The Early Years (1890 - 1930) The electric vehicle is not a recent development. In fact, the electric vehicle has been around for over 100 years, and it has an interesting history of development that continues to the present. France and England were the first nations to develop the electric vehicle in the late 1800s. It was not until 1895 that Americans began to devote attention to electric vehicles. Many innovations followed and interest in motor vehicles increased greatly in the late 1890s and early 1900s. In 1897 the first commercial application was established as a fleet of New York City taxis. The early electric vehicles, such as the 1902 Wood's Phaeton, were little more than electrified horseless carriages and surreys. The Phaeton had a range of 18 miles, a top speed of 14 mph and cost $2,000.

271

EV drivetrain inverter with V/HZ optimization  

DOE Patents (OSTI)

An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

Gritter, David J. (Southfield, MI); O' Neil, Walter K. (Birmingham, MI)

1986-01-01T23:59:59.000Z

272

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30, 2013 - 1:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Thursday, January 31, 2013, Secretary Chu will deliver the government keynote address at the Washington Auto Show's Public Policy Day. His remarks will focus on the Energy Department's EV Everywhere Grand Challenge, including progress to date and a new initiative to strengthen American leadership in this rapidly growing global industry. Launched by President Obama in March 2012, EV-Everywhere is the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV

273

EV-Everywhere Wants to Hear from All of You! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV-Everywhere Wants to Hear from All of You! EV-Everywhere Wants to Hear from All of You! EV-Everywhere Wants to Hear from All of You! September 19, 2012 - 2:59pm Addthis As part of the EV-Everywhere Grand Challenge, we held a series of workshops to lay out the initiative. The most recent one in Washington, DC, explored ways to reduce energy consumption with improved vehicle design. | Photo courtesy of Roy Feldman. As part of the EV-Everywhere Grand Challenge, we held a series of workshops to lay out the initiative. The most recent one in Washington, DC, explored ways to reduce energy consumption with improved vehicle design. | Photo courtesy of Roy Feldman. David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy How can I participate? We want your ideas on defining what makes an EV affordable for the

274

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

275

Energy Efficient Motors  

E-Print Network (OSTI)

Efficiency is only one aspect of motor performance. This paper discusses how efficiency is influenced by such factors as horsepower rating, poles, actual load, and starting requirements. It discusses some of the variables affecting efficiency, and how to interpret efficiency data. A perspective is given from which to evaluate available energy efficient motor offerings for a given application.

Hoffmeyer, W.

1982-01-01T23:59:59.000Z

276

Stepping motor controller  

SciTech Connect

A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

Bourret, Steven C. (Los Alamos, NM); Swansen, James E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

277

Stepping motor controller  

DOE Patents (OSTI)

A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

Bourret, S.C.; Swansen, J.E.

1982-07-02T23:59:59.000Z

278

Renewal processes and fluctuation analysis of molecular motor stepping  

E-Print Network (OSTI)

We model the dynamics of a processive or rotary molecular motor using a renewal processes, in line with the work initiated by Svoboda, Mitra and Block. We apply a functional technique to compute different types of multiple-time correlation functions of the renewal process, which have applications to bead-assay experiments performed both with processive molecular motors, such as myosin V and kinesin, and rotary motors, such as F1-ATPase.

Jaime E. Santos; Thomas Franosch; Andrea Parmeggiani; Erwin Frey

2005-05-29T23:59:59.000Z

279

DOE/EV-0005/4 UC-70  

Office of Legacy Management (LM)

I . I . )) ;i ' " .zf DOE/EV-0005/4 UC-70 hbj ;(:> Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Surrey of the Ashland Oil Company (Former Haist Property), Tonawanda, New York May 1878 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 BY Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 * . . - - . 1 - - . . . _ _ - - - - - _ _ P R E F A C E T h i s s e ri e s o f re p o rts re s u l ts fro m a p ro g ra m i n i ti a te d i n 1 9 7 4 b y th e A to m i c E n e rg y C o m m i s s i o n ( A E C ) fo r d e te rm i n a ti o n o f th e c o n d i ti o n o f s i te s fo rm e rl y u ti l i z e d b y th e M a n h a tta n E n g i n e e ri n g D i s tri c t (M E D ) a n d th e A E C fo r w o rk i n v o l v i n g th e h a n d l i n g o f ra

280

motor | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279950 Varnish cache server motor Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel gallonage taxes 1950-1995, motor-fuel use 1919-1995, private and commercial highway use of special fuels, by state 1949-1995, highway use of gasoline, by state 1949-1995, gasohol sales by state, 1980-1992, and estimated use of gasohol, 1993-1995. The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT Fuel highway motor vehicle Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Motor-fuel gallonage taxes 1950-1995 (xlsx, 37.3 KiB)

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

President Obama Launches EV-Everywhere Challenge as Part of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

said Secretary Chu. "The EV-Everywhere Challenge is focused on advancing electric vehicle technologies and continuing to reduce costs, so that a decade from now, electric...

282

Testing of TEC-Based TMS for Patrol EV and Bus Fleet Vehicles  

Science Conference Proceedings (OSTI)

This project was a continuation of a study to help improve the driving range and reliability of electric vehicles (EVs) and to encourage their commercial growth

1999-12-14T23:59:59.000Z

283

Genetics of motor neuron disease  

Science Conference Proceedings (OSTI)

The number of genes associated with motor neuron degen- eration has increased ... Motor neurons are affected in a large number of neurologic diseases

284

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

285

Aurica Motors | Open Energy Information  

Open Energy Info (EERE)

Product California-based Aurica Motors is planning to develop and manufacture an electric vehicle at a former Toyota plant in the state. References Aurica Motors1...

286

INSPECTION MEANS FOR INDUCTION MOTORS  

DOE Patents (OSTI)

an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

Williams, A.W.

1959-03-10T23:59:59.000Z

287

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network (OSTI)

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona Vehicle Symposium & Exhibition (EVS27), Barcelona : Spain (2013)" #12;EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals

Recanati, Catherine

288

laura.schewel@berkeley.edu 1 VIRTUAL EV TEST DRIVE: INTRODUCTION AND PROJECT SUMMARY  

E-Print Network (OSTI)

, and battery electric vehicles (4) (5). · Many consumers are not interested in strict economic rationality when costs? Her fundamental question: "What does an EV mean for me?" Virtual EV Test Drive helps answer all a plug-in hybrid probably would switch into gasoline mode, and if/where a battery electric would have run

Kammen, Daniel M.

289

President Obama Launches EV-Everywhere Challenge as Part of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches EV-Everywhere Challenge as Part of Energy Launches EV-Everywhere Challenge as Part of Energy Department's Clean Energy Grand Challenges President Obama Launches EV-Everywhere Challenge as Part of Energy Department's Clean Energy Grand Challenges March 7, 2012 - 5:17pm Addthis Mt. Holly, N.C. - At an event today at the Daimler Truck factory in Mt. Holly, N.C., President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV Everywhere Challenge will bring together America's best and brightest scientists, engineers, and businesses to work collaboratively to make electric vehicles more affordable and convenient to own and drive than today's gasoline-powered vehicles within the next 10 years.

290

Summer 2003 Motor Gasoline Outlook  

U.S. Energy Information Administration (EIA)

Summer 2003 Motor Gasoline Outlook ... State gasoline taxes ... that occurred between spring 1999 and fall 2001, ...

291

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

292

Linear Motor Powered Transportation  

E-Print Network (OSTI)

This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

Thornton, Richard D.

293

Ford Motor Company  

E-Print Network (OSTI)

All statements, findings, and conclusions in this report are those of the authors and do not necessarily reflect those of the Global Interdependence Center, Ford Motor Company, or the Center for Automotive Research. TABLE OF CONTENTS Acknowledgements......................................................................................................................... iv

Ellen Hughes-cromwick; Joshua Cregger

2013-01-01T23:59:59.000Z

294

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

motor gasoline is projected to be about 1.38 per gallon. As was the case with heating oil, last year's peak average gasoline price, at 1.633 per gallon in June, was the...

295

Markov Process of Muscle Motors  

E-Print Network (OSTI)

We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

Yu. Kondratiev; E. Pechersky; S. Pirogov

2007-06-20T23:59:59.000Z

296

EV Network integration (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

integration integration Country Ireland Headquarters Location Dublin, Ireland Coordinates 53.344105°, -6.267494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.344105,"lon":-6.267494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation  

DOE Green Energy (OSTI)

More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-03-01T23:59:59.000Z

298

Ontario Hydro Motor Efficiency Study  

E-Print Network (OSTI)

Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial market. However, this paper concentrates on the industrial market since 76% of this market's load is motors. The poly phase integral horsepower motor is the "workhorse" of industry. The efficiency of the standard induction motor can be improved. The new "high efficiency" motor is described and the operating cost is compared to the standard motor. Payback for high efficiency motors is found to be about one year for continuous duty applications. Specific instructions are presented for use in industry.

Dautovich, D. R.

1980-01-01T23:59:59.000Z

299

Drilling motor deviation tool  

Science Conference Proceedings (OSTI)

An extension for a down hole drilling motor is described, which adapts the motor for selective configuration for straight hole drilling or directional drilling, selectively. It consists of: an elongated generally tubular body, adapted at a first end to rigidly attach to the lower end of a down hole drilling motor housing, the body having an opening extending along the general centerline of the body; fluid channel means situated in the opening to conduct drilling fluid from the motor fluid output means to a downwardly continuing drill string element; output shaft means situated in the body and extending from a second end of the body, the output shaft adapted at the extended extreme for attachment to a downwardly continuing drill string element; selector valve means situated in the body, operatively associated with drilling fluid channels in the body, responsive to drilling fluid flow to produce a first output signal in response to fluid flow manipulations having a first characteristic and to produce a second output signal in response to fluid flow manipulations having a second characteristic; and driveshaft connector means in the opening, operatively associated with the output shaft of the motor and the output shaft means to connect the two for sympathetic rotation.

Falgout, T.E.; Schoeffler, W.N.

1989-03-14T23:59:59.000Z

300

Energy Savings of Variable Speed Motors  

E-Print Network (OSTI)

This paper investigates the energy savings available by utilizing variable speed motors on pump and fan applications. Conventional control of flow or pressure in process plants is normally accomplished by throttling the various streams with control valves. Depending on the system and the actual operating conditions, this throttling may consume a considerable amount of energy. The hydraulics of different systems are investigated to generalize high energy saving applications. Typical pump characteristics at varying speeds are investigated since most performance curves are only available at a constant speed. The various types of variable speed electric motors are discussed. However, the primary variable speed system recommended is a variable frequency speed system which utilizes standard induction motors. Specific cases of centrifugal pump applications and cooling tower fan service are presented. Turndown frequencies, stream factors, and electric rates are included in the evaluation. The energy savings of a variable speed system becomes significant when flow rates vary widely and the electrical rates are high.

Fishel, F. D.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparative evaluation of acoustical noise levels of Soleq Evcort EV and ICE (internal combustion engine) counterpart  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) evaluates Ev propulsion systems and components for the US Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. This paper describes an INEL study which compares the exterior and interior acoustic noise levels of an electric vehicle to its internal combustion engine (ICE) counterpart base vehicle, under various operating conditions. The electric vehicle was a converted 1988 Ford Escort station wagon, retrofitted with a DC electric powertrain developed by Soleq Corporation. A comparably-equipped gasoline-fueled ICE-powered Ford Escort station wagon provided the baseline acoustic noise levels with which to compare the electric vehicle. Measurements of the interior and exterior noise levels were obtained using a Bruel and Kjaer (B K) Type 2231 Modular Precision Sound Level Meter. The tests were conducted in accordance with applicable Society of Automotive Engineer's (SAE) standard practices at Chrysler's Arizona Proving Grounds in Wittmann, Arizona. The results indicate that radiated interior and exterior acoustic noise levels of the electric vehicle were noticeably quieter under acceleration and idly conditions. However, under constant speed operation the electric and the ICE exhibited essentially equivalent interior and exterior noise levels. 8 refs., 2 tabs.

MacDowall, R.D.

1990-01-01T23:59:59.000Z

302

Sensory-Motor Integration and Control  

E-Print Network (OSTI)

spinal interneurons during motor pattern generation inStep, Swim, and Scratch Motor Patterns in the Turtle. JStep, Swim, and Scratch Motor Patterns in the Turtle. J

Welch, Dan Bruce

2011-01-01T23:59:59.000Z

303

High-megawatt Electric Drive Motors  

Science Conference Proceedings (OSTI)

... Page 2. ABB BU Machines April 10, 2009 | Slide 2 High-megawatt Electric Drive Motors ... motor concept ... A selection of compressor motors >30MW. ...

2012-10-21T23:59:59.000Z

304

The MotorMaster+ Software Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

motors.html MotorMaster+ also provides technical data that can assist with the optimization of drive systems, motor purchasing, and energy accounting, as well as energy...

305

Brushless Motor Controller Report Spring 2010  

E-Print Network (OSTI)

Brushless Motor Controller Report Spring 2010 May 15, 2010 Brian Clementi MAE of 2010 322 Bogert ...................................................................................................... 5 A. Motor Description...................................................................................................... 5 B. The Motor Controller Board

Ruina, Andy L.

306

Commercial Motor Vehicle Brake-Related Research  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

307

Advanced Manufacturing Office: MotorMaster+ International  

NLE Websites -- All DOE Office Websites (Extended Search)

special or definite purpose motors. To quickly determine the annual energy and dollar savings of a NEMA Premium efficiency or EFF1 motor over a lower efficiency motor...

308

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales ...  

U.S. Energy Information Administration (EIA)

17 U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type

309

Bent shaft motor  

DOE Patents (OSTI)

A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

Benavides, Gilbert L. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

310

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

311

Motor current signature analysis method for diagnosing motor operated devices  

DOE Patents (OSTI)

A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

Haynes, Howard D. (Kingston, TN); Eissenberg, David M. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

312

Design and prototyping methods for brushless motors and motor control  

E-Print Network (OSTI)

In this report, simple, low-cost design and prototyping methods for custom brushless permanent magnet synchronous motors are explored. Three case-study motors are used to develop, illustrate and validate the methods. Two ...

Colton, Shane W. (Shane William)

2010-01-01T23:59:59.000Z

313

EV-141 Englehard Industries. Makepeace Dlvlslon E. Jacewsky. CORO  

Office of Legacy Management (LM)

41 41 Englehard Industries. Makepeace Dlvlslon E. Jacewsky. CORO This office 1s conducting an lnvestlgatfon Into the.operation of the Makepa Dfvlslon of Englshard Industries to determlne the type and extent of actlvi conducted'for the Westinghouse. Bettls Fleld Operations around July 1956. Makepeace Dlvlslon was designated an accountability station by the former Ato Energy Conrmlsslon'o Chicago Operatfons Office under the Pittsburgh Area Offlce. Please provlde any records that can be obtalned In regard to the actlvltfes of the Makepeace Ofvlslon, especially during the 1956 tlme frame. I am enclosing a surmnary of the lnformatlon we have been able to accumulate so far. . . . . . . Original siped by: . . . . Wlllfam E. Mott. blrector Envlronmental and Safety

314

EVS launches new Solar Energy Program Web site for the Bureau...  

NLE Websites -- All DOE Office Websites (Extended Search)

launches new Solar Energy Program Web site for the Bureau of Land Management August 22, 2013 EVS designed and recently released a new Web site for the Bureau of Land Management...

315

MOVPE Growth of High Efficiency Inverted Metamorphic 1.1eV Solar ...  

Science Conference Proceedings (OSTI)

This paper focuses on the 1.1ev Ga0.77In0.23As inverted metamorphic solar cell grown with AlGaInAs quarternary step graded buffer on 6o miscut (001) thin Ge...

316

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project Project to Date through June 2012 Washington State 700 Leafs 55 Volts Oregon 429 Leafs 59 Volts San Francisco 1307...

317

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leafs and Chevrolet Volts Reporting Data in The EV Project Project to Date through December 2012 Washington State 893 Leafs 98 Volts Oregon 549 Leafs 94 Volts 30 Smart Electric...

318

Neutrino afterglow from Gamma-Ray Bursts: ~10^{18} eV  

E-Print Network (OSTI)

We show that a significant fraction of the energy of a gamma-ray burst(GRB) is probably converted to a burst of 10^{17}-10^{19} eV neutrinos and multiple GeV gammas that follow the GRB by > 10 s . If, as previously suggested, GRB's accelerate protons to ~10^{20} eV, then both the neutrinos and the gammas may be detectable.

Eli Waxman; John Bahcall

1999-09-08T23:59:59.000Z

319

Method for assessing motor insulation on operating motors  

DOE Patents (OSTI)

A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

320

Method for assessing motor insulation on operating motors  

DOE Patents (OSTI)

A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

Kueck, J.D.; Otaduy, P.J.

1997-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

eGallon: Understanding the Cost of Driving EVs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » eGallon: Understanding the Cost of Driving EVs Initiatives » eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the eGallon. The eGallon represents the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. For example, if gasoline costs $3.60 a gallon in your state and the eGallon price for your state is $1.20, that means that for $1.20 worth of electricity you can

322

Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications  

DOE Green Energy (OSTI)

The technical and economic feasibility of applying used electric vehicle (EV) batteries in stationary applications was evaluated in this study. In addition to identifying possible barriers to EV battery reuse, steps needed to prepare the used EV batteries for a second application were also considered. Costs of acquiring, testing, and reconfiguring the used EV batteries were estimated. Eight potential stationary applications were identified and described in terms of power, energy, and duty cycle requirements. Costs for assembly and operation of battery energy storage systems to meet the requirements of these stationary applications were also estimated by extrapolating available data on existing systems. The calculated life cycle cost of a battery energy storage system designed for each application was then compared to the expected economic benefit to determine the economic feasibility. Four of the eight applications were found to be at least possible candidates for economically viable reuse of EV batteries. These were transmission support, light commercial load following, residential load following, and distributed node telecommunications backup power. There were no major technical barriers found, however further study is recommended to better characterize the performance and life of used EV batteries before design and testing of prototype battery systems.

CREADY, ERIN; LIPPERT, JOHN; PIHL, JOSH; WEINSTOCK, IRWIN; SYMONS, PHILIP

2003-03-01T23:59:59.000Z

323

Texas Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Texas Department of Motor Vehicles Name Texas Department of Motor Vehicles Short Name TxDMV Address 4000 Jackson Ave. Place Austin, Texas Zip 78731 Phone number 1-888-368-4689 Website http://www.txdmv.gov/ Coordinates 30.3134782°, -97.7553907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3134782,"lon":-97.7553907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Nevada Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Nevada Department of Motor Vehicles Name Nevada Department of Motor Vehicles Address 555 Wright Way Place Carson City, Nevada Zip 89711 Phone number 702-486-4368 Website http://dmvnv.com/ Coordinates 39.1549237°, -119.7635207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1549237,"lon":-119.7635207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Brandl Motor | Open Energy Information  

Open Energy Info (EERE)

Motor Jump to: navigation, search Name Brandl Motor Address Calvinstr 24 Place Berlin Zip 10557 Sector Marine and Hydrokinetic Phone number +49 30 39 48 06 38 Website http:http:...

326

motor vehicles | OpenEI  

Open Energy Info (EERE)

motor vehicles motor vehicles Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data on rates and revenue statistics up to 1995. The data includes state motor-fuel tax receipts, 1919-1995, state motor fuel taxes and related receipts, 1950-1995, and state and federal motor fuel tax rates, 1919-1995 The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT highway motor vehicles rates revenues Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor-fuel tax receipts, 1919-1995 (xlsx, 13.8 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor fuel taxes and related receipts, 1950-1995 (xlsx, 78.5 KiB)

327

AGNI Motors | Open Energy Information  

Open Energy Info (EERE)

Place India Zip 370 230 Sector Vehicles Product UK-based manufacturer of DC Motors and Battery Management Systems for Electric Vehicles References AGNI Motors1 LinkedIn...

328

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

329

Commercial Motor Vehicle Brake Assessment Tools  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor #12;Overview · Commercial Motor Vehicle (CMV) Air Brake System · North American Standard Level-1

330

Multiple stage miniature stepping motor  

DOE Patents (OSTI)

A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

Niven, William A. (Livermore, CA); Shikany, S. David (Danville, CA); Shira, Michael L. (Fremont, CA)

1981-01-01T23:59:59.000Z

331

Guide for Determining Motor Repair versus Motor Replacement  

Science Conference Proceedings (OSTI)

The Motor Replacement/Refurbishment Guide (MRRG) was written to aid with the determination on whether to repair an existing motor or to purchase a replacement motor. This guideline provides the basic tools necessary to make a determination based upon, but not limited to, the extent of the repair scope and the cost of the repair. This guideline presents a process to be utilized by the station or corporate motor specialist to assess the motor repair scope both initial and revised. The data gathering proces...

2005-12-23T23:59:59.000Z

332

Advanced Manufacturing Office: MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

schedules Motor inventory information, including motor nameplate information, operating profile, load status, and field measurements Life cycle economics, including depreciation...

333

Motor technology for mining applications advances  

SciTech Connect

AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

Fiscor, S.

2009-08-15T23:59:59.000Z

334

Motor-Driven Bacterial Flagella and Buckling Instabilities  

E-Print Network (OSTI)

Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff's elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torque. We present a sophisticated analytical model for the buckling transition based on a helical rod which quantitatively reproduces the critical force-torque relation. Real values for motor torque, cell body size, and the geometry of the helical filament suggest that buckling should occur in single bacterial flagella. We also find that the orientation of pulling flagella along the driving torque is not stable and comment on the biological relevance for marine bacteria.

Reinhard Vogel; Holger Stark

2012-01-03T23:59:59.000Z

335

X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility  

SciTech Connect

An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B. [CEA, DAM, DIF, 91297 Arpajon (France); Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M. [CEA, DSM, IRAMIS, Service Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France); Busquet, M. [ARTEP Inc, Ellicott City, Maryland 21042 (United States); Bastiani-Ceccotti, S.; Serres, F. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Ducret, J. E. [CELIA, UMR5107, CEA, CNRS, Universite de Bordeaux, 33400 Talence (France); Foelsner, W. [Max Planck Instituet fuer Quantum Optik, 85748 Garching (Germany); Gilles, D.; Turck-Chieze, S. [CEA, DSM, IRFU, Service d'astrophysique, 91191 Gif-sur-Yvette (France)

2012-10-15T23:59:59.000Z

336

Evaluating High Efficiency Motor Retrofit  

E-Print Network (OSTI)

In the petrochemical and refining Industries, and most manufacturing plants, the reliable operation of AC motors always has been crucial to the continuous operation of the process. Now, the cost of operating these motors has also become a significant factor. Engineers Involved In motor specification can help lower plant operating costs and reduce electrical energy consumption dramatically by a relatively simple technique: retrofit of existing, standard-efficiency motors with new, high efficiency models. This article demonstrates strong reasons for motor retrofit, and explains step-by step how process and manufacturing engineering personnel can fully evaluate a retrofit decision.

Evans, T. A.

1984-01-01T23:59:59.000Z

337

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

338

TFTR Motor Generator  

SciTech Connect

A general description is given of 475 MVA pulsed motor generators for TFTR at Princeton Plasma Physics Laboratory. Two identical generators operating in parallel are capable of supplying 950 MVA for an equivalent square pulse of 6.77 seconds and 4,500 MJ at 0.7 power factor to provide the energy for the pulsed electrical coils and heating system for TFTR. The description includes the operational features of the 15,000 HP wound rotor motors driving each generator with its starting equipment and cycloconverter for controlling speed, power factor, and regulating line voltage during load pulsing where the generator speed changes from 87.5 to 60 Hz frequency variation to provide the 4,500 MJ or energy. The special design characteristics such as fatigue stress calculations for 10/sup 6/ cycles of operation, forcing factor on exciter to provide regulation, and low generator impedance are reviewed.

Murray, J.G.; Bronner, G.; Horton, M.

1977-01-01T23:59:59.000Z

339

Motor gasolines, Summer 1982  

Science Conference Proceedings (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

340

Honda Motor Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Honda Motor Co Ltd Honda Motor Co Ltd Jump to: navigation, search Name Honda Motor Co Ltd Place Tokyo, Tokyo, Japan Zip 107-8556 Sector Vehicles Product Leading global car manufacturer which began research into fuel cell technologies in the 1980s, and has tested several generations of technolgy in its FCX vehicles. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OE/EV-0005/2 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

OE/EV-0005/2 OE/EV-0005/2 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Hooker Chemical Company Niagara Falls, New York January 1977 Final Report Prepared for U.S. Department of Energy Division of Environmental Control Technology Washington, D.C. 20545 DOE/EV-0005/2 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Hooker Chemical Company Niagara Falls, New York January 1977 Final Report Prepared for U.S. Department of Energy Division of Environmental Control Technology Washing-ton, D.C. 20545 Under Contract No. W-7405-ENE-26 Oak Ridge National Laboratory Oak Ridge, Tennessee 3783C NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United

342

EnerG2 Develops New Approach to EV Energy Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnerG2 Develops New Approach to EV Energy Storage EnerG2 Develops New Approach to EV Energy Storage EnerG2 Develops New Approach to EV Energy Storage November 16, 2010 - 9:50am Addthis EnerG2 manufactures the black powder-like materials shown here that make up the carbon electrode in an ultracapacitor. | Illustration courtesy of EnerG2 EnerG2 manufactures the black powder-like materials shown here that make up the carbon electrode in an ultracapacitor. | Illustration courtesy of EnerG2 Joshua DeLung To decrease the transportation sector's reliance on gasoline, viable alternatives must be found. Ultracapacitors - energy storage systems with very high energy density - might be a technology that drives Americans into a future free of the pump. Innovative company creates material from scratch To make ultracapacitors, manufacturers need a component called a carbon

343

EV-131  

Office of Legacy Management (LM)

31 31 Removal of Gillman iiell, Unfwrsity of California, Ecrkeley, California from the Formerly Utflized Sites Remedial Action Program (FUSRAPj S. Meyers, NE-30 This is in response to your memorandum of March 26, 1980, relative to the removal of Gillman Ball, Univcrs'lty of California, Berkeley, California from the Formerly Utilized Sites Remedial Action Program. As we now undcr- stand the sittlation, SAN has indicated that the site in question is covered under an exfsting license and, consequently, you may decide not to conduct remedial action there at any time in the foreseeable future. In any event, Gillman ttall is a formerly utilized site and as such shouid retain that designation albeit in an inactive status. If you decided not to conduct

344

Method and apparatus for monitoring motor operated valve motor ...  

A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the ...

345

Modeling Reluctance-Assisted PM Motors  

SciTech Connect

This report contains a derivation of the fundamental equations used to calculate the base speed, torque delivery, and power output of a reluctance-assisted PM motor which has a saliency ratio greater than 1 as a function of its terminal voltage, current, voltage-phase angle, and current-phase angle. The equations are applied to model Motor X using symbolically-oriented methods with the computer tool Mathematica to determine: (1) the values of current-phase angle and voltage-phase angle that are uniquely determined once a base speed has been selected; (2) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and current-phase angle; (3) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and voltage-phase angle; (4) the maximum-power output in the voltage-limited region above base speed as a function of speed; (5) the optimal voltage-phase angle in the voltage-limited region above base speed required to obtain maximum-power output; (6) the maximum-power speed curve which was linear from rest to base speed in the current limited region below base speed; (7) the current angle as a function of saliency ratio in the current-limited region below base speed; and (8) the torque as a function of saliency ratio which is almost linear in the current-limited region below base speed. The equations were applied to model Motor X using numerically-oriented methods with the computer tool LabVIEW. The equations were solved iteratively to find optimal current and voltage angles that yield maximum power and maximum efficiency from rest through the current-limited region to base speed and then through the voltage-limited region to high-rotational speeds. Currents, voltages, and reluctance factors were all calculated and external loops were employed to perform additional optimization with respect to PM pitch angle (magnet fraction) and with respect to magnet strength. The conclusion was that the optimal-magnet fraction for Motor X is 0.72 which corresponds to a PM pitch angle of 130{sup o}, a value close to the maximum-saliency ratio in a plot of saliency ratio versus PM pitch angle. Further, the strength of Motor X magnets may be lowered to 80% of full strength without significantly impacting motor performance for PM pitch angles between the peak saliency (130{sup o}) and peak-characteristic current (160{sup o}). It is recommended that future research involve maximizing a driving-cycle-weighted efficiency based on the Federal Urban Driving Cycle and the Federal Highway Driving Cycle as criteria for selecting the final optimal-PM fraction and magnet strength for this inset PM motor. Results of this study indicate that the reduction in PM torque due to reduced-magnet fraction will be more than compensated by the reluctance torque resulting from the higher saliency ratio. It seems likely that the best overall performance will require saliency; consequently, we think the best motor will be a reluctance-assisted PM motor. This should be explored for use with other types of PM motors, such as fractional-slot motors with concentrated windings.

Otaduy, P.J.

2006-01-13T23:59:59.000Z

346

News From the D.C. Office: New Work With Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office New Work With Motor Systems The Energy Analyis Program has recently started a project for the DOE Office of Industrial Technologies Motor Challenge Program. This project, to be carried out in the Washington D.C. office, extends the office's work to an exciting new area of electric motor system efficiency. Motor systems consume about 70 percent of the electric energy used in the U.S. industrial sector. Emphasis on motor efficiency in recent years has led to passage of efficiency standards, to become effective in 1997, for most common types of motors. This is extremely important because the cost of energy consumed by a motor during its useful life typically far exceeds its acquisition cost. Frequently, significant system-level opportunities

347

Advanced Manufacturing Office: MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

348

NVLAP Efficiency of Electric Motors  

Science Conference Proceedings (OSTI)

... program was originally developed at the request of the National Electrical Manufacturers Association (NEMA) to assist the electric motor industry in ...

2013-05-14T23:59:59.000Z

349

Imports of Total Motor Gasoline  

U.S. Energy Information Administration (EIA)

Reformulated and conventional gasoline production excludes adjustments for fuel ethanol and motor gasoline blending components. Historical data prior to June 4, ...

350

Finished Motor Gasoline Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

351

Electric Motors and Critical Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Suggestions (Have an idea of how to get there) * Integration of motor, power converter, and speed reducer * Soft magnetic core material with high saturation...

352

Primary Metals - Compressor Motors Failing  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of four failures of compressor motors for a two stage chiller at a primary metals manufacturing facility.

2003-12-31T23:59:59.000Z

353

Operation Pattern Recognition and Control for Super Capacitor Braking Energy Regeneration System of Micro EV  

Science Conference Proceedings (OSTI)

Super capacitor has some advantages of high charge-discharge rate, long life, simple structure and reliable performance, and it is especially suitable as braking energy renewable energy storage device for electric vehicle and hybrid electric vehicle. ... Keywords: Super capacitor, braking energy regeneration, micro EV, pattern recognition and control

Jinyu Qu; Liyan Liang; Zhongyu Yang

2009-12-01T23:59:59.000Z

354

On the Variation of Eta with Energy in the 100-1000 ev Region  

DOE R&D Accomplishments (OSTI)

Fluctuations in the fission yield in the 100- to 1000-ev region led to an investigation of the influencing variables. Changes in fission width from level to level and higher angular momentum phenomena are seen as possible explanations. (D.E.B.)

Wigner, E. P.

1949-11-01T23:59:59.000Z

355

Dissociative Electron Attachment to Carbon Dioxide via the 8.2 eV Feshbach resonance  

SciTech Connect

Momentum imaging experiments on dissociative electron attachment (DEA) to CO{sub 2} are combined with the results of ab initio calculations to provide a detailed and consistent picture of the dissociation dynamics through the 8.2 eV resonance, which is the major channel for DEA in CO{sub 2}. The present study resolves several puzzling misconceptions about this system.

Slaughter, Dan; Adaniya, Hidihito; Rescigno, Tom; Haxton, Dan; Orel, Ann; McCurdy, Bill; Belkacem, Ali

2011-08-17T23:59:59.000Z

356

EV-Smart Grid Interoperabiliy Centers in Europe and the U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

A R M O N I Z AT I O N O F S TA N DA R D S , T E C H N O L O G Y A N D T E S T I N G EV-Smart Grid Interoperability Centers in Europe and the U.S. 1 Electromobility holds great...

357

Shipping and Storage of Electric Motors  

Science Conference Proceedings (OSTI)

Electric motor predictive and preventive maintenance programs have been written and describe the best methodology for increasing motor reliability. However, many utilities have invested substantial resources into the procurement of spare motors. These motors are stored both onsite and off site (at vendor facilities). In addition, motors are being refurbished/reconditioned and must be shipped and possibly stored upon return.

2004-12-20T23:59:59.000Z

358

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicle Emission Simulator (MOVES) Motor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/otaq/models/moves/index.htm Cost: Free Equivalent URI: cleanenergysolutions.org/content/motor-vehicle-emission-simulator-move Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: http://www.epa.gov/otaq/models/moves/index.htm Intended to replace MOBILE6, NONROAD, and NMIM. Estimates energy consumption emissions from highway vehicles from 1999-2050 and accounts for

359

Patterning of the Ciona intestinalis Motor Ganglion  

E-Print Network (OSTI)

Pitx2 as markers for fast motor neurons and partition cells.for the specification of motor neuron identity. Cell Gans,Tsuda, M. (2010). Simple motor system of the ascidian larva:

Stolfi, Alberto Sunao

2011-01-01T23:59:59.000Z

360

Motor/generator - Energy Innovation Portal  

A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor ...

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industrial motor repair in the United States  

Science Conference Proceedings (OSTI)

This report characterizes the motor repair industry in the United States; summarizes current motor repair and testing practice; and identifies barriers to energy motor repair practice and recommends strategies for overcoming those barriers.

Schueler, V.; Leistner, P.; Douglass, J.

1994-09-01T23:59:59.000Z

362

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT  

E-Print Network (OSTI)

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

Roy, Subrata

363

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)  

E-Print Network (OSTI)

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

364

Using MotorMaster to Track Motor Inventory and Analyze Purchasing Decisions  

E-Print Network (OSTI)

MotorMaster 4.0 can be a useful software package for electric motor management decisions in industrial facilities. To be successful, the MotorMaster database must be populated with detailed motor nameplate information. Georgia Tech worked with a large, motor intensive chemical manufacturing plant to collect motor nameplate information on motors 60 hp or larger and populate the motor database. Approximately 130 motors were identified and surveyed. The completed motor database is used to track maintenance actions and to analyze motor replacement options. The approach used to secure and enter motor nameplate data along with examples of purchasing analyses completed will be presented. The success of the MotorMaster software with large motors has convinced the firm to expand its use to smaller horsepower motors.

Brown, M.; Meffort, W.

2007-01-01T23:59:59.000Z

365

Electric Motors and Power Quality Disturbances  

Science Conference Proceedings (OSTI)

Electric motors and motor-driven systems form the backbone of the industrial sector, but these systems are susceptible to several power quality-related problems. Unbalanced voltages; voltage sags, swells, and interruptions; and overvoltages or undervoltages can cause havoc with motors, including premature motor failure from increased heating, motor inefficiency, poor power factor, and decreased starting and fullload torques. Because motor failures often result in loss of revenue, industries need to take ...

2011-12-30T23:59:59.000Z

366

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2001-07-17T23:59:59.000Z

367

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2003-02-11T23:59:59.000Z

368

Trexa Motor Corporation TMC | Open Energy Information  

Open Energy Info (EERE)

Trexa Motor Corporation TMC Jump to: navigation, search Name Trexa Motor Corporation (TMC) Place Los Angeles, California Sector Vehicles Product Los Angeles - based subsidiary of...

369

PC Based wireless stepper motor control.  

E-Print Network (OSTI)

??This project is about making an embedded system in order to control different functionalities of a stepper motor. The main functions of this stepper motor (more)

Jamal, Omar; Khan, Shahnawaz

2013-01-01T23:59:59.000Z

370

CQST/CNEX Efficiency of Electric Motors  

Science Conference Proceedings (OSTI)

CQST/CNEX Efficiency of Electric Motors. NVLAP Lab Code: 200609-0. ... Send E-Mail to NVLAP at: NVLAP@nist.gov. Efficiency of Electric Motors. ...

2013-08-16T23:59:59.000Z

371

Mission Motors Company | Open Energy Information  

Open Energy Info (EERE)

Motors Company Place San Francisco, California Zip 94103 Product San Francisco-based electric Motorcycle manufacturer. References Mission Motors Company1 LinkedIn...

372

CQST/CNEX Efficiency of Electric Motors  

Science Conference Proceedings (OSTI)

... of Electric Motors. Accreditation Valid From: January 1, 2013 Through: December 31, 2013. [24/M01] IEEE 112, Method B Electric Motor Efficiency ...

2013-08-16T23:59:59.000Z

373

Determining Electric Motor Load and Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

nance logging, inventory control, energy and dollar savings tracking, and life cycle cost analysis. MotorMaster+ is available at no cost to Motor Challenge Partners. 10 Electrical...

374

Advanced Manufacturing Office: MotorMaster+ International  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ International on Google Bookmark Advanced Manufacturing Office: MotorMaster+ International on Delicious Rank...

375

Turn Motors Off When Not in Use  

SciTech Connect

This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

Not Available

2008-07-01T23:59:59.000Z

376

Magnetically Coupled Adjustable Speed Motor Drives  

Science Conference Proceedings (OSTI)

This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

Not Available

2008-07-01T23:59:59.000Z

377

Highly Efficient Electric Motor Systems - National Renewable ...  

Electric Motor Systems ... savings. Conical hubs Matching axial field poles. Issued Patents on Motor Geometry. 7 NREL Energy Forum November 2009 www.novatorque.com.

378

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

379

EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Drive (Power Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next-generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. The EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop was attended by senior officials of the Department of Energy and representatives from the following

380

EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer/Charging Workshop: Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior Jacob Ward, Vehicle Technologies Senior Analyst July 30, 2012 LAX Marriot, Los Angeles, California For "EV Everywhere" Analysis, Three Scenarios 1. PHEV40 - reduces battery size while removing range issues, but involves the higher cost of two powertrains 2. AEV100 - minimizes vehicle purchase cost, but introduces range/vehicle use/infrastructure tradeoffs 3. AEV300 - helps to address range issues, but large battery leads to high vehicle cost Vehicle-level analysis provides a starting point for setting EV Everywhere technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

7/26/2012 7/26/2012 EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Monday, July 30, 2012 - LAX Marriott, Los Angeles, CA Event Objective: DOE aims to obtain stakeholder input on the consumer acceptance and charging infrastructure barriers associated with the EV Everywhere Grand Challenge. This input will help guide the Challenge and the next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles - and to do so within the next 10 years. 8:00-8:30AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

382

Microsoft Word - EVS25_Primary Factors Impact Fuel Consumption of PHEV_FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles Richard 'Barney' Carlson, Matthew G. Shirk, and Benjamin M. Geller Energy Storage and Transportation Systems Department, Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83401, USA E-mail: richard.carlson@inl.gov Abstract- Plug-in hybrid electric vehicles (PHEVs) have proven to significantly reduce petroleum consumption when compared to conventional internal combustion engine vehicles by utilizing onboard electrical energy storage for propulsion. Through extensive testing of PHEVs, analysis has shown that fuel consumption of PHEVs is more

383

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu, modeling, electric vehicle 1 Introduction Car-sharing is defined as a system which allows to eachEVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger

Paris-Sud XI, Université de

384

Gamma Ray Bursts Cannot Produce the Observed Cosmic Rays Above 10 19 eV  

E-Print Network (OSTI)

Received; accepted 2 Using recent results indicating that the redshift distribution of ?-ray bursts most likely follows the redshift evolution of the star formation rate, I show that the energy input from these bursts at low redshifts is insufficient to account for the observed flux of ultrahigh energy cosmic rays with energies above 1019 eV. Subject Headings: gamma-rays: bursts cosmic rays: theory 3 1.

F. W. Stecker

1999-01-01T23:59:59.000Z

385

Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries  

DOE Green Energy (OSTI)

Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

Rowlette, J.J.

1981-01-15T23:59:59.000Z

386

Electric and Magnetic Fields Associated with Electric Vehicle Charging: EMF from EV Charging  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) are becoming increasingly common. On a routine basis, it is necessary to charge the batteries within these vehicles. Electric and magnetic fields (EMF) are produced as a direct result of charging, but they have not been measured in a systematic manner in order to gain a better understading of their characteristics. This study, performed at Southern California Edisons Electric Vehicle Test Center (EVTC) in Pomona, CA, was conducted to address ...

2013-11-07T23:59:59.000Z

387

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

DOE Green Energy (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

388

EV Sales Skyrocketing. eGallon Holds Steady. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. July 19, 2013 - 8:45am Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about 3 times less to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 · 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon 0 4 1 7 2 3 3 · 0 4 2 0 4 6 0 8 5 9 1 5 0 Data and Methodology The eGallon price is calculated using the most recently available state by state residential electricity prices. The state gasoline price above is either the statewide average retail price or a multi-state regional average

389

PHEV/EV Li-Ion Battery Second-Use Project (Presentation)  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

Neubauer, J.; Pesaran, A.

2010-04-01T23:59:59.000Z

390

Opacity measurement of a gold plasma at T{sub e} = 85 eV  

SciTech Connect

The opacity of a gold plasma at the temperature of 85 eV and density of 0.02 g/cm{sup 3} was measured over the energy range from 150 eV to 1200 eV. The gold sample was heated by thermal x-ray radiation generated with a foam-baffled gold cavity. The sample transmission was obtained from the backlight, absorption and self-emission spectra measured by a time-gated, spatially resolved grating spectrometer, with the backlight and absorption spectra being measured simultaneously in a single shot and the self-emission in another shot. The temperature and density of the gold absorber were determined by the hydrodynamic simulation with Multi-1D code, which was partially tested by the reemission radiative flux measurements of the heated sample. This work permits the first test of opacity models over the photon energy range that dominates the Rosseland mean opacity at the temperature of interest for the inertial confinement fusion.

Zhang Jiyan; Yang Jiamin; Yang Guohong; Li Hang; Yuan Zheng; Zhao Yang; Xiong Gang; Bao Lihua; Huang Chenwu; Ding Yongkun; Zhang Baohan; Zheng Zhijian [Research Center of Laser Fusion, P. O. Box 919-986, Mianyang 621900 (China); Xu Yan; Wu Zheqing; Yan Jun [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

2011-11-15T23:59:59.000Z

391

A Novel Approach to Determining Motor Load  

E-Print Network (OSTI)

Properly sized electric motors are essential if industrial plant efficiency is to be optimized and energy costs minimized. Because of the difficulty in making power measurements on three phase motors, loading is rarely, if ever, checked. A simple indication of motor load can be achieved by measuring operating speed because speed and load are almost linearly related. The decrease in motor speed from no load conditions, referred to as slip, can be determined with a non-contact, optical tachometer. Field measurements of motor slip were conducted at a textile plant to quantify motor load conditions. To verify the relationship between operating speed and load, measurements of motor power consumption on a representative number of motors were also conducted. The results of the motor survey, including number of motors, size, and load, are summarized in this paper along with an estimate of the savings from replacing oversized motors.

Brown, M.

1992-04-01T23:59:59.000Z

392

Submersible canned motor transfer pump  

DOE Patents (OSTI)

A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

1997-01-01T23:59:59.000Z

393

Submersible canned motor mixer pump  

DOE Patents (OSTI)

A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

Guardiani, Richard F. (Ohio Township, PA); Pollick, Richard D. (Sarver, PA)

1997-01-01T23:59:59.000Z

394

Submersible canned motor mixer pump  

DOE Patents (OSTI)

A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

Guardiani, R.F.; Pollick, R.D.

1997-10-07T23:59:59.000Z

395

InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs  

DOE Green Energy (OSTI)

The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

1998-11-24T23:59:59.000Z

396

Research Laboratories General Motors Corporation General Motors Technical Center  

Office of Legacy Management (LM)

MI. 1-q Research Laboratories General Motors Corporation General Motors Technical Center Warren, Michigan 48090 January 21, 1977 Occupational Health Standards Branch Office of Standards Development U. S. Nuclear Requlatory Commission Washington, D.C. 20555 Attention: Mr. Robert E. Alexander, Chief Dear Mr. Alexander: In 1974, General Motors Corporation acquired a manufacturing plant in Adrian, Michigan. On October 21, 1976, General Motors announced that work would begin immediately to prepare the plant for manufacturing operations (Appendix A). A news release, made by Mr. Irving Loop of ERDA and carried by radio station WABJ of Adrian, Michigan on May 11, 1976, stated that natural uranium was handled in the plant after World War II and that

397

Different methods for direct torque control of induction motor fed from current source inverter  

Science Conference Proceedings (OSTI)

Two different methods for direct torque control (DTC) of induction motor fed from current source inverter (CSI) is analyzed in the paper. The first one is derived from well-known DTC strategy developed for voltage inverter drives. This type of control ... Keywords: CSI, DTC, constant switching, hysteresis comparator, induction motor

Aleksandar Nikolic; Borislav Jeftenic

2008-07-01T23:59:59.000Z

398

SVPWM-Based Simulation of Direct Torque Control in Permanent Magnet Synchronous Motor  

Science Conference Proceedings (OSTI)

On the basis of analysis of the mathematical model of permanent magnet synchronous motor (PMSM), this paper is to propose a new type direct torque control system based on space vector pulse width modulation (SVPWM) technology aiming at big torque ripple, ... Keywords: permanent magnet synchronous motor, direct torque control, space vector pulse width modulation, MATLAB/Simulink

Huang Xianghui, Sun Nan

2013-10-01T23:59:59.000Z

399

State observer for synchronous motors  

DOE Patents (OSTI)

A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

Lang, Jeffrey H. (Waltham, MA)

1994-03-22T23:59:59.000Z

400

A Kinesin Motor In A Force-producing Conformation  

SciTech Connect

Kinesin motors hydrolyze ATP to produce force and move along microtubules, converting chemical energy into work by a mechanism that is only poorly understood. Key transitions and intermediate states in the process are still structurally uncharacterized, and remain outstanding questions in the field. Perturbing the motor by introducing point mutations could stabilize transitional or unstable states, providing critical information about these rarer states. Here we show that mutation of a single residue in the kinesin-14 Ncd causes the motor to release ADP and hydrolyze ATP faster than wild type, but move more slowly along microtubules in gliding assays, uncoupling nucleotide hydrolysis from force generation. A crystal structure of the motor shows a large rotation of the stalk, a conformation representing a force-producing stroke of Ncd. Three C-terminal residues of Ncd, visible for the first time, interact with the central {beta}-sheet and dock onto the motor core, forming a structure resembling the kinesin-1 neck linker, which has been proposed to be the primary force-generating mechanical element of kinesin-1. Force generation by minus-end Ncd involves docking of the C-terminus, which forms a structure resembling the kinesin-1 neck linker. The mechanism by which the plus- and minus-end motors produce force to move to opposite ends of the microtubule appears to involve the same conformational changes, but distinct structural linkers. Unstable ADP binding may destabilize the motor-ADP state, triggering Ncd stalk rotation and C-terminus docking, producing a working stroke of the motor.

Heuston, E.; Bronner, C; Kull, F; Endow, S

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Brushed permanent magnet DC MLC motor operation in an external magnetic field  

SciTech Connect

Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of magnetic shielding would be required.

Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

2010-05-15T23:59:59.000Z

402

GIZ-Preserving and Expanding the Role of Non-Motorized Transport | Open  

Open Energy Info (EERE)

GIZ-Preserving and Expanding the Role of Non-Motorized Transport GIZ-Preserving and Expanding the Role of Non-Motorized Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ-Preserving and Expanding the Role of Non-Motorized Trasnport Agency/Company /Organization: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Focus Area: Transportation Topics: Implementation, Market analysis, Pathways analysis Resource Type: Publications Website: www.itdp.org/documents/NMTmodule.pdf Cost: Free References: GIZ-Preserving and Expanding the Role of Non-Motorized Trasnport[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "GIZ-Preserving and Expanding the Role of Non-Motorized Trasnport" Retrieved from "http://en.openei.org/w/index.php?title=GIZ-Preserving_and_Expanding_the_Role_of_Non-Motorized_Transport&oldid=383248"

403

General Motors | Open Energy Information  

Open Energy Info (EERE)

description http:www.nrel.govnewspress2006375.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now General Motors is a company located in...

404

Transport Characteristics of Molecular Motors  

E-Print Network (OSTI)

Properties of transport of molecular motors are investigated. A simplified model based on the concept of Brownian ratchets is applied. We analyze a stochastic equation of motion by means of numerical methods. The transport is systematically studied with respect to its energetic efficiency and quality expressed by an effective diffusion coefficient. We demonstrate the role of friction and non-equilibrium driving on the transport quantifiers and identify regions of a parameter space where motors are optimally transported.

Machura, Lukasz; Luczka, Jerzy; 10.1016/j.biosystems.2008.05.033

2011-01-01T23:59:59.000Z

405

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

1996-01-01T23:59:59.000Z

406

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

Cowan, M. Jr.; Marder, B.M.

1996-09-03T23:59:59.000Z

407

Direct drive field actuator motors  

DOE Patents (OSTI)

A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

Grahn, A.R.

1998-03-10T23:59:59.000Z

408

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

409

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

410

Growth and morphology of 0.80 eV photoemitting indium nitride nanowires  

DOE Green Energy (OSTI)

InN nanowires with high efficiency photoluminescence emission at 0.80 eV are reported for the first time. InN nanowires were synthesized via a vapor solid growth mechanism from high purity indium metal and ammonia. The products consist of only hexagonal wurtzite phase InN. Scanning electron microscopy showed wires with diameters of 50-100nm and having fairly smooth morphologies. High-resolution transmission electron microscopy revealed high quality, single crystal InN nanowires which grew in the <0001> direction. The group-III nitrides have become an extremely important technological material over the past decade. They are commonly used in optoelectronic devices, such as high brightness light-emitting diodes (LEDs) and low wavelength laser diodes (LDs), as well as high power/high frequency electronic devices. Recently InN thin films grown by MOCVD and MBE were found to have a bandgap energy in the range of 0.7-0.9 eV, much lower than the value of {approx}1.9 eV found for InN films grown by sputtering. This large decrease in the direct bandgap transition energy and the ability to form ternary (InGaN) and quaternary (AlInGaN) alloys increases the versatility of group-III nitride optoelectronic devices, ranging from the near IR to the UV. Additionally, InN has some promising transport and electronic properties. It has the smallest effective electron mass of all the group-III nitrides which leads to high mobility and high saturation velocity10 and a large drift velocity at room temperature. As a result of these unique properties, there has been a large increase in interest in InN for potential use in optoelectronic devices, such as LDs and high efficiency solar cells, as well as high frequency/high power electronic devices.

Johnson, M.C.; Lee, C.J.; Bourret-Courchesne, E.D.; Konsek, S.L.; Aloni, S.; Han, W.Q.; Zettl, A.

2004-08-13T23:59:59.000Z

411

A new high energy stabilized nickel-zinc rechargeable battery system for SLI and EV applications  

SciTech Connect

The nickel oxide-zinc rechargeable battery system is a serious candidate for a high power economical EV battery. The introduction of a new chemistry has resulted in stabilization of the performance of the zinc anode without adversely affecting the nickel electrode. The result has been a major enhancement of the cycle life capability with retention of the remarkably high practical energy density (both gravimetric and volumetric) of the nickel-zinc system. Near term practical applications for both passenger car truck SLI batteries as well as long term deep cycle applications for electric vehicles are discussed.

Reisner, D.; Eisenberg, M.

1989-01-01T23:59:59.000Z

412

NREL's PHEV/EV Li-Ion Battery Secondary-Use Project  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

Newbauer, J.; Pesaran, A.

2010-06-01T23:59:59.000Z

413

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

Coffey, Howard T. (Darien, IL)

1993-01-01T23:59:59.000Z

414

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

Coffey, H.T.

1993-10-19T23:59:59.000Z

415

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

Coffey, H.T.

1992-12-31T23:59:59.000Z

416

Submersible canned motor transfer pump  

DOE Patents (OSTI)

A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

1997-08-19T23:59:59.000Z

417

A Study on Insulation Problems in Drive Fed Medium Voltage Induction Motors.  

E-Print Network (OSTI)

??The PWM (pulse-width-modulated) type voltage source converters (VSC) allow a precise speed control of induction motors with maximum achievable energy efficiency. However, the rapid growth (more)

Haq, Saeed UL

2007-01-01T23:59:59.000Z

418

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

419

The origin of 0.78 eV line of the dislocation related luminescence in silicon  

SciTech Connect

In this paper, the 0.78 eV line of the dislocation related luminescence in the electron-irradiated silicon has been investigated. It is found that the 0.78 eV line only exists in float zone silicon samples, and its intensity could be largely enhanced by high temperature and long time annealing while no 0.78 eV line was found in Czochralski silicon. The activation energy of 0.78 eV line in floating-zone silicon is {approx}13 meV, indicating a different nature from that of D1/D2 lines which can be ascribed to specific reconstructed dislocations which could be easily affected by point defects and temperature.

Xiang Luelue; Li Dongsheng; Jin Lu; Yang Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Pivac, Branko [Rudjer Boskovic Institute, Bijenicka 54, HR-10000 Zagreb (Croatia)

2012-09-15T23:59:59.000Z

420

A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV  

E-Print Network (OSTI)

X-ray Microscope at the ALS for operation up to 2500eV DavidLight Source [2]. In the new ALS facility the energy rangein the two existing STXMs at ALS and a flexible platform for

Kilcoyne, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Three phase AC motor controller  

DOE Patents (OSTI)

A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

Vuckovich, Michael (Elizabeth, PA); Wright, Maynard K. (Bethel Park, PA); Burkett, John P. (South Huntington Township, Westmoreland County, PA)

1984-03-20T23:59:59.000Z

422

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

The present invention relates generally to an electric motor winding and, more particularly, to a three phase motor armature winding arrangement designed to reduce motor vibration and improve efficiency. An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1995-12-31T23:59:59.000Z

423

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

424

Best Practices in Non-Motorized Transport Planning, Implementation and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Jump to: navigation, search Tool Summary Name: Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Agency/Company /Organization: United Nations Development Programme, Global Environment Facility Focus Area: Transportation Topics: Implementation, Market analysis, Pathways analysis Resource Type: Lessons learned/best practices Website: www.cyclingbotswana.org/fileadmin/Project_Documents/NMT%20Best%20Pract Cost: Free Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Screenshot

425

The infant motor profile : a standardized and qualitative assessment of motor bahaviour in infancy.  

E-Print Network (OSTI)

??This thesis presents the Infant Motor Profile (IMP), a new, video-based qualitative assessment of motor behaviour of infants aged 3 to 18 months. The IMP (more)

Heineman, Kirsten Roselien

2010-01-01T23:59:59.000Z

426

Development of 1.25 eV InGaAsN for triple junction solar cells  

DOE Green Energy (OSTI)

Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

2000-05-16T23:59:59.000Z

427

Motor monitoring method and apparatus using high frequency ...  

A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor ...

428

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network (OSTI)

Carbonyl compounds present in motor vehicle exhaust, rangingfrom gasoline and diesel motor vehicles. Environ. Sci. Tech.composition and toxicity of motor vehicle emission samples.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

429

Mechanisms of motor activity regulation in axonal transport  

E-Print Network (OSTI)

emerging principles of kinesin motor utilization." Annu Revopposite-polarity microtubule motors." J Cell Biol 156( 4):Kinesin mutations cause motor neuron disease phenotypes by

Reis, Gerald Feliz

2008-01-01T23:59:59.000Z

430

VIA Motors electric vehicle platform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform More Documents &...

431

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

U.S. Energy Information Administration (EIA)

benzene extracted from the reformulated motor gasoline pool in their conventional motor gasoline. Importers lacking 1990 motor gasoline quality data with which to

432

Building Energy Software Tools Directory: MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

implement an effective energy management program. MotorMaster+ contains a motor inventory module, where motor nameplate data is stored and linked to utility, facility, plant...

433

Lab 4 -Motor Constants and Sensor Calibration Consider a DC servo motor which is connected to a power supply. The motor inertia is Jm. The rotational  

E-Print Network (OSTI)

Lab 4 - Motor Constants and Sensor Calibration PRE-LAB Consider a DC servo motor which is connected to a power supply. The motor inertia is Jm. The rotational damping in the motor is bm. The motor produces a torque Tm = Kmi where Km is the motor's torque constant and i is the current from the power supply. a

Stanford University

434

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network (OSTI)

alcohol Unfinished oils Motor gasoline blending componentsalcohol Unfinished oils Motor gasoline blending componentsthe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

435

Thermoelectric generator for motor vehicle  

DOE Patents (OSTI)

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

436

Homopolar motor with dual rotors  

DOE Patents (OSTI)

A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

Hsu, J.S.

1998-12-01T23:59:59.000Z

437

MEMORANDUM FOR THE DIRECTOR, OFFICE OF MANAGEMENT, BUDGET EV LUATION/CHIEF FINANCIAL OFFICER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ES January 10, 2003 ES January 10, 2003 MEMORANDUM FOR THE DIRECTOR, OFFICE OF MANAGEMENT, BUDGET EV LUATION/CHIEF FINANCIAL OFFICER FROM: / J ti .Maharay FR Assistant Inspector General for Audit Services S Office of Inspector General SUBJECT: Federal Managers' Financial Integrity Act Audit Report Audit Report No.: OAS-L-03-05 We reviewed selected aspects of the Department of Energy's implementation of the Federal Managers' Financial Integrity Act (FMFIA) of 1982. The objective of the FMFIA, and the Department's Management Control Program, is to ensure that controls are working effectively and that programs and administrative functions are performed in an economic and efficient manner consistent with applicable laws. In addition to our audit work in this area, we also recently issued our annual report on

438

DOE/EV-0005/11 Formerly Utilized M.ED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

1 1 Formerly Utilized M.ED/AEC Sites Remedial Action Program Radidogical Survey of the Seneca Army Depot Romulus, New York February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology : E 1 bOE/EV-0005/11 UC-70 Formerly Utilized MEDIAEC Sites Remedial Action Program Radidogical Survey of the Seneca Army Depot Romulus, New York February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 By the Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Available from: National Technical Information Service (NTIS) U.S. Department of Comrqerce

439

DOE/EV-0005/15 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

5 5 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/15 UC-71 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545 Under Contract No. W-7405-ENG-36 Available from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

440

DOE/EV-0005/10 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

0 0 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohio February 1979 - Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/10 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohii February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 By the Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Available from: National Technical Information Service (NTIS)

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE/EV-0005/19 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

9 9 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980 . Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology ~--.. _..-- DOE/EV-0005/19 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiologidal Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Argonne National Laboratory Argonne, Illinois 60439 Under Contract No. W-31-1 09-ENG-38 -- _.. .-___

442

DOE/EV-0005/26 ANL-OHS/HP-82-100  

Office of Legacy Management (LM)

J-L.f!~: J-L.f!~: r*' c;,:i &3&j DOE/EV-0005/26 ANL-OHS/HP-82-100 i$; ' ,\ : -ed - *' J&&&g y FORMERLY UTILIZED MED/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE GEORGE HERBERT JONES CHEMICAL LABORATORY THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS June 1347, 1977 OCCUPATIONAL HEALTH AND SAFETY DIVISION Health Physics Section ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS Prepared for the U. S. DEPARTMENT OF ENERGY under Contract W -31409-Eng=38 The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in

443

DOE/EV-0005/16 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

6 6 Formerly Utilized MED/AEC Sites Remedial Action Program Radic&@cal Survey of the St. Louis Airport Storage Site, St. Louis, Missouri September 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology .__ -. __ ..- -- DOE/EV-0005/16 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the St. Louis Airport Storage Site, St. Louis, Missouri September 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Under Contract No. W-7405-ENG-26 .--__ _ .- _--- _ ~- Available from:

444

Analysis of hunting in Synchronous Hysteresis Motor  

E-Print Network (OSTI)

The Synchronous Hysteresis Motor has an inherent instability when it is used to drive a gyroscope wheel. The motor ideally should spin at a constant angular velocity, but it instead sporadically oscillates about synchronous ...

Truong, Cang Kim, 1979-

2004-01-01T23:59:59.000Z

445

Hybrid vehicle motor alignment - Energy Innovation Portal  

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion ...

446

Electric Motor Predictive Maintenance: Draft Guidelines  

Science Conference Proceedings (OSTI)

Predictive Maintenance can enhance the early detection and avoidance of incipient equipment failures in electric motors. This report provides draft guidelines to support the development of electric motor predictive maintenance (EMPM) programs at utility sites.

1997-10-16T23:59:59.000Z

447

Self-bearing motor design & control  

E-Print Network (OSTI)

This thesis presents the design, implementation and control of a new class of self-bearing motors. The primary thesis contributions include the design and experimental demonstration of hysteresis self-bearing motors, novel ...

Imani Nejad, Mohammad

2013-01-01T23:59:59.000Z

448

NEW MOTOR DESIGN CONCEPT FOR ENERGY SAVING APPLIED TO  

E-Print Network (OSTI)

SHARK, NEW MOTOR DESIGN CONCEPT FOR ENERGY SAVING APPLIED TO SWITCHED RELUCTANCE MOTOR by Ana of the cylindrical and Shark air gap Switched Reluctance Motors and their assistance during the experimental work with other motor technologies such

449

Measuring Devices: Compressed Natural Gas Retail Motor ...  

Science Conference Proceedings (OSTI)

Compressed Natural Gas Retail Motor-Fuel Dispensers. ... Hydrogen Measuring Devices; Liquefied Petroleum Gas Liquid-Measuring Devices; ...

2010-10-05T23:59:59.000Z

450

Motorized control for mirror mount apparatus  

DOE Patents (OSTI)

A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

Cutburth, Ronald W. (Tracy, CA)

1989-01-01T23:59:59.000Z

451

Frequency modulation drive for a piezoelectric motor  

DOE Patents (OSTI)

A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

Mittas, Anthony (Albuquerque, NM)

2001-01-01T23:59:59.000Z

452

Advanced Electric Motor Predictive Maintenance Project  

Science Conference Proceedings (OSTI)

EPRI sponsored the three-year Advanced Electric Motor Predictive Maintenance (AEMPM) project in 2000 to increase the effectiveness of motor maintenance at a time when utilities were in a state of declining motor knowledge due to downsizing and restructuring. The project identified areas for improvement that were common to most utilities and selected appropriate measures to address these concerns. Areas addressed include documenting motor knowledge, increasing utility confidence in newer technologies and ...

2003-05-28T23:59:59.000Z

453

Retail Motor-Fuel Dispensers and Consoles  

Science Conference Proceedings (OSTI)

Retail Motor-Fuel Dispensers and Consoles. Purpose: This 5-day RMFD course provides participants with the knowledge ...

2013-01-11T23:59:59.000Z

454

Coupling between motor proteins determines dynamic behaviors of motor protein assemblies  

E-Print Network (OSTI)

Coupling between motor proteins determines dynamic behaviors of motor protein assemblies Jonathan W of intracellular cargos by multiple microtubule motor proteins is believed to be a common and significant phenomenon in vivo, yet signatures of the microscopic dynamics of multiple motor systems are only now

455

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

the use of Persian-Gulf oil by motor vehicles The sociallye r s i a n - G u l f Oil f o r Motor Vehicles 16. T h e C ofor motor vehicles: lost consumer surplus in other oil-

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

456

Magnetic tweezers to study DNA motors  

E-Print Network (OSTI)

Magnetic tweezers to study DNA motors Maria Mañosas Ritort lab UB Barcelona Croquette-Bensimon lab ENS France #12;· Introduction to MT (magnetic tweezers) · Applications: 1. Tracking DNA motors: (i) Helicases (ii) Annealing motor 2. Studying a multiprotein system: DNA replication Outline #12;· Atomic force

Ritort, Felix

457

Thermodynamics and Kinetics of a Brownian Motor  

E-Print Network (OSTI)

Thermodynamics and Kinetics of a Brownian Motor R. Dean Astumian Nonequilibrium fluctuations particle separation and the design of molecular motors and pumps. A small particle in a liquid is subject in conjunction with an- isotropy to drive a motor in the context of a "ratchet and pawl" device shrunk to micro

Linke, Heiner

458

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS  

E-Print Network (OSTI)

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano M. da Silva, B.S. A Thesis;i Abstract Induction motors are used worldwide as the "workhorse" in industrial applications material. However, induction motor faults can be detected in an initial stage in order to prevent

Povinelli, Richard J.

459

Ameren Illinois (Electric) - Custom, HVAC, and Motor Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Custom, HVAC, and Motor Business Efficiency Incentives Ameren Illinois (Electric) - Custom, HVAC, and Motor Business Efficiency Incentives Eligibility Commercial Industrial...

460

Motor vehicle fuel analyzer  

DOE Patents (OSTI)

A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

Hoffheins, B.S.; Lauf, R.J.

1997-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

462

Influence of direct motor-motor interaction in models for cargo transport by a single team of motors  

E-Print Network (OSTI)

We analyze theoretically the effects of excluded-volume interactions between motors on the dynamics of a cargo driven by multiple motors. The model considered shares many commons with other recently proposed in the literature, with the addition of direct interaction between motors and motor back steps. The cargo is assumed to follow a continuum Langevin dynamics, while individual motors evolve following a Monte Carlo algorithm based on experimentally accessible probabilities for discrete forward and backward jumps, and attachment and detachment rates. The links between cargo and motors are considered as non linear springs. By means of numerical simulations we compute the relevant quantities characterizing the dynamical properties of the system, and we compare the results to those for non interacting motors. We find that interactions lead to quite relevant changes in the force-velocity relation for cargo, with a considerable reduction of the stall force, and cause also a notable decrease of the run length. The...

Bouzat, Sebastian; 10.1088/1478-3975/7/4/046009

2010-01-01T23:59:59.000Z

463

Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating  

DOE Patents (OSTI)

A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

Casada, Donald A. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

464

Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating  

DOE Patents (OSTI)

A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

Casada, D.A.

1996-01-16T23:59:59.000Z

465

Use of MCC-Based Motor Torque Measurements for Periodic Verification of Motor-Operated Valves  

Science Conference Proceedings (OSTI)

This report develops, justifies, and validates a motor control center- (MCC-) based motor torque periodic verification (MTPV) method for torque-switch-controlled closing strokes of rising stem motor-operated valves (MOVs) with ac motors. The report details the evaluation of motor torque data obtained from electrical measurements at the MCC and covers the use of these (and other) measurements in MOV periodic verification (PV) testing.

2006-03-30T23:59:59.000Z

466

Method and apparatus for controlling multiple motors  

DOE Patents (OSTI)

A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

Jones, Rollin G. (Los Alamos, NM); Kortegaard, Bert L. (Los Alamos, NM); Jones, David F. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

467

Method and apparatus for controlling multiple motors  

DOE Patents (OSTI)

A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

Jones, R.G.; Kortegaard, B.L.; Jones, D.F.

1986-07-22T23:59:59.000Z

468

Dielectric response of AlSb from 0.7 to 5.0 eV determined by in situ ellipsometry  

SciTech Connect

We present pseudodielectric function data <{epsilon}>=<{epsilon}{sub 1}>+i<{epsilon}{sub 2}> from 0.7 to 5.0 eV of oxide-free AlSb that are the closest representation to date of the intrinsic bulk dielectric response {epsilon} of the material. Measurements were done on a 1.5 {mu}m thick film grown on (001) GaAs by molecular beam epitaxy. Data were obtained with the film in situ to avoid oxidation artifacts. Overlapping critical-point (CP) structures in the E{sub 2} energy region were identified by means of band-structure calculations done with the linear augmented Slater-type orbital method. Calculated CP energies agree well with those obtained from data, confirming the validity of the calculations.

Jung, Y. W.; Ghong, T. H.; Byun, J. S.; Kim, Y. D. [Department of Physics and Nano-Optical Property Laboratory, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, H. J.; Chang, Y. C. [Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan and Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801 (United States); Shin, S. H.; Song, J. D. [Center for Spintronics Research, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

2009-06-08T23:59:59.000Z

469

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

470

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

471

Hermetically sealed superconducting magnet motor  

DOE Patents (OSTI)

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

1996-07-02T23:59:59.000Z

472

Hermetically sealed superconducting magnet motor  

DOE Patents (OSTI)

A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

DeVault, Robert C. (Knoxville, TN); McConnell, Benjamin W. (Knoxville, TN); Phillips, Benjamin A. (Benton Harbor, MI)

1996-01-01T23:59:59.000Z

473

Solid Rocket Motor Acoustic Testing  

DOE Green Energy (OSTI)

Acoustic data are often required for the determination of launch and powered flight loads for rocket systems and payloads. Such data are usually acquired during test firings of the solid rocket motors. In the current work, these data were obtained for two tests at a remote test facility where we were visitors. This paper describes the data acquisition and the requirements for working at a remote site, interfacing with the test hosts.

Rogers, J.D.

1999-03-31T23:59:59.000Z

474

System and method for motor speed estimation of an electric motor  

DOE Patents (OSTI)

A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

Lu, Bin (Kenosha, WI); Yan, Ting (Brookfield, WI); Luebke, Charles John (Sussex, WI); Sharma, Santosh Kumar (Viman Nagar, IN)

2012-06-19T23:59:59.000Z

475

Performance status of 0.55 eV InGaAs thermophotovoltaic cells  

DOE Green Energy (OSTI)

Data on {approximately} 0.55 eV In{sub 0.72}Ga{sub 0.28}As cells with an average open-circuit voltage (Voc) of 298 mV (standard deviation 7 mV) at an average short-circuit current density of 1.16 A/cm{sup 2} (sdev. 0.1 A/cm{sup 2}) and an average fill-factor of 61.6% (sdev. 2.8%) is reported. The absorption coefficient of In{sub 0.72}Ga{sub 0.28}As was measured by a differential transmission technique. The authors use a numerical integration of the absorption data to determine the radiative recombination coefficient for In{sub 0.72}Ga{sub 0.28}As. Using this absorption data and simple one-dimensional analytical formula the above cells are modeled. The models show that the cells may be limited more by Auger recombination rather than Shockley-Read-Hall (SRH) recombination at dislocation centers caused by the 1.3% lattice mismatch of the cell to the host InP wafer.

Wojtczuk, S.; Colter, P. [Spire Corp., Bedford, MA (United States); Charache, G.; DePoy, D. [Lockheed Martin Inc., Schenectady, NY (United States)

1998-10-01T23:59:59.000Z

476

Studies of Air Showers above 10^18 eV with the CHICOS Array  

E-Print Network (OSTI)

CHICOS (California HIgh school Cosmic ray ObServatory) is presently an array of more than 140 detectors distributed over a large area (~400 km^2) of southern California, and will consist of 180 detectors at 90 locations in the near future. These sites, located at area schools, are equipped with computerized data acquisition and automatic nightly data transfer (via internet) to our Caltech lab. The installed sites make up the largest currently operating ground array for ultra-high energy cosmic ray research in the northern hemisphere. The goal of CHICOS is to provide data related to the flux and distribution of arrival directions for ultra-high energy cosmic rays. We have performed detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers for the CHICOS array. Calculations were performed for proton primaries with energies 10^18 to 10^21 eV and zenith angles out to 50 degrees. We have developed novel parameterizations for both distribu...

Lynn, T W; Carlson, B E; Jillings, C J; Larson, M B; McKeown, R D; Hill, J E; Falkowski, B J; Seki, R; Sepikas, J; Yodh, G B; Wells, D; Chan, K C

2005-01-01T23:59:59.000Z

477

EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation  

SciTech Connect

This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2013-01-01T23:59:59.000Z

478

Coupling of Two Motor Proteins: a New Motor Can Move Faster  

E-Print Network (OSTI)

We study the effect of a coupling between two motor domains in highly-processive motor protein complexes. A simple stochastic discrete model, in which the two parts of the protein molecule interact through some energy potential, is presented. The exact analytical solutions for the dynamic properties of the combined motor species, such as the velocity and dispersion, are derived in terms of the properties of free individual motor domains and the interaction potential. It is shown that the coupling between the motor domains can create a more efficient motor protein that can move faster than individual particles. The results are applied to analyze the motion of helicase RecBCD molecules.

Evgeny B. Stukalin; Hubert Phillips III; Anatoly B. Kolomeisky

2005-02-19T23:59:59.000Z

479

Method for assessing in-service motor efficiency and in-service motor/load efficiency  

DOE Patents (OSTI)

A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

480

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

2.2 2.2 71.6 66.6 60.0 56.1 63.1 81.2 80.6 71.7 64.6 - 69.7 February ............................. 72.7 72.2 67.3 60.3 56.4 63.3 81.5 80.9 72.7 64.8 - 70.4 March .................................. 77.0 76.6 71.7 66.0 64.7 68.7 85.9 85.3 77.7 70.0 - 75.5 April .................................... 87.8 87.6 82.8 76.2 76.2 79.5 96.1 95.6 88.4 80.5 - 86.2 May ..................................... 94.1 93.7 89.0 76.6 74.5 82.0 103.1 102.3 93.9 80.5 - 90.1 June .................................... 91.6 91.0 86.1 70.6 67.0 77.6 100.7 99.7 91.6 74.8 - 86.7 July ..................................... 87.8 87.6 83.0 70.8 68.0 76.3 96.9 96.3 88.3 74.9 - 84.3 August ................................ 84.0 83.8 78.3 68.9 65.0 72.8 93.1 92.5 83.5 73.3 W 80.6 September .......................... 82.1 82.0 76.0 69.6 66.1 72.2 91.0 90.6 81.2 73.7 W

Note: This page contains sample records for the topic "type ev motor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

8,502.8 8,502.8 30,091.1 22,860.9 121,863.2 24,529.2 169,253.3 7,955.3 8,081.1 12,658.5 10,618.5 1,152.7 24,429.7 February ............................. 33,160.7 35,054.9 31,625.2 135,105.9 26,023.8 192,754.9 5,205.4 5,273.9 5,951.6 5,714.2 333.0 11,998.8 March .................................. 37,159.8 39,011.8 35,012.6 142,409.7 27,404.1 204,826.5 2,090.0 2,127.2 2,619.4 2,344.1 - 4,963.5 April .................................... 38,869.0 40,735.1 36,827.8 142,606.1 26,540.1 205,973.9 568.3 580.0 980.8 1,461.1 - 2,442.0 May ..................................... 39,582.4 41,396.9 37,319.3 150,843.9 27,558.2 215,721.4 573.6 584.7 957.5 1,537.7 - 2,495.2 June .................................... 40,991.9 42,912.3 37,954.3 156,346.5 32,447.1 226,747.9 591.6 592.0 990.8 1,609.0 -

482

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

220.9 220.9 31,104.3 23,193.9 128,995.0 28,849.6 181,038.6 5,089.3 5,164.2 4,062.8 5,720.8 - 9,783.6 February ............................. 31,284.4 33,213.6 24,062.8 134,673.5 33,175.3 191,911.6 4,908.5 4,980.9 4,025.8 5,317.8 - 9,343.6 March .................................. 34,100.8 36,002.0 25,985.0 139,340.5 30,160.8 195,486.2 2,710.3 2,764.7 2,622.6 2,796.9 - 5,419.5 April .................................... 35,684.3 37,877.0 27,895.8 146,733.8 29,409.3 204,038.9 1,203.7 1,224.2 652.4 2,016.6 - 2,669.0 May ..................................... 35,150.2 36,866.7 27,401.6 148,271.7 28,449.3 204,122.6 1,711.4 1,730.6 1,284.0 2,091.9 - 3,375.9 June .................................... 36,536.0 38,235.2 27,402.2 151,739.3 24,832.7 203,974.3 1,956.2 1,978.1

483

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4,707.0 4,707.0 35,821.0 18,450.2 130,177.8 22,726.5 171,354.5 3,900.7 3,926.0 4,696.8 7,088.7 - 11,785.5 February ............................. 36,412.6 37,699.7 20,174.0 142,313.8 25,388.9 187,876.8 3,924.9 3,949.8 5,137.3 6,882.9 - 12,020.2 March .................................. 36,632.6 38,121.0 21,255.9 152,151.5 30,915.0 204,322.3 3,382.2 3,401.8 4,711.1 5,122.9 - 9,833.9 April .................................... 37,971.4 39,384.5 23,410.4 155,157.1 40,216.9 218,784.4 1,927.8 1,934.5 1,997.5 3,438.3 - 5,435.9 May ..................................... 37,771.0 39,109.5 22,504.7 154,536.5 34,938.2 211,979.5 1,944.7 1,953.1 1,570.1 3,450.5 - 5,020.5 June .................................... 37,777.7 38,969.0 22,350.8 163,781.5 29,805.1 215,937.4 2,027.1

484

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

161.3 161.3 30,767.0 22,353.2 127,342.1 24,284.9 173,980.2 8,319.4 8,460.9 13,456.3 W W 24,653.0 February ............................. 32,286.1 34,080.3 31,066.3 138,106.2 29,977.1 199,149.6 6,264.3 6,341.7 6,239.1 5,890.3 - 12,129.4 March .................................. 36,529.7 38,362.8 35,134.3 141,063.5 25,588.4 201,786.1 2,972.7 3,032.6 2,589.4 W W 4,958.5 April .................................... 36,904.9 38,994.6 31,715.8 147,020.0 33,979.9 212,715.8 1,558.8 1,592.8 1,049.5 1,668.8 - 2,718.3 May ..................................... 36,751.1 38,541.5 28,743.2 148,337.4 29,640.9 206,721.5 1,299.8 1,333.0 1,005.5 1,838.7 - 2,844.3 June .................................... 37,465.1 39,108.4 28,592.7 147,682.3 36,046.6 212,321.6

485

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

3,177.2 3,177.2 34,690.6 19,370.8 133,144.1 32,691.0 185,205.9 4,123.8 4,154.0 3,780.0 6,946.2 - 10,726.2 February ............................. 34,982.2 36,460.3 20,433.1 137,937.1 31,470.5 189,840.6 3,923.6 3,954.4 3,674.9 6,513.4 - 10,188.4 March .................................. 37,598.4 39,137.5 21,474.3 144,372.0 29,697.5 195,543.8 2,947.2 2,972.1 3,243.6 4,126.4 - 7,370.0 April .................................... 34,901.4 36,438.7 22,519.1 148,658.4 39,120.8 210,298.2 2,159.0 2,174.7 1,880.2 3,562.0 - 5,442.2 May ..................................... 35,698.2 37,200.2 22,890.9 150,690.5 35,704.2 209,285.5 2,007.8 2,022.5 1,824.9 3,446.9 - 5,271.8 June .................................... 36,351.1 37,897.0 23,252.4 157,837.8 38,644.7 219,734.8 2,006.0

486

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7.2 7.2 66.8 59.8 52.5 48.2 53.6 75.7 75.1 65.4 57.1 W 60.9 February ............................. 67.0 66.6 60.6 53.5 49.6 54.8 75.4 74.9 66.1 58.1 NA 61.8 March .................................. 67.9 67.6 61.1 54.5 50.4 55.7 75.8 75.3 66.5 58.3 NA 62.2 April .................................... 73.1 72.8 66.9 62.3 56.4 62.6 80.8 80.4 72.4 66.7 W 69.3 May ..................................... 79.0 78.6 72.1 67.7 62.0 68.0 87.2 86.6 77.4 72.5 NA 74.8 June .................................... 79.2 78.6 70.3 62.4 58.5 63.9 87.6 86.8 75.9 66.8 NA 71.0 July ..................................... 75.6 75.0 66.0 56.4 52.9 58.5 83.8 83.0 71.4 60.2 NA 65.5 August ................................ 73.0 72.6 64.8 57.0 51.8 58.3 81.0 80.5 69.8 60.8 NA 64.9 September .......................... 72.0 71.8 64.8 57.7 52.3 58.7 79.8 79.5 69.6

487

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W W 53.8 W W 62.5 W W 64.6 W W 56.9 July ... W W 51.0 W W 61.2 W W 63.1 W W 54.4 August ... W W 49.3 W W 57.4...

488

Motor Gasoline Blending Components Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

489

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4.6 4.6 73.9 70.5 59.6 55.7 64.4 84.2 83.3 75.7 63.9 - 72.4 February ............................. 73.7 73.0 69.3 59.8 57.2 64.1 82.9 82.1 74.2 64.6 - 71.6 March .................................. 72.3 71.6 68.0 57.9 54.1 62.3 81.7 80.8 73.1 62.4 - 70.1 April .................................... 74.8 74.2 70.8 64.0 59.7 67.0 83.8 83.2 75.8 68.3 - 73.7 May ..................................... 80.4 80.0 75.3 69.5 64.6 71.9 89.2 88.6 80.5 74.2 - 78.7 June .................................... 81.7 81.0 75.3 65.9 61.6 70.3 90.3 89.5 80.6 70.7 - 77.7 July ..................................... 78.7 77.8 71.7 60.3 57.9 65.6 87.5 86.5 77.1 65.1 - 73.6 August ................................ 75.5 74.7 68.8 59.9 56.7 63.6 83.9 83.2 73.8 64.5 - 71.0 September .......................... 73.5 72.9 67.4 61.0 56.9 63.4 81.6 81.0 72.2 65.2 -

490

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

84.5 84.5 84.3 77.3 74.4 72.2 75.5 93.4 93.0 82.9 78.3 W 81.7 February ............................. 84.3 84.0 77.5 71.6 71.6 74.6 93.3 92.9 83.1 75.4 81.2 81.0 March .................................. 82.7 82.5 77.8 70.5 71.8 74.1 91.7 91.3 83.3 74.2 W 80.7 April .................................... 82.8 82.6 79.3 68.6 68.2 73.7 91.9 91.5 84.4 72.5 W 80.9 May ..................................... 82.3 81.6 77.5 68.2 63.8 71.9 91.5 90.8 83.2 72.3 W 79.9 June .................................... 80.3 79.4 75.0 63.9 58.9 68.5 89.9 89.0 80.9 68.7 W 77.2 July ..................................... 78.8 78.0 73.0 64.8 59.0 67.9 88.3 87.5 79.0 69.2 W 75.8 August ................................ 85.0 84.5 80.6 74.0 70.7 76.5 94.5 93.9 86.5 78.3 W 83.9 September .......................... 88.1 87.2 83.6 71.9 71.2 77.2 97.6 96.7 89.4 75.8 W

491

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

73.0 73.0 72.5 68.2 57.5 55.3 62.2 82.0 81.4 74.0 61.5 W 70.2 February ............................. 67.2 66.8 62.0 54.9 53.1 57.9 76.8 76.4 67.7 58.9 W 65.0 March .................................. 62.7 62.4 57.3 52.2 49.7 54.3 72.2 71.9 63.2 56.0 W 61.0 April .................................... 65.2 65.0 59.8 55.6 53.9 57.3 74.1 73.9 65.6 59.7 W 63.8 May ..................................... 69.7 69.3 65.1 58.0 53.8 60.7 78.8 78.4 70.9 62.1 W 68.2 June .................................... 68.6 68.0 63.7 54.5 48.4 57.8 77.8 77.3 69.8 58.9 W 66.3 July ..................................... 66.9 66.4 61.6 51.8 47.6 55.5 76.6 76.1 68.0 56.2 W 64.1 August ................................ 65.0 64.4 59.4 48.1 45.2 52.8 75.1 74.5 65.7 52.4 W 61.4 September .......................... 63.4 63.0 58.4 49.1 46.1 52.8 73.4 73.0 64.6 53.1 W

492

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

91.0 91.0 91.0 80.1 77.2 - 78.5 100.2 100.0 84.9 80.2 - 82.6 February ............................. 93.1 92.9 83.8 77.7 - 80.4 101.1 100.8 88.1 80.2 - 84.1 March .................................. 91.7 91.5 85.2 75.1 - 79.8 96.8 96.8 90.1 NA - 84.4 April .................................... 88.3 88.1 79.3 69.6 - NA 94.0 93.9 83.7 70.7 - NA May ..................................... 89.4 89.3 81.7 75.8 - 78.1 95.8 95.7 88.0 76.9 - 81.6 June .................................... 88.5 88.4 79.4 71.7 - 74.6 95.5 95.5 84.5 72.9 - 77.2 July ..................................... 86.2 86.1 75.4 71.2 - 72.8 93.0 93.0 81.2 72.8 - 75.9 August ................................ 89.3 89.2 79.6 77.7 - 78.4 96.6 96.5 85.0 79.2 - 81.3 September .......................... 91.3 91.0 84.4 74.8 - 78.3 97.9 97.7 88.2 77.7 - 81.5 October

493

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

59.5 59.5 58.9 54.4 42.1 37.1 46.8 70.2 69.7 61.7 46.4 - 56.9 February ............................. 57.3 56.7 52.7 40.6 39.2 45.9 68.2 67.7 60.2 44.8 W 55.3 March .................................. 64.5 64.4 60.1 52.3 48.6 55.3 74.2 73.8 67.6 55.6 W 63.8 April .................................... 82.3 81.6 79.9 62.3 57.2 69.6 92.4 91.6 84.9 65.4 W 78.7 May ..................................... 79.8 78.9 76.3 59.2 54.0 66.0 90.6 89.9 82.9 63.9 W 76.6 June .................................... 74.7 74.6 71.0 61.1 58.0 64.9 85.2 84.8 77.6 64.9 W 73.4 July ..................................... 79.4 79.3 75.9 69.7 66.3 71.9 89.3 88.9 81.9 72.6 NA 78.7 August ................................ 86.5 86.0 82.9 73.3 73.5 77.7 96.4 95.7 88.9 76.6 W 84.8 September .......................... 86.9 86.3 82.0 73.5 70.5 76.9 96.3 95.6 88.7 77.5 W

494

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

83.6 83.6 83.3 77.1 71.3 66.2 71.8 91.6 91.1 82.2 75.5 - 78.4 February ............................. 82.1 81.8 74.8 68.6 64.3 69.3 90.3 89.8 80.0 72.5 - 75.7 March .................................. 79.9 79.7 72.6 66.3 62.6 67.2 88.1 87.8 78.3 70.3 W 73.5 April .................................... 79.0 78.8 72.4 65.2 60.7 66.3 87.3 87.0 77.8 69.3 - 72.7 May ..................................... 79.6 79.5 73.0 67.5 61.8 67.9 87.5 87.2 78.4 70.7 - 73.8 June .................................... 78.9 78.7 70.9 63.9 59.0 65.0 86.8 86.5 76.6 67.2 - 71.0 July ..................................... 77.3 77.2 69.7 63.8 57.6 64.3 85.4 85.1 75.7 67.3 - 70.6 August ................................ 82.1 81.9 75.4 71.0 63.7 70.9 89.9 89.6 81.0 74.8 - 77.3 September .......................... 80.9 80.7 73.3 66.3 60.8 67.1 89.1 88.6 79.2 69.9 -

495

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

6 6 68.7 60.7 56.0 64.5 85.1 84.6 73.7 64.3 - 70.0 February ............................. 76.3 76.1 67.3 62.9 55.2 65.1 84.6 83.9 70.0 65.5 - 68.2 March .................................. 78.1 77.9 72.0 65.0 W 68.5 84.1 83.8 75.1 66.1 - 70.1 April .................................... 82.6 82.5 76.1 67.9 - 71.4 89.7 89.6 80.0 69.7 - 73.8 May ..................................... 87.9 87.9 79.9 71.8 - 75.1 94.3 94.2 84.6 73.5 - 77.7 June .................................... 90.2 90.2 80.0 66.5 - 72.0 96.4 96.3 84.0 68.7 - 75.0 July ..................................... 86.3 86.4 77.3 62.6 - 68.5 92.5 92.5 78.3 63.9 - 69.6 August ................................ 82.8 82.8 76.3 63.7 - 68.7 87.9 87.8 77.6 65.3 - 69.8 September .......................... 82.4 81.9 73.9 66.4 NA 69.4 NA NA 75.7 68.9 - 72.4 October ...............................

496

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7 7 69.7 61.6 W 65.5 84.2 83.9 75.4 65.0 - 71.8 February ............................. 78.1 77.6 71.3 64.5 - 68.0 85.6 85.1 77.4 67.6 - 73.8 March .................................. 83.3 83.0 79.0 72.2 W 75.7 89.7 89.4 85.1 74.4 - 81.1 April .................................... 92.1 91.9 86.0 76.1 - 79.5 100.6 100.1 93.3 77.6 - 84.9 May ..................................... 96.8 96.4 92.4 76.5 - 81.5 105.4 104.6 99.0 77.5 - 86.2 June .................................... 95.6 95.3 NA 76.7 - 81.6 103.7 103.2 98.0 77.5 - 85.8 July ..................................... 93.8 93.5 NA 75.3 - 80.2 101.5 101.1 96.1 76.2 - 84.7 August ................................ 95.2 95.0 NA 78.5 - 82.7 102.2 102.0 NA 80.0 - 86.7 September .......................... 97.1 96.7 88.1 79.7 - 82.9 104.7 104.4 93.7 82.0 - 87.4 October

497

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

51.0 51.0 50.8 45.0 38.1 33.0 39.1 59.9 59.7 51.9 42.3 - 46.1 February ............................. 49.4 49.3 43.4 36.3 32.8 37.6 58.6 58.4 50.4 40.4 - 44.3 March .................................. 57.2 57.1 52.4 46.9 39.7 47.1 65.7 65.5 58.6 50.5 - 53.7 April .................................... 68.1 68.0 64.2 56.7 47.2 56.2 76.5 76.2 69.8 60.5 - 63.9 May ..................................... 68.9 68.8 63.6 56.3 48.2 56.1 77.4 77.0 69.4 60.0 - 63.4 June .................................... 68.2 68.2 63.7 56.3 48.6 56.7 76.5 76.3 69.1 59.8 - 63.2 July ..................................... 73.6 73.6 69.8 63.6 55.3 63.8 81.8 81.6 75.0 67.2 - 70.0 August ................................ 78.7 78.7 74.6 68.4 62.5 69.0 87.5 87.2 79.9 72.0 - 74.9 September .......................... 82.1 81.9 77.5 71.5 64.7 71.9 90.9 90.5 83.1 75.3 -

498

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

9.0 9.0 68.8 61.7 55.1 51.1 56.0 77.1 76.6 66.9 59.4 - 62.6 February ............................. 69.6 69.4 63.4 56.3 52.0 57.4 77.6 77.2 68.9 60.4 - 64.3 March .................................. 75.3 75.1 69.2 63.6 57.7 64.3 83.2 82.8 74.6 67.5 W 70.8 April .................................... 83.2 83.0 77.3 71.5 64.3 71.6 91.1 90.7 82.5 75.8 - 78.9 May ..................................... 86.2 85.9 79.2 71.7 65.6 72.6 94.1 93.6 84.2 75.8 - 79.5 June .................................... 83.7 83.4 75.2 66.6 59.9 67.4 91.6 90.9 80.2 69.5 - 74.2 July ..................................... 81.8 81.5 74.0 66.6 60.0 67.3 89.6 89.1 79.2 70.2 - 74.2 August ................................ 80.3 80.2 73.1 66.2 60.0 66.9 88.0 87.6 78.4 69.8 W 73.5 September .......................... 80.6 80.5 73.7 67.2 60.4 67.8 88.3 87.9 78.8 70.9 -

499

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

66.1 66.1 65.8 58.4 51.1 49.2 52.4 74.6 74.2 64.6 55.6 - 59.1 February ............................. 63.3 63.2 56.3 50.1 47.4 51.0 72.0 71.6 62.1 54.1 - 57.3 March .................................. 61.3 61.2 54.2 47.9 45.4 48.9 69.9 69.5 60.0 51.9 - 55.0 April .................................... 62.6 62.5 56.3 51.1 47.1 51.5 71.0 70.7 61.8 55.1 - 57.7 May ..................................... 65.3 65.2 58.8 53.8 48.4 53.9 73.5 73.1 64.3 57.6 - 60.3 June .................................... 64.6 64.4 57.4 51.2 46.2 51.7 73.2 72.6 63.2 54.9 W 58.2 July ..................................... 63.4 63.2 56.0 49.8 45.1 50.5 72.2 71.7 62.2 53.4 - 56.9 August ................................ 60.5 60.3 52.9 45.0 41.0 46.3 69.6 69.2 59.2 48.8 - 53.0 September .......................... 59.2 59.1 52.8 45.8 40.8 46.7 68.2 67.9 58.8 49.7 -

500

U.S. Motor Gasoline Blending Components Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...